151
|
Vitali F, Colucci R, Di Paola M, Pindo M, De Filippo C, Moretti S, Cavalieri D. Early melanoma invasivity correlates with gut fungal and bacterial profiles. Br J Dermatol 2021; 186:106-116. [PMID: 34227096 PMCID: PMC9293081 DOI: 10.1111/bjd.20626] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The microbiome is emerging as a crucial player of the immune checkpoint in cancer. Melanoma is a highly immunogenic tumour, and the gut microbiome composition has been correlated to prognosis and evolution of advanced melanoma and proposed as biomarker for immune checkpoint therapy. OBJECTIVES We investigated the gut fungal and bacterial composition in early-stage melanoma and correlated microbial profiles with histopathological features. METHODS Bacterial 16S rRNA and fungal ITS region sequencing was performed from faecal samples of patients affected by stage I and II melanoma, and healthy controls. A meta-analysis with gut microbiota data from metastatic melanoma patients was also carried out. RESULTS We found a combination of gut fungal and bacterial profiles significantly discriminating M patients from controls. In melanoma patients, we observed an abundance of Prevotella copri and yeasts belonging to the Saccharomycetales order. We found bacterial and fungal community correlated to melanoma invasiveness, whereas specific fungal profile correlated to melanoma regression. Bacteroides was identified as general marker of immunogenicity, being shared by regressive and invasive melanoma. In addition, the bacterial community from stage I and II patients were different in structure and richer than those from metastatic melanoma patients. CONCLUSIONS Gut microbiota composition in early-stage melanoma changes along the gradient from in situ to invasive (and metastatic) melanoma. Changes in the microbiota and mycobiota are correlated to the histological features of early-stage melanoma, and to the clinical course and response to immune therapies of advanced stage melanoma, through a direct or indirect immunomodulation.
Collapse
Affiliation(s)
- F Vitali
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - R Colucci
- Section of Dermatology, Department of Health Sciences (DSS), University of Florence, Palagi Hospital, Viale Michelangelo 41, 50125, Florence, Italy
| | - M Di Paola
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - M Pindo
- Genomics Platform, Unit of Computational Biology, San Michele a/A, Edmund Mach Foundation, Via E. Mach 1, 38010, Trento, Italy
| | - C De Filippo
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - S Moretti
- Section of Dermatology, Department of Health Sciences (DSS), University of Florence, Palagi Hospital, Viale Michelangelo 41, 50125, Florence, Italy
| | - D Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
152
|
Liu X, Chen Y, Zhang S, Dong L. Gut microbiota-mediated immunomodulation in tumor. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:221. [PMID: 34217349 PMCID: PMC8254267 DOI: 10.1186/s13046-021-01983-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022]
Abstract
Tumor immunity consists of various types of cells, which serve an important role in antitumor therapy. The gastrointestinal tract is colonized by trillions of microorganisms, which form the gut microbiota. In addition to pathogen defense and maintaining the intestinal ecosystem, gut microbiota also plays a pivotal role in various physiological processes. Recently, the association between these symbionts and cancer, ranging from oncogenesis and cancer progression to resistance or sensitivity to antitumor therapies, has attracted much attention. Metagenome analysis revealed a significant difference between the gut microbial composition of cancer patients and healthy individuals. Moreover, modulation of microbiome could improve therapeutic response to immune checkpoint inhibitors (ICIs). These findings suggest that microbiome is involved in cancer pathogenesis and progression through regulation of tumor immunosurveillance, although the exact mechanisms remain largely unknown. This review focuses on the interaction between the microbiome and tumor immunity, with in-depth discussion regarding the therapeutic potential of modulating gut microbiota in ICIs. Further investigations are warranted before gut microbiota can be introduced into clinical practice.
Collapse
Affiliation(s)
- Xinyi Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200030, People's Republic of China.,Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai, 200030, People's Republic of China
| | - Yanjie Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200030, People's Republic of China
| | - Si Zhang
- Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai, 200030, People's Republic of China.
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200030, People's Republic of China. .,Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
153
|
Su M, Zhang Z, Zhou L, Han C, Huang C, Nice EC. Proteomics, Personalized Medicine and Cancer. Cancers (Basel) 2021; 13:2512. [PMID: 34063807 PMCID: PMC8196570 DOI: 10.3390/cancers13112512] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
As of 2020 the human genome and proteome are both at >90% completion based on high stringency analyses. This has been largely achieved by major technological advances over the last 20 years and has enlarged our understanding of human health and disease, including cancer, and is supporting the current trend towards personalized/precision medicine. This is due to improved screening, novel therapeutic approaches and an increased understanding of underlying cancer biology. However, cancer is a complex, heterogeneous disease modulated by genetic, molecular, cellular, tissue, population, environmental and socioeconomic factors, which evolve with time. In spite of recent advances in treatment that have resulted in improved patient outcomes, prognosis is still poor for many patients with certain cancers (e.g., mesothelioma, pancreatic and brain cancer) with a high death rate associated with late diagnosis. In this review we overview key hallmarks of cancer (e.g., autophagy, the role of redox signaling), current unmet clinical needs, the requirement for sensitive and specific biomarkers for early detection, surveillance, prognosis and drug monitoring, the role of the microbiome and the goals of personalized/precision medicine, discussing how emerging omics technologies can further inform on these areas. Exemplars from recent onco-proteogenomic-related publications will be given. Finally, we will address future perspectives, not only from the standpoint of perceived advances in treatment, but also from the hurdles that have to be overcome.
Collapse
Affiliation(s)
- Miao Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Chao Han
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
154
|
Zou R, Wang Y, Ye F, Zhang X, Wang M, Cui S. Mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade and the emerging role of gut microbiome. Clin Transl Oncol 2021; 23:2237-2252. [PMID: 34002348 DOI: 10.1007/s12094-021-02637-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
As a very promising immunotherapy, PD-1/PD-L1 blockade has revolutionized the treatment of a variety of tumor types, resulting in significant clinical efficacy and lasting responses. However, these therapies do not work for a large proportion of patients initially, which is called primary resistance. And more frustrating is that most patients eventually develop acquired resistance after an initial response to PD-1/PD-L1 blockade. The mechanisms that lead to primary and acquired resistance to PD-1/PD-L1 inhibition have remained largely unclear. Recently, the gut microbiome has emerged as a potential regulator for PD-1/PD-L1 blockade. This review elaborates on the current understanding of the mechanisms in terms of PD-1 related signaling pathways and necessary factors. Moreover, this review discusses new strategies to increase the efficacy of immunotherapy from the perspectives of immune markers and gut microbiome.
Collapse
Affiliation(s)
- R Zou
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Y Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - F Ye
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - X Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - M Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - S Cui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
155
|
Reens AL, Cabral DJ, Liang X, Norton JE, Therien AG, Hazuda DJ, Swaminathan G. Immunomodulation by the Commensal Microbiome During Immune-Targeted Interventions: Focus on Cancer Immune Checkpoint Inhibitor Therapy and Vaccination. Front Immunol 2021; 12:643255. [PMID: 34054810 PMCID: PMC8155485 DOI: 10.3389/fimmu.2021.643255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence in clinical and preclinical studies indicates that success of immunotherapies can be impacted by the state of the microbiome. Understanding the role of the microbiome during immune-targeted interventions could help us understand heterogeneity of treatment success, predict outcomes, and develop additional strategies to improve efficacy. In this review, we discuss key studies that reveal reciprocal interactions between the microbiome, the immune system, and the outcome of immune interventions. We focus on cancer immune checkpoint inhibitor treatment and vaccination as two crucial therapeutic areas with strong potential for immunomodulation by the microbiota. By juxtaposing studies across both therapeutic areas, we highlight three factors prominently involved in microbial immunomodulation: short-chain fatty acids, microbe-associate molecular patterns (MAMPs), and inflammatory cytokines. Continued interrogation of these models and pathways may reveal critical mechanistic synergies between the microbiome and the immune system, resulting in novel approaches designed to influence the efficacy of immune-targeted interventions.
Collapse
Affiliation(s)
- Abigail L. Reens
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - Damien J. Cabral
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - Xue Liang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - James E. Norton
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - Alex G. Therien
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - Daria J. Hazuda
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
- Infectious Disease and Vaccine Research, Merck & Co., Inc., West Point, PA, United States
| | - Gokul Swaminathan
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| |
Collapse
|
156
|
Hangai S, Kimura Y, Taniguchi T, Yanai H. Signal-transducing innate receptors in tumor immunity. Cancer Sci 2021; 112:2578-2591. [PMID: 33570784 PMCID: PMC8253268 DOI: 10.1111/cas.14848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
The signal‐transducing innate receptors represent classes of pattern recognition receptors (PRRs) that play crucial roles in the first line of the host defense against infections by the recognition of pathogen‐derived molecules. Because of their poorly discriminative nature compared with antigen receptors of the adaptive immune system, they also recognize endogenous molecules and evoke immune responses without infection, resulting in the regulation of tumor immunity. Therefore, PRRs may be promising targets for effective cancer immunotherapy, either by activating or inhibiting them. Here, we summarize our current knowledge of signal‐transducing PRRs in the regulation of tumor immunity.
Collapse
Affiliation(s)
- Sho Hangai
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Kimura
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tadatsugu Taniguchi
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hideyuki Yanai
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
157
|
Moaven O, Mangieri CW, Stauffer JA, Anastasiadis PZ, Borad MJ. Strategies to Develop Potent Oncolytic Viruses and Enhance Their Therapeutic Efficacy. JCO Precis Oncol 2021; 5:PO.21.00003. [PMID: 34250395 DOI: 10.1200/po.21.00003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Despite advancements in cancer therapy that have occurred over the past several decades, successful treatment of advanced malignancies remains elusive. Substantial resources and significant efforts have been directed toward the development of novel therapeutic modalities to improve patient outcomes. Oncolytic viruses (OVs) are emerging tools with unique characteristics that have attracted great interest in developing effective anticancer treatment. The original attraction was directed toward selective replication and cell-specific toxicity, two unique features that are either inherent to the virus or could be conferred by genetic engineering. However, recent advancements in the knowledge and understanding of OVs are shifting the therapeutic paradigm toward a greater focus on their immunomodulatory role. Nonetheless, there are still significant obstacles that remain to be overcome to enhance the efficiency of OVs as effective therapeutic modalities and potentially establish them as part of standard treatment regimens. In this review, we discuss advances in the design of OVs, strategies to enhance their therapeutic efficacy, functional translation into the clinical settings, and various obstacles that are still encountered in the efforts to establish them as effective anticancer treatments.
Collapse
Affiliation(s)
- Omeed Moaven
- Section of Surgical Oncology, Department of Surgery, Mayo Clinic Florida, Jacksonville, FL
| | - Christopher W Mangieri
- Section of Surgical Oncology, Department of Surgery, Wake Forest University, Winston-Salem, NC
| | - John A Stauffer
- Section of Surgical Oncology, Department of Surgery, Mayo Clinic Florida, Jacksonville, FL
| | | | - Mitesh J Borad
- Division of Medical Oncology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| |
Collapse
|
158
|
Xing C, Wang M, Ajibade AA, Tan P, Fu C, Chen L, Zhu M, Hao ZZ, Chu J, Yu X, Yin B, Zhu J, Shen WJ, Duan T, Wang HY, Wang RF. Microbiota regulate innate immune signaling and protective immunity against cancer. Cell Host Microbe 2021; 29:959-974.e7. [PMID: 33894128 DOI: 10.1016/j.chom.2021.03.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/30/2020] [Accepted: 03/24/2021] [Indexed: 12/11/2022]
Abstract
Microbiota play critical roles in regulating colitis and colorectal cancer (CRC). However, it is unclear how the microbiota generate protective immunity against these disease states. Here, we find that loss of the innate and adaptive immune signaling molecule, TAK1, in myeloid cells (Tak1ΔM/ΔM) yields complete resistance to chemical-induced colitis and CRC through microbiome alterations that drive protective immunity. Tak1ΔM/ΔM mice exhibit altered microbiota that are critical for resistance, with antibiotic-mediated disruption ablating protection and Tak1ΔM/ΔM microbiota transfer conferring protection against colitis or CRC. The altered microbiota of Tak1ΔM/ΔM mice promote IL-1β and IL-6 signaling pathways, which are required for induction of protective intestinal Th17 cells and resistance. Specifically, Odoribacter splanchnicus is abundant in Tak1ΔM/ΔM mice and sufficient to induce intestinal Th17 cell development and confer resistance against colitis and CRC in wild-type mice. These findings identify specific microbiota strains and immune mechanisms that protect against colitis and CRC.
Collapse
Affiliation(s)
- Changsheng Xing
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Mingjun Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Adebusola A Ajibade
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Peng Tan
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA; Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Chuntang Fu
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA; Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Lang Chen
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of General Surgery, Third Xiangya Hospital, XiangYa School of Medicine, Central South University, Changsha 410013, China
| | - Motao Zhu
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Zhao-Zhe Hao
- Jan and Dan Duncan Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junjun Chu
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Xiao Yu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Bingnan Yin
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jiahui Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, South East University, Nanjing 210096, China
| | - Wan-Jou Shen
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Tianhao Duan
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90027, USA; Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90027, USA; Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
159
|
Pi H, Huang L, Liu H, Liang S, Mei J. Effects of PD-1/PD-L1 signaling pathway on intestinal flora in patients with colorectal cancer. Cancer Biomark 2021; 28:529-535. [PMID: 32568184 DOI: 10.3233/cbm-201606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To explore the effects of the programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) signaling pathway on the intestinal flora in patients with colorectal cancer (CRC). METHODS A total of 30 CRC patients treated with PD-1 monoclonal antibody therapy in the Oncology Department of our hospital from January 2018 to January 2019, and another 30 patients treated with routine non-immune therapy were enrolled. The feces specimens were collected for sequencing, the CRC model was established, and the 16S rRNA gene sequences in intestinal flora in feces specimens of mice were analyzed. RESULTS The 3-month progression-free survival could not be predicted through the gene count or abundance of metagenomic species (MGS) in intestinal microflora of patients. The gene count or MGS abundance was related to the clinical progression-free response. There were abundant unclassified Escherichia coli, s_lactobacillus and s_unclassified parasutterella in patients treated with PD-1. The reflection curve of microbiota had an obvious difference in richness (Chao1), but had no apparent difference in diversity (Shannon). CONCLUSION The PD-1/PD-L1 signaling pathway can regulate the metabolic activity of intestinal flora, thereby promoting immune surveillance of tumors.
Collapse
Affiliation(s)
- Hongquan Pi
- Department of Laboratory Medicine, Dongguan Eastern Central Hospital, Dongguan, Guangdong, China
| | - Libing Huang
- Department of Laboratory Medicine, Dongguan Eastern Central Hospital, Dongguan, Guangdong, China
| | - Huifang Liu
- Department of Laboratory Medicine, Dongguan Eastern Central Hospital, Dongguan, Guangdong, China
| | - Shulan Liang
- Department of Laboratory Medicine, Dongguan Eastern Central Hospital, Dongguan, Guangdong, China
| | - Juanjuan Mei
- Department of Pathology, Dongguan Eastern Central Hospital, Dongguan, Guangdong, China
| |
Collapse
|
160
|
Granato DC, Neves LX, Trino LD, Carnielli CM, Lopes AFB, Yokoo S, Pauletti BA, Domingues RR, Sá JO, Persinoti G, Paixão DAA, Rivera C, de Sá Patroni FM, Tommazetto G, Santos-Silva AR, Lopes MA, de Castro G, Brandão TB, Prado-Ribeiro AC, Squina FM, Telles GP, Paes Leme AF. Meta-omics analysis indicates the saliva microbiome and its proteins associated with the prognosis of oral cancer patients. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140659. [PMID: 33839314 DOI: 10.1016/j.bbapap.2021.140659] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022]
Abstract
Saliva is a biofluid that maintains the health of oral tissues and the homeostasis of oral microbiota. Studies have demonstrated that Oral squamous cell carcinoma (OSCC) patients have different salivary microbiota than healthy individuals. However, the relationship between these microbial differences and clinicopathological outcomes is still far from conclusive. Herein, we investigate the capability of using metagenomic and metaproteomic saliva profiles to distinguish between Control (C), OSCC without active lesion (L0), and OSCC with active lesion (L1) patients. The results show that there are significantly distinct taxonomies and functional changes in L1 patients compared to C and L0 patients, suggesting compositional modulation of the oral microbiome, as the relative abundances of Centipeda, Veillonella, and Gemella suggested by metagenomics are correlated with tumor size, clinical stage, and active lesion. Metagenomics results also demonstrated that poor overall patient survival is associated with a higher relative abundance of Stenophotromonas, Staphylococcus, Centipeda, Selenomonas, Alloscordovia, and Acitenobacter. Finally, compositional and functional differences in the saliva content by metaproteomics analysis can distinguish healthy individuals from OSCC patients. In summary, our study suggests that oral microbiota and their protein abundance have potential diagnosis and prognosis value for oral cancer patients. Further studies are necessary to understand the role of uniquely detected metaproteins in the microbiota of healthy and OSCC patients as well as the crosstalk between saliva host proteins and the oral microbiome present in OSCC.
Collapse
Affiliation(s)
- Daniela C Granato
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Leandro X Neves
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Luciana D Trino
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | | | - Ariane F B Lopes
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Sami Yokoo
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Bianca A Pauletti
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Romênia R Domingues
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Jamile O Sá
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Gabriella Persinoti
- Laboratório Nacional de Biorrenováveis, LNBr, CNPEM, Campinas, São Paulo, Brazil
| | - Douglas A A Paixão
- Laboratório Nacional de Biorrenováveis, LNBr, CNPEM, Campinas, São Paulo, Brazil
| | - César Rivera
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Fabio M de Sá Patroni
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Geizecler Tommazetto
- Department of Biological and Chemical Engineering (BCE), Aarhus University, 82000 Aarhus, Denmark
| | - Alan R Santos-Silva
- Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Márcio A Lopes
- Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Gilberto de Castro
- Oncologia Clínica, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Thaís B Brandão
- Instituto do Câncer do Estado de São Paulo, Octavio Frias de Oliveira, São Paulo, Brazil
| | | | - Fabio M Squina
- Universidade de Sorocaba, Departamento de Processos Tecnológicos e Ambientais, São Paulo, Brazil
| | - Guilherme P Telles
- Universidade de Campinas, Instituto de Computação, Campinas, São Paulo, Brazil
| | - Adriana F Paes Leme
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil.
| |
Collapse
|
161
|
Memmott RM, Wolfe AR, Carbone DP, Williams TM. Predictors of Response, Progression-Free Survival, and Overall Survival in Patients With Lung Cancer Treated With Immune Checkpoint Inhibitors. J Thorac Oncol 2021; 16:1086-1098. [PMID: 33845212 DOI: 10.1016/j.jtho.2021.03.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/20/2021] [Accepted: 03/21/2021] [Indexed: 12/27/2022]
Abstract
Monoclonal antibodies that target immune checkpoint proteins, so-called immune checkpoint inhibitors, prevent tumor evasion of the immune system and are often effective in the treatment of lung cancer. Studies have revealed improved objective response rates, progression-free survival, and overall survival with immune checkpoint inhibitors when used in both first and subsequent-line settings. Unfortunately, only a subset of unselected patients with lung cancer responds to these therapies. An important area of ongoing research is to identify biomarkers that can predict which patients are most likely to derive clinical benefit. This review will discuss established and emerging biomarkers from some of the clinical trials that have demonstrated the efficacy of immune checkpoint inhibitors for the treatment of both NSCLC and SCLC.
Collapse
Affiliation(s)
- Regan M Memmott
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio
| | - Adam R Wolfe
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio
| | - David P Carbone
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio.
| |
Collapse
|
162
|
Sipos A, Ujlaki G, Mikó E, Maka E, Szabó J, Uray K, Krasznai Z, Bai P. The role of the microbiome in ovarian cancer: mechanistic insights into oncobiosis and to bacterial metabolite signaling. Mol Med 2021; 27:33. [PMID: 33794773 PMCID: PMC8017782 DOI: 10.1186/s10020-021-00295-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is characterized by dysbiosis, referred to as oncobiosis in neoplastic diseases. In ovarian cancer, oncobiosis was identified in numerous compartments, including the tumor tissue itself, the upper and lower female genital tract, serum, peritoneum, and the intestines. Colonization was linked to Gram-negative bacteria with high inflammatory potential. Local inflammation probably participates in the initiation and continuation of carcinogenesis. Furthermore, local bacterial colonies in the peritoneum may facilitate metastasis formation in ovarian cancer. Vaginal infections (e.g. Neisseria gonorrhoeae or Chlamydia trachomatis) increase the risk of developing ovarian cancer. Bacterial metabolites, produced by the healthy eubiome or the oncobiome, may exert autocrine, paracrine, and hormone-like effects, as was evidenced in breast cancer or pancreas adenocarcinoma. We discuss the possible involvement of lipopolysaccharides, lysophosphatides and tryptophan metabolites, as well as, short-chain fatty acids, secondary bile acids and polyamines in the carcinogenesis of ovarian cancer. We discuss the applicability of nutrients, antibiotics, and probiotics to harness the microbiome and support ovarian cancer therapy. The oncobiome and the most likely bacterial metabolites play vital roles in mediating the effectiveness of chemotherapy. Finally, we discuss the potential of oncobiotic changes as biomarkers for the diagnosis of ovarian cancer and microbial metabolites as possible adjuvant agents in therapy.
Collapse
Affiliation(s)
- Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Eszter Maka
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Judit Szabó
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Zoárd Krasznai
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
163
|
Quandt J, Arnovitz S, Haghi L, Woehlk J, Mohsin A, Okoreeh M, Mathur PS, Emmanuel AO, Osman A, Krishnan M, Morin SB, Pearson AT, Sweis RF, Pekow J, Weber CR, Khazaie K, Gounari F. Wnt-β-catenin activation epigenetically reprograms T reg cells in inflammatory bowel disease and dysplastic progression. Nat Immunol 2021; 22:471-484. [PMID: 33664518 PMCID: PMC8262575 DOI: 10.1038/s41590-021-00889-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
The diversity of regulatory T (Treg) cells in health and in disease remains unclear. Individuals with colorectal cancer harbor a subpopulation of RORγt+ Treg cells with elevated expression of β-catenin and pro-inflammatory properties. Here we show progressive expansion of RORγt+ Treg cells in individuals with inflammatory bowel disease during inflammation and early dysplasia. Activating Wnt-β-catenin signaling in human and murine Treg cells was sufficient to recapitulate the disease-associated increase in the frequency of RORγt+ Treg cells coexpressing multiple pro-inflammatory cytokines. Binding of the β-catenin interacting partner, TCF-1, to DNA overlapped with Foxp3 binding at enhancer sites of pro-inflammatory pathway genes. Sustained Wnt-β-catenin activation induced newly accessible chromatin sites in these genes and upregulated their expression. These findings indicate that TCF-1 and Foxp3 together limit the expression of pro-inflammatory genes in Treg cells. Activation of β-catenin signaling interferes with this function and promotes the disease-associated RORγt+ Treg phenotype.
Collapse
MESH Headings
- Animals
- Case-Control Studies
- Cell Proliferation
- Cells, Cultured
- Cellular Reprogramming
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/metabolism
- Colitis-Associated Neoplasms/genetics
- Colitis-Associated Neoplasms/immunology
- Colitis-Associated Neoplasms/metabolism
- Crohn Disease/genetics
- Crohn Disease/immunology
- Crohn Disease/metabolism
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Epigenesis, Genetic
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation, Neoplastic
- Hepatocyte Nuclear Factor 1-alpha/genetics
- Hepatocyte Nuclear Factor 1-alpha/metabolism
- Humans
- Lymphocyte Activation
- Mice, Inbred C57BL
- Mice, Transgenic
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Phenotype
- T Cell Transcription Factor 1
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Wnt Signaling Pathway
- Mice
Collapse
Affiliation(s)
- Jasmin Quandt
- Knapp Research Center, Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Stephen Arnovitz
- Knapp Research Center, Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Leila Haghi
- Knapp Research Center, Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Janine Woehlk
- Knapp Research Center, Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Azam Mohsin
- Knapp Research Center, Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Michael Okoreeh
- Knapp Research Center, Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Priya S Mathur
- Knapp Research Center, Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Akinola Olumide Emmanuel
- Knapp Research Center, Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Abu Osman
- Departments of Immunology and Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Manisha Krishnan
- Knapp Research Center, Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Samuel B Morin
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Alexander T Pearson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Randy F Sweis
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Joel Pekow
- Section of Gastroenterology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Khashayarsha Khazaie
- Departments of Immunology and Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA.
| | - Fotini Gounari
- Knapp Research Center, Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
164
|
Huang X, Pan J, Xu F, Shao B, Wang Y, Guo X, Zhou S. Bacteria-Based Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003572. [PMID: 33854892 PMCID: PMC8025040 DOI: 10.1002/advs.202003572] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/03/2020] [Indexed: 05/24/2023]
Abstract
In the past decade, bacteria-based cancer immunotherapy has attracted much attention in the academic circle due to its unique mechanism and abundant applications in triggering the host anti-tumor immunity. One advantage of bacteria lies in their capability in targeting tumors and preferentially colonizing the core area of the tumor. Because bacteria are abundant in pathogen-associated molecular patterns that can effectively activate the immune cells even in the tumor immunosuppressive microenvironment, they are capable of enhancing the specific immune recognition and elimination of tumor cells. More attractively, during the rapid development of synthetic biology, using gene technology to enable bacteria to be an efficient producer of immunotherapeutic agents has led to many creative immunotherapy paradigms. The combination of bacteria and nanomaterials also displays infinite imagination in the multifunctional endowment for cancer immunotherapy. The current progress report summarizes the recent advances in bacteria-based cancer immunotherapy with specific foci on the applications of naive bacteria-, engineered bacteria-, and bacterial components-based cancer immunotherapy, and at the same time discusses future directions in this field of research based on the present developments.
Collapse
Affiliation(s)
- Xuehui Huang
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Jingmei Pan
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Funeng Xu
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Binfen Shao
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Yi Wang
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Xing Guo
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| |
Collapse
|
165
|
Abstract
Microbial roles in cancer formation, diagnosis, prognosis, and treatment have been disputed for centuries. Recent studies have provocatively claimed that bacteria, viruses, and/or fungi are pervasive among cancers, key actors in cancer immunotherapy, and engineerable to treat metastases. Despite these findings, the number of microbes known to directly cause carcinogenesis remains small. Critically evaluating and building frameworks for such evidence in light of modern cancer biology is an important task. In this Review, we delineate between causal and complicit roles of microbes in cancer and trace common themes of their influence through the host's immune system, herein defined as the immuno-oncology-microbiome axis. We further review evidence for intratumoral microbes and approaches that manipulate the host's gut or tumor microbiome while projecting the next phase of experimental discovery.
Collapse
Affiliation(s)
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1015, Villejuif, France
- Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jeff Hasty
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA
- Molecular Biology Section, Division of Biological Science, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
166
|
Extracellular Vesicles and Their Role in the Spatial and Temporal Expansion of Tumor-Immune Interactions. Int J Mol Sci 2021; 22:ijms22073374. [PMID: 33806053 PMCID: PMC8036938 DOI: 10.3390/ijms22073374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) serve as trafficking vehicles and intercellular communication tools. Their cargo molecules directly reflect characteristics of their parental cell. This includes information on cell identity and specific cellular conditions, ranging from normal to pathological states. In cancer, the content of EVs derived from tumor cells is altered and can induce oncogenic reprogramming of target cells. As a result, tumor-derived EVs compromise antitumor immunity and promote cancer progression and spreading. However, this pro-oncogenic phenotype is constantly being challenged by EVs derived from the local tumor microenvironment and from remote sources. Here, we summarize the role of EVs in the tumor–immune cross-talk that includes, but is not limited to, immune cells in the tumor microenvironment. We discuss the potential of remotely released EVs from the microbiome and during physical activity to shape the tumor–immune cross-talk, directly or indirectly, and confer antitumor activity. We further discuss the role of proinflammatory EVs in the temporal development of the tumor–immune interactions and their potential use for cancer diagnostics.
Collapse
|
167
|
Xia C, Jiang C, Li W, Wei J, Hong H, Li J, Feng L, Wei H, Xin H, Chen T. A Phase II Randomized Clinical Trial and Mechanistic Studies Using Improved Probiotics to Prevent Oral Mucositis Induced by Concurrent Radiotherapy and Chemotherapy in Nasopharyngeal Carcinoma. Front Immunol 2021; 12:618150. [PMID: 33841399 PMCID: PMC8024544 DOI: 10.3389/fimmu.2021.618150] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Earlier evidence has proven that probiotic supplements can reduce concurrent chemoradiotherapy (CCRT)-induced oral mucositis (OM) in nasopharyngeal cancer (NPC). The incidence of severe OM (grade 3 or higher) was the primary endpoint in this study. We first enrolled 85 patients with locally advanced NPC who were undergoing CCRT. Of them, 77 patients were finally selected and randomized (1:1) to receive either a probiotic cocktail or placebo. To investigate the protective effects and the mechanism of probiotic cocktail treatment on OM induced by radiotherapy and chemotherapy, we randomly divided the rats into the control (C) group, the model (M) group, and the probiotic (P) group. After treatment, samples from the tongue, blood, and fecal and proximal colon tissues on various days (7th, 14th, and 21st days) were collected and tested for the inflammatory response, cell apoptosis, intestinal permeability, and intestinal microbial changes. We found that patients taking the probiotic cocktail showed significantly lower OM. The values of the incidence of 0, 1, 2, 3, and 4 grades of OM in the placebo group and in the probiotic cocktail group were reported to be 0, 14.7, 38.2, 32.4, and 14.7% and 13.9, 36.1, 25, 22.2, and 2.8%, respectively. Furthermore, patients in the probiotic cocktail group showed a decrease in the reduction rate of CD3+ T cells (75.5% vs. 81%, p < 0.01), CD4+ T cells (64.53% vs. 79.53%, p < 0.01), and CD8+ T cells (75.59 vs. 62.36%, p < 0.01) compared to the placebo group. In the rat model, the probiotic cocktail could ameliorate the severity of OM, decrease the inflammatory response, cause cell apoptosis and intestinal permeability, and restore the structure of gut microbiota to normalcy. In conclusion, the modified probiotic cocktail significantly reduces the severity of OM by enhancing the immune response of patients with NPC and modifying the structure of gut microbiota. Clinical Trial Registration: The Clinical Trial Registration should be the NCT03112837.
Collapse
Affiliation(s)
- Chaofei Xia
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Chunling Jiang
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China.,NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Wenyu Li
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hu Hong
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Jingao Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China.,NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Liu Feng
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China.,NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongbo Xin
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
168
|
Tripodi L, Vitale M, Cerullo V, Pastore L. Oncolytic Adenoviruses for Cancer Therapy. Int J Mol Sci 2021; 22:2517. [PMID: 33802281 PMCID: PMC7959120 DOI: 10.3390/ijms22052517] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Many immuno-therapeutic strategies are currently being developed to fight cancer. In this scenario, oncolytic adenoviruses (Onc.Ads) have an interesting role for their peculiar tumor selectivity, safety, and transgene-delivery capability. The major strength of the Onc.Ads is the extraordinary immunogenicity that leads to a strong T-cell response, which, together with the possibility of the delivery of a therapeutic transgene, could be more effective than current strategies. In this review, we travel in the adenovirus (Ads) and Onc.Ads world, focusing on a variety of strategies that can enhance Onc.Ads antitumoral efficacy, passing through tumor microenvironment modulation. Onc.Ads-based therapeutic strategies constitute additional weapons in the fight against cancer and appear to potentiate conventional and immune checkpoint inhibitors (ICIs)-based therapies leading to a promising scenario.
Collapse
Affiliation(s)
- Lorella Tripodi
- SEMM European School for Molecular Medicine, 20123 Milano, Italy;
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy;
| | - Maria Vitale
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy;
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
| | - Vincenzo Cerullo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Lucio Pastore
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy;
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
| |
Collapse
|
169
|
Niu M, Yi M, Li N, Luo S, Wu K. Predictive biomarkers of anti-PD-1/PD-L1 therapy in NSCLC. Exp Hematol Oncol 2021; 10:18. [PMID: 33653420 PMCID: PMC7923338 DOI: 10.1186/s40164-021-00211-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy, especially anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) treatment has significantly improved the survival of non-small cell lung cancer (NSCLC) patients. However, the overall response rate remains unsatisfactory. Many factors affect the outcome of anti-PD-1/PD-L1 treatment, such as PD-L1 expression level, tumor-infiltrating lymphocytes (TILs), tumor mutation burden (TMB), neoantigens, and driver gene mutations. Further exploration of biomarkers would be favorable for the best selection of patients and precisely predict the efficacy of anti-PD-1/PD-L1 treatment. In this review, we summarized the latest advances in this field, and discussed the potential applications of these laboratory findings in the clinic.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Kongming Wu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
170
|
Elmore LW, Greer SF, Daniels EC, Saxe CC, Melner MH, Krawiec GM, Cance WG, Phelps WC. Blueprint for cancer research: Critical gaps and opportunities. CA Cancer J Clin 2021; 71:107-139. [PMID: 33326126 DOI: 10.3322/caac.21652] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
We are experiencing a revolution in cancer. Advances in screening, targeted and immune therapies, big data, computational methodologies, and significant new knowledge of cancer biology are transforming the ways in which we prevent, detect, diagnose, treat, and survive cancer. These advances are enabling durable progress in the goal to achieve personalized cancer care. Despite these gains, more work is needed to develop better tools and strategies to limit cancer as a major health concern. One persistent gap is the inconsistent coordination among researchers and caregivers to implement evidence-based programs that rely on a fuller understanding of the molecular, cellular, and systems biology mechanisms underpinning different types of cancer. Here, the authors integrate conversations with over 90 leading cancer experts to highlight current challenges, encourage a robust and diverse national research portfolio, and capture timely opportunities to advance evidence-based approaches for all patients with cancer and for all communities.
Collapse
Affiliation(s)
- Lynne W Elmore
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Susanna F Greer
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Elvan C Daniels
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Charles C Saxe
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Michael H Melner
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Ginger M Krawiec
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - William G Cance
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - William C Phelps
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| |
Collapse
|
171
|
Yang K, Hou Y, Zhang Y, Liang H, Sharma A, Zheng W, Wang L, Torres R, Tatebe K, Chmura SJ, Pitroda SP, Gilbert JA, Fu YX, Weichselbaum RR. Suppression of local type I interferon by gut microbiota-derived butyrate impairs antitumor effects of ionizing radiation. J Exp Med 2021; 218:e20201915. [PMID: 33496784 PMCID: PMC7844434 DOI: 10.1084/jem.20201915] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/02/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022] Open
Abstract
The antitumor effects of ionizing radiation (IR) are mediated in part through activation of innate and adaptive immunity. Here we report that gut microbiota influences tumor control following IR. Vancomycin decreased the abundance of butyrate-producing gut bacteria and enhanced antitumor responses to IR. Oral administration of Lachnospiraceae, a family of vancomycin-sensitive bacteria, was associated with increased systemic and intratumoral butyric acid levels and impaired the efficacy of IR in germ-free (GF) mice. Local butyrate inhibited STING-activated type I IFN expression in dendritic cells (DCs) through blockade of TBK1 and IRF3 phosphorylation, which abrogated IR-induced tumor-specific cytotoxic T cell immune responses without directly protecting tumor cells from radiation. Our findings demonstrate that the selective targeting of butyrate-producing microbiota may provide a novel therapeutic option to enhance tumor radiation sensitivity.
Collapse
Affiliation(s)
- Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Yuzhu Hou
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Yuan Zhang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Hua Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Anukriti Sharma
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA
| | - Wenxin Zheng
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Rolando Torres
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
| | - Ken Tatebe
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
| | - Steven J. Chmura
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
| | - Sean P. Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Jack A. Gilbert
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| |
Collapse
|
172
|
Wong MK, Barbulescu P, Coburn B, Reguera-Nuñez E. Therapeutic interventions and mechanisms associated with gut microbiota-mediated modulation of immune checkpoint inhibitor responses. Microbes Infect 2021; 23:104804. [PMID: 33652120 DOI: 10.1016/j.micinf.2021.104804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
The link between the gut microbiome and responsiveness to immune checkpoint inhibitor (ICI) therapy is now well established. New therapeutic opportunities exploiting this relationship are being developed with the goal of augmenting ICI efficacy. In this review, we summarize the foundational research establishing these interactions and discuss the mechanisms and novel therapeutic options associated with this gut microbiome-ICI connection.
Collapse
Affiliation(s)
- Matthew K Wong
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Philip Barbulescu
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Bryan Coburn
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada; Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, M5G 0A3, Canada.
| | - Elaine Reguera-Nuñez
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, M5G 0A3, Canada.
| |
Collapse
|
173
|
Jain T, Sharma P, Are AC, Vickers SM, Dudeja V. New Insights Into the Cancer-Microbiome-Immune Axis: Decrypting a Decade of Discoveries. Front Immunol 2021; 12:622064. [PMID: 33708214 PMCID: PMC7940198 DOI: 10.3389/fimmu.2021.622064] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
The past decade has witnessed groundbreaking advances in the field of microbiome research. An area where immense implications of the microbiome have been demonstrated is tumor biology. The microbiome affects tumor initiation and progression through direct effects on the tumor cells and indirectly through manipulation of the immune system. It can also determine response to cancer therapies and predict disease progression and survival. Modulation of the microbiome can be harnessed to potentiate the efficacy of immunotherapies and decrease their toxicity. In this review, we comprehensively dissect recent evidence regarding the interaction of the microbiome and anti-tumor immune machinery and outline the critical questions which need to be addressed as we further explore this dynamic colloquy.
Collapse
Affiliation(s)
| | | | | | - Selwyn M. Vickers
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
174
|
El Sayed R, Haibe Y, Amhaz G, Bouferraa Y, Shamseddine A. Metabolic Factors Affecting Tumor Immunogenicity: What Is Happening at the Cellular Level? Int J Mol Sci 2021; 22:2142. [PMID: 33670011 PMCID: PMC7927105 DOI: 10.3390/ijms22042142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy has changed the treatment paradigm in multiple solid and hematologic malignancies. However, response remains limited in a significant number of cases, with tumors developing innate or acquired resistance to checkpoint inhibition. Certain "hot" or "immune-sensitive" tumors become "cold" or "immune-resistant", with resultant tumor growth and disease progression. Multiple factors are at play both at the cellular and host levels. The tumor microenvironment (TME) contributes the most to immune-resistance, with nutrient deficiency, hypoxia, acidity and different secreted inflammatory markers, all contributing to modulation of immune-metabolism and reprogramming of immune cells towards pro- or anti-inflammatory phenotypes. Both the tumor and surrounding immune cells require high amounts of glucose, amino acids and fatty acids to fulfill their energy demands. Thus, both compete over one pool of nutrients that falls short on needs, obliging cells to resort to alternative adaptive metabolic mechanisms that take part in shaping their inflammatory phenotypes. Aerobic or anaerobic glycolysis, oxidative phosphorylation, tryptophan catabolism, glutaminolysis, fatty acid synthesis or fatty acid oxidation, etc. are all mechanisms that contribute to immune modulation. Different pathways are triggered leading to genetic and epigenetic modulation with consequent reprogramming of immune cells such as T-cells (effector, memory or regulatory), tumor-associated macrophages (TAMs) (M1 or M2), natural killers (NK) cells (active or senescent), and dendritic cells (DC) (effector or tolerogenic), etc. Even host factors such as inflammatory conditions, obesity, caloric deficit, gender, infections, microbiota and smoking status, may be as well contributory to immune modulation, anti-tumor immunity and response to immune checkpoint inhibition. Given the complex and delicate metabolic networks within the tumor microenvironment controlling immune response, targeting key metabolic modulators may represent a valid therapeutic option to be combined with checkpoint inhibitors in an attempt to regain immune function.
Collapse
Affiliation(s)
- Rola El Sayed
- Global Health Institute, American University of Beirut, Beirut 11-0236, Lebanon;
| | - Yolla Haibe
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| | - Ghid Amhaz
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| | - Youssef Bouferraa
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| | - Ali Shamseddine
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| |
Collapse
|
175
|
Qi JL, He JR, Jin SM, Yang X, Bai HM, Liu CB, Ma YB. P. aeruginosa Mediated Necroptosis in Mouse Tumor Cells Induces Long-Lasting Systemic Antitumor Immunity. Front Oncol 2021; 10:610651. [PMID: 33643911 PMCID: PMC7908819 DOI: 10.3389/fonc.2020.610651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/21/2020] [Indexed: 01/12/2023] Open
Abstract
Necroptosis is a form of programmed cell death (PCD) characterized by RIP3 mediated MLKL activation and increased membrane permeability via MLKL oligomerization. Tumor cell immunogenic cell death (ICD) has been considered to be essential for the anti-tumor response, which is associated with DC recruitment, activation, and maturation. In this study, we found that P. aeruginosa showed its potential to suppress tumor growth and enable long-lasting anti-tumor immunity in vivo. What's more, phosphorylation- RIP3 and MLKL activation induced by P. aeruginosa infection resulted in tumor cell necrotic cell death and HMGB1 production, indicating that P. aeruginosa can cause immunogenic cell death. The necrotic cell death can further drive a robust anti-tumor response via promoting tumor cell death, inhibiting tumor cell proliferation, and modulating systemic immune responses and local immune microenvironment in tumor. Moreover, dying tumor cells killed by P. aeruginosa can catalyze DC maturation, which enhanced the antigen-presenting ability of DC cells. These findings demonstrate that P. aeruginosa can induce immunogenic cell death and trigger a robust long-lasting anti-tumor response along with reshaping tumor microenvironment.
Collapse
Affiliation(s)
- Jia-long Qi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jin-rong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
- Institute of Medical Biology, Kunming Medical University, Kunming, China
| | - Shu-mei Jin
- Department of Pathology, Yunnan Institute of Materia, Kunming, China
| | - Xu Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hong-mei Bai
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Cun-bao Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yan-bing Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
176
|
Liu Y, Li Z, Wu Y, Jing X, Li L, Fang X. Intestinal Bacteria Encapsulated by Biomaterials Enhance Immunotherapy. Front Immunol 2021; 11:620170. [PMID: 33643302 PMCID: PMC7902919 DOI: 10.3389/fimmu.2020.620170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
The human intestine contains thousands of bacterial species essential for optimal health. Aside from their pathogenic effects, these bacteria have been associated with the efficacy of various treatments of diseases. Due to their impact on many human diseases, intestinal bacteria are receiving increasing research attention, and recent studies on intestinal bacteria and their effects on treatments has yielded valuable results. Particularly, intestinal bacteria can affect responses to numerous forms of immunotherapy, especially cancer therapy. With the development of precision medicine, understanding the factors that influence intestinal bacteria and how they can be regulated to enhance immunotherapy effects will improve the application prospects of intestinal bacteria therapy. Further, biomaterials employed for the convenient and efficient delivery of intestinal bacteria to the body have also become a research hotspot. In this review, we discuss the recent findings on the regulatory role of intestinal bacteria in immunotherapy, focusing on immune cells they regulate. We also summarize biomaterials used for their delivery.
Collapse
Affiliation(s)
- Yilun Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongmin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuanyu Wu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiabin Jing
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Lin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
177
|
Huang M, Lu JJ, Ding J. Natural Products in Cancer Therapy: Past, Present and Future. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:5-13. [PMID: 33389713 PMCID: PMC7933288 DOI: 10.1007/s13659-020-00293-7] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/15/2020] [Indexed: 05/02/2023]
Abstract
Natural products, with remarkable chemical diversity, have been extensively investigated for their anticancer potential for more than a half-century. The collective efforts of the community have achieved the tremendous advancements, bringing natural products to clinical use and discovering new therapeutic opportunities, yet the challenges remain ahead. With remarkable changes in the landscape of cancer therapy and growing role of cutting-edge technologies, we may have come to a crossroads to revisit the strategies to understand nature products and to explore their therapeutic utility. This review summarizes the key advancements in nature product-centered cancer research and calls for the implementation of systematic approaches, new pharmacological models, and exploration of emerging directions to revitalize natural products search in cancer therapy.
Collapse
Affiliation(s)
- Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jian Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
178
|
Ran Z, Liu J, Wang F, Xin C, Xiong B, Song Z. Pulmonary Micro-Ecological Changes and Potential Microbial Markers in Lung Cancer Patients. Front Oncol 2021; 10:576855. [PMID: 33537234 PMCID: PMC7848173 DOI: 10.3389/fonc.2020.576855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
The relationship between the microbiome and disease has been investigated for many years. As a highly malignant tumor, biomarkers for lung cancer are diverse. However, precision of these biomarkers has not yet been achieved. It has been confirmed that lung microecology changes in lung cancer patients compared with healthy individuals. Furthermore, the abundance of some bacterial species shows obvious changes, suggesting their potential use as a microbial marker for the detection of lung cancer. In addition, recent studies have confirmed that inflammation, immune response, virulence factors, and metabolism may be potential mechanisms linking the microbiome with carcinogenesis. In this review, microbiome studies of lung cancer, potential mechanisms, potential microbial markers, and the influence of the microbiome on the diagnosis and treatment of lung cancer are summarized, providing theoretical strategies for the diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Zhuonan Ran
- The Second Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiexing Liu
- The Second Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fen Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Caiyan Xin
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Bin Xiong
- The Second Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.,Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| |
Collapse
|
179
|
Parolini C, Amedei A. Editorial: Gut Microbiota and Inflammation: Relevance in Cancer and Cardiovascular Disease. Front Pharmacol 2021; 11:613511. [PMID: 33424614 PMCID: PMC7786398 DOI: 10.3389/fphar.2020.613511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
| |
Collapse
|
180
|
Niccolai E, Russo E, Baldi S, Ricci F, Nannini G, Pedone M, Stingo FC, Taddei A, Ringressi MN, Bechi P, Mengoni A, Fani R, Bacci G, Fagorzi C, Chiellini C, Prisco D, Ramazzotti M, Amedei A. Significant and Conflicting Correlation of IL-9 With Prevotella and Bacteroides in Human Colorectal Cancer. Front Immunol 2021; 11:573158. [PMID: 33488574 PMCID: PMC7820867 DOI: 10.3389/fimmu.2020.573158] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background and aim Gut microbiota (GM) can support colorectal cancer (CRC) progression by modulating immune responses through the production of both immunostimulatory and/or immunosuppressive cytokines. The role of IL-9 is paradigmatic because it can either promote tumor progression in hematological malignancies or inhibit tumorigenesis in solid cancers. Therefore, we investigate the microbiota–immunity axis in healthy and tumor mucosa, focusing on the correlation between cytokine profile and GM signature. Methods In this observational study, we collected tumor (CRC) and healthy (CRC-S) mucosa samples from 45 CRC patients, who were undergoing surgery in 2018 at the Careggi University Hospital (Florence, Italy). First, we characterized the tissue infiltrating lymphocyte subset profile and the GM composition. Subsequently, we evaluated the CRC and CRC-S molecular inflammatory response and correlated this profile with GM composition, using Dirichlet multinomial regression. Results CRC samples displayed higher percentages of Th17, Th2, and Tregs. Moreover, CRC tissues showed significantly higher levels of MIP-1α, IL-1α, IL-1β, IL-2, IP-10, IL-6, IL-8, IL-17A, IFN-γ, TNF-α, MCP-1, P-selectin, and IL-9. Compared to CRC-S, CRC samples also showed significantly higher levels of the following genera: Fusobacteria, Proteobacteria, Fusobacterium, Ruminococcus2, and Ruminococcus. Finally, the abundance of Prevotella spp. in CRC samples negatively correlated with IL-17A and positively with IL-9. On the contrary, Bacteroides spp. presence negatively correlated with IL-9. Conclusions Our data consolidate antitumor immunity impairment and the presence of a distinct microbiota profile in the tumor microenvironment compared with the healthy mucosa counterpart. Relating the CRC cytokine profile with GM composition, we confirm the presence of bidirectional crosstalk between the immune response and the host’s commensal microorganisms. Indeed, we document, for the first time, that Prevotella spp. and Bacteroides spp. are, respectively, positively and negatively correlated with IL-9, whose role in CRC development is still under debate.
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Federica Ricci
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" University of Florence, Florence, Italy
| | - Giulia Nannini
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Matteo Pedone
- Department of Statistics, Computer Science, Applications "G. Parenti", Florence, Italy
| | | | - Antonio Taddei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | | | - Paolo Bechi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Florence, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Florence, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Florence, Italy
| | | | - Domenico Prisco
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy.,SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy.,SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
| |
Collapse
|
181
|
Zhu J, Li M, Shao D, Ma S, Wei W. Altered Fecal Microbiota Signatures in Patients With Anxiety and Depression in the Gastrointestinal Cancer Screening: A Case-Control Study. Front Psychiatry 2021; 12:757139. [PMID: 34819887 PMCID: PMC8607523 DOI: 10.3389/fpsyt.2021.757139] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Increasing attention has been devoted to cancer screening and microbiota in recent decades, but currently there is less focus on microbiota characterization among screeners and its relationship to anxiety and depression. Methods: We characterized the microbial communities of fecal samples collected through the FOBT card from anxiety and depression screeners and paired controls in Henan, China (1:2, N = 69). DNA was extracted using the MOBIO PowerSoil kit. The V4 region of the 16S rRNA gene was sequenced using MiniSeq and processed using QIIME1. LEfSe was used to identify differentially abundant microbes, the Wilcoxon rank-sum test was used to test alpha diversity differences, and permutational multivariate analysis of variance was used to test for differences in beta diversity. Results: Similar fecal microbiota signatures in composition were found among screeners. The intestinal microbial environments by phylum were all composed primarily of Firmicutes, Bacteroidetes, and Proteobacteria, and the corresponding top genera were Faecalibacterium, Roseburia, and Prevotella. Compared with controls, the ranking of the top five genera in the anxiety and depression group changed, and the dominant genus was Prevotella in the anxiety and depression group and Faecalibacterium in the control group. There was a lower relative abundance of Gemmiger (1.4 vs. 2.3%, P = 0.025), Ruminococcus (0.6 vs. 0.8%, P = 0.037), and Veillonella (0.6 vs. 1.3%, P = 0.020). This may be linked to the lower alpha diversity in participants with anxiety and depression (Observed OTUs: 122.35 vs. 143.24; Chao1: 127.35 vs. 149.98), although no significant differences were observed. Distinct clustering in microbial composition between the two groups was detected for the Jaccard distance (P = 0.011). Conclusions: Our study showed differing microbial characterization among participants with anxiety and depression in the endoscopic screening of upper gastrointestinal cancer. Gemmiger, Ruminococcus, and Veillonella were informative and have potential clinical implications, which need to be confirmed by large-scale, prospective cohort studies and biological mechanism research.
Collapse
Affiliation(s)
- Juan Zhu
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjuan Li
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dantong Shao
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanrui Ma
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenqiang Wei
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
182
|
Silva EVDS, Nascente EDP, Miguel MP, Alves CEF, Moura VMBDD. Elucidating tumor immunosurveillance and immunoediting: a comprehensive review. CIÊNCIA ANIMAL BRASILEIRA 2021; 22. [DOI: 10.1590/1809-6891v22e-68544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract The action of the immune system against neoplastic diseases has become one of the main sources of research. The biological pathways of this system are known to contribute in limiting the progression and elimination of the tumor, and are delineated by concepts and mechanisms of immunosurveillance and immunoediting. Immunosurveillance is considered the process by which the immune system recognizes and inhibits the neoplastic process. The concept of immunoediting arises in the sense that immune system is able to shape the antigenic profile of the tumor due to selective pressure, based on the stages of tumor elimination, balance and evasion. The immune response occurs against tumor antigens and changes in the tumor microenvironment, involving different components of the innate immune system, such as T cells, natural Killer cells, B lymphocytes and macrophages. In this sense, knowing these concepts and understanding their respective mechanisms becomes essential in the investigation of new strategies for cancer prevention and cure. Thus, this review presents historical aspects and definitions of immunosurveillance and tumor immunoediting, with emphasis on its importance and applicability, such as on the different methods used in immunotherapy.
Collapse
|
183
|
Hu-Lieskovan S, Bhaumik S, Dhodapkar K, Grivel JCJB, Gupta S, Hanks BA, Janetzki S, Kleen TO, Koguchi Y, Lund AW, Maccalli C, Mahnke YD, Novosiadly RD, Selvan SR, Sims T, Zhao Y, Maecker HT. SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery. J Immunother Cancer 2020; 8:e000705. [PMID: 33268350 PMCID: PMC7713206 DOI: 10.1136/jitc-2020-000705] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Since the publication of the Society for Immunotherapy of Cancer's (SITC) original cancer immunotherapy biomarkers resource document, there have been remarkable breakthroughs in cancer immunotherapy, in particular the development and approval of immune checkpoint inhibitors, engineered cellular therapies, and tumor vaccines to unleash antitumor immune activity. The most notable feature of these breakthroughs is the achievement of durable clinical responses in some patients, enabling long-term survival. These durable responses have been noted in tumor types that were not previously considered immunotherapy-sensitive, suggesting that all patients with cancer may have the potential to benefit from immunotherapy. However, a persistent challenge in the field is the fact that only a minority of patients respond to immunotherapy, especially those therapies that rely on endogenous immune activation such as checkpoint inhibitors and vaccination due to the complex and heterogeneous immune escape mechanisms which can develop in each patient. Therefore, the development of robust biomarkers for each immunotherapy strategy, enabling rational patient selection and the design of precise combination therapies, is key for the continued success and improvement of immunotherapy. In this document, we summarize and update established biomarkers, guidelines, and regulatory considerations for clinical immune biomarker development, discuss well-known and novel technologies for biomarker discovery and validation, and provide tools and resources that can be used by the biomarker research community to facilitate the continued development of immuno-oncology and aid in the goal of durable responses in all patients.
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Kavita Dhodapkar
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | - Sumati Gupta
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Brent A Hanks
- Duke University Medical Center, Durham, North Carolina, USA
| | | | | | - Yoshinobu Koguchi
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Amanda W Lund
- Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | - Tasha Sims
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | | |
Collapse
|
184
|
Britton N, Elbehairy AF, Mensink-Bout SM, Blondeel A, Liu Y, Cruz J, De Brandt J. European Respiratory Society International Congress 2020: highlights from best-abstract awardees. Breathe (Sheff) 2020; 16:200270. [PMID: 33664840 PMCID: PMC7910029 DOI: 10.1183/20734735.0270-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 11/24/2022] Open
Abstract
#ERSCongress 2020 best-abstract awardees summarise their virtual European Respiratory Society International Congress experience and views on the evolving field of research for their respective assembly https://bit.ly/3kJ9JrJ.
Collapse
Affiliation(s)
- Noel Britton
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Centre, Pittsburgh, PA, USA
- These authors contributed equally
| | - Amany F. Elbehairy
- Dept of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Manchester University, Manchester, UK
- These authors contributed equally
| | - Sara M. Mensink-Bout
- Dept of Paediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- These authors contributed equally
| | - Astrid Blondeel
- Dept of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- These authors contributed equally
| | - Yuanling Liu
- Dept of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- These authors contributed equally
| | - Joana Cruz
- Center for Innovative Care and Health Technology (ciTechCare), School of Health Sciences (ESSLei), Polytechnic of Leiria, Leiria, Portugal
- These authors coordinated the article
| | - Jana De Brandt
- REVAL - Rehabilitation Research Centre, BIOMED - Biomedical Research Institute, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
- These authors coordinated the article
| |
Collapse
|
185
|
Vernocchi P, Gili T, Conte F, Del Chierico F, Conta G, Miccheli A, Botticelli A, Paci P, Caldarelli G, Nuti M, Marchetti P, Putignani L. Network Analysis of Gut Microbiome and Metabolome to Discover Microbiota-Linked Biomarkers in Patients Affected by Non-Small Cell Lung Cancer. Int J Mol Sci 2020; 21:ijms21228730. [PMID: 33227982 PMCID: PMC7699235 DOI: 10.3390/ijms21228730] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Several studies in recent times have linked gut microbiome (GM) diversity to the pathogenesis of cancer and its role in disease progression through immune response, inflammation and metabolism modulation. This study focused on the use of network analysis and weighted gene co-expression network analysis (WGCNA) to identify the biological interaction between the gut ecosystem and its metabolites that could impact the immunotherapy response in non-small cell lung cancer (NSCLC) patients undergoing second-line treatment with anti-PD1. Metabolomic data were merged with operational taxonomic units (OTUs) from 16S RNA-targeted metagenomics and classified by chemometric models. The traits considered for the analyses were: (i) condition: disease or control (CTRLs), and (ii) treatment: responder (R) or non-responder (NR). Network analysis indicated that indole and its derivatives, aldehydes and alcohols could play a signaling role in GM functionality. WGCNA generated, instead, strong correlations between short-chain fatty acids (SCFAs) and a healthy GM. Furthermore, commensal bacteria such as Akkermansia muciniphila, Rikenellaceae, Bacteroides, Peptostreptococcaceae, Mogibacteriaceae and Clostridiaceae were found to be more abundant in CTRLs than in NSCLC patients. Our preliminary study demonstrates that the discovery of microbiota-linked biomarkers could provide an indication on the road towards personalized management of NSCLC patients.
Collapse
MESH Headings
- Akkermansia/classification
- Akkermansia/genetics
- Akkermansia/isolation & purification
- Alcohols/metabolism
- Aldehydes/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- Bacteroides/classification
- Bacteroides/genetics
- Bacteroides/isolation & purification
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/microbiology
- Clostridiaceae/classification
- Clostridiaceae/genetics
- Clostridiaceae/isolation & purification
- Databases, Genetic
- Disease Progression
- Drug Monitoring/methods
- Fatty Acids, Volatile/metabolism
- Gastrointestinal Microbiome/genetics
- Gastrointestinal Microbiome/immunology
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Humans
- Immunotherapy/methods
- Indoles/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/microbiology
- Metabolome/genetics
- Metabolome/immunology
- Metagenomics/methods
- Peptostreptococcus/classification
- Peptostreptococcus/genetics
- Peptostreptococcus/isolation & purification
- Precision Medicine/methods
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- RNA, Ribosomal, 16S/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Pamela Vernocchi
- Area of Genetics and Rare Diseases, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (P.V.); (F.D.C.)
| | - Tommaso Gili
- IMT School for Advanced Studies Lucca, Networks Unit, 55100 Lucca, Italy;
| | - Federica Conte
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, 00185 Rome, Italy;
| | - Federica Del Chierico
- Area of Genetics and Rare Diseases, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (P.V.); (F.D.C.)
| | - Giorgia Conta
- Department of Chemistry, NMR-Based Metabolomics Laboratory Sapienza, University of Rome, 00185 Rome, Italy;
| | - Alfredo Miccheli
- Department of Environmental Biology and NMR-Based Metabolomics Laboratory, Sapienza University of Rome, 00185 Rome, Italy;
| | - Andrea Botticelli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (A.B.); (P.M.)
- AOU Policlinico Umberto I, 00161 Rome, Italy
| | - Paola Paci
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, 00185 Rome, Italy;
| | - Guido Caldarelli
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari, University of Venice, 30172 Venice, Italy;
- European Centre for Living Technologies, 30172 Venice, Italy
- Institute of Complex Systems (CNR), Department of Physics, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Marianna Nuti
- Department of Experimental Medicine, University Sapienza of Rome, 00185 Rome, Italy;
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (A.B.); (P.M.)
- AOU Policlinico Umberto I, 00161 Rome, Italy
- AOU Sant’ Andrea Hospital, 00189 Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Area of Genetics and Rare Diseases, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Correspondence: ; Tel.: +39-066-859-2598 (ext. 8433)
| |
Collapse
|
186
|
Peruhova M, Peshevska-Sekulovska M, Krastev B, Panayotova G, Georgieva V, Konakchieva R, Nikolaev G, Velikova TV. What could microRNA expression tell us more about colorectal serrated pathway carcinogenesis? World J Gastroenterol 2020; 26:6556-6571. [PMID: 33268946 PMCID: PMC7673963 DOI: 10.3748/wjg.v26.i42.6556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
In the last two decades, the vision of a unique carcinogenesis model for colorectal carcinoma (CRC) has completely changed. In addition to the adenoma to carcinoma transition, colorectal carcinogenesis can also occur via the serrated pathway. Small non-coding RNA, known as microRNAs (miRNAs), were also shown to be involved in progression towards malignancy. Furthermore, increased expression of certain miRNAs in premalignant sessile serrated lesions (SSLs) was found, emphasizing their role in the serrated pathway progression towards colon cancer. Since miRNAs function as post-transcriptional gene regulators, they have enormous potential to be used as useful biomarkers for CRC and screening in patients with SSLs particularly. In this review, we have summarized the most relevant information about the specific role of miRNAs and their relevant signaling pathways among different serrated lesions and polyps as well as in serrated adenocarcinoma. Additional focus is put on the correlation between gut immunity and miRNA expression in the serrated pathway, which remains unstudied.
Collapse
Affiliation(s)
- Milena Peruhova
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | | | - Boris Krastev
- Department of Clinical Oncology, MHAT Hospital for Women Health Nadezhda, Sofia 1330, Bulgaria
| | - Gabriela Panayotova
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Viktoriya Georgieva
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
| | | | - Georgi Nikolaev
- Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Tsvetelina Veselinova Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia 1407, Bulgaria
| |
Collapse
|
187
|
McKenzie ND, Hong H, Ahmad S, Holloway RW. The gut microbiome and cancer immunotherapeutics: A review of emerging data and implications for future gynecologic cancer research. Crit Rev Oncol Hematol 2020; 157:103165. [PMID: 33227575 DOI: 10.1016/j.critrevonc.2020.103165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/23/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Abstract
Investigation of the gynecologic tract microbial milieu has revealed potential new biomarkers. Simultaneously, immunotherapeutics are establishing their place in the treatment of gynecologic malignancies. The interplay between the microbiome, the tumor micro-environment and response to therapy is a burgeoning area of interest. There is evidence to support that microbes, through their genetic make-up, gene products, and metabolites affect human physiology, metabolism, immunity, disease susceptibility, response to pharmacotherapy, and the severity of disease-related side effects. Specifically, the richness and diversity of the gut microbiome appears to affect carcinogenesis, response to immunotherapy, and modulate severity of immune-mediated adverse effects. These effects have best been described in other tumor types and these have shown compelling results. This review summarizes the current understanding and scope of the interplay between the human microbiome, host factors, cancer, and response to treatments. These findings support further exploring whether these associations exist for gynecologic malignancies.
Collapse
Affiliation(s)
- Nathalie D McKenzie
- AdventHealth Cancer Institute, Division of Gynecologic Oncology, Orlando, FL, 32804, USA
| | - Hannah Hong
- AdventHealth Cancer Institute, Division of Gynecologic Oncology, Orlando, FL, 32804, USA; Kansas City University of Medicine and Biosciences, Kansas City, MO, 64106, USA
| | - Sarfraz Ahmad
- AdventHealth Cancer Institute, Division of Gynecologic Oncology, Orlando, FL, 32804, USA.
| | - Robert W Holloway
- AdventHealth Cancer Institute, Division of Gynecologic Oncology, Orlando, FL, 32804, USA
| |
Collapse
|
188
|
Pieniążek M, Pawlak P, Radecka B. Early palliative care of non-small cell lung cancer in the context of immunotherapy. Oncol Lett 2020; 20:396. [PMID: 33193856 PMCID: PMC7656105 DOI: 10.3892/ol.2020.12259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
The most common cause of mortality due to malignant neoplasms in the general population around the world is lung cancer. In the last 10 years, there has been an enormous improvement in the treatment of this disease, mainly due to the immunotherapy that activates the immune system to fight cancer. Patients with metastatic non-small cell lung cancer are a special group of patients requiring not only cancer treatment but also considerable support in the treatment of cancer-related problems, as well as comorbidities. Early palliative care is important in this area. In addition, there is certain evidence that medicines most commonly administered in palliative care may lower the efficacy of immunotherapy. The present review article compares information on the prolonging of life after early hospice care, which has become the foundation of current standards of management in patients with metastatic lung cancer, and reports of decreased efficacy of the immunotherapy due to the administration of major palliative care medications.
Collapse
Affiliation(s)
- Małgorzata Pieniążek
- Department of Oncology, Institute of Medical Sciences, University of Opole, 45-040 Opole, Poland.,Department of Clinical Oncology, Tadeusz Koszarowski Cancer Center, 45-061 Opole, Poland
| | - Piotr Pawlak
- Department of Clinical Oncology, Tadeusz Koszarowski Cancer Center, 45-061 Opole, Poland
| | - Barbara Radecka
- Department of Oncology, Institute of Medical Sciences, University of Opole, 45-040 Opole, Poland.,Department of Clinical Oncology, Tadeusz Koszarowski Cancer Center, 45-061 Opole, Poland
| |
Collapse
|
189
|
Medjebar S, Truntzer C, Perrichet A, Limagne E, Fumet JD, Richard C, Elkrief A, Routy B, Rébé C, Ghiringhelli F. Angiotensin-converting enzyme (ACE) inhibitor prescription affects non-small-cell lung cancer (NSCLC) patients response to PD-1/PD-L1 immune checkpoint blockers. Oncoimmunology 2020; 9:1836766. [PMID: 33178495 PMCID: PMC7595630 DOI: 10.1080/2162402x.2020.1836766] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/15/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitors are frequently used to treat hypertension and congestive heart failure. Preclinical data show that ACE plays a role on both innate and adaptive immune responses. Since interactions between ACE inhibitors and immune checkpoint inhibitors (ICIs) have not been reported, the aim of this study is to investigate the influence of ACE inhibitors on non-small cell lung cancer (NSCLC) patients treated with programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) inhibitors. We conducted a retrospective cohort analysis of NSCLC patients treated with PD-1/PD-L1 inhibitors. Clinical and co-medication data as well as tumor biopsies were collected. Groups were defined according to patients' co-medications at the time of ICI initiation. Among the 178 patients included, 22 (13.1%) received ACE inhibitors. While baseline characteristics were similar in both groups, ACE inhibitors group had a shorter median PFS (Progression-Free Survival) compared to the control group: 1.97 vs. 2.56 months, p = .01 (HR = 1.8 CI95% 1.1-2.8). Using CIBERSORT, RNA sequencing suggested that tumors from the ACE inhibitors group had less M1 macrophages, activated mast cells, NK cells and memory activated T cells, thus suggesting an immunosuppressed state. In vitro, the ACE inhibitor, captopril, induced M2 marker at the cell surface of monocytes engaged into M1 differentiation. Thus, ACE inhibitors prescription concomitant to PD-1/PD-L1 inhibitors treatment seems to be associated with impaired outcome and with a tumor immunosuppressed state in patients with advanced NSCLC. These results should be validated in larger prospective cohorts.
Collapse
Affiliation(s)
- Soleine Medjebar
- Department of Medical Oncology, GF Leclerc Centre, Dijon, France
- Platform of Transfer in Cancer Biology, GF Leclerc Centre, Dijon, France
| | - Caroline Truntzer
- Platform of Transfer in Cancer Biology, GF Leclerc Centre, Dijon, France
- University of Bourgogne-Franche-Comté, Dijon, France
- Genetic and Immunology Medical Institute (GIMI), Dijon, France
- INSERM UMR1231, Dijon, France
| | - Anaïs Perrichet
- Platform of Transfer in Cancer Biology, GF Leclerc Centre, Dijon, France
- University of Bourgogne-Franche-Comté, Dijon, France
- INSERM UMR1231, Dijon, France
| | - Emeric Limagne
- Platform of Transfer in Cancer Biology, GF Leclerc Centre, Dijon, France
- University of Bourgogne-Franche-Comté, Dijon, France
- INSERM UMR1231, Dijon, France
| | - Jean-David Fumet
- Department of Medical Oncology, GF Leclerc Centre, Dijon, France
- Platform of Transfer in Cancer Biology, GF Leclerc Centre, Dijon, France
- University of Bourgogne-Franche-Comté, Dijon, France
| | - Corentin Richard
- Platform of Transfer in Cancer Biology, GF Leclerc Centre, Dijon, France
- University of Bourgogne-Franche-Comté, Dijon, France
| | - Arielle Elkrief
- Research Centre for the University of Montréal (CRCHUM), Montréal. Hematology-Oncology Division, Department of Medicine, University of Montreal Healthcare Centre (CHUM), Montreal, Canada
| | - Bertrand Routy
- Research Centre for the University of Montréal (CRCHUM), Montréal. Hematology-Oncology Division, Department of Medicine, University of Montreal Healthcare Centre (CHUM), Montreal, Canada
| | - Cédric Rébé
- Platform of Transfer in Cancer Biology, GF Leclerc Centre, Dijon, France
- University of Bourgogne-Franche-Comté, Dijon, France
- INSERM UMR1231, Dijon, France
| | - François Ghiringhelli
- Department of Medical Oncology, GF Leclerc Centre, Dijon, France
- Platform of Transfer in Cancer Biology, GF Leclerc Centre, Dijon, France
- University of Bourgogne-Franche-Comté, Dijon, France
- Genetic and Immunology Medical Institute (GIMI), Dijon, France
- INSERM UMR1231, Dijon, France
| |
Collapse
|
190
|
Kinlen LJ, Gilham C, Ray R, Thomas DB, Peto J. Cohabitation, infection and breast cancer risk. Int J Cancer 2020; 148:1408-1418. [PMID: 32984953 DOI: 10.1002/ijc.33319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/20/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022]
Abstract
For 50 years, the effect of age at first birth (AFB) has been thought to explain the strong association between breast cancer risk and age at first marriage (AFM), which was first reported in 1926. The independent effects of AFM, AFB and number of sexual partners adjusted for parity and other risk factors were estimated in reanalysis of a large international case-control study conducted in 1979 to 1982 (2274 breast cancers, 18209 controls) by unconditional logistic regression. Respective AFB and AFM breast cancer odds ratios (ORs) for ≥31 years relative to ≤18 years were 3.01 (95% CI 2.44-3.71; P(trend) < .0001) and 3.24 (95% CI 2.62-4.01; P(trend) < .0001) in univariate analyses. Among married parous women, these ORs fell to 1.38 (95% CI 0.98-1.95; P(trend) < .03) for AFB and 1.70 (95% CI 1.17-2.46; P(trend) < .002) for AFM when fitted together in multivariate analysis including other risk factors. A similar adjusted OR for AFM ≥ 31 years relative to ≤18 years was seen among married nulliparous women (OR 1.71, 95% CI 0.98-2.98; P(trend) < .001). AFM (a surrogate for age at starting prolonged cohabitation) is thus strongly associated with breast cancer risk. This suggests an effect of close contact. Identifying the (probably infective) mechanism might lead to effective prevention of breast cancer. The independent effect of AFB is smaller and could be due to residual confounding.
Collapse
Affiliation(s)
- Leo J Kinlen
- Cancer Research UK Cancer Epidemiology Unit, Nuffield Department of Population Medicine, University of Oxford, Oxford, UK
| | - Clare Gilham
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Roberta Ray
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - David B Thomas
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Julian Peto
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
191
|
Teng J, Zhao Y, Jiang Y, Wang Q, Zhang Y. [Correlation between Gut Microbiota and Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:909-915. [PMID: 32798442 PMCID: PMC7583874 DOI: 10.3779/j.issn.1009-3419.2020.101.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene-environment interactions underlie cancer susceptibility and progression. The human body is exposed to and affected by the microenvironment seiscasts of various microorganisms and their metabolites, such as the microenvironment of gut microbiota. The relative abundance of some intestinal microbes in lung cancer patients was significantly different from that in the control group. These studies suggest that gut microbiota may be associated with lung cancer through some ways. At the same time, gut microbiota is relatively manageable environmental variables compared to the external environment we are exposed to, as they are highly quantifiable and relatively stable in the individual. Just as some measures of diagnosis, intervention and treatment of lung cancer targeting gut microbiota have achieved some results in clinical practice. In this review, we mainly discuss the role of gut microbiota and its metabolites in the progression and treatment of lung cancer through certain ways, such as regulation of metabolism, inflammation, and immune response. Finally, based on current research progress, it is inferred that research on gut microbiota may be an effective approach to the precise and personalized medical treatment of lung cancer.
.
Collapse
Affiliation(s)
- Jun Teng
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yanfen Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yunning Jiang
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Wang
- Department of Respiratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Yongsheng Zhang
- Department of Respiratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| |
Collapse
|
192
|
Sári Z, Mikó E, Kovács T, Boratkó A, Ujlaki G, Jankó L, Kiss B, Uray K, Bai P. Indoxylsulfate, a Metabolite of the Microbiome, Has Cytostatic Effects in Breast Cancer via Activation of AHR and PXR Receptors and Induction of Oxidative Stress. Cancers (Basel) 2020; 12:E2915. [PMID: 33050543 PMCID: PMC7599465 DOI: 10.3390/cancers12102915] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Changes to bacterial metabolite-elicited signaling, in oncobiosis associated with breast cancer, plays a role in facilitating the progression of the disease. We show that indoxyl-sulfate (IS), a tryptophan metabolite, has cytostatic properties in models of breast cancer. IS supplementation, in concentrations corresponding to the human serum reference range, suppressed tumor infiltration to the surrounding tissues and metastasis formation in a murine model of breast cancer. In cellular models, IS suppressed NRF2 and induced iNOS, leading to induction of oxidative and nitrosative stress, and, consequently, reduction of cell proliferation; enhanced oxidative and nitrosative stress are crucial in the subsequent cytostasis. IS also suppressed epithelial-to-mesenchymal transition vital for suppressing cellular movement and diapedesis. Furthermore, IS rendered cells hypometabolic, leading to a reduction in aldehyde-dehydrogenase positive cells. Pharmacological inhibition of the pregnane-X receptor using CH223191 and the aryl-hydrocarbon receptor using ketoconazole diminished the IS-elicited effects, suggesting that these receptors were the major receptors of IS in these models. Finally, we showed that increased expression of the human enzymes that form IS (Cyp2E1, Sult1A1, and Sult1A2) is associated with better survival in breast cancer, an effect that is lost in triple negative cases. Taken together, IS, similar to indolepropionic acid (another tryptophan metabolite), has cytostatic properties and higher expression of the metabolic machinery responsible for the formation of IS supports survival in breast cancer.
Collapse
Affiliation(s)
- Zsanett Sári
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
| | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
| | - Laura Jankó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
| | - Borbála Kiss
- Department of Oncology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
193
|
Yan S, Luo Z, Li Z, Wang Y, Tao J, Gong C, Liu X. Improving Cancer Immunotherapy Outcomes Using Biomaterials. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shuangqian Yan
- Department of Chemistry and the N.1 institute for health National University of Singapore Singapore 117543 Singapore
| | - Zichao Luo
- Department of Chemistry and the N.1 institute for health National University of Singapore Singapore 117543 Singapore
| | - Zhenglin Li
- Department of Chemistry and the N.1 institute for health National University of Singapore Singapore 117543 Singapore
| | - Yu Wang
- SZU-NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
| | - Jun Tao
- The Second Affiliated Hospital of Nanchang University 1 Minde Road Nanchang 330000 P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy Collaborative Innovation Center of Biotherapy West China Hospital Sichuan University No. 17, Section 3, Renmin South Rd. Chengdu 610041 P. R. China
| | - Xiaogang Liu
- Department of Chemistry and the N.1 institute for health National University of Singapore Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Fuzhou 350207 P. R. China
- SZU-NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
| |
Collapse
|
194
|
Combination of Detoxified Pneumolysin Derivative ΔA146Ply and Berbamine as a Treatment Approach for Breast Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:247-261. [PMID: 32728613 PMCID: PMC7369532 DOI: 10.1016/j.omto.2020.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
Abstract
Increasing evidence demonstrates that microorganisms and their products can modulate host responses to cancer therapies and contribute to tumor shrinkage via various mechanisms, including intracellular signaling pathways modulation and immunomodulation. Detoxified pneumolysin derivative ΔA146Ply is a pneumolysin mutant lacking hemolytic activity. To determine the antitumor activity of ΔA146Ply, the combination of ΔA146Ply and berbamine, a well-established antitumor agent, was used for breast cancer therapy, especially for triple-negative breast cancer. The efficacy of the combination therapy was evaluated in vitro using four breast cancer cell lines and in vivo using a synergistic mouse tumor model. We demonstrated that in vitro, the combination therapy significantly inhibited cancer cell proliferation, promoted cancer cell apoptosis, caused cancer cell-cycle arrest, and suppressed cancer cell migration and invasion. In vivo, the combination therapy significantly suppressed tumor growth and prolonged the median survival time of tumor-bearing mice partially through inhibiting tumor cell proliferation, promoting tumor cell apoptosis, and activating systemic antitumor immune responses. The safety analysis demonstrated that the combination therapy showed no obvious liver and kidney toxicity to tumor-bearing mice. Our study provides a new treatment option for breast cancer and lays the experimental basis for the development of ΔA146Ply as an antitumor agent.
Collapse
|
195
|
Tucker MD, Rini BI. Predicting Response to Immunotherapy in Metastatic Renal Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12092662. [PMID: 32961934 PMCID: PMC7565517 DOI: 10.3390/cancers12092662] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Immunotherapy-based treatment options have become standard of care in metastatic renal cell carcinoma. Despite significant improvement in overall survival with these therapies, the tumors of many patients will eventually progress. This review highlights the ongoing efforts to develop biomarkers to help predict which patients are most likely to benefit from treatment with immunotherapy. Abstract Immunotherapy-based combinations, driven by PD-1, PD-L1, and CTLA-4 inhibitors, has altered the treatment landscape for metastatic renal cell carcinoma (RCC). Despite significant improvements in clinical outcomes, many patients do not experience deep or lasting benefits. Recent efforts to determine which patients are most likely to benefit from immunotherapy and immunotherapy-based combinations have shown promise but have not yet affected clinical practice. PD-L1 expression via immunohistochemistry (IHC) has shown promise in a few clinical trials, although variations in the IHC assays as well as the use of different values for positivity presents unique challenges for this potential biomarker. Several other candidate biomarkers were investigated including tumor mutational burden, gene expression signatures, single gene mutations, human endogenous retroviruses, the gastrointestinal microbiome, and peripheral blood laboratory markers. While individually these biomarkers have yet to explain the heterogeneity of treatment response to immunotherapy, using aggregate information from these biomarkers may inform clinically useful predictive biomarkers.
Collapse
|
196
|
Circulation of gut-preactivated naïve CD8 + T cells enhances antitumor immunity in B cell-defective mice. Proc Natl Acad Sci U S A 2020; 117:23674-23683. [PMID: 32907933 DOI: 10.1073/pnas.2010981117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The gut microbiome has garnered attention as an effective target to boost immunity and improve cancer immunotherapy. We found that B cell-defective (BCD) mice, such as µ-membrane targeted deletion (µMT) and activation-induced cytidine deaminase (AID) knockouts (KOs), have elevated antitumor immunity under specific pathogen-free but not germ-free conditions. Microbial dysbiosis in these BCD mice enriched the type I IFN (IFN) signature in mucosal CD8+ T cells, resulting in up-regulation of the type I IFN-inducible protein stem cell antigen-1 (Sca-1). Among CD8+ T cells, naïve cells predominantly circulate from the gut to the periphery, and those that had migrated from the mesenteric lymph nodes (mLNs) to the periphery had significantly higher expression of Sca-1. The gut-educated Sca-1+ naïve subset is endowed with enhanced mitochondrial activity and antitumor effector potential. The heterogeneity and functional versatility of the systemic naïve CD8+ T cell compartment was revealed by single-cell analysis and functional assays of CD8+ T cell subpopulations. These results indicate one of the potential mechanisms through which microbial dysbiosis regulates antitumor immunity.
Collapse
|
197
|
Cui JJ, Wang LY, Tan ZR, Zhou HH, Zhan X, Yin JY. MASS SPECTROMETRY-BASED PERSONALIZED DRUG THERAPY. MASS SPECTROMETRY REVIEWS 2020; 39:523-552. [PMID: 31904155 DOI: 10.1002/mas.21620] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Personalized drug therapy aims to provide tailored treatment for individual patient. Mass spectrometry (MS) is revolutionarily involved in this area because MS is a rapid, customizable, cost-effective, and easy to be used high-throughput method with high sensitivity, specificity, and accuracy. It is driving the formation of a new field, MS-based personalized drug therapy, which currently mainly includes five subfields: therapeutic drug monitoring (TDM), pharmacogenomics (PGx), pharmacomicrobiomics, pharmacoepigenomics, and immunopeptidomics. Gas chromatography-MS (GC-MS) and liquid chromatography-MS (LC-MS) are considered as the gold standard for TDM, which can be used to optimize drug dosage. Matrix-assisted laser desorption ionization-time of flight-MS (MALDI-TOF-MS) significantly improves the capability of detecting biomacromolecule, and largely promotes the application of MS in PGx. It is becoming an indispensable tool for genotyping, which is used to discover and validate genetic biomarkers. In addition, MALDI-TOF-MS also plays important roles in identity of human microbiome whose diversity can explain interindividual differences of drug response. Pharmacoepigenetics is to study the role of epigenetic factors in individualized drug treatment. MS can be used to discover and validate pharmacoepigenetic markers (DNA methylation, histone modification, and noncoding RNA). For the emerging cancer immunotherapy, personalized cancer vaccine has effective immunotherapeutic activity in the clinic. MS-based immunopeptidomics can effectively discover and screen neoantigens. This article systematically reviewed MS-based personalized drug therapy in the above mentioned five subfields. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Jia-Jia Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Lei-Yun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Zhi-Rong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Xianquan Zhan
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
- Hunan Provincial Gynecological Cancer Diagnosis and Treatment Engineering Research Center, Changsha, Hunan, 410078, P. R. China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, Hunan, 410078, P. R. China
| |
Collapse
|
198
|
Blidner AG, Choi J, Cooksley T, Dougan M, Glezerman I, Ginex P, Girotra M, Gupta D, Johnson D, Shannon VR, Suarez-Almazor M, Rapoport BL, Anderson R. Cancer immunotherapy-related adverse events: causes and challenges. Support Care Cancer 2020; 28:6111-6117. [PMID: 32857220 DOI: 10.1007/s00520-020-05705-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022]
Abstract
Despite the success and ongoing promise of monoclonal antibody-targeted immune checkpoint inhibitor immunotherapy of advanced malignancies, in particular, antibodies directed against CTLA-4 and PD-1/PD-L1, the development of immune-related adverse events (irAEs) remains a constraint of this type of therapy. Although rarely fatal, the occurrence of irAEs may necessitate discontinuation of immunotherapy, as well as administration of corticosteroids or other immunosuppressive therapies that may not only compromise efficacy but also predispose for development of opportunistic infection. Clearly, retention of efficacy of immune checkpoint-targeted therapies with concurrent attenuation of immune-mediated toxicity represents a formidable challenge. In this context, the current brief review examines mechanistic relationships between these events, as well as recent insights into immunopathogenesis, and strategies which may contribute to resolving this issue. These sections are preceded by brief overviews of the discovery and functions of CTLA-4 and PD-1, as well as the chronology of the development of immunotherapeutic monoclonal antibodies which target these immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Ada G Blidner
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine-CONICET, Buenos Aires, Argentina
| | - Jennifer Choi
- Division of Oncodermatology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tim Cooksley
- The Christie & Manchester University Foundation Trust, University of Manchester, Manchester, UK
| | - Michael Dougan
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ilya Glezerman
- Renal Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Monica Girotra
- Endocrine Division, Department of Medicine, Weill Cornell Medical College (MG, AF), New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dipti Gupta
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Douglas Johnson
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| | - Vickie R Shannon
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Maria Suarez-Almazor
- Section of Rheumatology and Clinical Immunology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Bernardo L Rapoport
- The Medical Oncology Centre of Rosebank, 129 Oxford Road, Saxonwold, Johannesburg, 2196, South Africa.
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Box 667, Pretoria, PO, 0001, South Africa.
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Box 667, Pretoria, PO, 0001, South Africa
| |
Collapse
|
199
|
Peng Z, Cheng S, Kou Y, Wang Z, Jin R, Hu H, Zhang X, Gong JF, Li J, Lu M, Wang X, Zhou J, Lu Z, Zhang Q, Tzeng DTW, Bi D, Tan Y, Shen L. The Gut Microbiome Is Associated with Clinical Response to Anti-PD-1/PD-L1 Immunotherapy in Gastrointestinal Cancer. Cancer Immunol Res 2020; 8:1251-1261. [PMID: 32855157 DOI: 10.1158/2326-6066.cir-19-1014] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/27/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
We report on a comprehensive analysis of the gut microbiomes of patients with gastrointestinal (GI) cancer receiving anti-PD-1/PD-L1 treatment. The human gut microbiota has been associated with clinical responses to anti-PD-1/PD-L1 immunotherapy in melanoma, non-small cell lung cancer, and renal cell carcinoma. We aimed to investigate this association in GI cancers. We also identified bacterial taxa with patient stratification potential. We recruited 74 patients with advanced-stage GI cancer receiving anti-PD-1/PD-L1 treatment and collected their fecal samples prior to and during immunotherapy, along with clinical evaluations. Our 16S rRNA taxonomy survey on the fecal samples revealed an elevation of the Prevotella/Bacteroides ratio in patients, with a preferred response to anti-PD-1/PD-L1 treatment, and a particular subgroup of responders harboring a significantly higher abundance of Prevotella, Ruminococcaceae, and Lachnospiraceae The shotgun metagenomes of the same samples showed that patients exhibiting different responses had differential abundance of pathways related to nucleoside and nucleotide biosynthesis, lipid biosynthesis, sugar metabolism, and fermentation to short-chain fatty acids (SCFA). Gut bacteria that were capable of SCFA production, including Eubacterium, Lactobacillus, and Streptococcus, were positively associated with anti-PD-1/PD-L1 response across different GI cancer types. We further demonstrated that the identified bacterial taxa were predictive of patient stratification in both our cohort and melanoma patients from two previously published studies. Our results thus highlight the impact of gut microbiomes on anti-PD-1/PD-L1 outcomes, at least in a subset of patients with GI cancer, and suggest the potential of the microbiome as a marker for immune-checkpoint blockade responses.See articles by Tomita et al., p. 1236, and Hakozaki et al., p. 1243.
Collapse
Affiliation(s)
- Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Siyuan Cheng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | | | - Ziqi Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology (Ministry of Health), Peking University, Beijing, China
| | | | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ji-Fang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ming Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xicheng Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - ZhiHao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | | | | | | | | | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
200
|
Haibe Y, El Husseini Z, El Sayed R, Shamseddine A. Resisting Resistance to Immune Checkpoint Therapy: A Systematic Review. Int J Mol Sci 2020; 21:E6176. [PMID: 32867025 PMCID: PMC7504220 DOI: 10.3390/ijms21176176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/14/2022] Open
Abstract
The treatment landscape in oncology has witnessed a major revolution with the introduction of checkpoint inhibitors: anti-PD1, anti-PDL1 and anti-CTLA-4. These agents enhance the immune response towards cancer cells instead of targeting the tumor itself, contrary to standard chemotherapy. Although long-lasting durable responses have been observed with immune checkpoints inhibitors, the response rate remains relatively low in many cases. Some patients respond in the beginning but then eventually develop acquired resistance to treatment and progress. Other patients having primary resistance never respond. Multiple studies have been conducted to further elucidate these variations in response in different tumor types and different individuals. This paper provides an overview of the mechanisms of resistance to immune checkpoint inhibitors and highlights the possible therapeutic approaches under investigation aiming to overcome such resistance in order to improve the clinical outcomes of cancer patients.
Collapse
Affiliation(s)
| | | | | | - Ali Shamseddine
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (Z.E.H.); (R.E.S.)
| |
Collapse
|