151
|
Hosseini FS, Ahmadi A, Kesharwani P, Hosseini H, Sahebkar A. Regulatory effects of statins on Akt signaling for prevention of cancers. Cell Signal 2024; 120:111213. [PMID: 38729324 DOI: 10.1016/j.cellsig.2024.111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Statins, which are primarily used as lipid-lowering drugs, have been found to exhibit anti-tumor effects through modulating and interfering with various signaling pathways. In observational studies, statin use has been associated with a significant reduction in the progression of various cancers, including colon, lung, prostate, pancreas, and esophagus cancer, as well as melanoma and B and T cell lymphoma. The mevalonate pathway, which is affected by statins, plays a crucial role in activating Rho, Ras, and Rab proteins, thereby impacting the proliferation and apoptosis of tumor cells. Statins block this pathway, leading to the inhibition of isoprenoid units, which are critical for the activation of these key proteins, thereby affecting cancer cell behavior. Additionally, statins affect MAPK and Cdk2, which in turn reduce the expression of p21 and p27 cyclin-dependent kinase inhibitors. Akt signaling plays a crucial role in key cancer cell features like proliferation, invasion, and apoptosis by activating multiple effectors in downstream pathways such as FOXO, PTEN, NF-κB, GSK3β, and mTOR. The PI3K/Akt signaling is necessary for many events in the metastatic pathway and has been implicated in the resistance to cytostatic drugs. The Akt/PTEN axis is currently attracting great interest for its role in carcinogenesis. Statins have been shown to activate the purinergic receptor P2X7 and affect Akt signaling, which may have important anti-cancer effects. Hence, targeting Akt shows promise as an effective approach to cancer prevention and therapy. This review aims to provide a comprehensive discussion on the specific impact of statins through Akt signaling in different types of cancer.
Collapse
Affiliation(s)
- Fatemeh Sadat Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdolreza Ahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
152
|
Shao YY, Hsieh MS, Lee YH, Hsu HW, Wo RR, Wang HY, Cheng AL, Hsu CH. Cyclin dependent kinase 9 inhibition reduced programmed death-ligand 1 expression and improved treatment efficacy in hepatocellular carcinoma. Heliyon 2024; 10:e34289. [PMID: 39100490 PMCID: PMC11296019 DOI: 10.1016/j.heliyon.2024.e34289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024] Open
Abstract
The anti-programmed death-ligand 1 (PD-L1) antibody is a standard therapy for advanced hepatocellular carcinoma (HCC). Tumor expression of PD-L1 can be induced upon stimulus. Because cyclin-dependent kinase 9 (CDK9) inhibition reduces the expression of inducible proteins, we explored the influence of CDK9 inhibition on PD-L1 expression in HCC cells. We found that PD-L1 expression was low in HCC cells; however, IFN-γ treatment increased this expression. CDK9 inhibitors AZD4573 and atuveciclib reduced the IFN-γ induced PD-L1 expression in a dose-dependent manner. CDK9 knockdown yielded similar results, but CDK9 overexpression reversed the influence of the CDK9 inhibitors. In the orthotopic mouse model, mice treated with a CDK9 inhibitor and an anti-PD-L1 antibody had significantly smaller tumors and exhibited longer survival than mice treated with either agent. In conclusion, CDK9 inhibition could reduce the expression of PD-L1 in HCC cells. Using both CDK9 inhibitors and anti-PD-L1 antibodies is more effective than using either agent alone.
Collapse
Affiliation(s)
- Yu-Yun Shao
- Graduate Institute of Oncology, National Taiwan University College of Medicine, 1, Sec. 1, Ren'ai Rd., Taipei City, 10051, R.O.C, Taiwan
- Department of Oncology, National Taiwan University Hospital, 7, Chun-Shan S Road, Taipei City, 10002, R.O.C, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center, 57, Ln. 155, Sec. 3, Keelung Rd., Taipei City, 106, R.O.C, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology and Graduate Institute of Pathology, National Taiwan University College of Medicine, 1, Sec. 1, Ren'ai Rd., Taipei City, 10051, R.O.C, Taiwan
- Department of Pathology, National Taiwan University Hospital, 7, Chun-Shan S Road, Taipei City, 10002, R.O.C, Taiwan
- Department of Pathology, National Taiwan University Cancer Center, 57, Ln. 155, Sec. 3, Keelung Rd., Taipei City, 106, R.O.C, Taiwan
| | - Yi-Hsuan Lee
- Department of Pathology and Graduate Institute of Pathology, National Taiwan University College of Medicine, 1, Sec. 1, Ren'ai Rd., Taipei City, 10051, R.O.C, Taiwan
- Department of Pathology, National Taiwan University Hospital, 7, Chun-Shan S Road, Taipei City, 10002, R.O.C, Taiwan
| | - Hung-Wei Hsu
- Department of Oncology, National Taiwan University Hospital, 7, Chun-Shan S Road, Taipei City, 10002, R.O.C, Taiwan
| | - Rita Robin Wo
- Department of Oncology, National Taiwan University Hospital, 7, Chun-Shan S Road, Taipei City, 10002, R.O.C, Taiwan
| | - Han-Yu Wang
- Department of Oncology, National Taiwan University Hospital, 7, Chun-Shan S Road, Taipei City, 10002, R.O.C, Taiwan
| | - Ann-Lii Cheng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, 1, Sec. 1, Ren'ai Rd., Taipei City, 10051, R.O.C, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, 1, Sec. 1, Ren'ai Rd., Taipei City, 10051, R.O.C, Taiwan
- Department of Oncology, National Taiwan University Hospital, 7, Chun-Shan S Road, Taipei City, 10002, R.O.C, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center, 57, Ln. 155, Sec. 3, Keelung Rd., Taipei City, 106, R.O.C, Taiwan
| | - Chih-Hung Hsu
- Graduate Institute of Oncology, National Taiwan University College of Medicine, 1, Sec. 1, Ren'ai Rd., Taipei City, 10051, R.O.C, Taiwan
- Department of Oncology, National Taiwan University Hospital, 7, Chun-Shan S Road, Taipei City, 10002, R.O.C, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center, 57, Ln. 155, Sec. 3, Keelung Rd., Taipei City, 106, R.O.C, Taiwan
| |
Collapse
|
153
|
Abdolmaleki S, Ganjalikhani hakemi M, Ganjalikhany MR. An in silico investigation on the binding site preference of PD-1 and PD-L1 for designing antibodies for targeted cancer therapy. PLoS One 2024; 19:e0304270. [PMID: 39052609 PMCID: PMC11271968 DOI: 10.1371/journal.pone.0304270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer control and treatment remain a significant challenge in cancer therapy and recently immune checkpoints has considered as a novel treatment strategy to develop anti-cancer drugs. Many cancer types use the immune checkpoints and its ligand, PD-1/PD-L1 pathway, to evade detection and destruction by the immune system, which is associated with altered effector function of PD-1 and PD-L1 overexpression on cancer cells to deactivate T cells. In recent years, mAbs have been employed to block immune checkpoints, therefore normalization of the anti-tumor response has enabled the scientists to develop novel biopharmaceuticals. In vivo affinity maturation of antibodies in targeted therapy has sometimes failed, and current experimental methods cannot accommodate the accurate structural details of protein-protein interactions. Therefore, determining favorable binding sites on the protein surface for modulator design of these interactions is a major challenge. In this study, we used the in silico methods to identify favorable binding sites on the PD-1 and PD-L1 and to optimize mAb variants on a large scale. At first, all the binding areas on PD-1 and PD-L1 have been identified. Then, using the RosettaDesign protocol, thousands of antibodies have been generated for 11 different regions on PD-1 and PD-L1 and then the designs with higher stability, affinity, and shape complementarity were selected. Next, molecular dynamics simulations and MM-PBSA analysis were employed to understand the dynamic, structural features of the complexes and measure the binding affinity of the final designs. Our results suggest that binding sites 1, 3 and 6 on PD-1 and binding sites 9 and 11 on PD-L1 can be regarded as the most appropriate sites for the inhibition of PD-1-PD-L1 interaction by the designed antibodies. This study provides comprehensive information regarding the potential binding epitopes on PD-1 which could be considered as hotspots for designing potential biopharmaceuticals. We also showed that mutations in the CDRs regions will rearrange the interaction pattern between the designed antibodies and targets (PD-1 and PD-L1) with improved affinity to effectively inhibit protein-protein interaction and block the immune checkpoint.
Collapse
Affiliation(s)
- Sarah Abdolmaleki
- Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran
| | - Mazdak Ganjalikhani hakemi
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
154
|
Molín J, José-López R, Ramírez GA, Pumarola M. Immunohistochemical Expression of PTEN in Canine Gliomas. Animals (Basel) 2024; 14:2115. [PMID: 39061577 PMCID: PMC11273977 DOI: 10.3390/ani14142115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a critical tumor suppressor gene with a vital role in regulating cell proliferation, migration, and survival. The loss of PTEN function, either by genetic alterations or decreased protein expression, is frequent in human gliomas and has been correlated with tumor progression, grade, therapeutic resistance, and decreased overall survival in patients with glioma. While different genetic mutations in PTEN gene have been occasionally reported in canine gliomas, no alterations in protein expression have been reported. This study investigates the immunohistochemical expression of PTEN in canine gliomas to evaluate possible alterations, as those reported in human gliomas. Immunohistochemical PTEN expression and pattern distribution were analyzed in 37 spontaneous canine gliomas. Among gliomas, 52.6% cases showed high PTEN expression and 48.6% displayed reduced (13.5%) or highly reduced (35.1%) immunopositivity. Most oligodendrogliomas showed high expression (73.7%), while the majority of astrocytomas (69.2%) showed a reduced or highly reduced expression. A reduced PTEN expression was mostly associated with a heterogeneous loss of PTEN immunopositivity. These observations are in line with those reported in human gliomas and provide a rationale for future studies regarding abnormalities in PTEN expression and PI3K/Akt/mTor pathway in canine gliomas, to evaluate its prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Jéssica Molín
- Departament Ciència Animal, Campus Agroalimentari, Forestal i Veterinari, Universitat de Lleida, 25198 Lleida, Spain;
| | - Roberto José-López
- Division of Small Animal Clinical Sciences, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
- Neurology and Neurosurgery Service, Southfields Veterinary Specialists, Part of Linnaeus Veterinary Ltd., Basildon SS14 3AP, UK
| | - Gustavo A. Ramírez
- Departament Ciència Animal, Campus Agroalimentari, Forestal i Veterinari, Universitat de Lleida, 25198 Lleida, Spain;
| | - Martí Pumarola
- Unitat de Patologia Murina i Comparada, Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
| |
Collapse
|
155
|
Zhang W, Xiao Y, Zhu X, Zhang Y, Xiang Q, Wu S, Song X, Zhao J, Yuan R, Li Q, Xiao B, Li L. Integrative Pan-Cancer Analysis Reveals the Oncogenic Role of MND1 and Validation of MND1's Role in Breast Cancer. J Inflamm Res 2024; 17:4721-4746. [PMID: 39051055 PMCID: PMC11268618 DOI: 10.2147/jir.s458832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose Meiotic nuclear division 1 (MND1) is a meiosis-specific protein that promotes lung adenocarcinoma progression. However, its expression and biological function across cancers remain largely unexplored. Patients and Methods The expression, prognostic significance, mutation status, and methylation profile of MND1 in various cancers were comprehensively analyzed using the TIMER, GTEX, Kaplan-Meier plotter, cBioPortal, and GSCA databases. Additionally, we constructed a PPI network, enrichment analysis and single-cell transcriptomic sequencing to elucidate the underlying mechanism of MND1. Furthermore, we investigated the association between MND1 expression and drug sensitivity using CellMiner. Moreover, we also explored the correlation between MND1 expression and immune infiltration. Finally, we validated the functional role of MND1 in breast cancer through IHC staining, CCK8, EdU, colony formation, and flow cytometry assays. Results MND1 has been reported to be highly expressed in Pan-cancer, High MND1 expression was significantly associated with poor prognosis in cancers. Additionally, MND1 mutation frequency is high in most cancers, and its expression correlates with methylation. Furthermore, MND1 expression significantly correlates with immune checkpoint blockade (ICB) markers, including PD-L1, PD-1, and CTLA-4. The PPI network reveals interactions between MND1 and PSMC3IP, BRCA1, and BRCA2. Enrichment analysis and single-cell sequencing indicate that MND1 positively correlates with cell cycle. ROC curve reveals favorable diagnostic efficacy of MND1 in breast cancer. In vitro, MND1 overexpression promotes breast cancer cell proliferation and increases the expression of key cell cycle regulators (CDK4, CDK6, and cyclin D3), accelerating the G1/S phase transition and leading to abnormal breast cancer cell proliferation. The immunohistochemical analysis revealed a robust expression of MND1 in breast cancer tissues, exhibiting a significant positive correlation with PD-L1 and FOXP3. Conclusion MND1 is an oncogene and may serve as a biomarker for cancer prognosis and immunotherapy. Targeting MND1 may be a potential tumor treatment strategy.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
- Department of Laboratory Medicine, Suzhou Municipal Hospital, Affiliated to Nanjing Medical University, Suzhou, 21500, People’s Republic of China
| | - Yuhan Xiao
- School of Public Health, Dali University, Dali, 671000, People’s Republic of China
| | - Xin Zhu
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Yanxia Zhang
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Qin Xiang
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Xiaoyu Song
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Junxiu Zhao
- School of Public Health, Dali University, Dali, 671000, People’s Republic of China
| | - Ruanfei Yuan
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Qiguang Li
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Bin Xiao
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Linhai Li
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| |
Collapse
|
156
|
Yuan Y, Mishra F, Li B, Peng G, Chan P, Yang J, Liu Z. Modulating Tumor Immunity by Targeting Tumor Fibrotic Stroma and Angiogenic Vessels for Lung Cancer Treatment. Cancers (Basel) 2024; 16:2483. [PMID: 39001545 PMCID: PMC11240634 DOI: 10.3390/cancers16132483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Fibrotic stroma and angiogenic tumor vessels play an important role in modulating tumor immunity. We previously reported a rationally designed protein (ProAgio) that targets integrin αvβ3 at a novel site. ProAgio induces the apoptosis of cells that express high levels of the integrin. Both activated cancer-associated fibroblasts (CAFs) and angiogenic endothelial cells (aECs) in tumors express high levels of integrin αvβ3. ProAgio simultaneously and specifically induces apoptosis in CAFs and aECs in tumors. We provide evidence here that the depletion of CAFs and the elimination of leaky tumor angiogenic vessels by ProAgio alter tumor immunity. ProAgio reduces CD4+ Treg and Myeloid-derived suppressor cells (MDSCs), increases CD8+ T-cells, and increases the M1/M2 macrophage ratio in the tumor. The depletion of dense fibrotic stroma (CAFs) by ProAgio decreases the Programmed Death Ligand 1 (PDL-1) levels in the stroma areas surrounding the tumors, and thus strongly increases the delivery of anti-PDL-1 antibody to the target cancer cells. The impact of ProAgio on tumor immunity provides strong synergistical effects of checkpoint inhibitors on lung cancer treatment.
Collapse
Affiliation(s)
- Yi Yuan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (Y.Y.); (F.M.); (B.L.); (G.P.); (P.C.)
| | - Falguni Mishra
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (Y.Y.); (F.M.); (B.L.); (G.P.); (P.C.)
| | - Bin Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (Y.Y.); (F.M.); (B.L.); (G.P.); (P.C.)
| | - Guangda Peng
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (Y.Y.); (F.M.); (B.L.); (G.P.); (P.C.)
| | - Payton Chan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (Y.Y.); (F.M.); (B.L.); (G.P.); (P.C.)
| | - Jenny Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA;
| | - Zhiren Liu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (Y.Y.); (F.M.); (B.L.); (G.P.); (P.C.)
| |
Collapse
|
157
|
Wang L, Lynch C, Pitroda SP, Piffkó A, Yang K, Huser AK, Liang HL, Weichselbaum RR. Radiotherapy and immunology. J Exp Med 2024; 221:e20232101. [PMID: 38771260 PMCID: PMC11110906 DOI: 10.1084/jem.20232101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
The majority of cancer patients receive radiotherapy during the course of treatment, delivered with curative intent for local tumor control or as part of a multimodality regimen aimed at eliminating distant metastasis. A major focus of research has been DNA damage; however, in the past two decades, emphasis has shifted to the important role the immune system plays in radiotherapy-induced anti-tumor effects. Radiotherapy reprograms the tumor microenvironment, triggering DNA and RNA sensing cascades that activate innate immunity and ultimately enhance adaptive immunity. In opposition, radiotherapy also induces suppression of anti-tumor immunity, including recruitment of regulatory T cells, myeloid-derived suppressor cells, and suppressive macrophages. The balance of pro- and anti-tumor immunity is regulated in part by radiotherapy-induced chemokines and cytokines. Microbiota can also influence radiotherapy outcomes and is under clinical investigation. Blockade of the PD-1/PD-L1 axis and CTLA-4 has been extensively investigated in combination with radiotherapy; we include a review of clinical trials involving inhibition of these immune checkpoints and radiotherapy.
Collapse
Affiliation(s)
- Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Connor Lynch
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Sean P. Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - András Piffkó
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Amy K. Huser
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Hua Laura Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| |
Collapse
|
158
|
Teng M, Wang J, Su X, Hu J, Tian Y, Zhang Y, Li M. Associations between immune cells signatures and osteoarthritis: An integrated analysis of bidirectional Mendelian randomization and Bayesian colocalization. Cytokine 2024; 179:156633. [PMID: 38733947 DOI: 10.1016/j.cyto.2024.156633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Previous investigations have explored the associations between immune cell signatures and osteoarthritis (OA); however, causality remains unclear. This study employs an integrated analysis, combining bidirectional Mendelian randomization (MR) and Bayesian colocalization (Coloc), to investigate causal relationships between 731 immune cells signatures and OA, identifying shared causal variants. METHODS Utilizing publicly available summary data, this study primarily employs inverse variance weighting (IVW). Supplementary methods include MR-Egger regression, weighted median, weight mode, and simple mode. Various sensitivity tests, including Cochran's Q test, MR pleiotropy Residual Sum and Outlier, and leave-one-out tests, were conducted to assess the robustness of the analysis results. Coloc was employed to identify shared causal genetic variants among potential associations. RESULTS IVW analysis revealed 196 immune cell signatures potentially linked to OA across diverse subtypes. Reverse MR analyses indicated the causal impact of OA on the levels of 140 immune cell signatures, with subtype-specific variations. Notably, several specific associations, including CD64 on CD14-CD16 + monocyte for Hip OA (OR = 1.0593, 95 % CI: 1.0260-1.0938, P = 0.0004), HLA-DR on CD14 + CD16- monocyte (OR = 0.9664, 95 % CI: 0.9497-0.9834, P = 0.0001), HLA-DR on CD14 + monocyte (OR = 0.9680, 95 % CI: 0.9509-0.9853, P = 0.0003) in the Knee or Hip OA, PDL-1 on CD14-CD16 + monocyte by All OA (OR = 1.7091, 95 %CI:1.2494-2.3378, P = 0.0008), and herpesvirus entry mediator on effector memory CD4 + T cell by Spine OA (OR = 0.5200, 95 %CI:0.3577-0.7561, P = 0.0006) remained significant post-Bonferroni correction. Sensitivity tests validated the credibility of the IVW analysis. Additionally, Coloc revealed several potential associations among shared genetic variants, including rs115328872, rs1800973, and rs317667. CONCLUSIONS Our findings provide evidence for the potential involvement of immune cell signatures in OA development, revealing avenues for early prevention and innovative therapeutic strategies.
Collapse
Affiliation(s)
- Menghao Teng
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiachen Wang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaochen Su
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiale Hu
- Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Ye Tian
- Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yingang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Meng Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
159
|
Zhou Z, Jiang X, Yi L, Li C, Wang H, Xiong W, Li Z, Shen J. Mitochondria Energy Metabolism Depression as Novel Adjuvant to Sensitize Radiotherapy and Inhibit Radiation Induced-Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401394. [PMID: 38715382 PMCID: PMC11234447 DOI: 10.1002/advs.202401394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 07/11/2024]
Abstract
Currently, the typical combination therapy of programmed death ligand-1 (PD-L1) antibodies with radiotherapy (RT) still exhibits impaired immunogenic antitumor response in clinical due to lessened DNA damage and acquired immune tolerance via the upregulation of some other immune checkpoint inhibitors. Apart from this, such combination therapy may raise the occurrence rate of radiation-induced lung fibrosis (RIPF) due to enhanced systemic inflammation, leading to the ultimate death of cancer patients (average survival time of about 3 years). Therefore, it is newly revealed that mitochondria energy metabolism regulation can be used as a novel effective PD-L1 and transforming growth factor-β (TGF-β) dual-downregulation method. Following this, IR-TAM is prepared by conjugating mitochondria-targeted heptamethine cyanine dye IR-68 with oxidative phosphorylation (OXPHOS) inhibitor Tamoxifen (TAM), which then self-assembled with albumin (Alb) to form IR-TAM@Alb nanoparticles. By doing this, tumor-targeting IR-TAM@Alb nanoparticle effectively reversed tumor hypoxia and depressed PD-L1 and TGF-β expression to sensitize RT. Meanwhile, due to the capacity of heptamethine cyanine dye in targeting RIPF and the function of TAM in depressing TGF-β, IR-TAM@Alb also ameliorated fibrosis development induced by RT.
Collapse
Affiliation(s)
- Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lei Yi
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Cheng Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wei Xiong
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Zhipeng Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
160
|
Xia J, Xu M, Hu H, Zhang Q, Yu D, Cai M, Geng X, Zhang H, Zhang Y, Guo M, Lu D, Xu H, Li L, Zhang X, Wang Q, Liu S, Zhang W. 5,7,4'-Trimethoxyflavone triggers cancer cell PD-L1 ubiquitin-proteasome degradation and facilitates antitumor immunity by targeting HRD1. MedComm (Beijing) 2024; 5:e611. [PMID: 38938284 PMCID: PMC11208742 DOI: 10.1002/mco2.611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024] Open
Abstract
Targeting the programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) pathway has been identified as a successful approach for tumor immunotherapy. Here, we identified that the small molecule 5,7,4'-trimethoxyflavone (TF) from Kaempferia parviflora Wall reduces PD-L1 expression in colorectal cancer cells and enhances the killing of tumor cells by T cells. Mechanistically, TF targets and stabilizes the ubiquitin ligase HMG-CoA reductase degradation protein 1 (HRD1), thereby increasing the ubiquitination of PD-L1 and promoting its degradation through the proteasome pathway. In mouse MC38 xenograft tumors, TF can activate tumor-infiltrating T-cell immunity and reduce the immunosuppressive infiltration of myeloid-derived suppressor cells and regulatory T cells, thus exerting antitumor effects. Moreover, TF synergistically exerts antitumor immunity with CTLA-4 antibody. This study provides new insights into the antitumor mechanism of TF and suggests that it may be a promising small molecule immune checkpoint modulator for cancer therapy.
Collapse
Affiliation(s)
- Jianhua Xia
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mengting Xu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hongmei Hu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qing Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Dianping Yu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Minchen Cai
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiangxin Geng
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hongwei Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yanyan Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mengmeng Guo
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Dong Lu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hanchi Xu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Linyang Li
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xing Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qun Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghaiChina
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- The Research Center for Traditional Chinese MedicineShanghai Institute of Infectious Diseases and BiosafetyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
161
|
Lu L, Li J, Zheng Y, Luo L, Huang Y, Hu J, Chen Y. High expression of SLC27A2 predicts unfavorable prognosis and promotes inhibitory immune infiltration in acute lymphoblastic leukemia. Transl Oncol 2024; 45:101952. [PMID: 38640787 PMCID: PMC11053221 DOI: 10.1016/j.tranon.2024.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/21/2024] Open
Abstract
Solute carrier family 27 member 2 (SLC27A2) is involved in fatty acid metabolism in tumors and represents a prospective target for cancer therapy. However, the role and mechanism of action of SLC27A2 in acute lymphoblastic leukemia (ALL) remain unclear. In this study, we aimed to explore the intrinsic associations between SLC27A2 and ALL and evaluate the prognostic significance, biological functions, and correlation with immune infiltration. We used the transcriptome and clinical data from the TARGET dataset. Differentially expressed genes (DEGs) in the SLC27A2 low- and high-expression groups were analyzed for prognostic implications and functional enrichment. Furthermore, we analyzed the relationship between SLC27A2 gene expression and immune cell infiltration using the ESTIMATE method, which was evaluated using the TIGER platform. Finally, we knocked down SLC27A2 in the Jurkat ALL cell line and conducted cell proliferation, western blotting, flow cytometry, and CCK-8 assays to elucidate the biological function of SLC27A2 in ALL. Patients with ALL who have higher expression levels of SLC27A2 have poorer overall survival and event-free survival. According to gene set enrichment analysis, the DEGs were primarily enriched with immune system processes and the PI3K-Akt signaling pathway. There was an inverse relationship between SLC27A2 expression and immune cell invasion, suggesting involvement of the former in tumor immune evasion. In vitro experiments showed that knockdown of SLC27A2 inhibited cell proliferation and protein expression and altered the Akt pathway, with a reduced proportion of B cells. In conclusion, SLC27A2 plays a vital role in the development of ALL.
Collapse
Affiliation(s)
- Lihua Lu
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Jiazheng Li
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Quanzhou 362000, China
| | - Yongzhi Zheng
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Luting Luo
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Quanzhou 362000, China
| | - Yan Huang
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Jianda Hu
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Quanzhou 362000, China; Institute of Precision Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China.
| | - Yanxin Chen
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China.
| |
Collapse
|
162
|
Arthur A, Nejmi S, Franchini DM, Espinos E, Millevoi S. PD-L1 at the crossroad between RNA metabolism and immunosuppression. Trends Mol Med 2024; 30:620-632. [PMID: 38824002 DOI: 10.1016/j.molmed.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 06/03/2024]
Abstract
Programmed death ligand-1 (PD-L1) is a key component of tumor immunosuppression. The uneven therapeutic results of PD-L1 therapy have stimulated intensive studies to better understand the mechanisms underlying altered PD-L1 expression in cancer cells, and to determine whether, beyond its immune function, PD-L1 might have intracellular functions promoting tumor progression and resistance to treatments. In this Opinion, we focus on paradigmatic examples highlighting the central role of PD-L1 in post-transcriptional regulation, with PD-L1 being both a target and an effector of molecular mechanisms featured prominently in RNA research, such as RNA methylation, phase separation and RNA G-quadruplex structures, in order to highlight vulnerabilities on which future anti-PD-L1 therapies could be built.
Collapse
Affiliation(s)
- Axel Arthur
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Sanae Nejmi
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Don-Marc Franchini
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France; Laboratoire d'Excellence "TOUCAN-2", Toulouse, France; Institut Carnot Lymphome CALYM, Toulouse, France; Centre Hospitalier Universitaire (CHU), 31059 Toulouse, France
| | - Estelle Espinos
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Stefania Millevoi
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France.
| |
Collapse
|
163
|
Gergely TG, Drobni ZD, Kallikourdis M, Zhu H, Meijers WC, Neilan TG, Rassaf T, Ferdinandy P, Varga ZV. Immune checkpoints in cardiac physiology and pathology: therapeutic targets for heart failure. Nat Rev Cardiol 2024; 21:443-462. [PMID: 38279046 DOI: 10.1038/s41569-023-00986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
Immune checkpoint molecules are physiological regulators of the adaptive immune response. Immune checkpoint inhibitors (ICIs), such as monoclonal antibodies targeting programmed cell death protein 1 or cytotoxic T lymphocyte-associated protein 4, have revolutionized cancer treatment and their clinical use is increasing. However, ICIs can cause various immune-related adverse events, including acute and chronic cardiotoxicity. Of these cardiovascular complications, ICI-induced acute fulminant myocarditis is the most studied, although emerging clinical and preclinical data are uncovering the importance of other ICI-related chronic cardiovascular complications, such as accelerated atherosclerosis and non-myocarditis-related heart failure. These complications could be more difficult to diagnose, given that they might only be present alongside other comorbidities. The occurrence of these complications suggests a potential role of immune checkpoint molecules in maintaining cardiovascular homeostasis, and disruption of physiological immune checkpoint signalling might thus lead to cardiac pathologies, including heart failure. Although inflammation is a long-known contributor to the development of heart failure, the therapeutic targeting of pro-inflammatory pathways has not been successful thus far. The increasingly recognized role of immune checkpoint molecules in the failing heart highlights their potential use as immunotherapeutic targets for heart failure. In this Review, we summarize the available data on ICI-induced cardiac dysfunction and heart failure, and discuss how immune checkpoint signalling is altered in the failing heart. Furthermore, we describe how pharmacological targeting of immune checkpoints could be used to treat heart failure.
Collapse
Affiliation(s)
- Tamás G Gergely
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Zsófia D Drobni
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marinos Kallikourdis
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Adaptive Immunity Lab, Humanitas Research Hospital IRCCS, Milan, Italy
| | - Han Zhu
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wouter C Meijers
- Erasmus MC, Cardiovascular Institute, Thorax Center, Department of Cardiology, Rotterdam, The Netherlands
| | - Tomas G Neilan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, Medical Faculty, University Hospital Essen, Essen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary.
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary.
| |
Collapse
|
164
|
Hossain SM, Carpenter C, Eccles MR. Genomic and Epigenomic Biomarkers of Immune Checkpoint Immunotherapy Response in Melanoma: Current and Future Perspectives. Int J Mol Sci 2024; 25:7252. [PMID: 39000359 PMCID: PMC11241335 DOI: 10.3390/ijms25137252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) demonstrate durable responses, long-term survival benefits, and improved outcomes in cancer patients compared to chemotherapy. However, the majority of cancer patients do not respond to ICIs, and a high proportion of those patients who do respond to ICI therapy develop innate or acquired resistance to ICIs, limiting their clinical utility. The most studied predictive tissue biomarkers for ICI response are PD-L1 immunohistochemical expression, DNA mismatch repair deficiency, and tumour mutation burden, although these are weak predictors of ICI response. The identification of better predictive biomarkers remains an important goal to improve the identification of patients who would benefit from ICIs. Here, we review established and emerging biomarkers of ICI response, focusing on epigenomic and genomic alterations in cancer patients, which have the potential to help guide single-agent ICI immunotherapy or ICI immunotherapy in combination with other ICI immunotherapies or agents. We briefly review the current status of ICI response biomarkers, including investigational biomarkers, and we present insights into several emerging and promising epigenomic biomarker candidates, including current knowledge gaps in the context of ICI immunotherapy response in melanoma patients.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Carien Carpenter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
165
|
McDowell RC, Booth JD, McGowan A, Kolodziejczyk W, Hill GA, Banerjee S, Feng M, Kapusta K. Computational Approach for the Development of pH-Selective PD-1/PD-L1 Signaling Pathway Inhibition in Fight with Cancer. Cancers (Basel) 2024; 16:2295. [PMID: 39001358 PMCID: PMC11240404 DOI: 10.3390/cancers16132295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Immunotherapy, particularly targeting the PD-1/PD-L1 pathway, holds promise in cancer treatment by regulating the immune response and preventing cancer cells from evading immune destruction. Nonetheless, this approach poses a risk of unwanted immune system activation against healthy cells. To minimize this risk, our study proposes a strategy based on selective targeting of the PD-L1 pathway within the acidic microenvironment of tumors. We employed in silico methods, such as virtual screening, molecular mechanics, and molecular dynamics simulations, analyzing approximately 10,000 natural compounds from the MolPort database to find potential hits with the desired properties. The simulations were conducted under two pH conditions (pH = 7.4 and 5.5) to mimic the environments of healthy and cancerous cells. The compound MolPort-001-742-690 emerged as a promising pH-selective inhibitor, showing a significant affinity for PD-L1 in acidic conditions and lower toxicity compared to known inhibitors like BMS-202 and LP23. A detailed 1000 ns molecular dynamics simulation confirmed the stability of the inhibitor-PD-L1 complex under acidic conditions. This research highlights the potential of using in silico techniques to discover novel pH-selective inhibitors, which, after experimental validation, may enhance the precision and reduce the toxicity of immunotherapies, offering a transformative approach to cancer treatment.
Collapse
Affiliation(s)
- Roderick C McDowell
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Jordhan D Booth
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS 39174, USA
| | - Allyson McGowan
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS 39174, USA
| | - Wojciech Kolodziejczyk
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Glake A Hill
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Santanu Banerjee
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS 39174, USA
| | - Manliang Feng
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS 39174, USA
| | - Karina Kapusta
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS 39174, USA
| |
Collapse
|
166
|
Ding Z, Fang G, Tang Y, Zeng Y. The impact of PD-1 inhibitors on prognosis in unresectable hepatocellular carcinoma treated with TACE and lenvatinib: a retrospective study. Sci Rep 2024; 14:14334. [PMID: 38906915 PMCID: PMC11192886 DOI: 10.1038/s41598-024-63571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/30/2024] [Indexed: 06/23/2024] Open
Abstract
Our aim was to explore whether programmed death receptor-1 (PD-1) inhibitors would improve the prognosis of unresectable hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE) plus lenvatinib. In this single-center retrospective study, patients with unresectable HCC who underwent TACE and were administered lenvatinib with or without PD-1 inhibitors were enrolled and divided into the TACE + lenvatinib group and TACE + lenvatinib + PD-1 group. Overall survival (OS), progression-free survival (PFS) and tumor response were assessed by the Response Evaluation Criteria in Solid Tumors (RECIST v1.1 and mRECIST). Treatment-related adverse events (AEs) were evaluated according to the Common Terminology Criteria for Adverse Events (CTCAE, version 5.0). In total, 35 eligible patients with unresectable HCC were included; 82.9% of patients had Hepatitis B virus (HBV) infection, and 88.6% of patients had liver cirrhosis. A total of 88.6% of patients had multiple tumors, and the median diameter of the largest tumor was 10.1 cm. A total of 14.3% of patients had extrahepatic metastasis, and 51.4% of patients had portal vein tumor thrombus. The percentages of BCLC stages A, B and C were 5.7%, 28.6% and 65.7%, respectively. There were 16 patients in the TACE + lenvatinib group and 19 patients in the TACE + lenvatinib + PD-1 group. The median follow-up time was 7.7 months (ranging from 1.7 to 31.6 months). Neither group reached the median overall survival. Under RECIST v1.1 criteria, the median PFS was 10.4 and 7.9 months in the TACE + lenvatinib and TACE + lenvatinib + PD-1 groups (HR, 1.13; 95% CI 0.45-2.84; p = 0.80), the objective response rates (ORR) were 31.3% and 31.6% (p > 0.05), and the disease control rates (DCR) were 93.8% and 78.9% (p > 0.05), respectively. Under mRECIST criteria, the median PFS was 10.4 and 10.1 months (HR, 0.98; 95% CI 0.38-2.54, p = 0.97), the ORR was 62.5% and 63.2% (p > 0.05), and the DCR was 93.8% and 73.7% (p > 0.05), respectively. Overall, AEs were relatively similar between the two groups. PD-1 inhibitors did not improve the PFS and tumor response of unresectable HCC treated with TACE plus lenvatinib. Hepatitis B infection, liver cirrhosis, portal vein tumor thrombus, multiple tumors and large tumor diameter may be potential factors that affect the efficacy of PD-1 inhibitors but need further validation.
Collapse
Affiliation(s)
- Zongren Ding
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350001, China
- Fujian Provincial Liver Disease Research Center, Fuzhou, 350001, China
| | - Guoxu Fang
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350001, China
- Fujian Provincial Liver Disease Research Center, Fuzhou, 350001, China
| | - Yanyan Tang
- Fujian Provincial Liver Disease Research Center, Fuzhou, 350001, China
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Yongyi Zeng
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China.
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350001, China.
- Fujian Provincial Liver Disease Research Center, Fuzhou, 350001, China.
| |
Collapse
|
167
|
Jiang Y, Li H. The effect of smoking on tumor immunoediting: Friend or foe? Tob Induc Dis 2024; 22:TID-22-108. [PMID: 38887597 PMCID: PMC11181014 DOI: 10.18332/tid/189302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024] Open
Abstract
The recognition of smoking as an independent risk factor for lung cancer has become a widely accepted within the realm of respiratory medicine. The emergence of tumor immunotherapy has notably enhanced the prognosis for numerous late-stage cancer patients. Nevertheless, some studies have noted a tendency for lung cancer patients who smoke to derive greater benefit from immunotherapy. This observation has sparked increased interest in the interaction between smoking and the immune response to tumors in lung cancer. The concept of cancer immunoediting has shed light on the intricate and nuanced relationship between the immune system and tumors. Starting from the perspectives of immune surveillance, immune equilibrium, and immune evasion, this narrative review explores how smoking undermines the immune response against tumor cells and induces the generation of tumor neoantigens, and examines other behaviors that trigger tumor immune evasion. By elucidating these aspects, the review concludes that smoking is not conducive to tumor immunoediting.
Collapse
Affiliation(s)
- Yixia Jiang
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hequan Li
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
168
|
Chen W, Zhao Z, Zhou H, Dong S, Li X, Hu S, Zhong S, Chen K. Development of prognostic signatures and risk index related to lipid metabolism in ccRCC. Front Oncol 2024; 14:1378095. [PMID: 38939337 PMCID: PMC11208495 DOI: 10.3389/fonc.2024.1378095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is a metabolic disorder characterized by abnormal lipid accumulation in the cytoplasm. Lipid metabolism-related genes may have important clinical significance for prognosis prediction and individualized treatment. Methods We collected bulk and single-cell transcriptomic data of ccRCC and normal samples to identify key lipid metabolism-related prognostic signatures. qPCR was used to confirm the expression of signatures in cancer cell lines. Based on the identified signatures, we developed a lipid metabolism risk score (LMRS) as a risk index. We explored the potential application value of prognostic signatures and LMRS in precise treatment from multiple perspectives. Results Through comprehensive analysis, we identified five lipid metabolism-related prognostic signatures (ACADM, ACAT1, ECHS1, HPGD, DGKZ). We developed a risk index LMRS, which was significantly associated with poor prognosis in patients. There was a significant correlation between LMRS and the infiltration levels of multiple immune cells. Patients with high LMRS may be more likely to respond to immunotherapy. The different LMRS groups were suitable for different anticancer drug treatment regimens. Conclusion Prognostic signatures and LMRS we developed may be applied to the risk assessment of ccRCC patients, which may have potential guiding significance in the diagnosis and precise treatment of ccRCC patients.
Collapse
Affiliation(s)
- Wenbo Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhenyu Zhao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhou
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Dong
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Li
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Hu
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shan Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
169
|
Zhou M, Aziz M, Li J, Jha A, Ma G, Murao A, Wang P. BMAL2 promotes eCIRP-induced macrophage endotoxin tolerance. Front Immunol 2024; 15:1426682. [PMID: 38938563 PMCID: PMC11208452 DOI: 10.3389/fimmu.2024.1426682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Background The disruption of the circadian clock is associated with inflammatory and immunological disorders. BMAL2, a critical circadian protein, forms a dimer with CLOCK, activating transcription. Extracellular cold-inducible RNA-binding protein (eCIRP), released during sepsis, can induce macrophage endotoxin tolerance. We hypothesized that eCIRP induces BMAL2 expression and promotes macrophage endotoxin tolerance through triggering receptor expressed on myeloid cells-1 (TREM-1). Methods C57BL/6 wild-type (WT) male mice were subjected to sepsis by cecal ligation and puncture (CLP). Serum levels of eCIRP 20 h post-CLP were assessed by ELISA. Peritoneal macrophages (PerM) were treated with recombinant mouse (rm) CIRP (eCIRP) at various doses for 24 h. The cells were then stimulated with LPS for 5 h. The levels of TNF-α and IL-6 in the culture supernatants were assessed by ELISA. PerM were treated with eCIRP for 24 h, and the expression of PD-L1, IL-10, STAT3, TREM-1 and circadian genes such as BMAL2, CRY1, and PER2 was assessed by qPCR. Effect of TREM-1 on eCIRP-induced PerM endotoxin tolerance and PD-L1, IL-10, and STAT3 expression was determined by qPCR using PerM from TREM-1-/- mice. Circadian gene expression profiles in eCIRP-treated macrophages were determined by PCR array and confirmed by qPCR. Induction of BMAL2 activation in bone marrow-derived macrophages was performed by transfection of BMAL2 CRISPR activation plasmid. The interaction of BMAL2 in the PD-L1 promoter was determined by computational modeling and confirmed by the BIAcore assay. Results Serum levels of eCIRP were increased in septic mice compared to sham mice. Macrophages pre-treated with eCIRP exhibited reduced TNFα and IL-6 release upon LPS challenge, indicating macrophage endotoxin tolerance. Additionally, eCIRP increased the expression of PD-L1, IL-10, and STAT3, markers of immune tolerance. Interestingly, TREM-1 deficiency reversed eCIRP-induced macrophage endotoxin tolerance and significantly decreased PD-L1, IL-10, and STAT3 expression. PCR array screening of circadian clock genes in peritoneal macrophages treated with eCIRP revealed the elevated expression of BMAL2, CRY1, and PER2. In eCIRP-treated macrophages, TREM-1 deficiency prevented the upregulation of these circadian genes. In macrophages, inducible BMAL2 expression correlated with increased PD-L1 expression. In septic human patients, blood monocytes exhibited increased expression of BMAL2 and PD-L1 in comparison to healthy subjects. Computational modeling and BIAcore assay identified a putative binding region of BMAL2 in the PD-L1 promoter, suggesting BMAL2 positively regulates PD-L1 expression in macrophages. Conclusion eCIRP upregulates BMAL2 expression via TREM-1, leading to macrophage endotoxin tolerance in sepsis. Targeting eCIRP to maintain circadian rhythm may correct endotoxin tolerance and enhance host resistance to bacterial infection.
Collapse
Affiliation(s)
- Mian Zhou
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Jingsong Li
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Alok Jha
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Gaifeng Ma
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
170
|
Gallant JP, Hintz HM, Gunaratne GS, Breneman MT, Recchia EE, West JL, Ott KL, Heninger E, Jackson AE, Luo NY, Rosenkrans ZT, Hernandez R, Zhao SG, Lang JM, Meimetis L, Kosoff D, LeBeau AM. Mechanistic Characterization of Cancer-associated Fibroblast Depletion via an Antibody-Drug Conjugate Targeting Fibroblast Activation Protein. CANCER RESEARCH COMMUNICATIONS 2024; 4:1481-1494. [PMID: 38747612 PMCID: PMC11168342 DOI: 10.1158/2767-9764.crc-24-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
Cancer-associated fibroblasts (CAF) are a prominent cell type within the tumor microenvironment (TME) where they are known to promote cancer cell growth and survival, angiogenesis, drug resistance, and immunosuppression. The transmembrane prolyl protease fibroblast activation protein (FAP) is expressed on the surface of highly protumorigenic CAFs found in the stroma of nearly every cancer of epithelial origin. The widespread expression of FAP has made it an attractive therapeutic target based on the underlying hypothesis that eliminating protumorigenic CAFs will disrupt the cross-talk between components of TME resulting in cancer cell death and immune infiltration. This hypothesis, however, has never been directly proven. To eliminate FAP-expressing CAFs, we developed an antibody-drug conjugate using our anti-FAP antibody, huB12, coupled to a monomethyl auristatin E (huB12-MMAE) payload. After determining that huB12 was an effective targeting vector, we found that huB12-MMAE potently eliminated FAP-expressing cells as monocultures in vitro and significantly prolonged survival in vivo using a xenograft engineered to overexpress FAP. We investigated the effects of selectively eliminating CAFs using a layered, open microfluidic cell coculture platform, known as the Stacks. Analysis of mRNA and protein expression found that treatment with huB12-MMAE resulted in the increased secretion of the proinflammatory cytokines IL6 and IL8 by CAFs and an associated increase in expression of proinflammatory genes in cancer cells. We also detected increased secretion of CSF1, a cytokine involved in myeloid recruitment and differentiation. Our findings suggest that the mechanism of FAP-targeted therapies is through effects on the immune microenvironment and antitumor immune response. SIGNIFICANCE The direct elimination of FAP-expressing CAFs disrupts the cross-talk with cancer cells leading to a proinflammatory response and alterations in the immune microenvironment and antitumor immune response.
Collapse
Affiliation(s)
- Joseph P. Gallant
- Molecular and Cellular Pharmacology Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Hallie M. Hintz
- Department of Pharmacology, University of Minnesota School of Medicine, Minneapolis, Minnesota
| | - Gihan S. Gunaratne
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Matthew T. Breneman
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Emma E. Recchia
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jayden L. West
- Molecular and Cellular Pharmacology Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kendahl L. Ott
- Molecular and Cellular Pharmacology Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Erika Heninger
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Abigail E. Jackson
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Natalie Y. Luo
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Zachary T. Rosenkrans
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Shuang G. Zhao
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Joshua M. Lang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Labros Meimetis
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - David Kosoff
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S Middleton Memorial Veterans’ Hospital, Madison, Wisconsin
| | - Aaron M. LeBeau
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
171
|
Fang T, Chen G. Non-viral vector-based genome editing for cancer immunotherapy. Biomater Sci 2024; 12:3068-3085. [PMID: 38716572 DOI: 10.1039/d4bm00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Despite the exciting promise of cancer immunotherapy in the clinic, immune checkpoint blockade therapy and T cell-based therapies are often associated with low response rates, intrinsic and adaptive immune resistance, and systemic side effects. CRISPR-Cas-based genome editing appears to be an effective strategy to overcome these unmet clinical needs. As a safer delivery platform for the CRISPR-Cas system, non-viral nanoformulations have been recently explored to target tumor cells and immune cells, aiming to improve cancer immunotherapy on a gene level. In this review, we summarized the efforts of non-viral vector-based CRISPR-Cas-mediated genome editing in tumor cells and immune cells for cancer immunotherapy. Their design rationale and specific applications were highlighted.
Collapse
Affiliation(s)
- Tianxu Fang
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| |
Collapse
|
172
|
Santhanam M, Kumar Pandey S, Shteinfer-Kuzmine A, Paul A, Abusiam N, Zalk R, Shoshan-Barmatz V. Interaction of SMAC with a survivin-derived peptide alters essential cancer hallmarks: Tumor growth, inflammation, and immunosuppression. Mol Ther 2024; 32:1934-1955. [PMID: 38582961 PMCID: PMC11184343 DOI: 10.1016/j.ymthe.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
Second mitochondrial-derived activator of caspase (SMAC), also known as direct inhibitor of apoptosis-binding proteins with low pI (Diablo), is known as a pro-apoptotic mitochondrial protein released into the cytosol in response to apoptotic signals. We recently reported SMAC overexpression in cancers as essential for cell proliferation and tumor growth due to non-apoptotic functions, including phospholipid synthesis regulation. These functions may be associated with its interactions with partner proteins. Using a peptide array with 768 peptides derived from 11 selected SMAC-interacting proteins, we identified SMAC-interacting sequences. These SMAC-binding sequences were produced as cell-penetrating peptides targeted to the cytosol, mitochondria, or nucleus, inhibiting cell proliferation and inducing apoptosis in several cell lines. For in vivo study, a survivin/baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5)-derived peptide was selected, due to its overexpression in many cancers and its involvement in mitosis, apoptosis, autophagy, cell proliferation, inflammation, and immune responses, as a target for cancer therapy. Specifically, a SMAC-targeting survivin/BIRC5-derived peptide, given intratumorally or intravenously, strongly inhibited lung tumor growth, cell proliferation, angiogenesis, and inflammation, induced apoptosis, and remodeled the tumor microenvironment. The peptide promoted tumor infiltration of CD-8+ cells and increased cell-intrinsic programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression, resulting in cancer cell self-destruction and increased tumor cell death, preserving immune cells. Thus, targeting the interaction between the multifunctional proteins SMAC and survivin represents an innovative therapeutic cancer paradigm.
Collapse
Affiliation(s)
- Manikandan Santhanam
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Swaroop Kumar Pandey
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Anna Shteinfer-Kuzmine
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Avijit Paul
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Nur Abusiam
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Ran Zalk
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel.
| |
Collapse
|
173
|
Knudsen BS, Jadhav A, Perry LJ, Thagaard J, Deftereos G, Ying J, Brintz BJ, Zhang W. A Pipeline for Evaluation of Machine Learning/Artificial Intelligence Models to Quantify Programmed Death Ligand 1 Immunohistochemistry. J Transl Med 2024; 104:102070. [PMID: 38677590 DOI: 10.1016/j.labinv.2024.102070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Immunohistochemistry (IHC) is used to guide treatment decisions in multiple cancer types. For treatment with checkpoint inhibitors, programmed death ligand 1 (PD-L1) IHC is used as a companion diagnostic. However, the scoring of PD-L1 is complicated by its expression in cancer and immune cells. Separation of cancer and noncancer regions is needed to calculate tumor proportion scores (TPS) of PD-L1, which is based on the percentage of PD-L1-positive cancer cells. Evaluation of PD-L1 expression requires highly experienced pathologists and is often challenging and time-consuming. Here, we used a multi-institutional cohort of 77 lung cancer cases stained centrally with the PD-L1 22C3 clone. We developed a 4-step pipeline for measuring TPS that includes the coregistration of hematoxylin and eosin, PD-L1, and negative control (NC) digital slides for exclusion of necrosis, segmentation of cancer regions, and quantification of PD-L1+ cells. As cancer segmentation is a challenging step for TPS generation, we trained DeepLab V3 in the Visiopharm software package to outline cancer regions in PD-L1 and NC images and evaluated the model performance by mean intersection over union (mIoU) against manual outlines. Only 14 cases were required to accomplish a mIoU of 0.82 for cancer segmentation in hematoxylin-stained NC cases. For PD-L1-stained slides, a model trained on PD-L1 tiles augmented by registered NC tiles achieved a mIoU of 0.79. In segmented cancer regions from whole slide images, the digital TPS achieved an accuracy of 75% against the manual TPS scores from the pathology report. Major reasons for algorithmic inaccuracies include the inclusion of immune cells in cancer outlines and poor nuclear segmentation of cancer cells. Our transparent and stepwise approach and performance metrics can be applied to any IHC assay to provide pathologists with important insights on when to apply and how to evaluate commercial automated IHC scoring systems.
Collapse
Affiliation(s)
- Beatrice S Knudsen
- Department of Pathology, University of Utah, Salt Lake City, Utah; Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | | | - Lindsey J Perry
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | | | - Georgios Deftereos
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - Jian Ying
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Ben J Brintz
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Wei Zhang
- Department of Pathology, University of Utah, Salt Lake City, Utah; Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
174
|
Yu F, Fang P, Fang Y, Chen D. Circ_0027791 contributes to the growth and immune evasion of hepatocellular carcinoma via the miR-496/programmed cell death ligand 1 axis in an m6A-dependent manner. ENVIRONMENTAL TOXICOLOGY 2024; 39:3721-3733. [PMID: 38546290 DOI: 10.1002/tox.24188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/03/2024] [Accepted: 02/10/2024] [Indexed: 05/16/2024]
Abstract
Emerging evidence indicates the critical roles of circular RNAs in the development of multiple cancers, containing hepatocellular carcinoma (HCC). Herein, our present research reported the biological function and mechanism of circ_0027791 in HCC progression. Circ_0027791, microRNA-496 (miR-496), programmed cell death ligand 1 (PDL1), and methyltransferase-like 3 (METTL3) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, proliferation, invasion, and sphere formation ability were detected using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, 5-ethynyl-2'-deoxyuridine, transwell, and sphere formation assays. Macrophage polarization was detected using flow cytometry assay. To understand the role of circ_0027791 during the immune escape, HCC cells were cocultured with peripheral blood mononuclear cells or cytokine-induced killer (CIK) cells in vitro. A xenograft mouse model was applied to assess the function of circ_0027791 in vivo. After prediction using circinteractome and miRDB, the binding between miR-496 and circ_0027791 or PDL1 was validated based on a dual-luciferase reporter assay. Interaction between METTL3 and circ_0027791 was determined using methylated RNA immunoprecipitation (MeRIP)-qPCR, RIP-qPCR, and RNA pull-down assays. Circ_0027791, PDL1, and METTL3 expression were upregulated, and miR-496 was decreased in HCC patients and cells. Moreover, circ_0027791 knockdown might repress proliferation, invasion, sphere formation, M2 macrophage polarization, and antitumor immune response. Circ_0027791 knockdown repressed HCC tumor growth in vivo. In mechanism, circ_0027791 functioned as a sponge for miR-496 to increase PDL1 expression. In addition, METTL3 mediated the m6A methylation of circ_0027791 and stabilized its expression. METTL3-induced circ_0027791 facilitated HCC cell progression partly regulating the miR-496/PDL1 axis, which provided a new prognostic and therapeutic marker for HCC.
Collapse
Affiliation(s)
- Furong Yu
- Department of Medical Technology, Anhui Medical College, Hefei, China
| | - Peifei Fang
- School of Basic Medicine, Anhui Medical College, Hefei, Anhi, China
| | - Yonghong Fang
- Department of Medical Technology, Anhui Medical College, Hefei, China
| | - Daojun Chen
- Department of Medical Technology, Anhui Medical College, Hefei, China
| |
Collapse
|
175
|
Kuwata T. Molecular classification and intratumoral heterogeneity of gastric adenocarcinoma. Pathol Int 2024; 74:301-316. [PMID: 38651937 PMCID: PMC11551831 DOI: 10.1111/pin.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Gastric cancers frequently harbor striking histological complexity and diversity between lesions as well as within single lesions, known as inter- and intratumoral heterogeneity, respectively. The latest World Health Organization Classification of Tumors designated more than 30 histological subtypes for gastric epithelial tumors, assigning 12 subtypes for gastric adenocarcinoma (GAD). Meanwhile, recent advances in genome-wide analyses have provided molecular aspects to the histological classification of GAD, and consequently revealed different molecular traits underlying these histological subtypes. Moreover, accumulating knowledge of comprehensive molecular profiles has led to establishing molecular classifications of GAD, which are often associated with clinical biomarkers for therapeutics and prognosis. However, most of our knowledge of GAD molecular profiles is based on inter-tumoral heterogeneity, and the molecular profiles underlying intratumoral heterogeneity are yet to be determined. In this review, recently established molecular classifications of GAD are introduced in the aspect of pathological diagnosis and are discussed in the context of intratumoral heterogeneity.
Collapse
Affiliation(s)
- Takeshi Kuwata
- Department of Genetic Medicine and ServicesNational Cancer Center Hospital EastKashiwaChibaJapan
| |
Collapse
|
176
|
Wang Y, Zhang C, Yan M, Ma X, Song L, Wang B, Li P, Liu P. PD-L1 regulates tumor proliferation and T-cell function in NF2-associated meningiomas. CNS Neurosci Ther 2024; 30:e14784. [PMID: 38828669 PMCID: PMC11145367 DOI: 10.1111/cns.14784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
INTRODUCTION Programmed death-ligand 1 (PD-L1) expression is an immune evasion mechanism that has been demonstrated in many tumors and is commonly associated with a poor prognosis. Over the years, anti-PD-L1 agents have gained attention as novel anticancer therapeutics that induce durable tumor regression in numerous malignancies. They may be a new treatment choice for neurofibromatosis type 2 (NF2) patients. AIMS The aims of this study were to detect the expression of PD-L1 in NF2-associated meningiomas, explore the effect of PD-L1 downregulation on tumor cell characteristics and T-cell functions, and investigate the possible pathways that regulate PD-L1 expression to further dissect the possible mechanism of immune suppression in NF2 tumors and to provide new treatment options for NF2 patients. RESULTS PD-L1 is heterogeneously expressed in NF2-associated meningiomas. After PD-L1 knockdown in NF2-associated meningioma cells, tumor cell proliferation was significantly inhibited, and the apoptosis rate was elevated. When T cells were cocultured with siPD-L1-transfected NF2-associated meningioma cells, the expression of CD69 on both CD4+ and CD8+ T cells was partly reversed, and the capacity of CD8+ T cells to kill siPD-L1-transfected tumor cells was partly restored. Results also showed that the PI3K-AKT-mTOR pathway regulates PD-L1 expression, and the mTOR inhibitor rapamycin rapidly and persistently suppresses PD-L1 expression. In vivo experimental results suggested that anti-PD-L1 antibody may have a synergetic effect with the mTOR inhibitor in reducing tumor cell proliferation and that reduced PD-L1 expression could contribute to antitumor efficacy. CONCLUSIONS Targeting PD-L1 could be helpful for restoring the function of tumor-infiltrating lymphocytes and inducing apoptosis to inhibit tumor proliferation in NF2-associated meningiomas. Dissecting the mechanisms of the PD-L1-driven tumorigenesis of NF2-associated meningioma will help to improve our understanding of the mechanisms underlying tumor progression and could facilitate further refinement of current therapies to improve the treatment of NF2 patients.
Collapse
Affiliation(s)
- Ying Wang
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Minjun Yan
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xin Ma
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Lairong Song
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Bo Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Peng Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Pinan Liu
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
177
|
Yang S, Zheng L, Li L, Zhang J, Wang J, Zhao H, Chen Y, Liu X, Gan H, Chen J, Yan M, He C, Li K, Ding C, Li Y. Integrative multiomics analysis identifies molecular subtypes and potential targets of hepatocellular carcinoma. Clin Transl Med 2024; 14:e1727. [PMID: 38804617 PMCID: PMC11131356 DOI: 10.1002/ctm2.1727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The liver is anatomically divided into eight segments based on the distribution of Glisson's triad. However, the molecular mechanisms underlying each segment and its association with hepatocellular carcinoma (HCC) heterogeneity are not well understood. In this study, our objective is to conduct a comprehensive multiomics profiling of the segmentation atlas in order to investigate potential subtypes and therapeutic approaches for HCC. METHODS A high throughput liquid chromatography-tandem mass spectrometer strategy was employed to comprehensively analyse proteome, lipidome and metabolome data, with a focus on segment-resolved multiomics profiling. To classify HCC subtypes, the obtained data with normal reference profiling were integrated. Additionally, potential therapeutic targets for HCC were identified using immunohistochemistry assays. The effectiveness of these targets were further validated through patient-derived organoid (PDO) assays. RESULTS A multiomics profiling of 8536 high-confidence proteins, 1029 polar metabolites and 3381 nonredundant lipids was performed to analyse the segmentation atlas of HCC. The analysis of the data revealed that in normal adjacent tissues, the left lobe was primarily involved in energy metabolism, while the right lobe was associated with small molecule metabolism. Based on the normal reference atlas, HCC patients with segment-resolved classification were divided into three subtypes. The C1 subtype showed enrichment in ribosome biogenesis, the C2 subtype exhibited an intermediate phenotype, while the C3 subtype was closely associated with neutrophil degranulation. Furthermore, using the PDO assay, exportin 1 (XPO1) and 5-lipoxygenase (ALOX5) were identified as potential targets for the C1 and C3 subtypes, respectively. CONCLUSION Our extensive analysis of the segmentation atlas in multiomics profiling defines molecular subtypes of HCC and uncovers potential therapeutic strategies that have the potential to enhance the prognosis of HCC.
Collapse
Affiliation(s)
- Shuai Yang
- Department of Hematology & OncologyJiangbei CampusThe First Affiliated Hospital of Army Medical UniversityChongqingChina
| | - Lu Zheng
- Department of Hepatobiliary SurgeryXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Lingling Li
- State Key Laboratory of Genetic EngineeringInstitutes of Biomedical SciencesHuman Phenome InstituteSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Jiangang Zhang
- Department of Medical OncologyChongqing University Cancer HospitalChongqingChina
| | - Jingchun Wang
- Department of GastroenterologyXinqiao Hospital, Army Medical UniversityChongqingChina
| | - Huakan Zhao
- Department of Medical OncologyChongqing University Cancer HospitalChongqingChina
| | - Yu Chen
- Department of Medical OncologyChongqing University Cancer HospitalChongqingChina
| | - Xudong Liu
- Department of Medical OncologyChongqing University Cancer HospitalChongqingChina
| | - Hui Gan
- Department of RadiologyXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Junying Chen
- Department of PathologyJiangbei CampusThe First Affiliated Hospital of Army Medical UniversityChongqingChina
| | - Mei Yan
- Department of PathologyJiangbei CampusThe First Affiliated Hospital of Army Medical UniversityChongqingChina
| | - Chuanyin He
- Department of PathologyJiangbei CampusThe First Affiliated Hospital of Army Medical UniversityChongqingChina
| | - Kai Li
- State Key Laboratory of Genetic EngineeringInstitutes of Biomedical SciencesHuman Phenome InstituteSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Chen Ding
- State Key Laboratory of Genetic EngineeringInstitutes of Biomedical SciencesHuman Phenome InstituteSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Yongsheng Li
- Department of Medical OncologyChongqing University Cancer HospitalChongqingChina
| |
Collapse
|
178
|
Zhang YZ, Lai HL, Huang C, Jiang ZB, Yan HX, Wang XR, Xie C, Huang JM, Ren WK, Li JX, Zhai ZR, Yao XJ, Wu QB, Leung ELH. Tanshinone IIA induces ER stress and JNK activation to inhibit tumor growth and enhance anti-PD-1 immunotherapy in non-small cell lung cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155431. [PMID: 38537440 DOI: 10.1016/j.phymed.2024.155431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains at the forefront of new cancer cases, and there is an urgent need to find new treatments or improve the efficacy of existing therapies. In addition to the application in the field of cerebrovascular diseases, recent studies have revealed that tanshinone IIA (Tan IIA) has anticancer activity in a variety of cancers. PURPOSE To investigate the potential anticancer mechanism of Tan IIA and its impact on immunotherapy in NSCLC. METHODS Cytotoxicity and colony formation assays were used to detect the Tan IIA inhibitory effect on NSCLC cells. This research clarified the mechanisms of Tan IIA in anti-tumor and programmed death-ligand 1 (PD-L1) regulation by using flow cytometry, transient transfection, western blotting and immunohistochemistry (IHC) methods. Besides, IHC was also used to analyze the nuclear factor of activated T cells 1 (NFAT2) expression in NSCLC clinical samples. Two animal models including xenograft mouse model and Lewis lung cancer model were used for evaluating tumor suppressive efficacy of Tan IIA. We also tested the efficacy of Tan IIA combined with programmed cell death protein 1 (PD-1) inhibitors in Lewis lung cancer model. RESULTS Tan IIA exhibited good NSCLC inhibitory effect which was accompanied by endoplasmic reticulum (ER) stress response and increasing Ca2+ levels. Moreover, Tan IIA could suppress the NFAT2/ Myc proto oncogene protein (c-Myc) signaling, and it also was able to control the Jun Proto-Oncogene(c-Jun)/PD-L1 axis in NSCLC cells through the c-Jun N-terminal kinase (JNK) pathway. High NFAT2 levels were potential factors for poor prognosis in NSCLC patients. Finally, animal experiments data showed a stronger immune activation phenotype, when we performed treatment of Tan IIA combined with PD-1 monoclonal antibody. CONCLUSION The findings of our research suggested a novel mechanism for Tan IIA to inhibit NSCLC, which could exert anti-cancer effects through the JNK/NFAT2/c-Myc pathway. Furthermore, Tan IIA could regulate tumor PD-L1 levels and has the potential to improve the efficacy of PD-1 inhibitors.
Collapse
Affiliation(s)
- Yi-Zhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Huan-Ling Lai
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Ze-Bo Jiang
- Affiliated Zhuhai Hospital, Southern Medical University, Zhuhai Hospital of Integrated Traditional Chinese & Western Medicine, Zhuhai 519000, Guangdong, China
| | - Hao-Xin Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xuan-Run Wang
- Cancer Center, Faculty of Health Science, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau (SAR), China
| | - Chun Xie
- Cancer Center, Faculty of Health Science, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau (SAR), China
| | - Ju-Min Huang
- Cancer Center, Faculty of Health Science, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau (SAR), China
| | - Wen-Kang Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Jia-Xin Li
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Zhi-Ran Zhai
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xiao-Jun Yao
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, Macao.
| | - Qi-Biao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau (SAR), China.
| |
Collapse
|
179
|
Qian H, Pang J, Wan C, Mei X, Liao J, Wang B, Milano MT, Suwinski R, Inno A, Du Y. Distribution characteristics and prognosis of tumor-infiltrating lymphocytes in the brain metastases of small cell lung cancer: a retrospective cohort study. Transl Cancer Res 2024; 13:2509-2517. [PMID: 38881925 PMCID: PMC11170520 DOI: 10.21037/tcr-24-552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
Background The efficacy of immunotherapy for brain metastases from small cell lung cancer (SCLC) is relatively low, and the tumor microenvironment of SCLC brain metastases is still unknown. Therefore, we investigated the distribution of tumor-infiltrating lymphocytes (TILs) and the expression of programmed cell death-ligand 1 (PD-L1) in patients with brain metastases from SCLC to explore the tumor microenvironment of SCLC brain metastases. Methods A retrospective analysis was performed on 12 surgical specimens of brain metastases from patients with SCLC treated in the Department of Neurosurgery of The First Affiliated Hospital of Anhui Medical University from June 2017 to June 2022. The inclusion criteria for this study were the following: (I) a pathologically confirmed diagnosis of SCLC brain metastases; (II) surgical resection of brain metastases; (III) age >18 years; (IV) and complete clinical data. Patient-related data were retrieved from the inpatient medical record system, telephone follow-up of patients date of death, and overall survival (OS). The immunofluorescence-based tissue microenvironment analysis panel (MAP) was utilized for the detection of TILs, including CD3, CD8, programmed cell death 1 (PD-1), and PD-L1, in formalin-fixed and paraffin-embedded archival specimens of brain metastases. The expression levels of PD-L1 in tumor cells were detected by immunohistochemistry. The correlation between the OS and the above-mentioned markers was analyzed in the 12 patients. Results Twelve patients were included in the study. The patients' ages ranged from 51-78 years with a median of 68 years, with 1 female and 11 males. Among 12 patients with SCLC brain metastases: positive rates of CD3+ TILs in the tumor parenchyma vs. tumor stroma were 0.60%±0.94% vs. 1.76%±2.72% (P=0.01), respectively; positive rates of CD8+ TILs in the tumor parenchyma vs. tumor stroma were 0.80%±0.78% vs. 2.46%±3.72% (P=0.02), respectively. There was no co-expression of CD8+ and PD-1+ TILs in the tumor parenchyma of 11 cases, and the infiltration density of coexpressed CD3+ and PD-1+ TILs was more than 10/mm2 in only 1 case. There was no coexpression of CD3+ and PD-1+ TIL in the stroma of 10 cases, and the infiltration density of CD8+ and PD-1+ TILs was more than 10/mm2 in 2 cases. Immunohistochemistry was used to detect the expression of PD-L1 in 12 cases of SCLC metastatic lesions, and 3 cases (25%) were positive. Survival analysis showed that patients with positive intraepithelial CD3+ TILs had significantly longer OS [hazard ratio 3.383, 95% confidence interval (CI): 0.959-11.940; P=0.04]. Conclusions Our study further demonstrated the immune microenvironment of SCLC brain metastases. The distribution of TILs in SCLC brain metastases is low and mainly distributed in the stroma, with the expression of PD-L1 in these tumor tissues being low. Further exploration of the immune microenvironment of SCLC brain metastases is of great significance for potential treatment.
Collapse
Affiliation(s)
- Hesheng Qian
- Department of Oncology, Fuyang Tumor Hospital, Fuyang, China
| | - Jingdan Pang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chang Wan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinkuan Mei
- Department of Oncology, Fuyang Tumor Hospital, Fuyang, China
| | - Jinhua Liao
- Department of Oncology, Fuyang Tumor Hospital, Fuyang, China
| | - Bin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Rafal Suwinski
- Radiotherapy and Chemotherapy Clinic and Teaching Hospital, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Poland
| | - Alessandro Inno
- Medical Oncology Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy
| | - Yingying Du
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
180
|
Jungcharoen P, Panaampon J, Imemkamon T, Saengboonmee C. Magnetic nanoparticles: An emerging nanomedicine for cancer immunotherapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:183-214. [PMID: 39461752 DOI: 10.1016/bs.pmbts.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cancer immunotherapy is a revolutionised strategy that strikingly improves cancer treatment in recent years. However, like other therapeutic modalities, immunotherapy faces several challenges and limitations. Many methods have been developed to overcome those limitations; thus, nanomedicine is one of the emerging fields with a highly promising application. Magnetite nanoparticles (MNPs) have long been used for medical applications, for example, as a contrast medium, and are being investigated as a tool for boosting and synergizing the effects of immunotherapy. With known physicochemical properties and the interaction with the surroundings in biological systems, MNPs are used to improve the efficacy of immunotherapy in both cell-based and antibody-based treatment. This chapter reviews and discusses state-of-the-art MNPs as a tool to advance cancer immunotherapy as well as its limitations that need further investigation for a better therapeutic outcome in preclinical and clinical settings.
Collapse
Affiliation(s)
- Phoomipat Jungcharoen
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
| | - Jutatip Panaampon
- Division of Hematologic Neoplasm, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States; Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection Kumamoto University, Kumamoto, Japan
| | - Thanit Imemkamon
- Division of Medical Oncology, Department of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
181
|
Liu Z, Li X, Muhammad A, Sun Q, Zhang Q, Wang Y, Wang Y, Ren J, Wang D. PACSIN1 promotes immunosuppression in gastric cancer by degrading MHC-I. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1473-1482. [PMID: 38826133 PMCID: PMC11532212 DOI: 10.3724/abbs.2024059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/07/2024] [Indexed: 06/04/2024] Open
Abstract
Gastric cancer (GC) is a common gastrointestinal system malignancy. PACSIN1 functions as an oncogene in various cancers. This study aims to investigate the potential of PACSIN1 as a target in GC treatment. Gene expression is determined by RT-qPCR, immunofluorescence staining, and immunohistochemistry assay. FISH is performed to determine the colocalization of PACSIN1 and the major histocompatibility complex (MHC-I). Cytokine release and cell functions are analyzed by flow cytometry. In vivo assays are also conducted. Histological analysis is performed using H&E staining. The results show that PACSIN1 is overexpressed in GC patients, especially in those with immunologically-cold tumors. A high level of PACSIN1 is associated with poor prognosis. PACSIN1 deficiency inhibits autophagy but increases antigen presentation in GC cells. Moreover, PACSIN1 deficiency inhibits the lysosomal fusion and selective autophagy of MHC-I, increases CD8 + T-cell infiltration, and suppresses tumor growth and liver metastasis in vivo. Additionally, PACSIN1 knockout enhances the chemosensitivity of cells to immune checkpoint blockade. In summary, PACSIN1 mediates lysosomal fusion and selective autophagy of MHC-I and suppresses antigen presentation and CD8 + T-cell infiltration, thus inhibiting antitumor immunity in GC.
Collapse
Affiliation(s)
- Zhu Liu
- The Yangzhou School of Clinical Medicine of Nanjing Medical UniversityYangzhou225001China
- Northern Jiangsu People’s HospitalYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Xin Li
- Northern Jiangsu People’s HospitalYangzhou225001China
- Department of PharmacyClinical Medical CollegeYangzhou UniversityNorthern Jiangsu People’s HospitalYangzhou225001China
| | - Ali Muhammad
- Clinical Medical CollegeYangzhou UniversityYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Qiannan Sun
- Northern Jiangsu People’s HospitalYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Qi Zhang
- Northern Jiangsu People’s HospitalYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Yang Wang
- Clinical Medical CollegeYangzhou UniversityYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Yong Wang
- Northern Jiangsu People’s HospitalYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Jun Ren
- Clinical Medical CollegeYangzhou UniversityYangzhou225001China
- Northern Jiangsu People’s HospitalYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Daorong Wang
- The Yangzhou School of Clinical Medicine of Nanjing Medical UniversityYangzhou225001China
- Clinical Medical CollegeYangzhou UniversityYangzhou225001China
- Northern Jiangsu People’s HospitalYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| |
Collapse
|
182
|
Han R, Rao X, Zhou H, Lu L. Synergistic Immunoregulation: harnessing CircRNAs and PiRNAs to Amplify PD-1/PD-L1 Inhibition Therapy. Int J Nanomedicine 2024; 19:4803-4834. [PMID: 38828205 PMCID: PMC11144010 DOI: 10.2147/ijn.s461289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/12/2024] [Indexed: 06/05/2024] Open
Abstract
The utilization of PD-1/PD-L1 inhibitors marks a significant advancement in cancer therapy. However, the efficacy of monotherapy is still disappointing in a substantial subset of patients, necessitating the exploration of combinational strategies. Emerging from the promising results of the KEYNOTE-942 trial, RNA-based therapies, particularly circRNAs and piRNAs, have distinguished themselves as innovative sensitizers to immune checkpoint inhibitors (ICIs). These non-coding RNAs, notable for their stability and specificity, were once underrecognized but are now known for their crucial roles in regulating PD-L1 expression and bolstering anti-cancer immunity. Our manuscript offers a comprehensive analysis of selected circRNAs and piRNAs, elucidating their immunomodulatory effects and mechanisms, thus underscoring their potential as ICIs enhancers. In conjunction with the recent Nobel Prize-awarded advancements in mRNA vaccine technology, our review highlights the transformative implications of these findings for cancer treatment. We also discuss the prospects of circRNAs and piRNAs in future therapeutic applications and research. This study pioneers the synergistic application of circRNAs and piRNAs as novel sensitizers to augment PD-1/PD-L1 inhibition therapy, demonstrating their unique roles in regulating PD-L1 expression and modulating immune responses. Our findings offer a groundbreaking approach for enhancing the efficacy of cancer immunotherapy, opening new avenues for treatment strategies. This abstract aims to encapsulate the essence of our research and the burgeoning role of these non-coding RNAs in enhancing PD-1/PD-L1 inhibition therapy, encouraging further investigation into this promising field.
Collapse
Affiliation(s)
- Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
- Department of Chinese Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Xiwu Rao
- Department of Oncology, The First Hospital Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Huiling Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, People’s Republic of China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA
- School of Medicine, Center for Biomedical Data Science, Yale University, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
183
|
Ho M, Bonavida B. Cross-Talks between Raf Kinase Inhibitor Protein and Programmed Cell Death Ligand 1 Expressions in Cancer: Role in Immune Evasion and Therapeutic Implications. Cells 2024; 13:864. [PMID: 38786085 PMCID: PMC11119125 DOI: 10.3390/cells13100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Innovations in cancer immunotherapy have resulted in the development of several novel immunotherapeutic strategies that can disrupt immunosuppression. One key advancement lies in immune checkpoint inhibitors (ICIs), which have shown significant clinical efficacy and increased survival rates in patients with various therapy-resistant cancers. This immune intervention consists of monoclonal antibodies directed against inhibitory receptors (e.g., PD-1) on cytotoxic CD8 T cells or against corresponding ligands (e.g., PD-L1/PD-L2) overexpressed on cancer cells and other cells in the tumor microenvironment (TME). However, not all cancer cells respond-there are still poor clinical responses, immune-related adverse effects, adaptive resistance, and vulnerability to ICIs in a subset of patients with cancer. This challenge showcases the heterogeneity of cancer, emphasizing the existence of additional immunoregulatory mechanisms in many patients. Therefore, it is essential to investigate PD-L1's interaction with other oncogenic genes and pathways to further advance targeted therapies and address resistance mechanisms. Accordingly, our aim was to investigate the mechanisms governing PD-L1 expression in tumor cells, given its correlation with immune evasion, to uncover novel mechanisms for decreasing PD-L1 expression and restoring anti-tumor immune responses. Numerous studies have demonstrated that the upregulation of Raf Kinase Inhibitor Protein (RKIP) in many cancers contributes to the suppression of key hyperactive pathways observed in malignant cells, alongside its broadening involvement in immune responses and the modulation of the TME. We, therefore, hypothesized that the role of PD-L1 in cancer immune surveillance may be inversely correlated with the low expression level of the tumor suppressor Raf Kinase Inhibitor Protein (RKIP) expression in cancer cells. This hypothesis was investigated and we found several signaling cross-talk pathways between the regulations of both RKIP and PD-L1 expressions. These pathways and regulatory factors include the MAPK and JAK/STAT pathways, GSK3β, cytokines IFN-γ and IL-1β, Sox2, and transcription factors YY1 and NFκB. The pathways that upregulated PD-L1 were inhibitory for RKIP expression and vice versa. Bioinformatic analyses in various human cancers demonstrated the inverse relationship between PD-L1 and RKIP expressions and their prognostic roles. Therefore, we suspect that the direct upregulation of RKIP and/or the use of targeted RKIP inducers in combination with ICIs could result in a more targeted anti-tumor immune response-addressing the therapeutic challenges related to PD-1/PD-L1 monotherapy alone.
Collapse
Affiliation(s)
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
184
|
Zhang W, Ou M, Yang P, Ning M. The role of extracellular vesicle immune checkpoints in cancer. Clin Exp Immunol 2024; 216:230-239. [PMID: 38518192 PMCID: PMC11097917 DOI: 10.1093/cei/uxae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/02/2024] [Accepted: 03/21/2024] [Indexed: 03/24/2024] Open
Abstract
Immune checkpoints (ICPs) play a crucial role in regulating the immune response. In the tumor, malignant cells can hijack the immunosuppressive effects of inhibitory ICPs to promote tumor progression. Extracellular vesicles (EVs) are produced by a variety of cells and contain bioactive molecules on their surface or within their lumen. The expression of ICPs has also been detected in EVs. In vitro and in vivo studies have shown that extracellular vesicle immune checkpoints (EV ICPs) have immunomodulatory effects and are involved in tumor immunity. EV ICPs isolated from the peripheral blood of cancer patients are closely associated with the tumor progression and the prognosis of cancer patients. Blocking inhibitory ICPs has been recognized as an effective strategy in cancer treatment. However, the efficacy of immune checkpoint inhibitors (ICIs) in cancer treatment is hindered by the emergence of therapeutic resistance, which limits their widespread use. Researchers have demonstrated that EV ICPs are correlated with clinical response to ICIs therapy and were involved in therapeutic resistance. Therefore, it is essential to investigate the immunomodulatory effects, underlying mechanisms, and clinical significance of EV ICPs in cancer. This review aims to comprehensively explore these aspects. We have provided a comprehensive description of the cellular origins, immunomodulatory effects, and clinical significance of EV ICPs in cancer, based on relevant studies.
Collapse
Affiliation(s)
- Weiming Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mingrong Ou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing Jiangsu, China
| | - Ping Yang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mingzhe Ning
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
185
|
Terasaki A, Ahmed F, Okuno A, Peng Z, Cao DY, Saito S. Neutrophils Expressing Programmed Death-Ligand 1 Play an Indispensable Role in Effective Bacterial Elimination and Resolving Inflammation in Methicillin-Resistant Staphylococcus aureus Infection. Pathogens 2024; 13:401. [PMID: 38787253 PMCID: PMC11124513 DOI: 10.3390/pathogens13050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Programmed death ligand 1 (PD-L1) is a co-inhibitory molecule expressed on the surface of various cell types and known for its suppressive effect on T cells through its interaction with PD-1. Neutrophils also express PD-L1, and its expression is elevated in specific situations; however, the immunobiological role of PD-L1+ neutrophils has not been fully characterized. Here, we report that PD-L1-expressing neutrophils increased in methicillin-resistant Staphylococcus aureus (MRSA) infection are highly functional in bacterial elimination and supporting inflammatory resolution. The frequency of PD-L1+ neutrophils was dramatically increased in MRSA-infected mice, and this population exhibited enhanced activity in bacterial elimination compared to PD-L1- neutrophils. The administration of PD-L1 monoclonal antibody did not impair PD-L1+ neutrophil function, suggesting that PD-L1 expression itself does not influence neutrophil activity. However, PD-1/PD-L1 blockade significantly delayed liver inflammation resolution in MRSA-infected mice, as indicated by their increased plasma alanine transaminase (ALT) levels and frequencies of inflammatory leukocytes in the liver, implying that neutrophil PD-L1 suppresses the inflammatory response of these cells during the acute phase of MRSA infection. Our results reveal that elevated PD-L1 expression can be a marker for the enhanced anti-bacterial function of neutrophils. Moreover, PD-L1+ neutrophils are an indispensable population attenuating inflammatory leukocyte activities, assisting in a smooth transition into the resolution phase in MRSA infection.
Collapse
Affiliation(s)
- Azusa Terasaki
- Department of Breast-Thyroid-Endocrine Surgery, University of Tsukuba, Ibaraki 3058577, Japan;
| | - Faizan Ahmed
- Division of Gastroenterology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Alato Okuno
- Department of Health and Nutrition, Faculty of Human Design, Shibata Gakuen University, Aomori 0368530, Japan;
| | - Zhenzi Peng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China;
| | - Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Suguru Saito
- Division of Virology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Tochigi 3290431, Japan
| |
Collapse
|
186
|
Satapathy BP, Sheoran P, Yadav R, Chettri D, Sonowal D, Dash CP, Dhaka P, Uttam V, Yadav R, Jain M, Jain A. The synergistic immunotherapeutic impact of engineered CAR-T cells with PD-1 blockade in lymphomas and solid tumors: a systematic review. Front Immunol 2024; 15:1389971. [PMID: 38799440 PMCID: PMC11116574 DOI: 10.3389/fimmu.2024.1389971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
Currently, therapies such as chimeric antigen receptor-T Cell (CAR-T) and immune checkpoint inhibitors like programmed cell death protein-1 (PD-1) blockers are showing promising results for numerous cancer patients. However, significant advancements are required before CAR-T therapies become readily available as off-the-shelf treatments, particularly for solid tumors and lymphomas. In this review, we have systematically analyzed the combination therapy involving engineered CAR-T cells and anti PD-1 agents. This approach aims at overcoming the limitations of current treatments and offers potential advantages such as enhanced tumor inhibition, alleviated T-cell exhaustion, heightened T-cell activation, and minimized toxicity. The integration of CAR-T therapy, which targets tumor-associated antigens, with PD-1 blockade augments T-cell function and mitigates immune suppression within the tumor microenvironment. To assess the impact of combination therapy on various tumors and lymphomas, we categorized them based on six major tumor-associated antigens: mesothelin, disialoganglioside GD-2, CD-19, CD-22, CD-133, and CD-30, which are present in different tumor types. We evaluated the efficacy, complete and partial responses, and progression-free survival in both pre-clinical and clinical models. Additionally, we discussed potential implications, including the feasibility of combination immunotherapies, emphasizing the importance of ongoing research to optimize treatment strategies and improve outcomes for cancer patients. Overall, we believe combining CAR-T therapy with PD-1 blockade holds promise for the next generation of cancer immunotherapy.
Collapse
Affiliation(s)
- Bibhu Prasad Satapathy
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Pooja Sheoran
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Rohit Yadav
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Dewan Chettri
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Dhruba Sonowal
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Chinmayee Priyadarsini Dash
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Prachi Dhaka
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Vivek Uttam
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Ritu Yadav
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Manju Jain
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Aklank Jain
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
187
|
Zuo A, Li J, Weng S, Xu H, Zhang Y, Wang L, Xing Z, Luo P, Cheng Q, Li J, Han X, Liu Z. Integrated Exploration of Epigenetic Dysregulation Reveals a Stemness/EMT Subtype and MMP12 Linked to the Progression and Prognosis in Hepatocellular Carcinoma. J Proteome Res 2024; 23:1821-1833. [PMID: 38652053 DOI: 10.1021/acs.jproteome.4c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Epigenetic dysregulation drives aberrant transcriptional programs playing a critical role in hepatocellular carcinoma (HCC), which may provide novel insights into the heterogeneity of HCC. This study performed an integrated exploration on the epigenetic dysregulation of miRNA and methylation. We discovered and validated three patterns endowed with gene-related transcriptional traits and clinical outcomes. Specially, a stemness/epithelial-mesenchymal transition (EMT) subtype was featured by immune exhaustion and the worst prognosis. Besides, MMP12, a characteristic gene, was highly expressed in the stemness/EMT subtype, which was verified as a pivotal regulator linked to the unfavorable prognosis and further proven to promote tumor proliferation, invasion, and metastasis in vitro experiments. Proteomic analysis by mass spectrometry sequencing also indicated that the overexpression of MMP12 was significantly associated with cell proliferation and adhesion. Taken together, this study unveils innovative insights into epigenetic dysregulation and identifies a stemness/EMT subtype-specific gene, MMP12, correlated with the progression and prognosis of HCC.
Collapse
Affiliation(s)
- Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jinyu Li
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
188
|
Kilian M, Friedrich MJ, Lu KHN, Vonhören D, Jansky S, Michel J, Keib A, Stange S, Hackert N, Kehl N, Hahn M, Habel A, Jung S, Jähne K, Sahm F, Betge J, Cerwenka A, Westermann F, Dreger P, Raab MS, Meindl-Beinker NM, Ebert M, Bunse L, Müller-Tidow C, Schmitt M, Platten M. The immunoglobulin superfamily ligand B7H6 subjects T cell responses to NK cell surveillance. Sci Immunol 2024; 9:eadj7970. [PMID: 38701193 DOI: 10.1126/sciimmunol.adj7970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/15/2024] [Indexed: 05/05/2024]
Abstract
Understanding the mechanisms that regulate T cell immunity is critical for the development of effective therapies for diseases associated with T cell dysfunction, including autoimmune diseases, chronic infections, and cancer. Co-inhibitory "checkpoint molecules," such as programmed cell death protein-1, balance excessive or prolonged immune activation by T cell-intrinsic signaling. Here, by screening for mediators of natural killer (NK) cell recognition on T cells, we identified the immunoglobulin superfamily ligand B7H6 to be highly expressed by activated T cells, including patient-infused CD19-targeting chimeric antigen receptor (CAR) T cells. Unlike other checkpoint molecules, B7H6 mediated NKp30-dependent recognition and subsequent cytolysis of activated T cells by NK cells. B7H6+ T cells were prevalent in the tissue and blood of several diseases, and their abundance in tumor tissue positively correlated with clinical response in a cohort of patients with immune checkpoint inhibitor-treated esophageal cancer. In humanized mouse models, NK cell surveillance via B7H6 limited the persistence and antitumor activity of CAR T cells, and its genetic deletion enhanced T cell proliferation and persistence. Together, we provide evidence of B7H6 protein expression by activated T cells and suggest the B7H6-NKp30 axis as a therapeutically actionable NK cell-dependent immune checkpoint that regulates human T cell function.
Collapse
Affiliation(s)
- Michael Kilian
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mirco J Friedrich
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kevin Hai-Ning Lu
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Pediatric Hematology and Oncology, Clinic of Pediatrics III, University Hospital Essen, Essen, Germany
| | - David Vonhören
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Selina Jansky
- Department of Pediatric Hematology and Oncology, Clinic of Pediatrics III, University Hospital Essen, Essen, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Julius Michel
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anna Keib
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Saskia Stange
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicolaj Hackert
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Niklas Kehl
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus Hahn
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Antje Habel
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefanie Jung
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kristine Jähne
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Betge
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine II, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Adelheid Cerwenka
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank Westermann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Dreger
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc S Raab
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadja M Meindl-Beinker
- Department of Medicine II, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
| | - Matthias Ebert
- Department of Medicine II, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
| | - Lukas Bunse
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Müller-Tidow
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Schmitt
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Helmholtz Institute of Translational Oncology (HI-TRON), Mainz, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
189
|
Abdel Shaheed C, Hayes C, Maher CG, Ballantyne JC, Underwood M, McLachlan AJ, Martin JH, Narayan SW, Sidhom MA. Opioid analgesics for nociceptive cancer pain: A comprehensive review. CA Cancer J Clin 2024; 74:286-313. [PMID: 38108561 DOI: 10.3322/caac.21823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 12/19/2023] Open
Abstract
Pain is one of the most burdensome symptoms in people with cancer, and opioid analgesics are considered the mainstay of cancer pain management. For this review, the authors evaluated the efficacy and toxicities of opioid analgesics compared with placebo, other opioids, nonopioid analgesics, and nonpharmacologic treatments for background cancer pain (continuous and relatively constant pain present at rest), and breakthrough cancer pain (transient exacerbation of pain despite stable and adequately controlled background pain). They found a paucity of placebo-controlled trials for background cancer pain, although tapentadol or codeine may be more efficacious than placebo (moderate-certainty to low-certainty evidence). Nonsteroidal anti-inflammatory drugs including aspirin, piroxicam, diclofenac, ketorolac, and the antidepressant medicine imipramine, may be at least as efficacious as opioids for moderate-to-severe background cancer pain. For breakthrough cancer pain, oral transmucosal, buccal, sublingual, or intranasal fentanyl preparations were identified as more efficacious than placebo but were more commonly associated with toxicities, including constipation and nausea. Despite being recommended worldwide for the treatment of cancer pain, morphine was generally not superior to other opioids, nor did it have a more favorable toxicity profile. The interpretation of study results, however, was complicated by the heterogeneity in the study populations evaluated. Given the limited quality and quantity of research, there is a need to reappraise the clinical utility of opioids in people with cancer pain, particularly those who are not at the end of life, and to further explore the effects of opioids on immune system function and quality of life in these individuals.
Collapse
Affiliation(s)
- Christina Abdel Shaheed
- Faculty of Medicine and Health, School of Public Health, University of Sydney, Sydney, New South Wales, Australia
- Sydney Musculoskeletal Health, University of Sydney and Sydney Local Health District, Sydney, Australia
| | - Christopher Hayes
- College of Health, Medicine, and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia
| | - Christopher G Maher
- Faculty of Medicine and Health, School of Public Health, University of Sydney, Sydney, New South Wales, Australia
- Sydney Musculoskeletal Health, University of Sydney and Sydney Local Health District, Sydney, Australia
| | - Jane C Ballantyne
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Martin Underwood
- Warwick Clinical Trials Unit, University of Warwick, Coventry, United Kingdom
- University Hospitals of Coventry and Warwickshire, Coventry, United Kingdom
| | - Andrew J McLachlan
- Faculty of Medicine and Health, Sydney Pharmacy School, University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer H Martin
- College of Health, Medicine, and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia
| | - Sujita W Narayan
- Faculty of Medicine and Health, School of Public Health, University of Sydney, Sydney, New South Wales, Australia
- Sydney Musculoskeletal Health, University of Sydney and Sydney Local Health District, Sydney, Australia
- Faculty of Medicine and Health, Sydney Pharmacy School, University of Sydney, Sydney, New South Wales, Australia
| | - Mark A Sidhom
- Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia
- South Western Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
190
|
Rafli R, Harahap WA, Gondhowiardjo S, Ekaputra A. Investigating Radiotherapy Effects on PD-L1 Expression in Circulating Tumor Cells: An Exploratory Study. Asian Pac J Cancer Prev 2024; 25:1559-1566. [PMID: 38809627 PMCID: PMC11318814 DOI: 10.31557/apjcp.2024.25.5.1559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
INTRODUCTION Circulating tumor cells (CTCs) and Programmed death-ligand 1 (PD-L1) play pivotal roles in cancer biology and therapy response. This exploratory study aimed to elucidate the influence of neoadjuvant radiotherapy on PD-L1 expression in tumor tissues and CTCs of patients with inoperable locally advanced breast cancer. METHODS We conducted a prospective cohort study at Universitas Andalas Hospital Padang from January to December 2022 with 27 patients. Biopsies and blood draws were executed before and after the tenth fractions of neoadjuvant radiotherapy. Following radiotherapy, CTCs were isolated using magnetic beads enrichment, followed by an RT-PCR analysis for PD-L1 expression. Correlations between PD-L1 expression and tumor response, evaluated via local response and RECIST criteria before and after radiotherapy breast CT scan, were examined using Fisher's exact and chi-square tests. RESULTS Our data revealed no significant alterations in PD-L1 expression in either tumor tissues or CTCs during radiotherapy (p=0.848 for tissue, p=0.548 for CTCs). Notably, PD-L1 expression in tumor tissue before treatment was significantly associated with RECIST (p=0.021), while other correlations with local response and RECIST were not statistically significant. CONCLUSION The study implies radiotherapy may not significantly influence PD-L1 expression in tumor tissue and CTCs. However, pre-treatment PD-L1 expression in tumor tissue correlates with RECIST criteria. These findings highlight the need for additional, comprehensive studies to elucidate further the interplay between PD-L1, CTCs, and radiotherapy response.
Collapse
Affiliation(s)
- Rhandyka Rafli
- Faculty of Medicine, Universitas Andalas and Universitas Baiturrahmah, Padang, Indonesia.
| | | | - Soehartati Gondhowiardjo
- Department of Radiation Oncology, Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.
| | - Andani Ekaputra
- Faculty of Medicine, Universitas Andalas, Padang, Indonesia.
| |
Collapse
|
191
|
Alserawan L, Mulet M, Anguera G, Riudavets M, Zamora C, Osuna-Gómez R, Serra-López J, Barba Joaquín A, Sullivan I, Majem M, Vidal S. Kinetics of IFNγ-Induced Cytokines and Development of Immune-Related Adverse Events in Patients Receiving PD-(L)1 Inhibitors. Cancers (Basel) 2024; 16:1759. [PMID: 38730712 PMCID: PMC11083441 DOI: 10.3390/cancers16091759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have the potential to trigger unpredictable immune-related adverse events (irAEs), which can be severe. The underlying mechanisms of these events are not fully understood. As PD-L1 is upregulated by IFN, the heightened immune activation resulting from PD-1/PD-L1 inhibition may enhance the IFN response, triggering the expression of IFN-inducible genes and contributing to irAE development and its severity. In this study, we investigated the interplay between irAEs and the expression of IFN-inducible chemokines and cytokines in 134 consecutive patients with solid tumours treated with PD-(L)1 inhibitors as monotherapy or in combination with chemotherapy or other immunotherapy agents. We compared the plasma levels of IFN-associated cytokines (CXCL9/10/11, IL-18, IL-10, IL-6 and TGFβ) at various time points (at baseline, at the onset of irAE and previous to irAE onset) in three patient groups categorized by irAE development and severity: patients with serious irAEs, mild irAEs and without irAEs after PD-(L)1 inhibitors. No differences were observed between groups at baseline. However, patients with serious irAEs exhibited significant increases in CXCL9/10/11, IL-18 and IL-10 levels at the onset of the irAE compared to baseline. A network analysis and correlation patterns highlighted a robust relationship among these chemokines and cytokines at serious-irAE onset. Combining all of the analysed proteins in a cluster analysis, we identified a subgroup of patients with a higher incidence of serious irAEs affecting different organs or systems. Finally, an ROC analysis and a decision tree model proposed IL-18 levels ≥ 807 pg/mL and TGFβ levels ≤ 114 pg/mL as predictors for serious irAEs in 90% of cases. In conclusion, our study elucidates the dynamic changes in cytokine profiles associated with serious irAE development during treatment with PD-(L)1 inhibitors. The study's findings offer valuable insights into the intricate IFN-induced immune responses associated with irAEs and propose potential predictive markers for their severity.
Collapse
Affiliation(s)
- Leticia Alserawan
- Immunology-Inflammatory Diseases, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (L.A.); (M.M.); (C.Z.); (R.O.-G.)
- Department of Immunology, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - Maria Mulet
- Immunology-Inflammatory Diseases, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (L.A.); (M.M.); (C.Z.); (R.O.-G.)
| | - Geòrgia Anguera
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; (G.A.); (M.R.); (J.S.-L.); (A.B.J.); (I.S.); (M.M.)
| | - Mariona Riudavets
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; (G.A.); (M.R.); (J.S.-L.); (A.B.J.); (I.S.); (M.M.)
- Department of Pneumologie, Hôpital Cochin—APHP Centre, 75014 Paris, France
| | - Carlos Zamora
- Immunology-Inflammatory Diseases, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (L.A.); (M.M.); (C.Z.); (R.O.-G.)
| | - Rubén Osuna-Gómez
- Immunology-Inflammatory Diseases, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (L.A.); (M.M.); (C.Z.); (R.O.-G.)
| | - Jorgina Serra-López
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; (G.A.); (M.R.); (J.S.-L.); (A.B.J.); (I.S.); (M.M.)
| | - Andrés Barba Joaquín
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; (G.A.); (M.R.); (J.S.-L.); (A.B.J.); (I.S.); (M.M.)
| | - Ivana Sullivan
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; (G.A.); (M.R.); (J.S.-L.); (A.B.J.); (I.S.); (M.M.)
| | - Margarita Majem
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; (G.A.); (M.R.); (J.S.-L.); (A.B.J.); (I.S.); (M.M.)
| | - Silvia Vidal
- Immunology-Inflammatory Diseases, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (L.A.); (M.M.); (C.Z.); (R.O.-G.)
| |
Collapse
|
192
|
Gao L, Liu Y, Liu J, Li J, Li H, Liu Y, Meng F, Du X, Gao Y, Li J, Qin FX. Proton pump inhibitors stabilize the expression of PD-L1 on cell membrane depending on the phosphorylation of GSK3β. Cancer Med 2024; 13:e7083. [PMID: 38752436 PMCID: PMC11097254 DOI: 10.1002/cam4.7083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Preclinical and clinical evidence indicates that proton pump inhibitors (PPIs) may indirectly diminish the microbiome diversity, thereby reducing the effectiveness of immune checkpoint inhibitors (ICIs). Conversely, recent publications have shown that PPIs could potentially enhance the response to ICIs. The precise mechanism through which PPIs modulate the ICIs remains unclear. In this study, we discovered a novel molecular function of PPIs in regulating immune invasion, specifically through inducing PD-L1 translocation in various tumor cells. METHODS C57BL/6 mice subcutaneous transplantation model is used to verify the potential efficacy of PPIs and PD-L1 antibody. Western blotting analysis and phosphorylated chip are used to verify the alteration of PD-L1-related pathways after being treated with PPIs. The related gene expression is performed by qRT-PCR and luciferase reporter analysis. We also collected 60 clinical patients diagnosed with esophageal cancer or reflux esophagitis and then detected the expression of PD-L1 in the tissue samples by immunohistochemistry. RESULTS We observed that the IC50 of tumor cells in response to PPIs was significantly higher than that of normal epithelial cells. PPIs significantly increased the expression of PD-L1 on cell membrane at clinically relevant concentrations. Furthermore, pre-treatment with PPIs appeared to synergize the efficiency of anti-PD-L1 antibodies in mouse models. However, PPI administration did not alter the transcription or total protein level of PD-L1 in multiple tumor cells. Using a phosphorylated protein chip, we identified that PPIs enhanced the phosphorylation of GSK3β, then leading to PD-L1 protein translocation to the cell membranes. The capacity of PPIs to upregulate PD-L1 was negated following GSK3β knockout. Furthermore, our clinical data showed that the PPIs use resulted in increased PD-L1 expression in esophageal cancer patients. CONCLUSION We mainly address a significant and novel mechanism that the usage of PPIs could directly induce the expression of PD-L1 by inducing GSK3β phosphorylation and facilitate primary tumor progression and metastasis.
Collapse
Grants
- the Natural Science Foundation in Anhui Province (No. 2208085MH264, 2308085QH284, 2308085MH243)
- China Primary Health Care Foundation (No. MTP2022A015) and the Project Supported by Anhui Medical University (2021xkj138), Post-doctoral scientific research project of Anhui Province(No. 2022B609)
- National Natural Science Foundation of China (No. 81973983, 82270015, 82100017, 82302577, 82304209)
- 2021lcxk006 the joint construction project of clinical medicine university and hospital
- Anhui Province scientific research planning project (2023AH010083, 2023AH053282)
- National Natural Science Foundation of China (No. 81973983, 82270015, 82100017, 82302577, 82304209)
Collapse
Affiliation(s)
- Long Gao
- Department of Infectious DiseaseThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yuan Liu
- Market Supervision Administration of Xiangcheng DistrictSuzhouChina
| | - Jiaying Liu
- Department of Infectious DiseaseThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Jiali Li
- Department of Infectious DiseaseThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Haotian Li
- Department of Infectious DiseaseThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yanyan Liu
- Department of Infectious DiseaseThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Fang Meng
- National Key Laboratory of Immunity and InflammationSuzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeSuzhouJiangsuChina
- Key Laboratory of Synthetic Biology Regulatory ElementsSuzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeSuzhouJiangsuChina
| | - Xiaohong Du
- National Key Laboratory of Immunity and InflammationSuzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeSuzhouJiangsuChina
- Key Laboratory of Synthetic Biology Regulatory ElementsSuzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeSuzhouJiangsuChina
- Suzhou Hospital, Affiliated Hospital of Medical SchoolNanjing UniversitySuzhouChina
| | - Yufeng Gao
- Department of Infectious DiseaseThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Jiabin Li
- Department of Infectious DiseaseThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - F. Xiao‐Feng Qin
- National Key Laboratory of Immunity and InflammationSuzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeSuzhouJiangsuChina
- Key Laboratory of Synthetic Biology Regulatory ElementsSuzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeSuzhouJiangsuChina
| |
Collapse
|
193
|
Miyakoshi J, Yoshida T, Kashima J, Shirasawa M, Torasawa M, Matsumoto Y, Masuda K, Shinno Y, Okuma Y, Goto Y, Horinouchi H, Shiraishi K, Kohno T, Yamamoto N, Yatabe Y, Suzuki T, Ohe Y. Clinical significance of inter-assay discrepancy in PD-L1 evaluation for the efficacy of pembrolizumab in advanced NSCLC with high PD-L1 expression. Lung Cancer 2024; 191:107788. [PMID: 38593478 DOI: 10.1016/j.lungcan.2024.107788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Programmed cell death ligand-1 (PD-L1) expression is a predictive biomarker for the efficacy of anti-programmed cell death receptor-1/PD-L1 antibodies in advanced non-small cell lung cancer (NSCLC). Although several assays have been approved for evaluating PD-L1 expression status, inter-assay discordance has been observed between some assays. The clinical significance of these discrepancies is still unclear. METHODS We retrospectively reviewed treatment-naïve NSCLC patients whose PD-L1 expression was evaluated using both 22C3 and SP142 assays. Among those, efficacy analysis was performed for patients with PD-L1 tumor proportion score (TPS) ≥ 50 % (22C3), who had received first-line pembrolizumab monotherapy. Additionally, transcriptome analysis was conducted in the available tumors with TPS ≥ 50 % to investigate the distinct immune profiles that accompany inter-assay discordance. RESULTS In total, 611 patients were eligible. Among 198 patients with TPS ≥ 50 %, 91 (46 %) had tumor cell score ≤ 1 (SP142, i.e., inter-assay discrepancy). In the 52 patients who received first-line pembrolizumab monotherapy, treatment efficacy was significantly lower in patients with the discrepancy than that in those without (objective response rate: 18 % vs. 83 %, p < 0.001; median progression-free survival [months]: 3.2 vs. 8.3, p < 0.001). Transcriptome analysis revealed significantly more CD274 splice variants with aberrant 3'-terminal sequences in tumors with the inter-assay discrepancy than in those without. CONCLUSION The inter-assay discrepancy in the PD-L1 status of tumor cells between the 22C3 and SP142 assays, reflecting an imbalance in the CD274 splice variants, could be a biomarker for primary resistance against pembrolizumab monotherapy in high PD-L1-expressing NSCLCs.
Collapse
Affiliation(s)
- Jun Miyakoshi
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Respiratory Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-0856, Japan; Division of Genome Biology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Jumpei Kashima
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Masayuki Shirasawa
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Genome Biology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Masahiro Torasawa
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Genome Biology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yuji Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Ken Masuda
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yuki Shinno
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Noboru Yamamoto
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Takuji Suzuki
- Department of Respiratory Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-0856, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
194
|
Chiu Y, Li C, Wang T, Ma H, Chou T. Comparative transcriptomic analysis reveals differences in gene expression and regulatory pathways between nonacral and acral melanoma in Asian individuals. J Dermatol 2024; 51:659-670. [PMID: 38469735 PMCID: PMC11484150 DOI: 10.1111/1346-8138.17187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024]
Abstract
Melanoma predominantly occurs in White individuals, which is associated with factors such as exposure to UV radiation and skin pigmentation. Despite its low incidence, melanoma is the primary cause of skin cancer-related death in Asia, typically in areas with low sun exposure. In our previous whole-exome sequencing study, we identified mutational signature 12 as the most prevalent variant in Asian patients, differing from the common UV-associated mutational signature 7 observed in White individuals. We also observed major differences between acral melanoma (AM) and nonacral melanoma (NAM) in terms of signatures 7, 21, and 22. Notably, few studies have investigated the genomic differences between AM and NAM in Asian individuals. Therefore, in this study, we conducted transcriptomic sequencing to examine the disparities in RNA expression between AM and NAM. Ribosomal RNA depletion was performed to enhance the detection of functionally relevant coding and noncoding transcripts. Ingenuity pathway analysis revealed significant differences in gene expression and regulatory pathways between AM and NAM. The results also indicate that the genes involved in cell cycle signaling or immune modulation and programmed cell death protein 1/programmed cell death 1 ligand 1 signaling were differentially expressed in NAM and AM. In addition, high CDK4 expression and cell cycle variability were observed in AM, with high immunogenicity in NAM. Overall, these findings provide further insights into the pathogenesis of melanoma and serve as a reference for future research on this major malignant disease.
Collapse
Affiliation(s)
- Yu‐Jen Chiu
- Institute of Clinical MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Division of Plastic and Reconstructive Surgery, Department of SurgeryTaipei Veterans General HospitalTaipeiTaiwan
- Department of Surgery, School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Cheng‐Yuan Li
- Department of DermatologyTaipei Veterans General HospitalTaipeiTaiwan
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Tien‐Hsiang Wang
- Division of Plastic and Reconstructive Surgery, Department of SurgeryTaipei Veterans General HospitalTaipeiTaiwan
- Department of Surgery, School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Hsu Ma
- Division of Plastic and Reconstructive Surgery, Department of SurgeryTaipei Veterans General HospitalTaipeiTaiwan
- Department of Surgery, School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of Surgery, School of MedicineNational Defense Medical CenterTaipeiTaiwan
| | - Teh‐Ying Chou
- Institute of Clinical MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of Pathology and Laboratory MedicineTaipei Veterans General HospitalTaipeiTaiwan
- Department of Pathology and Precision Medicine Research CenterTaipei Medical University HospitalTaipeiTaiwan
- Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
195
|
Yang H, Zeng X, Liu J, Wen X, Liu H, Liang Y, Wang X, Fang J, Zhang Q, Li J, Zhang X, Guo Z. Development of small-molecular-based radiotracers for PET imaging of PD-L1 expression and guiding the PD-L1 therapeutics. Eur J Nucl Med Mol Imaging 2024; 51:1582-1592. [PMID: 38246910 DOI: 10.1007/s00259-024-06610-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
PURPOSE Programmed cell death protein ligand 1 (PD-L1) is a crucial biomarker for immunotherapy. However, nearly 70% of patients do not respond to PD-L1 immune checkpoint therapy. Accurate monitoring of PD-L1 expression and quantification of target binding during treatment are essential. In this study, a series of small-molecule radiotracers were developed to assess PD-L1 expression and direct immunotherapy. METHODS Radiotracers of [68Ga]Ga-D-PMED, [68Ga]Ga-D-PEG-PMED, and [68Ga]Ga-D-pep-PMED were designed based on a 2-methyl-3-biphenyl methanol scaffold and successfully synthesized. Cellular experiments and molecular docking assays were performed to determine their specificity for PD-L1. PD-L1 status was investigated via positron emission tomography (PET) imaging in MC38 tumor models. PET imaging of [68Ga]Ga-D-pep-PMED was performed to noninvasively quantify PD-L1 blocking using an anti-mouse PD-L1 antibody (PD-L1 mAb). RESULTS The radiosyntheses of [68Ga]Ga-D-PMED, [68Ga]Ga-D-PEG-PMED, and [68Ga]Ga-D-pep-PMED were achieved with radiochemical yields of 87 ± 6%, 82 ± 4%, and 79 ± 9%, respectively. In vitro competition assays demonstrated their high affinities (the IC50 values of [68Ga]Ga-D-PMED, [68Ga]Ga-D-PEG-PMED, and [68Ga]Ga-D-pep-PMED were 90.66 ± 1.24, 160.8 ± 1.35, and 51.6 ± 1.32 nM, respectively). At 120 min postinjection (p.i.) of the radiotracers, MC38 tumors displayed optimized tumor-to-muscle ratios for all radioligands. Owing to its hydrophilic modification, [68Ga]Ga-D-pep-PMED had the highest target-to-nontarget (T/NT) ratio of approximately 6.2 ± 1.2. Interestingly, the tumor/liver ratio was hardly affected by different concentrations of the inhibitor BMS202. We then evaluated the impacts of dose and time on accessible PD-L1 levels in the tumor during anti-mouse PD-L1 antibody treatment. The tumor uptake of [68Ga]Ga-D-pep-PMED significantly decreased with increasing PD-L1 mAb dose. Moreover, after 8 days of treatment with a single antibody, the uptake of [68Ga]Ga-D-pep-PMED in the tumor significantly increased but remained lower than that in the saline group. CONCLUSION PET imaging with [68Ga]Ga-D-pep-PMED, a small-molecule radiotracer, is a promising tool for evaluating PD-L1 expression and quantifying the target blockade of PD-L1 to assist in the development of effective therapeutic regimens.
Collapse
Affiliation(s)
- Hongzhang Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xinying Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jia Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xuejun Wen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Huanhuan Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yuanyuan Liang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xueqi Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jianyang Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qinglin Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jindian Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, Institute of Clinical Medicine & Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China.
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
196
|
Young MJ, Wang SA, Chen YC, Liu CY, Hsu KC, Tang SW, Tseng YL, Wang YC, Lin SM, Hung JJ. USP24-i-101 targeting of USP24 activates autophagy to inhibit drug resistance acquired during cancer therapy. Cell Death Differ 2024; 31:574-591. [PMID: 38491202 PMCID: PMC11093971 DOI: 10.1038/s41418-024-01277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Drug resistance in cancer therapy is the major reason for poor prognosis. Addressing this clinically unmet issue is important and urgent. In this study, we found that targeting USP24 by the specific USP24 inhibitors, USP24-i and its analogues, dramatically activated autophagy in the interphase and mitotic periods of lung cancer cells by inhibiting E2F4 and TRAF6, respectively. USP24 functional knockout, USP24C1695A, or targeting USP24 by USP24-i-101 inhibited drug resistance and activated autophagy in gefitinib-induced drug-resistant mice with doxycycline-induced EGFRL858R lung cancer, but this effect was abolished after inhibition of autophagy, indicating that targeting USP24-mediated induction of autophagy is required for inhibition of drug resistance. Genomic instability and PD-L1 levels were increased in drug resistant lung cancer cells and were inhibited by USP24-i-101 treatment or knockdown of USP24. In addition, inhibition of autophagy by bafilomycin-A1 significantly abolished the effect of USP24-i-101 on maintaining genomic integrity, decreasing PD-L1 and inhibiting drug resistance acquired in chemotherapy or targeted therapy. In summary, an increase in the expression of USP24 in cancer cells is beneficial for the induction of drug resistance and targeting USP24 by USP24-i-101 optimized from USP24-i inhibits drug resistance acquired during cancer therapy by increasing PD-L1 protein degradation and genomic stability in an autophagy induction-dependent manner.
Collapse
Affiliation(s)
- Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shao-An Wang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ching Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yu Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sin-Wei Tang
- National Tainan First Senior High School, Tainan, Taiwan
| | - Yau-Lin Tseng
- Division of Thoracic Surgery, Department of Surgery, College of Medicine National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Institute of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Min Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
197
|
Bruss C, Albert V, Seitz S, Blaimer S, Kellner K, Pohl F, Ortmann O, Brockhoff G, Wege AK. Neoadjuvant radiotherapy in ER +, HER2 +, and triple-negative -specific breast cancer based humanized tumor mice enhances anti-PD-L1 treatment efficacy. Front Immunol 2024; 15:1355130. [PMID: 38742103 PMCID: PMC11089195 DOI: 10.3389/fimmu.2024.1355130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Pre-operative radiation therapy is not currently integrated into the treatment protocols for breast cancer. However, transforming immunological "cold" breast cancers by neoadjuvant irradiation into their "hot" variants is supposed to elicit an endogenous tumor immune defense and, thus, enhance immunotherapy efficiency. We investigated cellular and immunological effects of sub-lethal, neoadjuvant irradiation of ER pos., HER2 pos., and triple-negative breast cancer subtypes in-vitro and in-vivo in humanized tumor mice (HTM). This mouse model is characterized by a human-like immune system and therefore facilitates detailed analysis of the mechanisms and efficiency of neoadjuvant, irradiation-induced "in-situ vaccination", especially in the context of concurrently applied checkpoint therapy. Similar to clinical appearances, we observed a gradually increased immunogenicity from the luminal over the HER2-pos. to the triple negative subtype in HTM indicated by an increasing immune cell infiltration into the tumor tissue. Anti-PD-L1 therapy divided the HER2-pos. and triple negative HTM groups into responder and non-responder, while the luminal HTMs were basically irresponsive. Irradiation alone was effective in the HER2-pos. and luminal subtype-specific HTM and was supportive for overcoming irresponsiveness to single anti-PD-L1 treatment. The treatment success correlated with a significantly increased T cell proportion and PD-1 expression in the spleen. In all subtype-specific HTM combination therapy proved most effective in diminishing tumor growth, enhancing the immune response, and converted non-responder into responder during anti-PD-L1 therapy. In HTM, neoadjuvant irradiation reinforced anti-PD-L1 checkpoint treatment of breast cancer in a subtype -specific manner. According to the "bench to bedside" principle, this study offers a vital foundation for clinical translating the use of neoadjuvant irradiation in the context of checkpoint therapy.
Collapse
Affiliation(s)
- Christina Bruss
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Veruschka Albert
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Stephan Seitz
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Stephanie Blaimer
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Kerstin Kellner
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Fabian Pohl
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
- Department of Radiotherapy, University Medical Center Regensburg, Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Anja K. Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| |
Collapse
|
198
|
Mansour L, Alqahtani M, Aljuaimlani A, Al-Tamimi J, Al-Harbi N, Alomar S. Association of Polymorphisms in PD-1 and LAG-3 Genes with Acute Myeloid Leukemia. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:721. [PMID: 38792904 PMCID: PMC11123055 DOI: 10.3390/medicina60050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Background and objectives: Acute myeloid leukemia (AML) is a hematological malignancy characterized by uncontrolled proliferation of immature myeloid cells. Immune checkpoint molecules such as programmed cell death protein 1 (PD-1) and lymphocyte activation gene-3 (LAG-3) are essential for controlling anti-tumor immune responses. This study aims to explore the correlation between specific genetic variations (SNPs) in the PDCD1 (rs2227981) and LAG3 (rs12313899) genes and the likelihood of developing AML in the Saudi population. Material and methods: total of 98 Saudi AML patients and 131 healthy controls were genotyped for the PDCD1 rs2227981 and LAG3 rs12313899 polymorphisms using TaqMan genotyping assays. A logistic regression analysis was conducted to evaluate the relationship between the SNPs and AML risk using several genetic models. Results: The results revealed a significant association between the PDCD1 rs2227981 polymorphism and increased AML risk. In AML patients, the frequency of the G allele was considerably greater than in healthy controls (OR = 1.93, 95% CI: 1.31-2.81, p = 0.00080). The GG and AG genotypes were associated with a very high risk of developing AML (p < 0.0001). In contrast, no significant association was observed between the LAG3 rs12313899 polymorphism and AML risk in the studied population. In silico analysis of gene expression profiles from public databases suggested the potential impact of PDCD1 expression levels on the overall survival of AML patients. Conclusions: This study provides evidence for the association of the PDCD1 rs2227981 polymorphism with an increased risk for AML in the Saudi population.
Collapse
Affiliation(s)
- Lamjed Mansour
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh 11451, Saudi Arabia; (M.A.); (A.A.); (J.A.-T.); (N.A.-H.); (S.A.)
| | | | | | | | | | | |
Collapse
|
199
|
Wang Z, Yuan L, Liao X, Guo X, Chen J. Reducing PD-L1 Expression by Degraders and Downregulators as a Novel Strategy to Target the PD-1/PD-L1 Pathway. J Med Chem 2024; 67:6027-6043. [PMID: 38598179 DOI: 10.1021/acs.jmedchem.3c02143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Targeting the programmed cell death protein-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway has evolved into one of the most promising strategies for tumor immunotherapy. Thus far, multiple monoclonal antibody drugs have been approved for treating a variety of tumors, while the development of small-molecule PD-1/PD-L1 inhibitors has lagged far behind, with only a few small-molecule inhibitors entering clinical trials. In addition to antibody drugs and small-molecule inhibitors, reducing the expression levels of PD-L1 has attracted extensive research interest as another promising strategy to target the PD-1/PD-L1 pathway. Herein, we analyze the structures and mechanisms of molecules that reduce PD-L1 expression and classify them as degraders and downregulators according to whether they directly bind to PD-L1. Moreover, we discuss the potential prospects for developing PD-L1-targeting drugs based on these molecules. It is hoped that this perspective will provide profound insights into the discovery of potent antitumor immunity drugs.
Collapse
Affiliation(s)
- Zhijie Wang
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Yuan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaotong Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xia Guo
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
200
|
Wang R, He S, Long J, Wang Y, Jiang X, Chen M, Wang J. Emerging therapeutic frontiers in cancer: insights into posttranslational modifications of PD-1/PD-L1 and regulatory pathways. Exp Hematol Oncol 2024; 13:46. [PMID: 38654302 DOI: 10.1186/s40164-024-00515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
The interaction between programmed cell death ligand 1 (PD-L1), which is expressed on the surface of tumor cells, and programmed cell death 1 (PD-1), which is expressed on T cells, impedes the effective activation of tumor antigen-specific T cells, resulting in the evasion of tumor cells from immune-mediated killing. Blocking the PD-1/PD-L1 signaling pathway has been shown to be effective in preventing tumor immune evasion. PD-1/PD-L1 blocking antibodies have garnered significant attention in recent years within the field of tumor treatments, given the aforementioned mechanism. Furthermore, clinical research has substantiated the efficacy and safety of this immunotherapy across various tumors, offering renewed optimism for patients. However, challenges persist in anti-PD-1/PD-L1 therapies, marked by limited indications and the emergence of drug resistance. Consequently, identifying additional regulatory pathways and molecules associated with PD-1/PD-L1 and implementing judicious combined treatments are imperative for addressing the intricacies of tumor immune mechanisms. This review briefly outlines the structure of the PD-1/PD-L1 molecule, emphasizing the posttranslational modification regulatory mechanisms and related targets. Additionally, a comprehensive overview on the clinical research landscape concerning PD-1/PD-L1 post-translational modifications combined with PD-1/PD-L1 blocking antibodies to enhance outcomes for a broader spectrum of patients is presented based on foundational research.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pathology, Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Shiwei He
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Jie Wang
- Department of Pathology, Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|