151
|
Shu KX, Li B, Liang YL, Xie YF, Zhang JC, Wei JM. Effects of exogenous p53 transfection on the gene expression in the human brain glioma cell line U251. Colloids Surf B Biointerfaces 2006; 47:126-131. [PMID: 16413759 DOI: 10.1016/j.colsurfb.2005.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 11/23/2005] [Accepted: 12/11/2005] [Indexed: 12/11/2022]
Abstract
The p53 gene is activated in response to several malignancy-associated stress signals by transactivation of downstream genes and by transcription-independent mechanisms. In order to identify new p53 downstream genes, we established a new system of p53 gene inducible expression, U251-pTet-p53 cell line, with the Tet-On Gene Expression System, in which exogenous p53 gene could overexpress in doxycycline (Dox) medium but not in the medium without Dox. By comparing their random primer RT-PCR products, it was proved that exogenous p53 gene expression could lead to many genes differential expression, some up-expressed and others down-expressed. All of these differential expressed genes may be p53 downstream genes. We can gain the magnitude of p53 downstream genes, which provides the basis of directly cloning of novel p53 downstream genes and further studying of p53 regulatory network.
Collapse
Affiliation(s)
- Kun-xian Shu
- College of Bioinformation, Chongqing University of Posts sand Telecommunications, Chongqing 400065, China
| | | | | | | | | | | |
Collapse
|
152
|
Fanning GC, Symonds G. Gene-expressed RNA as a therapeutic: issues to consider, using ribozymes and small hairpin RNA as specific examples. Handb Exp Pharmacol 2006:289-303. [PMID: 16594621 DOI: 10.1007/3-540-27262-3_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In recent years there has been a greater appreciation of both the role of RNA in intracellular gene regulation and the potential to use RNA in therapeutic modalities. In the latter case, RNA can be used as a therapeutic target or a drug. The chapters in this volume cover the varied and potent actions of RNA as antisense, ribozymes, aptamers, microRNA and small hairpin RNA in gene regulation, as well as their use as potential therapeutics for metabolic and infectious diseases. Our group has been involved in the development of anti-HIV gene expression constructs to treat HIV. In this chapter, we address the relevant scientific and some of the commercial issues in the use of RNA as a therapeutic. Specifically, the chapter discusses delivery, expression, potency, toxicity and commercial development using, as examples, hammerhead ribozymes and small hairpin RNA.
Collapse
Affiliation(s)
- G C Fanning
- Johnson Johnson Research, The Australian Technology Park, Strawberry Hills, Locked Bag 4555, 2012 Sydney NSW, Australia
| | | |
Collapse
|
153
|
Burger C. Recombinant Adeno-Associated Viral Vectors for CNS Gene Therapy. Gene Ther 2006. [DOI: 10.1016/b978-044452806-3/50004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
154
|
Abstract
Characterization of genetically engineered mice requires consideration of the gene of interest and the genetic background on which the mutation is maintained. A fundamental prerequisite to deciphering the genetic factors that influence the phenotype of a mutant mouse is an understanding of genetic nomenclature. Mutations and transgenes are often maintained on segregating or mixed backgrounds of often-unspecified origin. Minimizing the importance of strain and substrain differences, especially among 129 strains, can lead to poor experimental design or faulty interpretations of data. Genetic factors that influence phenotype can be categorized as traits that are unique to the background strain, unique to the gene of interest, or an interaction of both the background strain and the gene of interest. The commonly used inbred strains are generally well characterized and understood; however, specific genetic alterations combined with genes unique to the background inbred strain may lead to unexpected results. Genetic background effects can be analyzed and controlled for by using specific targeting and breeding strategies. Selection of appropriate experimental controls is critical. Ideally, mutations or transgenes should be characterized on more than one genetic background and in hybrids of the two progenitor strains. This approach may lead to the identification of novel genetic modifiers of the "gene of interest." Conditional mutagenesis technologies increase the options for controlling genetic background effects in addition to permitting the study of developmental and temporal changes in gene and protein expression and thus phenotype.
Collapse
Affiliation(s)
- Carol Cutler Linder
- Department of Natural Sciences, New Mexico Highlands University, Las Vegas, New Mexico, USA
| |
Collapse
|
155
|
Ueberham U, Zobiak B, Ueberham E, Brückner MK, Boriss H, Arendt T. Differentially expressed cortical genes contribute to perivascular deposition in transgenic mice with inducible neuron‐specific expression of TGF‐β1. Int J Dev Neurosci 2005; 24:177-86. [PMID: 16386398 DOI: 10.1016/j.ijdevneu.2005.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 11/10/2005] [Indexed: 10/25/2022] Open
Abstract
In the brain the expression of transforming growth factor beta1 (TGF-beta1) is involved both in neuroprotective and neurodegenerative processes. Recently, we have established a transgenic mouse model with inducible neuron-specific expression of TGF-beta1 based on the tetracycline-regulated gene expression system. A long-term expression of TGF-beta1 results in persisting perivascular thioflavin-positive depositions, which did not disappear even though the transgene synthesis was repressed completely by administration of doxycycline. Formation and composition of these depositions are hardly elucidated. The aim of this study was to identify TGF-beta1 responding genes potentially participating in forming these depositions. To address this problem we have compared the cortical mRNA expression pattern of TGF-beta1 expressing mice with mice impeded to express the transgenic protein using oligonucleotide microarray analysis. Differential gene expression was further characterized by quantitative real-time reverse transcription-polymerase chain reaction including animals, where the long-lasting TGF-beta1 expression was repressed. While no change of amyloid precursor protein RNA expression level was detected, various genes strongly involved in calcium homeostasis, tissue mineralization or vascular calcification were identified differentially expressed. It is suggested, that these genes might contribute to the perivascular depositions in the TGF-beta1 expressing mice.
Collapse
Affiliation(s)
- Uwe Ueberham
- Paul Flechsig Institute for Brain Research, Department of Neuroanatomy, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
156
|
Muñoz I, Carrillo M, Zanuy S, Gómez A. Regulation of exogenous gene expression in fish cells: An evaluation of different versions of the tetracycline-regulated system. Gene 2005; 363:173-82. [PMID: 16236467 DOI: 10.1016/j.gene.2005.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 08/09/2005] [Accepted: 08/12/2005] [Indexed: 11/21/2022]
Abstract
The exogenous control of foreign gene expression is relevant to both basic research and biotechnological applications. In fish, the number of isolated genes has become larger in the last few years; however an efficient system for controlling gene expression is not yet available. The tetracycline-regulated system has proved to be efficient and it is widely used in mammals, but it has never been tested in fish. This work includes the establishment of the tetracycline-regulated system for use in fish cells, and the determination of the optimal conditions to achieve a tight exogenous expression regulation. We have compared the tet-off and tet-on systems and the performance of the transactivators under the control of promoters with different origin and strength. The results show that the tet-off is more efficient than the tet-on system for use in fish cells. The hCMV promoter/enhancer proved to be more efficient than the carp beta-actin promoter to drive the expression of the transactivator, since the use of the carp beta-actin promoter resulted in a high intra-clonal variability when stably expressed. An auto-regulated system approach proved useful only when transiently expressed.
Collapse
Affiliation(s)
- Iciar Muñoz
- Department of Fish Reproductive Physiology, Instituto de Acuicultura de Torrelasal, CSIC, Ribera de Cabanes, 12595, Torrelasal, Castellón, Spain
| | | | | | | |
Collapse
|
157
|
Welman A, Cawthorne C, Barraclough J, Smith N, Griffiths GJ, Cowen RL, Williams JC, Stratford IJ, Dive C. Construction and characterization of multiple human colon cancer cell lines for inducibly regulated gene expression. J Cell Biochem 2005; 94:1148-62. [PMID: 15669025 DOI: 10.1002/jcb.20342] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Validation of targets for cancer drug discovery requires robust experimental models. Systems based on inducible gene expression are well suited to this purpose but are difficult to establish in several epithelial cell types. Using the recently discovered transcriptional transactivator (rtTA2S-M2), we developed a strategy for fast and efficient generation of Tet On cells. Multiple clones of HCT116, SW480, and HT29 human colon cancer cells for doxycycline-regulated gene expression were constructed that constitutively express green fluorescent protein (GFP) for selection/maintenance purposes. The cell lines displayed good fold inducibility (49-124xHCT116; 178-621xSW480; 261-787xHT29) and minimal leakiness after transient transfection with a luciferase reporter or with vectors driving inducible expression of red fluorescent protein (dsRed2), constitutively active c-Src or dominant negative K-Ras4B. The clones preserved their transformed phenotype as demonstrated by comparing their properties to respective wild type cells, in terms of growth in vitro and in vivo (as tumor xenografts), cell cycle traverse, and sensitivity to drugs used in chemotherapy. These engineered cell lines enabled tightly controlled inducible gene expression both in vitro and in vivo, and proved well suited for construction of double-stable cell lines inducibly expressing a protein of interest. As such they represent a useful research tool for example, to dissect oncogene function(s) in colon cancer. Supplementary material for this article be found at http://www.mrw.interscience.wiley.com/suppmat/0730-2312/suppmat/94/suppmat_welman.doc.
Collapse
Affiliation(s)
- Arkadiusz Welman
- Cancer Research UK, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Hermiston TW, Kirn DH. Genetically based therapeutics for cancer: similarities and contrasts with traditional drug discovery and development. Mol Ther 2005; 11:496-507. [PMID: 15771953 DOI: 10.1016/j.ymthe.2004.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 12/07/2004] [Indexed: 11/22/2022] Open
Abstract
The field of molecular therapeutics is in its infancy and represents a promising and novel avenue for targeted cancer treatments. Like the small-molecule and antibody therapeutics before them, however, the genetic-based therapies will face significant research and development challenges in their maturation toward an approved cancer therapy. To facilitate this process, we outline and examine in this review the drug development process, briefly summarizing the research and development paradigms that have accompanied the recent successes of the small-molecule and antibody-based cancer therapeutics. Using this background, we compare and contrast the research and development experiences of small-molecule and antibody therapeutics with genetic-based cancer therapeutics, using oncolytic viruses as a defined example of an experimental molecular therapeutic for cancer.
Collapse
Affiliation(s)
- Terry W Hermiston
- Department of Gene Therapy, Berlex Biosciences, Richmond, CA 94941, USA.
| | | |
Collapse
|
159
|
Stegmeier F, Hu G, Rickles RJ, Hannon GJ, Elledge SJ. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci U S A 2005; 102:13212-7. [PMID: 16141338 PMCID: PMC1196357 DOI: 10.1073/pnas.0506306102] [Citation(s) in RCA: 439] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The advent of RNA interference has led to the ability to interfere with gene expression and greatly expanded our ability to perform genetic screens in mammalian cells. The expression of short hairpin RNA (shRNA) from polymerase III promoters can be encoded in transgenes and used to produce small interfering RNAs that down-regulate specific genes. In this study, we show that polymerase II-transcribed shRNAs display very efficient knockdown of gene expression when the shRNA is embedded in a microRNA context. Importantly, our shRNA expression system [called PRIME (potent RNA interference using microRNA expression) vectors] allows for the multicistronic cotranscription of a reporter gene, thereby facilitating the tracking of shRNA production in individual cells. Based on this system, we developed a series of lentiviral vectors that display tetracycline-responsive knockdown of gene expression at single copy. The high penetrance of these vectors will facilitate genomewide loss-of-function screens and is an important step toward using bar-coding strategies to follow loss of specific sequences in complex populations.
Collapse
Affiliation(s)
- Frank Stegmeier
- Harvard University Medical School, Department of Genetics, Center for Genetics and Genomics, Howard Hughes Medical Institute, and Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
160
|
Bornkamm GW, Berens C, Kuklik-Roos C, Bechet JM, Laux G, Bachl J, Korndoerfer M, Schlee M, Hölzel M, Malamoussi A, Chapman RD, Nimmerjahn F, Mautner J, Hillen W, Bujard H, Feuillard J. Stringent doxycycline-dependent control of gene activities using an episomal one-vector system. Nucleic Acids Res 2005; 33:e137. [PMID: 16147984 PMCID: PMC1201338 DOI: 10.1093/nar/gni137] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Conditional expression systems are of pivotal importance for the dissection of complex biological phenomena. Here, we describe a novel EBV-derived episomally replicating plasmid (pRTS-1) that carries all the elements for conditional expression of a gene of interest via Tet regulation. The vector is characterized by (i) low background activity, (ii) high inducibility in the presence of doxycycline (Dox) and (iii) graded response to increasing concentrations of the inducer. The chicken beta actin promoter and an element of the murine immunoglobin heavy chain intron enhancer drive constitutive expression of a bicistronic expression cassette that encodes the highly Dox-sensitive reverse tetracycline controlled transactivator rtTA2(S)-M2 and a Tet repressor-KRAB fusion protein (tTS(KRAB)) (silencer) placed downstream of an internal ribosomal entry site. The gene of interest is expressed from the bidirectional promoter P(tet)bi-1 that allows simultaneous expression of two genes, of which one may be used as surrogate marker for the expression of the gene of interest. Tight down regulation is achieved through binding of the silencer tTS(KRAB) to P(tet)bi-1 in the absence of Dox. Addition of Dox releases repression and via binding of rtTA2(S)-M2 activates P(tet)bi-1.
Collapse
Affiliation(s)
- Georg W Bornkamm
- GSF-Institut für Klinische Molekularbiologie und Tumorgenetik, Marchioninistrasse 25, D-81377 München, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Liu B, Alluri PG, Yu P, Kodadek T. A potent transactivation domain mimic with activity in living cells. J Am Chem Soc 2005; 127:8254-5. [PMID: 15941237 DOI: 10.1021/ja0515295] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcriptional coactivator-binding peptoids were isolated from a large combinatorial library. One of these molecules is shown to function as a potent activation domain surrogate in mammalian cells. Up to a 900-fold increase in expression of a Gal4-responsive reporter gene is observed when a steroid conjugate of the peptoid is incubated with HeLa cells expressing a Gal4 DNA-binding domain (DBD)-glucocorticoid receptor ligand-binding domain (GRLBD) fusion protein.
Collapse
Affiliation(s)
- Bo Liu
- Departments of Internal Medicine and Molecular Biology and Center for Biomedical Inventions, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
162
|
Dumortier J, Schönig K, Oberwinkler H, Löw R, Giese T, Bujard H, Schirmacher P, Protzer U. Liver-specific expression of interferon gamma following adenoviral gene transfer controls hepatitis B virus replication in mice. Gene Ther 2005; 12:668-77. [PMID: 15647761 DOI: 10.1038/sj.gt.3302449] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interferons control viral replication and the growth of some malignant tumors. Since systemic application may cause severe adverse effects, tissue-specific expression is an attractive alternative. Liver-directed interferon gene therapy offers promising applications such as chronic viral hepatitis B or C or hepatocellular carcinoma and thus needs testing in vivo in suitable animal models. We therefore used the Tet-On system to regulate gene expression in adenoviral vectors, and studied the effect of liver-specific and regulated interferon gamma expression in a mouse model of chronic hepatitis B virus (HBV) infection. In a first generation adenoviral vector, genes encoding for firefly luciferase and interferons alpha, beta or gamma, respectively, were coexpressed under control of the bidirectional tetracycline-regulated promoter P(tet)bi. Liver-specific promoters driving expression of the reverse tetracycline controlled transactivator ensured local expression in the livers of HBV transgenic mice. Following gene transfer, we demonstrated low background, tight regulation and a 1000-fold induction of gene expression by doxycycline. Both genes within the bidirectional transcription unit were expressed simultaneously, and in a liver-specific fashion in cell culture and in living mice. Doxycycline-dependent interferon gamma expression effectively controlled HBV replication in mice, but did not eliminate HBV transcripts. This system will help to study the effects of local cytokine expression in mouse disease models in detail.
Collapse
Affiliation(s)
- J Dumortier
- Department of Virology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Ueberham U, Ueberham E, Brückner MK, Seeger G, Gärtner U, Gruschka H, Gebhardt R, Arendt T. Inducible neuronal expression of transgenic TGF-β1in vivo: dissection of short-term and long-term effects. Eur J Neurosci 2005; 22:50-64. [PMID: 16029195 DOI: 10.1111/j.1460-9568.2005.04189.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Various chronic neurological diseases are associated with increased expression of transforming growth factor-beta1 (TGF-beta1) in the brain. TGF-beta1 has both neuroprotective and neurodegenerative functions, depending on conditions such as duration and the local and temporal pattern of its expression. Previous transgenic approaches did not enable control for these dynamic aspects. To overcome these limitations, we established a transgenic mouse model with inducible neuron-specific expression of TGF-beta1 based on the tetracycline-regulated gene expression system. TGF-beta1 expression was restricted to the brain where it was particularly pronounced in the neocortex, hippocampus and striatum. Transgene expression was highly sensitive to the presence of doxycycline and completely silenced within 6 days after doxycycline application. After long-term expression, perivascular thioflavin-positive depositions, formed by amyloid fibrils, developed. These depositions persisted even after prolonged silencing of the transgene, indicating an irreversible process. Similarly, strong perivascular apolipoprotein E (ApoE) depositions were found after TGF-beta1 expression and these remained despite TGF-beta1 removal. These in vivo observations suggests that the continuous presence of TGF-beta1 as initial trigger is not necessary for the persistence and development of chronic lesions. Neuroprotective effects were observed after short-term expression of TGF-beta1. Death of striatal neurons induced by 3-nitropropionic acid was markedly reduced after induced TGF-beta1 expression.
Collapse
Affiliation(s)
- Uwe Ueberham
- Paul Flechsig Institute for Brain Research, Department of Neuroanatomy, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Aurisicchio L, De Tomassi A, La Monica N, Ciliberto G, Traboni C, Palombo F. Regulated and liver-specific tamarin alpha interferon gene delivery by a helper-dependent adenoviral vector. J Virol 2005; 79:6772-80. [PMID: 15890916 PMCID: PMC1112151 DOI: 10.1128/jvi.79.11.6772-6780.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene therapy approaches based on liver-restricted and regulated alpha interferon (IFN-alpha) expression, recently shown to be effective in different murine hepatitis models, appear promising alternatives to inhibit hepatitis C virus (HCV) replication in patients and minimize side effects. Tamarins (Saguinus species) infected by GB virus B (GBV-B) are considered a valid surrogate model for hepatitis C to study the biology of HCV infection and the development of new antiviral drugs. To test the efficacy of local delivery and expression of IFN-alpha in this model, we have developed HD-TET-tIFN, a helper-dependent adenovirus vector expressing tamarin IFN-alpha (tIFN) under the control of the tetracycline-inducible transactivator rtTA2s-S2. Expression of tIFN was successfully induced both in vitro and in vivo in rodents by doxycycline administration with consequent activation of IFN-responsive genes. More importantly, tIFN efficiently inhibited GBV-B replicon in a Huh-7 hepatoma cell line at low HD-TET-tIFN doses. A certain degree of transcriptional control of tIFN was achieved in tamarins injected with HD-TET-tIFN, but under the conditions used in this study, infection and replication of GBV-B were only delayed and not totally abrogated upon virus challenge. Hepatic delivery and regulated expression of IFN-alpha appear to be a possible approach for the cure of hepatitis, but this approach requires more studies to increase its efficacy. To our knowledge, this is the first report showing a regulated gene expression in a nonhuman primate hepatitis model.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Base Sequence
- DNA, Recombinant/genetics
- Disease Models, Animal
- Female
- Flaviviridae Infections/genetics
- Flaviviridae Infections/immunology
- Flaviviridae Infections/therapy
- GB virus B/immunology
- GB virus B/pathogenicity
- Gene Expression
- Genetic Therapy
- Genetic Vectors
- Helper Viruses/genetics
- Hepatitis C/genetics
- Hepatitis C/immunology
- Hepatitis C/therapy
- Hepatitis, Viral, Animal/genetics
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/therapy
- In Vitro Techniques
- Interferon Type I/genetics
- Liver/immunology
- Liver/virology
- Mice
- Mice, Inbred C57BL
- Rats
- Rats, Sprague-Dawley
- Recombinant Proteins
- Replicon/genetics
- Saguinus/genetics
- Saguinus/immunology
Collapse
Affiliation(s)
- Luigi Aurisicchio
- IRBM-Istituto di Ricerche di Biologia Molecolare P. Angeletti, Via Pontina Km 30.6, Pomezia, Italy.
| | | | | | | | | | | |
Collapse
|
165
|
Rubinchik S, Woraratanadharm J, Yu H, Dong JY. New complex Ad vectors incorporating both rtTA and tTS deliver tightly regulated transgene expression both in vitro and in vivo. Gene Ther 2005; 12:504-11. [PMID: 15660114 DOI: 10.1038/sj.gt.3302437] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulation of transgene expression is a major goal of gene therapy research. Previously, we have developed a complex adenovirus (Ad) vector with tetracycline-regulated expression of a Fas ligand (FasL)-green fluorescent protein (GFP) fusion protein. This vector delivered high levels of activity that was regulated by doxycycline. However, this regulation was limited by the low but significant background activity of the TRE promoter. Recently, the Tet-regulated transcriptional silencer, tTS, was reported to suppress efficiently basal TRE activity without affecting induced expression levels. Here, we report development of Ad vectors that incorporate tTS in combination with that of reverse transactivator (rtTA) coupled with TRE promoter driving transgene expression. Incorporation of tTS improved control of transgene expression in vitro, so that an induction range of over three orders of magnitude was achieved in some cell lines. Effective regulation of transgene expression was also seen in a mouse model in vivo, following systemic vector delivery. In the case of FasL-GFP expression, significant improvement in the control of apoptotic activity both in vitro and in a mouse hepatotoxicity model was demonstrated when using rtTA-tTS vectors. In conclusion, a highly effective transgene regulation system, deliverable by a single adenoviral vector, is now available.
Collapse
Affiliation(s)
- S Rubinchik
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29403, USA
| | | | | | | |
Collapse
|
166
|
Richard P, Pollard H, Lanctin C, Bello-Roufaï M, Désigaux L, Escande D, Pitard B. Inducible production of erythropoietin using intramuscular injection of block copolymer/DNA formulation. J Gene Med 2005; 7:80-6. [PMID: 15468192 DOI: 10.1002/jgm.631] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND We have previously shown that intramuscular injection of plasmid DNA formulated with a non-ionic amphiphile synthetic vector [poly(ethylene oxide)(13)-poly(propylene oxide)(30)-poly(ethylene oxide)(13) block copolymer; PE6400] increases reporter gene expression compared with naked DNA. We have now investigated this simple non-viral formulation for production of secreted proteins from the mouse skeletal muscle. METHODS Plasmids encoding either constitutive human secreted alkaline phosphatase or murine erythropoietin inducible via a Tet-on system were formulated with PE6400 and intramuscularly injected into the mouse tibial anterior muscle. RESULTS PE6400/DNA formulation led to an increased amount of recombinant alkaline phosphatase secreted from skeletal muscle as compared with naked DNA. In the presence of doxycycline, a single injection of 10 microg plasmid encoding inducible murine erythropoietin formulated with PE6400 significantly increased the hematocrit, whereas the same amount of DNA in the absence of PE6400 had no effect. The increase in the hematocrit was stable for 42 days. The tetracycline-inducible promoter permitted pharmacological control of hematocrit level after DNA intramuscular injection. However, 4 months post-injection the hematocrit returned to its pre-injection value, even in the presence of doxycycline. This phenomenon was likely caused by an immune response against the tetracycline-activated transcription factor. CONCLUSIONS Intramuscular injection of plasmid DNA formulated with PE6400 provides an efficient and simple method for secretion and production of non-muscle proteins.
Collapse
Affiliation(s)
- Peggy Richard
- L'Institut du Thorax, Institut National de la Santé et de la Recherche Médicale, Inserm U533, Faculté de Médecine, 44000 Nantes, France
| | | | | | | | | | | | | |
Collapse
|
167
|
Lai JF, Cheng HY, Cheng TL, Lin YY, Chen LC, Lin MT, Jou TS. Doxycycline- and tetracycline-regulated transcriptional silencer enhance the expression level and transactivating performance of rtTA. J Gene Med 2005; 6:1403-13. [PMID: 15523716 DOI: 10.1002/jgm.614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The tetracycline-regulated transcriptional silencer (tTS) has been demonstrated to mitigate leaky expression of the tetracycline-inducible promoter under uninduced condition, and, when conjugated with reverse-type tetracycline-controlled transactivator (rtTA), shows great promise for gene therapy. This effect was attributed to the effectiveness of tTS as a repressor of transcription at the tetracycline-regulated promoter. However, we observed an unexpected increase in transactivational activity by rtTA in the presence of tTS under inducible condition. METHODS To explore the nature of this co-activational effect of tTS on rtTA, we examined the expression patterns of rtTA by Western blotting analysis of total cellular lysates or an enriched ubiquitinated pool of proteins under various conditions, including the one when proteasomal degradation is inhibited. RESULTS We demonstrate tTS, in addition to its established role as a transcriptional silencer, can enhance rtTA expression level by salvaging rtTA from the ubiquitin-dependent proteasomal degradation pathway. Along with this finding, we also demonstrate that doxycycline, a commonly used tetracycline analogue, inhibits the susceptibility of rtTA to ubiquitin/proteasome-mediated degradation and enhances the expression level of rtTA. CONCLUSIONS Taken together, our data establish an unappreciated role of doxycycline and tTS in tetracycline-regulated gene expression and the functionality of rtTA, and should shed light on the design of gene therapy vectors based on tetracycline-controlled transcriptional regulation systems.
Collapse
Affiliation(s)
- Jen-Feng Lai
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7 Chung-Shan S. Road, Taipei, 100 Taiwan
| | | | | | | | | | | | | |
Collapse
|
168
|
Bachrach E, Dreja H, Lin YL, Mettling C, Pinet V, Corbeau P, Piechaczyk M. Effects of virion surface gp120 density on infection by HIV-1 and viral production by infected cells. Virology 2005; 332:418-29. [PMID: 15661172 DOI: 10.1016/j.virol.2004.11.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 10/29/2004] [Accepted: 11/23/2004] [Indexed: 11/29/2022]
Abstract
The quantity of envelope glycoprotein molecules (Env) on HIV-1 particles is still an issue of debate and, depending on the strain of virus and the nature of the producer cells, it can vary greatly. Here, we have attempted to address how Env density influences HIV-1 fitness. To this aim, we have produced HIV-1-derived viral particles with various amounts of R5 Env (low Env: Envlo; high Env: Envhi), using a regulatable expression system. The infectivity was assayed on human cells, engineered to express the HIV receptor CD4 and the co-receptor CCR5, as well as on peripheral blood lymphocytes and macrophages. In these experiments, low levels of Env were sufficient for cell infection, albeit at low efficiency. Increasing the amount of Env resulted in cooperatively improved infectivity, but a threshold was rapidly attained, indicating that only a fraction of Env was required for efficient infection. Unexpectedly, Env incorporation beyond what gives maximal infection transiently stimulated the expression of proviral genes, as well as retrovirus production, in newly infected cells. This was likely a consequence of induced NF-kappaB activity, as this transcription factor is triggered by Envhi, but not by Envlo, virions. Thus, our data suggest that one major effect of high Env density on the surface of HIV may not be better infection yields but rather improved viral production by newly infected cells.
Collapse
Affiliation(s)
- Estanislao Bachrach
- Institute of Molecular Genetics of Montpellier (IGMM)/UMR 5535/IFR24, CNRS, 1919 Route de Mende, 34293 Montpellier Cédex 05, France
| | | | | | | | | | | | | |
Collapse
|
169
|
Vigna E, Amendola M, Benedicenti F, Simmons AD, Follenzi A, Naldini L. Efficient Tet-Dependent Expression of Human Factor IX in Vivo by a New Self-Regulating Lentiviral Vector. Mol Ther 2005; 11:763-75. [PMID: 15851015 DOI: 10.1016/j.ymthe.2004.11.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 11/24/2004] [Indexed: 11/30/2022] Open
Abstract
Regulation of gene expression represents a long-sought goal of gene therapy. However, most viral vectors pose constraints on the incorporation of drug-dependent transcriptional regulatory systems. Here, by optimizing the design of self-regulating lentiviral vectors based on the tetracycline system, we have been able to overcome the limitations of previously reported constructs and to reach both robust expression and efficient regulation from a single vector. The improved performance allows us to report for the first time effective long-term in vivo regulation of a human clotting Factor IX (hF.IX) transgene upon systemic administration of a single vector to SCID mice. We showed that hF.IX expression in the plasma could be expressed to therapeutically significant concentrations, adjusted to different set levels by varying the tetracycline dose, rapidly turned off and on, and completely recovered after each treatment cycle. The new vector design was versatile, as it successfully incorporated a tissue-specific promoter that selectively targeted regulated expression to hepatocytes. Robust transgene expression in the systemic circulation coupled to the ability to switch off and even adjust the expression level may open the way to safer gene-based delivery of therapeutics.
Collapse
Affiliation(s)
- Elisa Vigna
- Institute for Cancer Research and Treatment, University of Torino Medical School, Strada Provinciale 142, 10060 Candiolo, Turin, Italy
| | | | | | | | | | | |
Collapse
|
170
|
Das AT, Baldwin CE, Vink M, Berkhout B. Improving the safety of a conditional-live human immunodeficiency virus type 1 vaccine by controlling both gene expression and cell entry. J Virol 2005; 79:3855-8. [PMID: 15731280 PMCID: PMC1075741 DOI: 10.1128/jvi.79.6.3855-3858.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Live attenuated human immunodeficiency virus type 1 (HIV-1) vaccines are considered unsafe because faster-replicating pathogenic virus variants may evolve after vaccination. We previously presented a conditional-live HIV-1 variant of which replication can be switched off as an alternative vaccination strategy. To improve the safety of such a vaccine, we constructed a new HIV-1 variant that depends not only on doxycycline for gene expression but also on the T20 peptide for cell entry. Replication of this virus can be limited to the level required to induce the immune system by transient administration of doxycycline and T20. Subsequent withdrawal of these inducers efficiently blocks viral replication and evolution.
Collapse
Affiliation(s)
- Atze T Das
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
171
|
Maddison K, Clarke AR. New approaches for modelling cancer mechanisms in the mouse. J Pathol 2005; 205:181-93. [PMID: 15641017 DOI: 10.1002/path.1698] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mouse models of human cancer are vital to our understanding of the neoplastic process, and to advances in both basic and clinical research. Indeed, models of many of the major human tumours are now available and are subject to constant revision to more faithfully recapitulate human disease. Despite these advances, it is important to recognize that limitations do exist to the current range of models. The principal approach to modelling has relied upon the use of constitutive gene knockouts, which can often result in embryonic lethality, can potentially be affected by developmental compensation, and which do not mimic the sporadic development of a tumour expanding from a single cell in an otherwise normal environment. Furthermore, simple knockouts are usually designed to lead to loss of protein function, whereas a subset of cancer-causing mutations clearly results in gain of function. These drawbacks are well recognized and this review describes some of the approaches used to address these issues. Key amongst these is the development of conditional alleles that precisely mimic the mutations found in vivo, and which can be spatially and tissue-specifically controlled using 'smart' systems such as the tetracycline system and Cre-Lox technology. Examples of genes being manipulated in this way include Ki-Ras, Myc, and p53. These new developments in modelling mean that any mutant allele can potentially be turned on or off, or over- or under-expressed, in any tissue at any stage of the life-cycle of the mouse. This will no doubt lead to ever more accurate and powerful mouse models to dissect the genetic pathways that lead to cancer.
Collapse
Affiliation(s)
- Kathryn Maddison
- School of Biosciences, Cardiff University, Cardiff, CF10 3US, UK
| | | |
Collapse
|
172
|
Bendiksen S, Van Ghelue M, Winkler T, Moens U, Rekvig OP. Autoimmunity to DNA and nucleosomes in binary tetracycline-regulated polyomavirus T-Ag transgenic mice. THE JOURNAL OF IMMUNOLOGY 2005; 173:7630-40. [PMID: 15585891 DOI: 10.4049/jimmunol.173.12.7630] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanism(s) responsible for autoimmunity to DNA and nucleosomes in SLE is largely unknown. We have demonstrated that nucleosome-polyomavirus T-Ag complexes, formed in context of productive polyomavirus infection, activate dsDNA-specific B cells and nucleosome-specific CD4(+) T cells. To investigate whether de novo expressed T-Ag is able to terminate nucleosome-specific T cell tolerance and to maintain anti-dsDNA Ab production in nonautoimmune mice, we developed two binary transgenic mouse variants in which expression of SV40 large T-Ag is controlled by tetracycline, MUP tTA/T-Ag (tet-off), and CMV rtTA/T-Ag (tet-on) mice. Data demonstrate that MUP tTA/T-Ag mice, but not CMV rtTA/T-Ag mice, are tightly controlling T-Ag expression. In MUP tTA/T-Ag transgenic mice, postnatal T-Ag expression activated CD8(+) T cells but not DNA-specific B cells, while immunization with T-Ag and nucleosome-T-Ag-complexes before T-Ag expression resulted in elevated and remarkably stable titers of anti-T-Ag and anti-dsDNA Abs and activation of T-Ag-specific CD4(+) T cells. Immunization of nonexpressing MUP tTA/T-Ag mice resulted in transient anti-T-Ag and anti-dsDNA Abs. This system reveals that a de novo expressed DNA-binding quasi-autoantigen maintain anti-dsDNA Abs and CD4(+) T cell activation once initiated by immunization, demonstrating direct impact of a single in vivo expressed molecule on sustained autoimmunity to DNA and nucleosomes.
Collapse
MESH Headings
- Animals
- Antibodies, Antinuclear/biosynthesis
- Antibodies, Viral/biosynthesis
- Antigen Presentation/genetics
- Antigens, Viral, Tumor/administration & dosage
- Antigens, Viral, Tumor/biosynthesis
- Antigens, Viral, Tumor/genetics
- Antigens, Viral, Tumor/physiology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Cytomegalovirus Vaccines/administration & dosage
- Cytomegalovirus Vaccines/immunology
- DNA, Viral/immunology
- Lymphocyte Activation/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Nucleosomes/immunology
- Polyomavirus/genetics
- Polyomavirus/immunology
- Simian virus 40/immunology
- Tetracycline/administration & dosage
- Tetracycline/pharmacology
- Trans-Activators/genetics
Collapse
Affiliation(s)
- Signy Bendiksen
- Department of Biochemistry, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | |
Collapse
|
173
|
Griffin KJ, Kirschner LS, Matyakhina L, Stergiopoulos S, Robinson-White A, Lenherr S, Weinberg FD, Claflin E, Meoli E, Cho-Chung YS, Stratakis CA. Down-regulation of regulatory subunit type 1A of protein kinase A leads to endocrine and other tumors. Cancer Res 2005; 64:8811-5. [PMID: 15604237 DOI: 10.1158/0008-5472.can-04-3620] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations of the human type Ialpha regulatory subunit (RIalpha) of cyclic AMP-dependent protein kinase (PKA; PRKAR1A) lead to altered kinase activity, primary pigmented nodular adrenocortical disease, and tumors of the thyroid and other tissues. To bypass the early embryonic lethality of Prkar1a(-/-) mice, we established transgenic mice carrying an antisense transgene for Prkar1a exon 2 (X2AS) under the control of a tetracycline-responsive promoter. Down-regulation of Prkar1a by up to 70% was achieved in transgenic mouse tissues and embryonic fibroblasts, with concomitant changes in kinase activity and increased cell proliferation, respectively. Mice developed thyroid follicular hyperplasia and adenomas, adrenocortical hyperplasia, and other features reminiscent of primary pigmented nodular adrenocortical disease, histiocytic and epithelial hyperplasias, lymphomas, and other mesenchymal tumors. These were associated with allelic losses of the mouse chromosome 11 Prkar1a locus, an increase in total type II PKA activity, and higher RIIbeta protein levels. This mouse provides a novel, useful tool for the investigation of cyclic AMP, RIalpha, and PKA functions and confirms the critical role of Prkar1a in tumorigenesis in endocrine and other tissues.
Collapse
Affiliation(s)
- Kurt J Griffin
- Section on Genetics and Endocrinology, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Pluta K, Luce MJ, Bao L, Agha-Mohammadi S, Reiser J. Tight control of transgene expression by lentivirus vectors containing second-generation tetracycline-responsive promoters. J Gene Med 2005; 7:803-17. [PMID: 15655804 DOI: 10.1002/jgm.712] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The goal of this study was to design improved regulatable lentivirus vector systems. The aim was to design tetracycline (tet)-regulatable lentivirus vectors based on the Tet-on system displaying low background expression in the absence of the doxycycline (DOX) inducer and high transgene expression levels in the presence of DOX. METHODS We constructed a binary lentivirus vector system that is composed of a self-inactivating (SIN) lentivirus vector bearing inducible first- or second-generation tet-responsive promoter elements (TREs) driving expression of a transgene and a second lentivirus vector encoding a reverse tetracycline-controlled transactivator (rtTA) that activates transgene expression from the TRE in the presence of DOX. RESULTS We evaluated a number of different rtTAs and found rtTA2S-M2 to induce the highest levels of transgene expression. Regulated transgene expression was stable in human breast carcinoma cells implanted into nude mice for up to 11 weeks. In an attempt to minimize background expression levels, the chicken beta-globin cHS4 insulator element was cloned into the 3' long terminal repeat (LTR) of the transgene transfer vector. The cHS4 insulator element reduced background expression but expression levels following DOX addition were lower than those observed with vectors lacking an insulator sequence. In a second strategy, vectors bearing second-generation TREs harboring repositioned tetracycline operator elements were used. Such vectors displayed greatly reduced leakiness in the absence of DOX and induced transgene expression levels were up to 522-fold above those seen in the absence of DOX. CONCLUSIONS Inducible lentivirus vectors bearing insulators or second-generation TREs will likely prove useful for applications demanding the lowest levels of background expression.
Collapse
Affiliation(s)
- Krzysztof Pluta
- Gene Therapy Program, Department of Medicine, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
175
|
Tsuchida T, Berlin WK, Sauer B. Dual chromogenic reporter gene detection in mammalian cells with lacZ and arabinofuranosidase. Biotechniques 2004; 37:896-7. [PMID: 15597535 DOI: 10.2144/04376bm01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Tomiko Tsuchida
- National Institute of Diabetes, Digestive and Kidney Disease, Bethesda, MD, USA
| | | | | |
Collapse
|
176
|
Hirst GL, Balmain A. Forty years of cancer modelling in the mouse. Eur J Cancer 2004; 40:1974-80. [PMID: 15315806 DOI: 10.1016/j.ejca.2004.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
Mouse models of human cancer have played an important role in formulating modern concepts of multistage carcinogenesis, and are providing us with a new armoury of tools for the testing of novel therapeutic approaches to cancer treatment. The development of inducible and conditional technologies provide us with greater opportunity to generate mouse models which faithfully recapitulate human tumorigenesis, in terms of both the biology and the genetics of this disease. It is now feasible to control, in time and space, the development of tumours in almost any mouse tissue, such that we now have available mouse models of all major human cancers. Moreover, novel non-invasive approaches to tumour imaging will enable us to follow tumour development and metastasis in vivo, as well as the effects of candidate therapeutic drugs. Such new generation tumour models, which accurately emulate the disease state in situ, should provide a useful platform with which to experimentally test drugs targeted to specific gene products, or combinations of genes that control rate-limiting steps of tumour development.
Collapse
Affiliation(s)
- G L Hirst
- UCSF Cancer Research Institute, 2340 Sutter Street, San Francisco, CA 94115, USA
| | | |
Collapse
|
177
|
Chenuaud P, Larcher T, Rabinowitz JE, Provost N, Joussemet B, Bujard H, Samulski RJS, Favre D, Moullier P. Optimal design of a single recombinant adeno-associated virus derived from serotypes 1 and 2 to achieve more tightly regulated transgene expression from nonhuman primate muscle. Mol Ther 2004; 9:410-8. [PMID: 15006608 DOI: 10.1016/j.ymthe.2003.12.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Accepted: 12/26/2003] [Indexed: 11/25/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vector supports long-term transgene expression from skeletal muscle in most mammals, including human. In some instances, the requirement for tight control of the transgene expression is expected. The original tetracycline-dependent system using the rtTA (Dox-on) transactivator displayed a baseline activity in the off state but improved versions are now available and need to be evaluated in a single-rAAV-vector strategy. In the present study we cloned, in three different orientations, the two expression cassettes responsible for doxycycline-mediated transgene regulation and further evaluated the basal and inducible activity of the recently described rtTA2S-S2, rtTA2S-M2, and rtTA2S-M2nls transactivators. Evaluations were conducted in vivo in mice and nonhuman primates using the respective homologous erythropoietin cDNA as a reporter gene because of its sensitive detection by ELISA. The woodchuck hepatitis virus posttranscriptional regulatory element sequence was also introduced to enhance further the stringency with respect to basal activity in the absence of inducer.
Collapse
|
178
|
Jiang L, Rampalli S, George D, Press C, Bremer EG, O'Gorman MRG, Bohn MC. Tight regulation from a single tet-off rAAV vector as demonstrated by flow cytometry and quantitative, real-time PCR. Gene Ther 2004; 11:1057-67. [PMID: 15152187 DOI: 10.1038/sj.gt.3302245] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vectors suitable for delivery of therapeutic genes to the CNS for chronic neurodegenerative diseases will require regulatable transgene expression. In this study, three self-regulating rAAV vectors encoding humanized green fluorescent protein (hGFP) were made using the tetracycline (tet)-off system. Elements were cloned in different orientations relative to each other and to the AAV internal terminal repeat (ITRs). The advantage of this vector system is that all infected cells will carry both the 'therapeutic' gene and the tet-regulator. To compare the efficiency of the vectors, 293T cells infected by each vector were grown in the presence or absence of the tet-analog doxycycline (dox). Cells were analyzed by flow cytometry for hGFP protein expression, and quantitative RT-PCR (QRT-PCR) for levels of hGFP mRNA and the tet-activator (tTA) mRNA. In the presence of dox, cells infected with one of the vectors, rAAVS3, showed less than 2% total fluorescent intensity and mRNA copy number than cells grown without dox. The other two vectors were significantly more leaky. Levels of tTA mRNA were not affected by dox. The S3 vector also displayed tight regulation in HeLa and HT1080 cells. To assess regulation in the brain, the S3 vector was injected into rat striatum and rats maintained on regular or dox-supplemented water. At 1 month after vector injection, numerous positive cells were observed in rats maintained on regular water whereas only rare positive cells with very low levels of fluorescence were observed in rats maintained on water containing dox. The QRT-PCR analysis showed that dox inhibited expression of hGFP mRNA in brain by greater than 99%. These results demonstrate that exceedingly tight regulation of transgene expression is possible using the tet-off system in the context of a self-regulating rAAV vector and that the specific orientation of two promoters relative to each other and to the ITRs is important. Regulatable vectors based on this design are ideal for therapeutic gene delivery to the CNS.
Collapse
Affiliation(s)
- L Jiang
- 1Department of Pediatrics, Children's Memorial Institute for Education & Research, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
179
|
Franke K, Curth K, Lenart J, Knochenhauer D, Kietzmann T. Enhanced plasminogen activator inhibitor-1 expression in transgenic mice with hepatocyte-specific overexpression of superoxide dismutase or glutathione peroxidase. Antioxid Redox Signal 2004; 6:721-8. [PMID: 15242553 DOI: 10.1089/1523086041361613] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, we developed a double-transgenic mouse model allowing hepatocyte-specific and regulated expression of the redox-modifying enzymes copper/zinc superoxide dismutase (SOD) and glutathione peroxidase (GPX) by using a tetracycline-regulatable gene expression system. Within this system, the SOD and GPX level can be regulated deliberately by addition or removal of doxycycline hydrochloride to the drinking water. As reactive oxygen species (ROS) have been implicated in a number of pathological conditions, such as atherosclerosis, thrombosis, or liver fibrosis, processes that are also frequently associated with enhanced levels of plasminogen activator inhibitor-1 (PAI-1), it was the aim of the present study to investigate the influence of SOD and GPX overexpression on the regulation of PAI-1. PAI-1 mRNA and protein levels in tetracycline transactivator-dependent SOD-overexpressing double-transgenic mice reached values 2.5- to threefold above the normal mRNA level. By applying doxycycline, a deinduction of the PAI-1 levels was observed. By using the same protocol, PAI-1 mRNA and protein levels were enhanced in GPX double-transgenic mice, and again this response was blunted by the addition of doxycycline. These studies provide some new information regarding the role of ROS within the proteolytic processes in hepatocytes that require PAI-1.
Collapse
Affiliation(s)
- Kai Franke
- IBA GmbH, Rudolf-Wissell-Str. 28, 37079 Göttingen, Germany
| | | | | | | | | |
Collapse
|
180
|
Muñoz I, Gómez A, Zanuy S, Carrillo M. A one-step approach to obtain cell clones expressing tetracycline-responsive transactivators. Anal Biochem 2004; 331:153-60. [PMID: 15246008 DOI: 10.1016/j.ab.2004.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Indexed: 10/26/2022]
Abstract
Despite the wide application of the tetracycline-regulated gene expression system, several drawbacks in establishing the system in in vitro-cultured cells have been described. Most of the problems are related to obtaining a reliable tetracycline-regulated cell clone, which often results in arduous labor. We describe here a new approach to facilitate the screening and selection of such cell clones. We have constructed a tetracycline-responsive plasmid that harbors an antibiotic resistance gene fused to the enhanced green fluorescent protein (EGFP) gene and the luciferase gene, both under the control of a bidirectional promoter. We demonstrate that the selection of tetracycline-regulated clones is highly simplified by using this plasmid. Only clones expressing the system in a functional manner are able to survive under antibiotic selection. In addition, a quick characterization of the responsiveness of the clones is possible by monitoring GFP expression in vivo.
Collapse
Affiliation(s)
- Iciar Muñoz
- Department of Fish Reproductive Physiology, Instituto de Acuicultura de Torrelasal, CSIC, Ribera de Cabanes, 12595 Torrelasal, Castellon, Spain
| | | | | | | |
Collapse
|
181
|
Ou W, Xiong Y, Silver J. Quantification of virus-envelope-mediated cell fusion using a tetracycline transcriptional transactivator: fusion does not correlate with syncytium formation. Virology 2004; 324:263-72. [PMID: 15207614 DOI: 10.1016/j.virol.2004.02.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 02/03/2004] [Indexed: 11/19/2022]
Abstract
Cell fusion occurs in many cellular processes and viral infections. We developed a new, quantitative cell fusion assay based on the tetracycline-controlled transactivator (tTA)-induced expression of a luciferase reporter gene. The assay is objective, sensitive, linear over 2-3 orders of magnitude, amenable to microtiter-plate format, and generalizable to study fusion mediated by a variety of genes. Applied to HIV and MLV, cell fusion paralleled virus entry in terms of co-receptor requirements, need for post-translational processing of envelope, and complementation of SU mutations by soluble receptor-binding domain. However, biochemically measured fusion did not correlate with syncytia detected by standard light microscopy. When the assay indicated cell fusion occurred but overt syncytia were not observed, confocal microscopy using fluorescent protein markers showed that fusion was limited mainly to pairs of cells. Such nonprogressive cell fusion suggests that post-translational processing of envelope may be altered in heterokaryons co-expressing envelope and receptor.
Collapse
MESH Headings
- Animals
- Cell Fusion
- Cell Line
- Gene Expression Regulation, Viral/drug effects
- Genes, Reporter
- Giant Cells/cytology
- Giant Cells/virology
- Leukemia Virus, Murine/drug effects
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/physiology
- Luciferases/analysis
- Luciferases/biosynthesis
- Luciferases/genetics
- Microscopy, Confocal
- Protein Synthesis Inhibitors/pharmacology
- Receptors, Virus/biosynthesis
- Receptors, Virus/genetics
- Receptors, Virus/physiology
- Reproducibility of Results
- Tetracycline/pharmacology
- Trans-Activators/pharmacology
- Transcription, Genetic/drug effects
- Transfection
- Viral Fusion Proteins/biosynthesis
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/physiology
- Virus Replication
Collapse
Affiliation(s)
- Wu Ou
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Building 4 Room 336, 4 Center Drive, MSC 4060, Bethesda, MD 20892-0460, USA.
| | | | | |
Collapse
|
182
|
Riehle MA, Srinivasan P, Moreira CK, Jacobs-Lorena M. Towards genetic manipulation of wild mosquito populations to combat malaria: advances and challenges. ACTA ACUST UNITED AC 2004; 206:3809-16. [PMID: 14506216 DOI: 10.1242/jeb.00609] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Malaria kills millions of people every year, yet there has been little progress in controlling this disease. For transmission to occur, the malaria parasite has to complete a complex developmental cycle in the mosquito. The mosquito is therefore a potential weak link in malaria transmission, and generating mosquito populations that are refractory to the parasite is a potential means of controlling the disease. There has been considerable progress over the last decade towards developing the tools for creating a refractory mosquito. Accomplishments include germline transformation of several important mosquito vectors, the completed genomes of the mosquito Anopheles gambiae and the malaria parasite Plasmodium falciparum, and the identification of promoters and effector genes that confer resistance in the mosquito. These tools have provided researchers with the ability to engineer a refractory mosquito vector, but there are fundamental gaps in our knowledge of how to transfer this technology safely and effectively into field populations. This review considers strategies for interfering with Plasmodium development in the mosquito, together with issues related to the transfer of laboratory-acquired knowledge to the field, such as minimization of transgene fitness load to the mosquito, driving genes through populations, avoiding the selection of resistant strains, and how to produce and release populations of males only.
Collapse
Affiliation(s)
- Michael A Riehle
- Johns Hopkins University, Bloomberg School of Public Health, Dept of Molecular Microbiology & Immunology, 615 N. Wolfe St, Baltimore, MD 21205-2179, USA
| | | | | | | |
Collapse
|
183
|
Zabala M, Wang L, Hernandez-Alcoceba R, Hillen W, Qian C, Prieto J, Kramer MG. Optimization of the Tet-on system to regulate interleukin 12 expression in the liver for the treatment of hepatic tumors. Cancer Res 2004; 64:2799-804. [PMID: 15087396 DOI: 10.1158/0008-5472.can-03-3061] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interleukin 12 (IL-12) is a potent antitumoral cytokine, but it can be toxic at high doses. Therapy of liver tumors might benefit from the use of vectors enabling tight control of IL-12 expression in hepatic tissue for long periods of time. To this aim, we have improved the Tet-on system by modifying the minimal region of the inducible promoter and adjusting the level of the trans-activator using liver-specific promoters with graded activities. The resulting vectors allowed hepato-specific gene regulation with lower basal activity and higher inducibility compared with the original system in the absence of repressor molecules. The basal and final protein levels depend on the strength of the promoter that directs the transcripcional activator as well as the relative orientation of the two genes in the same plasmid. We have selected the construct combining minimal leakage with higher level of induced gene expression to regulate IL-12 after DNA transfer to mouse liver. Administration of doxycycline (Dox) enhanced IL-12 expression in a dose-dependent manner, whereas it was undetectable in serum in the noninduced state. Gene activation could be repeated several times, and sustained levels of IL-12 were achieved by daily administration of Dox. The antitumor effect of IL-12 was evaluated in a mouse model of metastatic colon cancer to the liver. Complete eradication of liver metastasis and prolonged survival was observed in all mice receiving Dox for 10 days. These data demonstrate the potential of a naked DNA gene therapy strategy to achieve tight control of IL-12 within the liver for the treatment of cancer.
Collapse
Affiliation(s)
- Maider Zabala
- Division of Hepatology and Gene Therapy, School of Medicine, Fundacion para la Investigacion Medica Aplicada (FIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
184
|
Frijhoff AFW, Conti CJ, Senderowicz AM. Advances in molecular carcinogenesis: current and future use of mouse models to screen and validate molecularly targeted anticancer drugs. Mol Carcinog 2004; 39:183-94. [PMID: 15057870 DOI: 10.1002/mc.20013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Survival of patients with advanced solid tumors has not significantly improved over the past 30 years. Although molecularly targeted anticancer drugs offer promise, few drugs make it through the end of the Food and Drug Administration approval process. Animal models that more closely resemble human carcinogenesis may bridge the gap between preclinical success and benefits for patients. We discuss pros and cons of several mouse models, including genetically engineered mice that each represent different aspects of human cancer, and the screening of targeted drugs in these models.
Collapse
Affiliation(s)
- Anita F W Frijhoff
- The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA
| | | | | |
Collapse
|
185
|
Wu CM, Lin MW, Cheng JT, Wang YM, Huang YW, Sun WZ, Lin CR. Regulated, electroporation-mediated delivery of pro-opiomelanocortin gene suppresses chronic constriction injury-induced neuropathic pain in rats. Gene Ther 2004; 11:933-40. [PMID: 15116065 DOI: 10.1038/sj.gt.3302244] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously reported that intrathecal pro-opiomelanocortin gene electroporation could reduce pain sensitivity induced by chronic constriction injury (CCI) of the sciatic nerve. For optimal use of antinociceptive gene therapy, it might be important to control the expression of the transfected gene extrinsically. For this purpose, a doxycycline-controlled transrepressor system composed of two plasmids coding, respectively, for pro-opiomelanocortin gene (pTRE2-POMC) and the silencer (pTel-off) was employed. The regulation of beta-endorphin expression was first assessed in spinal neuronal culture, then we electrotranfected this plasmid into the spinal cord of mononeuropathic rats and evaluated the analgesic potential of this therapy in vivo by thermal and mechanical withdrawal latency. Intraperitoneal injections of various doses of doxycycline were made to elucidate the possible exogenous downregulation of transfected beta-endorphin gene expression in vivo. The levels of beta-endorphin were analyzed by intrathecal microdialysis and radioimmunoassay. Intrathecal pTRE2-POMC/pTel-off electroporation elevated spinal beta-endorphin levels, as manifested in a significantly elevated pain threshold for chronic constriction injury limbs. Intraperitoneal doxycycline decreased the antinociceptive effect and spinal beta-endorphin levels in a dose-dependent manner. We concluded that intrathecal pTRE2-POMC/pTel-off electroporation alleviates CCI-induced limb pain, and can be controlled by intraperitoneal doxycycline administration.
Collapse
Affiliation(s)
- C-M Wu
- Department of Biological Sciences, National Sun Yat-Sen University, Taiwan
| | | | | | | | | | | | | |
Collapse
|
186
|
Sudomoina M, Latypova E, Favorova OO, Golemis EA, Serebriiskii IG. A gene expression system offering multiple levels of regulation: the Dual Drug Control (DDC) system. BMC Biotechnol 2004; 4:9. [PMID: 15117411 PMCID: PMC420247 DOI: 10.1186/1472-6750-4-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 04/29/2004] [Indexed: 12/17/2022] Open
Abstract
Background Whether for cell culture studies of protein function, construction of mouse models to enable in vivo analysis of disease epidemiology, or ultimately gene therapy of human diseases, a critical enabling step is the ability to achieve finely controlled regulation of gene expression. Previous efforts to achieve this goal have explored inducible drug regulation of gene expression, and construction of synthetic promoters based on two-hybrid paradigms, among others. Results In this report, we describe the combination of dimerizer-regulated two-hybrid and tetracycline regulatory elements in an ordered cascade, placing expression of endpoint reporters under the control of two distinct drugs. In this Dual Drug Control (DDC) system, a first plasmid expresses fusion proteins to DBD and AD, which interact only in the presence of a small molecule dimerizer; a second plasmid encodes a cassette transcriptionally responsive to the first DBD, directing expression of the Tet-OFF protein; and a third plasmid encodes a reporter gene transcriptionally responsive to binding by Tet-OFF. We evaluate the dynamic range and specificity of this system in comparison to other available systems. Conclusion This study demonstrates the feasibility of combining two discrete drug-regulated expression systems in a temporally sequential cascade, without loss of dynamic range of signal induction. The efficient layering of control levels allowed by this combination of elements provides the potential for the generation of complex control circuitry that may advance ability to regulate gene expression in vivo.
Collapse
Affiliation(s)
- Marina Sudomoina
- Department of Molecular Biology and Biotechnology, Russian State Medical University, Moscow, Russia
| | - Ekaterina Latypova
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Olga O Favorova
- Department of Molecular Biology and Biotechnology, Russian State Medical University, Moscow, Russia
| | - Erica A Golemis
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Ilya G Serebriiskii
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
187
|
Janse DM, Crosas B, Finley D, Church GM. Localization to the proteasome is sufficient for degradation. J Biol Chem 2004; 279:21415-20. [PMID: 15039430 DOI: 10.1074/jbc.m402954200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The majority of unstable proteins in eukaryotic cells are targeted for degradation through the ubiquitin-proteasome pathway. Substrates for degradation are recognized by the E1, E2, and E3 ubiquitin conjugation machinery and tagged with polyubiquitin chains, which are thought to promote the proteolytic process through their binding with the proteasome. We describe a method to bypass the ubiquitination step artificially both in vivo and in a purified in vitro system. Seven proteasome subunits were tagged with Fpr1, and fusion reporter constructs were created with the Fpr1-rapamycin binding domain of Tor1. Reporter proteins were localized to the proteasome by the addition of rapamycin, a drug that heterodimerizes Fpr1 and Tor1. Degradation of reporter proteins was observed with proteasomes that had either Rpn10 or Pre10 subunits tagged with Fpr1. Our experiments resolved a simple but central problem concerning the design of the ubiquitin-proteasome pathway. We conclude that localization to the proteasome is sufficient for degradation and, therefore, any added functions polyubiquitin chains possess beyond tethering substrates to the proteasome are not strictly necessary for proteolysis.
Collapse
Affiliation(s)
- Daniel M Janse
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
188
|
Toniatti C, Bujard H, Cortese R, Ciliberto G. Gene therapy progress and prospects: transcription regulatory systems. Gene Ther 2004; 11:649-57. [PMID: 14985790 DOI: 10.1038/sj.gt.3302251] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The clinical efficacy and safety as well as the application range of gene therapy will be broadened by developing systems capable of finely modulating the expression of therapeutic genes. Transgene regulation will be crucial for maintaining appropriate levels of a gene product within the therapeutic range, thus preventing toxicity. Moreover, the possibility to modulate, stop or resume transgene expression in response to disease evolution would facilitate the combination of gene therapy with more conventional therapeutic modalities. The development of ligand-dependent transcription regulatory systems is thus of great importance. Here, we summarize the most recent progress in the field.
Collapse
Affiliation(s)
- C Toniatti
- 1I.R.B.M.-P. Angeletti, Via Pontina Km. 30.600, 00040 Pomezia, Rome, Italy
| | | | | | | |
Collapse
|
189
|
Das AT, Zhou X, Vink M, Klaver B, Verhoef K, Marzio G, Berkhout B. Viral evolution as a tool to improve the tetracycline-regulated gene expression system. J Biol Chem 2004; 279:18776-82. [PMID: 14761948 DOI: 10.1074/jbc.m313895200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We present viral evolution as a novel and powerful method to optimize non-viral proteins. We used this approach to optimize the tetracycline (Tc)-regulated gene expression system (Tet system) for its function in mammalian cells. The components of the Tet system were incorporated in the human immunodeficiency virus (HIV)-1 virus such that viral replication is controlled by this regulatory system. Upon long term replication of this HIV-rtTA virus in human T cells, we obtained a virus variant with an enhanced replication potential resulting from an improved rtTA component of the introduced Tet system. We identified a single amino acid exchange, F86Y, which enhances the transcriptional activity and doxycycline (dox) sensitivity of rtTA. We generated a new rtTA variant that is 5-fold more active at high dox levels than the initial rtTA, and 25-fold more sensitive to dox, whereas the background activity in the absence of dox is not increased. This new rtTA variant will be very useful in biological applications that require a more sensitive or active Tet system. Our results demonstrate that the viral evolution strategy can be used to improve the activity of genes by making them an integral and essential part of the virus.
Collapse
Affiliation(s)
- Atze T Das
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
190
|
Vaysse L, Harbottle R, Bigger B, Bergau A, Tolmachov O, Coutelle C. Development of a Self-assembling Nuclear Targeting Vector System Based on the Tetracycline Repressor Protein. J Biol Chem 2004; 279:5555-64. [PMID: 14607832 DOI: 10.1074/jbc.m311894200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ultimate destination for most gene therapy vectors is the nucleus and nuclear import of potentially therapeutic DNA is one of the major barriers for nonviral vectors. We have developed a novel approach of attaching a nuclear localization sequence (NLS) peptide to DNA in a non-essential position, by generating a fusion between the tetracycline repressor protein TetR and the SV40-derived NLS peptide. The high affinity and specificity of TetR for the short DNA sequence tetO was used in these studies to bind the NLS to DNA as demonstrated by the reduced electrophoretic mobility of the TetR.tetO-DNA complexes. The protein TetR-NLS, but not control protein TetR, specifically enhances gene expression from lipofected tetO-containing DNA between 4- and 16-fold. The specific enhancement is observed in a variety of cell types, including primary and growth-arrested cells. Intracellular trafficking studies demonstrate an increased accumulation of fluorescence labeled DNA in the nucleus after TetR-NLS binding. In comparison, binding studies using the similar fusion of peptide nucleic acid (PNA) with NLS peptide, demonstrate specific binding of PNA to plasmid DNA. However, although we observed a 2-8.5-fold increase in plasmid-mediated luciferase activity with bis-PNA-NLS, control bis-PNA without an NLS sequence gave a similar increase, suggesting that the effect may not be because of a specific bis-PNA-NLS-mediated enhancement of nuclear transfer of the plasmid. Overall, we found TetRNLS-enhanced plasmid-mediated transgene expression at a similar level to that by bis-PNA-NLS or bis-PNA alone but specific to nuclear uptake and significantly more reliable and reproducible.
Collapse
Affiliation(s)
- Laurence Vaysse
- Gene Therapy Research Group, Division of Biomedical Science, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
191
|
Celetti A, Cerrato A, Merolla F, Vitagliano D, Vecchio G, Grieco M. H4(D10S170), a gene frequently rearranged with RET in papillary thyroid carcinomas: functional characterization. Oncogene 2004; 23:109-21. [PMID: 14712216 DOI: 10.1038/sj.onc.1206981] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human thyroid papillary carcinomas are characterized by rearrangements of the RET protooncogene with a number of heterologous genes, which generate the RET/papillary thyroid carcinoma (PTC) oncogenes. One of the most frequent variants of these recombination events is the fusion of the intracellular kinase-encoding domain of RET to the first 101 amino acids of a gene named H4(D10S170). We have characterized the H4(D10S170) gene product, showing that it is a ubiquitously expressed 55 KDa nuclear and cytosolic protein that is phosphorylated following serum stimulation. This phosphorylation was found to depend on mitogen-activated protein kinase (MAPK) Erk1/2 activity and to be associated to the relocation of H4(D10S170) from the nucleus to the cytosol. Overexpression of the H4(D10S170) gene was able to induce apoptosis of thyroid follicular epithelial cells; conversely a carboxy-terminal truncated H4(D10S170) mutant H4(1-101), corresponding to the portion included in the RET/PTC1 oncoprotein, behaved as dominant negative on the proapoptotic function and nuclear localization of H4(D10S170). Furthermore, conditional expression of the H4(D10S170)-dominant negative truncated mutant protected cells from stress-induced apoptosis. The substitution of serine 244 with alanine abrogated the apoptotic function of H4(D10S170). These data suggest that loss of the H4(D10S170) gene function might have a role in thyroid carcinogenesis by impairing apoptosis.
Collapse
Affiliation(s)
- Angela Celetti
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o, University Federico II, Naples, Italy
| | | | | | | | | | | |
Collapse
|
192
|
Abstract
PURPOSE OF REVIEW This review discusses the dosage effects of some oncogenes in leukemogenesis and compares various methods that model human hematologic malignancies in mice by introducing genetic lesions in a cell type-specific, time-controlled, and dosage-relevant manner. RECENT FINDINGS Recent evidence indicates that optimal dosage of cancer-related gene products plays an important role in the induction of mouse tumors that recapitulate their human counterparts. SUMMARY The mouse is a very valuable model system for experimentally dissecting the in vivo pathogenesis of cancer, for identifying pharmacological targets of cancer and for evaluating cancer therapies. In modeling human cancer, it has been shown that both the timing of introducing/activating oncogenic mutation(s) and the cell types into which the genetic lesion(s) is targeted are critical for cancer development. Recent studies also showed that efficient induction of relevant human leukemia in mice by certain oncogenes, such as PML/RARalpha and TEL/ABL, only occurred when they were expressed at a low level or close to pathophysiologically relevant level. These studies stress the importance of studying oncoprotein function at pathophysiologically relevant expression levels. Conditional gene expression systems are powerful tools for developing mouse models for human cancer by introducing genetic lesions in a cell type-specific, time-controlled and dosage-relevant manner. The bone marrow retroviral transduction and transplantation system can also mimic the cell and temporally specific origin of hematological malignancies by targeting oncogenes into sorted hematopoietic cells. This versatile approach is particularly powerful in structure-function analysis of oncogenes in vivo. However, overexpression of a transgene driven by retroviral vectors may alter the biological outcomes of the transgene in vivo. My colleagues and I have shown that generating vectors with modulated transgene expression can overcome this limitation of the retroviral transduction system in modeling human cancer in mice. Conditional gene expression and the modified retroviral transduction systems will be complimentary in studying human cancers in mice.
Collapse
Affiliation(s)
- Ruibao Ren
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, MA 02454-9110, USA.
| |
Collapse
|
193
|
Das AT, Verhoef K, Berkhout B. A Conditionally Replicating Virus as a Novel Approach Toward an HIV Vaccine. Methods Enzymol 2004; 388:359-79. [PMID: 15289083 DOI: 10.1016/s0076-6879(04)88028-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Atze T Das
- Department of Human Retrovirology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
194
|
Voutetakis A, Wang J, Baum BJ. Utilizing endocrine secretory pathways in salivary glands for systemic gene therapeutics. J Cell Physiol 2004; 199:1-7. [PMID: 14978729 DOI: 10.1002/jcp.10429] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mammalian salivary glands are commonly used models of exocrine secretion. However, there is substantial experimental evidence showing the physiological existence of endocrine secretory pathways in these tissues. The use of gene transfer technology in vivo has allowed the unambiguous demonstration of these endocrine pathways. We and others have exploited such findings and evaluated salivary glands as possible target tissues for systemic applications of gene therapeutics. Salivary glands present numerous advantages for this purpose, including being well encapsulated, which limits extra-glandular vector dissemination, and having the luminal membranes of almost all parenchymal cells accessible via intraoral delivery of vectors through the main excretory ducts. Existing studies suggest that clinical benefits will result from salivary gland targeted systemic gene therapeutics.
Collapse
Affiliation(s)
- Antonis Voutetakis
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, DHHS, Bethesda, Maryland 20892-1190, USA
| | | | | |
Collapse
|
195
|
Abstract
Gene regulation by tetracyclines has become a widely-used tool to study gene functions in pro- and eukaryotes. This regulatory system originates from Gram-negative bacteria, in which it fine-tunes expression of a tetracycline-specific export protein mediating resistance against this antibiotic. This review attempts to describe briefly the selective pressures governing the evolution of tetracycline regulation, which have led to the unique regulatory properties underlying its success in manifold applications. After discussing the basic mechanisms we will present the large variety of designed alterations of activities which have contributed to the still growing tool-box of components available for adjusting the regulatory properties to study gene functions in different organisms or tissues. Finally, we provide an overview of the various experimental setups available for pro- and eukaryotes, and touch upon some highlights discovered by the use of tetracycline-dependent gene regulation.
Collapse
Affiliation(s)
- Christian Berens
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | | |
Collapse
|
196
|
Ceci M, Gaviraghi C, Gorrini C, Sala LA, Offenhäuser N, Marchisio PC, Biffo S. Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature 2003; 426:579-84. [PMID: 14654845 DOI: 10.1038/nature02160] [Citation(s) in RCA: 337] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 10/10/2003] [Indexed: 12/13/2022]
Abstract
The assembly of 80S ribosomes requires joining of the 40S and 60S subunits, which is triggered by the formation of an initiation complex on the 40S subunit. This event is rate-limiting for translation, and depends on external stimuli and the status of the cell. Here we show that 60S subunits are activated by release of eIF6 (also termed p27BBP). In the cytoplasm, eIF6 is bound to free 60S but not to 80S. Furthermore, eIF6 interacts in the cytoplasm with RACK1, a receptor for activated protein kinase C (PKC). RACK1 is a major component of translating ribosomes, which harbour significant amounts of PKC. Loading 60S subunits with eIF6 caused a dose-dependent translational block and impairment of 80S formation, which were reversed by expression of RACK1 and stimulation of PKC in vivo and in vitro. PKC stimulation led to eIF6 phosphorylation, and mutation of a serine residue in the carboxy terminus of eIF6 impaired RACK1/PKC-mediated translational rescue. We propose that eIF6 release regulates subunit joining, and that RACK1 provides a physical and functional link between PKC signalling and ribosome activation.
Collapse
Affiliation(s)
- Marcello Ceci
- Molecular Histology Unit, DIBIT-HSR, 20132 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
197
|
Liu Z, Xu X, Hsu HC, Tousson A, Yang PA, Wu Q, Liu C, Yu S, Zhang HG, Mountz JD. CII-DC-AdTRAIL cell gene therapy inhibits infiltration of CII-reactive T cells and CII-induced arthritis. J Clin Invest 2003; 112:1332-41. [PMID: 14597760 PMCID: PMC228459 DOI: 10.1172/jci19209] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Previously, we described an APC-adenovirus (APC-Ad) FasL cell gene therapy method which could be used to deplete autoreactive T cells in vivo. FasL was toxic, however, and controlled regulation of FasL was not achieved. Here we describe an improved approach to delivering TNF-related apoptosis-inducing ligand (TRAIL) in vivo in which collagen II-induced (CII-induced) arthritis-susceptible (CIA-susceptible) DBA/1j mice were treated with CII-pulsed DCs that had been transfected with a novel Ad system. The Ad was engineered to exhibit inducible TRAIL under the control of the doxycycline-inducible (DOX-inducible) tetracycline response element (TRE). Four groups of mice were treated with CII-DC-AdTRAIL+DOX, CII-DC-AdTRAIL (no DOX), CII-DC-AdGFP+DOX, or DC-AdTRAIL+DOX (no CII), beginning 2 weeks after priming with CII in CFA. The incidence of arthritis and infiltration of T cells in the joint was significantly decreased in CII-DC-AdTRAIL+DOX-treated mice. The in vitro splenic T cell proliferative response and induction of IFN-gamma to bovine CII stimulation were also significantly reduced in mice treated with CII-DC-AdTRAIL+DOX. AdTRAIL+DOX was not toxic to DCs or mice but could induce activated T cells to undergo apoptosis in the spleen. Our results suggest that CII-DC-AdTRAIL+DOX cell gene therapy is a safe and effective method for inhibiting the development of CIA.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Deidda G, Rossi N, Tocchini-Valentini GP. An archaeal endoribonuclease catalyzes cis- and trans- nonspliceosomal splicing in mouse cells. Nat Biotechnol 2003; 21:1499-504. [PMID: 14595336 DOI: 10.1038/nbt908] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Accepted: 08/18/2003] [Indexed: 11/09/2022]
Abstract
The tRNA endonuclease from the archaebacterium Methanococcus jannaschii (MJ endonuclease) can cleave RNAs forming specific bulge-helix-bulge (BHB) structures recognized by the enzyme. The resulting cleavage products are subsequently joined together by an endogenous ligase. We demonstrate the potential of using this strategy for repairing RNA in higher organisms by expressing the enzyme in mouse cells. Reporter target mRNAs modified with 17-nucleotide introns, flanked by sequences capable of forming BHB structures in cis, were expressed in mouse cells. RNA molecules that can form BHB substrates in trans with targeted mRNAs were also designed. Co-transfection of mouse cells with plasmids expressing these RNAs and the MJ endonuclease led to formation of RNA chimeras in which the target and exogenous RNA were recombined across the BHB. This technology is not limited to mRNA, but could in principle be used to destroy, modify or restore the function of a vast repertoire of RNA species or to join selectable tags to target RNAs.
Collapse
Affiliation(s)
- Giancarlo Deidda
- Istituto di Biologia Cellulare, CNR, Campus A. Buzzati-Traverso, Via E. Ramarini, 32, 00016 Monterotondo Scalo, RM, Italy
| | | | | |
Collapse
|
199
|
Hüsken D, Asselbergs F, Kinzel B, Natt F, Weiler J, Martin P, Häner R, Hall J. mRNA fusion constructs serve in a general cell-based assay to profile oligonucleotide activity. Nucleic Acids Res 2003; 31:e102. [PMID: 12930976 PMCID: PMC212822 DOI: 10.1093/nar/gng103] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A cellular assay has been developed to allow measurement of the inhibitory activity of large numbers of oligonucleotides at the protein level. The assay is centred on an mRNA fusion transcript construct comprising of a full-length reporter gene with a target region of interest inserted into the 3'-untranslated region. Luciferase and fluorescent reporter genes were used in the constructs. The insert can be from multiple sources (uncharacterised ESTs, partial or full-length genes, genes from alternate species, etc.). Large numbers of oligonucleotides were screened for antisense activity against a number of such constructs bearing different reporters, in different cell lines and the inhibitory profiles obtained were compared with those observed through screening the oligonucleotides against the corresponding endogenous genes assayed at the mRNA level. A high degree of similarity in the profiles was obtained indicating that the fusion constructs are suitable surrogates for the endogenous messages for characterisation of antisense oligonucleotides (ASOs). Furthermore, the results support the hypothesis that the secondary structure of mRNAs are divided into domains, the nature of which is determined by primary nucleotide sequence. Oligonucleotides whose activity is dependent on the local structure of their target mRNAs (e.g. ASOs, short interfering RNAs) can be characterised via such fusion RNA constructs.
Collapse
Affiliation(s)
- Dieter Hüsken
- Department of Functional Genomics, Novartis Pharma AG, Lichtstrasse 35, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Lai JF, Juang SH, Hung YM, Cheng HY, Cheng TL, Mostov KE, Jou TS. An ecdysone and tetracycline dual regulatory expression system for studies on Rac1 small GTPase-mediated signaling. Am J Physiol Cell Physiol 2003; 285:C711-9. [PMID: 12736135 DOI: 10.1152/ajpcell.00064.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulated expression systems are invaluable for studying gene function, offer advantages of dosage-dependent and temporally defined gene expression, and limit possible clonal variation when toxic or pleiotropic genes are overexpressed. Previously, establishment of inducible expression systems, such as tetracycline- and ecdysone-inducible systems, required assessment of the inducible characteristics of individual clones by tedious luciferase assays. Taking advantage of a green fluorescent protein (GFP) reporter controlled by tetracycline- or ecdysone-responsive element and fluorescence-activated cell sorting, we propose a simple and efficient strategy to select highly inducible cell lines according to their fluorescence profiles after transiently transfecting the candidate cell pools with a surrogate GFP reporter. We have demonstrated that tetracycline- and ecdysone-inducible systems could be set up in Madin-Darby canine kidney and HEK-293 cells by employing this selection scheme. Importantly, this dual regulatory expression system is applied in studying the complex interplay between two Ras-related small GTPases, Cdc42 and Rac1, on detachment-induced apoptosis. Furthermore, establishment of two tightly regulated expression systems in one target cell line could be of great advantage for dissecting small GTPase Rac1-transduced signaling pathways by using global gene expression approaches such as proteomic assays.
Collapse
Affiliation(s)
- Jen-Feng Lai
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|