151
|
Jaworski J, Spangler S, Seeburg DP, Hoogenraad CC, Sheng M. Control of dendritic arborization by the phosphoinositide-3'-kinase-Akt-mammalian target of rapamycin pathway. J Neurosci 2006; 25:11300-12. [PMID: 16339025 PMCID: PMC6725892 DOI: 10.1523/jneurosci.2270-05.2005] [Citation(s) in RCA: 479] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanisms that determine the size and complexity of the neuronal dendritic tree are unclear. Here, we show that the phosphoinositide-3' kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway promotes the growth and branching of dendrites in cultured hippocampal neurons. Constitutively active mutants of Ras, PI3K, and Akt, or RNA interference (RNAi) knockdown of lipid phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome Ten), induced growth and elaboration of dendrites that was blocked by mTOR inhibitor rapamycin and/or by overexpression of eIF-4E binding protein 1 (4E-BP1), which inhibits translation of 5' capped mRNAs. The effect of PI3K on dendrites was lost in more mature neurons (>14 d in vitro). Dendritic complexity was reduced by inhibition of PI3K and by RNAi knockdown of mTOR or p70 ribosomal S6 kinase (p70S6K, an effector of mTOR). A rapamycin-resistant mutant of mTOR "rescued" the morphogenetic effects of PI3K in the presence of rapamycin. By regulating global and/or local protein translation, and as a convergence point for multiple signaling pathways, mTOR could play a central role in the control of dendrite growth and branching during development and in response to activity.
Collapse
Affiliation(s)
- Jacek Jaworski
- The Picower Institute for Learning and Memory, The Institute of Physical and Chemical Research (RIKEN), Massachusetts Institute of Technology Neuroscience Research Center, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
152
|
Hernández-Deviez DJ, Wilson JM. Functional assay of ARNO and ARF6 in neurite elongation and branching. Methods Enzymol 2006; 404:242-52. [PMID: 16413274 DOI: 10.1016/s0076-6879(05)04023-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
During development of the nervous system, neurite outgrowth is necessary for the formation of connections between nerve cells. Neurons are highly polarized cells that send out distinct processes, axons, and dendrites; however, the molecular regulation of the differential growth of these processes remains incompletely understood. Primary cultures of rat hippocampal neurons have been used to study many aspects of neuronal cell biology, including neurite extension, establishment of polarity, biogenesis of synapses, and membrane trafficking. After attachment to the substrate, hippocampal neurons begin sending out multiple processes by approximately 12 h after plating. The axonal process is derived from one of these processes, and is evident after 48 h in culture. Complete polarity of axons and dendrites is established after 7 days in culture. The establishment of these cultures and the ability to transfect them with potential regulatory genes allows the researcher to dissect out the pathways relevant to neurite extension. To study the role of small GTPases in neurite extension and branching, we describe methods for culture of hippocampal neurons, for transfection of these cells, and assessment of neurite extension and branching.
Collapse
|
153
|
Landgraf M, Evers JF. Control of dendritic diversity. Curr Opin Cell Biol 2005; 17:690-6. [PMID: 16226445 DOI: 10.1016/j.ceb.2005.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 09/29/2005] [Indexed: 11/16/2022]
Abstract
The dendritic trees of different neuronal types display an astonishing diversity in structure and function. How this diversity is generated remains incompletely understood. However, recent studies have revealed some of the underlying mechanisms by which intrinsic programs of cell-type specification and extrinsic factors exert their effects on the dendritic cytoskeleton to regulate patterns of growth and branching.
Collapse
Affiliation(s)
- Matthias Landgraf
- University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|
154
|
Abelson JF, Kwan KY, O'Roak BJ, Baek DY, Stillman AA, Morgan TM, Mathews CA, Pauls DL, Rasin MR, Gunel M, Davis NR, Ercan-Sencicek AG, Guez DH, Spertus JA, Leckman JF, Dure LS, Kurlan R, Singer HS, Gilbert DL, Farhi A, Louvi A, Lifton RP, Sestan N, State MW. Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science 2005; 310:317-20. [PMID: 16224024 DOI: 10.1126/science.1116502] [Citation(s) in RCA: 668] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tourette's syndrome (TS) is a genetically influenced developmental neuropsychiatric disorder characterized by chronic vocal and motor tics. We studied Slit and Trk-like 1 (SLITRK1) as a candidate gene on chromosome 13q31.1 because of its proximity to a de novo chromosomal inversion in a child with TS. Among 174 unrelated probands, we identified a frameshift mutation and two independent occurrences of the identical variant in the binding site for microRNA hsa-miR-189. These variants were absent from 3600 control chromosomes. SLITRK1 mRNA and hsa-miR-189 showed an overlapping expression pattern in brain regions previously implicated in TS. Wild-type SLITRK1, but not the frameshift mutant, enhanced dendritic growth in primary neuronal cultures. Collectively, these findings support the association of rare SLITRK1 sequence variants with TS.
Collapse
Affiliation(s)
- Jesse F Abelson
- Child Study Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Rodriguez Moncalvo VG, Campos AR. Genetic dissection of trophic interactions in the larval optic neuropil of Drosophila melanogaster. Dev Biol 2005; 286:549-58. [PMID: 16168982 DOI: 10.1016/j.ydbio.2005.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 08/17/2005] [Accepted: 08/18/2005] [Indexed: 01/19/2023]
Abstract
The larval visual system of Drosophila melanogaster consists of two bilateral clusters of 12 photoreceptors, which express Rhodopsin 5 and 6 (Rh5 and Rh6) in a non-overlapping manner. These neurons send their axons in a fascicle, the larval optic nerve (LON), which terminates in the larval optic neuropil. The LON is required for the development of a serotonergic arborization originating in the central brain and for the development of the dendritic tree of the circadian pacemakers, the small ventral lateral neurons (LNv) [Malpel, S., Klarsfeld, A., Rouyer, F., 2002. Larval optic nerve and adult extra-retinal photoreceptors sequentially associate with clock neurons during Drosophila brain development. Development 129, 1443-1453; Mukhopadhyay, M., Campos, A.R., 1995. The larval optic nerve is required for the development of an identified serotonergic arborization in Drosophila melanogaster. Dev. Biol., 169, 629-643]. Here, we show that both Rh5- and Rh6-expressing fibers overlap equally with the 5-HT arborization and that it, in turn, also contacts the dendritic tree of the LNv. The experiments described here aimed at determining whether Rh5- or Rh6-expressing fibers, as well as the LNv, influence the development of this serotonergic arborization. We conclude that Rh6-expressing fibers play a unique role in providing a signal required for the outgrowth and branching of the serotonergic arborization. Moreover, the innervation of the larval optic neuropil by the 5-HT arborization depends on intact Rac function. A possible role for these serotonergic processes in modulating the larval circadian rhythmicity and photoreceptor function is discussed.
Collapse
|
156
|
Hammond R, Vivancos V, Naeem A, Chilton J, Mambetisaeva E, Mambitisaeva E, Andrews W, Sundaresan V, Guthrie S. Slit-mediated repulsion is a key regulator of motor axon pathfinding in the hindbrain. Development 2005; 132:4483-95. [PMID: 16162649 DOI: 10.1242/dev.02038] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The floor plate is known to be a source of repellent signals for cranial motor axons, preventing them from crossing the midline of the hindbrain. However, it is unknown which molecules mediate this effect in vivo. We show that Slit and Robo proteins are candidate motor axon guidance molecules, as Robo proteins are expressed by cranial motoneurons, and Slit proteins are expressed by the tissues that delimit motor axon trajectories, i.e. the floor plate and the rhombic lip. We present in vitro evidence showing that Slit1 and Slit2 proteins are selective inhibitors and repellents for dorsally projecting, but not for ventrally projecting, cranial motor axons. Analysis of mice deficient in Slit and Robo function shows that cranial motor axons aberrantly enter the midline, while ectopic expression of Slit1 in chick embryos leads to specific motor axon projection errors. Expression of dominant-negative Robo receptors within cranial motoneurons in chick embryos strikingly perturbs their projections, causing some motor axons to enter the midline, and preventing dorsally projecting motor axons from exiting the hindbrain. These data suggest that Slit proteins play a key role in guiding dorsally projecting cranial motoneurons and in facilitating their neural tube exit.
Collapse
Affiliation(s)
- Rachel Hammond
- MRC Centre for Developmental Neurobiology, 4th Floor New Hunt's House, King's College, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Hannula-Jouppi K, Kaminen-Ahola N, Taipale M, Eklund R, Nopola-Hemmi J, Kääriäinen H, Kere J. The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. PLoS Genet 2005; 1:e50. [PMID: 16254601 PMCID: PMC1270007 DOI: 10.1371/journal.pgen.0010050] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 09/21/2005] [Indexed: 11/21/2022] Open
Abstract
Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples), the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.
Collapse
Affiliation(s)
| | | | - Mikko Taipale
- Department of Medical Genetics, University of Helsinki, Finland
- European Molecular Biology Laboratory, Gene Expression Programme, Heidelberg, Germany
| | - Ranja Eklund
- Department of Medical Genetics, University of Helsinki, Finland
| | - Jaana Nopola-Hemmi
- Department of Medical Genetics, University of Helsinki, Finland
- Department of Pediatrics, Jorvi Hospital, Espoo, Finland
| | - Helena Kääriäinen
- Department of Medical Genetics, The Family Federation of Finland, Helsinki, Finland
- Department of Medical Genetics, University of Turku, Turku, Finland
| | - Juha Kere
- Department of Medical Genetics, University of Helsinki, Finland
- Department of Biosciences at Novum and Clinical Research Centre, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
158
|
Jia L, Cheng L, Raper J. Slit/Robo signaling is necessary to confine early neural crest cells to the ventral migratory pathway in the trunk. Dev Biol 2005; 282:411-21. [PMID: 15950606 DOI: 10.1016/j.ydbio.2005.03.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 03/09/2005] [Accepted: 03/21/2005] [Indexed: 10/25/2022]
Abstract
Neural crest cells migrate along two discrete pathways within the trunk of developing embryos. In the chick, early migrating crest cells are confined to a ventral pathway medial to the dermamyotome while later cells migrate on a dorsal pathway lateral to the dermamyotome. Here we show that Slits are expressed in the dermamyotome, that early migrating crest cells express the Slit receptors Robo 1 and Robo 2, that Slit2 repels migrating crest cells in an in vitro assay, and that the misexpression of a dominant-negative Robo1 receptor induces a significant fraction of early crest cells to migrate ectopically in the dorso-lateral pathway. These findings suggest that Slits, most likely those expressed in the dermamyotome, help to confine the migration of early crest cells to the ventral pathway.
Collapse
Affiliation(s)
- Li Jia
- Department of Neuroscience, University of Pennsylvania School of Medicine, 1115, BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
159
|
Yabe T, Hata T, He J, Maeda N. Developmental and regional expression of heparan sulfate sulfotransferase genes in the mouse brain. Glycobiology 2005; 15:982-93. [PMID: 15944372 DOI: 10.1093/glycob/cwi090] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heparan sulfate (HS) binds with various proteins including growth factors, morphogens, and extracellular matrix molecules to regulate their biological functions. These regulatory interactions are considered to be dependent on the structure of HS, which is determined by HS sulfotransferases. To gain insights into the functions of HS sulfotransferases in the development of the nervous system, we examined the expression of these enzymes (3-O-sulfotransferase-1 [3-OST-1], -2, -4; 6-OST-1, -2, -3; and N-deacetylase /N-sulfotransferase-1 [NDST-1], -2, -3) by in situ hybridization and real-time reverse transcription-polymerase chain reaction (RT-PCR). The expression of these genes was spatiotemporally regulated. In the E16 cerebrum, the expression of these genes showed two patterns: (1) selective expression at cortical plate (CP) and ventricular zone (VZ) and (2) wider expression by the cells in the marginal zone (MZ), CP, subplate (SP), and VZ. At P1, most genes showed similar expression patterns, but after P7, these genes were expressed differentially in a layer-specific manner. In the P1 cerebellum, the external granule cell layer (EGL) expressed most genes, the expressions of which were down-regulated at P7. In contrast, Purkinje cells began to express many of these genes after P7. These complex expression patterns suggest that the structure of HS is altered spatiotemporally for regulating various biological activities in the developing brain including the proliferation of neuronal progenitors, extension of axons, and formation of dendrites. We discuss possible functional roles of these sulfotransferases in the signaling of several HS-binding proteins such as fibroblast growth factors, slit, netrin, and sonic hedgehog.
Collapse
Affiliation(s)
- Tomio Yabe
- Department of Developmental Neuroscience, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 183-8526, Japan
| | | | | | | |
Collapse
|
160
|
Abstract
Advances in defining mechanisms of cortical development have been paralleled in recent years by an intense interest in translating these findings into greater insight of both childhood- and adult-onset cognitive and mental health disorders of developmental etiology. Successful integration of basic and clinical findings have been applied to monogenic disorders. The greater challenge lies in studying cortical development in the context of gene x environment interactions, which underlie the pathogenesis of the most common neurodevelopmental disorders. This can occur through an improved delineation of pathophysiological characteristics unique to specific complex disorders and the application of this information to the refinement of the most relevant model systems.
Collapse
Affiliation(s)
- Pat Levitt
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37203, USA.
| |
Collapse
|
161
|
Abstract
Dendrites serve a critical role in neuronal information processing as sites of synaptic integration. The morphological diversity of dendritic architecture reflects specialized strategies that neurons have evolved to detect and process incoming information. Recent observations suggest that calcium signals exert an important influence on neuronal morphology by regulating the growth and branching of dendrites and the formation of dendritic spines. Calcium signals appear to influence branch dynamics by affecting the cytoskeleton near the site of calcium entry, whereas calcium-dependent dendritic growth involves activation of a transcriptional program.
Collapse
Affiliation(s)
- Sila Konur
- Division of Biological Sciences, Neurobiology Section, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
162
|
Cove J, Blinder P, Abi-Jaoude E, Lafrenière-Roula M, Devroye L, Baranes D. Growth of Neurites toward Neurite– Neurite Contact Sites Increases Synaptic Clustering and Secretion and Is Regulated by Synaptic Activity. Cereb Cortex 2005; 16:83-92. [PMID: 15858165 DOI: 10.1093/cercor/bhi086] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The integrative properties of dendrites are determined by several factors, including their morphology and the spatio-temporal patterning of their synaptic inputs. One of the great challenges is to discover the interdependency of these two factors and the mechanisms which sculpt dendrites' fine morphological details. We found a novel form of neurite growth behavior in neuronal cultures of the hippocampus and cortex, when axons and dendrites grew directly toward neurite-neurite contact sites and crossed them, forming multi-neurite intersections (MNIs). MNIs were found at a frequency higher than obtained by computer simulations of randomly distributed dendrites, involved many of the dendrites and were stable for days. They were formed specifically by neurites originating from different neurons and were extremely rare among neurites of individual neurons or among astrocytic processes. Axonal terminals were clustered at MNIs and exhibited higher synaptophysin content and release capability than in those located elsewhere. MNI formation, as well as enhancement of axonal terminal clustering and secretion at MNIs, was disrupted by inhibitors of synaptic activity. Thus, convergence of axons and dendrites to form MNIs is a non-random activity-regulated wiring behavior which shapes dendritic trees and affects the location, clustering level and strength of their presynaptic inputs.
Collapse
Affiliation(s)
- Joshua Cove
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | | | |
Collapse
|
163
|
Tolias KF, Bikoff JB, Burette A, Paradis S, Harrar D, Tavazoie S, Weinberg RJ, Greenberg ME. The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron 2005; 45:525-38. [PMID: 15721239 DOI: 10.1016/j.neuron.2005.01.024] [Citation(s) in RCA: 304] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 10/22/2004] [Accepted: 01/14/2005] [Indexed: 01/19/2023]
Abstract
NMDA-type glutamate receptors play a critical role in the activity-dependent development and structural remodeling of dendritic arbors and spines. However, the molecular mechanisms that link NMDA receptor activation to changes in dendritic morphology remain unclear. We report that the Rac1-GEF Tiam1 is present in dendrites and spines and is required for their development. Tiam1 interacts with the NMDA receptor and is phosphorylated in a calcium-dependent manner in response to NMDA receptor stimulation. Blockade of Tiam1 function with RNAi and dominant interfering mutants of Tiam1 suggests that Tiam1 mediates effects of the NMDA receptor on dendritic development by inducing Rac1-dependent actin remodeling and protein synthesis. Taken together, these findings define a molecular mechanism by which NMDA receptor signaling controls the growth and morphology of dendritic arbors and spines.
Collapse
MESH Headings
- 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology
- Animals
- Animals, Newborn
- Blotting, Western/methods
- Brain/cytology
- Brain/metabolism
- Calcium/metabolism
- Cell Line
- Cell Size/drug effects
- Cloning, Molecular/methods
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/metabolism
- Dendritic Spines/physiology
- Dendritic Spines/ultrastructure
- Drug Interactions
- Egtazic Acid/pharmacology
- Ephrin-B1/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Glutamic Acid/pharmacology
- Green Fluorescent Proteins/metabolism
- Guanine Nucleotide Exchange Factors
- Humans
- Immunohistochemistry/methods
- Immunoprecipitation/methods
- Microscopy, Immunoelectron/methods
- Models, Neurological
- Neoplasm Proteins
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Proteins/antagonists & inhibitors
- Proteins/metabolism
- RNA, Antisense/pharmacology
- RNA, Small Interfering
- Rats
- Receptors, N-Methyl-D-Aspartate/agonists
- Receptors, N-Methyl-D-Aspartate/classification
- Receptors, N-Methyl-D-Aspartate/metabolism
- Synaptosomes/metabolism
- T-Lymphoma Invasion and Metastasis-inducing Protein 1
- Tetrodotoxin/pharmacology
- Time Factors
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/metabolism
- Transfection/methods
- Valine/analogs & derivatives
- Valine/pharmacology
- p21-Activated Kinases
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Kimberley F Tolias
- Neurobiology Program, Children's Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Dijkhuizen PA, Ghosh A. BDNF regulates primary dendrite formation in cortical neurons via the PI3-kinase and MAP kinase signaling pathways. ACTA ACUST UNITED AC 2005; 62:278-88. [PMID: 15514998 DOI: 10.1002/neu.20100] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neurotrophins are known to regulate dendritic development, but the mechanisms that mediate neurotrophin-dependent dendrite formation are largely unknown. Here we show that brain-derived neurotrophic factor (BDNF) induces the formation of primary dendrites in cortical neurons by a protein synthesis-independent mechanism. BDNF leads to the rapid activation of PI3-kinase, MAP kinase, and PLC-gamma in cortical neurons, and pharmacological inhibition of PI3-kinase and MAP kinase in dissociated cell cultures and cortical slice cultures suppresses the ability of BDNF to induce dendrite formation. A constitutively active form of PI3-kinase, but not MEK, is sufficient to induce primary dendrite formation in cortical neurons. These observations indicate that BDNF induces primary dendrite formation via activation of the PI3-kinase and MAP kinase pathways and provide insight into the mechanisms that mediate the morphological effects of neurotrophin signaling.
Collapse
Affiliation(s)
- Paul A Dijkhuizen
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
165
|
Miyasaka N, Sato Y, Yeo SY, Hutson LD, Chien CB, Okamoto H, Yoshihara Y. Robo2 is required for establishment of a precise glomerular map in the zebrafish olfactory system. Development 2005; 132:1283-93. [PMID: 15716341 DOI: 10.1242/dev.01698] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Olfactory sensory neurons (OSNs) expressing a given odorant receptor project their axons to specific glomeruli, creating a topographic odor map in the olfactory bulb (OB). The mechanisms underlying axonal pathfinding of OSNs to their precise targets are not fully understood. Here, we demonstrate that Robo2/Slit signaling functions to guide nascent olfactory axons to the OB primordium in zebrafish. robo2 is transiently expressed in the olfactory placode during the initial phase of olfactory axon pathfinding. In the robo2 mutant, astray (ast), early growing olfactory axons misroute ventromedially or posteriorly, and often penetrate into the diencephalon without reaching the OB primordium. Four zebrafish Slit homologs are expressed in regions adjacent to the olfactory axon trajectory,consistent with their role as repulsive ligands for Robo2. Masking of endogenous Slit gradients by ubiquitous misexpression of Slit2 in transgenic fish causes posterior pathfinding errors that resemble the astphenotype. We also found that the spatial arrangement of glomeruli in OB is perturbed in ast adults, suggesting an essential role for the initial olfactory axon scaffold in determining a topographic glomerular map. These data provide functional evidence for Robo2/Slit signaling in the establishment of olfactory neural circuitry in zebrafish.
Collapse
Affiliation(s)
- Nobuhiko Miyasaka
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
166
|
Pujol F, Kitabgi P, Boudin H. The chemokine SDF-1 differentially regulates axonal elongation and branching in hippocampal neurons. J Cell Sci 2005; 118:1071-80. [PMID: 15731012 DOI: 10.1242/jcs.01694] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent data have shown that the chemokine SDF-1 plays a critical role in several aspects of brain development such as cell migration and axon pathfinding. However, its potential function in the generation of axons and dendrites is poorly characterized. In order to better understand the role of SDF-1 in the development of central neurons, we studied the cellular distribution of the SDF-1 receptor CXCR4 by immunocytochemistry of developing hippocampal neurons and tested the effect of SDF-1 in process patterning at the early stages of neuronal development. We found that CXCR4 immunoreactivity undergoes a striking redistribution during development. At the early stages, from day 2 to day 4 in culture, CXCR4 is particularly concentrated at the leading edge of growing neurites. As the cells mature, staining declines at the tip of the processes and becomes more broadly distributed along axons and, to a lesser extent, dendrites. SDF-1 stimulation of neurons at day 1-2 in culture triggers several effects on neuronal morphogenesis. SDF-1 reduces growth cone number and axonal outgrowth but stimulates axonal branching. These latter two effects are not observed in other neurites. This study unravels a new role for SDF-1/CXCR4 in specifying hippocampal neuron morphology by regulating axonal patterning at an early stage of neuronal development.
Collapse
Affiliation(s)
- Fabien Pujol
- INSERM E0350, Hospital St Antoine, 184 rue du Fg St Antoine, 75571 Paris CEDEX 12, France
| | | | | |
Collapse
|
167
|
Abstract
The human brain assembles an incredible network of over a billion neurons. Understanding how these connections form during development in order for the brain to function properly is a fundamental question in biology. Much of this wiring takes place during embryonic development. Neurons are generated in the ventricular zone, migrate out, and begin to differentiate. However, neurons are often born in locations some distance from the target cells with which they will ultimately form connections. To form connections, neurons project long axons tipped with a specialized sensing device called a growth cone. The growing axons interact directly with molecules within the environment through which they grow. In order to find their targets, axonal growth cones use guidance molecules that can either attract or repel them. Understanding what these guidance cues are, where they are expressed, and how the growth cone is able to transduce their signal in a directionally specific manner is essential to understanding how the functional brain is constructed. In this chapter, we review what is known about the mechanisms involved in axonal guidance. We discuss how the growth cone is able to sense and respond to its environment and how it is guided by pioneering cells and axons. As examples, we discuss current models for the development of the spinal cord, the cerebral cortex, and the visual and olfactory systems.
Collapse
Affiliation(s)
- Céline Plachez
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
168
|
Dijkhuizen PA, Ghosh A. Regulation of dendritic growth by calcium and neurotrophin signaling. PROGRESS IN BRAIN RESEARCH 2005; 147:17-27. [PMID: 15581694 DOI: 10.1016/s0079-6123(04)47002-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The development of cortical dendrites is regulated by both activity-dependent and activity-independent signaling. Activity-dependent dendritic growth involves calcium-dependent gene expression. Both CREB and CREST are transactivators that contribute to calcium-dependent dendritic growth. Dendritic development is also regulated by extracellular factors such as neurotrophins. Neurotrophin-dependent dendritic growth is mediated by the MAP kinase and PI 3-kinase pathways. Selective responsiveness to activity cues and neurotrophins may contribute to morphological diversity in the nervous system.
Collapse
|
169
|
Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC. Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci 2004; 8:34-42. [PMID: 15608632 DOI: 10.1038/nn1374] [Citation(s) in RCA: 392] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 11/23/2004] [Indexed: 11/08/2022]
Abstract
Dendritic arborization is required for proper neuronal connectivity. Rho GTPases have been implicated in the regulation of dendrite development. However, the signaling pathways that impinge on these molecular switches remain poorly understood. Here we show that Wnt7b, which is expressed in the mouse hippocampus, increases dendritic branching in cultured hippocampal neurons. This effect is mimicked by the expression of Dishevelled (Dvl) and is blocked by Sfrp1, a secreted Wnt antagonist. Consistent with these findings, hippocampal neurons from mice lacking Dvl1 show reduced dendritic arborization. Activation of the canonical Wnt-Gsk3beta pathway does not affect dendritic development. In contrast, Wnt7b and Dvl activate Rac and JNK in hippocampal neurons. Dominant-negative Rac, dominant-negative JNK or inhibition of JNK blocks Dvl-mediated dendritic growth. These findings demonstrate a new function for the non-canonical Wnt pathway in dendrite development and identify Dvl as a regulator of Rho GTPases and JNK during dendritic morphogenesis.
Collapse
Affiliation(s)
- Silvana B Rosso
- Department of Anatomy and Developmental Biology, Rockefeller Building, University College London, University Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
170
|
Libersat F, Duch C. Mechanisms of dendritic maturation. Mol Neurobiol 2004; 29:303-20. [PMID: 15181241 DOI: 10.1385/mn:29:3:303] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Accepted: 12/10/2003] [Indexed: 11/11/2022]
Abstract
The highly complex geometry of dendritic trees is crucial for neural signal integration and the proper wiring of neuronal circuits. The morphogenesis of dendritic trees is regulated by innate genetic factors, neuronal activity, and external molecular cues. How each of these factors contributes to dendritic maturation has been addressed in the developing nervous systems of animals ranging from insects to mammals. The results of such investigations have shown that the contribution of intrinsic and extrinsic factors and activity, however, appear to be weighted differentially in different types of neurons, in different brain areas, and especially in different species. Moreover, it appears that dozens of molecules have been found to regulate dendritic maturation, but it is almost certain that each molecule plays only a specific role in this formidable cooperative venture. This article reviews our current knowledge and understanding of the role of various factors in the establishment of the architecture of mature dendritic trees.
Collapse
Affiliation(s)
- Frederic Libersat
- Zlotowski Center for Neuroscience and Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | | |
Collapse
|
171
|
Blackshaw S, Harpavat S, Trimarchi J, Cai L, Huang H, Kuo WP, Weber G, Lee K, Fraioli RE, Cho SH, Yung R, Asch E, Ohno-Machado L, Wong WH, Cepko CL. Genomic analysis of mouse retinal development. PLoS Biol 2004; 2:E247. [PMID: 15226823 PMCID: PMC439783 DOI: 10.1371/journal.pbio.0020247] [Citation(s) in RCA: 480] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 05/26/2004] [Indexed: 12/21/2022] Open
Abstract
The vertebrate retina is comprised of seven major cell types that are generated in overlapping but well-defined intervals. To identify genes that might regulate retinal development, gene expression in the developing retina was profiled at multiple time points using serial analysis of gene expression (SAGE). The expression patterns of 1,051 genes that showed developmentally dynamic expression by SAGE were investigated using in situ hybridization. A molecular atlas of gene expression in the developing and mature retina was thereby constructed, along with a taxonomic classification of developmental gene expression patterns. Genes were identified that label both temporal and spatial subsets of mitotic progenitor cells. For each developing and mature major retinal cell type, genes selectively expressed in that cell type were identified. The gene expression profiles of retinal Müller glia and mitotic progenitor cells were found to be highly similar, suggesting that Müller glia might serve to produce multiple retinal cell types under the right conditions. In addition, multiple transcripts that were evolutionarily conserved that did not appear to encode open reading frames of more than 100 amino acids in length ("noncoding RNAs") were found to be dynamically and specifically expressed in developing and mature retinal cell types. Finally, many photoreceptor-enriched genes that mapped to chromosomal intervals containing retinal disease genes were identified. These data serve as a starting point for functional investigations of the roles of these genes in retinal development and physiology.
Collapse
Affiliation(s)
- Seth Blackshaw
- 1Department of Genetics and Howard Hughes Medical Institute, Harvard Medical SchoolBoston, Massachusetts, United States of America
| | - Sanjiv Harpavat
- 1Department of Genetics and Howard Hughes Medical Institute, Harvard Medical SchoolBoston, Massachusetts, United States of America
| | - Jeff Trimarchi
- 1Department of Genetics and Howard Hughes Medical Institute, Harvard Medical SchoolBoston, Massachusetts, United States of America
| | - Li Cai
- 2Dana-Farber Cancer Institute, Harvard Medical SchoolBoston, MassachusettsUnited States of America
| | - Haiyan Huang
- 3Department of Statistics, University of CaliforniaBerkeley, CaliforniaUnited States of America
| | - Winston P Kuo
- 1Department of Genetics and Howard Hughes Medical Institute, Harvard Medical SchoolBoston, Massachusetts, United States of America
- 4Children's Hospital Informatics Program, BostonMassachusettsUnited States of America
| | - Griffin Weber
- 5Decision Systems Group, Brigham and Women's HospitalBoston, MassachusettsUnited States of America
| | - Kyungjoon Lee
- 4Children's Hospital Informatics Program, BostonMassachusettsUnited States of America
| | - Rebecca E Fraioli
- 1Department of Genetics and Howard Hughes Medical Institute, Harvard Medical SchoolBoston, Massachusetts, United States of America
| | - Seo-Hee Cho
- 1Department of Genetics and Howard Hughes Medical Institute, Harvard Medical SchoolBoston, Massachusetts, United States of America
| | - Rachel Yung
- 1Department of Genetics and Howard Hughes Medical Institute, Harvard Medical SchoolBoston, Massachusetts, United States of America
| | - Elizabeth Asch
- 1Department of Genetics and Howard Hughes Medical Institute, Harvard Medical SchoolBoston, Massachusetts, United States of America
| | - Lucila Ohno-Machado
- 5Decision Systems Group, Brigham and Women's HospitalBoston, MassachusettsUnited States of America
| | - Wing H Wong
- 6Department of Biostatistics, Harvard School of Public HealthBoston, MassachusettsUnited States of America
| | - Constance L Cepko
- 1Department of Genetics and Howard Hughes Medical Institute, Harvard Medical SchoolBoston, Massachusetts, United States of America
| |
Collapse
|
172
|
Shi SH, Cox DN, Wang D, Jan LY, Jan YN. Control of dendrite arborization by an Ig family member, dendrite arborization and synapse maturation 1 (Dasm1). Proc Natl Acad Sci U S A 2004; 101:13341-5. [PMID: 15340157 PMCID: PMC516568 DOI: 10.1073/pnas.0405370101] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Development of both dendrites and axons is important for the formation of neuronal circuits, because dendrites receive information and the axon is responsible for sending signals. In the past decade, extensive studies have revealed many molecules underlying axonal outgrowth and pathfinding. In contrast, much less is known about the molecular mechanisms that control dendrite development. Here we report the identification of an evolutionarily conserved Ig superfamily member, dendrite arborization and synapse maturation 1 (Dasm1), which plays a critical role in dendrite development. Dasm1 contains five Ig domains and two fibronectin III domains in the extracellular N terminus, a single transmembrane domain, and an intracellular C-terminal tail with a type I PDZ domain binding motif at the end. It is highly expressed in the brain and localized at the dendrites. Suppression of Dasm1 expression in hippocampal neurons via RNA interference or expression of Dasm1 without its cytoplasmic tail specifically impairs dendrite, but not axon, outgrowth. Together with its orthologues in other species, Dasm1 defines a family of molecules likely involved specifically in dendrite arborization.
Collapse
Affiliation(s)
- Song-Hai Shi
- Howard Hughes Medical Institute, Department of Physiology and Biochemistry, University of California, 1550 Fourth Street, San Francisco, CA 94143-0725, USA
| | | | | | | | | |
Collapse
|
173
|
Kuvbachieva A, Bestel AM, Tissir F, Maloum I, Guimiot F, Ramoz N, Bourgeois F, Moalic JM, Goffinet AM, Simonneau M. Identification of a novel brain-specific and reelin-regulated gene that encodes a protein colocalized with synapsin. Eur J Neurosci 2004; 20:603-10. [PMID: 15255972 DOI: 10.1111/j.1460-9568.2004.03473.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We carried out a screening of genes that are differentially expressed in normal mice and reeler mutants and are characterized by abnormal neuronal migration and neurite deployment due to defective Reelin signalling. A novel gene, provisionally named C61, was overexpressed in Reelin-deficient embryonic mouse brain RNA. C61 encodes a 3.7 kb mRNA that is brain specific and developmentally regulated, with predominant expression in differentiating neurons. The predicted protein is 664 amino acids long, and contains LAG1 and Ezrin/Radixin/Moesin-Myosin-Filament motifs, suggesting that it may function as an intracellular adaptor. From E14.5 to birth, C61 was highly expressed in all neuronal differentiation fields, with the highest signal in the telencephalic cortical plate and mitral cells in the olfactory bulb. When expressed as a GFP fusion protein in transfected non-neuronal cells and primary neurons, this protein localizes, respectively, to the nuclear membrane or axonal outgrowths, indicating a function in axonal traffic or signalling.
Collapse
MESH Headings
- Amino Acid Motifs/physiology
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Blotting, Northern/methods
- Brain/embryology
- Brain/growth & development
- Brain/metabolism
- Caenorhabditis elegans
- Cell Adhesion Molecules, Neuronal/deficiency
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Adhesion Molecules, Neuronal/physiology
- Cell Line
- Cloning, Molecular
- Drosophila
- Embryo, Mammalian
- Embryo, Nonmammalian
- Extracellular Matrix Proteins/deficiency
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/physiology
- Gene Expression Regulation, Developmental
- Green Fluorescent Proteins
- Humans
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- Luminescent Proteins/metabolism
- Membrane Proteins
- Mice
- Mice, Inbred BALB C
- Mice, Neurologic Mutants
- Microfilament Proteins
- Microtubule-Associated Proteins/metabolism
- Nerve Tissue Proteins
- Neurofibromin 2/genetics
- Neurofibromin 2/metabolism
- Neurons/metabolism
- Organ Specificity
- RNA, Messenger/biosynthesis
- Reelin Protein
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Serine Endopeptidases
- Synapsins/metabolism
- Transfection
- Tubulin/metabolism
- Zebrafish
Collapse
Affiliation(s)
- Anelia Kuvbachieva
- Unité de Neurobiologie, Facultés Universitaires ND de la Paix, Namur, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Abstract
Members of the Slit family regulate axon guidance and cell migration. To date, three vertebrate slit1 genes have been identified in mammals and orthologs of two, slit2 and slit3, have been identified in zebrafish. Here, we describe the cloning of full-length cDNAs for two zebrafish slit orthologs, slit1a and slit1b. Both predicted proteins contain the conserved motifs that characterize other vertebrate Slits. slit1a and slit1b are both expressed in the midline, hypochord, telencephalon, and hindbrain. Apart from these shared expression domains, however, their expression patterns largely differ. Whereas slit1a is expressed broadly in the central nervous system (CNS) and in the somites, pectoral fin buds, tail bud, and caudal fin folds, slit1b is expressed in the olfactory system throughout embryonic and larval development, and in the retina during larval stages. Their expression patterns, particularly that of slit1a, suggest that Slit proteins may have roles in tissue morphogenesis in addition to their established roles in axon guidance and cell migration.
Collapse
Affiliation(s)
- Lara D Hutson
- Department of Neurobiology and Anatomy, University of Utah Medical Center, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|
175
|
Gutierrez H, Dolcet X, Tolcos M, Davies A. HGF regulates the development of cortical pyramidal dendrites. Development 2004; 131:3717-26. [PMID: 15229174 DOI: 10.1242/dev.01209] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although hepatocyte growth factor (HGF) and its receptor tyrosine kinase MET are widely expressed in the developing and mature central nervous system, little is known about the role of MET signaling in the brain. We have used particle-mediated gene transfer in cortical organotypic slice cultures established from early postnatal mice to study the effects of HGF on the development of dendritic arbors of pyramidal neurons. Compared with untreated control cultures, exogenous HGF promoted a highly significant increase in dendritic growth and branching of layer 2 pyramidal neurons, whereas inactivation of endogenous HGF with function-blocking, anti-HGF antibody caused a marked reduction in size and complexity of the dendritic arbors of these neurons. Furthermore, pyramidal neurons transfected with an MET dominant-negative mutant receptor likewise had much smaller and less complex dendritic arbors than did control transfected neurons. Our results indicate that HGF plays a role in regulating dendritic morphology in the developing cerebral cortex.
Collapse
Affiliation(s)
- Humberto Gutierrez
- Department Preclinical Veterinary Sciences, Royal (Dick) Studies, University of Edinburgh, Summerhall Square, Edinburgh EH9 1QH, UK.
| | | | | | | |
Collapse
|
176
|
Miyashita T, Yeo SY, Hirate Y, Segawa H, Wada H, Little MH, Yamada T, Takahashi N, Okamoto H. PlexinA4 is necessary as a downstream target of Islet2 to mediate Slit signaling for promotion of sensory axon branching. Development 2004; 131:3705-15. [PMID: 15229183 DOI: 10.1242/dev.01228] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Slit is a secreted protein known to repulse the growth cones of commissural neurons. By contrast, Slit also promotes elongation and branching of axons of sensory neurons. The reason why different neurons respond to Slit in different ways is largely unknown. Islet2 is a LIM/homeodomain-type transcription factor that specifically regulates elongation and branching of the peripheral axons of the primary sensory neurons in zebrafish embryos. We found that PlexinA4, a transmembrane protein known to be a co-receptor for class III semaphorins, acts downstream of Islet2 to promote branching of the peripheral axons of the primary sensory neurons. Intriguingly, repression of PlexinA4 function by injection of the antisense morpholino oligonucleotide specific to PlexinA4 or by overexpression of the dominant-negative variant of PlexinA4 counteracted the effects of overexpression of Slit2 to induce branching of the peripheral axons of the primary sensory neurons in zebrafish embryos, suggesting involvement of PlexinA4 in the Slit signaling cascades for promotion of axonal branching of the sensory neurons. Colocalized expression of Robo, a receptor for Slit2, and PlexinA4 is observed not only in the primary sensory neurons of zebrafish embryos but also in the dendrites of the pyramidal neurons of the cortex of the mammals, and may be important for promoting the branching of either axons or dendrites in response to Slit, as opposed to the growth cone collapse.
Collapse
Affiliation(s)
- Toshio Miyashita
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Dent EW, Barnes AM, Tang F, Kalil K. Netrin-1 and semaphorin 3A promote or inhibit cortical axon branching, respectively, by reorganization of the cytoskeleton. J Neurosci 2004; 24:3002-12. [PMID: 15044539 PMCID: PMC6729836 DOI: 10.1523/jneurosci.4963-03.2004] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In many CNS pathways, target innervation occurs by axon branching rather than extension of the primary growth cone into targets. To investigate mechanisms of branch formation, we studied the effects of attractive and inhibitory guidance cues on cortical axon branching. We found that netrin-1, which attracts cortical axons, and FGF-2 increased branching by >50%, whereas semaphorin 3A (Sema3A), which repels cortical axons, inhibited branching by 50%. Importantly, none of the factors affected axon length significantly. The increase in branching by FGF-2 and the inhibition of branching by Sema3A were mediated by opposing effects on the growth cone (expansion vs collapse) and on the cytoskeleton. FGF-2 increased actin polymerization and formation of microtubule loops in growth cones over many hours, whereas Sema3A depolymerized actin filaments, attenuated microtubule dynamics, and collapsed microtubule arrays within minutes. Netrin-1 promoted rapid axon branching, often without involving the growth cone. Branches formed de novo on the axon shaft within 30 min after local application of netrin-1, which induced rapid accumulation of actin filaments in filopodia. Importantly, increased actin polymerization and microtubule dynamics were necessary for axon branching to occur. Taken together, these results show that guidance factors influence the organization and dynamics of the cytoskeleton at the growth cone and the axon shaft to promote or inhibit axon branching. Independent of axon outgrowth, axon branching in response to guidance cues can occur over different time courses by different cellular mechanisms.
Collapse
Affiliation(s)
- Erik W Dent
- Department of Anatomy and Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
178
|
Greenberg JM, Thompson FY, Brooks SK, Shannon JM, Akeson AL. Slit and robo expression in the developing mouse lung. Dev Dyn 2004; 230:350-60. [PMID: 15162513 DOI: 10.1002/dvdy.20045] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mammalian lung development is mediated through complex interactions between foregut endoderm and surrounding mesenchyme. As airway branching progresses, the mesenchyme undergoes dramatic remodeling and differentiation. Little is understood about the mechanisms that direct mesenchymal organization during lung development. A screen for candidate genes mediating this process identified Slit, a ligand for the Roundabout (Robo) receptor previously associated with guidance of axonal projections during central nervous system development. Here, we demonstrate by in situ hybridization that two Slit genes (Slit-2 and Slit-3) and two Robo genes (Robo-1 and Robo-2) are expressed in fetal lung mesenchyme. Slit-2 and Robo-1 expression is present throughout mesenchyme at midgestation and is not detectable by newborn day 1. Slit-3 and Robo-2 expression is restricted to specific, complementary subsets of mesenchyme. Robo-2 is expressed in mesenchymal cells immediately adjacent to large airways, whereas Slit-3 expression predominates in mesenchyme remote from airway epithelium. The temporal and spatial distribution of Slit and Robo mRNAs indicate that these genes may direct the functional organization and differentiation of fetal lung mesenchyme.
Collapse
Affiliation(s)
- James M Greenberg
- Divisions of Pulmonary Biology and Neonatology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA.
| | | | | | | | | |
Collapse
|
179
|
Liu Z, Patel K, Schmidt H, Andrews W, Pini A, Sundaresan V. Extracellular Ig domains 1 and 2 of Robo are important for ligand (Slit) binding. Mol Cell Neurosci 2004; 26:232-40. [PMID: 15207848 DOI: 10.1016/j.mcn.2004.01.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 12/23/2003] [Accepted: 01/05/2004] [Indexed: 11/27/2022] Open
Abstract
Robo, the receptor for the midline repellent Slit, is a member of the cell adhesion molecule (CAM) Ig superfamily. We have recently demonstrated that members of the Robo family (Robo1 and Robo2) interact homophilically and heterophilically, thereby functioning to promote neurite outgrowth. Here, we describe a series of in vitro experiments to dissect the Robo ligand-interacting domains by deleting specific extracellular regions of the Robo1 molecule, generating a series of mutant proteins. Using these, we demonstrate that Ig domains 1 and 2 of Robo1 are important for Robo-Slit interaction and provide functional data using the Slit-mediated olfactory bulb repulsion assay. To investigate whether homophilic binding properties of Robo are domain specific, we used Robo1-Fc mutant deletion proteins in an aggregation assay and observed a reduction in homophilic binding when any one Ig or all the fibronectin domains were deleted, although homophilic binding was never completely abolished.
Collapse
Affiliation(s)
- Zhe Liu
- MRC Centre for Developmental Neurobiology, Guy's Hospital Campus, Kings College, London SE1 1UL, UK
| | | | | | | | | | | |
Collapse
|
180
|
Jhaveri D, Saharan S, Sen A, Rodrigues V. Positioning sensory terminals in the olfactory lobe of Drosophila by Robo signaling. Development 2004; 131:1903-12. [PMID: 15056612 DOI: 10.1242/dev.01083] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Olfactory receptor neurons and the interneurons of the olfactory lobe are organized in distinct units called glomeruli. We have used expression patterns and genetic analysis to demonstrate that a combinatorial code of Roundabout (Robo) receptors act to position sensory terminals within the olfactory lobe. Groups of sensory neurons possess distinct blends of Robo and Robo3 and disruption of levels by loss-of-function or ectopic expression results in aberrant targeting. In the wild type, most of the neurons send collateral branches to the contralateral lobe. Our data suggests that guidance of axons across brain hemispheres is mediated by Slit-dependent Robo2 signaling. The location of sensory arbors at distinct positions within the lobe allows short-range interactions with projection neurons leading to formation of the glomeruli.
Collapse
Affiliation(s)
- Dhanisha Jhaveri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | | | | | | |
Collapse
|
181
|
Madura T, Yamashita T, Kubo T, Tsuji L, Hosokawa K, Tohyama M. Changes in mRNA of Slit–Robo GTPase-activating protein 2 following facial nerve transection. ACTA ACUST UNITED AC 2004; 123:76-80. [PMID: 15046868 DOI: 10.1016/j.molbrainres.2004.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2004] [Indexed: 10/26/2022]
Abstract
Complex processes following peripheral nerve injury integrate a number of various external cues and their intracellular responses resulting in the cytoskeletal remodeling. One of these cues, Slit protein, plays an important role in neuronal migration and axonal guidance through the interaction with Roundabout (Robo) receptor. It was reported that the signal from Robo is transmitted to a specific family of GTPase-activating proteins (GAPs) named Slit-Robo GAPs. The Slit-Robo GAPs (srGAPs) further transmit the signal to the actin cytoskeleton controlling Rho GTPases and thus provide a direct link between Slit-Robo signaling and actin cytoskeleton. We examined the effects of facial nerve transection on srGAP2 mRNA expression in the facial nerve nuclei by in situ hybridization. SrGAP2 mRNA was initially expressed, and its expression increased from 3 to 28 days after transection, with the peak at the seventh day after axotomy. The upregulation was found mostly in the neuronal cells and only to a small extent in the glial cells. Our results suggest that srGAP2, as a part of Slit-Robo pathway, plays an important role in the axonal regeneration after axotomy.
Collapse
Affiliation(s)
- Tomas Madura
- Department of Plastic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
182
|
Abstract
Like axons, dendrites need guidance for proper orientation and positioning within the brain. Guidance determines synaptic connectivity as well as the strength of transmission. Recent in vivo studies have demonstrated that several cell-surface receptors, previously known as axon guidance molecules, are also responsible for the directed outgrowth of dendrites. Collectively, these studies reveal that the function of guidance molecules in individual neurons and individual processes is diverse and likely to be specifically regulated. Here, these studies are reviewed and emerging issues and implications are discussed.
Collapse
Affiliation(s)
- Susan Kim
- Department of Cell and Structural Biology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
183
|
Fenstermaker V, Chen Y, Ghosh A, Yuste R. Regulation of dendritic length and branching by semaphorin 3A. ACTA ACUST UNITED AC 2004; 58:403-12. [PMID: 14750152 DOI: 10.1002/neu.10304] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The molecular mechanisms that control dendritic development are still unclear. Semaphorin 3A, a class III semaphorin, has been shown to regulate the radial orientation of pyramidal neurons in the developing neocortex. Here, we investigate the effects of Sema3A on the development of dendritic topology. Neocortical slices from Sema3A null mutant mice were cultured and neurons were transfected with GFP, reconstructed, and compared with neurons from wild-type and heterozygote littermates. We also added exogenous Sema3A to cultured wild-type neocortical slices to further test its effects on dendritic development. We document reductions in dendritic length and branching in Sema3A null mice and increases in dendritic length and branching after the addition of exogenous Sema3A to wild-type neurons. We conclude that Sema3A is necessary for the elaboration of second and third order dendritic branches in pyramidal neurons.
Collapse
Affiliation(s)
- Vivian Fenstermaker
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| | | | | | | |
Collapse
|
184
|
Abstract
Dendrite development is an important and unsolved problem in neuroscience. The nervous system is composed of a vast number of neurons with strikingly different morphology. Neurons are highly polarized cells with distinct subcellular compartments, including one or multiple dendritic processes arising from the cell body, and a single, extended axon. Communications between neurons involve synapses formed between axons of the presynaptic neurons and dendrites of the postsynaptic neurons. Extensive studies over the past decade have identified many molecules underlying axonal outgrowth and pathfinding. In contrast, the control of dendrite development is still much less well understood. However, recent progress has begun to shed light on the molecular mechanisms that orchestrate dendrite growth, arborization, and guidance.
Collapse
Affiliation(s)
- Yuh-Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, University of California at San Francisco, San Francisco, CA 94143, USA.
| | | |
Collapse
|
185
|
Park KW, Morrison CM, Sorensen LK, Jones CA, Rao Y, Chien CB, Wu JY, Urness LD, Li DY. Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol 2003; 261:251-67. [PMID: 12941633 DOI: 10.1016/s0012-1606(03)00258-6] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Guidance and patterning of axons are orchestrated by cell-surface receptors and ligands that provide directional cues. Interactions between the Robo receptor and Slit ligand families of proteins initiate signaling cascades that repel axonal outgrowth. Although the vascular and nervous systems grow as parallel networks, the mechanisms by which the vascular endothelial cells are guided to their appropriate positions remain obscure. We have identified a putative Robo homologue, Robo4, based on its differential expression in mutant mice with defects in vascular sprouting. In contrast to known neuronal Robo family members, the arrangement of the extracellular domains of Robo4 diverges significantly from that of all other Robo family members. Moreover, Robo4 is specifically expressed in the vascular endothelium during murine embryonic development. We show that Robo4 binds Slit and inhibits cellular migration in a heterologous expression system, analogous to the role of known Robo receptors in the nervous system. Immunoprecipitation studies indicate that Robo4 binds to Mena, a known effector of Robo-Slit signaling. Finally, we show that Robo4 is the only Robo family member expressed in primary endothelial cells and that application of Slit inhibits their migration. These data demonstrate that Robo4 is a bona fide member of the Robo family and may provide a repulsive cue to migrating endothelial cells during vascular development.
Collapse
MESH Headings
- Activin Receptors, Type I/deficiency
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/physiology
- Activin Receptors, Type II
- Amino Acid Sequence
- Animals
- Cell Line
- Cell Movement
- Chromosome Mapping
- Endothelium, Vascular/embryology
- Gene Expression Regulation, Developmental
- Humans
- In Situ Hybridization
- Intercellular Signaling Peptides and Proteins
- Ligands
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Nerve Tissue Proteins/metabolism
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Sequence Homology, Amino Acid
- Signal Transduction
- Zebrafish
- Roundabout Proteins
Collapse
Affiliation(s)
- Kye Won Park
- School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Judas M, Milosević NJ, Rasin MR, Heffer-Lauc M, Kostović I. Complex patterns and simple architects: molecular guidance cues for developing axonal pathways in the telencephalon. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2003; 32:1-32. [PMID: 12827969 DOI: 10.1007/978-3-642-55557-2_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- M Judas
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000 Zagreb, Croatia
| | | | | | | | | |
Collapse
|
187
|
Abstract
Although neuronal migration is an essential process in development, how neural precursors reach their final destination in the nervous system is not well understood. Secreted molecules that are known to be involved in axon guidance are likely to play important roles in regulating neuronal migration, but an important issue that remains unclear is whether such molecules act as directional guidance cues or as motility regulators in neuronal migration. The secreted protein Slit was initially suggested to be a repellent for migrating neurons (Wu et al., 1999). However, it was concluded recently that Slit plays an inhibitory rather than a repulsive role in neuronal migration (Mason et al., 2001). We have developed a series of assays that allow us to differentiate between repulsive and inhibitory effects of secreted molecules, and we demonstrate that Slit is a repellent capable of reversing the direction of neurons migrating either in culture or in their native pathways. We also show that although Slit reduces migratory speed under certain conditions, it can function as a repellent without concurrent inhibition of neuronal migration. This is the first study to clearly demonstrate that migrating neurons can be directionally guided by secreted molecules. These findings provide a basis to understand the physiological roles of secreted molecules in the developing nervous system and have implications on how they could be applied therapeutically. Our results also indicate that it should be possible to determine the specific action of other molecules as directional guidance cues or as motility regulators of cell migration.
Collapse
|
188
|
De Bellard ME, Rao Y, Bronner-Fraser M. Dual function of Slit2 in repulsion and enhanced migration of trunk, but not vagal, neural crest cells. J Cell Biol 2003; 162:269-79. [PMID: 12876276 PMCID: PMC2172792 DOI: 10.1083/jcb.200301041] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Revised: 06/11/2003] [Accepted: 06/16/2003] [Indexed: 01/07/2023] Open
Abstract
Neural crest precursors to the autonomic nervous system form different derivatives depending upon their axial level of origin; for example, vagal, but not trunk, neural crest cells form the enteric ganglia of the gut. Here, we show that Slit2 is expressed at the entrance of the gut, which is selectively invaded by vagal, but not trunk, neural crest. Accordingly, only trunk neural crest cells express Robo receptors. In vivo and in vitro experiments demonstrate that trunk, not vagal, crest cells avoid cells or cell membranes expressing Slit2, thereby contributing to the differential ability of neural crest populations to invade and innervate the gut. Conversely, exposure to soluble Slit2 significantly increases the distance traversed by trunk neural crest cells. These results suggest that Slit2 can act bifunctionally, both repulsing and stimulating the motility of trunk neural crest cells.
Collapse
|
189
|
Abstract
During development, the nervous system is confronted with a problem of enormous complexity; to progress from a large number of 'disconnected' neurons to a network of neuronal circuitry that is able to dynamically process sensory information and generate an appropriate output. To form these circuits, growing axons must make synapses with targets, usually the dendrites of postsynaptic neurons. Although a significant amount is known about the signals that regulate and guide developing axons, we are only now starting to understand how environmental cues like growth factors and activity regulate the formation and maintenance of dendrites in the developing and mature nervous system.
Collapse
Affiliation(s)
- Freda D Miller
- Developmental Biology and Cancer Research Program, 555 University Avenue, Hospital for Sick Children, Toronto, M5G 1X8, Canada.
| | | |
Collapse
|
190
|
Abstract
The actin cytoskeleton plays a major role in morphological development of neurons and in structural changes of adult neurons. This article reviews the myriad functions of actin and myosin in axon initiation, growth, guidance and branching, in morphogenesis of dendrites and dendritic spines, in synapse formation and stability, and in axon and dendrite retraction. Evidence is presented that signaling pathways involving the Rho family of small GTPases are key regulators of actin polymerization and myosin function in the context of different aspects of neuronal morphogenesis. These studies support an emerging theme: Different aspects of neuronal morphogenesis may involve regulation of common core signaling pathways, in particular the Rho GTPases.
Collapse
Affiliation(s)
- Liqun Luo
- Department of Biological Sciences, Neurosciences Program, Stanford University, California 94305, USA.
| |
Collapse
|
191
|
Abstract
How the dendritic branching patterns of different neurons are specified is a fascinating question in developmental neurobiology. This question can now be addressed in detail in Drosophila, owing to technological advances that allow in vivo labeling of the dendrites of identifiable neurons. Recent genetic analyses in flies have uncovered several molecules, including transcription factors, cytoskeleton-associated proteins and membrane receptor-like molecules, that provide a glimpse into the complex regulatory network that controls dendritic morphogenesis.
Collapse
Affiliation(s)
- Fen-Biao Gao
- Gladstone Institute of Neurological Disease, Neuroscience Graduate Program, University of California, San Francisco, CA 94141-9100, USA.
| | | |
Collapse
|
192
|
Kuja-Panula J, Kiiltomäki M, Yamashiro T, Rouhiainen A, Rauvala H. AMIGO, a transmembrane protein implicated in axon tract development, defines a novel protein family with leucine-rich repeats. J Cell Biol 2003; 160:963-73. [PMID: 12629050 PMCID: PMC2173769 DOI: 10.1083/jcb.200209074] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ordered differential display identified a novel sequence induced in neurons by the neurite-promoting protein amphoterin. We named this gene amphoterin-induced gene and ORF (AMIGO), and also cloned two other novel genes homologous to AMIGO (AMIGO2 and AMIGO3). Together, these three AMIGOs form a novel family of genes coding for type I transmembrane proteins which contain a signal sequence for secretion and a transmembrane domain. The deduced extracellular parts of the AMIGOs contain six leucine-rich repeats (LRRs) flanked by cysteine-rich LRR NH2- and COOH-terminal domains and by one immunoglobulin domain close to the transmembrane region. A substrate-bound form of the recombinant AMIGO ectodomain promoted prominent neurite extension in hippocampal neurons, and in solution, the same AMIGO ectodomain inhibited fasciculation of neurites. A homophilic and heterophilic binding mechanism is shown between the members of the AMIGO family. Our results suggest that the members of the AMIGO protein family are novel cell adhesion molecules among which AMIGO is specifically expressed on fiber tracts of neuronal tissues and participates in their formation.
Collapse
Affiliation(s)
- Juha Kuja-Panula
- Neuroscience Center, Viikinkaari 5, PO Box 56, University of Helsinki, Helsinki 00014, Finland.
| | | | | | | | | |
Collapse
|
193
|
Anselmo MA, Dalvin S, Prodhan P, Komatsuzaki K, Aidlen JT, Schnitzer JJ, Wu JY, Kinane TB. Slit and robo: expression patterns in lung development. Gene Expr Patterns 2003; 3:13-9. [PMID: 12609596 DOI: 10.1016/s1567-133x(02)00095-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
First described as an axonal guidance cue through its repulsive effect on neurons expressing its receptor Roundabout (Robo), the Slit ligand has effects on cell migration, axon branching and elongation. Indirect evidence implicates Slit and Robo in lung development. We now demonstrate that Slit-2 and Slit-3 are developmentally regulated in embryonic murine lung. Immunohistochemistry demonstrates Slit-2 and Slit-3 expression by the pulmonary mesenchyme and airway epithelium. Robo-1 and Robo-2 are also expressed by the developing mesenchyme and airway epithelium. As lung development progresses, Robo-1 and Robo-2 expression localizes to only the airway epithelium. We conclude Slit/Robo are expressed in temporo-spatially adjacent domains suggesting interactive roles in pulmonary bronchiolar development.
Collapse
Affiliation(s)
- Mark A Anselmo
- Pediatric Pulmonary Unit, Massachusetts General Hospital for Children, Harvard Medical School, Jackson 14, GRJ 1416, 55 Fruit St, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Furrer MP, Kim S, Wolf B, Chiba A. Robo and Frazzled/DCC mediate dendritic guidance at the CNS midline. Nat Neurosci 2003; 6:223-30. [PMID: 12592406 DOI: 10.1038/nn1017] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2002] [Accepted: 01/21/2003] [Indexed: 11/09/2022]
Abstract
Neuronal connectivity is established by the axo-dendritic polarity, correct guidance and targeting of neurons. Unlike for axons, the mechanisms responsible for directed outgrowth of dendrites are not well understood. Using single-cell labeling, we describe specific guidance defects in dendrites of identified neurons in frazzled, robo, netrin and commissureless mutant embryos of Drosophila melanogaster. We found that the cell-surface molecules Frazzled and Robo work as guidance molecules not only for axons but also for dendrites as they navigate within the CNS. Furthermore, we report that each neuron showed a cell-autonomous and independent use of guidance molecules.
Collapse
Affiliation(s)
- Marie-Pierre Furrer
- Department of Cell and Structural Biology, University of Illinois, 601 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
195
|
Jin Z, Zhang J, Klar A, Chédotal A, Rao Y, Cepko CL, Bao ZZ. Irx4-mediated regulation of Slit1 expression contributes to the definition of early axonal paths inside the retina. Development 2003; 130:1037-48. [PMID: 12571096 DOI: 10.1242/dev.00326] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although multiple axon guidance cues have been discovered in recent years, little is known about the mechanism by which the spatiotemporal expression patterns of the axon guidance cues are regulated in vertebrates. We report that a homeobox gene Irx4 is expressed in a pattern similar to that of Slit1 in the chicken retina. Overexpression of Irx4 led to specific downregulation of Slit1 expression, whereas inhibition of Irx4 activity by a dominant negative mutant led to induction of Slit1 expression, indicating that Irx4 is a crucial regulator of Slit1 expression in the retina. In addition, by examining axonal behavior in the retinas with overexpression of Irx4 and using several in vivo assays to test the effect of Slit1, we found that Slit1 acts positively to guide the retinal axons inside the optic fiber layer (OFL). We further show that the regulation of Slit1 expression by Irx4 is important for providing intermediate targets for retinal axons during their growth within the retina.
Collapse
Affiliation(s)
- Zhe Jin
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | | | | | |
Collapse
|
196
|
Chen S, Mangé A, Dong L, Lehmann S, Schachner M. Prion protein as trans-interacting partner for neurons is involved in neurite outgrowth and neuronal survival. Mol Cell Neurosci 2003; 22:227-33. [PMID: 12676532 DOI: 10.1016/s1044-7431(02)00014-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Many uncertainties remain regarding the physiological function of the prion protein PrP and the consequences of its conversion into the pathological scrapie isoform in prion diseases. Here, we show for the first time that different signal transduction pathways are involved in neurite outgrowth and neuronal survival elicited by PrP in cell culture of primary neurons. These pathways include the nonreceptor Src-related family member p59(Fyn), PI3 kinase/Akt, cAMP-dependent protein kinase A, and MAP kinase. Regulation of Bcl-2 and Bax expression also correlates with the survival effect elicited by PrP. The combined results, along with our observation that PrP carries the recognition molecule-related HNK-1 carbohydrate, argue strongly for a role of the molecule in neural recognition by interacting with yet unknown heterophilic neuronal receptors, as shown by comparison of neurite outgrowth from neurons of PrP-deficient and wild-type mice.
Collapse
Affiliation(s)
- Suzhen Chen
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, D-20246, Hamburg, Germany
| | | | | | | | | |
Collapse
|
197
|
Holtmaat AJGD, De Winter F, De Wit J, Gorter JA, da Silva FHL, Verhaagen J. Semaphorins: contributors to structural stability of hippocampal networks? PROGRESS IN BRAIN RESEARCH 2002; 138:17-38. [PMID: 12432760 DOI: 10.1016/s0079-6123(02)38068-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Anthony J G D Holtmaat
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
198
|
Datwani A, Iwasato T, Itohara S, Erzurumlu RS. NMDA receptor-dependent pattern transfer from afferents to postsynaptic cells and dendritic differentiation in the barrel cortex. Mol Cell Neurosci 2002; 21:477-92. [PMID: 12498788 PMCID: PMC3564661 DOI: 10.1006/mcne.2002.1195] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N-Methyl-D-aspartate receptors (NMDARs) are important for synaptic refinement during development. In CxNR1KO mice, cortical excitatory neurons lack NR1, the essential subunit of the NMDAR, and in their primary somatosensory (S1) cortex whisker-specific cellular patterns, "barrels," are absent. Despite this cytoarchitectural defect, thalamocortical axons (TCAs) representing the mystacial vibrissae form topographically organized patterns and undergo critical period plasticity. This region-specific knockout mouse model allows for dissection of the mechanisms underlying patterning of the pre- and postsynaptic neural elements in the S1 cortex. In the absence of functional NMDARs, layer IV cell numbers are unaltered, but these cells fail to segregate into barrels. Furthermore, the dendritic fields of spiny stellate cells do not orient toward TCA terminal patches as in normal mice. Instead, they radiate in all directions covering larger territories, exhibiting profuse branching with increased spine density. Comparison of TCA patches with serotonin transporter (5-HTT) immunohistochemistry or Dil labeling also indicates that in the CxNR1KO cortex TCAs form smaller patches and individual axon terminal branching is not as well developed as in control cortex. Our results suggest that postsynaptic NMDAR activation is critical in communicating periphery-related sensory patterns from TCAs to barrel cells. When postsynaptic NMDAR function is disrupted, layer IV spiny stellate cells remain imperceptive to patterning of their presynaptic inputs and elaborate exuberant dendritic specializations.
Collapse
Affiliation(s)
- Akash Datwani
- Department of Cell Biology and Anatomy, and Neuroscience Center of Excellence, LSUHSC, 1901 Perdido Street, New Orleans, Louisiana 70112
| | - Takuji Iwasato
- PRESTO, Japan Science and Technology Corporation (JST), RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Laboratory for Behavioral Genetics, Brain Science Institute (BSI), RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, Brain Science Institute (BSI), RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Reha S. Erzurumlu
- Department of Cell Biology and Anatomy, and Neuroscience Center of Excellence, LSUHSC, 1901 Perdido Street, New Orleans, Louisiana 70112
- To whom correspondence should be addressed at Department of Cell Biology and Anatomy, LSUHSC, 1901 Perdido Street, New Orleans, LA 70112. Fax: (504) 458-4392.
| |
Collapse
|
199
|
Horch HW, Katz LC. BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat Neurosci 2002; 5:1177-84. [PMID: 12368805 DOI: 10.1038/nn927] [Citation(s) in RCA: 319] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Accepted: 09/09/2002] [Indexed: 01/14/2023]
Abstract
In cultured neurons, the exogenous application of neurotrophins (in homogenous concentrations) alters many features of axonal and dendritic arbors. In vivo, however, release of endogenous neurotrophins from neuronal processes creates spatially heterogeneous neurotrophin distributions. To probe the consequences of such endogenous neurotrophin distribution, we produced 'donor neurons' in ferret cortex brain slices that co-expressed brain-derived neurotrophic factor (BDNF) and red fluorescent protein (RFP). Using two-photon microscopy, we analyzed their effects on 'recipient neurons' that expressed green fluorescent protein (GFP) alone. BDNF released from dendrites and cell bodies acted directly on nearby recipient neurons to increase dendritic branching in a distance-dependent manner. Three-dimensional analysis of donor and recipient dendrites indicated that the BDNF source had to be within 4.5 microm to induce dendritic growth in the recipient neuron. Thus, BDNF released from an individual cell alters the structure of nearby dendrites on an exquisitely local scale.
Collapse
Affiliation(s)
- Hadley Wilson Horch
- Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Box 3209, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
200
|
Abstract
Receptor complexes for the chemorepellent factors of the semaphorin family activate intracellular pathways that trigger actin rearrangements underlying growth cone collapse and repellent behavior. Some evidence has been provided for a complex and dynamic pattern of interaction between members of the small Rho guanosine triphosphatases and plexin proteins that are the receptor subunits responsible for initiating semaphorin signaling. The characterization of new components of semaphorin receptor complexes, the implication of several distinct classes of cytoplasmic effectors, together with the observation of a variety of processes modulating the semaphorin signal have provided a basis for a much improved, but still intricate view of the semaphorin transduction pathways in neurons.
Collapse
Affiliation(s)
- Valérie Castellani
- Laboratoire de Neurogenèse et Morphogenèse dans le Dévelopement et chez l'Adulte, UMR CNRS 6156, Université de la Méditerranée, IBDM, Parc Scientifique de Luminy, Marseille, France.
| | | |
Collapse
|