151
|
Ellis PM, Chu QS, Leighl N, Laurie SA, Fritsch H, Gaschler-Markefski B, Gyorffy S, Munzert G. A phase I open-label dose-escalation study of intravenous BI 2536 together with pemetrexed in previously treated patients with non-small-cell lung cancer. Clin Lung Cancer 2013; 14:19-27. [PMID: 22658814 DOI: 10.1016/j.cllc.2012.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/29/2012] [Accepted: 04/02/2012] [Indexed: 11/28/2022]
Abstract
INTRODUCTION BI 2536 is a potent, highly selective inhibitor of polo-like kinase (Plk) 1. This open-label, phase I study investigated the maximum tolerated dose (MTD), safety, efficacy, and pharmacokinetics (PK) of BI 2536 IV in combination with standard-dose pemetrexed in previously treated advanced or metastatic non-small-cell lung cancer. PATIENTS AND METHODS A standard 3 + 3 design was used. The patients received 500 mg/m(2) pemetrexed and escalating doses of BI 2536 on day 1 every 3 weeks. The primary objective was the MTD of BI 2536 combined with pemetrexed. Secondary endpoints were response rate (Response Evaluation Criteria in Solid Tumors), overall safety, and PK. RESULTS Forty-one patients received BI 2536 (100-325 mg). Two dose-limiting toxicities (DLT) occurred at BI 2536 325 mg (grade 3 pruritus and rash; grade 4 neutropenia). Therefore, the MTD for BI 2536 in combination with pemetrexed was 300 mg. After expanding the MTD dose level, 3 additional patients experienced DLTs, which resulted in expansion of the 250 mg cohort, in which 4 of the 13 additional patients experienced DLTs. Therefore, the recommended dose of BI 2536 was 200 mg. Most frequently reported drug-related adverse events were fatigue (71%), nausea (37%), and rash (34%). Two patients had durable confirmed partial responses; 21 (54%) patients had stable disease after the treatment cycle 2. PK analysis showed that BI 2536 and pemetrexed exposure were not altered when coadministered. CONCLUSION BI 2536 200 mg combined with standard-dose pemetrexed has an acceptable safety profile in relapsed non-small-cell lung cancer. The antitumor activity observed is encouraging and supports further investigation of Plk inhibitors.
Collapse
Affiliation(s)
- Peter M Ellis
- Juravinski Cancer Centre, Hamilton, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Qian WJ, Park JE, Lee KS, Burke TR. Non-proteinogenic amino acids in the pThr-2 position of a pentamer peptide that confer high binding affinity for the polo box domain (PBD) of polo-like kinase 1 (Plk1). Bioorg Med Chem Lett 2012; 22:7306-8. [PMID: 23159568 PMCID: PMC3530200 DOI: 10.1016/j.bmcl.2012.10.093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 12/23/2022]
Abstract
We report herein that incorporating long-chain alkylphenyl-containing non-proteinogenic amino acids in place of His at the pT-2 position of the parent polo-like kinase 1 (Plk1) polo box domain (PBD)-binding pentapeptide, PLHSpT (1a) increases affinity. For certain analogs, approximately two orders-of-magnitude improvement in affinity was observed. Although, none of the new analogs was as potent as our previously described peptide 1b, in which the pT-2 histidine imidazole ring is alkylated at its π nitrogen (N3), our current finding that the isomeric His(N1)-analog (1c) binds with approximately 50-fold less affinity than 1b, indicates the positional importance of attachment to the His imidazole ring. Our demonstration that a range of modified residues at the pT-2 position can enhance binding affinity, should facilitate the development of minimally-sized Plk1 PBD-binding antagonists.
Collapse
Affiliation(s)
- Wen-Jian Qian
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, U. S. A
| | - Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, U. S. A
| | - Kyung S. Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, U. S. A
| | - Terrence R. Burke
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, U. S. A
| |
Collapse
|
153
|
Zhao XY, Nie CL, Liang SF, Yuan Z, Deng HX, Wei YQ. Enhanced gemcitabine-mediated cell killing of human lung adenocarcinoma by vector-based RNA interference against PLK1. Biomed Pharmacother 2012; 66:597-602. [PMID: 23153503 DOI: 10.1016/j.biopha.2012.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/04/2012] [Indexed: 02/05/2023] Open
Abstract
Specific PLK1 silencing may be an effective gene therapy modality of treating PLK1-overexpressed cancers. In this study, we first explored the anticancer efficacy of three different short hairpin-expressing plasmids targeting PLK1 in animal model, and then determined the combination therapy effect of gemcitabine with PLK1-shRNA as an adjuvant. Transfection of the PLK1-shRNAs to A549 lung cancer cells induced significant PLK1 depletion, growth inhibition and apoptosis. In vivo administration of PLK1-shRNA constructs to tumor-bearing mice resulted in xenograft regression. Moreover, the combination of PLK1-shRNA plus low-dose gemcitabine (GEM) produced an additive antitumor activity on the lung tumors owing to an inhibition of cancer cell survival and augmented apoptosis. These results indicated a feasible bio-chemotherapeutic strategy for cancer.
Collapse
Affiliation(s)
- Xin-Yu Zhao
- State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
154
|
Cope L, Wu RC, Shih IM, Wang TL. High level of chromosomal aberration in ovarian cancer genome correlates with poor clinical outcome. Gynecol Oncol 2012. [PMID: 23200914 DOI: 10.1016/j.ygyno.2012.11.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Structural aberration in chromosomes characterizes almost all human solid cancers and analysis of those alterations may reveal the history of chromosomal instability. However, the clinical significance of massive chromosomal abnormality in ovarian high-grade serous carcinoma (HGSC) remains elusive. In this study, we addressed this issue by analyzing the genomic profiles in 455 ovarian HGSCs available from The Cancer Genome Atlas (TCGA). METHODS DNA copy number, mRNA expression, and clinical information were downloaded from the TCGA data portal. A chromosomal disruption index (CDI) was developed to summarize the extent of copy number aberrations across the entire genome. A Cox regression model was applied to identify factors associated with poor prognosis. Genes whose expression was associated with CDI were identified by a 2-stage multivariate linear regression and were used to find enriched pathways by Ingenuity Pathway Analysis. RESULTS Multivariate survival analysis showed that a higher CDI was significantly associated with a worse overall survival in patients. Interestingly, the pattern of DNA copy number alterations across all the chromosomes was similar between tumors with high and low CDI, suggesting they did not arise from different mechanisms. We also observed that expression of several genes was highly correlated with the CDI, even after adjusting for local copy number variation. We found that molecular pathways involving DNA damage response and mitosis were significantly enriched in these CDI-correlated genes. CONCLUSION Our results provide a new insight into the role of chromosomal rearrangement in the development of HGSC and the promise of applying CDI in risk-stratifying HGSC patients, perhaps for different clinical managements. The genes whose expression is correlated with CDI are worthy of further study to elucidate the mechanism of chromosomal instability in HGSC.
Collapse
Affiliation(s)
- Leslie Cope
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
155
|
Liu J, Lu KH, Liu ZL, Sun M, De W, Wang ZX. MicroRNA-100 is a potential molecular marker of non-small cell lung cancer and functions as a tumor suppressor by targeting polo-like kinase 1. BMC Cancer 2012; 12:519. [PMID: 23151088 PMCID: PMC3521172 DOI: 10.1186/1471-2407-12-519] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/12/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Polo-like kinase 1 (PLK1) is highly expressed in many human cancers and regulates critical steps in mitotic progression. Previously, we have reported that PLK1 was overexpressed in non-small cell lung cancer (NSCLC), but the underlying molecular mechanisms are not well understood. By using microRNA (miR) target prediction algorithms, we identified miR-100 that might potentially bind the 3'-untranslated region of PLK1 transcripts. The purpose of this study was to investigate the roles of miR-100 and its association with PLK1 in NSCLC development. METHODS Taqman real-time quantitative RT-PCR assay was performed to detect miR-100 expression 10 NSCLC tissues and corresponding nontumor tissues. Additionally, the expression of miR-100 in 110 NSCLC tissues and its correlation with clinicopathological factors or prognosis of patients was analyzed. Finally, the effects of miR-100 expression on growth, apoptosis and cell cycle of NSCLC cells by posttranscriptionally regulating PLK1 expression were determined. RESULTS MiR-100 was significantly downregulated in NSCLC tissues, and low miR-100 expression was found to be closely correlated with higher clinical stage, advanced tumor classification and lymph node metastasis of patients. The overall survival of NSCLC patients with low miR-100 was significantly lower than that of those patients with high miR-100, and univariate and multivariate analyses indicated that low miR-100 expression might be a poor prognostic factor. Also, miR-100 mimics could lead to growth inhibition, G2/M cell cycle arrest and apoptosis enhancement in NSCLC cells. Meanwhile, miR-100 mimics could significantly inhibit PLK1 mRNA and protein expression and reduce the luciferase activity of a PLK1 3' untranslated region-based reporter construct in A549 cells. Furthermore, small interfering RNA (siRNA)-mediated PLK1 downregulation could mimic the effects of miR-100 mimics while PLK1 overexpression could partially rescue the phenotypical changes of NSCLC cells induced by miR-100 mimics. CONCLUSIONS Our findings indicate that low miR-100 may be a poor prognostic factor for NSCLC patients and functions as a tumor suppressor by posttranscriptionally regulating PLK1 expression.
Collapse
MESH Headings
- 3' Untranslated Regions
- Apoptosis/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Cycle Checkpoints
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Division/genetics
- Cell Growth Processes/genetics
- Cell Line, Tumor
- Down-Regulation
- G2 Phase/genetics
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lymph Nodes/metabolism
- Lymph Nodes/pathology
- Lymphatic Metastasis
- MicroRNAs/genetics
- Prognosis
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Jing Liu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, Jiangsu, 210011, Peoples Republic of China
| | - Kai-Hua Lu
- Immunology and Reproductive Biology Lab of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, Peoples Republic of China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, Peoples Republic of China
| | - Zhi-Li Liu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, Jiangsu, 210011, Peoples Republic of China
| | - Ming Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, Peoples Republic of China
| | - Wei De
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, Peoples Republic of China
| | - Zhao-Xia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, Jiangsu, 210011, Peoples Republic of China
| |
Collapse
|
156
|
Petrelli A, Perra A, Schernhuber K, Cargnelutti M, Salvi A, Migliore C, Ghiso E, Benetti A, Barlati S, Ledda-Columbano GM, Portolani N, De Petro G, Columbano A, Giordano S. Sequential analysis of multistage hepatocarcinogenesis reveals that miR-100 and PLK1 dysregulation is an early event maintained along tumor progression. Oncogene 2012; 31:4517-26. [PMID: 22249248 DOI: 10.1038/onc.2011.631] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 10/26/2011] [Accepted: 12/08/2011] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) have an important role in a wide range of physiological and pathological processes, and their dysregulation has been reported to affect the development and progression of cancers, including hepatocellular carcinoma (HCC). However, in the plethora of dysregulated miRNAs, it is largely unknown which of them have a causative role in the hepatocarcinogenic process. In the present study, we first aimed to determine changes in the expression profile of miRNAs in human HCCs and to compare them with liver tumors generated in a rat model of chemically induced HCC. We found that members of the miR-100 family (miR-100, miR-99a) were downregulated in human HCCs; a similar downregulation was also observed in rat HCCs. Their reduction was paralleled by an increased expression of polo like kinase 1 (PLK1), a target of these miRNAs. The introduction of miR-100 in HCC cells impaired their growth ability and their capability to form colonies in soft agar. Next, we aimed at investigating, in the same animal model, if dysregulation of miR-100 and PLK1 is an early or late event along the multistep process of hepatocarcinogenesis. The obtained results showed that miR-100 downregulation (i) is already evident in very early preneoplastic lesions generated 9 weeks after carcinogenic treatment; (ii) is also observed in adenomas and early HCCs; and (iii) is not simply a marker of proliferating hepatocytes. To our knowledge, this is the first work unveiling the role of a miRNA family along HCC progression.
Collapse
Affiliation(s)
- A Petrelli
- IRCC, Institute for Cancer Research and Treatment, University of Torino School of Medicine, Torino, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Zhang C, Sun X, Ren Y, Lou Y, Zhou J, Liu M, Li D. Validation of Polo-like kinase 1 as a therapeutic target in pancreatic cancer cells. Cancer Biol Ther 2012; 13:1214-20. [PMID: 22892842 PMCID: PMC3469479 DOI: 10.4161/cbt.21412] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine protein kinase and plays a critical role in mitosis. PLK1 has also been regarded as a valuable target for cancer treatment, and several PLK1 inhibitors are currently undergoing clinical investigations. In this study, our data show that the expression level of PLK1 is upregulated in human pancreatic cancer cells. Molecular modeling studies indicate that DMTC inhibits PLK1 activity through competitive displacement of ATP from its binding pocket. Our data further show that DMTC suppresses the proliferation of pancreatic cancer cells and induces the formation of multinucleated cells, ultimately resulting in apoptosis. In addition, combination index analysis demonstrates that DMTC acts synergistically with the chemotherapeutic drug gemcitabine in inhibiting the proliferation of pancreatic cancer cells. These results thus suggest a potential of using PLK1 inhibitors for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Xiaodong Sun
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Yuan Ren
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Yunbo Lou
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Min Liu
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education; Basic Medical College; Tianjin Medical University; Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| |
Collapse
|
158
|
Longerich T. [Genome-wide molecular screening for the identification of new targets in human hepatocellular carcinoma]. DER PATHOLOGE 2012; 33 Suppl 2:302-6. [PMID: 22948473 DOI: 10.1007/s00292-012-1628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Molecular hepatocarcinogenesis represents a step-wise process which in most cases is associated with a well-defined chronic liver disease. By meta-analysis of classical comparative genomic hybridization (CGH) data an oncogenetic progression model could be generated (1q gain→ 8q gain → 4q loss → 16q loss → 13q loss). Array-based CGH allows the identification of etiology-dependent and independent genomic alterations. The Mouse Double Minute homologue 4 (MDM4) was shown to act as an oncogene of 1q32.1 gains in human hepatocellular carcinoma (HCC). Integration of genomic and epigenomic data facilitated the identification of tumor suppressor gene candidates in human HCC. For instance, Polo-like kinase 3 (PLK3) is frequently inactivated via promoter hypermethylation in combination with a loss of the second allele at 1p34.1. Both MDM4 overexpression and methylation-dependent inactivation of PLK3 represent potential targets for future therapeutic approaches.
Collapse
Affiliation(s)
- T Longerich
- Pathologisches Institut, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg.
| |
Collapse
|
159
|
Luteolin exerts anti-tumor activity through the suppression of epidermal growth factor receptor-mediated pathway in MDA-MB-231 ER-negative breast cancer cells. Food Chem Toxicol 2012; 50:4136-43. [PMID: 22926442 DOI: 10.1016/j.fct.2012.08.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/29/2012] [Accepted: 08/11/2012] [Indexed: 01/06/2023]
Abstract
This study investigated the inhibitory effect of luteolin on MDA-MB-231 estrogen receptor (ER) negative breast tumor growth both in vitro and in vivo. Study results showed that luteolin suppresses (3)H thymidine incorporation indicating cell growth inhibition, and this was accompanied by cell cycle arrest at the G2/M and S stages and apoptotic activity. Further analyses showed that luteolin exhibited cell cycle arrest and apoptotic activity by decreasing AKT, PLK1, cyclin B(1), cyclin A, CDC2, CDK2, and Bcl-xL expression and increasing p21 and Bax expression. Underlying mechanisms of action exerted by luteolin included the down-regulation. EGFR mRNA expression followed by the inhibition of EGF-induced MAPK activation, including the phosphorylation of ERK, p38 and AKT. Luteolin-supplementation at 0.01% or 0.05% significantly reduced tumor burden in nude mice inoculated with MDA-MB-231 cells. In conclusion, luteolin effectively suppresses MDA-MB-231 ER-negative breast cancer cell growth, and its anticancer activity may be partly derived from inhibitory effects on EGFR-mediated cell survival.
Collapse
|
160
|
Mok WC, Wasser S, Tan T, Lim SG. Polo-like kinase 1, a new therapeutic target in hepatocellular carcinoma. World J Gastroenterol 2012; 18:3527-36. [PMID: 22826617 PMCID: PMC3400854 DOI: 10.3748/wjg.v18.i27.3527] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 03/30/2012] [Accepted: 05/12/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of polo-like kinase 1 (PLK1) as a therapeutic target for hepatocellular carcinoma (HCC). METHODS PLK1 gene expression was evaluated in HCC tissue and HCC cell lines. Gene knockdown with short-interfering RNA (siRNA) was used to study PLK1 gene and protein expression using real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting, and cell proliferation using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2(4-sulfophenyl)-2H-tetrazolium (MTS) and bromodeoxyuridine (BrdU) assays. Apoptosis was evaluated using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and caspase-inhibition assay. Huh-7 cells were transplanted into nude mice and co-cultured with PLK1 siRNA or control siRNA, and tumor progression was compared with controls. RESULTS RT-PCR showed that PLK1 was overexpressed 12-fold in tumor samples compared with controls, and also was overexpressed in Huh-7 cells. siRNA against PLK1 showed a reduction in PLK1 gene and protein expression of up to 96% in Huh-7 cells, and a reduction in cell proliferation by 68% and 92% in MTS and BrdU cell proliferation assays, respectively. There was a 3-fold increase in apoptosis events, and TUNEL staining and caspase-3 assays suggested that this was caspase-independent. The pan-caspase inhibitor Z-VAD-FMK was unable to rescue the apoptotic cells. Immnofluorescence co-localized endonuclease-G to fragmented chromosomes, implicating it in apoptosis. Huh-7 cells transplanted subcutaneously into nude mice showed tumor regression in siPLK1-treated mice, but not in controls. CONCLUSION Knockdown of PLK1 overexpression in HCC was shown to be a potential therapeutic target, leading to apoptosis through the endonuclease-G pathway.
Collapse
|
161
|
Abstract
Mitosis is tightly regulated and any errors in this process often lead to aneuploidy, genomic instability, and tumorigenesis. Deregulation of mitotic kinases is significantly associated with improper cell division and aneuploidy. Because of their importance during mitosis and the relevance to cancer, mitotic kinase signaling has been extensively studied over the past few decades and, as a result, several mitotic kinase inhibitors have been developed. Despite promising preclinical results, targeting mitotic kinases for cancer therapy faces numerous challenges, including safety and patient selection issues. Therefore, there is an urgent need to better understand the molecular mechanisms underlying mitotic kinase signaling and its interactive network. Increasing evidence suggests that tumor suppressor p53 functions at the center of the mitotic kinase signaling network. In response to mitotic spindle damage, multiple mitotic kinases phosphorylate p53 to either activate or deactivate p53-mediated signaling. p53 can also regulate the expression and function of mitotic kinases, suggesting the existence of a network of mutual regulation, which can be positive or negative, between mitotic kinases and p53 signaling. Therefore, deciphering this regulatory network will provide knowledge to overcome current limitations of targeting mitotic kinases and further improve the results of targeted therapy.
Collapse
|
162
|
Ramachandran PV, Ignacimuthu S. RNA Interference as a Plausible Anticancer Therapeutic Tool. Asian Pac J Cancer Prev 2012; 13:2445-52. [DOI: 10.7314/apjcp.2012.13.6.2445] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
163
|
Stauffer JK, Orentas RJ, Lincoln E, Khan T, Salcedo R, Hixon JA, Back TC, Wei JS, Patidar R, Song Y, Hurd L, Tsokos M, Lai EW, Eisenhofer G, Weiss W, Khan J, Wigginton JM. High-throughput molecular and histopathologic profiling of tumor tissue in a novel transplantable model of murine neuroblastoma: new tools for pediatric drug discovery. Cancer Invest 2012; 30:343-63. [PMID: 22571338 PMCID: PMC6993178 DOI: 10.3109/07357907.2012.664670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Using two MYCN transgenic mouse strains, we established 10 transplantable neuroblastoma cell lines via serial orthotopic passage in the adrenal gland. Tissue arrays demonstrate that by histochemistry, vascularity, immunohistochemical staining for neuroblastoma markers, catecholamine analysis, and concurrent cDNA microarray analysis, there is a close correspondence between the transplantable lines and the spontaneous tumors. Several genes closely associated with the pathobiology and immune evasion of neuroblastoma, novel targets that warrant evaluation, and decreased expression of tumor suppressor genes are demonstrated. These studies describe a unique and generalizable approach to expand the utility of transgenic models of spontaneous tumor, providing new tools for preclinical investigation.
Collapse
Affiliation(s)
- Jimmy K Stauffer
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Li R, Chen DF, Zhou R, Jia SN, Yang JS, Clegg JS, Yang WJ. Involvement of polo-like kinase 1 (Plk1) in mitotic arrest by inhibition of mitogen-activated protein kinase-extracellular signal-regulated kinase-ribosomal S6 kinase 1 (MEK-ERK-RSK1) cascade. J Biol Chem 2012; 287:15923-34. [PMID: 22427657 PMCID: PMC3346105 DOI: 10.1074/jbc.m111.312413] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/28/2012] [Indexed: 11/06/2022] Open
Abstract
Cell division is controlled through cooperation of different kinases. Of these, polo-like kinase 1 (Plk1) and p90 ribosomal S6 kinase 1 (RSK1) play key roles. Plk1 acts as a G(2)/M trigger, and RSK1 promotes G(1) progression. Although previous reports show that Plk1 is suppressed by RSK1 during meiosis in Xenopus oocytes, it is still not clear whether this is the case during mitosis or whether Plk1 counteracts the effects of RSK1. Few animal models are available for the study of controlled and transient cell cycle arrest. Here we show that encysted embryos (cysts) of the primitive crustacean Artemia are ideal for such research because they undergo complete cell cycle arrest when they enter diapause (a state of obligate dormancy). We found that Plk1 suppressed the activity of RSK1 during embryonic mitosis and that Plk1 was inhibited during embryonic diapause and mitotic arrest. In addition, studies on HeLa cells using Plk1 siRNA interference and overexpression showed that phosphorylation of RSK1 increased upon interference and decreased after overexpression, suggesting that Plk1 inhibits RSK1. Taken together, these findings provide insights into the regulation of Plk1 during cell division and Artemia diapause cyst formation and the correlation between the activity of Plk1 and RSK1.
Collapse
Affiliation(s)
- Ran Li
- From the Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, China and
| | - Dian-Fu Chen
- From the Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, China and
| | - Rong Zhou
- From the Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, China and
| | - Sheng-Nan Jia
- From the Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, China and
| | - Jin-Shu Yang
- From the Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, China and
| | - James S. Clegg
- Section of Molecular and Cellular Biology and Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California 94923
| | - Wei-Jun Yang
- From the Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, China and
| |
Collapse
|
165
|
Feng B, Wang R, Chen LB. MiR-100 resensitizes docetaxel-resistant human lung adenocarcinoma cells (SPC-A1) to docetaxel by targeting Plk1. Cancer Lett 2012; 317:184-91. [PMID: 22120675 DOI: 10.1016/j.canlet.2011.11.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/21/2011] [Accepted: 11/18/2011] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) expression correlates with biological characteristics of both normal cells and cancer cells, but their roles in cancer chemoresistance remain unclear. By microarray analysis, miR-100 was found significantly down-regulated in docetaxel-resistant SPC-A1/DTX cells compared with parental SPC-A1 cells. Ectopic miR-100 expression resensitized SPC-A1/DTX cells to docetaxel by suppression of cell proliferation and induction of cell arrest in G(2)/M phase and apoptosis. Knock-down of Plk1, which was a direct target of miR-100, yielded similar effects as that of ectopic miR-100 expression. The inverse correlation between miR-100 and Plk1 expression was also detected in nude mice SPC-A1/DTX tumor xenografts and clinical lung adenocarcinoma tissues and was proved to be related with the in vivo response to docetaxel. Thus, our results suggested that down-regulation of miR-100 could lead to Plk1 over-expression and eventually to docetaxel chemoresistance of human lung adenocarcinoma.
Collapse
Affiliation(s)
- Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, PR China
| | | | | |
Collapse
|
166
|
Yao YD, Sun TM, Huang SY, Dou S, Lin L, Chen JN, Ruan JB, Mao CQ, Yu FY, Zeng MS, Zang JY, Liu Q, Su FX, Zhang P, Lieberman J, Wang J, Song E. Targeted delivery of PLK1-siRNA by ScFv suppresses Her2+ breast cancer growth and metastasis. Sci Transl Med 2012; 4:130ra48. [PMID: 22517885 DOI: 10.1126/scitranslmed.3003601] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A major obstacle to developing small interfering RNAs (siRNAs) as cancer drugs is their intracellular delivery to disseminated cancer cells. Fusion proteins of single-chain fragmented antibodies (ScFvs) and positively charged peptides deliver siRNAs into specific target cells. However, the therapeutic potential of ScFv-mediated siRNA delivery has not been evaluated in cancer. Here, we tested whether Polo-like kinase 1 (PLK1) siRNAs complexed with a Her2-ScFv-protamine peptide fusion protein (F5-P) could suppress Her2(+) breast cancer cell lines and primary human cancers in orthotopic breast cancer models. PLK1-siRNAs transferred by F5-P inhibited target gene expression, reduced proliferation, and induced apoptosis of Her2(+) breast cancer cell lines and primary human cancer cells in vitro without triggering an interferon response. Intravenously injected F5-P/PLK1-siRNA complexes concentrated in orthotopic Her2(+) breast cancer xenografts and persisted for at least 72 hours, leading to suppressed PLK1 gene expression and tumor cell apoptosis. The intravenously injected siRNA complexes retarded Her2(+) breast tumor growth, reduced metastasis, and prolonged survival without evident toxicity. F5-P-mediated delivery of a cocktail of PLK1, CCND1, and AKT siRNAs was more effective than an equivalent dose of PLK1-siRNAs alone. These data suggest that F5-P could be used to deliver siRNAs to treat Her2(+) breast cancer.
Collapse
Affiliation(s)
- Yan-dan Yao
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Xu D, Wang Q, Jiang Y, Zhang Y, Vega-Saenzdemiera E, Osman I, Dai W. Roles of Polo-like kinase 3 in suppressing tumor angiogenesis. Exp Hematol Oncol 2012; 1:5. [PMID: 23210979 PMCID: PMC3506990 DOI: 10.1186/2162-3619-1-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/18/2012] [Indexed: 02/08/2023] Open
Abstract
Angiogenesis is essential for promoting growth and metastasis of solid tumors by ensuring blood supply to the tumor mass. Targeting angiogenesis is therefore an attractive approach to therapeutic intervention of cancer. Tumor angiogenesis is a process that is controlled by a complex network of molecular components including sensors, signaling transducers, and effectors, leading to cellular responses under hypoxic conditions. Positioned at the center of this network are the hypoxia-inducible factors (HIFs). HIF-1 is a major transcription factor that consists of two subunits, HIF-1α and HIF-1β. It mediates transcription of a spectrum of gene targets whose products are essential for mounting hypoxic responses. HIF-1α protein level is very low in the normoxic condition but is rapidly elevated under hypoxia. This dramatic change in the cellular HIF-1α level is primarily regulated through the proteosome-mediated degradation process. In the past few years, scientific progress has clearly demonstrated that HIF-1α phosphorylation is mediated by several families of protein kinases including GSK3β and ERKs both of which play crucial roles in the regulation of HIF-1α stability. Recent research progress has identified that Polo-like kinase 3 (Plk3) phosphorylates HIF-1α at two previously unidentified serine residues and that the Plk3-mediated phosphorylation of these residues results in destabilization of HIF-1α. Plk3 has also recently been found to phosphorylate and stabilize PTEN phosphatase, a known regulator of HIF-1α and tumor angiogenesis. Given the success of targeting protein kinases and tumor angiogenesis in anti-cancer therapies, Plk3 could be a potential molecular target for the development of novel and effective therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Dazhong Xu
- Department of Environmental Medicine, New York University Langone Medical Center, 57 Old Forge Road, Tuxedo, NY 10987, USA.
| | | | | | | | | | | | | |
Collapse
|
168
|
Li JY, Horwitz S, Moskowitz A, Myskowski PL, Pulitzer M, Querfeld C. Management of cutaneous T cell lymphoma: new and emerging targets and treatment options. Cancer Manag Res 2012; 4:75-89. [PMID: 22457602 PMCID: PMC3308634 DOI: 10.2147/cmar.s9660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cutaneous T cell lymphomas (CTCL) clinically and biologically represent a heterogeneous group of non-Hodgkin lymphomas, with mycosis fungoides and Sézary syndrome being the most common subtypes. Over the last decade, new immunological and molecular pathways have been identified that not only influence CTCL phenotype and growth, but also provide targets for therapies and prognostication. This review will focus on recent advances in the development of therapeutic agents, including bortezomib, the histone deacetylase inhibitors (vorinostat and romidepsin), and pralatrexate in CTCL.
Collapse
Affiliation(s)
- Janet Y Li
- College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
169
|
Yoon HE, Kim SA, Choi HS, Ahn MY, Yoon JH, Ahn SG. Inhibition of Plk1 and Pin1 by 5'-nitro-indirubinoxime suppresses human lung cancer cells. Cancer Lett 2012; 316:97-104. [PMID: 22115795 DOI: 10.1016/j.canlet.2011.10.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/15/2011] [Accepted: 10/20/2011] [Indexed: 10/15/2022]
Abstract
A novel indirubin derivative, 5'-nitro-indirubinoxime (5'-NIO), exhibits a strong anti-cancer activity against human cancer cells. Here, the 5'-NIO-mediated G1 cell cycle arrest in lung cancer cells was associated with a decrease in protein levels of polo-like kinase 1 (Plk1) and peptidyl-prolyl cis/trans isomerase Pin1. Treatment with Plk1 siRNA or Pin1 inhibitor effectively inhibited the Rb phosphorylation, suggesting their regulatory role at G1 phase. In addition, the overexpression of Plk1 or Pin1 inhibited apoptotic signals following the cleavage of PARP in 5'-NIO-treated cells. These findings suggest that 5'-NIO have potential anti-cancer efficacy through the inhibition of Plk1 or/and Pin1 expression.
Collapse
Affiliation(s)
- Hyo-Eun Yoon
- Department of Pathology, Chosun University College of Dentistry, Gwangju 501-759, Republic of Korea
| | | | | | | | | | | |
Collapse
|
170
|
Hikichi Y, Honda K, Hikami K, Miyashita H, Kaieda I, Murai S, Uchiyama N, Hasegawa M, Kawamoto T, Sato T, Ichikawa T, Cao S, Nie Z, Zhang L, Yang J, Kuida K, Kupperman E. TAK-960, a novel, orally available, selective inhibitor of polo-like kinase 1, shows broad-spectrum preclinical antitumor activity in multiple dosing regimens. Mol Cancer Ther 2012; 11:700-9. [PMID: 22188812 DOI: 10.1158/1535-7163.mct-11-0762] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine protein kinase involved in key processes during mitosis. Human PLK1 has been shown to be overexpressed in various human cancers, and elevated levels of PLK1 have been associated with poor prognosis, making it an attractive target for anticancer therapy. TAK-960 [4-[(9-cyclopentyl-7,7-difluoro-5-methyl-6-oxo-6,7,8,9-tetrahydro-5H-pyrimido[4,5-b][1,4]diazepin-2-yl)amino]-2-fluoro-5-methoxy-N-(1-methylpiperidin-4-yl) benzamide] is a novel, investigational, orally bioavailable, potent, and selective PLK1 inhibitor that has shown activity in several tumor cell lines, including those that express multidrug-resistant protein 1 (MDR1). Consistent with PLK1 inhibition, TAK-960 treatment caused accumulation of G(2)-M cells, aberrant polo mitosis morphology, and increased phosphorylation of histone H3 (pHH3) in vitro and in vivo. TAK-960 inhibited proliferation of multiple cancer cell lines, with mean EC(50) values ranging from 8.4 to 46.9 nmol/L, but not in nondividing normal cells (EC(50) >1,000 nmol/L). The mutation status of TP53 or KRAS and MDR1 expression did not correlate with the potency of TAK-960 in the cell lines tested. In animal models, oral administration of TAK-960 increased pHH3 in a dose-dependent manner and significantly inhibited the growth of HT-29 colorectal cancer xenografts. Treatment with once daily TAK-960 exhibited significant efficacy against multiple tumor xenografts, including an adriamycin/paclitaxel-resistant xenograft model and a disseminated leukemia model. TAK-960 has entered clinical evaluation in patients with advanced cancers.
Collapse
MESH Headings
- 4-Aminobenzoic Acid/chemistry
- 4-Aminobenzoic Acid/pharmacology
- Administration, Oral
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/pharmacology
- Azepines/chemistry
- Azepines/pharmacology
- Biological Availability
- Cell Cycle Checkpoints/drug effects
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Drugs, Investigational/chemistry
- Drugs, Investigational/pharmacokinetics
- Drugs, Investigational/pharmacology
- Female
- HT29 Cells
- Histones/metabolism
- Humans
- K562 Cells
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Nude
- Mice, SCID
- Molecular Structure
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Neoplasms/pathology
- Phosphorylation/drug effects
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacokinetics
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Xenograft Model Antitumor Assays
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Yuichi Hikichi
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Zhang Y, Du XL, Wang CJ, Lin DC, Ruan X, Feng YB, Huo YQ, Peng H, Cui JL, Zhang TT, Wang YQ, Zhang H, Zhan QM, Wang MR. Reciprocal activation between PLK1 and Stat3 contributes to survival and proliferation of esophageal cancer cells. Gastroenterology 2012; 142:521-530.e3. [PMID: 22108192 DOI: 10.1053/j.gastro.2011.11.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/01/2011] [Accepted: 11/08/2011] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Aberrant activation of the signal transducer and activator of transcription (Stat)3 and overexpression of polo-like kinase (PLK)1 each have been associated with cancer pathogenesis. The mechanisms and significance of dysregulation of Stat3 and PLK1 in carcinogenesis and cancer progression are unclear. We investigated the relationship between Stat3 and PLK1 and the effects of their dysregulation in esophageal squamous cell carcinoma (ESCC) cells. METHODS We used immunoblot, quantitative reverse-transcription polymerase chain reaction, immunochemistry, chromatin immunoprecipitation, mobility shift, and reporter assays to investigate the relationship between Stat3 and PLK1. We used colony formation, fluorescence-activated cell sorting, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling, and xenograft tumor assays to determine the effects of increased activation of Stat3 and PLK1 in proliferation and survival of ESCC cells. RESULTS Stat3 directly activated transcription of PLK1 in esophageal cancer cells and mouse embryonic fibroblast cell NIH3T3. PLK1 then potentiated the expression of Stat3; β-catenin was involved in PLK1-dependent transcriptional activation of Stat3. This mutual regulation between Stat3 and PLK1 was required for proliferation of esophageal cancer cells and resistance to apoptosis in culture and as tumor xenografts in mice. Furthermore, phosphorylation of Stat3 and overexpression of PLK1 were correlated in a subset of ESCC. CONCLUSIONS Stat3 and PLK1 control each other's transcription in a positive feedback loop that contributes to the development of ESCC. Increased activity of Stat3 and overexpression of PLK1 promote survival and proliferation of ESCC cells in culture and in mice.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Blotting, Western
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Separation/methods
- Cell Survival
- Chromatin Immunoprecipitation
- Electrophoretic Mobility Shift Assay
- Enzyme Activation
- Esophageal Neoplasms/drug therapy
- Esophageal Neoplasms/enzymology
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/pathology
- Feedback, Physiological
- Female
- Flow Cytometry
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Humans
- Immunohistochemistry
- In Situ Nick-End Labeling
- Mice
- Mice, Nude
- NIH 3T3 Cells
- Phosphorylation
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Pteridines/pharmacology
- RNA Interference
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Time Factors
- Transcriptional Activation
- Transfection
- Xenograft Model Antitumor Assays
- beta Catenin/metabolism
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Luo J, Liu X. Polo-like kinase 1, on the rise from cell cycle regulation to prostate cancer development. Protein Cell 2012; 3:182-97. [PMID: 22447658 PMCID: PMC4875424 DOI: 10.1007/s13238-012-2020-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 02/04/2012] [Indexed: 01/19/2023] Open
Abstract
Polo-like kinase 1 (Plk1), a well-characterized member of serine/threonine kinases Plk family, has been shown to play pivotal roles in mitosis and cytokinesis in eukaryotic cells. Recent studies suggest that Plk1 not only controls the process of mitosis and cytokinesis, but also, going beyond those previously described functions, plays critical roles in DNA replication and Pten null prostate cancer initiation. In this review, we briefly summarize the functions of Plk1 in mitosis and cytokinesis, and then mainly focus on newly discovered functions of Plk1 in DNA replication and in Pten-null prostate cancer initiation. Furthermore, we briefly introduce the architectures of human and mouse prostate glands and the possible roles of Plk1 in human prostate cancer development. And finally, the newly chemotherapeutic development of small-molecule Plk1 inhibitors to target Plk1 in cancer treatment and their translational studies are also briefly reviewed.
Collapse
Affiliation(s)
- Jijing Luo
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
173
|
Frost A, Mross K, Steinbild S, Hedbom S, Unger C, Kaiser R, Trommeshauser D, Munzert G. Phase i study of the Plk1 inhibitor BI 2536 administered intravenously on three consecutive days in advanced solid tumours. Curr Oncol 2012; 19:e28-35. [PMID: 22328845 PMCID: PMC3267594 DOI: 10.3747/co.19.866] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND This open-label phase i study with an accelerated titration design was performed to determine the maximum tolerated dose of BI 2536, a potent, highly selective small-molecule polo-like kinase 1 (Plk1) inhibitor. METHODS Patients with advanced solid tumours received a single 60-minute intravenous infusion of BI 2536 (50-70 mg) on days 1-3 of each 21-day treatment course. Recipients without disease progression or untenable toxicity could receive additional treatment courses. The maximum tolerated dose was determined based on dose-limiting toxicities. Other assessments included safety, pharmacokinetic profile, and antitumour activity according to the Response Evaluation Criteria in Solid Tumors. RESULTS The study enrolled 21 patients. The maximum tolerated dose for BI 2536 was determined to be 60 mg for the study schedule. Dose-limiting toxicities included hematologic events, hypertension, elevated liver enzymes, and fatigue. The most frequently reported drug-related adverse events were mild-to-moderate fatigue, leukopenia, constipation, nausea, mucosal inflammation, anorexia, and alopecia. The pharmacokinetics of BI 2536 were linear within the dose range tested. Plasma concentration profiles exhibited multi-compartmental pharmacokinetic behaviour, with a terminal elimination half-life of 20-30 hours. CONCLUSIONS In the present study, BI 2536 showed an acceptable safety profile warranting further investigation of Plk1 inhibitors in this patient population.
Collapse
Affiliation(s)
- A. Frost
- Klinik für Internistische Onkologie (KIO), Freiburg im Breisgau, Germany
| | - K. Mross
- Klinik für Internistische Onkologie (KIO), Freiburg im Breisgau, Germany
| | - S. Steinbild
- Klinik für Internistische Onkologie (KIO), Freiburg im Breisgau, Germany
| | - S. Hedbom
- Klinik für Internistische Onkologie (KIO), Freiburg im Breisgau, Germany
| | - C. Unger
- Klinik für Internistische Onkologie (KIO), Freiburg im Breisgau, Germany
| | - R. Kaiser
- Boehringer Ingelheim Pharma, Biberach an der Riss, Germany
| | | | - G. Munzert
- Boehringer Ingelheim Pharma, Biberach an der Riss, Germany
| |
Collapse
|
174
|
Shen T, Li Y, Yang L, Xu X, Liang F, Liang S, Ba G, Xue F, Fu Q. Upregulation of Polo-like kinase 2 gene expression by GATA-1 acetylation in human osteosarcoma MG-63 cells. Int J Biochem Cell Biol 2012; 44:423-9. [DOI: 10.1016/j.biocel.2011.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/14/2011] [Accepted: 11/21/2011] [Indexed: 01/15/2023]
|
175
|
Penas C, Ramachandran V, Ayad NG. The APC/C Ubiquitin Ligase: From Cell Biology to Tumorigenesis. Front Oncol 2012; 1:60. [PMID: 22655255 PMCID: PMC3356048 DOI: 10.3389/fonc.2011.00060] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/22/2011] [Indexed: 01/15/2023] Open
Abstract
The ubiquitin proteasome system (UPS) is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5-kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1-Cullin-F-box (SCF) complexes and the anaphase promoting complex/cyclosome (APC/C) are the most studied. SCF involvement in cancer has been known for some time while APC/C's cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, underscoring its possible contribution to transformation. We will also examine the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy.
Collapse
Affiliation(s)
- Clara Penas
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine Miami, FL, USA
| | | | | |
Collapse
|
176
|
Evans RP, Dueck G, Sidhu R, Ghosh S, Toman I, Loree J, Bahlis N, Klimowicz AC, Fung J, Jung M, Lai R, Pilarski LM, Belch AR, Reiman T. Expression, adverse prognostic significance and therapeutic small molecule inhibition of Polo-like kinase 1 in multiple myeloma. Leuk Res 2011; 35:1637-43. [PMID: 21816470 DOI: 10.1016/j.leukres.2011.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 05/05/2011] [Accepted: 07/11/2011] [Indexed: 01/15/2023]
Abstract
The amplified myeloma centrosome has been identified as a therapeutic target. The present study explored the expression and prognostic significance of the centrosome-associated protein PLK1 in myeloma and the effect of BI 2536, a potent and selective inhibitor of PLK1, on myeloma cells. High plasma cell expression of PLK1 protein in myeloma patient bone marrow biopsies is an independent adverse prognostic factor (HR=2.3, p=0.003 unadjusted; HR=1.9, p=0.03 in multivariable model). BI 2536 inhibits myeloma cell lines at nanomolar concentrations, and is therapeutic for xenografts in NOD/SCID mice. PLK1 inhibition is a potential new strategy for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Robert P Evans
- Department of Oncology; Saint John Regional Hospital, Saint John, NB, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Sanhaji M, Friel CT, Wordeman L, Louwen F, Yuan J. Mitotic centromere-associated kinesin (MCAK): a potential cancer drug target. Oncotarget 2011; 2:935-47. [PMID: 22249213 PMCID: PMC3282097 DOI: 10.18632/oncotarget.416] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 12/31/2011] [Indexed: 11/25/2022] Open
Abstract
The inability to faithfully segregate chromosomes in mitosis results in chromosome instability, a hallmark of solid tumors. Disruption of microtubule dynamics contributes highly to mitotic chromosome instability. The kinesin-13 family is critical in the regulation of microtubule dynamics and the best characterized member of the family, the mitotic centromere-associated kinesin (MCAK), has recently been attracting enormous attention. MCAK regulates microtubule dynamics as a potent depolymerizer of microtubules by removing tubulin subunits from the polymer end. This depolymerizing activity plays pivotal roles in spindle formation, in correcting erroneous attachments of microtubule-kinetochore and in chromosome movement. Thus, the accurate regulation of MCAK is important for ensuring the faithful segregation of chromosomes in mitosis and for safeguarding chromosome stability. In this review we summarize recent data concerning the regulation of MCAK by mitotic kinases, Aurora A/B, Polo-like kinase 1 and cyclin-dependent kinase 1. We propose a molecular model of the regulation of MCAK by these mitotic kinases and relevant phosphatases throughout mitosis. An ever-increasing quantity of data indicates that MCAK is aberrantly regulated in cancer cells. This deregulation is linked to increased malignance, invasiveness, metastasis and drug resistance, most probably due to increased chromosomal instability and remodeling of the microtubule cytoskeleton in cancer cells. Most interestingly, recent observations suggest that MCAK could be a novel molecular target for cancer therapy, as a new cancer antigen or as a mitotic regulator. This collection of new data indicates that MCAK could be a new star in the cancer research sky due to its critical roles in the control of genome stability and the cytoskeleton. Further investigations are required to dissect the fine details of the regulation of MCAK throughout mitosis and its involvements in oncogenesis.
Collapse
Affiliation(s)
- Mourad Sanhaji
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Frankfurt, Germany
| | - Claire T. Friel
- School of Biomedical Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- Center for Cell Dynamics, Friday Harbor, Laboratories, Friday Harbor, WA 98250, USA
| | - Frank Louwen
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
178
|
Qian W, Liu F, Burke TR. Investigation of unanticipated alkylation at the N(π) position of a histidyl residue under Mitsunobu conditions and synthesis of orthogonally protected histidine analogues. J Org Chem 2011; 76:8885-90. [PMID: 21950469 PMCID: PMC3211136 DOI: 10.1021/jo201599c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We had previously reported that Mitsunobu-based introduction of alkyl substituents onto the imidazole N(π)-position of a key histidine residue in phosphothreonine-containing peptides can impart high binding affinity against the polo-box domain of polo-like kinase 1. Our current paper investigates the mechanism leading to this N(π)-alkylation and provides synthetic methodologies that permit the facile synthesis of histidine N(π)-modified peptides. These agents represent new and potentially important tools for biological studies.
Collapse
Affiliation(s)
- Wenjian Qian
- Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 USA
| | | | - Terrence R. Burke
- Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 USA
| |
Collapse
|
179
|
Medema RH, Lin CC, Yang JCH. Polo-like kinase 1 inhibitors and their potential role in anticancer therapy, with a focus on NSCLC. Clin Cancer Res 2011; 17:6459-66. [PMID: 22003073 DOI: 10.1158/1078-0432.ccr-11-0541] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cytotoxic platinum-doublet chemotherapy that includes antimitotic agents is a current standard of care in advanced non-small cell lung cancer (NSCLC). Microtubule-targeting antimitotics, taxanes, and Vinca alkaloids are effective anticancer therapeutics that affect both dividing and nondividing cells. A new generation of antimitotic agents that target regulatory proteins-mitotic kinases and kinesins-has the potential to overcome the limitations related to the role of tubulin in nondividing cells that are associated with traditional antimitotics. This review concentrates on Polo-like kinase 1, a key regulator of mitosis, outlines a rationale for its development as an anticancer target, and discusses data from preclinical and clinical studies of Plk1 inhibitors with a particular focus on NSCLC.
Collapse
Affiliation(s)
- René H Medema
- Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
180
|
Liu XS, Song B, Elzey BD, Ratliff TL, Konieczny SF, Cheng L, Ahmad N, Liu X. Polo-like kinase 1 facilitates loss of Pten tumor suppressor-induced prostate cancer formation. J Biol Chem 2011; 286:35795-35800. [PMID: 21890624 PMCID: PMC3195584 DOI: 10.1074/jbc.c111.269050] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 09/01/2011] [Indexed: 11/06/2022] Open
Abstract
Loss of the tumor suppressor Pten (phosphatase and tensin homolog deleted on chromosome 10) is thought to mediate the majority of prostate cancers, but the molecular mechanism remains elusive. In this study, we demonstrate that Pten-depleted cells suffer from mitotic stress and that nuclear function of Pten, but not its phosphatase activity, is required to reverse this stress phenotype. Further, depletion of Pten results in elevated expression of Polo-like kinase 1 (Plk1), a critical regulator of the cell cycle. We show that overexpression of Plk1 correlates with genetic inactivation of Pten during prostate neoplasia formation. Significantly, we find that elevated Plk1 is critical for Pten-depleted cells to adapt to mitotic stress for survival and that reintroduction of wild-type Pten into Pten-null prostate cancer cells reduces the survival dependence on Plk1. We further show that Plk1 confers the tumorigenic competence of Pten-deleted prostate cancer cells in a mouse xenograft model. These findings identify a role of Plk1 in facilitating loss of Pten-induced prostate cancer formation, which suggests that Plk1 might be a promising target for prostate cancer patients with inactivating Pten mutations.
Collapse
Affiliation(s)
- X Shawn Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907; Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Bing Song
- Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907; Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Bennett D Elzey
- Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907; Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907
| | - Timothy L Ratliff
- Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907; Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907
| | - Stephen F Konieczny
- Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907; Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin 53706
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907; Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907.
| |
Collapse
|
181
|
Budin G, Yang KS, Reiner T, Weissleder R. Bioorthogonal probes for polo-like kinase 1 imaging and quantification. Angew Chem Int Ed Engl 2011; 50:9378-81. [PMID: 21948435 PMCID: PMC3187564 DOI: 10.1002/anie.201103273] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/13/2011] [Indexed: 11/06/2022]
Abstract
A nuclear protein target, polo-like kinase 1 (PLK1) was imaged using a biocompatible bioorthogonal ligation between a specific drug and a fluorescent dye in live cells. Colocalization of the dye and the protein target was confirmed by antibody staining and by expressing a GFP construct of PLK1. The two-step PLK1 imaging procedure was used to quantify PLK1 expression levels in cancer cell lines of various tissue origins.
Collapse
Affiliation(s)
- Ghyslain Budin
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 (USA)
| | - Katherine S. Yang
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 (USA)
| | - Thomas Reiner
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 (USA)
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 (USA)
- Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115 (USA)
| |
Collapse
|
182
|
Seetharam M, Fan AC, Tran M, Xu L, Renschler JP, Felsher DW, Sridhar K, Wilhelm F, Greenberg PL. Treatment of higher risk myelodysplastic syndrome patients unresponsive to hypomethylating agents with ON 01910.Na. Leuk Res 2011; 36:98-103. [PMID: 21924492 DOI: 10.1016/j.leukres.2011.08.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/13/2011] [Accepted: 08/23/2011] [Indexed: 12/15/2022]
Abstract
In a Phase I/II clinical trial, 13 higher risk red blood cell-dependent myelodysplastic syndrome (MDS) patients unresponsive to hypomethylating therapy were treated with the multikinase inhibitor ON 01910.Na. Responses occurred in all morphologic, prognostic risk and cytogenetic subgroups, including four patients with marrow complete responses among eight with stable disease, associated with good drug tolerance. In a subset of patients, a novel nanoscale immunoassay showed substantially decreased AKT2 phosphorylation in CD34+ marrow cells from patients responding to therapy but not those who progressed on therapy. These data demonstrate encouraging efficacy and drug tolerance with ON 01910.Na treatment of higher risk MDS patients.
Collapse
Affiliation(s)
- Mahesh Seetharam
- Department of Medicine (Hematology), Stanford University Cancer Center, Stanford, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
N. Murugan R, Park JE, Kim EH, Shin SY, Cheong C, Lee KS, Bang JK. Plk1-targeted small molecule inhibitors: molecular basis for their potency and specificity. Mol Cells 2011; 32:209-20. [PMID: 21809214 PMCID: PMC3887635 DOI: 10.1007/s10059-011-0126-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 06/23/2011] [Indexed: 11/29/2022] Open
Abstract
Members of polo-like kinases (collectively, Plks) have been identified in various eukaryotic organisms and play pivotal roles in cell proliferation. They are characterized by the presence of a distinct region of homology in the C-terminal noncatalytic domain, called polo-box domain (PBD). Among them, Plk1 and its functional homologs in other organisms have been best characterized because of its strong association with tumorigenesis. Plk1 is overexpressed in a wide spectrum of cancers in humans, and is thought to be an attractive anti-cancer drug target. Plk1 offers, within one molecule, two functionally different drug targets with distinct properties-the N-terminal catalytic domain and the C-terminal PBD essential for targeting the catalytic activity of Plk1 to specific subcellular locations. In this review, we focused on discussing the recent development of small-molecule and phosphopeptide inhibitors for their potency and specificity against Plk1. Our effort in understanding the binding mode of various inhibitors to Plk1 PBD are also presented.
Collapse
Affiliation(s)
| | - Jung-Eun Park
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Song Yub Shin
- Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju 501-759, Korea
| | | | - Kyung S Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
184
|
Budin G, Yang KS, Reiner T, Weissleder R. Bioorthogonal Probes for Polo-like Kinase 1 Imaging and Quantification. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103273] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
185
|
Richter S, Neundorf I, Loebner K, Gräber M, Berg T, Bergmann R, Steinbach J, Pietzsch J, Wuest F. Phosphopeptides with improved cellular uptake properties as ligands for the polo-box domain of polo-like kinase 1. Bioorg Med Chem Lett 2011; 21:4686-9. [PMID: 21778054 DOI: 10.1016/j.bmcl.2011.06.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 01/12/2023]
Abstract
Human polo-like kinase 1 (Plk1) is involved in cell proliferation and overexpressed in a broad variety of different cancer types. Due to its crucial role in cancerogenesis Plk1 is a potential target for diagnostic and therapeutic applications. Peptidic ligands can specifically interact with the polo-box domain (PBD) of Plk1, a C-terminal located phosphoepitope binding motif. Recently, phosphopeptide MQSpTPL has been identified as ligand with high binding affinity. However, a radiolabeled version of this peptide showed only insufficient cellular uptake. The present study investigated peptide dimers consisting of PBD-targeting phosphopeptide MQSpTPL and a cell-penetrating peptide (CPP) moiety. The new constructs demonstrate superior uptake in different cancer cell-lines compared to the phosphopeptide alone. Furthermore, we could demonstrate binding of phosphopeptide-CPP dimers to PBD of Plk1 making the compounds interesting leads for the development of molecular probes for imaging Plk1 in cancer.
Collapse
Affiliation(s)
- Susan Richter
- Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Raab M, Kappel S, Krämer A, Sanhaji M, Matthess Y, Kurunci-Csacsko E, Calzada-Wack J, Rathkolb B, Rozman J, Adler T, Busch DH, Esposito I, Fuchs H, Gailus-Durner V, Klingenspor M, Wolf E, Sänger N, Prinz F, Angelis MHD, Seibler J, Yuan J, Bergmann M, Knecht R, Kreft B, Strebhardt K. Toxicity modelling of Plk1-targeted therapies in genetically engineered mice and cultured primary mammalian cells. Nat Commun 2011; 2:395. [PMID: 21772266 PMCID: PMC3144583 DOI: 10.1038/ncomms1395] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 06/16/2011] [Indexed: 01/08/2023] Open
Abstract
High attrition rates of novel anti-cancer drugs highlight the need for improved models to predict toxicity. Although polo-like kinase 1 (Plk1) inhibitors are attractive candidates for drug development, the role of Plk1 in primary cells remains widely unexplored. Therefore, we evaluated the utility of an RNA interference-based model to assess responses to an inducible knockdown (iKD) of Plk1 in adult mice. Here we show that Plk1 silencing can be achieved in several organs, although adverse events are rare. We compared responses in Plk1-iKD mice with those in primary cells kept under controlled culture conditions. In contrast to the addiction of many cancer cell lines to the non-oncogene Plk1, the primary cells' proliferation, spindle assembly and apoptosis exhibit only a low dependency on Plk1. Responses to Plk1-depletion, both in cultured primary cells and in our iKD-mouse model, correspond well and thus provide the basis for using validated iKD mice in predicting responses to therapeutic interventions.
Collapse
Affiliation(s)
- Monika Raab
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, UKE Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
- These authors contributed equally to this work
| | - Sven Kappel
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- These authors contributed equally to this work
| | - Andrea Krämer
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Mourad Sanhaji
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Yves Matthess
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Elisabeth Kurunci-Csacsko
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Julia Calzada-Wack
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse, 85764 Munich/Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse, 85764 Munich/Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse, 85764 Munich/Neuherberg, Germany
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, Gregor-Mendel-Strasse 2, 85350 Freising-Weihenstephan, Germany
| | - Thure Adler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse, 85764 Munich/Neuherberg, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Trogerstrasse 30, 81675 Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Trogerstrasse 30, 81675 Munich, Germany
| | - Irene Esposito
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse, 85764 Munich/Neuherberg, Germany
- Institute of Pathology, Technische Universität München, Ismaningerstrasse 22, 81675 Munich, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse, 85764 Munich/Neuherberg, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse, 85764 Munich/Neuherberg, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, Gregor-Mendel-Strasse 2, 85350 Freising-Weihenstephan, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Nicole Sänger
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Florian Prinz
- Bayer Schering Pharma AG, Global Drug Discovery, Therapeutic Research Group Oncology, Müllerstrasse 178, 13353 Berlin, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse, 85764 Munich/Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Emil-Ramann-Strasse 8, 85350 Freising-Weihenstephan, Germany
| | - Jost Seibler
- TaconicArtemis GmbH, Neurather Ring 1, 51063 Köln, Germany
| | - Juping Yuan
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Martin Bergmann
- Institute of Veterinary Anatomy, Histology and Embryology, University of Giessen, Frankfurterstrasse 98, 35392GiessenGermany
| | - Rainald Knecht
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, UKE Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | - Bertolt Kreft
- Bayer Schering Pharma AG, Global Drug Discovery, Therapeutic Research Group Oncology, Müllerstrasse 178, 13353 Berlin, Germany
| | - Klaus Strebhardt
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
187
|
Liu F, Park JE, Qian WJ, Lim D, Gräber M, Berg T, Yaffe MB, Lee KS, Burke TR. Serendipitous alkylation of a Plk1 ligand uncovers a new binding channel. Nat Chem Biol 2011; 7:595-601. [PMID: 21765407 PMCID: PMC3158281 DOI: 10.1038/nchembio.614] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 05/06/2011] [Indexed: 01/24/2023]
Abstract
We obtained unanticipated synthetic byproducts from alkylation of the δ(1) nitrogen (N3) of the histidine imidazole ring of the polo-like kinase-1 (Plk1) polo-box domain (PBD)-binding peptide PLHSpT. For the highest-affinity byproduct, bearing a C(6)H(5)(CH(2))(8)- group, a Plk1 PBD cocrystal structure revealed a new binding channel that had previously been occluded. An N-terminal PEGylated version of this peptide containing a hydrolytically stable phosphothreonyl residue (pT) bound the Plk1 PBD with affinity equal to that of the non-PEGylated parent but showed markedly less interaction with the PBDs of the two closely related proteins Plk2 and Plk3. Treatment of cultured cells with this PEGylated peptide resulted in delocalization of Plk1 from centrosomes and kinetochores and in chromosome misalignment that effectively induced mitotic block and apoptotic cell death. This work provides insights that might advance efforts to develop Plk1 PBD-binding inhibitors as potential Plk1-specific anticancer agents.
Collapse
Affiliation(s)
- Fa Liu
- Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, U. S. A
| | - Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, U. S. A
| | - Wen-Jian Qian
- Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, U. S. A
| | - Dan Lim
- Department of Biology and Biological Engineering, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, U. S. A
| | - Martin Gräber
- Institute of Organic Chemistry, University of Leipzig, Leipzig, Germany
| | - Thorsten Berg
- Institute of Organic Chemistry, University of Leipzig, Leipzig, Germany
| | - Michael B. Yaffe
- Department of Biology and Biological Engineering, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, U. S. A
| | - Kyung S. Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, U. S. A
| | - Terrence R. Burke
- Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, U. S. A
| |
Collapse
|
188
|
Green WJF, James PA, Ratan HL. Potential use of RNA interference as therapeutic strategy in urologic cancer. Urology 2011; 78:500-4. [PMID: 21741681 DOI: 10.1016/j.urology.2011.04.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 03/20/2011] [Accepted: 04/16/2011] [Indexed: 11/28/2022]
|
189
|
Christoph DC, Schuler M. Polo-like kinase 1 inhibitors in mono- and combination therapies: a new strategy for treating malignancies. Expert Rev Anticancer Ther 2011; 11:1115-30. [PMID: 21806334 DOI: 10.1586/era.11.61] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polo-like kinase 1 (Plk1) inhibitors belong to a new class of drugs for the treatment of malignant diseases. They selectively act against a target (Plk1) which is involved in different stages of mitosis such as centrosome maturation, spindle formation, chromosome separation and cytokinesis. Because Plk1 is mainly expressed in proliferating tissues and overexpressed in cancers, its inhibition is potentially less prone to toxicities associated with current antimitotic agents, which also act on nondividing cells. Several Plk1 inhibitors are being evaluated as cancer treatment drugs. Based on the essential role of Plk1 during mitosis, Plk1 inhibitors target all rapidly dividing cells irrespective of their tumor suppressor or oncogene mutations. In this article, their mechanisms of action, efficacy and toxicity profile are discussed.
Collapse
Affiliation(s)
- Daniel C Christoph
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | |
Collapse
|
190
|
Guo SL, Tan GH, Li S, Cheng XW, Zhou Y, Jia YF, Xiong H, Tao J, Xiong ZQ. Serum inducible kinase is a positive regulator of cortical dendrite development and is required for BDNF-promoted dendritic arborization. Cell Res 2011; 22:387-98. [PMID: 21691298 DOI: 10.1038/cr.2011.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Serum inducible kinase (SNK), also known as polo-like kinase 2 (PLK2), is a known regulator of mitosis, synaptogenesis and synaptic homeostasis. However, its role in early cortical development is unknown. Herein, we show that snk is expressed in the cortical plate from embryonic day 14, but not in the ventricular/subventricular zones (VZ/SVZ), and SNK protein localizes to the soma and dendrites of cultured immature cortical neurons. Loss of SNK impaired dendritic but not axonal arborization in a dose-dependent manner and overexpression had opposite effects, both in vitro and in vivo. Overexpression of SNK also caused abnormal branching of the leading process of migrating cortical neurons in electroporated cortices. The kinase activity was necessary for these effects. Extracellular signal-regulated kinase (ERK) pathway activity downstream of brain-derived neurotrophic factor (BDNF) stimulation led to increases in SNK protein expression via transcriptional regulation, and this upregulation was necessary for the growth-promoting effect of BDNF on dendritic arborization. Taken together, our results indicate that SNK is essential for dendrite morphogenesis in cortical neurons.
Collapse
Affiliation(s)
- Shun-Ling Guo
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road #320, ION building, Room 426, Shanghai 200031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Yim H, Erikson RL. Regulation of the final stage of mitosis by components of the pre-replicative complex and a polo kinase. Cell Cycle 2011; 10:1374-7. [PMID: 21519187 PMCID: PMC3117042 DOI: 10.4161/cc.10.9.15489] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 11/19/2022] Open
Abstract
The accurate division of duplicated DNA is essential for maintenance of genomic stability in proliferating eukaryotic cells. Errors in DNA replication and chromosomal segregation may lead to cell death or genomic mutations that lead to oncogenic properties. Thus, tight regulation of DNA replication and mitosis is essential for maintaining genomic integrity. Cell division cycle 6 (Cdc6) is an essential factor for initiating DNA replication. Recent work shows that phosphorylation of Cdc6 by polo-like kinase 1 (Plk1), one of the essential mitotic kinases, regulates mitotic exit mediated by Cdk1 and separase. Here we discuss how pre-replicative complex factors are connected with Plk1 and affect mitotic exit.
Collapse
Affiliation(s)
- Hyungshin Yim
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
192
|
Peter B, Gleixner KV, Cerny-Reiterer S, Herrmann H, Winter V, Hadzijusufovic E, Ferenc V, Schuch K, Mirkina I, Horny HP, Pickl WF, Müllauer L, Willmann M, Valent P. Polo-like kinase-1 as a novel target in neoplastic mast cells: demonstration of growth-inhibitory effects of small interfering RNA and the Polo-like kinase-1 targeting drug BI 2536. Haematologica 2011; 96:672-80. [PMID: 21242189 PMCID: PMC3084913 DOI: 10.3324/haematol.2010.031328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/21/2010] [Accepted: 01/11/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In advanced systemic mastocytosis the response of neoplastic mast cells to conventional drugs is poor and the prognosis is bad. Current research is, therefore, attempting to identify novel drug targets in neoplastic mast cells. Polo-like kinase-1 is a serine/threonine kinase that plays an essential role in mitosis and has recently been introduced as a new target in myeloid leukemias and solid tumors. DESIGN AND METHODS In the present study, we analyzed the expression and function of Polo-like kinase-1 in neoplastic mast cells in systemic mastocytosis. RESULTS As determined by immunostaining, primary neoplastic mast cells as well as the human mast cell leukemia cell line HMC-1 displayed phosphorylated Polo-like kinase-1. In addition, neoplastic mast cells expressed Polo-like kinase-1 mRNA. Polo-like kinase-1-specific small interfering RNA induced apoptosis in neoplastic mast cells, whereas no effect was seen with a control small interfering RNA. BI 2536, a drug targeting Polo-like kinase-1, was found to inhibit proliferation in HMC-1 cells in a dose-dependent manner. BI 2536 also inhibited the growth of primary neoplastic mast cells and cells of the canine mastocytoma cell line C2. The growth-inhibitory effects of BI 2536 on neoplastic mast cells were found to be associated with mitotic arrest and subsequent apoptosis. Finally, BI 2536 was found to synergize with the KIT-targeting kinase inhibitor midostaurin (PKC412) in inhibiting the growth of neoplastic mast cells. In control experiments, BI 2536 did not induce apoptosis in normal cultured mast cells. CONCLUSIONS Collectively, our data show that Polo-like kinase-1 is a potential therapeutic target in neoplastic mast cells. Targeting Polo-like kinase-1 may be an attractive pharmacological concept in the management of advanced systemic mastocytosis.
Collapse
Affiliation(s)
- Barbara Peter
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
- Department for Companion Animals and Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Austria
| | - Karoline V. Gleixner
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
| | - Sabine Cerny-Reiterer
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
| | | | - Viviane Winter
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
| | - Emir Hadzijusufovic
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
- Department for Companion Animals and Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Austria
| | - Veronika Ferenc
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
| | - Karina Schuch
- Institute of Immunology, Medical University of Vienna
| | | | | | | | | | - Michael Willmann
- Department for Companion Animals and Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
- Ludwig Boltzmann Cluster Oncology, Vienna, Austria
| |
Collapse
|
193
|
Benetatos L, Dasoula A, Hatzimichael E, Syed N, Voukelatou M, Dranitsaris G, Bourantas KL, Crook T. Polo-like kinase 2 (SNK/PLK2) is a novel epigenetically regulated gene in acute myeloid leukemia and myelodysplastic syndromes: genetic and epigenetic interactions. Ann Hematol 2011; 90:1037-45. [PMID: 21340720 DOI: 10.1007/s00277-011-1193-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 02/07/2011] [Indexed: 11/25/2022]
Abstract
Polo-like kinase 2 (SNK/PLK2), a transcriptional target for wild-type p53 and is hypermethylated in a high percentage of multiple myeloma and B cell lymphomas patients. Given these data, we sought to study the methylation status of the specific gene in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), and to correlate it with clinical and genetic features. Using methylation-specific PCR MSP, we analyzed the methylation profile of 45 cases of AML and 43 cases of MDS. We also studied the distribution of MTHFR A1298C and MTHFR C677T polymorphisms and FLT3 mutations in AML patients and correlated the results with hypermethylation in the SNK/PLK2 CpG island. The SNK/PLK2 CpG island was hypermethylated in 68.9% and 88.4% of AML and MDS cases, respectively. Cases with hypermethylation had a trend towards more favorable overall survival (OS). There was no association between different MTHFR genotypes and susceptibility to develop AML. SNK/PLK2 hypermethylation combined with the MTHFR AA1298 genotype was associated with a tendency for a better OS. Similarly, patients with SNK/PLK2 hypermethylation combined with the MTHFR CT677 polymorphism had a better OS (HR = 0.34; p = 0.017). SNK/PLK2 methylation associated with unmutated FLT3 cases had a trend for better OS compared to patients with mutated FLT3 gene. SNK/PLK2 is a novel epigenetically regulated gene in AML and MDS, and methylation occurs at high frequency in both diseases. As such, SNK/PLK2 could represent a potential pathogenetic factor, although additional studies are necessary to verify its exact role in disease pathogenesis.
Collapse
Affiliation(s)
- Leonidas Benetatos
- Department of Hematology, University Hospital of Ioannina, Niarchos Avenue, 45500 Ioannina, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Ackermann S, Goeser F, Schulte JH, Schramm A, Ehemann V, Hero B, Eggert A, Berthold F, Fischer M. Polo-like kinase 1 is a therapeutic target in high-risk neuroblastoma. Clin Cancer Res 2011; 17:731-41. [PMID: 21169242 DOI: 10.1158/1078-0432.ccr-10-1129] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE High-risk neuroblastoma remains a therapeutic challenge for pediatric oncologists. The Polo-like kinase 1 (PLK1) is highly expressed in many human cancers and is a target of the novel small-molecule inhibitor BI 2536, which has shown promising anticancer activity in adult malignancies. Here, we investigated the effect of BI 2536 on neuroblastoma cells in vitro and in vivo to explore PLK1 as a potential target in high-risk neuroblastoma therapy. EXPERIMENTAL DESIGN PLK1 transcript levels were analyzed by microarrays in 476 primary neuroblastoma specimens, and correlation with prognostic markers and patient outcome was examined. To explore the effect of PLK1 inhibition on neuroblastoma cells, 7 cell lines were treated with BI 2536 and changes in growth properties were determined. Furthermore, nude mice with IMR-32 and SK-N-AS xenografts were treated with BI 2536. RESULTS PLK1 is highly expressed in unfavorable neuroblastoma and in neuroblastoma cell lines. Expression of PLK1 is associated with unfavorable prognostic markers such as stage 4, age >18 months, MYCN amplification, unfavorable gene expression-based classification, and adverse patient outcome (P < 0.001 each). On treatment with nanomolar doses of BI 2536, all neuroblastoma cell lines analyzed showed significantly reduced proliferation, cell cycle arrest, and cell death. Moreover, BI 2536 abrogated growth of neuroblastoma xenografts in nude mice. CONCLUSIONS Elevated PLK1 expression is significantly associated with high-risk neuroblastoma and unfavorable patient outcome. Inhibition of PLK1 using BI 2536 exhibits strong antitumor activity on human neuroblastoma cells in vitro and in vivo, opening encouraging new perspectives for the treatment of high-risk neuroblastoma.
Collapse
Affiliation(s)
- Sandra Ackermann
- Children's Hospital, Department of Pediatric Oncology and Hematology and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Naik MU, Pham NT, Beebe K, Dai W, Naik UP. Calcium-dependent inhibition of polo-like kinase 3 activity by CIB1 in breast cancer cells. Int J Cancer 2011; 128:587-96. [PMID: 20473878 PMCID: PMC2954264 DOI: 10.1002/ijc.25388] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Members of the polo-like kinases (Plk1, Plk2, Plk3 and Plk4) are involved in the regulation of various stages of the cell cycle and have been implicated in cancer progression. Unlike its other family members, the expression of Plk3 remains steady during cell cycle progression, suggesting that its activity may be spatiotemporally regulated. However, the mechanism of regulation of Plk3 activity is not well understood. Here, we show that calcium- and integrin-binding protein 1 (CIB1), a Plk3 interacting protein, is widely expressed in various cancer cell lines. Expression of CIB1 mRNA as well as protein is increased in breast cancer tissue as compared to normal tissue. CIB1 constitutively interacts with Plk3 as determined by both in vitro and in vivo assays. This interaction of CIB1 with Plk3 is independent of intracellular Ca(2+). Furthermore, binding of CIB1 results in inhibition of Plk3 kinase activity both in vitro and in vivo. Interestingly, this inhibition of the Plk3 activity by CIB1 is Ca(2+)-dependent. Taken together, our results suggest that CIB1 is a regulatory subunit of Plk3 and it regulates Plk3 activity in a Ca(2+)-dependent manner. Furthermore, upregulation of CIB1 in cancer cells could thus inhibit Plk3 activity leading to abnormal cell cycle regulation in breast cancer cells. Thus, in addition to Plk3, CIB1 may be a potential biomarker and target for therapeutic intervention of breast cancer.
Collapse
Affiliation(s)
- Meghna U Naik
- Delaware Cardiovascular Research Center, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | |
Collapse
|
196
|
Zhang L, Shao H, Huang Y, Yan F, Chu Y, Hou H, Zhu M, Fu C, Aikhionbare F, Fang G, Ding X, Yao X. PLK1 phosphorylates mitotic centromere-associated kinesin and promotes its depolymerase activity. J Biol Chem 2011; 286:3033-46. [PMID: 21078677 PMCID: PMC3024797 DOI: 10.1074/jbc.m110.165340] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 11/15/2010] [Indexed: 12/22/2022] Open
Abstract
During cell division, interaction between kinetochores and dynamic spindle microtubules governs chromosome movements. The microtubule depolymerase mitotic centromere-associated kinesin (MCAK) is a key regulator of mitotic spindle assembly and dynamics. However, the regulatory mechanisms underlying its depolymerase activity during the cell cycle remain elusive. Here, we showed that PLK1 is a novel regulator of MCAK in mammalian cells. MCAK interacts with PLK1 in vitro and in vivo. The neck and motor domain of MCAK associates with the kinase domain of PLK1. MCAK is a novel substrate of PLK1, and the phosphorylation stimulates its microtubule depolymerization activity of MCAK in vivo. Overexpression of a polo-like kinase 1 phosphomimetic mutant MCAK causes a dramatic increase in misaligned chromosomes and in multipolar spindles in mitotic cells, whereas overexpression of a nonphosphorylatable MCAK mutant results in aberrant anaphase with sister chromatid bridges, suggesting that precise regulation of the MCAK activity by PLK1 phosphorylation is critical for proper microtubule dynamics and essential for the faithful chromosome segregation. We reasoned that dynamic regulation of MCAK phosphorylation by PLK1 is required to orchestrate faithful cell division, whereas the high levels of PLK1 and MCAK activities seen in cancer cells may account for a mechanism underlying the pathogenesis of genomic instability.
Collapse
Affiliation(s)
- Liangyu Zhang
- From the Anhui Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
- the Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Hengyi Shao
- From the Anhui Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
| | - Yuejia Huang
- From the Anhui Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
- the Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Feng Yan
- From the Anhui Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
- the Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Youjun Chu
- From the Anhui Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
| | - Hai Hou
- From the Anhui Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
| | - Mei Zhu
- From the Anhui Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
| | - Chuanhai Fu
- From the Anhui Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
- the Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Felix Aikhionbare
- the Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Guowei Fang
- From the Anhui Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
| | - Xia Ding
- the Department of Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xuebiao Yao
- From the Anhui Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
- the Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| |
Collapse
|
197
|
Jang MS, Lee SJ, Kim CJ, Lee CW, Kim E. Phosphorylation by polo-like kinase 1 induces the tumor-suppressing activity of FADD. Oncogene 2011; 30:471-81. [PMID: 20890306 DOI: 10.1038/onc.2010.423] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 12/14/2022]
Abstract
Phosphorylation of the Fas-associated death domain (FADD) protein sensitizes cancer cells to various chemotherapeutics. However, the molecular mechanism underlying chemosensitization by phosphorylated FADD (P-FADD) is poorly understood. In this study, we describe the physical interactions and functional interplay between Polo-like kinase 1 (Plk1) and FADD. Plk1 phosphorylates FADD at Ser-194 in response to treatment with taxol. Overexpression of a phosphorylation-mimicking mutant, FADD S194D, caused degradation of Plk1 in an ubiquitin-independent manner, and delayed cytokinesis, consistent with the expected cellular phenotype of Plk1 deficiency. This demonstrates that Plk1 is regulated via a negative feedback loop by its substrate, FADD. Overexpression of FADD S194D sensitized HeLa cells to a low dose of taxol independently of caspase activation, whereas overexpression of FADD S194D resulted in caspase activation in response to a high dose of taxol. Therefore, we examined whether the death potential of P-FADD affected Plk1-mediated tumorigenesis. Transfection of FADD S194D inhibited colony formation by Plk1-overexpressing HeLa cells (HeLa-Plk1). Moreover, overexpression of FADD S194D suppressed tumorigenesis in nude mice xenografted with HeLa-Plk1. Therefore, this study reports the first in vivo validation of tumor-suppressing activity of P-FADD. Collectively, our data demonstrate that in response to taxol, Plk1 endows death-promoting and tumor-suppressor functions to its substrate, FADD.
Collapse
Affiliation(s)
- M-S Jang
- College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Korea
| | | | | | | | | |
Collapse
|
198
|
Kawata E, Ashihara E, Maekawa T. RNA interference against polo-like kinase-1 in advanced non-small cell lung cancers. J Clin Bioinforma 2011; 1:6. [PMID: 21884621 PMCID: PMC3143898 DOI: 10.1186/2043-9113-1-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Accepted: 01/20/2011] [Indexed: 01/26/2023] Open
Abstract
Worldwide, approximately one and a half million new cases of lung cancer are diagnosed each year, and about 85% of lung cancer are non-small cell lung cancer (NSCLC). As the molecular pathogenesis underlying NSCLC is understood, new molecular targeting agents can be developed. However, current therapies are not sufficient to cure or manage the patients with distant metastasis, and novel strategies are necessary to be developed to cure the patients with advanced NSCLC.RNA interference (RNAi) is a phenomenon of sequence-specific gene silencing in mammalian cells and its discovery has lead to its wide application as a powerful tool in post-genomic research. Recently, short interfering RNA (siRNA), which induces RNAi, has been experimentally introduced as a cancer therapy and is expected to be developed as a nucleic acid-based medicine. Recently, several clinical trials of RNAi therapies against cancers are ongoing. In this article, we discuss the most recent findings concerning the administration of siRNA against polo-like kinase-1 (PLK-1) to liver metastatic NSCLC. PLK-1 regulates the mitotic process in mammalian cells. These promising results demonstrate that PLK-1 is a suitable target for advanced NSCLC therapy.
Collapse
Affiliation(s)
- Eri Kawata
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan.
| | | | | |
Collapse
|
199
|
Rizkallah R, Alexander KE, Kassardjian A, Lüscher B, Hurt MM. The transcription factor YY1 is a substrate for Polo-like kinase 1 at the G2/M transition of the cell cycle. PLoS One 2011; 6:e15928. [PMID: 21253604 PMCID: PMC3017090 DOI: 10.1371/journal.pone.0015928] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/01/2010] [Indexed: 12/13/2022] Open
Abstract
Yin-Yang 1 (YY1) is an essential multifunctional zinc-finger protein. It has been shown over the past two decades to be a critical regulator of a vast array of biological processes, including development, cell proliferation and differentiation, DNA repair, and apoptosis. YY1 exerts its functions primarily as a transcription factor that can activate or repress gene expression, dependent on its spatial and temporal context. YY1 regulates a large number of genes involved in cell cycle transitions, many of which are oncogenes and tumor-suppressor genes. YY1 itself has been classified as an oncogene and was found to be upregulated in many cancer types. Unfortunately, our knowledge of what regulates YY1 is very minimal. Although YY1 has been shown to be a phosphoprotein, no kinase has ever been identified for the phosphorylation of YY1. Polo-like kinase 1 (Plk1) has emerged in the past few years as a major cell cycle regulator, particularly for cell division. Plk1 has been shown to play important roles in the G/M transition into mitosis and for the proper execution of cytokinesis, processes that YY1 has been shown to regulate also. Here, we present evidence that Plk1 directly phosphorylates YY1 in vitro and in vivo at threonine 39 in the activation domain. We show that this phosphorylation is cell cycle regulated and peaks at G2/M. This is the first report identifying a kinase for which YY1 is a substrate.
Collapse
Affiliation(s)
- Raed Rizkallah
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Karen E. Alexander
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Ari Kassardjian
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Bernhard Lüscher
- Institut für Biochemie und Molekularbiologie, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Myra M. Hurt
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
200
|
Naik MU, Naik UP. Calcium- and integrin-binding protein 1 regulates microtubule organization and centrosome segregation through polo like kinase 3 during cell cycle progression. Int J Biochem Cell Biol 2011; 43:120-9. [PMID: 20951827 PMCID: PMC3005030 DOI: 10.1016/j.biocel.2010.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/28/2010] [Accepted: 10/10/2010] [Indexed: 10/18/2022]
Abstract
Polo-like kinases (Plks) are a family of serine/threonine protein kinases that are involved in the regulation of the various stages of the cell cycle. Plk2 and Plk3, two members of this family, are known to interact with calcium- and integrin-binding protein 1 (CIB1). Activity of both Plk2 and Plk3 is inhibited by CIB1 in a calcium-dependent manner. However, the physiological consequences of this inhibition are not known. Here, we show that overexpression of CIB1 inhibits T47D cell proliferation. Overexpression of CIB1 or knockdown of Plk3 using shRNA produced a multinucleated phenotype in T47D cells. This phenotype was not cancer cell specific, since it also occurred in normal cells. The cells overexpressing CIB1 appear to undergo proper nuclear division, but are unable to complete the process of cytokinesis, thus forming large multinucleated cells. Both CIB1 overexpression and Plk3 knockdown disrupted microtubule organization and centrosomal segregation, which may have led to incomplete cytokinesis. The observed effect of CIB1 overexpression is not due to the inhibition of Plk2 by CIB1. Plk3 and CIB1 both colocalize at the centrosomes, however, localization of CIB1 is dependent on the expression of Plk3. Furthermore, expression of Plk3 blocks the multinucleated phenotype induced by expression of CIB1 in these cells. These results suggest that CIB1 tightly regulates Plk3 activity during cell division and that either over- or underexpression results in a multinucleated phenotype.
Collapse
Affiliation(s)
- Meghna U. Naik
- Delaware Cardiovascular Research Center, Department of Biological Sciences, University of Delaware, Newark, DE, 19716
| | - Ulhas P. Naik
- Delaware Cardiovascular Research Center, Department of Biological Sciences, University of Delaware, Newark, DE, 19716
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716
- Department of Chemical Engineering, University of Delaware, Newark, DE, 19716
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19716
| |
Collapse
|