151
|
Chen S, Wang X, Lee BK, Gardner RM. Associations between maternal metabolic conditions and neurodevelopmental conditions in offspring: the mediating effects of obstetric and neonatal complications. BMC Med 2023; 21:422. [PMID: 37936224 PMCID: PMC10631144 DOI: 10.1186/s12916-023-03116-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Maternal pre-gestational diabetes (PGDM), gestational diabetes mellitus (GDM), and overweight/obesity have been associated with increased risks of offspring neurodevelopmental conditions (NDCs) including autism, intellectual disability (ID), and attention deficit/hyperactivity disorder (ADHD). Less is known about whether and how obstetric and neonatal complications (e.g., preterm birth, neonatal asphyxia) could mediate these associations. METHODS In this Swedish register-based cohort study, we examined complications during pregnancy, delivery, and the neonatal period as potential mediators of the relationships between maternal metabolic conditions and offspring NDCs. We quantified the extent to which these obstetric and neonatal factors could mediate the associations of maternal metabolic conditions with offspring NDCs by applying parametric regression models for single mediation analyses and weighting-based methods for multiple mediation analyses under counterfactual frameworks. RESULTS The study sample included 2,352,969 singleton children born to 1,299,692 mothers from 1987-2010 who were followed up until December 31, 2016, of whom 135,832 children (5.8%) were diagnosed with at least one NDC. A substantial portion of the association between maternal PGDM and children's odds of NDCs could be explained by the combined group of obstetric and neonatal complications in the multiple mediation analysis. For instance, these complications explained 44.4% of the relationship between maternal PGDM and offspring ID risk. The proportion of the relationship between maternal overweight/obesity and children's risk of NDCs that could be explained by obstetric and neonatal complications was considerably smaller, ranging from 1.5 to 8.1%. Some complications considered on their own, including pregnancy hypertensive diseases, preterm birth, neonatal asphyxia, and hematological comorbidities, could explain at least 10% of the associations between maternal PGDM and offspring NDCs. Complications during the neonatal period showed a stronger joint mediating effect for the relationship between PGDM and offspring NDCs than those during pregnancy or delivery. CONCLUSIONS Obstetric and neonatal complications could explain nearly half of the association between maternal PGDM and offspring risk of NDCs. The mediating effects were more pronounced for complications during the neonatal period and for specific complications such as pregnancy hypertensive diseases, preterm birth, neonatal asphyxia, and hematological comorbidities. Effective preventive strategies for offspring NDCs should holistically address both the primary metabolic issues related to PGDM and the wide array of potential complications, especially those in the neonatal period.
Collapse
Affiliation(s)
- Shuyun Chen
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden.
| | - Xi Wang
- PolicyLab, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brian K Lee
- Department of Epidemiology and Biostatistics, Drexel University School of Public Health, Philadelphia, PA, USA
- A.J. Drexel Autism Institute, Philadelphia, PA, USA
| | - Renee M Gardner
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
152
|
Miller HE, Garnett EO, Heller Murray ES, Nieto-Castañón A, Tourville JA, Chang SE, Guenther FH. A comparison of structural morphometry in children and adults with persistent developmental stuttering. Brain Commun 2023; 5:fcad301. [PMID: 38025273 PMCID: PMC10653153 DOI: 10.1093/braincomms/fcad301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/07/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
This cross-sectional study aimed to differentiate earlier occurring neuroanatomical differences that may reflect core deficits in stuttering versus changes associated with a longer duration of stuttering by analysing structural morphometry in a large sample of children and adults who stutter and age-matched controls. Whole-brain T1-weighted structural scans were obtained from 166 individuals who stutter (74 children, 92 adults; ages 3-58) and 191 controls (92 children, 99 adults; ages 3-53) from eight prior studies in our laboratories. Mean size and gyrification measures were extracted using FreeSurfer software for each cortical region of interest. FreeSurfer software was also used to generate subcortical volumes for regions in the automatic subcortical segmentation. For cortical analyses, separate ANOVA analyses of size (surface area, cortical thickness) and gyrification (local gyrification index) measures were conducted to test for a main effect of diagnosis (stuttering, control) and the interaction of diagnosis-group with age-group (children, adults) across cortical regions. Cortical analyses were first conducted across a set of regions that comprise the speech network and then in a second whole-brain analysis. Next, separate ANOVA analyses of volume were conducted across subcortical regions in each hemisphere. False discovery rate corrections were applied for all analyses. Additionally, we tested for correlations between structural morphometry and stuttering severity. Analyses revealed thinner cortex in children who stutter compared with controls in several key speech-planning regions, with significant correlations between cortical thickness and stuttering severity. These differences in cortical size were not present in adults who stutter, who instead showed reduced gyrification in the right inferior frontal gyrus. Findings suggest that early cortical anomalies in key speech planning regions may be associated with stuttering onset. Persistent stuttering into adulthood may result from network-level dysfunction instead of focal differences in cortical morphometry. Adults who stutter may also have a more heterogeneous neural presentation than children who stutter due to their unique lived experiences.
Collapse
Affiliation(s)
- Hilary E Miller
- Department of Speech, Language, & Hearing Sciences, Boston University, Boston, MA 02215, USA
| | - Emily O Garnett
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth S Heller Murray
- Department of Speech, Language, & Hearing Sciences, Boston University, Boston, MA 02215, USA
- Department of Communication Sciences & Disorders, Temple University, Philadelphia, PA 19122, USA
| | - Alfonso Nieto-Castañón
- Department of Speech, Language, & Hearing Sciences, Boston University, Boston, MA 02215, USA
| | - Jason A Tourville
- Department of Speech, Language, & Hearing Sciences, Boston University, Boston, MA 02215, USA
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Communication Disorders, Ewha Womans University, Seoul 03760, Korea
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI 48824, USA
| | - Frank H Guenther
- Department of Speech, Language, & Hearing Sciences, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
153
|
Arenella M, Matuleviciute R, Tamouza R, Leboyer M, McAlonan G, Bralten J, Murphy D. Immunogenetics of autism spectrum disorder: A systematic literature review. Brain Behav Immun 2023; 114:488-499. [PMID: 37717669 DOI: 10.1016/j.bbi.2023.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
The aetiology of autism spectrum disorder (ASD) is complex and, partly, accounted by genetic factors. Nonetheless, the genetic underpinnings of ASD are poorly defined. The presence of immune dysregulations in autistic individuals, and their families, supports a role of the immune system and its genetic regulators. Albeit immune responses belong either to the innate or adaptive arms, the overall immune system genetics is broad, and encompasses a multitude of functionally heterogenous pathways which may have different influences on ASD. Hence, to gain insights on the immunogenetic underpinnings of ASD, we conducted a systematic literature review of previous immune genetic and transcription studies in ASD. We defined a list of immune genes relevant to ASD and explored their neuro-immune function. Our review confirms the presence of immunogenetic variability in ASD, accounted by inherited variations of innate and adaptive immune system genes and genetic expression changes in the blood and post-mortem brain of autistic individuals. Besides their immune function, the identified genes control neurodevelopment processes (neuronal and synaptic plasticity) and are highly expressed in pre/peri-natal periods. Hence, our synthesis bolsters the hypothesis that perturbation in immune genes may contribute to ASD by derailing the typical trajectory of neurodevelopment. Our review also helped identifying some of the limitations of prior immunogenetic research in ASD. Thus, alongside clarifying the neurodevelopment role of immune genes, we outline key considerations for future work into the aetiology of ASD and possible novel intervention targets.
Collapse
Affiliation(s)
- Martina Arenella
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute of Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.
| | - Rugile Matuleviciute
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Ryad Tamouza
- University Paris Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry Lab, AP-HP, Department of Addiction and Psychiatry (DMU IMPACT, FHU ADAPT), France; Fondation FondaMental, F-94010 Créteil, France
| | - Marion Leboyer
- University Paris Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry Lab, AP-HP, Department of Addiction and Psychiatry (DMU IMPACT, FHU ADAPT), France; Fondation FondaMental, F-94010 Créteil, France
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute of Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
154
|
Margolis AE, Greenwood P, Dranovsky A, Rauh V. The Role of Environmental Chemicals in the Etiology of Learning Difficulties: A Novel Theoretical Framework. MIND, BRAIN AND EDUCATION : THE OFFICIAL JOURNAL OF THE INTERNATIONAL MIND, BRAIN, AND EDUCATION SOCIETY 2023; 17:301-311. [PMID: 38389544 PMCID: PMC10881209 DOI: 10.1111/mbe.12354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/09/2023] [Indexed: 02/24/2024]
Abstract
Children from economically disadvantaged communities have a disproportionate risk of exposure to chemicals, social stress, and learning difficulties. Although animal models and epidemiologic studies link exposures and neurodevelopment, little focus has been paid to academic outcomes in environmental health studies. Similarly, in the educational literature, environmental chemical exposures are overlooked as potential etiologic factors in learning difficulties. We propose a theoretical framework for the etiology of learning difficulties that focuses on these understudied exogenous factors. We discuss findings from animal models and longitudinal, prospective birth cohort studies that support this theoretical framework. Studies reviewed point to the effects of prenatal exposure to polycyclic aromatic hydrocarbons on reading comprehension and math skills via effects on inhibitory control processes. Long term, this work will help close the achievement gap in the United States by identifying behavioral and neural pathways from prenatal exposures to learning difficulties in children from economically disadvantaged families.
Collapse
Affiliation(s)
- Amy E. Margolis
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Columbia University Irving Medical Center
- New York State Psychiatric Institute
| | - Paige Greenwood
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Columbia University Irving Medical Center
| | - Alex Dranovsky
- New York State Psychiatric Institute
- Division of Neuroscience, Department of Psychiatry, Columbia University Irving Medical Center
| | - Virginia Rauh
- Population and Family Health, Mailman School of Public Health, Columbia University Irving Medical Center
| |
Collapse
|
155
|
Boerma T, Ter Haar S, Ganga R, Wijnen F, Blom E, Wierenga CJ. What risk factors for Developmental Language Disorder can tell us about the neurobiological mechanisms of language development. Neurosci Biobehav Rev 2023; 154:105398. [PMID: 37741516 DOI: 10.1016/j.neubiorev.2023.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/03/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
Language is a complex multidimensional cognitive system that is connected to many neurocognitive capacities. The development of language is therefore strongly intertwined with the development of these capacities and their neurobiological substrates. Consequently, language problems, for example those of children with Developmental Language Disorder (DLD), are explained by a variety of etiological pathways and each of these pathways will be associated with specific risk factors. In this review, we attempt to link previously described factors that may interfere with language development to putative underlying neurobiological mechanisms of language development, hoping to uncover openings for future therapeutical approaches or interventions that can help children to optimally develop their language skills.
Collapse
Affiliation(s)
- Tessel Boerma
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Sita Ter Haar
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands; Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University/Translational Neuroscience, University Medical Center Utrecht, the Netherlands
| | - Rachida Ganga
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Frank Wijnen
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Elma Blom
- Department of Development and Education of youth in Diverse Societies (DEEDS), Utrecht University, Utrecht, the Netherlands; Department of Language and Culture, The Arctic University of Norway UiT, Tromsø, Norway.
| | - Corette J Wierenga
- Biology Department, Faculty of Science, Utrecht University, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
156
|
Zhou L, Liu X, Yan X, Liu Y, Xie Y, Sun C. Long-term effects of prenatal magnesium sulfate exposure on nervous system development in preterm-born children. Food Sci Nutr 2023; 11:7061-7069. [PMID: 37970388 PMCID: PMC10630835 DOI: 10.1002/fsn3.3630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 11/17/2023] Open
Abstract
This study used structural magnetic resonance imaging to analyze changes in the gray matter volume (GMV) of preterm-born (PTB) and term-born (TB) children to help elucidate the influence of magnesium sulfate treatment on the nervous system development. A total of 51 subjects were recruited, including 28 PTB and 23 TB children. The intelligence scale and MRI scan were completed at the corrected age of 10 to 16 years. A whole-brain voxel-wise analysis tested the main effect of the status (PTB without magnesium, PTB with magnesium, and TB) using a factorial design in SPM8. The mean volumes of the regions that showed significant group effects on the GMV after the FDR correction were extracted in the common space for each subject. Verbal and full-scale intelligence quotient scores were significantly lower for PTB children without magnesium than for TB children; however, the scores of PTB children with magnesium and TB children were almost identical. Compared with TB children, PTB children had significantly reduced left straight gyrus and left inferior frontal gyrus GMVs; however, the volumes of PTB children with magnesium were closer to those of TB children. Changes in the GMV of the left inferior frontal gyrus were significantly correlated with full-scale and verbal intelligence quotient scores, whereas the lower gestational age at the time of mgsou4 treatment led to a larger GMV of the left inferior frontal gyrus. Brain structural abnormalities could exist in PTB children. The GMVs of the left straight gyrus and left inferior frontal gyrus were significantly reduced in these children. The influence of magnesium sulfate treatment was not significant, but the cognitive levels of these children were significantly increased and almost identical to those of TB children. Initiation of magnesium sulfate treatment during gestation is negatively correlated with the left inferior frontal gyrus GMV.
Collapse
Affiliation(s)
- Le Zhou
- Obstetrics and Gynecology Department, West China Second University HospitalSichuan UniversityChengduChina
| | - Xinghui Liu
- Obstetrics and Gynecology Department, West China Second University HospitalSichuan UniversityChengduChina
| | - Xiaoli Yan
- Obstetrics and Gynecology DepartmentThe Southwest Hospital of the Army Medical UniversityChongqingChina
| | - Yingwei Liu
- Obstetrics and Gynecology DepartmentThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yao Xie
- Obstetrics and Gynecology DepartmentSichuan Academy of Medical Sciences – Sichuan Provincial People's HospitalChengduChina
| | - Chuntang Sun
- Obstetrics and Gynecology Department, West China Second University HospitalSichuan UniversityChengduChina
| |
Collapse
|
157
|
Trofimova I. Anticipatory attractors, functional neurochemistry and "Throw & Catch" mechanisms as illustrations of constructivism. Rev Neurosci 2023; 34:737-762. [PMID: 36584323 DOI: 10.1515/revneuro-2022-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022]
Abstract
This review explores several rarely discussed examples illustrating constructivism principles, generative and selective features of neuronal regulation of behaviour. First, the review highlights Walter Freeman's experiments and mathematical analysis that uncovered the existence of anticipatory attractors, i.e. non-random dynamical patterns in neurodynamics. Since Freeman's work did not extend to neurochemistry, this paper then points to the proposed earlier neurochemical framework summarizing the managerial roles of monoaminergic, cholinergic and opioid receptor systems likely contributing to anticipatory attractors in line with functional constructivism. As a third example, neurochemistry's evidence points to the "Throw & Catch" (T&C) principle in neurodynamics. This principle refers to the pro-active, neurochemically expensive, massive but topical increase of potentials ("Throw") within electrodynamics and neurotransmission in the brain whenever there is an uncertainty in selection of degrees of freedom (DFs). The T&C also underlines the relay-like processes during the selection of DFs. The "Throw" works as an internally generated "flashlight" that, contrarily to the expectations of entropy reduction, increases entropy and variance observed in processes related to orientation and action-formation. The discussed examples highlight the deficiency of structures-oriented projects and excitation-inhibition concepts in neuroscience. The neural regulation of behaviour appears to be a fluid, constructive process, constantly upgrading the choice of behavioural DFs, to ensure the compatibility between the environmental and individual's individuals' needs and capacities.
Collapse
Affiliation(s)
- Irina Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton L8S 2T6, ON, Canada
| |
Collapse
|
158
|
Schneider N, Hartweg M, O’Regan J, Beauchemin J, Redman L, Hsia DS, Steiner P, Carmichael O, D’Sa V, Deoni S. Impact of a Nutrient Formulation on Longitudinal Myelination, Cognition, and Behavior from Birth to 2 Years: A Randomized Clinical Trial. Nutrients 2023; 15:4439. [PMID: 37892514 PMCID: PMC10610069 DOI: 10.3390/nu15204439] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Observation studies suggest differences in myelination in relation to differences in early life nutrition. This two-center randomized controlled trial investigates the effect of a 12-month nutritional intervention on longitudinal changes in myelination, cognition, and behavior. Eighty-one full-term, neurotypical infants were randomized into an investigational (N = 42) or a control group (N = 39), receiving higher versus lower levels of a blend of nutrients. Non-randomized breastfed infants (N = 108) served as a reference group. Main outcomes were myelination (MRI), neurodevelopment (Bayley-III), social-emotional development (ASQ:SE-2), infant and toddler behavior (IBQ-R and TBAQ), and infant sleep (BISQ) during the first 2 years of life. The full analysis set comprised N = 67 infants from the randomized groups, with 81 myelin-sensitive MRI sequences. Significantly higher myelination was observed in the investigational compared to the control group at 6, 12, 18, and 24 months of life, as well as significantly higher gray matter volume at 24 months, a reduced number of night awakenings at 6 months, increased day sleep at 12 months, and reduced social fearfulness at 24 months. The results suggest that brain development may be modifiable with brain- and age-relevant nutritional approaches in healthy infants and young children, which may be foundational for later learning outcomes.
Collapse
Affiliation(s)
- Nora Schneider
- Brain Health, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1010 Lausanne, Switzerland
| | - Mickaël Hartweg
- Biostatistics and Data Management, Clinical Research Unit, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Jonathan O’Regan
- Nestlé Development Centre Nutrition, Askeaton, Co., RH6 0PA Limerick, Ireland
| | - Jennifer Beauchemin
- Advanced Baby Imaging Lab, Hasbro Children’s Hospital, Providence, RI 02903, USA
| | - Leanne Redman
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA (O.C.)
| | - Daniel S. Hsia
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA (O.C.)
| | - Pascal Steiner
- Brain Health, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1010 Lausanne, Switzerland
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA (O.C.)
| | - Viren D’Sa
- Advanced Baby Imaging Lab, Hasbro Children’s Hospital, Providence, RI 02903, USA
- Department of Pediatrics, Brown University, Providence, RI 02903, USA
| | - Sean Deoni
- Department of Pediatrics, Brown University, Providence, RI 02903, USA
- Spinn Neuroscience, Mukilteo, WA 98275, USA
| |
Collapse
|
159
|
Nakamura M, Tatsuta N, Murata K, Nakai K, Iwata T, Otobe T, Sakamoto M, Yamamoto M, Itatani M, Miura Y, Koriyama C. Neurodevelopmental associations of prenatal and postnatal methylmercury exposure among first-grade children in the Kinan region, Japan. ENVIRONMENTAL RESEARCH 2023; 235:116688. [PMID: 37467938 DOI: 10.1016/j.envres.2023.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
The most severe effects of methylmercury (MeHg) exposure during child development are thought to result from exposure during fetal life and childhood. However, comparing the neurodevelopmental effects of prenatal and postnatal MeHg exposure (PreMeHg and PostMeHg, respectively) remains unclear. We aimed to investigate the associations between neurodevelopmental indicators and PreMeHg or PostMeHg. The participants were 134 children in the first grade of elementary schools aged 7-8 years from the Kinan region, an area with high consumption of MeHg-rich whales and tunas in Japan. We measured MeHg levels in preserved umbilical cord tissues and total mercury (T-Hg) levels in children's hair to estimate PreMeHg and PostMeHg levels, respectively. Neuropsychological (intelligence quotient testing and Boston Naming Test) and neurophysiological (brainstem auditory evoked potential [BAEP], visual evoked potential [VEP], and color vision tests) studies were performed to evaluate the neurodevelopmental status. Multiple regression analyses were conducted according to sex. The geometric mean MeHg levels in preserved umbilical cord tissues and T-Hg levels in children's hair were 0.11 μg/g and 2.94 μg/g, respectively. Neither PreMeHg nor PostMeHg was related to neuropsychological indicators. Some associations between MeHg exposure and neurophysiological results were observed only in boys. N145 latency in VEPs was significantly prolonged with increasing PreMeHg (β: 12.01, 95% confidence interval [CI]: 0.648, 23.38). The III-V interpeak intervals in BAEP were significantly prolonged with increasing PreMeHg or PostMeHg (β [95% CI]: 0.142 [0.041, 0.243] and 0.159 [0.052, 0.265], respectively). After adjusting for PreMeHg, the association between PostMeHg and BAEP latencies disappeared. In conclusion, the latency in the auditory and visual pathways was significantly prolonged with increasing PreMeHg in boys. These findings suggest that male fetuses may be more susceptible to MeHg exposure.
Collapse
Affiliation(s)
- Masaaki Nakamura
- Department of Clinical Medicine, National Institute for Minamata Disease, 4058-18 Hama, Minamata City, Kumamoto, 867-0008, Japan.
| | - Nozomi Tatsuta
- Development and Environmental Medicine, Tohoku University Graduate School of Medicine, Sendai City, Miyagi, 980-8575, Japan.
| | - Katsuyuki Murata
- Department of Environmental Health Sciences, Akita University Graduate School of Medicine, 1-1 Hondo, Akita City, Akita, 010-8543, Japan.
| | - Kunihiko Nakai
- Development and Environmental Medicine, Tohoku University Graduate School of Medicine, Sendai City, Miyagi, 980-8575, Japan.
| | - Toyoto Iwata
- Department of Environmental Health Sciences, Akita University Graduate School of Medicine, 1-1 Hondo, Akita City, Akita, 010-8543, Japan.
| | - Takayuki Otobe
- Department of Child Education, Jin-ai University, Echizen City, Fukui, 910-0124, Japan.
| | - Mineshi Sakamoto
- Department of Environment and Public Health, National Institute for Minamata Disease, 4058-18 Hama, Minamata City, Kumamoto, 867-0008, Japan.
| | - Megumi Yamamoto
- Department of Environment and Public Health, National Institute for Minamata Disease, 4058-18 Hama, Minamata City, Kumamoto, 867-0008, Japan.
| | - Mina Itatani
- Department of Clinical Medicine, National Institute for Minamata Disease, 4058-18 Hama, Minamata City, Kumamoto, 867-0008, Japan.
| | - Yoko Miura
- Department of Clinical Medicine, National Institute for Minamata Disease, 4058-18 Hama, Minamata City, Kumamoto, 867-0008, Japan.
| | - Chihaya Koriyama
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| |
Collapse
|
160
|
Marr MC, Graham AM, Feczko E, Nolvi S, Thomas E, Sturgeon D, Schifsky E, Rasmussen JM, Gilmore JH, Styner M, Entringer S, Wadhwa PD, Korja R, Karlsson H, Karlsson L, Buss C, Fair DA. Maternal Perinatal Stress Trajectories and Negative Affect and Amygdala Development in Offspring. Am J Psychiatry 2023; 180:766-777. [PMID: 37670606 PMCID: PMC11646109 DOI: 10.1176/appi.ajp.21111176] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
OBJECTIVE Maternal psychological stress during pregnancy is a common risk factor for psychiatric disorders in offspring, but little is known about how heterogeneity of stress trajectories during pregnancy affect brain systems and behavioral phenotypes in infancy. This study was designed to address this gap in knowledge. METHODS Maternal anxiety, stress, and depression were assessed at multiple time points during pregnancy in two independent low-risk mother-infant cohorts (N=115 and N=2,156). Trajectories in maternal stress levels in relation to infant negative affect were examined in both cohorts. Neonatal amygdala resting-state functional connectivity MRI was examined in a subset of one cohort (N=60) to explore the potential relationship between maternal stress trajectories and brain systems in infants relevant to negative affect. RESULTS Four distinct trajectory clusters, characterized by changing patterns of stress over time, and two magnitude clusters, characterized by severity of stress, were identified in the original mother-infant cohort (N=115). The magnitude clusters were not associated with infant outcomes. The trajectory characterized by increasing stress in late pregnancy was associated with blunted development of infant negative affect. This relationship was replicated in the second, larger cohort (N=2,156). In addition, the trajectories that included increasing or peak maternal stress in late pregnancy were related to stronger neonatal amygdala functional connectivity to the anterior insula and the ventromedial prefrontal cortex in the exploratory analysis. CONCLUSIONS The trajectory of maternal stress appears to be important for offspring brain and behavioral development. Understanding heterogeneity in trajectories of maternal stress and their influence on infant brain and behavioral development is critical to developing targeted interventions.
Collapse
Affiliation(s)
- Mollie C Marr
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Alice M Graham
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Eric Feczko
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Saara Nolvi
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Elina Thomas
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Darrick Sturgeon
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Emma Schifsky
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Jerod M Rasmussen
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - John H Gilmore
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Martin Styner
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Sonja Entringer
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Pathik D Wadhwa
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Riikka Korja
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Hasse Karlsson
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Linnea Karlsson
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Claudia Buss
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| | - Damien A Fair
- Department of Behavioral Neuroscience (Marr, Graham, Sturgeon, Schifsky, Fair) and Department of Psychiatry (Graham, Fair), Oregon Health and Science University School of Medicine, Portland; Department of Psychiatry, Massachusetts General Hospital, Boston (Marr); Department of Psychiatry, McLean Hospital, Belmont, Mass. (Marr); Masonic Institute for the Developing Brain, Institute of Child Development (Fair), and Department of Pediatrics (Feczko, Fair), University of Minnesota, Minneapolis; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland (Nolvi, Korja); Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin (Nolvi, Entringer, Buss); Department of Neuroscience, Earlham College, Richmond, Ind. (Thomas); Development, Health, and Disease Research Program and Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine (Rasmussen, Entringer, Wadhwa, Buss); Department of Pediatrics, University of California, Irvine, School of Medicine, Orange (Rasmussen, Entringer, Wadhwa, Buss); Departments of Psychiatry and Human Behavior (Entringer, Wadhwa), Obstetrics and Gynecology (Wadhwa), and Epidemiology (Wadhwa), University of California, Irvine, School of Medicine, Orange; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku (Korja, H. Karlsson, L. Karlsson); Centre for Population Health Research, University of Turku and Turku University Hospital (Korja, H. Karlsson, L. Karlsson); Department of Paediatrics and Adolescent Medicine (L. Karlsson) and Department of Psychiatry (H. Karlsson), Department of Clinical Medicine, Turku University Hospital and University of Turku; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill (Gilmore); Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill (Styner)
| |
Collapse
|
161
|
Bottenhorn KL, Cardenas-Iniguez C, Mills KL, Laird AR, Herting MM. Profiling intra- and inter-individual differences in brain development across early adolescence. Neuroimage 2023; 279:120287. [PMID: 37536527 PMCID: PMC10833064 DOI: 10.1016/j.neuroimage.2023.120287] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
As we move toward population-level developmental neuroscience, understanding intra- and inter-individual variability in brain maturation and sources of neurodevelopmental heterogeneity becomes paramount. Large-scale, longitudinal neuroimaging studies have uncovered group-level neurodevelopmental trajectories, and while recent work has begun to untangle intra- and inter-individual differences, they remain largely unclear. Here, we aim to quantify both intra- and inter-individual variability across facets of neurodevelopment across early adolescence (ages 8.92 to 13.83 years) in the Adolescent Brain Cognitive Development (ABCD) Study and examine inter-individual variability as a function of age, sex, and puberty. Our results provide novel insight into differences in annualized percent change in macrostructure, microstructure, and functional brain development from ages 9-13 years old. These findings reveal moderate age-related intra-individual change, but age-related differences in inter-individual variability only in a few measures of cortical macro- and microstructure development. Greater inter-individual variability in brain development were seen in mid-pubertal individuals, except for a few aspects of white matter development that were more variable between prepubertal individuals in some tracts. Although both sexes contributed to inter-individual differences in macrostructure and functional development in a few regions of the brain, we found limited support for hypotheses regarding greater male-than-female variability. This work highlights pockets of individual variability across facets of early adolescent brain development, while also highlighting regional differences in heterogeneity to facilitate future investigations in quantifying and probing nuances in normative development, and deviations therefrom.
Collapse
Affiliation(s)
- Katherine L Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, 1845 N Soto St, Los Angeles, CA 90032, USA; Department of Psychology, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA.
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, University of Southern California, 1845 N Soto St, Los Angeles, CA 90032, USA
| | - Kathryn L Mills
- Department of Psychology, University of Oregon, 1227 University St, Eugene, OR 97403, USA
| | - Angela R Laird
- Department of Physics, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, 1845 N Soto St, Los Angeles, CA 90032, USA.
| |
Collapse
|
162
|
Wilkinson CL, Yankowitz L, Chao JY, Gutiérrez R, Rhoades JL, Shinnar S, Purdon PL, Nelson CA. Developmental trajectories of EEG aperiodic and periodic power: Implications for understanding the timing of thalamocortical development during infancy. RESEARCH SQUARE 2023:rs.3.rs-3215728. [PMID: 37790544 PMCID: PMC10543027 DOI: 10.21203/rs.3.rs-3215728/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The development of neural circuits over the first years of life has long-lasting effects on brain function, yet our understanding of early circuit development in humans remains limited. Here, aperiodic and periodic EEG power features were examined from longitudinal EEGs collected from 592 healthy 2-44 month-old infants, revealing age-dependent nonlinear changes suggestive of distinct milestones in early brain maturation. Consistent with the transient developmental progression of thalamocortical circuitry, we observe the presence and then absence of periodic alpha and high beta peaks across the three-year period, as well as the emergence of a low beta peak (12-20Hz) after six months of age. We present preliminary evidence that the emergence of the low beta peak is associated with thalamocortical connectivity sufficient for anesthesia-induced alpha coherence. Together, these findings suggest that early age-dependent changes in alpha and beta periodic peaks may reflect the state of thalamocortical network development.
Collapse
Affiliation(s)
- Carol L Wilkinson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, USA
| | - Lisa Yankowitz
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Jerry Y Chao
- Department of Anesthesiology, Montefiore Medical Center, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rodrigo Gutiérrez
- Centro de Investigación Clínica Avanzada, Hospital Clínico de la Universidad de Chile, Santiago, Chile
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Jeff L Rhoades
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Shlomo Shinnar
- The Saul R. Korey Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Patrick L Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Charles A Nelson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, USA
- Harvard Graduate School of Education, Cambridge, MA, United States
| |
Collapse
|
163
|
Napier M, Reynolds K, Scott AL. Glial-mediated dysregulation of neurodevelopment in Fragile X Syndrome. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:187-215. [PMID: 37993178 DOI: 10.1016/bs.irn.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Astrocytes are highly involved in a multitude of developmental processes that are known to be dysregulated in Fragile X Syndrome. Here, we examine these processes individually and review the roles astrocytes play in contributing to the pathology of this syndrome. As a growing area of interest in the field, new and exciting insight is continually emerging. Understanding these glial-mediated roles is imperative for elucidating the underlying molecular mechanisms at play, not only in Fragile X Syndrome, but also other ASD-related disorders. Understanding these roles will be central to the future development of effective, clinically-relevant treatments of these disorders.
Collapse
Affiliation(s)
- M Napier
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - K Reynolds
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada; Department of Neuroscience, Tufts University School of Medicine, Boston, United States
| | - A L Scott
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.
| |
Collapse
|
164
|
de Zoete RMJ, McMahon KL, Coombes JS, Sterling M. The effects of physical exercise on structural, functional, and biochemical brain characteristics in individuals with chronic whiplash-associated disorder: A pilot randomized clinical trial. Pain Pract 2023; 23:759-775. [PMID: 37157897 DOI: 10.1111/papr.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/01/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Exercise for people with whiplash associated disorder (WAD) induces hypoalgesic effects in some, but hyperalgesic effects in others. We investigated the exercise-induced neurobiological effects of aerobic and strengthening exercise in individuals with chronic WAD. METHODS Sixteen participants (8 WAD, 8 pain-free [CON]) were randomised to either aerobic or strengthening exercise. MRI for brain morphometry, functional MRI for brain connectivity, and magnetic resonance spectroscopy for brain biochemistry, were used at baseline and after the 8-week intervention. RESULTS There were no differences in brain changes between exercise groups in either the WAD or CON group, therefore aerobic and strengthening data were combined to optimise sample size. After the exercise intervention, the CON group demonstrated increased cortical thickness (left parahippocampus: mean difference = 0.04, 95% CI = 0.07-0.00, p = 0.032; and left lateral orbital frontal cortex: mean difference = 0.03, 95% CI = 0.00-0.06, p = 0.048). The WAD group demonstrated an increase in prefrontal cortex (right medial orbital frontal) volume (mean difference = 95.57, 95% CI = 2.30-192.84, p = 0.046). Functional changes from baseline to follow-up between the default mode network and the insula, cingulate cortex, temporal lobe, and somatosensory and motor cortices, were found in the CON group, but not in the WAD group. There were no changes post-exercise in brain biochemistry. CONCLUSION Aerobic and strengthening exercises did not exert differential effects on brain characteristics, however differences in structural and functional changes were found between WAD and CON groups. This suggests that an altered central pain modulatory response may be responsible for differential effects of exercise in individuals with chronic WAD.
Collapse
Affiliation(s)
- Rutger M J de Zoete
- Recover Injury Research Centre, NHMRC Centre of Research Excellence in Recovery Following Road Traffic Injuries, The University of Queensland, Brisbane, Queensland, Australia
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, South Australia, Australia
| | - Katie L McMahon
- Herston Imaging Research Facility, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
- School of Clinical Sciences, Faculty of Health, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jeff S Coombes
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Michele Sterling
- Recover Injury Research Centre, NHMRC Centre of Research Excellence in Recovery Following Road Traffic Injuries, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
165
|
Rota Čeprnja A, Kuzmanić Šamija R, Šitum Čeprnja Z, Jakus N, Bečić K, Čeprnja T. The effect of the COVID-19 pandemic on pediatric physiatric health care in Croatia among children with neurological risk: A retrospective study. PM R 2023; 15:1115-1121. [PMID: 36250523 PMCID: PMC9874647 DOI: 10.1002/pmrj.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/14/2022] [Accepted: 10/06/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Since the start of COVID pandemic, the Croatian government issued many recommendations and guidelines, imposed reorganization of health care system, and ordered two lock-downs to mitigate the spread of the disease. All of this may have had an unwanted effect on the standard of health care for non-COVID-19 patients, including children with neurological risk factors. OBJECTIVE To highlight the possibility that measures taken to mitigate the COVID-19 pandemic may lead to a substantial delay of examination by physical medicine specialists and timely rehabilitation programs for children with neurological risks. DESIGN A retrospective medical history-based study between 2020 and 2021. SETTING The study was performed in Department of Physical and Rehabilitation Medicine at the University Hospital Centre of Split, Croatia. PATIENTS Children with neurological risk examined by pediatric physical rehabilitation specialists in the Department of Physical and Rehabilitation Medicine between January 2017 and December 2021. METHODS Case records of patients were reviewed, dividing them into groups according to severity of neurological risk and their age at the time of first examination. We also noted in what months of the year those examinations were performed. MAIN OUTCOME MEASUREMENTS The outcome was change in the number of the first examinations and the age of the patients when the examination was first performed. RESULTS During the pandemic year 2020, the total number of first examinations was lower by 244 (38%; 95% confidence interval [CI]: 34%-42%), and the number of first examinations of children with neurological risks was lower by 216 (36%; 95% CI: 33%-40%).On the contrary, in 2021, there was an increase in the total number of first examinations by 114 (18%; 95% CI: 15%-21%) and first examinations of children with neurological risks compared to the pre-pandemic years by 97 (16%; 95% CI: 13%-20%). Furthermore, the division of patients according to age at the time of first examination significantly differed in the pre-pandemic and pandemic 2021 periods (λ = 11.8; p = .018). The greatest contributing factor to this difference was the group of patients older than 12 months. CONCLUSIONS The study suggests that the chaotic initial stages of the COVID-19 pandemic during 2020 caused delay in examinations by physical medicine specialists for children with neurological risks that could potentially affect neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Asija Rota Čeprnja
- Department of physical medicine and rehabilitationUniversity Hospital of Split, Split, Croatia Spinčićeva 1Split
| | | | | | - Nataša Jakus
- Department of physical medicine and rehabilitationUniversity Hospital of Split, Split, Croatia Spinčićeva 1Split
| | - Kristijan Bečić
- Department of PathologyGeneral Hospital Šibenik, Šibenik, Croatia Stjepana Radića 83Šibenik
| | - Toni Čeprnja
- Department of PathologyUniversity Hospital of Split, Split, Croatia Spinčićeva 1Split
| |
Collapse
|
166
|
Abraham M, Peterburs J, Mundorf A. Oligodendrocytes matter: a review of animal studies on early adversity. J Neural Transm (Vienna) 2023; 130:1177-1185. [PMID: 37138023 PMCID: PMC10460720 DOI: 10.1007/s00702-023-02643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Exposure to adversities in early life appears to affect the development of white matter, especially oligodendrocytes. Furthermore, altered myelination is present in regions subjected to maturation during the developmental time when early adversities are experienced. In this review, studies applying two well-established animal models of early life adversity, namely maternal separation and maternal immune activation, focusing on oligodendrocyte alterations and resulting implications for psychiatric disorders are discussed. Studies revealed that myelination is reduced as a result of altered oligodendrocyte expression. Furthermore, early adversity is associated with increased cell death, a simpler morphology, and inhibited oligodendrocyte maturation. However, these effects seem to be region- specific as some brain regions show increased expression while others show decreased expression of oligodendroglia-related genes, and they occur especially in regions of ongoing development. Some studies furthermore suggest that early adversity leads to premature differentiation of oligodendrocytes. Importantly, especially early exposure results in stronger oligodendrocyte-related impairments. However, resulting alterations are not restricted to exposure during the early pre- and postnatal days as social isolation after weaning leads to fewer internodes and branches and shorter processes of oligodendrocytes in adulthood. Eventually, the found alterations may lead to dysfunction and long-lasting alterations in structural brain development associated with psychiatric disorders. To date, only few preclinical studies have focused on the effects of early adversity on oligodendrocytes. More studies including several developmental stages are needed to further disentangle the role of oligodendrocytes in the development of psychiatric disorders.
Collapse
Affiliation(s)
- Mate Abraham
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Jutta Peterburs
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Annakarina Mundorf
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany.
| |
Collapse
|
167
|
Torres F, Basaran AC, Schuller IK. Thermal Management in Neuromorphic Materials, Devices, and Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205098. [PMID: 36067752 DOI: 10.1002/adma.202205098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Machine learning has experienced unprecedented growth in recent years, often referred to as an "artificial intelligence revolution." Biological systems inspire the fundamental approach for this new computing paradigm: using neural networks to classify large amounts of data into sorting categories. Current machine-learning schemes implement simulated neurons and synapses on standard computers based on a von Neumann architecture. This approach is inefficient in energy consumption, and thermal management, motivating the search for hardware-based systems that imitate the brain. Here, the present state of thermal management of neuromorphic computing technology and the challenges and opportunities of the energy-efficient implementation of neuromorphic devices are considered. The main features of brain-inspired computing and quantum materials for implementing neuromorphic devices are briefly described, the brain criticality and resistive switching-based neuromorphic devices are discussed, the energy and electrical considerations for spiking-based computation are presented, the fundamental features of the brain's thermal regulation are addressed, the physical mechanisms for thermal management and thermoelectric control of materials and neuromorphic devices are analyzed, and challenges and new avenues for implementing energy-efficient computing are described.
Collapse
Affiliation(s)
- Felipe Torres
- Physics Department, Faculty of Science, University of Chile, 653, Santiago, 7800024, Chile
- Center of Nanoscience and Nanotechnology (CEDENNA), Av. Ecuador 3493, Santiago, 9170124, Chile
| | - Ali C Basaran
- Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ivan K Schuller
- Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
168
|
Cera AJ, Mokha S, Sunderji S, Cortez D, Bautista GM. Acute Bowel Ischemia in a Premature Neonate with Miller-Dieker Syndrome and Anomalous Right Coronary Artery From the Pulmonary Artery. Pediatr Ann 2023; 52:e283-e291. [PMID: 37561828 PMCID: PMC10878796 DOI: 10.3928/19382359-20230613-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Miller-Dieker syndrome (MDS) is a rare disease characterized by type I lissencephaly, craniofacial dysmorphisms, intellectual disability, seizures, and death in early childhood. We report a case of a premature infant with MDS with an anomalous right coronary artery from the pulmonary artery who developed sudden bowel ischemia. This case prompts the reconsideration of cardiovascular involvement in patients with MDS. In addition, this review highlights key clinical features and reviews the critical manifestations of MDS that persist into childhood. [Pediatr Ann. 2023;52(8):e283-e291.].
Collapse
|
169
|
Nazzari S, Cagliero L, Grumi S, Pisoni E, Mallucci G, Bergamaschi R, Maccarini J, Giorda R, Provenzi L. Prenatal exposure to environmental air pollution and psychosocial stress jointly contribute to the epigenetic regulation of the serotonin transporter gene in newborns. Mol Psychiatry 2023; 28:3503-3511. [PMID: 37542161 DOI: 10.1038/s41380-023-02206-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Antenatal exposures to maternal stress and to particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) have been independently associated with developmental outcomes in early infancy and beyond. Knowledge about their joint impact, biological mechanisms of their effects and timing-effects, is still limited. Both PM2.5 and maternal stress exposure during pregnancy might result in altered patterns of DNA methylation in specific stress-related genes, such as the serotonin transporter gene (SLC6A4 DNAm), that might, in turn, influence infant development across several domains, including bio-behavioral, cognitive and socio-emotional domains. Here, we investigated the independent and interactive influence of variations in antenatal exposures to maternal pandemic-related stress (PRS) and PM2.5 on SLC6A4 DNAm levels in newborns. Mother-infant dyads (N = 307) were enrolled at delivery during the COVID-19 pandemic. Infants' methylation status was assessed in 13 CpG sites within the SLC6A4 gene's region (chr17:28562750-28562958) in buccal cells at birth and women retrospectively report on PRS. PM2.5 exposure throughout the entire gestation and at each gestational trimester was estimated using a spatiotemporal model based on residential address. Among several potentially confounding socio-demographic and health-related factors, infant's sex was significantly associated with infants' SLC6A4 DNAm levels, thus hierarchical regression models were adjusted for infant's sex. Higher levels of SLC6A4 DNAm at 6 CpG sites were found in newborns born to mothers reporting higher levels of antenatal PRS and greater PM2.5 exposure across gestation, while adjusting for infant's sex. These effects were especially evident when exposure to elevated PM2.5 occurred during the second trimester of pregnancy. Several important brain processes (e.g., synaptogenesis and myelination) occur during mid-pregnancy, potentially making the second trimester a sensitive time window for the effects of stress-related exposures. Understanding the interplay between environmental and individual-level stressors has important implications for the improvement of mother-infant health during and after the pandemic.
Collapse
Affiliation(s)
- Sarah Nazzari
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lucia Cagliero
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Serena Grumi
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Enrico Pisoni
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Giulia Mallucci
- Multiple Sclerosis Center, Neurocenter of South of Switzerland, EOC, Lugano, Switzerland
| | | | - Julia Maccarini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto Giorda
- Molecular Biology Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Livio Provenzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
170
|
Maier JX, Zhang Z. Early development of olfactory circuit function. Front Cell Neurosci 2023; 17:1225186. [PMID: 37565031 PMCID: PMC10410114 DOI: 10.3389/fncel.2023.1225186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023] Open
Abstract
During early development, brains undergo profound changes in structure at the molecular, synaptic, cellular and circuit level. At the same time, brains need to perform adaptive function. How do structurally immature brains process information? How do brains perform stable and reliable function despite massive changes in structure? The rodent olfactory system presents an ideal model for approaching these poorly understood questions. Rodents are born deaf and blind, and rely completely on their sense of smell to acquire resources essential for survival during the first 2 weeks of life, such as food and warmth. Here, we review decades of work mapping structural changes in olfactory circuits during early development, as well as more recent studies performing in vivo electrophysiological recordings to characterize functional activity patterns generated by these circuits. The findings demonstrate that neonatal olfactory processing relies on an interacting network of brain areas including the olfactory bulb and piriform cortex. Circuits in these brain regions exhibit varying degrees of structural maturity in neonatal animals. However, despite substantial ongoing structural maturation of circuit elements, the neonatal olfactory system produces dynamic network-level activity patterns that are highly stable over protracted periods during development. We discuss how these findings inform future work aimed at elucidating the circuit-level mechanisms underlying information processing in the neonatal olfactory system, how they support unique neonatal behaviors, and how they transition between developmental stages.
Collapse
Affiliation(s)
- Joost X. Maier
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | |
Collapse
|
171
|
Soman SM, Vijayakumar N, Thomson P, Ball G, Hyde C, Silk TJ. Cortical structural and functional coupling during development and implications for attention deficit hyperactivity disorder. Transl Psychiatry 2023; 13:252. [PMID: 37433763 DOI: 10.1038/s41398-023-02546-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
Functional connectivity is scaffolded by the structural connections of the brain. Disruptions of either structural or functional connectivity can lead to deficits in cognitive functions and increase the risk for neurodevelopmental disorders such as attention deficit hyperactivity disorder (ADHD). To date, very little research has examined the association between structural and functional connectivity in typical development, while no studies have attempted to understand the development of structure-function coupling in children with ADHD. 175 individuals (84 typically developing children and 91 children with ADHD) participated in a longitudinal neuroimaging study with up to three waves. In total, we collected 278 observations between the ages 9 and 14 (139 each in typically developing controls and ADHD). Regional measures of structure-function coupling were calculated at each timepoint using Spearman's rank correlation and mixed effect models were used to determine group differences and longitudinal changes in coupling over time. In typically developing children, we observed increases in structure-function coupling strength across multiple higher-order cognitive and sensory regions. Overall, weaker coupling was observed in children with ADHD, mainly in the prefrontal cortex, superior temporal gyrus, and inferior parietal cortex. Further, children with ADHD showed an increased rate of coupling strength predominantly in the inferior frontal gyrus, superior parietal cortex, precuneus, mid-cingulate, and visual cortex, compared to no corresponding change over time in typically developing controls. This study provides evidence of the joint maturation of structural and functional brain connections in typical development across late childhood to mid-adolescence, particularly in regions that support cognitive maturation. Findings also suggest that children with ADHD exhibit different patterns of structure-function coupling, suggesting atypical patterns of coordinated white matter and functional connectivity development predominantly in the regions overlapping with the default mode network, salience network, and dorsal attention network during late childhood to mid-adolescence.
Collapse
Affiliation(s)
- Shania Mereen Soman
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Burwood, VIC, 3125, Australia.
| | - Nandita Vijayakumar
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Burwood, VIC, 3125, Australia
| | - Phoebe Thomson
- Child Mind Institute, New York, NY, 10022, USA
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Gareth Ball
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia
- Developmental Imaging, Murdoch Children's Research Institute, Flemington Road, Parkville, VIC, 3052, Australia
| | - Christian Hyde
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Burwood, VIC, 3125, Australia
| | - Timothy J Silk
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Burwood, VIC, 3125, Australia.
- Developmental Imaging, Murdoch Children's Research Institute, Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
172
|
Wang C, Zhang Y, Lim LG, Cao W, Zhang W, Wan X, Fan L, Liu Y, Zhang X, Tian Z, Liu X, Pan X, Zheng Y, Pan R, Tan Y, Zhang Z, McIntyre RS, Li Z, Ho RCM, Tang TB. An fNIRS investigation of novel expressed emotion stimulations in schizophrenia. Sci Rep 2023; 13:11141. [PMID: 37429942 DOI: 10.1038/s41598-023-38057-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 07/02/2023] [Indexed: 07/12/2023] Open
Abstract
Living in high expressed emotion (EE) environments tends to increase the relapse rate in schizophrenia (SZ). At present, the neural substrates responsible for high EE in SZ remain poorly understood. Functional near-infrared spectroscopy (fNIRS) may be of great use to quantitatively assess cortical hemodynamics and elucidate the pathophysiology of psychiatric disorders. In this study, we designed novel low- (positivity and warmth) and high-EE (criticism, negative emotion, and hostility) stimulations, in the form of audio, to investigate cortical hemodynamics. We used fNIRS to measure hemodynamic signals while participants listened to the recorded audio. Healthy controls (HCs, [Formula: see text]) showed increased hemodynamic activation in the major language centers across EE stimulations, with stronger activation in Wernicke's area during the processing of negative emotional language. Compared to HCs, people with SZ ([Formula: see text]) exhibited smaller hemodynamic activation in the major language centers across EE stimulations. In addition, people with SZ showed weaker or insignificant hemodynamic deactivation in the medial prefrontal cortex. Notably, hemodynamic activation in SZ was found to be negatively correlated with the negative syndrome scale score at high EE. Our findings suggest that the neural mechanisms in SZ are altered and disrupted, especially during negative emotional language processing. This supports the feasibility of using the designed EE stimulations to assess people who are vulnerable to high-EE environments, such as SZ. Furthermore, our findings provide preliminary evidence for future research on functional neuroimaging biomarkers for people with psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Lam Ghai Lim
- Department of Electrical and Robotics Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Weiqi Cao
- Huaibei Normal University, Huaibei, China
| | - Wei Zhang
- Huaibei Mental Health Center, Huaibei, China
| | | | - Lijun Fan
- Huaibei Normal University, Huaibei, China
| | - Ying Liu
- Huaibei Normal University, Huaibei, China
| | - Xi Zhang
- Huaibei Mental Health Center, Huaibei, China
| | | | | | - Xiuzhi Pan
- Huaibei Normal University, Huaibei, China
| | - Yuan Zheng
- Huaibei Normal University, Huaibei, China
| | - Riyu Pan
- Anqing Normal University, Anqing, China
| | - Yilin Tan
- Huaibei Normal University, Huaibei, China
| | | | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Zhifei Li
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
| | - Roger C M Ho
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tong Boon Tang
- Centre for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| |
Collapse
|
173
|
Leung M, Modest AM, Hacker MR, Wylie BJ, Wei Y, Schwartz J, Iyer HS, Hart JE, Coull BA, Laden F, Weisskopf MG, Papatheodorou S. Traffic-Related Air Pollution and Ultrasound Parameters of Fetal Growth in Eastern Massachusetts. Am J Epidemiol 2023; 192:1105-1115. [PMID: 36963378 PMCID: PMC10893850 DOI: 10.1093/aje/kwad072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/30/2022] [Accepted: 03/23/2023] [Indexed: 03/26/2023] Open
Abstract
Previous studies have examined the association between prenatal nitrogen dioxide (NO2)-a traffic emissions tracer-and fetal growth based on ultrasound measures. Yet, most have used exposure assessment methods with low temporal resolution, which limits the identification of critical exposure windows given that pregnancy is relatively short. Here, we used NO2 data from an ensemble model linked to residential addresses at birth to fit distributed lag models that estimated the association between NO2 exposure (resolved weekly) and ultrasound biometric parameters in a Massachusetts-based cohort of 9,446 singleton births from 2011-2016. Ultrasound biometric parameters examined included biparietal diameter (BPD), head circumference, femur length, and abdominal circumference. All models adjusted for sociodemographic characteristics, time trends, and temperature. We found that higher NO2 was negatively associated with all ultrasound parameters. The critical window differed depending on the parameter and when it was assessed. For example, for BPD measured after week 31, the critical exposure window appeared to be weeks 15-25; 10-parts-per-billion higher NO2 sustained from conception to the time of measurement was associated with a lower mean z score of -0.11 (95% CI: -0.17, -0.05). Our findings indicate that reducing traffic emissions is one potential avenue to improving fetal and offspring health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Stefania Papatheodorou
- Correspondence to Dr. Stefania Papatheodorou, Department of Epidemiology, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Kresge Building, Boston, MA, 02115 (e-mail: )
| |
Collapse
|
174
|
Spann MN, Bansal R, Aydin E, Pollatou A, Alleyne K, Bennett M, Sawardekar S, Cheng B, Lee S, Monk C, Peterson BS. Maternal prenatal immune activation associated with brain tissue microstructure and metabolite concentrations in newborn infants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.01.23292113. [PMID: 37461481 PMCID: PMC10350159 DOI: 10.1101/2023.07.01.23292113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Importance Few translational human studies have assessed the association of prenatal maternal immune activation with altered brain development and psychiatric risk in newborn offspring. Objective To identify the effects of maternal immune activation during the 2nd and 3rd trimesters of pregnancy on newborn brain metabolite concentrations, tissue microstructure, and longitudinal motor development. Design Prospective longitudinal cohort study conducted from 2012 - 2017. Setting Columbia University Irving Medical Center and Weill Cornell Medical College. Participants 76 nulliparous pregnant women, aged 14 to 19 years, were recruited in their 2nd trimester, and their children were followed through 14 months of age. Exposure Maternal immune activation indexed by maternal interleukin-6 and C-reactive protein in the 2nd and 3rd trimesters of pregnancy. Main Outcomes and Measures The main outcomes included (1) newborn metabolite concentrations, measured as N-acetylaspartate, creatine, and choline using Magnetic Resonance Spectroscopy; (2) newborn fractional anisotropy and mean diffusivity measured using Diffusion Tensor Imaging; and (3) indices of motor development assessed prenatally and postnatally at ages 4- and 14-months. Results Maternal interleukin-6 and C-reactive protein levels in the 2nd or 3rd trimester were significantly positively associated with the N-acetylaspartate, creatine, and choline concentrations in the putamen, thalamus, insula, and anterior limb of the internal capsule. Maternal interleukin-6 was associated with fractional anisotropy in the putamen, insula, thalamus, precuneus, and caudate, and with mean diffusivity in the inferior parietal and middle temporal gyrus. C-reactive protein was associated with fractional anisotropy in the thalamus, insula, and putamen. Regional commonalities were found across imaging modalities, though the direction of the associations differed by immune marker. In addition, a significant positive association was observed between offspring motor development and both maternal interleukin-6 and C-reactive protein (in both trimesters) prenatally and 4- and 14-months of age. Conclusions and Relevance Using a healthy sample, these findings demonstrate that levels of maternal immune activation in mid- to late pregnancy associate with tissue characteristics in newborn brain regions primarily supporting motor integration/coordination and behavioral regulation and may lead to alterations in motor development.
Collapse
Affiliation(s)
- Marisa N Spann
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- New York State Psychiatric Institute, New York, NY
| | - Ravi Bansal
- Children's Hospital Los Angeles, Los Angeles, CA
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Ezra Aydin
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Angeliki Pollatou
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Kiarra Alleyne
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Margaret Bennett
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | | | - Bin Cheng
- New York State Psychiatric Institute, New York, NY
| | - Seonjoo Lee
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- New York State Psychiatric Institute, New York, NY
| | - Catherine Monk
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- New York State Psychiatric Institute, New York, NY
| | - Bradley S Peterson
- Children's Hospital Los Angeles, Los Angeles, CA
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
175
|
Joo Y, Lee S, Hwang J, Kim J, Cheon YH, Lee H, Kim S, Yurgelun-Todd DA, Renshaw PF, Yoon S, Lyoo IK. Differential alterations in brain structural network organization during addiction between adolescents and adults. Psychol Med 2023; 53:3805-3816. [PMID: 35440353 PMCID: PMC10317813 DOI: 10.1017/s0033291722000423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/06/2022] [Accepted: 02/04/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The adolescent brain may be susceptible to the influences of illicit drug use. While compensatory network reorganization is a unique developmental characteristic that may restore several brain disorders, its association with methamphetamine (MA) use-induced damage during adolescence is unclear. METHODS Using independent component (IC) analysis on structural magnetic resonance imaging data, spatially ICs described as morphometric networks were extracted to examine the effects of MA use on gray matter (GM) volumes and network module connectivity in adolescents (51 MA users v. 60 controls) and adults (54 MA users v. 60 controls). RESULTS MA use was related to significant GM volume reductions in the default mode, cognitive control, salience, limbic, sensory and visual network modules in adolescents. GM volumes were also reduced in the limbic and visual network modules of the adult MA group as compared to the adult control group. Differential patterns of structural connectivity between the basal ganglia (BG) and network modules were found between the adolescent and adult MA groups. Specifically, adult MA users exhibited significantly reduced connectivity of the BG with the default network modules compared to control adults, while adolescent MA users, despite the greater extent of network GM volume reductions, did not show alterations in network connectivity relative to control adolescents. CONCLUSIONS Our findings suggest the potential of compensatory network reorganization in adolescent brains in response to MA use. The developmental characteristic to compensate for MA-induced brain damage can be considered as an age-specific therapeutic target for adolescent MA users.
Collapse
Affiliation(s)
- Yoonji Joo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Suji Lee
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University College of Medicine, Seoul, South Korea
| | - Jungyoon Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Young-Hoon Cheon
- Department of Psychiatry, Incheon Chamsarang Hospital, Incheon, South Korea
| | - Hyangwon Lee
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Shinhye Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Deborah A. Yurgelun-Todd
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA
| | - Perry F. Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
176
|
Woods R, Lorusso J, Fletcher J, ElTaher H, McEwan F, Harris I, Kowash H, D'Souza SW, Harte M, Hager R, Glazier JD. Maternal immune activation and role of placenta in the prenatal programming of neurodevelopmental disorders. Neuronal Signal 2023; 7:NS20220064. [PMID: 37332846 PMCID: PMC10273029 DOI: 10.1042/ns20220064] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Maternal infection during pregnancy, leading to maternal immune activation (mIA) and cytokine release, increases the offspring risk of developing a variety of neurodevelopmental disorders (NDDs), including schizophrenia. Animal models have provided evidence to support these mechanistic links, with placental inflammatory responses and dysregulation of placental function implicated. This leads to changes in fetal brain cytokine balance and altered epigenetic regulation of key neurodevelopmental pathways. The prenatal timing of such mIA-evoked changes, and the accompanying fetal developmental responses to an altered in utero environment, will determine the scope of the impacts on neurodevelopmental processes. Such dysregulation can impart enduring neuropathological changes, which manifest subsequently in the postnatal period as altered neurodevelopmental behaviours in the offspring. Hence, elucidation of the functional changes that occur at the molecular level in the placenta is vital in improving our understanding of the mechanisms that underlie the pathogenesis of NDDs. This has notable relevance to the recent COVID-19 pandemic, where inflammatory responses in the placenta to SARS-CoV-2 infection during pregnancy and NDDs in early childhood have been reported. This review presents an integrated overview of these collective topics and describes the possible contribution of prenatal programming through placental effects as an underlying mechanism that links to NDD risk, underpinned by altered epigenetic regulation of neurodevelopmental pathways.
Collapse
Affiliation(s)
- Rebecca M. Woods
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jarred M. Lorusso
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jennifer Fletcher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Heidi ElTaher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
- Department of Physiology, Faculty of Medicine, Alexandria University, Egypt
| | - Francesca McEwan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Isabella Harris
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Hager M. Kowash
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Stephen W. D'Souza
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Michael Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
177
|
Derbyshire E, Maes M. The Role of Choline in Neurodevelopmental Disorders-A Narrative Review Focusing on ASC, ADHD and Dyslexia. Nutrients 2023; 15:2876. [PMID: 37447203 DOI: 10.3390/nu15132876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Neurodevelopmental disorders appear to be rising in prevalence, according to the recent Global Burden of Disease Study. This rise is likely to be multi-factorial, but the role of certain nutrients known to facilitate neurodevelopment should be considered. One possible contributing factor could be attributed to deficits in choline intake, particularly during key stages of neurodevelopment, which includes the first 1000 days of life and childhood. Choline, a key micronutrient, is crucial for optimal neurodevelopment and brain functioning of offspring. The present narrative review discusses the main research, describing the effect of choline in neurodevelopmental disorders, to better understand its role in the etiology and management of these disorders. In terms of findings, low choline intakes and reduced or altered choline status have been reported in relevant population subgroups: pregnancy (in utero), children with autism spectrum disorders, people with attention deficit hyperactivity disorder and those with dyslexia. In conclusion, an optimal choline provision may offer some neuronal protection in early life and help to mitigate some cognitive effects in later life attributed to neurodevelopmental conditions. Research indicates that choline may act as a modifiable risk factor for certain neurodevelopmental conditions. Ongoing research is needed to unravel the mechanisms and explanations.
Collapse
Affiliation(s)
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 4002, Thailand
- Research Institute, Medical University of Plovdiv, 10330 Plovdiv, Bulgaria
| |
Collapse
|
178
|
Kim JI, Kim BN, Lee YA, Shin CH, Hong YC, Døssing LD, Hildebrandt G, Lim YH. Association between early-childhood exposure to perfluoroalkyl substances and ADHD symptoms: A prospective cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163081. [PMID: 36972880 DOI: 10.1016/j.scitotenv.2023.163081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/01/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
There is evidence that exposure to perfluoroalkyl substances (PFAS) is associated with attention-deficit/hyperactivity disorder (ADHD) symptoms. Previous studies have focused on prenatal exposure to PFAS, and only few studies have examined the associations of early-childhood exposure, especially at low exposure levels. This study explored the association between early-childhood exposure to PFAS and ADHD symptoms later in childhood. In 521 children, we measured the serum levels of six PFAS in peripheral blood at the ages of 2 and 4 years, including perfluorooctanoate (PFOA), perfluornonanoicacid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorohexane sulfonic acid (PFHxS), and perfluorooctane sulfonate (PFOS). The ADHD Rating Scale IV (ARS) was utilized to measure ADHD traits at 8 years of age. We explored the relationship between PFAS and ARS scores using Poisson regression models after adjusting for potential confounders. Levels of exposure to individual PFAS and the summed value were divided into quartiles to examine possible nonlinear relationships. All six PFAS exhibited inverted U-shaped curves. Children in the 2nd and 3rd quartile levels of each PFAS showed higher ARS scores than those in the1st quartile level. Below the 3rd quartile of the summed levels of six PFAS (ΣPFAS), a doubling of the ΣPFAS was associated with an 20.0 % (95 % CI: 9.5 %, 31.5 %) increase in ADHD scores. However, at the age of 4 years, none of the evaluated PFAS exhibited linear or nonlinear associations with the ARS scores. Thus, school-aged children may be vulnerable to the neurotoxic effects of exposure to PFAS at age 2 that contribute to ADHD, particularly at low to mid-levels.
Collapse
Affiliation(s)
- Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, 222 Wangsimni-ro, Seondong-gu, Seoul 04763, Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, 103 Daehangno, Jongno-gu, Seoul 03080, Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, 103 Daehangno, Jongno-gu, Seoul 03080, Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, 103 Daehangno, Jongno-gu, Seoul 03080, Republic of Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, 103 Daehangno, Jongno-gu, Seoul 03080, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, 103 Daehangno, Jongno-gu, Seoul 03080, Republic of Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, 103 Daehangno, Jongno-gu, Seoul 03080, Republic of Korea
| | - Lise Dalgaard Døssing
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Oster Farmagsgade 5, 1014 Kobenhavn, Denmark
| | - Gustav Hildebrandt
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Oster Farmagsgade 5, 1014 Kobenhavn, Denmark
| | - Youn-Hee Lim
- Environmental Health Center, Seoul National University College of Medicine, 103 Daehangno, Jongno-gu, Seoul 03080, Republic of Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, 103 Daehangno, Jongno-gu, Seoul 03080, Republic of Korea; Section of Environmental Health, Department of Public Health, University of Copenhagen, Oster Farmagsgade 5, 1014 Kobenhavn, Denmark.
| |
Collapse
|
179
|
Salem D, Fecek RJ. Role of microtubule actin crosslinking factor 1 (MACF1) in bipolar disorder pathophysiology and potential in lithium therapeutic mechanism. Transl Psychiatry 2023; 13:221. [PMID: 37353479 DOI: 10.1038/s41398-023-02483-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
Bipolar affective disorder (BPAD) are life-long disorders that account for significant morbidity in afflicted patients. The etiology of BPAD is complex, combining genetic and environmental factors to increase the risk of disease. Genetic studies have pointed toward cytoskeletal dysfunction as a potential molecular mechanism through which BPAD may arise and have implicated proteins that regulate the cytoskeleton as risk factors. Microtubule actin crosslinking factor 1 (MACF1) is a giant cytoskeletal crosslinking protein that can coordinate the different aspects of the mammalian cytoskeleton with a wide variety of actions. In this review, we seek to highlight the functions of MACF1 in the nervous system and the molecular mechanisms leading to BPAD pathogenesis. We also offer a brief perspective on MACF1 and the role it may be playing in lithium's mechanism of action in treating BPAD.
Collapse
Affiliation(s)
- Deepak Salem
- Lake Erie College of Osteopathic Medicine at Seton Hill, Department of Microbiology, Greensburg, USA
- University of Maryland Medical Center/Sheppard Pratt Psychiatry Residency Program, Baltimore, USA
| | - Ronald J Fecek
- Lake Erie College of Osteopathic Medicine at Seton Hill, Department of Microbiology, Greensburg, USA.
| |
Collapse
|
180
|
Thyen U, Spiegler J, Konrad K. [The biopsychosocial understanding of health disorders and impairments in children with a focus on developmental neurological relationships]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023:10.1007/s00103-023-03732-1. [PMID: 37322378 DOI: 10.1007/s00103-023-03732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
The distinction between mental (spiritual and psychological) and physical health disorders is particularly difficult due to the special features of neurobiological development in children and adolescents. In this review article, the basics of developmental neurology are briefly described. On the basis of some congenital or early acquired neurological diseases, it is then shown to what extent mental processes can be impaired in interactions with the social context. Taking these aspects into account plays an important role in child and family-oriented counseling and support. The common occurrence of physical, mental, and psychological development disorders, which is also very variable between individuals and fluctuates over the course of a person's life, requires good interdisciplinary cooperation between conservative and surgical child and adolescent medicine and child and adolescent psychiatry.
Collapse
Affiliation(s)
- Ute Thyen
- Klinik für Kinder- und Jugendmedizin, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland.
| | - Juliane Spiegler
- Klinik für Kinder- und Jugendmedizin, Universität Würzburg, Würzburg, Deutschland
| | - Kerstin Konrad
- Sektion Klinische Neuropsychologie des Kindes- und Jugendalters, Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, RWTH Aachen, Aachen, Deutschland
- JARA-Brain Institut-II Molekulare Neurowissenschaften und Bildgebung (INM-11), Forschungszentrum Jülich/Aachen, Aachen, Deutschland
| |
Collapse
|
181
|
Leung M, Laden F, Coull BA, Modest AM, Hacker MR, Wylie BJ, Iyer HS, Hart JE, Wei Y, Schwartz J, Weisskopf MG, Papatheodorou S. Ambient temperature during pregnancy and fetal growth in Eastern Massachusetts, USA. Int J Epidemiol 2023; 52:749-760. [PMID: 36495569 PMCID: PMC10244050 DOI: 10.1093/ije/dyac228] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Left unabated, rising temperatures pose an escalating threat to human health. The potential effects of hot temperatures on fetal health have been under-explored. Here, we examined the association between prenatal ambient temperature exposure and fetal growth measures in a Massachusetts-based pregnancy cohort. METHODS We used ultrasound measurements of biparietal diameter (BPD), head circumference (HC), femur length and abdominal circumference (AC), in addition to birthweight (BW), from 9446 births at Beth Israel Deaconess Medical Center from 2011 to 2016. Ultrasound scans were classified into three distinct gestational periods: 16-23 weeks, 24-31 weeks, 32+ weeks; and z-scores were created for each fetal growth measure using the INTERGROWTH-21st standards. We fitted distributed lag models to estimate the time-varying association between weekly temperature and fetal growth, adjusting for sociodemographic characteristics, seasonal and long-term trends, humidity and particulate matter (PM2.5). RESULTS Higher ambient temperature was associated with smaller fetal growth measures. The critical window of exposure appeared to be Weeks 1-20 for ultrasound parameters, and high temperatures throughout pregnancy were important for BW. Associations were strongest for head parameters (BPD and HC) in early to mid-pregnancy, AC late in pregnancy and BW. For example, a 5ºC higher cumulative temperature exposure was associated with a lower mean AC z-score of -0.26 (95% CI: -0.48, -0.04) among 24-31-Week scans, and a lower mean BW z-score of -0.32 (95% CI: -0.51, -0.12). CONCLUSION Higher temperatures were associated with impaired fetal growth. This has major health implications given that extreme temperatures are more common and escalating.
Collapse
Affiliation(s)
- Michael Leung
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francine Laden
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Anna M Modest
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Michele R Hacker
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Blair J Wylie
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Hari S Iyer
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jaime E Hart
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joel Schwartz
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marc G Weisskopf
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | |
Collapse
|
182
|
Shyamasundar S, Ramya S, Kandilya D, Srinivasan DK, Bay BH, Ansari SA, Dheen ST. Maternal Diabetes Deregulates the Expression of Mecp2 via miR-26b-5p in Mouse Embryonic Neural Stem Cells. Cells 2023; 12:1516. [PMID: 37296636 PMCID: PMC10252249 DOI: 10.3390/cells12111516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Maternal diabetes has been associated with a greater risk of neurodevelopmental disorders in offspring. It has been established that hyperglycemia alters the expression of genes and microRNAs (miRNAs) regulating the fate of neural stem cells (NSCs) during brain development. In this study, the expression of methyl-CpG-binding protein-2 (Mecp2), a global chromatin organizer and a crucial regulator of synaptic proteins, was analyzed in NSCs obtained from the forebrain of embryos of diabetic mice. Mecp2 was significantly downregulated in NSCs derived from embryos of diabetic mice when compared to controls. miRNA target prediction revealed that the miR-26 family could regulate the expression of Mecp2, and further validation confirmed that Mecp2 is a target of miR-26b-5p. Knockdown of Mecp2 or overexpression of miR-26b-5p altered the expression of tau protein and other synaptic proteins, suggesting that miR-26b-5p alters neurite outgrowth and synaptogenesis via Mecp2. This study revealed that maternal diabetes upregulates the expression of miR-26b-5p in NSCs, resulting in downregulation of its target, Mecp2, which in turn perturbs neurite outgrowth and expression of synaptic proteins. Overall, hyperglycemia dysregulates synaptogenesis that may manifest as neurodevelopmental disorders in offspring from diabetic pregnancy.
Collapse
Affiliation(s)
- Sukanya Shyamasundar
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Seshadri Ramya
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Deepika Kandilya
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| |
Collapse
|
183
|
Peckham H. Introducing the Neuroplastic Narrative: a non-pathologizing biological foundation for trauma-informed and adverse childhood experience aware approaches. Front Psychiatry 2023; 14:1103718. [PMID: 37283710 PMCID: PMC10239852 DOI: 10.3389/fpsyt.2023.1103718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/20/2023] [Indexed: 06/08/2023] Open
Abstract
Most people accessing mental health services have adverse childhood experiences (ACEs) and/or histories of complex trauma. In recognition of this, there are calls to move away from medical model approaches and move toward trauma-informed approaches which privilege the impact of life experience over underlying pathology in the etiology of emotional and psychological suffering. Trauma-informed approaches lack a biological narrative linking trauma and adversity to later suffering. In its absence, this suffering is diagnosed and treated as a mental illness. This study articulates the Neuroplastic Narrative, a neuroecological theory that fills this gap, conceptualizing emotional and psychological suffering as the cost of surviving and adapting to the impinging environments of trauma and adversity. The Neuroplastic Narrative privileges lived experience and recognizes that our experiences become embedded in our biology through evolved mechanisms that ultimately act to preserve survival in the service of reproduction. Neuroplasticity refers to the capacity of neural systems to adapt and change. Our many evolved neuroplastic mechanisms including epigenetics, neurogenesis, synaptic plasticity, and white matter plasticity allow us to learn from, and adapt to, past experiences. This learning and adaption in turn allows us to better anticipate and physiologically prepare for future experiences that (nature assumes) are likely to occur, based on past experiences. However, neuroplastic mechanisms cannot discriminate between experiences; they function to embed experience regardless of the quality of that experience, generating vicious or virtuous cycles of psychobiological anticipation, to help us survive or thrive in futures that resemble our privileged or traumatic pasts. The etiology of suffering that arises from this process is not a pathology (a healthy brain is a brain that can adapt to experience) but is the evolutionary cost of surviving traumatizing environments. Misidentifying this suffering as a pathology and responding with diagnosis and medication is not trauma-informed and may cause iatrogenic harm, in part through perpetuating stigma and exacerbating the shame which attends complex trauma and ACEs. As an alternative, this study introduces the Neuroplastic Narrative, which is situated within an evolutionary framework. The Neuroplastic Narrative complements both Life History and Attachment Theory and provides a non-pathologizing, biological foundation for trauma-informed and Adverse Childhood Experience aware approaches.
Collapse
Affiliation(s)
- Haley Peckham
- Centre for Mental Health Nursing, School of Health Sciences, University of Melbourne, Carlton, VIC, Australia
- Department of Psychology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
184
|
Gräfe EL, Reid HMO, Shkolnikov I, Conway K, Kit A, Acosta C, Christie BR. Women are Taking the Hit: Examining the Unique Consequences of Cannabis Use Across the Female Lifespan. Front Neuroendocrinol 2023; 70:101076. [PMID: 37217080 DOI: 10.1016/j.yfrne.2023.101076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Cannabis use has risen dramatically in recent years due to global decriminalization and a resurgence in the interest of potential therapeutic benefits. While emerging research is shaping our understanding of the benefits and harms of cannabis, there remains a paucity of data specifically focused on how cannabis affects the female population. The female experience of cannabis use is unique, both in the societal context and because of the biological ramifications. This is increasingly important given the rise in cannabis potency, as well as the implications this has for the prevalence of Cannabis Use Disorder (CUD). Therefore, this scoping review aims to discuss the prevalence of cannabis use and CUD in women throughout their lifespan and provide a balanced prospective on the positive and negative consequences of cannabis use. In doing so, this review will highlight the necessity for continued research that goes beyond sex differences.
Collapse
Affiliation(s)
- E L Gräfe
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - H M O Reid
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - I Shkolnikov
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - K Conway
- Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada
| | - A Kit
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - C Acosta
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - B R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada.
| |
Collapse
|
185
|
Stratoulias V, Ruiz R, Kanatani S, Osman AM, Keane L, Armengol JA, Rodríguez-Moreno A, Murgoci AN, García-Domínguez I, Alonso-Bellido I, González Ibáñez F, Picard K, Vázquez-Cabrera G, Posada-Pérez M, Vernoux N, Tejera D, Grabert K, Cheray M, González-Rodríguez P, Pérez-Villegas EM, Martínez-Gallego I, Lastra-Romero A, Brodin D, Avila-Cariño J, Cao Y, Airavaara M, Uhlén P, Heneka MT, Tremblay MÈ, Blomgren K, Venero JL, Joseph B. ARG1-expressing microglia show a distinct molecular signature and modulate postnatal development and function of the mouse brain. Nat Neurosci 2023:10.1038/s41593-023-01326-3. [PMID: 37169859 DOI: 10.1038/s41593-023-01326-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
Molecular diversity of microglia, the resident immune cells in the CNS, is reported. Whether microglial subsets characterized by the expression of specific proteins constitute subtypes with distinct functions has not been fully elucidated. Here we describe a microglial subtype expressing the enzyme arginase-1 (ARG1; that is, ARG1+ microglia) that is found predominantly in the basal forebrain and ventral striatum during early postnatal mouse development. ARG1+ microglia are enriched in phagocytic inclusions and exhibit a distinct molecular signature, including upregulation of genes such as Apoe, Clec7a, Igf1, Lgals3 and Mgl2, compared to ARG1- microglia. Microglial-specific knockdown of Arg1 results in deficient cholinergic innervation and impaired dendritic spine maturation in the hippocampus where cholinergic neurons project, which in turn results in impaired long-term potentiation and cognitive behavioral deficiencies in female mice. Our results expand on microglia diversity and provide insights into microglia subtype-specific functions.
Collapse
Affiliation(s)
- Vassilis Stratoulias
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Rocío Ruiz
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ahmed M Osman
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Lily Keane
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Jose A Armengol
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - Antonio Rodríguez-Moreno
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - Adriana-Natalia Murgoci
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Irene García-Domínguez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Isabel Alonso-Bellido
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Fernando González Ibáñez
- Department of Molecular Medicine, Université Laval, and Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Laval, Quebec, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Katherine Picard
- Department of Molecular Medicine, Université Laval, and Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Laval, Quebec, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Guillermo Vázquez-Cabrera
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Mercedes Posada-Pérez
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Nathalie Vernoux
- Department of Molecular Medicine, Université Laval, and Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Laval, Quebec, Canada
| | - Dario Tejera
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Kathleen Grabert
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Mathilde Cheray
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | | | - Eva M Pérez-Villegas
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - Irene Martínez-Gallego
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | | | - David Brodin
- Bioinformatics and Expression Analysis Core Facility, Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Javier Avila-Cariño
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mikko Airavaara
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marie-Ève Tremblay
- Department of Molecular Medicine, Université Laval, and Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Laval, Quebec, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Jose L Venero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
186
|
Hua M, Shi D, Xu W, Zhu L, Hao X, Zhu B, Shu Q, Lozoff B, Geng F, Shao J. Differentiation between fetal and postnatal iron deficiency in altering brain substrates of cognitive control in pre-adolescence. BMC Med 2023; 21:167. [PMID: 37143078 PMCID: PMC10161450 DOI: 10.1186/s12916-023-02850-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Early iron deficiency (ID) is a common risk factor for poorer neurodevelopment, limiting children's potential and contributing to global burden. However, it is unclear how early ID alters the substrate of brain functions supporting high-order cognitive abilities and whether the timing of early ID matters in terms of long-term brain development. This study aimed to examine the effects of ID during fetal or early postnatal periods on brain activities supporting proactive and reactive cognitive control in pre-adolescent children. METHODS Participants were part of a longitudinal cohort enrolled at birth in southeastern China between December 2008 and November 2011. Between July 2019 and October 2021, 115 children aged 8-11 years were invited to participate in this neuroimaging study. Final analyses included 71 children: 20 with fetal ID, 24 with ID at 9 months (postnatal ID), and 27 iron-sufficient at birth and 9 months. Participants performed a computer-based behavioral task in a Magnetic Resonance Imaging scanner to measure proactive and reactive cognitive control. Outcome measures included accuracy, reaction times, and brain activity. Linear mixed modeling and the 3dlme command in Analysis of Functional NeuroImages (AFNI) were separately used to analyze behavioral performance and neuroimaging data. RESULTS Faster responses in proactive vs. reactive conditions indicated that all groups could use proactive or reactive cognitive control according to contextual demands. However, the fetal ID group was lower in general accuracy than the other 2 groups. Per the demands of cues and targets, the iron-sufficient group showed greater activation of wide brain regions in proactive vs. reactive conditions. In contrast, such condition differences were reversed in the postnatal ID group. Condition differences in brain activation, shown in postnatal ID and iron-sufficient groups, were not found in the fetal ID group. This group specifically showed greater activation of brain regions in the reward pathway in proactive vs. reactive conditions. CONCLUSIONS Early ID was associated with altered brain functions supporting proactive and reactive cognitive control in childhood. Alterations differed between fetal and postnatal ID groups. The findings imply that iron supplement alone is insufficient to prevent persisting brain alterations associated with early ID. Intervention strategies in addition to the iron supplement should consider ID timing.
Collapse
Affiliation(s)
- Mengdi Hua
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Donglin Shi
- Department of Curriculum and Learning Sciences, Zhejiang University, Hangzhou, China
| | - Wenwen Xu
- Department of Curriculum and Learning Sciences, Zhejiang University, Hangzhou, China
| | - Liuyan Zhu
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxin Hao
- Department of Curriculum and Learning Sciences, Zhejiang University, Hangzhou, China
| | - Bingquan Zhu
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
| | - Betsy Lozoff
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Fengji Geng
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Curriculum and Learning Sciences, Zhejiang University, Hangzhou, China.
- National Clinical Research Center for Child Health, Hangzhou, China.
| | - Jie Shao
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
187
|
Oury F, Pierani A. Transient perinatal metabolic shifts determine neuronal survival and functional circuit formation. Cell 2023; 186:1819-1821. [PMID: 37116467 DOI: 10.1016/j.cell.2023.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/30/2023]
Abstract
Metabolic changes are essential for neurodevelopmental processes. However, little is known about how and when neuronal metabolic remodeling occurs to promote functional circuits. In this issue of Cell, Knaus et al. demonstrate that a temporary perinatal shift in metabolites and lipids is crucial for cortical neurons' survival and wiring.
Collapse
Affiliation(s)
- Franck Oury
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France; GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France.
| |
Collapse
|
188
|
Puls R, von Haefen C, Bührer C, Endesfelder S. Dexmedetomidine Protects Cerebellar Neurons against Hyperoxia-Induced Oxidative Stress and Apoptosis in the Juvenile Rat. Int J Mol Sci 2023; 24:7804. [PMID: 37175511 PMCID: PMC10178601 DOI: 10.3390/ijms24097804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/13/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The risk of oxidative stress is unavoidable in preterm infants and increases the risk of neonatal morbidities. Premature infants often require sedation and analgesia, and the commonly used opioids and benzodiazepines are associated with adverse effects. Impairment of cerebellar functions during cognitive development could be a crucial factor in neurodevelopmental disorders of prematurity. Recent studies have focused on dexmedetomidine (DEX), which has been associated with potential neuroprotective properties and is used as an off-label application in neonatal units. Wistar rats (P6) were exposed to 80% hyperoxia for 24 h and received as pretreatment a single dose of DEX (5µg/kg, i.p.). Analyses in the immature rat cerebellum immediately after hyperoxia (P7) and after recovery to room air (P9, P11, and P14) included examinations for cell death and inflammatory and oxidative responses. Acute exposure to high oxygen concentrations caused a significant oxidative stress response, with a return to normal levels by P14. A marked reduction of hyperoxia-mediated damage was demonstrated after DEX pretreatment. DEX produced a much earlier recovery than in controls, confirming a neuroprotective effect of DEX on alterations elicited by oxygen stress on the developing cerebellum.
Collapse
Affiliation(s)
- Robert Puls
- Department of Neonatology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (R.P.); (C.B.)
| | - Clarissa von Haefen
- Department of Anesthesiology and Intensive Care Medicine, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Christoph Bührer
- Department of Neonatology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (R.P.); (C.B.)
| | - Stefanie Endesfelder
- Department of Neonatology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (R.P.); (C.B.)
| |
Collapse
|
189
|
Rovelli V, Longo N. Phenylketonuria and the brain. Mol Genet Metab 2023; 139:107583. [PMID: 37105048 DOI: 10.1016/j.ymgme.2023.107583] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Classic phenylketonuria (PKU) is caused by defective activity of phenylalanine hydroxylase (PAH), the enzyme that coverts phenylalanine (Phe) to tyrosine. Toxic accumulation of phenylalanine and its metabolites, left untreated, affects brain development and function depending on the timing of exposure to elevated levels. The specific mechanisms of Phe-induced brain damage are not completely understood, but they correlate to phenylalanine levels and on the stage of brain growth. During fetal life, high levels of phenylalanine such as those seen in maternal PKU can result in microcephaly, neuronal loss and corpus callosum hypoplasia. Elevated phenylalanine levels during the first few years of life can cause acquired microcephaly, severe cognitive impairment and epilepsy, likely due to the impairment of synaptogenesis. During late childhood, elevated phenylalanine can cause alterations in neurological functioning, leading to ADHD, speech delay and mild IQ reduction. In adolescents and adults, executive function and mood are affected, with some of the abnormalities reversed by better control of phenylalanine levels. Altered brain myelination can be present at this stage. In this article, we review the current knowledge about the consequences of high phenylalanine levels in PKU patients and animal models through different stages of brain development and its effect on cognitive, behavioural and neuropsychological function.
Collapse
Affiliation(s)
- Valentina Rovelli
- Clinical Department of Pediatrics, University of Milan, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy.
| | - Nicola Longo
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
190
|
Markiewicz-Gospodarek A, Markiewicz R, Borowski B, Dobrowolska B, Łoza B. Self-Regulatory Neuronal Mechanisms and Long-Term Challenges in Schizophrenia Treatment. Brain Sci 2023; 13:brainsci13040651. [PMID: 37190616 DOI: 10.3390/brainsci13040651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Schizophrenia is a chronic and relapsing disorder that is characterized not only by delusions and hallucinations but also mainly by the progressive development of cognitive and social deficits. These deficits are related to impaired synaptic plasticity and impaired neurotransmission in the nervous system. Currently, technological innovations and medical advances make it possible to use various self-regulatory methods to improve impaired synaptic plasticity. To evaluate the therapeutic effect of various rehabilitation methods, we reviewed methods that modify synaptic plasticity and improve the cognitive and executive processes of patients with a diagnosis of schizophrenia. PubMed, Scopus, and Google Scholar bibliographic databases were searched with the keywords mentioned below. A total of 555 records were identified. Modern methods of schizophrenia therapy with neuroplastic potential, including neurofeedback, transcranial magnetic stimulation, transcranial direct current stimulation, vagus nerve stimulation, virtual reality therapy, and cognitive remediation therapy, were reviewed and analyzed. Since randomized controlled studies of long-term schizophrenia treatment do not exceed 2-3 years, and the pharmacological treatment itself has an incompletely estimated benefit-risk ratio, treatment methods based on other paradigms, including neuronal self-regulatory and neural plasticity mechanisms, should be considered. Methods available for monitoring neuroplastic effects in vivo (e.g., fMRI, neuropeptides in serum), as well as unfavorable parameters (e.g., features of the metabolic syndrome), enable individualized monitoring of the effectiveness of long-term treatment of schizophrenia.
Collapse
Affiliation(s)
| | - Renata Markiewicz
- Department of Neurology, Neurological and Psychiatric Nursing, Medical University of Lublin, 20-093 Lublin, Poland
| | - Bartosz Borowski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Beata Dobrowolska
- Department of Holistic Care and Management in Nursing, Medical University of Lublin, 20-081 Lublin, Poland
| | - Bartosz Łoza
- Department of Psychiatry, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
191
|
Fassett-Carman AN, Smolker H, Hankin BL, Snyder HR, Banich MT. Major gender differences in relations between life stressor frequency and gray matter in adolescence and emerging adulthood. Dev Psychol 2023; 59:621-636. [PMID: 36455022 PMCID: PMC10557404 DOI: 10.1037/dev0001489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Adolescence and emerging adulthood is likely a sensitive period for the neural effects of stress due to increasing life stress, onset of stress-related disorders, and continued gray matter (GM) development. In adults, stress is associated with GM differences in the medial prefrontal cortex (mPFC), hippocampus, and amygdala, but little is known about these relations, and whether they differ by gender, during adolescence and emerging adulthood. Further, it is unknown whether dependent (self-generated) and independent (fateful) stressors have distinct associations with GM, as each have distinct relations with internalizing psychopathology. We tested relations between recent dependent and independent stressor frequency (ALEQ-R) and GM structure using MRI in a priori regions of interest (mPFC, amygdala, and hippocampus) and across the cortex in youth from the Denver/Boulder metro area ages 14-22 (N = 144). Across both genders, no effects passed multiple comparison correction (FDR q > .05). However, there were significant differences between male and female youth (FDR q < .05), with opposite relations between dependent stressor frequency and cortical GM thickness in the salience network and emotion regulation regions and with surface area in default mode network regions. These results motivate future investigations of gender differences in neural mechanisms of stress generation and reactivity. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Alyssa N. Fassett-Carman
- Department of Psychology and Neuroscience Program, Brandeis University, 415 South Street, Waltham, MA 02453, USA
- Institute of Cognitive Science, University of Colorado Boulder, 344 UCB, Boulder, CO 80309-0344, USA
| | - Harry Smolker
- Institute of Cognitive Science, University of Colorado Boulder, 344 UCB, Boulder, CO 80309-0344, USA
| | - Benjamin L. Hankin
- Department of Psychology, University of Illinois at Urbana-Champaign, 601 East Daniel Street, Champaign, IL 61820, USA
| | - Hannah R. Snyder
- Department of Psychology and Neuroscience Program, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Marie T. Banich
- Institute of Cognitive Science, University of Colorado Boulder, 344 UCB, Boulder, CO 80309-0344, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, 345 UCB, Boulder, CO 80309-0345, USA
| |
Collapse
|
192
|
Useinovic N, Near M, Cabrera OH, Boscolo A, Milosevic A, Harvey R, Newson A, Chastain-Potts S, Quillinan N, Jevtovic-Todorovic V. Neonatal sevoflurane exposure induces long-term changes in dendritic morphology in juvenile rats and mice. Exp Biol Med (Maywood) 2023; 248:641-655. [PMID: 37309741 PMCID: PMC10350807 DOI: 10.1177/15353702231170003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/11/2023] [Indexed: 06/14/2023] Open
Abstract
General anesthetics are potent neurotoxins when given during early development, causing apoptotic deletion of substantial number of neurons and persistent neurocognitive and behavioral deficits in animals and humans. The period of intense synaptogenesis coincides with the peak of susceptibility to deleterious effects of anesthetics, a phenomenon particularly pronounced in vulnerable brain regions such as subiculum. With steadily accumulating evidence confirming that clinical doses and durations of anesthetics may permanently alter the physiological trajectory of brain development, we set out to investigate the long-term consequences on dendritic morphology of subicular pyramidal neurons and expression on genes regulating the complex neural processes such as neuronal connectivity, learning, and memory. Using a well-established model of anesthetic neurotoxicity in rats and mice neonatally exposed to sevoflurane, a volatile general anesthetic commonly used in pediatric anesthesia, we report that a single 6 h of continuous anesthesia administered at postnatal day (PND) 7 resulted in lasting dysregulation in subicular mRNA levels of cAMP responsive element modulator (Crem), cAMP responsive element-binding protein 1 (Creb1), and Protein phosphatase 3 catalytic subunit alpha, a subunit of calcineurin (Ppp3ca) (calcineurin) when examined during juvenile period at PND28. Given the critical role of these genes in synaptic development and neuronal plasticity, we deployed a set of histological measurements to investigate the implications of anesthesia-induced dysregulation of gene expression on morphology and complexity of surviving subicular pyramidal neurons. Our results indicate that neonatal exposure to sevoflurane induced lasting rearrangement of subicular dendrites, resulting in higher orders of complexity and increased branching with no significant effects on the soma of pyramidal neurons. Correspondingly, changes in dendritic complexity were paralleled by the increased spine density on apical dendrites, further highlighting the scope of anesthesia-induced dysregulation of synaptic development. We conclude that neonatal sevoflurane induced persistent genetic and morphological dysregulation in juvenile rodents, which could indicate heightened susceptibility toward cognitive and behavioral disorders we are beginning to recognize as sequelae of early-in-life anesthesia.
Collapse
Affiliation(s)
- Nemanja Useinovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michelle Near
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Omar Hoseá Cabrera
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Annalisa Boscolo
- Institute of Anesthesia and Intensive Care, Padua University Hospital, Padua 35128. Italy
- Department of Medicine (DIMED), University of Padua, Padua 35128, Italy
| | - Andjelko Milosevic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rachel Harvey
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Adre Newson
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shelby Chastain-Potts
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
193
|
Sobierajski E, Lauer G, Czubay K, Grabietz H, Beemelmans C, Beemelmans C, Meyer G, Wahle P. Development of myelin in fetal and postnatal neocortex of the pig, the European wild boar Sus scrofa. Brain Struct Funct 2023; 228:947-966. [PMID: 37000250 PMCID: PMC10147765 DOI: 10.1007/s00429-023-02633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
Myelination of the neocortex of altricial species is mostly a postnatal event, and the appearance of myelin has been associated with the end of the critical period for ocular dominance plasticity in rodent visual cortex. Due to their precocality, ungulates may tell a different story. Here, we analyzed the development of PDGFRα positive oligodendrocyte precursor cells and expression of myelin proteins in the laminar compartments of fetal and postnatal porcine cortex from E45 onwards. Precursor cell density initially increased and then decreased but remained present at P90. MAG and MBP staining were detectable at E70 in subventricular zone and deep white matter, ascending into gyral white matter at E85, and into the gray matter and marginal zone at E100 (birth in pig at E114). Protein blots confirmed the declining expression of PDGFRα from E65 onwards, and the increase of MBP and MAG expression from E80 onwards. Somatosensory input elicited by spontaneous activity is considered important for the formation of the body representation. Indeed, PDGFRα, MBP and MAG expression started earlier in somatosensory than in visual cortex. Taken together, myelination proceeded in white and gray matter and marginal zone of pig cortex before birth with an areal-specific time course, and an almost mature pattern was present at P5 in visual cortex.
Collapse
Affiliation(s)
- Eric Sobierajski
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany
| | - German Lauer
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany
| | - Katrin Czubay
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany
| | - Hannah Grabietz
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany
| | - Christa Beemelmans
- Regionalverband Ruhr Grün, Forsthof Üfter Mark, Forsthausweg 306, 46514, Schermbeck, Germany
| | - Christoph Beemelmans
- Regionalverband Ruhr Grün, Forsthof Üfter Mark, Forsthausweg 306, 46514, Schermbeck, Germany
| | - Gundela Meyer
- Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, 38200, Santa Cruz de Tenerife, Tenerife, Spain
| | - Petra Wahle
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany.
| |
Collapse
|
194
|
Chen S, Fan M, Lee BK, Dalman C, Karlsson H, Gardner RM. Rates of maternal weight gain over the course of pregnancy and offspring risk of neurodevelopmental disorders. BMC Med 2023; 21:108. [PMID: 36959571 PMCID: PMC10035205 DOI: 10.1186/s12916-023-02799-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/20/2023] [Indexed: 03/25/2023] Open
Abstract
Background Previous studies have suggested that gestational weight gain (GWG) outside an optimal range increases the risks of neurodevelopmental disorders (NDDs) in offspring including autism spectrum disorder (ASD), intellectual disability (ID), and attention deficit/hyperactivity disorder (ADHD). The sequential development of the fetal brain suggests that its vulnerability may vary depending on the timing of exposure. Therefore, we aimed to investigate the associations of not only gestational age-standardized total GWG (GWG z-scores) but also the rate of GWG (RGWG) in the second and third trimesters with risks of NDDs in offspring. Methods In this population-based cohort study, we used maternal weight data from antenatal care records collected for 57,822 children born to 53,516 mothers between 2007 and 2010 in the Stockholm Youth Cohort. Children were followed from 2 years of age to December 31, 2016. GWG z-scores and RGWG (kg/week) in the second and third trimesters were considered as continuous variables in cox regression models, clustered on maternal identification numbers. Nonlinear relationships were accommodated using restricted cubic splines with 3 knots. RGWG were also categorized according to the 2009 US Institute of Medicine (IOM) guidelines for optimal GWG. According to the IOM guidelines, the optimal rate of GWG for the second and third trimesters for underweight, normal weight, overweight, and obese categories were 0.44–0.58, 0.35–0.50, 0.23–0.33, and 0.17–0.27 kg/week, respectively. Results During a mean follow-up of 5.4 years (until children were on average 7.4 years old), 2205 (3.8%) children were diagnosed with NDDs, of which 1119 (1.9%) received a diagnosis of ASD, 1353 (2.3%) ADHD, and 270 (0.5%) ID. We observed a J-shaped association between total GWG z-score and offspring risk of NDDs, with higher total GWG (GWG z-score = 2) associated with 19% increased risk of any NDD (95% CI = 3–37%) and lower total GWG (GWG z-score = − 2) associated with 12% increased risk of any NDDs (95% CI = 2–23%), compared to the reference (GWG z-score = 0). In the second trimester, lower RGWG (0.25 kg/week) was associated with a 9% increased risk of any NDD diagnosis (95% CI = 4–15%) compared to the median of 0.57 kg/week, with no apparent relationship between higher RGWG and risk of NDDs. In the third trimester, there was no apparent association between lower RGWG and risk of NDDs, though higher RGWG (1 kg/week) was associated with a 28% increased risk of NDD diagnosis (95% CI = 16–40%), compared to the median (0.51 kg/week). When considering categorized RGWG, we found that slow weight gain in the second trimester followed by rapid weight gain in the third trimester most significantly increased the risk of ADHD (HRadjusted = 1.55, 1.13–2.13) and ID (HRadjusted = 2.53, 1.15–5.55) in offspring. The main limitations of our study are the relatively few years for which detailed GWG data were available and the relatively short follow-up for the outcomes, limiting power to detect associations and misclassifying children who receive an NDD diagnosis later in childhood. Conclusions The relationship between maternal weight gain and children’s risk of NDDs varied according to timing in pregnancy, with the greatest risks associated with slow weight gain in the second trimester and rapid weight gain in the third trimester. Supplementary Information The online version contains supplementary material available at 10.1186/s12916-023-02799-6.
Collapse
Affiliation(s)
- Shuyun Chen
- grid.4714.60000 0004 1937 0626Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Mengyu Fan
- grid.4714.60000 0004 1937 0626Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Brian K. Lee
- grid.4714.60000 0004 1937 0626Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
- grid.166341.70000 0001 2181 3113Department of Epidemiology and Biostatistics, Drexel University School of Public Health, Philadelphia, PA USA
- A.J. Drexel Autism Institute, Philadelphia, PA USA
| | - Christina Dalman
- grid.4714.60000 0004 1937 0626Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
- grid.425979.40000 0001 2326 2191Centre for Epidemiology and Community Medicine, Stockholm County Council, Stockholm, Sweden
| | - Håkan Karlsson
- grid.4714.60000 0004 1937 0626Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Renee M. Gardner
- grid.4714.60000 0004 1937 0626Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
195
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
196
|
Bero J, Li Y, Kumar A, Humphries C, Nag S, Lee H, Ahn WY, Hahn S, Constable RT, Kim H, Lee D. Coordinated anatomical and functional variability in the human brain during adolescence. Hum Brain Mapp 2023; 44:1767-1778. [PMID: 36479851 PMCID: PMC9921246 DOI: 10.1002/hbm.26173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/26/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Adolescence represents a time of unparalleled brain development. In particular, developmental changes in morphometric and cytoarchitectural features are accompanied by maturation in the functional connectivity (FC). Here, we examined how three facets of the brain, including myelination, cortical thickness (CT), and resting-state FC, interact in children between the ages of 10 and 15. We investigated the pattern of coordination in these measures by computing correlation matrices for each measure as well as meta-correlations among them both at the regional and network levels. The results revealed consistently higher meta-correlations among myelin, CT, and FC in the sensory-motor cortical areas than in the association cortical areas. We also found that these meta-correlations were stable and little affected by age-related changes in each measure. In addition, regional variations in the meta-correlations were consistent with the previously identified gradient in the FC and therefore reflected the hierarchy of cortical information processing, and this relationship persists in the adult brain. These results demonstrate that heterogeneity in FC among multiple cortical areas are closely coordinated with the development of cortical myelination and thickness during adolescence.
Collapse
Affiliation(s)
- John Bero
- Neurogazer, Inc.BaltimoreMarylandUSA
| | - Yang Li
- Neurogazer, Inc.BaltimoreMarylandUSA
| | | | | | | | | | - Woo Young Ahn
- Department of PsychologySeoul National UniversitySeoulKorea
| | - Sowon Hahn
- Department of PsychologySeoul National UniversitySeoulKorea
| | - Robert Todd Constable
- Department of Diagnostic Radiology and NeurosurgeryYale School of MedicineNew HavenConnecticutUSA
| | - Hackjin Kim
- Department of PsychologyKorea UniversitySeoulKorea
| | - Daeyeol Lee
- Neurogazer, Inc.BaltimoreMarylandUSA
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreMarylandUSA
- Department of NeuroscienceJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Psychological and Brain SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
- Kavli Neuroscience Discovery Institute, Johns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
197
|
Wenzel TJ, Le J, He J, Alcorn J, Mousseau DD. Fundamental Neurochemistry Review: Incorporating a greater diversity of cell types, including microglia, in brain organoid cultures improves clinical translation. J Neurochem 2023; 164:560-582. [PMID: 36517959 DOI: 10.1111/jnc.15741] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Brain organoids have the potential to improve clinical translation, with the added benefit of reducing any extraneous use of experimental animals. As brain organoids are three-dimensional in vitro constructs that emulate the human brain, they bridge in vitro and in vivo studies more appropriately than monocultures. Although many factors contribute to the failure of extrapolating monoculture-based information to animal-based experiments and clinical trials, for the purpose of this review, we will focus on glia (non-neuronal brain cells), whose functions and transcriptome are particularly abnormal in monocultures. As discussed herein, glia require signals from-and contact with-other cell types to exist in their homeostatic state, which likely contributes to some of the differences between data derived from monocultures and data derived from brain organoids and even two-dimensional co-cultures. Furthermore, we highlight transcriptomic differences between humans and mice in regard to aging and Alzheimer's disease, emphasizing need for a model using the human genome-again, a benefit of brain organoids-to complement data derived from animals. We also identify an urgency for guidelines to improve the reporting and transparency of research using organoids. The lack of reporting standards creates challenges for the comparison and discussion of data from different articles. Importantly, brain organoids mark the first human model enabling the study of brain cytoarchitecture and development.
Collapse
Affiliation(s)
- Tyler J Wenzel
- Cell Signalling Laboratory, Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jennifer Le
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jim He
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jane Alcorn
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Darrell D Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
198
|
Frohlich J, Bayne T, Crone JS, DallaVecchia A, Kirkeby-Hinrup A, Mediano PA, Moser J, Talar K, Gharabaghi A, Preissl H. Not with a “zap” but with a “beep”: measuring the origins of perinatal experience. Neuroimage 2023; 273:120057. [PMID: 37001834 DOI: 10.1016/j.neuroimage.2023.120057] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
When does the mind begin? Infant psychology is mysterious in part because we cannot remember our first months of life, nor can we directly communicate with infants. Even more speculative is the possibility of mental life prior to birth. The question of when consciousness, or subjective experience, begins in human development thus remains incompletely answered, though boundaries can be set using current knowledge from developmental neurobiology and recent investigations of the perinatal brain. Here, we offer our perspective on how the development of a sensory perturbational complexity index (sPCI) based on auditory ("beep-and-zip"), visual ("flash-and-zip"), or even olfactory ("sniff-and-zip") cortical perturbations in place of electromagnetic perturbations ("zap-and-zip") might be used to address this question. First, we discuss recent studies of perinatal cognition and consciousness using techniques such as functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and, in particular, magnetoencephalography (MEG). While newborn infants are the archetypal subjects for studying early human development, researchers may also benefit from fetal studies, as the womb is, in many respects, a more controlled environment than the cradle. The earliest possible timepoint when subjective experience might begin is likely the establishment of thalamocortical connectivity at 26 weeks gestation, as the thalamocortical system is necessary for consciousness according to most theoretical frameworks. To infer at what age and in which behavioral states consciousness might emerge following the initiation of thalamocortical pathways, we advocate for the development of the sPCI and similar techniques, based on EEG, MEG, and fMRI, to estimate the perinatal brain's state of consciousness.
Collapse
|
199
|
Zhou Y, Li Q, Wang P, Li J, Zhao W, Zhang L, Wang H, Cheng Y, Shi H, Li J, Zhang Y. Associations of prenatal PFAS exposure and early childhood neurodevelopment: Evidence from the Shanghai Maternal-Child Pairs Cohort. ENVIRONMENT INTERNATIONAL 2023; 173:107850. [PMID: 36857906 DOI: 10.1016/j.envint.2023.107850] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Epidemiological data on the effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) on infant neurodevelopment trajectories are far from being sufficiently addressed. In this study, 1285 mother-child pairs were recruited during 2016-2017. A high-performance liquid chromatography-triple quadrupole mass spectrometer was used to measure 16 PFAS levels in cord serum. Ages and Stages Questionnaires were used to examine children's neurodevelopment at 2, 6, 12, and 24 months of age. Group-based trajectory models were applied to derive the neurodevelopmental trajectories. Children with relatively low scores from 2 to 24 months were classified into a low-score group and were used as a risk group in each domain. Multiple linear regression, logistic regression, and quantile-based g-computation were performed to assess associations of single or mixture PFAS exposures with neurodevelopment and trajectories. Perfluorooctane sulphonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), and 6:2 chlorinated polyfluorooctane ether sulfonate (6:2Cl-PFESA) were detected in over 90 % samples. PFOA had the highest concentration (median: 4.61 μg/L). Each ln-unit (μg/L) increase of PFAS (e.g., PFOA, PFOS, PFHxS, 6:2Cl-PFESA) was associated with poor scores of communication domain at 6 months, with the effect size ranging from -0.69 to -0.44. PFOS (OR: 1.14, (1.03, 1.26), PFDA (OR:1.08, (1.02, 1.15)), PFHxS (OR:1.31, (1.12, 1.56)), and 6:2Cl-PFESA (OR:1.08, (1.00, 1.16)) were associated with an increased risk of being in the low-score group in the early childhood communication domain's trajectory. Each mixture quartile increment was associated with a 1.60 (-2.76, -0.45) decrease in communication domain scores of 6-month-old infants, and the mixture effect was mainly attributed to PFOS. Each mixture quartile increase was associated with a 1.23-fold (1.03, 1.46) risk of being in the low-score group of the communication domain, and the mixture effect was mainly attributed to PFOS. In conclusion, PFAS and their mixtures might adversely affect childhood neurodevelopment. The gender-specific associations existed in the above associations.
Collapse
Affiliation(s)
- Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Qiang Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China; Putuo District Center for Disease Control & Prevention, Shanghai 200333, China
| | - Pengpeng Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jinhong Li
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenxuan Zhao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Hang Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yukai Cheng
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Maternal, Child and Adolescent Health, School of Public Health, Fudan University, Shanghai, China
| | - Jiufeng Li
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
200
|
Warhaftig G, Almeida D, Turecki G. Early life adversity across different cell- types in the brain. Neurosci Biobehav Rev 2023; 148:105113. [PMID: 36863603 DOI: 10.1016/j.neubiorev.2023.105113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Early life adversity (ELA)- which includes physical, psychological, emotional, and sexual abuse is one of the most common predictors to diverse psychopathologies later in adulthood. As ELA has a lasting impact on the brain at a developmental stage, recent findings from the field highlighted the specific contributions of different cell types to ELA and their association with long lasting consequences. In this review we will gather recent findings describing morphological, transcriptional and epigenetic alterations within neurons, glia and perineuronal nets and their associated cellular subpopulation. The findings reviewed and summarized here highlight important mechanisms underlying ELA and point to therapeutic approaches for ELA and related psychopathologies later in life.
Collapse
Affiliation(s)
- Gal Warhaftig
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada
| | - Daniel Almeida
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal QC H3A 1A1, Canada.
| |
Collapse
|