151
|
Bao Z, Hua J. Interaction of CPR5 with cell cycle regulators UVI4 and OSD1 in Arabidopsis. PLoS One 2014; 9:e100347. [PMID: 24945150 PMCID: PMC4063785 DOI: 10.1371/journal.pone.0100347] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 05/24/2014] [Indexed: 12/28/2022] Open
Abstract
The impact of cell cycle on plant immunity was indicated by the enhancement of disease resistance with overexpressing OSD1 and UVI4 genes that are negative regulators of cell cycle controller APC (anaphase promoting complex). CPR5 is another gene that is implicated in cell cycle regulation and plant immunity, but its mode of action is not known. Here we report the analysis of genetic requirement for the function of UVI4 and OSD1 in cell cycle progression control and in particular the involvement of CPR5 in this regulation. We show that the APC activator CCS52A1 partially mediates the function of OSD1 and UVI4 in female gametophyte development. We found that the cpr5 mutation suppresses the endoreduplication defect in the uvi4 single mutant and partially rescued the gametophyte development defect in the osd1 uvi4 double mutant while the uvi4 mutation enhances the cpr5 defects in trichome branching and plant disease resistance. In addition, cyclin B1 genes CYCB1;1, CYCB1;2, and CYCB1;4 are upregulated in cpr5. Therefore, CPR5 has a large role in cell cycle regulation and this role has a complex interaction with that of UVI4 and OSD1. This study further indicates an intrinsic link between plant defense responses and cell cycle progression.
Collapse
Affiliation(s)
- Zhilong Bao
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Jian Hua
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
152
|
Raynaud C, Mallory AC, Latrasse D, Jégu T, Bruggeman Q, Delarue M, Bergounioux C, Benhamed M. Chromatin meets the cell cycle. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2677-89. [PMID: 24497647 DOI: 10.1093/jxb/ert433] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The cell cycle is one of the most comprehensively studied biological processes, due primarily to its significance in growth and development, and its deregulation in many human disorders. Studies using a diverse set of model organisms, including yeast, worms, flies, frogs, mammals, and plants, have greatly expanded our knowledge of the cell cycle and have contributed to the universally accepted view of how the basic cell cycle machinery is regulated. In addition to the oscillating activity of various cyclin-dependent kinase (CDK)-cyclin complexes, a plethora of proteins affecting various aspects of chromatin dynamics has been shown to be essential for cell proliferation during plant development. Furthermore, it was reported recently that core cell cycle regulators control gene expression by modifying histone patterns. This review focuses on the intimate relationship between the cell cycle and chromatin. It describes the dynamics and functions of chromatin structures throughout cell cycle progression and discusses the role of heterochromatin as a barrier against re-replication and endoreduplication. It also proposes that core plant cell cycle regulators control gene expression in a manner similar to that described in mammals. At present, our challenge in plants is to define the complete set of effectors and actors that coordinate cell cycle progression and chromatin structure and to understand better the functional interplay between these two processes.
Collapse
Affiliation(s)
- Cécile Raynaud
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Allison C Mallory
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - David Latrasse
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Teddy Jégu
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Quentin Bruggeman
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Marianne Delarue
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Catherine Bergounioux
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| |
Collapse
|
153
|
Blomme J, Inzé D, Gonzalez N. The cell-cycle interactome: a source of growth regulators? JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2715-30. [PMID: 24298000 DOI: 10.1093/jxb/ert388] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
When plants develop, cell proliferation and cell expansion are tightly controlled in order to generate organs with a determinate final size such as leaves. Several studies have demonstrated the importance of the cell proliferation phase for leaf growth, illustrating that cell-cycle regulation is crucial for correct leaf development. A large and complex set of interacting proteins that constitute the cell-cycle interactome controls the transition from one cell-cycle phase to another. Here, we review the current knowledge on cell-cycle regulators from this interactome affecting final leaf size when their expression is altered, mainly in Arabidopsis. In addition to the description of mutants of CYCLIN-DEPENDENT KINASES (CDKs), CYCLINS (CYCs), and their transcriptional and post-translational regulators, a phenotypic analysis of gain- and loss-of-function mutants for 27 genes encoding proteins that interact with cell-cycle proteins is presented. This compilation of information shows that when cell-cycle-related genes are mis-expressed, leaf growth is often altered and that, seemingly, three main trends appear to be crucial in the regulation of final organ size by cell-cycle-related genes: (i) cellular compensation; (ii) gene dosage; and (iii) correct transition through the G2/M phase by ANAPHASE PROMOTING COMPLEX/CYCLOSOME (APC/C) activation. In conclusion, this meta-analysis shows that the cell-cycle interactome is enriched in leaf growth regulators, and illustrates the potential to identify new leaf growth regulators among putative new cell-cycle regulators.
Collapse
Affiliation(s)
- Jonas Blomme
- Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| |
Collapse
|
154
|
Scofield S, Jones A, Murray JAH. The plant cell cycle in context. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2557-62. [PMID: 25025122 DOI: 10.1093/jxb/eru188] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
|
155
|
Genschik P, Marrocco K, Bach L, Noir S, Criqui MC. Selective protein degradation: a rheostat to modulate cell-cycle phase transitions. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2603-15. [PMID: 24353246 DOI: 10.1093/jxb/ert426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant growth control has become a major focus due to economic reasons and results from a balance of cell proliferation in meristems and cell elongation that occurs during differentiation. Research on plant cell proliferation over the last two decades has revealed that the basic cell-cycle machinery is conserved between human and plants, although specificities exist. While many regulatory circuits control each step of the cell cycle, the ubiquitin proteasome system (UPS) appears in fungi and metazoans as a major player. In particular, the UPS promotes irreversible proteolysis of a set of regulatory proteins absolutely required for cell-cycle phase transitions. Not unexpectedly, work over the last decade has brought the UPS to the forefront of plant cell-cycle research. In this review, we will summarize our knowledge of the function of the UPS in the mitotic cycle and in endoreduplication, and also in meiosis in higher plants.
Collapse
Affiliation(s)
- Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Viala, 34060 Montpellier Cedex, France
| | - Katia Marrocco
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Viala, 34060 Montpellier Cedex, France
| | - Lien Bach
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Viala, 34060 Montpellier Cedex, France
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - Marie-Claire Criqui
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
156
|
Chevalier C, Bourdon M, Pirrello J, Cheniclet C, Gévaudant F, Frangne N. Endoreduplication and fruit growth in tomato: evidence in favour of the karyoplasmic ratio theory. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2731-46. [PMID: 24187421 DOI: 10.1093/jxb/ert366] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The growth of a plant organ depends upon the developmental processes of cell division and cell expansion. The activity of cell divisions sets the number of cells that will make up the organ; the cell expansion activity then determines its final size. Among the various mechanisms that may influence the determination of cell size, endopolyploidy by means of endoreduplication appears to be of great importance in plants. Endoreduplication is widespread in plants and supports the process of differentiation of cells and organs. Its functional role in plant cells is not fully understood, although it is commonly associated with ploidy-dependent cell expansion. During the development of tomato fruit, cells from the (fleshy) pericarp tissue become highly polyploid, reaching a DNA content barely encountered in other plant species (between 2C and 512C). Recent investigations using tomato fruit development as a model provided new data in favour of the long-standing karyoplasmic ratio theory, stating that cells tend to adjust their cytoplasmic volume to the nuclear DNA content. By establishing a highly structured cellular system where multiple physiological functions are integrated, endoreduplication does act as a morphogenetic factor supporting cell growth during tomato fruit development.
Collapse
Affiliation(s)
- Christian Chevalier
- INRA, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France
| | - Matthieu Bourdon
- INRA, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France
| | - Julien Pirrello
- INRA, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France
| | - Catherine Cheniclet
- INRA, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France CNRS, Bordeaux Imaging Center, UMS 3420, F-33000 Bordeaux, France
| | - Frédéric Gévaudant
- University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France
| | - Nathalie Frangne
- University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France
| |
Collapse
|
157
|
Ploidy analysis of Cymbidium, Phalaenopsis, Dendrobium and Paphiopedillum (Orchidaceae), and Spathiphyllum and Syngonium (Araceae). Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0370-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
158
|
Borland AM, Hartwell J, Weston DJ, Schlauch KA, Tschaplinski TJ, Tuskan GA, Yang X, Cushman JC. Engineering crassulacean acid metabolism to improve water-use efficiency. TRENDS IN PLANT SCIENCE 2014; 19:327-38. [PMID: 24559590 PMCID: PMC4065858 DOI: 10.1016/j.tplants.2014.01.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 01/01/2014] [Accepted: 01/13/2014] [Indexed: 05/19/2023]
Abstract
Climatic extremes threaten agricultural sustainability worldwide. One approach to increase plant water-use efficiency (WUE) is to introduce crassulacean acid metabolism (CAM) into C3 crops. Such a task requires comprehensive systems-level understanding of the enzymatic and regulatory pathways underpinning this temporal CO2 pump. Here we review the progress that has been made in achieving this goal. Given that CAM arose through multiple independent evolutionary origins, comparative transcriptomics and genomics of taxonomically diverse CAM species are being used to define the genetic 'parts list' required to operate the core CAM functional modules of nocturnal carboxylation, diurnal decarboxylation, and inverse stomatal regulation. Engineered CAM offers the potential to sustain plant productivity for food, feed, fiber, and biofuel production in hotter and drier climates.
Collapse
Affiliation(s)
- Anne M Borland
- School of Biology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6407, USA
| | - James Hartwell
- Department of Plant Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6407, USA
| | - Karen A Schlauch
- Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV 89557-0330, USA
| | | | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6407, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6407, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV 89557-0330, USA.
| |
Collapse
|
159
|
Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nat Rev Mol Cell Biol 2014; 15:197-210. [PMID: 24556841 DOI: 10.1038/nrm3756] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In endoreplication cell cycles, known as endocycles, cells successively replicate their genomes without segregating chromosomes during mitosis and thereby become polyploid. Such cycles, for which there are many variants, are widespread in protozoa, plants and animals. Endocycling cells can achieve ploidies of >200,000 C (chromatin-value); this increase in genomic DNA content allows a higher genomic output, which can facilitate the construction of very large cells or enhance macromolecular secretion. These cells execute normal S phases, using a G1-S regulatory apparatus similar to the one used by mitotic cells, but their capability to segregate chromosomes has been suppressed, typically by downregulation of mitotic cyclin-dependent kinase activity. Endocycles probably evolved many times, and the various endocycle mechanisms found in nature highlight the versatility of the cell cycle control machinery.
Collapse
|
160
|
Breuer C, Braidwood L, Sugimoto K. Endocycling in the path of plant development. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:78-85. [PMID: 24507498 DOI: 10.1016/j.pbi.2013.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 05/29/2023]
Abstract
Genome duplication is a widespread phenomenon in many eukaryotes. In plants numeric changes of chromosome sets have tremendous impact on growth performance and yields, hence, are of high importance for agriculture. In contrast to polyploidisation in which the genome is duplicated throughout the entire organism and stably inherited by the offspring, endopolyploidy relies on endocycles in which cells multiply the genome in specific tissues and cell types. During the endocycle cells repeatedly replicate their DNA but skip mitosis, leading to genome duplication after each round. Endocycles are common in multicellular eukaryotes and are often involved in the regulation of cell and organ growth. In plants, changes in cellular ploidy have also been associated with other developmental processes as well as physiological interactions with the surrounding environment. Thus, endocycles play pivotal roles throughout the life cycle of many plant species.
Collapse
Affiliation(s)
- Christian Breuer
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Luke Braidwood
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
161
|
Dante RA, Sabelli PA, Nguyen HN, Leiva-Neto JT, Tao Y, Lowe KS, Hoerster GJ, Gordon-Kamm WJ, Jung R, Larkins BA. Cyclin-dependent kinase complexes in developing maize endosperm: evidence for differential expression and functional specialization. PLANTA 2014; 239:493-509. [PMID: 24240479 PMCID: PMC3902077 DOI: 10.1007/s00425-013-1990-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/21/2013] [Indexed: 05/18/2023]
Abstract
Endosperm development in maize (Zea mays L.) and related cereals comprises a cell proliferation stage followed by a period of rapid growth coupled to endoreduplication. Regulation of the cell cycle in developing endosperm is poorly understood. We have characterized various subunits of cyclin-dependent kinase (CDK) complexes, master cell cycle regulators in all eukaryotes. A-, B-, and D-type cyclins as well as A- and B-type cyclin-dependent kinases were characterized with respect to their RNA and protein expression profiles. Two main patterns were identified: one showing expression throughout endosperm development, and another characterized by a sharp down-regulation with the onset of endoreduplication. Cyclin CYCB1;3 and CYCD2;1 proteins were distributed in the cytoplasm and nucleus of cells throughout the endosperm, while cyclin CYCD5 protein was localized in the cytoplasm of peripheral cells. CDKB1;1 expression was strongly associated with cell proliferation. Expression and cyclin-binding patterns suggested that CDKA;1 and CDKA;3 are at least partially redundant. The kinase activity associated with the cyclin CYCA1 was highest during the mitotic stage of development, while that associated with CYCB1;3, CYCD2;1 and CYCD5 peaked at the mitosis-to-endoreduplication transition. A-, B- and D-type cyclins were more resistant to proteasome-dependent degradation in endoreduplicating than in mitotic endosperm extracts. These results indicated that endosperm development is characterized by differential expression and activity of specific cyclins and CDKs, and suggested that endoreduplication is associated with reduced cyclin proteolysis via the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Ricardo A. Dante
- School of Plant Sciences, University of Arizona, 303 Forbes, Tucson, AZ 85721 USA
- Present Address: Embrapa Agricultural Informatics, Av. André Tosello 209, Campinas, SP 13083-886 Brazil
| | - Paolo A. Sabelli
- School of Plant Sciences, University of Arizona, 303 Forbes, Tucson, AZ 85721 USA
| | - Hong N. Nguyen
- School of Plant Sciences, University of Arizona, 303 Forbes, Tucson, AZ 85721 USA
| | - João T. Leiva-Neto
- School of Plant Sciences, University of Arizona, 303 Forbes, Tucson, AZ 85721 USA
| | - Yumin Tao
- Pioneer Hi-Bred International, Inc., Johnston, IO 50131 USA
| | - Keith S. Lowe
- Pioneer Hi-Bred International, Inc., Johnston, IO 50131 USA
| | | | | | - Rudolf Jung
- Pioneer Hi-Bred International, Inc., Johnston, IO 50131 USA
| | - Brian A. Larkins
- School of Plant Sciences, University of Arizona, 303 Forbes, Tucson, AZ 85721 USA
| |
Collapse
|
162
|
Apri M, Kromdijk J, de Visser PHB, de Gee M, Molenaar J. Modelling cell division and endoreduplication in tomato fruit pericarp. J Theor Biol 2014; 349:32-43. [PMID: 24486251 DOI: 10.1016/j.jtbi.2014.01.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/18/2014] [Accepted: 01/23/2014] [Indexed: 11/17/2022]
Abstract
In many developing plant tissues and organs, differentiating cells switch from the classical cell cycle to an alternative partial cycle. This partial cycle bypasses mitosis and allows for multiple rounds of genome duplication without cell division, giving rise to cells with high ploidy numbers. This partial cycle is referred to as endoreduplication. Cell division and endoreduplication are important processes for biomass allocation and yield in tomato. Quantitative trait loci for tomato fruit size or weight are frequently associated with variations in the pericarp cell number, and due to the tight connection between endoreduplication and cell expansion and the prevalence of polyploidy in storage tissues, a functional correlation between nuclear ploidy number and cell growth has also been implicated (karyoplasmic ratio theory). In this paper, we assess the applicability of putative mechanisms for the onset of endoreduplication in tomato pericarp cells via development of a mathematical model for the cell cycle gene regulatory network. We focus on targets for regulation of the transition to endoreduplication by the phytohormone auxin, which is known to play a vital role in the onset of cell expansion and differentiation in developing tomato fruit. We show that several putative mechanisms are capable of inducing the onset of endoreduplication. This redundancy in explanatory mechanisms is explained by analysing system behaviour as a function of their combined action. Namely, when all these routes to endoreduplication are used in a combined fashion, robustness of the regulation of the transition to endoreduplication is greatly improved.
Collapse
Affiliation(s)
- Mochamad Apri
- Biometris, Wageningen University and Research Center, 6708 PB Wageningen, The Netherlands; Netherlands Consortium for Systems Biology, 1090 GE, Amsterdam, The Netherlands; Industrial and Financial Mathematics Group, Bandung Institute of Technology, Bandung 40132, Indonesia.
| | - Johannes Kromdijk
- Greenhouse Horticulture, Wageningen University and Research Center, The Netherlands
| | - Pieter H B de Visser
- Greenhouse Horticulture, Wageningen University and Research Center, The Netherlands
| | - Maarten de Gee
- Biometris, Wageningen University and Research Center, 6708 PB Wageningen, The Netherlands; Netherlands Consortium for Systems Biology, 1090 GE, Amsterdam, The Netherlands
| | - Jaap Molenaar
- Biometris, Wageningen University and Research Center, 6708 PB Wageningen, The Netherlands; Netherlands Consortium for Systems Biology, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
163
|
Amiard S, Da Ines O, Gallego ME, White CI. Responses to telomere erosion in plants. PLoS One 2014; 9:e86220. [PMID: 24465970 PMCID: PMC3897657 DOI: 10.1371/journal.pone.0086220] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/06/2013] [Indexed: 01/01/2023] Open
Abstract
In striking contrast to animals, plants are able to develop and reproduce in the presence of significant levels of genome damage. This is seen clearly in both the viability of plants carrying knockouts for key recombination and DNA repair genes, which are lethal in vertebrates, and in the impact of telomere dysfunction. Telomerase knockout mice show accelerated ageing and severe developmental phenotypes, with effects on both highly proliferative and on more quiescent tissues, while cell death in Arabidopsis tert mutants is mostly restricted to actively dividing meristematic cells. Through phenotypic and whole-transcriptome RNAseq studies, we present here an analysis of the response of Arabidopsis plants to the continued presence of telomere damage. Comparison of second-generation and seventh-generation tert mutant plants has permitted separation of the effects of the absence of the telomerase enzyme and the ensuing chromosome damage. In addition to identifying a large number of genes affected by telomere damage, many of which are of unknown function, the striking conclusion of this study is the clear difference observed at both cellular and transcriptome levels between the ways in which mammals and plants respond to chronic telomeric damage.
Collapse
Affiliation(s)
- Simon Amiard
- Génétique, Reproduction et Développement, Unité Mixte de Recherche 6293, Centre National de la Recherche Scientifique - Clermont Université - Unité 1103, Institut National de la Santé et de la Recherche Médicale, Aubière, France
| | - Olivier Da Ines
- Génétique, Reproduction et Développement, Unité Mixte de Recherche 6293, Centre National de la Recherche Scientifique - Clermont Université - Unité 1103, Institut National de la Santé et de la Recherche Médicale, Aubière, France
| | - Maria Eugenia Gallego
- Génétique, Reproduction et Développement, Unité Mixte de Recherche 6293, Centre National de la Recherche Scientifique - Clermont Université - Unité 1103, Institut National de la Santé et de la Recherche Médicale, Aubière, France
| | - Charles I White
- Génétique, Reproduction et Développement, Unité Mixte de Recherche 6293, Centre National de la Recherche Scientifique - Clermont Université - Unité 1103, Institut National de la Santé et de la Recherche Médicale, Aubière, France
| |
Collapse
|
164
|
Galbraith DW. Endoreduplicative standards for calibration of flow cytometric C-Value measurements. Cytometry A 2014; 85:368-74. [PMID: 24415326 DOI: 10.1002/cyto.a.22440] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/05/2013] [Accepted: 12/27/2013] [Indexed: 01/13/2023]
Abstract
It has been estimated that there are, globally, as many as 400,000 species of the angiosperms (the flowering plants). Of these, a minimal proportion has been characterized at the cytological level. Urgency is required in initiating a systematic and comprehensive census, due to species extinction as a consequence of anthropogenic activities. Fundamental to eukaryotes is the 2C-value, the amount of DNA contained within the nucleus of the unreduced gametes. Flow cytometry provides an ideal method for determining C-values, but the values archived in the Kew Plant C-value Database represent <2% of these species. Complicating the issue is a proliferation of different, and inconsistent standards for C-value measurements utilizing flow cytometry, and variability associated with different instrument platforms and using different staining procedures. In previous work, the use of flow cytometry for analysis of plant nuclear DNA contents for species spanning much of the range of genome sizes found in the angiosperms was described. For this work, an endoreduplicative species (Arabidopsis thaliana L.) was particularly helpful as an internal standard for genome size calibration. Such a standard is compromised if it overlaps in DNA content than that of the species whose genome size is sought. This report describes the use of a second species displaying endoreduplication, Capsicum annuum L., for similar standardization. The results (a) indicate accurate reporting of nuclear DNA contents across a range 0.32-423.68 pg, (b) confirm that endoreduplication increases nuclear DNA contents by complete replication of the genome, and (c) provide a means for quality control of linearity in instrumentation over defined dynamic ranges.
Collapse
Affiliation(s)
- David W Galbraith
- School of Plant Sciences, BIO5 Institute, University of Arizona, Tucson, Arizona
| |
Collapse
|
165
|
Braidwood L, Breuer C, Sugimoto K. My body is a cage: mechanisms and modulation of plant cell growth. THE NEW PHYTOLOGIST 2014; 201:388-402. [PMID: 24033322 DOI: 10.1111/nph.12473] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 08/01/2013] [Indexed: 05/19/2023]
Abstract
388 I. 388 II. 389 III. 389 IV. 390 V. 391 VI. 393 VII. 394 VIII. 398 399 References 399 SUMMARY: The wall surrounding plant cells provides protection from abiotic and biotic stresses, and support through the action of turgor pressure. However, the presence of this strong elastic wall also prevents cell movement and resists cell growth. This growth can be likened to extending a house from the inside, using extremely high pressures to push out the walls. Plants must increase cell volume in order to explore their environment, acquire nutrients and reproduce. Cell wall material must stretch and flow in a controlled manner and, concomitantly, new cell wall material must be deposited at the correct rate and site to prevent wall and cell rupture. In this review, we examine biomechanics, cell wall structure and growth regulatory networks to provide a 'big picture' of plant cell growth.
Collapse
Affiliation(s)
- Luke Braidwood
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Christian Breuer
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
166
|
Replication of the Plant Genome. Mol Biol 2014. [DOI: 10.1007/978-1-4614-7570-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
167
|
Kalve S, De Vos D, Beemster GTS. Leaf development: a cellular perspective. FRONTIERS IN PLANT SCIENCE 2014; 5:362. [PMID: 25132838 PMCID: PMC4116805 DOI: 10.3389/fpls.2014.00362] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 07/07/2014] [Indexed: 05/18/2023]
Abstract
Through its photosynthetic capacity the leaf provides the basis for growth of the whole plant. In order to improve crops for higher productivity and resistance for future climate scenarios, it is important to obtain a mechanistic understanding of leaf growth and development and the effect of genetic and environmental factors on the process. Cells are both the basic building blocks of the leaf and the regulatory units that integrate genetic and environmental information into the developmental program. Therefore, to fundamentally understand leaf development, one needs to be able to reconstruct the developmental pathway of individual cells (and their progeny) from the stem cell niche to their final position in the mature leaf. To build the basis for such understanding, we review current knowledge on the spatial and temporal regulation mechanisms operating on cells, contributing to the formation of a leaf. We focus on the molecular networks that control exit from stem cell fate, leaf initiation, polarity, cytoplasmic growth, cell division, endoreduplication, transition between division and expansion, expansion and differentiation and their regulation by intercellular signaling molecules, including plant hormones, sugars, peptides, proteins, and microRNAs. We discuss to what extent the knowledge available in the literature is suitable to be applied in systems biology approaches to model the process of leaf growth, in order to better understand and predict leaf growth starting with the model species Arabidopsis thaliana.
Collapse
Affiliation(s)
- Shweta Kalve
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp Antwerp, Belgium
| | - Dirk De Vos
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp Antwerp, Belgium ; Department of Mathematics and Computer Science, University of Antwerp Antwerp, Belgium
| | - Gerrit T S Beemster
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp Antwerp, Belgium
| |
Collapse
|
168
|
Dante RA, Larkins BA, Sabelli PA. Cell cycle control and seed development. FRONTIERS IN PLANT SCIENCE 2014; 5:493. [PMID: 25295050 PMCID: PMC4171995 DOI: 10.3389/fpls.2014.00493] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/05/2014] [Indexed: 05/18/2023]
Abstract
Seed development is a complex process that requires coordinated integration of many genetic, metabolic, and physiological pathways and environmental cues. Different cell cycle types, such as asymmetric cell division, acytokinetic mitosis, mitotic cell division, and endoreduplication, frequently occur in sequential yet overlapping manner during the development of the embryo and the endosperm, seed structures that are both products of double fertilization. Asymmetric cell divisions in the embryo generate polarized daughter cells with different cell fates. While nuclear and cell division cycles play a key role in determining final seed cell numbers, endoreduplication is often associated with processes such as cell enlargement and accumulation of storage metabolites that underlie cell differentiation and growth of the different seed compartments. This review focuses on recent advances in our understanding of different cell cycle mechanisms operating during seed development and their impact on the growth, development, and function of seed tissues. Particularly, the roles of core cell cycle regulators, such as cyclin-dependent-kinases and their inhibitors, the Retinoblastoma-Related/E2F pathway and the proteasome-ubiquitin system, are discussed in the contexts of different cell cycle types that characterize seed development. The contributions of nuclear and cellular proliferative cycles and endoreduplication to cereal endosperm development are also discussed.
Collapse
Affiliation(s)
- Ricardo A. Dante
- Embrapa Agricultural InformaticsCampinas, Brazil
- *Correspondence: Ricardo A. Dante, Embrapa Agricultural Informatics, Avenida André Tosello 209, Campinas, São Paulo 13083-886, Brazil e-mail: ; Brian A. Larkins, Department of Agronomy and Horticulture, University of Nebraska, 230J Whittier Research Center, 2200 Vine Street, Lincoln, NE 68583-0857, USA e-mail: ; Paolo A. Sabelli, School of Plant Sciences, University of Arizona, 303 Forbes, 1140 East South Campus Drive, Tucson, AZ 85721-0036, USA e-mail:
| | - Brian A. Larkins
- Department of Agronomy and Horticulture, University of NebraskaLincoln, NE, USA
- School of Plant Sciences, University of ArizonaTucson, AZ, USA
- *Correspondence: Ricardo A. Dante, Embrapa Agricultural Informatics, Avenida André Tosello 209, Campinas, São Paulo 13083-886, Brazil e-mail: ; Brian A. Larkins, Department of Agronomy and Horticulture, University of Nebraska, 230J Whittier Research Center, 2200 Vine Street, Lincoln, NE 68583-0857, USA e-mail: ; Paolo A. Sabelli, School of Plant Sciences, University of Arizona, 303 Forbes, 1140 East South Campus Drive, Tucson, AZ 85721-0036, USA e-mail:
| | - Paolo A. Sabelli
- School of Plant Sciences, University of ArizonaTucson, AZ, USA
- *Correspondence: Ricardo A. Dante, Embrapa Agricultural Informatics, Avenida André Tosello 209, Campinas, São Paulo 13083-886, Brazil e-mail: ; Brian A. Larkins, Department of Agronomy and Horticulture, University of Nebraska, 230J Whittier Research Center, 2200 Vine Street, Lincoln, NE 68583-0857, USA e-mail: ; Paolo A. Sabelli, School of Plant Sciences, University of Arizona, 303 Forbes, 1140 East South Campus Drive, Tucson, AZ 85721-0036, USA e-mail:
| |
Collapse
|
169
|
Pasternak T, Asard H, Potters G, Jansen MAK. The thiol compounds glutathione and homoglutathione differentially affect cell development in alfalfa (Medicago sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 74:16-23. [PMID: 24246670 DOI: 10.1016/j.plaphy.2013.10.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/22/2013] [Indexed: 05/20/2023]
Abstract
Glutathione (GSH) is an important scavenger of Reactive Oxygen Species (ROS), precursor of metal chelating phytochelatins, xenobiotic defence compound and regulator of cell proliferation. Homoglutathione (hGSH) is a GSH homologue that is present in several taxa in the family of Fabaceae. It is thought that hGSH performs many of the stress-defence roles typically ascribed to GSH, yet little is known about the potential involvement of hGSH in controlling cell proliferation. Here we show that hGSH/GSH ratios vary across organs and cells and that these changes in hGSH/GSH ratio occur during dedifferentiation and/or cell cycle activation events. The use of a GSH/hGSH biosynthesis inhibitor resulted in impaired cytokinesis in isolated protoplasts, showing the critical importance of these thiol-compounds for cell division. However, exposure of isolated protoplasts to exogenous GSH accelerated cytokinesis, while exogenous hGSH was found to inhibit the same process. We conclude that GSH and hGSH have distinct functional roles in cell cycle regulation in Medicago sativa L. GSH is associated with meristemic cells, and promotes cell cycle activation and induction of somatic embryogenesis, while hGSH is associated with differentiated cells and embryo proliferation.
Collapse
Affiliation(s)
- Taras Pasternak
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium; Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-Universität Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.
| | - Han Asard
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | - Geert Potters
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium; Antwerp Maritime Academy, Noordkasteel Oost 6, B-2030 Antwerp, Belgium.
| | - Marcel A K Jansen
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium; School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Field, North Mall, Cork, Ireland.
| |
Collapse
|
170
|
Takahashi N, Umeda M. Cytokinins promote onset of endoreplication by controlling cell cycle machinery. PLANT SIGNALING & BEHAVIOR 2014; 9:e29396. [PMID: 25763620 PMCID: PMC4203642 DOI: 10.4161/psb.29396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 05/26/2023]
Abstract
The endocycle is a modified cell cycle in which DNA replication is repeated without mitosis or cytokinesis. The resultant DNA polyploidization, termed endoreplication, is usually associated with an increase in cell volume, and it plays an important role in sustaining plant growth and development. The onset the endocycle is caused by a reduction of mitotic CDK activity through selective degradation of mitotic cyclins. In Arabidopsis, CCS52A1 is a substrate-specific activator of an E3 ubiquitin ligase that mediates proteasomal degradation of mitotic cyclins, thereby playing an essential role in transition from the mitotic cell cycle to the endocycle. We have recently reported that the cytokinin-activated transcription factor ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2) binds to and activates the CCS52A1 promoter, and promotes the onset of the endocycle in roots. This regulation is not associated with auxin signaling, demonstrating that cytokinins have a crucial function in programmed induction of endoreplication by directly controlling the cell cycle machinery.
Collapse
Affiliation(s)
- Naoki Takahashi
- Graduate School of Biological Sciences; Nara Institute of Science and Technology; Takayama, Ikoma, Nara, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences; Nara Institute of Science and Technology; Takayama, Ikoma, Nara, Japan
- JST; CREST; Takayama, Nara, Japan
| |
Collapse
|
171
|
Gandarillas A, Freije A. Cycling up the epidermis: reconciling 100 years of debate. Exp Dermatol 2013; 23:87-91. [PMID: 24261570 DOI: 10.1111/exd.12287] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2013] [Indexed: 12/31/2022]
Abstract
There is likely general consensus within the skin research community that cell cycle control is critical to epidermal homeostasis and disease. The current predominant model proposes that keratinocytes switch off DNA replication and undergo cell cycle and cell growth arrest as they initiate terminal differentiation. However, this model cannot explain key physiological features of the skin, mainly why squamous differentiation prevails over proliferation in benign hyperproliferative disorders. In recent years, we have proposed an alternative model that involves mitotic slippage and endoreplication. This new model is controversial and has encountered resistance within the field. However, looking back at history, the epidermal cell cycle has been a matter of controversy and debate for around 100 years now. The accumulated data are confusing and contradictory. Our present model can explain and reconcile both old and new paradoxical observations. Here, we explain and discuss the endoreplicative cell cycle, the evidence for and against its existence in human epidermis and the important implications for skin homeostasis and disease. We show that regardless of the strengths or weaknesses of the Endoreplication Model, the existing evidence in support of the Cell Cycle Arrest Model is very weak.
Collapse
Affiliation(s)
- Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla (IFIMAV), Santander, Spain; Institut National de la Santé et de la Recherche Médicale (INSERM), Languedoc-Roussillon, France
| | | |
Collapse
|
172
|
Hamdoun S, Liu Z, Gill M, Yao N, Lu H. Dynamics of defense responses and cell fate change during Arabidopsis-Pseudomonas syringae interactions. PLoS One 2013; 8:e83219. [PMID: 24349466 PMCID: PMC3859648 DOI: 10.1371/journal.pone.0083219] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/01/2013] [Indexed: 11/24/2022] Open
Abstract
Plant-pathogen interactions involve sophisticated action and counteraction strategies from both parties. Plants can recognize pathogen derived molecules, such as conserved pathogen associated molecular patterns (PAMPs) and effector proteins, and subsequently activate PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively. However, pathogens can evade such recognitions and suppress host immunity with effectors, causing effector-triggered susceptibility (ETS). The differences among PTI, ETS, and ETI have not been completely understood. Toward a better understanding of PTI, ETS, and ETI, we systematically examined various defense-related phenotypes of Arabidopsis infected with different Pseudomonas syringae pv. maculicola ES4326 strains, using the virulence strain DG3 to induce ETS, the avirulence strain DG34 that expresses avrRpm1 (recognized by the resistance protein RPM1) to induce ETI, and HrcC- that lacks the type three secretion system to activate PTI. We found that plants infected with different strains displayed dynamic differences in the accumulation of the defense signaling molecule salicylic acid, expression of the defense marker gene PR1, cell death formation, and accumulation/localization of the reactive oxygen species, H2O2. The differences between PTI, ETS, and ETI are dependent on the doses of the strains used. These data support the quantitative nature of PTI, ETS, and ETI and they also reveal qualitative differences between PTI, ETS, and ETI. Interestingly, we observed the induction of large cells in the infected leaves, most obviously with HrcC- at later infection stages. The enlarged cells have increased DNA content, suggesting a possible activation of endoreplication. Consistent with strong induction of abnormal cell growth by HrcC-, we found that the PTI elicitor flg22 also activates abnormal cell growth, depending on a functional flg22-receptor FLS2. Thus, our study has revealed a comprehensive picture of dynamic changes of defense phenotypes and cell fate determination during Arabidopsis-P. syringae interactions, contributing to a better understanding of plant defense mechanisms.
Collapse
Affiliation(s)
- Safae Hamdoun
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Zhe Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Manroop Gill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
173
|
Lee E, Liu X, Eglit Y, Sack F. FOUR LIPS and MYB88 conditionally restrict the G1/S transition during stomatal formation. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5207-19. [PMID: 24123248 PMCID: PMC3830495 DOI: 10.1093/jxb/ert313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Consistent with their valve-like function in shoot-atmosphere gas exchange, guard cells are smaller than other epidermal cells and usually harbour 2C DNA levels in diploid plants. The paralogous Arabidopsis R2R3 MYB transcription factors, FOUR LIPS and MYB88, ensure that stomata contain just two guard cells by restricting mitosis. The loss of both FLP and MYB88 function in flp myb88 double mutants induces repeated mitotic divisions that lead to the formation of clusters of stomata in direct contact. By contrast, CYCLIN DEPENDENT KINASE B1 function is required for the symmetric division that precedes stomatal maturation. It was found that blocking mitosis by chemically disrupting microtubules or by the combined loss of FLP/MYB88 and CDKB1 function, causes single (undivided) guard cells (sGCs) to enlarge and attain mean DNA levels of up to 10C. The loss of both FLP and CDKB1 function also dramatically increased plastid number, led to the formation of multiple nuclei in GCs, altered GC and stomatal shape, and disrupted the fate of lineage-specific stem cells. Thus, in addition to respectively restricting and promoting symmetric divisions, FLP and CDKB1 together also conditionally restrict the G1/S transition and chloroplast and nuclear number, and normally maintain fate and developmental progression throughout the stomatal cell lineage.
Collapse
Affiliation(s)
- EunKyoung Lee
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, Canada
- * These authors contributed equally to the article
| | - Xuguang Liu
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, Canada
- * These authors contributed equally to the article
| | - Yana Eglit
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, Canada
- Present address: Department of Biology, Life Science Centre, 1355 Oxford Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Fred Sack
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, Canada
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
174
|
Hayashi K, Hasegawa J, Matsunaga S. The boundary of the meristematic and elongation zones in roots: endoreduplication precedes rapid cell expansion. Sci Rep 2013; 3:2723. [PMID: 24121463 PMCID: PMC3796303 DOI: 10.1038/srep02723] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/04/2013] [Indexed: 01/01/2023] Open
Abstract
Plant roots consist of a meristematic zone of mitotic cells and an elongation zone of rapidly expanding cells, in which DNA replication often occurs without cell division, a process known as endoreduplication. The duration of the cell cycle and DNA replication, as measured by 5-ethynyl-2'-deoxy-uridine (EdU) incorporation, differed between the two regions (17 h in the meristematic zone, 30 h in the elongation zone). Two distinct subnuclear patterns of EdU signals, whole and speckled, marked nuclei undergoing DNA replication at early and late S phase, respectively. The boundary region between the meristematic and elongation zones was analysed by a combination of DNA replication imaging and optical estimation of the amount of DNA in each nucleus (C-value). We found a boundary cell with 4C nuclei exhibiting the whole pattern of EdU signals. Analyses of cells in the boundary region revealed that endoreduplication precedes rapid cell elongation in roots.
Collapse
Affiliation(s)
- Kohma Hayashi
- Department of Applied Biological Science Faculty of Science and Technology Tokyo University of Science 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Junko Hasegawa
- Department of Applied Biological Science Faculty of Science and Technology Tokyo University of Science 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science Faculty of Science and Technology Tokyo University of Science 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
175
|
Lapin D, Van den Ackerveken G. Susceptibility to plant disease: more than a failure of host immunity. TRENDS IN PLANT SCIENCE 2013; 18:546-54. [PMID: 23790254 DOI: 10.1016/j.tplants.2013.05.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 05/23/2023]
Abstract
Susceptibility to infectious diseases caused by pathogens affects most plants in their natural habitat and leads to yield losses in agriculture. However, plants are not helpless because their immune system can deal with the vast majority of attackers. Nevertheless, adapted pathogens are able to circumvent or avert host immunity making plants susceptible to these uninvited guests. In addition to the failure of the plant immune system, there are other host processes that contribute to plant disease susceptibility. In this review, we discuss recent studies that show the active role played by the host in supporting disease, focusing mainly on biotrophic stages of infection. Plants attract pathogens, enable their entry and accommodation, and facilitate nutrient provision.
Collapse
Affiliation(s)
- Dmitry Lapin
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
176
|
Vieira P, Engler G, de Almeida Engler J. Enhanced levels of plant cell cycle inhibitors hamper root-knot nematode-induced feeding site development. PLANT SIGNALING & BEHAVIOR 2013; 8:e26409. [PMID: 24056043 PMCID: PMC4091379 DOI: 10.4161/psb.26409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/06/2013] [Accepted: 09/07/2013] [Indexed: 05/24/2023]
Abstract
Root-knot nematodes (RKN) are highly specialized, obligatory plant parasites. These animals reprogram root cells to form large, multinucleate, and metabolically active feeding cells (giant cells) that provide a continuous nutrient supply during 3-6 weeks of the nematode's life. The establishment and maintenance of physiologically fully functional giant cells are necessary for the survival of these nematodes. As such, giant cells may be useful targets for applying strategies to reduce damage caused by these nematodes, aiming the reduction of their reproduction. We have recently reported the involvement of cell cycle inhibitors of Arabidopsis, named Kip-Related Proteins (KRPs), on nematode feeding site ontogeny. Our results have demonstrated that this family of cell cycle inhibitors can be envisaged to efficiently disrupt giant cell development, based on previous reports which showed that alterations in KRP concentration levels can induce cell cycle transitions. Herein, we demonstrated that by overexpressing KRP genes, giant cells development is severely compromised as well as nematode reproduction. Thus, control of root-knot nematodes by modulating cell cycle-directed pathways through the enhancement of KRP protein levels may serve as an attractive strategy to limit damage caused by these plant parasites.
Collapse
Affiliation(s)
- Paulo Vieira
- Lab. Nematologia/ICAAM; Instituto de Ciências Agrárias e Ambientais Mediterrânicas; Universidade de Évora; Évora, Portugal
| | - Gilbert Engler
- Institut National de la Recherche Agronomique; UMR 1355 ISA/Centre National de la Recherche Scientifique; UMR 7254 ISA/ Université de Nice-Sophia Antipolis; UMR ISA; Sophia-Antipolis, France
| | - Janice de Almeida Engler
- Institut National de la Recherche Agronomique; UMR 1355 ISA/Centre National de la Recherche Scientifique; UMR 7254 ISA/ Université de Nice-Sophia Antipolis; UMR ISA; Sophia-Antipolis, France
| |
Collapse
|
177
|
Vieira P, Escudero C, Rodiuc N, Boruc J, Russinova E, Glab N, Mota M, De Veylder L, Abad P, Engler G, de Almeida Engler J. Ectopic expression of Kip-related proteins restrains root-knot nematode-feeding site expansion. THE NEW PHYTOLOGIST 2013; 199:505-519. [PMID: 23574394 DOI: 10.1111/nph.12255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/01/2013] [Indexed: 05/12/2023]
Abstract
The development of nematode feeding sites induced by root-knot nematodes involves the synchronized activation of cell cycle processes such as acytokinetic mitoses and DNA amplification. A number of key cell cycle genes are reported to be critical for nematode feeding site development. However, it remains unknown whether plant cyclin-dependent kinase (CDK) inhibitors such as the Arabidopsis interactor/inhibitor of CDK (ICK)/Kip-related protein (KRP) family are involved in nematode feeding site development. This study demonstrates the involvement of Arabidopsis ICK2/KRP2 and ICK1/KRP1 in the control of mitosis to endoreduplication in galls induced by the root-knot nematode Meloidogyne incognita. Using ICK/KRP promoter-GUS fusions and mRNA in situ hybridizations, we showed that ICK2/KRP2, ICK3/KRP5 and ICK4/KRP6 are expressed in galls after nematode infection. Loss-of-function mutants have minor effects on gall development and nematode reproduction. Conversely, overexpression of both ICK1/KRP1 and ICK2/KRP2 impaired mitosis in giant cells and blocked neighboring cell proliferation, resulting in a drastic reduction of gall size. Studying the dynamics of protein expression demonstrated that protein levels of ICK2/KRP2 are tightly regulated during giant cell development and reliant on the presence of the nematode. This work demonstrates that impeding cell cycle progression by means of ICK1/KRP1 and ICK2/KRP2 overexpression severely restricts gall development, leading to a marked limitation of root-knot nematode development and reduced numbers of offspring.
Collapse
Affiliation(s)
- Paulo Vieira
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, Sophia-Antipolis, France
| | - Carmen Escudero
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, Sophia-Antipolis, France
| | - Natalia Rodiuc
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, Sophia-Antipolis, France
| | - Joanna Boruc
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Eugenia Russinova
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Nathalie Glab
- UMR8618, CNRS Université Paris-Sud 11, Bat 630, 91405, Orsay, France
| | - Manuel Mota
- NemaLab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554, Évora, Portugal
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Pierre Abad
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, Sophia-Antipolis, France
| | - Gilbert Engler
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, Sophia-Antipolis, France
| | - Janice de Almeida Engler
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, Sophia-Antipolis, France
| |
Collapse
|
178
|
Scofield S, Dewitte W, Nieuwland J, Murray JAH. The Arabidopsis homeobox gene SHOOT MERISTEMLESS has cellular and meristem-organisational roles with differential requirements for cytokinin and CYCD3 activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:53-66. [PMID: 23573875 DOI: 10.1111/tpj.12198] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/28/2013] [Accepted: 04/04/2013] [Indexed: 06/02/2023]
Abstract
The Arabidopsis class-1 KNOX gene SHOOT MERISTEMLESS (STM) encodes a homeodomain transcription factor essential for shoot apical meristem (SAM) formation and sustained activity. STM activates cytokinin (CK) biosynthesis in the SAM, but the extent to which STM function is mediated through CK is unclear. Here we show that STM inhibits cellular differentiation and endoreduplication, acting through CK and the CK-inducible CYCD3 cell cycle regulators, establishing a mechanistic link to cell cycle control which provides sustained mitotic activity to maintain a pool of undifferentiated cells in the SAM. Equivalent functions are revealed for the related KNOX genes KNAT1/BP and KNAT2 through ectopic expression. STM is also required for proper meristem organisation and can induce de novo meristem formation when expressed ectopically, even when CK levels are reduced or CK signaling is impaired. This function in meristem establishment and organisation can be replaced by KNAT1/BP, but not KNAT2, despite its activation of CK responses, suggesting that promotion of CK responses alone is insufficient for SAM organisation. We propose that STM has dual cellular and meristem-organisational functions that are differentially represented in the class-1 KNOX gene family and have differing requirements for CK and CYCD3.
Collapse
Affiliation(s)
- Simon Scofield
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Walter Dewitte
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Jeroen Nieuwland
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - James A H Murray
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| |
Collapse
|
179
|
Baloban M, Vanstraelen M, Tarayre S, Reuzeau C, Cultrone A, Mergaert P, Kondorosi E. Complementary and dose-dependent action of AtCCS52A isoforms in endoreduplication and plant size control. THE NEW PHYTOLOGIST 2013; 198:1049-1059. [PMID: 23528034 DOI: 10.1111/nph.12216] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/04/2013] [Indexed: 06/02/2023]
Abstract
· The dimension of organs depends on the number and the size of their component cells. Formation of polyploid cells by endoreduplication cycles is predominantly associated with increases in the cell size and implicated in organ growth. In plants, the CCS52A proteins play a major role in the switch from mitotic to endoreduplication cycles controlling thus the number of mitotic cells and the endoreduplication events in the differentiating cells. · Arabidopsis has two CCS52A isoforms; AtCCS52A1 and AtCCS52A2. Here we focused on their roles in endoreduplication and cell size control during plant development. We demonstrate their complementary and dose-dependent actions that are dependent on their expression patterns. Moreover, the impact of CCS52A overexpression on organ size in transgenic plants was dependent on the expression level; while enhanced expression of the CCS52A genes positively correlated with the ploidy levels, organ sizes were negatively affected by strong overexpression whereas milder overexpression resulted in a significant increase in the organ sizes. · Taken together, these finding support both complementary and dose-dependent actions for the Arabidopsis CCS52A isoforms in plant development and demonstrate that elevated ectopic CCS52A expression positively correlates with organ size, opening a route to higher biomass production.
Collapse
Affiliation(s)
- Mikhail Baloban
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR2355, Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Marleen Vanstraelen
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR2355, Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- VIB Department of Plant Systems Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Sylvie Tarayre
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR2355, Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Christophe Reuzeau
- CropDesign N.V., a BASF Plant Science Company, Technologiepark 3, B-9052, Zwijnaarde, Belgium
| | - Antonietta Cultrone
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR2355, Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Peter Mergaert
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR2355, Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Eva Kondorosi
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR2355, Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- Biological Research Centre of the Hungarian Academy of Sciences, Temesvari krt 62, 6726, Szeged, Hungary
| |
Collapse
|
180
|
Chica C, Szarzynska B, Chen-Min-Tao R, Duvernois-Berthet E, Kassam M, Colot V, Roudier F. Profiling spatial enrichment of chromatin marks suggests an additional epigenomic dimension in gene regulation. FRONTIERS IN LIFE SCIENCE 2013. [DOI: 10.1080/21553769.2013.844734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
181
|
Vieira P, Kyndt T, Gheysen G, Engler JDA. An insight into critical endocycle genes for plant-parasitic nematode feeding sites establishment. PLANT SIGNALING & BEHAVIOR 2013; 8:e24223. [PMID: 23518580 PMCID: PMC3907419 DOI: 10.4161/psb.24223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 05/19/2023]
Abstract
Root-knot and cyst nematodes are biotrophic parasites that invade the root apex of host plants and migrate toward the vascular cylinder where they cause the differentiation of root cells into galls (or root-knots) containing hypertrophied multinucleated giant-feeding cells, or syncytia, respectively. The precise molecular mechanisms that drive the formation of such unique nematode feeding sites are still far-off from being completely understood. The diverse gene expression changes occurring within the host cells suggest that both types of plant-parasitic nematodes modulate a variety of plant processes. Induction and repression of genes belonging to the host cell cycle control machinery have shown to be essential to drive the formation of such specialized nematode feeding cells. We demonstrate that nematodes usurp key components regulating the endocycle in their favor. This is illustrated by the involvement of anaphase-promoting complex (APC) genes (CCS52A and CCS52B), the endocycle repressor DP-E2F-like (E2F/DEL1) gene and the ROOT HAIRLESS 1 PROTEIN (RHL1), which is part of a multiprotein complex of the toposiomerase VI, in the proper formation of nematode feeding sites. Altering the expression of these genes in Arabidopsis plants by down- or overexpressing strategies strongly influences the extent of endoreduplication in both types of nematode feeding site leading to a disturbance of the nematode's life cycle and reproduction.
Collapse
Affiliation(s)
- Paulo Vieira
- Institut National de la Recherche Agronomique; Centre National de la Recherche Scientifique; Université de Nice-Sophia Antipolis; Sophia-Antipolis, France
| | - Tina Kyndt
- Department of Molecular Biotechnology; Ghent University; Ghent, Belgium
| | - Godelieve Gheysen
- Department of Molecular Biotechnology; Ghent University; Ghent, Belgium
| | - Janice de Almeida Engler
- Institut National de la Recherche Agronomique; Centre National de la Recherche Scientifique; Université de Nice-Sophia Antipolis; Sophia-Antipolis, France
- Correspondence to: Janice de Almeida Engler,
| |
Collapse
|
182
|
Harashima H, Dissmeyer N, Schnittger A. Cell cycle control across the eukaryotic kingdom. Trends Cell Biol 2013; 23:345-56. [PMID: 23566594 DOI: 10.1016/j.tcb.2013.03.002] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/28/2013] [Accepted: 03/06/2013] [Indexed: 11/25/2022]
Abstract
Almost two billion years of evolution have generated a vast and amazing variety of eukaryotic life with approximately 8.7 million extant species. Growth and reproduction of all of these organisms depend on faithful duplication and distribution of their chromosomes to the newly forming daughter cells in a process called the cell cycle. However, most of what is known today about cell cycle control comes from a few model species that belong to the unikonts; that is, to only one of five 'supergroups' that comprise the eukaryotic kingdom. Recently, analyzing species from distantly related clades is providing insights into general principles of cell cycle regulation and shedding light on its evolution. Here, referring to animal and fungal as opposed to non-unikont systems, especially flowering plants from the archaeplastid supergroup, we compare the conservation of central cell cycle regulator functions, the structure of network topologies, and the evolutionary dynamics of substrates of core cell cycle kinases.
Collapse
Affiliation(s)
- Hirofumi Harashima
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | | | | |
Collapse
|
183
|
Noir S, Bömer M, Takahashi N, Ishida T, Tsui TL, Balbi V, Shanahan H, Sugimoto K, Devoto A. Jasmonate controls leaf growth by repressing cell proliferation and the onset of endoreduplication while maintaining a potential stand-by mode. PLANT PHYSIOLOGY 2013; 161:1930-51. [PMID: 23439917 PMCID: PMC3613466 DOI: 10.1104/pp.113.214908] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phytohormones regulate plant growth from cell division to organ development. Jasmonates (JAs) are signaling molecules that have been implicated in stress-induced responses. However, they have also been shown to inhibit plant growth, but the mechanisms are not well understood. The effects of methyl jasmonate (MeJA) on leaf growth regulation were investigated in Arabidopsis (Arabidopsis thaliana) mutants altered in JA synthesis and perception, allene oxide synthase and coi1-16B (for coronatine insensitive1), respectively. We show that MeJA inhibits leaf growth through the JA receptor COI1 by reducing both cell number and size. Further investigations using flow cytometry analyses allowed us to evaluate ploidy levels and to monitor cell cycle progression in leaves and cotyledons of Arabidopsis and/or Nicotiana benthamiana at different stages of development. Additionally, a novel global transcription profiling analysis involving continuous treatment with MeJA was carried out to identify the molecular players whose expression is regulated during leaf development by this hormone and COI1. The results of these studies revealed that MeJA delays the switch from the mitotic cell cycle to the endoreduplication cycle, which accompanies cell expansion, in a COI1-dependent manner and inhibits the mitotic cycle itself, arresting cells in G1 phase prior to the S-phase transition. Significantly, we show that MeJA activates critical regulators of endoreduplication and affects the expression of key determinants of DNA replication. Our discoveries also suggest that MeJA may contribute to the maintenance of a cellular "stand-by mode" by keeping the expression of ribosomal genes at an elevated level. Finally, we propose a novel model for MeJA-regulated COI1-dependent leaf growth inhibition.
Collapse
|
184
|
Kougioumoutzi E, Cartolano M, Canales C, Dupré M, Bramsiepe J, Vlad D, Rast M, Dello Ioio R, Tattersall A, Schnittger A, Hay A, Tsiantis M. SIMPLE LEAF3 encodes a ribosome-associated protein required for leaflet development in Cardamine hirsuta. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:533-45. [PMID: 23145478 DOI: 10.1111/tpj.12072] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/02/2012] [Accepted: 11/08/2012] [Indexed: 05/12/2023]
Abstract
Leaves show considerable variation in shape, and may be described as simple, when the leaf is entire, or dissected, when the leaf is divided into individual leaflets. Here, we report that the SIMPLE LEAF3 (SIL3) gene is a novel determinant of leaf shape in Cardamine hirsuta - a dissected-leaved relative of the simple-leaved model species Arabidopsis thaliana. We show that SIL3 is required for leaf growth and leaflet formation but leaf initiation is less sensitive to perturbation of SIL3 activity. SIL3 is further required for KNOX (knotted1-like homeobox) gene expression and localized auxin activity maxima, both of which are known to promote leaflet formation. We cloned SIL3 and showed that it encodes RLI2 (RNase L inhibitor 2), an ATP binding cassette-type ATPase with important roles in ribosome recycling and translation termination that are conserved in eukaryotes and archaea. RLI mutants have not been described in plants to date, and this paper highlights the potential of genetic studies in C. hirsuta to uncover novel gene functions. Our data indicate that leaflet development is sensitive to perturbation of RLI2-dependent aspects of cellular growth, and link ribosome function with dissected-leaf development.
Collapse
|
185
|
Fox DT, Duronio RJ. Endoreplication and polyploidy: insights into development and disease. Development 2013; 140:3-12. [PMID: 23222436 DOI: 10.1242/dev.080531] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyploid cells have genomes that contain multiples of the typical diploid chromosome number and are found in many different organisms. Studies in a variety of animal and plant developmental systems have revealed evolutionarily conserved mechanisms that control the generation of polyploidy and have recently begun to provide clues to its physiological function. These studies demonstrate that cellular polyploidy plays important roles during normal development and also contributes to human disease, particularly cancer.
Collapse
Affiliation(s)
- Donald T Fox
- Department of Pharmacology and Cancer Biology, and Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| | | |
Collapse
|
186
|
Terecskei K, Tóth R, Gyula P, Kevei É, Bindics J, Coupland G, Nagy F, Kozma-Bognár L. The circadian clock-associated small GTPase LIGHT INSENSITIVE PERIOD1 suppresses light-controlled endoreplication and affects tolerance to salt stress in Arabidopsis. PLANT PHYSIOLOGY 2013; 161:278-90. [PMID: 23144185 PMCID: PMC3532258 DOI: 10.1104/pp.112.203356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Circadian clocks are biochemical timers regulating many physiological and molecular processes according to the day/night cycle. The small GTPase LIGHT INSENSITIVE PERIOD1 (LIP1) is a circadian clock-associated protein that regulates light input to the clock. In the absence of LIP1, the effect of light on free-running period length is much reduced. Here, we show that in addition to suppressing red and blue light-mediated photomorphogenesis, LIP1 is also required for light-controlled inhibition of endoreplication and tolerance to salt stress in Arabidopsis (Arabidopsis thaliana). We demonstrate that in the processes of endoreplication and photomorphogenesis, LIP1 acts downstream of the red and blue light photoreceptors phytochrome B and cryptochromes. Manipulation of the subcellular distribution of LIP1 revealed that the circadian function of LIP1 requires nuclear localization of the protein. Our data collectively suggest that LIP1 influences several signaling cascades and that its role in the entrainment of the circadian clock is independent from the other pleiotropic effects. Since these functions of LIP1 are important for the early stages of development or under conditions normally experienced by germinating seedlings, we suggest that LIP1 is a regulator of seedling establishment.
Collapse
|
187
|
Zhiponova MK, Vanhoutte I, Boudolf V, Betti C, Dhondt S, Coppens F, Mylle E, Maes S, González-García MP, Caño-Delgado AI, Inzé D, Beemster GTS, De Veylder L, Russinova E. Brassinosteroid production and signaling differentially control cell division and expansion in the leaf. THE NEW PHYTOLOGIST 2013; 197:490-502. [PMID: 23253334 DOI: 10.1111/nph.12036] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/07/2012] [Indexed: 05/03/2023]
Abstract
Brassinosteroid (BR) hormones control plant growth through acting on both cell expansion and division. Here, we examined the role of BRs in leaf growth using the Arabidopsis BR-deficient mutant constitutive photomorphogenesis and dwarfism (cpd). We show that the reduced size of cpd leaf blades is a result of a decrease in cell size and number, as well as in venation length and complexity. Kinematic growth analysis and tissue-specific marker gene expression revealed that the leaf phenotype of cpd is associated with a prolonged cell division phase and delayed differentiation. cpd-leaf-rescue experiments and leaf growth analysis of BR biosynthesis and signaling gain-of-function mutants showed that BR production and BR receptor-dependent signaling differentially control the balance between cell division and expansion in the leaf. Investigation of cell cycle markers in leaves of cpd revealed the accumulation of mitotic proteins independent of transcription. This correlated with an increase in cyclin-dependent kinase activity, suggesting a role for BRs in control of mitosis.
Collapse
Affiliation(s)
- Miroslava K Zhiponova
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Isabelle Vanhoutte
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Véronique Boudolf
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Camilla Betti
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Stijn Dhondt
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Frederik Coppens
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Evelien Mylle
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Sara Maes
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Mary-Paz González-García
- Molecular Genetics Department, Centre for Research in Agricultural Genomics CSIC-IRTA-UAB, 08013, Barcelona, Spain
| | - Ana I Caño-Delgado
- Molecular Genetics Department, Centre for Research in Agricultural Genomics CSIC-IRTA-UAB, 08013, Barcelona, Spain
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | | | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Eugenia Russinova
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| |
Collapse
|
188
|
Bailey-Serres J. Microgenomics: genome-scale, cell-specific monitoring of multiple gene regulation tiers. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:293-325. [PMID: 23451787 DOI: 10.1146/annurev-arplant-050312-120035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The expression of nuclear protein-coding genes is controlled by dynamic mechanisms ranging from DNA methylation, chromatin modification, and gene transcription to mRNA maturation, turnover, and translation and the posttranslational control of protein function. A genome-scale assessment of the spatiotemporal regulation of gene expression is essential for a comprehensive understanding of gene regulatory networks. However, there are major obstacles to the precise evaluation of gene regulation in multicellular plant organs; these include the monitoring of regulatory processes at levels other than steady-state transcript abundance, resolution of gene regulation in individual cells or cell types, and effective assessment of transient gene activity manifested during development or in response to external cues. This review surveys the advantages and applications of microgenomics technologies that enable panoramic quantitation of cell-type-specific expression in plants, focusing on the importance of querying gene activity at multiple steps in the continuum, from histone modification to selective translation.
Collapse
Affiliation(s)
- J Bailey-Serres
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
189
|
Nucleus and Genome: DNA Replication. Mol Biol 2013. [DOI: 10.1007/978-1-4939-0263-7_1-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
190
|
Matsunaga S, Katagiri Y, Nagashima Y, Sugiyama T, Hasegawa J, Hayashi K, Sakamoto T. New insights into the dynamics of plant cell nuclei and chromosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:253-301. [PMID: 23890384 DOI: 10.1016/b978-0-12-407695-2.00006-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant lamin-like protein NMCP/AtLINC and orthologues of the SUN-KASH complex across the nuclear envelope (NE) show the universality of nuclear structure in eukaryotes. However, depletion of components in the connection complex of the NE in plants does not induce severe defects, unlike in animals. Appearance of the Rabl configuration is not dependent on genome size in plant species. Topoisomerase II and condensin II are not essential for plant chromosome condensation. Plant endoreduplication shares several common characteristics with animals, including involvement of cyclin-dependent kinases and E2F transcription factors. Recent finding regarding endomitosis regulator GIG1 shed light on the suppression mechanism of endomitosis in plants. The robustness of plants, compared with animals, is reflected in their genome redundancy. Spatiotemporal functional analyses using chromophore-assisted light inactivation, super-resolution microscopy, and 4D (3D plus time) imaging will reveal new insights into plant nuclear and chromosomal dynamics.
Collapse
Affiliation(s)
- Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
191
|
de Almeida Engler J, Gheysen G. Nematode-induced endoreduplication in plant host cells: why and how? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:17-24. [PMID: 23194340 DOI: 10.1094/mpmi-05-12-0128-cr] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant-parasitic root-knot and cyst nematodes have acquired the ability to induce remarkable changes in host cells during the formation of feeding sites. Root-knot nematodes induce several multinucleate giant cells inside a gall whereas cyst nematodes provoke the formation of a multinucleate syncytium. Both strategies impinge on the deregulation of the cell cycle, involving a major role for endoreduplication. This review will first describe the current knowledge on the control of normal and aberrant cell cycles. Thereafter, we will focus on the role of both cell-cycle routes in the transformation process of root cells into large and highly differentiated feeding sites as induced by the phytoparasitic root-knot and cyst nematodes.
Collapse
|
192
|
Bourdon M, Pirrello J, Cheniclet C, Coriton O, Bourge M, Brown S, Moïse A, Peypelut M, Rouyère V, Renaudin JP, Chevalier C, Frangne N. Evidence for karyoplasmic homeostasis during endoreduplication and a ploidy-dependent increase in gene transcription during tomato fruit growth. Development 2012; 139:3817-26. [PMID: 22991446 DOI: 10.1242/dev.084053] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Endopolyploidy is a widespread process that corresponds to the amplification of the genome in the absence of mitosis. In tomato, very high ploidy levels (up to 256C) are reached during fruit development, concomitant with very large cell sizes. Using cellular approaches (fluorescence and electron microscopy) we provide a structural analysis of endoreduplicated nuclei at the level of chromatin and nucleolar organisation, nuclear shape and relationship with other cellular organelles such as mitochondria. We demonstrate that endopolyploidy in pericarp leads to the formation of polytene chromosomes and markedly affects nuclear structure. Nuclei manifest a complex shape, with numerous deep grooves that are filled with mitochondria, affording a fairly constant ratio between nuclear surface and nuclear volume. We provide the first direct evidence that endopolyploidy plays a role in increased transcription of rRNA and mRNA on a per-nucleus basis. Overall, our results provide quantitative evidence in favour of the karyoplasmic theory and show that endoreduplication is associated with complex cellular organisation during tomato fruit development.
Collapse
Affiliation(s)
- Matthieu Bourdon
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, BP 81, F-33140 Villenave d'Ornon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Motose H, Takatani S, Ikeda T, Takahashi T. NIMA-related kinases regulate directional cell growth and organ development through microtubule function in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2012; 7:1552-5. [PMID: 23072999 PMCID: PMC3578891 DOI: 10.4161/psb.22412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
NIMA-related kinase 6 (NEK6) regulates cellular expansion and morphogenesis through microtubule organizaiton in Arabidopsis thaliana. Loss-of-function mutations in NEK6 (nek6/ibo1) cause ectopic outgrowth and microtubule disorganization in epidermal cells. We recently found that NEK6 forms homodimers and heterodimers with NEK4 and NEK5 to destabilize cortical microtubules possibly by direct binding to microtubules and the β-tubulin phosphorylation. Here, we identified a new allele of NEK6 and further analyzed the morphological phenotypes of nek6/ibo1 mutants, along with alleles of nek4 and nek5 mutants. Phenotypic analysis demonstrated that NEK6 is required for the directional growth of roots and hypocotyls, petiole elongation, cell file formation, and trichome morphogenesis. In addition, nek4, nek5, and nek6/ibo1 mutants were hypersensitive to microtubule inhibitors such as propyzamide and taxol. These results suggest that plant NEKs function in directional cell growth and organ development through the regulation of microtubule organization.
Collapse
Affiliation(s)
- Hiroyasu Motose
- Division of Biological Sciences, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| | | | | | | |
Collapse
|
194
|
Bainard JD, Bainard LD, Henry TA, Fazekas AJ, Newmaster SG. A multivariate analysis of variation in genome size and endoreduplication in angiosperms reveals strong phylogenetic signal and association with phenotypic traits. THE NEW PHYTOLOGIST 2012; 196:1240-1250. [PMID: 23078229 DOI: 10.1111/j.1469-8137.2012.04370.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/30/2012] [Indexed: 05/03/2023]
Abstract
Genome size (C-value) and endopolyploidy (endoreduplication index, EI) are known to correlate with various morphological and ecological traits, in addition to phylogenetic placement. A phylogenetically controlled multivariate analysis was used to explore the relationships between DNA content and phenotype in angiosperms. Seeds from 41 angiosperm species (17 families) were grown in a common glasshouse experiment. Genome size (2C-value and 1Cx-value) and EI (in four tissues: leaf, stem, root, petal) were determined using flow cytometry. The phylogenetic signal was calculated for each measure of DNA content, and phylogenetic canonical correlation analysis (PCCA) explored how the variation in genome size and EI was correlated with 18 morphological and ecological traits. Phylogenetic signal (λ) was strongest for EI in all tissues, and λ was stronger for the 2C-value than the 1Cx-value. PCCA revealed that EI was correlated with pollen length, stem height, seed mass, dispersal mechanism, arbuscular mycorrhizal association, life history and flowering time, and EI and genome size were both correlated with stem height and life history. PCCA provided an effective way to explore multiple factors of DNA content variation and phenotypic traits in a phylogenetic context. Traits that were correlated significantly with DNA content were linked to plant competitive ability.
Collapse
Affiliation(s)
- Jillian D Bainard
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1
| | - Luke D Bainard
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1
| | - Thomas A Henry
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1
| | - Aron J Fazekas
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1
| | - Steven G Newmaster
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
195
|
Sanchez MDLP, Costas C, Sequeira-Mendes J, Gutierrez C. Regulating DNA replication in plants. Cold Spring Harb Perspect Biol 2012; 4:a010140. [PMID: 23209151 PMCID: PMC3504439 DOI: 10.1101/cshperspect.a010140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chromosomal DNA replication in plants has requirements and constraints similar to those in other eukaryotes. However, some aspects are plant-specific. Studies of DNA replication control in plants, which have unique developmental strategies, can offer unparalleled opportunities of comparing regulatory processes with yeast and, particularly, metazoa to identify common trends and basic rules. In addition to the comparative molecular and biochemical studies, genomic studies in plants that started with Arabidopsis thaliana in the year 2000 have now expanded to several dozens of species. This, together with the applicability of genomic approaches and the availability of a large collection of mutants, underscores the enormous potential to study DNA replication control in a whole developing organism. Recent advances in this field with particular focus on the DNA replication proteins, the nature of replication origins and their epigenetic landscape, and the control of endoreplication will be reviewed.
Collapse
Affiliation(s)
- Maria de la Paz Sanchez
- Centro de Biologia Molecular "Severo Ochoa," CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
196
|
Roeder AHK. When and where plant cells divide: a perspective from computational modeling. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:638-644. [PMID: 22939706 DOI: 10.1016/j.pbi.2012.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/02/2012] [Accepted: 08/12/2012] [Indexed: 06/01/2023]
Abstract
Computational modeling of growing plant tissues raises two basic questions about plant cell division: when does a cell decide to divide and where is the new wall placed? Although biologists and modelers commonly assume that a cell divides after it reaches a threshold size, two recent experiments show that models with variable division sizes better replicate the tissue. Similarly, comparing model predictions with living plant cells reveals that the choice of division plane is variable, although the shortest path dividing a cell in half (i.e. the minimal surface area) is the most probable division plane.
Collapse
Affiliation(s)
- Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and Plant Biology Department, Cornell University, 239 Weill Hall, Ithaca, NY 14853 USA.
| |
Collapse
|
197
|
Wang D, Mills ES, Deal RB. Technologies for systems-level analysis of specific cell types in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 197:21-29. [PMID: 23116668 PMCID: PMC4037754 DOI: 10.1016/j.plantsci.2012.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 05/08/2023]
Abstract
The study of biological processes at cell type resolution requires the isolation of the specific cell types from an organism, but this presents a great technical challenge. In recent years a number of methods have been developed that allow deep analyses of the epigenome, transcriptome, and ribosome-associated mRNA populations in individual cell types. The application of these methods has lead to a clearer understanding of important issues in plant biology, including cell fate specification and cell type-specific responses to the environment. In this review, we discuss current mechanical- and affinity-based technologies available for isolation and analysis of individual cell types in a plant. The integration of these methods is proposed as a means of achieving a holistic view of cellular processes at all levels, from chromatin dynamics to metabolomics. Finally, we explore the limitations of current methods and the needs for future technological development.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - E. Shannon Mills
- Graduate program in Genetics and Molecular Biology of the Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Roger B. Deal
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- To whom correspondence should be addressed:
| |
Collapse
|
198
|
Affiliation(s)
- Elena Caro
- Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Nicolas Cabrera 1, Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|
199
|
Transcriptional repression of the APC/C activator CCS52A1 promotes active termination of cell growth. EMBO J 2012; 31:4488-501. [PMID: 23143274 DOI: 10.1038/emboj.2012.294] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/02/2012] [Indexed: 11/08/2022] Open
Abstract
Spatial and temporal control of cell growth is central for the morphogenesis of multicellular organisms. For some cell types that undergo extensive post-mitotic cell growth, such as neurons and hair cells, orchestrating the extent of post-mitotic cell growth with development is vital for their physiology and function. Previous studies suggested that the extent of cell growth is linked with an increase in ploidy by endoreduplication but how developmental signals control endocycling and cell growth is not understood in both animals and plants. In this study we show that a trihelix transcription factor, GT2-LIKE 1 (GTL1), actively terminates ploidy-dependent cell growth and its developmentally regulated expression is one of the key determinants of cell size in Arabidopsis leaf hair cells (trichomes). Through genome-wide chromatin-binding studies (ChIP-chip) coupled with transcriptional profiling, we further demonstrate that GTL1 directly represses the transcription of CDH1/FZR/CCS52, an activator of the anaphase-promoting complex/cyclosome (APC/C), to stop the endocycle progression and ploidy-dependent cell growth. Thus, our findings uncover a previously uncharacterised key molecular link between developmental programming and cell-size control, highlighting the central role of APC/C in post-mitotic cell growth.
Collapse
|
200
|
Heyman J, De Veylder L. The anaphase-promoting complex/cyclosome in control of plant development. MOLECULAR PLANT 2012; 5:1182-94. [PMID: 23034505 DOI: 10.1093/mp/sss094] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Temporal controlled degradation of key cell division proteins ensures a correct onset of the different cell cycle phases and exit from the cell division program. In light of the cell cycle, the Anaphase-Promoting Complex/Cyclosome (APC/C) is an important conserved multi-subunit ubiquitin ligase, marking targets for degradation by the 26S proteasome. However, whereas the APC/C has been studied extensively in yeast and mammals, only in the last decade has the plant APC/C started to unveil its secrets. Research results have shown the importance of the APC/C core complex and its activators during gametogenesis, growth, hormone signaling, symbiotic interactions, and endoreduplication onset. In addition, recently, the first plant APC/C inhibitors have been reported, allowing a fine-tuning of APC/C activity during the cell cycle. Together with the identification of the first APC/C targets, a picture emerges of APC/C activity being essential for many different developmental processes.
Collapse
Affiliation(s)
- Jefri Heyman
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | | |
Collapse
|