151
|
Rana R, Chen Y, Ferguson SS, Kissling GE, Surapureddi S, Goldstein JA. Hepatocyte nuclear factor 4{alpha} regulates rifampicin-mediated induction of CYP2C genes in primary cultures of human hepatocytes. Drug Metab Dispos 2010; 38:591-9. [PMID: 20086032 PMCID: PMC2845933 DOI: 10.1124/dmd.109.030387] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 01/15/2010] [Indexed: 01/03/2023] Open
Abstract
CYP2C enzymes are expressed constitutively and comprise approximately 20% of the total cytochrome P450 in human liver. However, the factors influencing the transcriptional regulation of the CYP2C subfamily have only been addressed recently. In the present study, we used primary cultures of human hepatocytes to investigate the role of HNF4alpha in the pregnane X receptor (PXR)/rifampicin-mediated up-regulation of CYP2C8, CYP2C9, and CYP2C19 gene expression. We first identified new proximal cis-acting HNF4alpha sites in the proximal CYP2C8 promoter [at -181 base pairs (bp) from the translation start site] and the CYP2C9 promoter (at -211 bp). Both sites bound HNF4alpha in gel shift assays. Thus, these and recent studies identified a total of three HNF4alpha sites in the CYP2C9 promoter and two in the CYP2C8 promoter. Mutational studies showed that the HNF4alpha sites are needed for up-regulation of the CYP2C8 and CYP2C9 promoters by rifampicin. Furthermore, silencing of HNF4alpha abolished transactivation of the CYP2C8 and CYP2C9 promoters by rifampicin. Constitutive promoter activity was also decreased. Quantitative polymerase chain reaction analysis demonstrated that silencing HNF4alpha reduced the constitutive expression of CYP2C8 (53%), CYP2C9 (55%), and CYP2C19 (43%) mRNAs and significantly decreased the magnitude of the rifampicin-mediated induction of CYP2C8 (6.6- versus 2.7-fold), CYP2C9 (3- versus 1.5-fold), and CYP2C19 (1.8- versus 1.1-fold). These results provide clear evidence that HNF4alpha contributes to the constitutive expression of the human CYP2C genes and is also important for up-regulation by the PXR agonist rifampicin.
Collapse
Affiliation(s)
- Ritu Rana
- Human Metabolism Section, Laboratory of Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
152
|
Staudinger JL, Xu C, Cui YJ, Klaassen CD. Nuclear receptor-mediated regulation of carboxylesterase expression and activity. Expert Opin Drug Metab Toxicol 2010; 6:261-71. [PMID: 20163318 PMCID: PMC2826721 DOI: 10.1517/17425250903483215] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Emerging evidence demonstrates that several nuclear receptor (NR) family members regulate drug-inducible expression and activity of several important carboxylesterase (CES) enzymes in mammalian liver and intestine. Numerous clinically prescribed anticancer prodrugs, carbamate and pyrethroid insecticides, environmental toxicants and procarcinogens are substrates for CES enzymes. Moreover, a key strategy used in rational drug design frequently utilizes an ester linkage methodology to selectively target a prodrug, or to improve the water solubility of a novel compound. AREAS COVERED IN THIS REVIEW This review summarizes the current state of knowledge regarding NR-mediated regulation of CES enzymes in mammals and highlights their importance in drug metabolism, drug-drug interactions and toxicology. WHAT THE READER WILL GAIN New knowledge regarding the transcriptional regulation of CES enzymes by NR proteins pregnane x receptor (NR1I2) and constitutive androstane receptor (NR1I3) has recently come to light through the use of knockout and transgenic mouse models. Novel insights regarding the species-specific cross-regulation of glucocorticoid receptor (NR3C1) and PPAR-alpha (NR1C1) signaling and CES gene expression are discussed. TAKE HOME MESSAGE Elucidation of the role of NR-mediated regulation of CES enzymes in liver and intestine will have a significant impact on rational drug design and the development of novel prodrugs, especially for patients on combination therapy.
Collapse
Affiliation(s)
- Jeff L Staudinger
- Department of Pharmacology and Toxicology, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045, USA.
| | | | | | | |
Collapse
|
153
|
Gómez Ayala AE. Diabetes tipo MODY: la diabetes del adulto en la etapa infanto-juvenil. Medwave 2010. [DOI: 10.5867/medwave.2010.02.4415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
154
|
Sookoian S, Gemma C, Pirola CJ. Influence of hepatocyte nuclear factor 4alpha (HNF4alpha) gene variants on the risk of type 2 diabetes: a meta-analysis in 49,577 individuals. Mol Genet Metab 2010; 99:80-9. [PMID: 19748811 DOI: 10.1016/j.ymgme.2009.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 08/14/2009] [Accepted: 08/14/2009] [Indexed: 12/19/2022]
Abstract
BACKGROUND The nuclear receptor hepatocyte nuclear factor 4alpha (HNF4alpha) contributes to the regulation of a large fraction of liver and pancreatic islet transcriptomes. AIM To evaluate the influence of HNF4alpha polymorphisms across the entire locus on the occurrence of type 2 diabetes (T2D) by means of a meta-analysis. METHODS We evaluated haplotype block structure of HNF4alpha variants owing to linkage disequilibrium (LD). From 1455 reports, we evaluated 21 observational studies. RESULTS Six haplotype blocks of LD were constructed with SNPs with r(2)>0.8; there were also 14 unlinked SNPs. Overall, we included 22,920 cases and 26.657 controls. Among 17 heterogeneous studies (21,881 cases and 24,915 controls), including 3 SNPs of P2 promoter region in block 1, we observed a significant association with T2D in fixed (OR 0.94, 95%CI: 0.905-0.975, p=0.001) and random (OR 0.988, 95%CI: 0.880-0.948, p=0.000012) model. Three homogeneous studies were evaluated in block 2 (2684 cases and 2059 controls), and a significant association with T2D was also observed: OR: 1.121, 95%CI 1.013-1.241, p=0.027. Three additional variants were associated with T2D: two intronic SNPs (rs4810424: OR: 1.080, 95%CI: 1.010-1.154, p<0.03 and rs3212183: OR: 0.843, 95%CI: 0.774-0.918, p<0.00009) and one missense variant (rs1800961: OR: 0.770, 95%CI: 0.595-0.995, p<0.05, 6562 cases and 6723 controls). CONCLUSIONS In addition to HNF4alpha variants in the promoter region, other SNPs may be involved on the occurrence of T2D.
Collapse
Affiliation(s)
- Silvia Sookoian
- Molecular Genetics and Biology of Complex Diseases Department, Institute of Medical Research A. Lanari, University of Buenos Aires--National Council of Scientific and Technological Research, Combatientes de Malvinas 3150, Buenos Aires (1427), Argentina
| | | | | |
Collapse
|
155
|
Dean S, Tang JI, Seckl JR, Nyirenda MJ. Developmental and tissue-specific regulation of hepatocyte nuclear factor 4-alpha (HNF4-alpha) isoforms in rodents. Gene Expr 2010; 14:337-44. [PMID: 20635575 PMCID: PMC6042024 DOI: 10.3727/105221610x12717040569901] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4-alpha) regulates expression of a number of genes in several metabolic organs. The HNF4-alpha gene has two promoters and encodes at least nine isoforms through differential splicing. In mouse liver, transcription initiates at promoter 2 (P2) during fetal life, but switches to P1 at birth. Developmental and tissue-specific expression of HNF4-alpha in other organs is largely unknown. Here, we examined expression of P1- and P2-derived transcripts in a number of mouse and rat tissues. Both P1 and P2 were active in mouse fetal liver, but P2-derived isoforms were detected 50% more abundantly than P1 transcripts. Conversely, the adult mouse liver expressed significantly higher levels of P1- than P2-derived mRNA. In contrast, in the rat, P1 was used more predominantly in both fetal and adult liver. Exposure of fetal rats to the synthetic glucocorticoid dexamethasone caused suppression of P2 while enhancing hepatic expression of transcripts from P1. This was associated with increased expression of erythropoietin and phosphoenolpyruvate carboxykinase, which are key HNF4-alpha targets in the liver. Unlike liver, the kidney and stomach used promoters more selectively, so that only P1-derived isoforms were detected in fetal and adult kidneys in mice or rats, whereas the stomach in both species expressed P2-derived transcripts exclusively. No significant HNF4-alpha mRNA was detected in the spleen. These data reveal striking developmental and tissue-specific variation in expression of HNF4-alpha, and indicate that this can be influenced by environmental factors (such as exposure to glucocorticoid excess), with potential pathophysiological consequences.
Collapse
Affiliation(s)
- Samena Dean
- Endocrinology Unit, Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Justin I. Tang
- Endocrinology Unit, Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Jonathan R. Seckl
- Endocrinology Unit, Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Moffat J. Nyirenda
- Endocrinology Unit, Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
156
|
Taghavi SM, Fatemi SS, Rafatpanah H, Ganjali R, Tavakolafshari J, Valizadeh N. Mutations in the coding regions of the hepatocyte nuclear factor 4 alpha in Iranian families with maturity onset diabetes of the young. Cardiovasc Diabetol 2009; 8:63. [PMID: 20003313 PMCID: PMC2797770 DOI: 10.1186/1475-2840-8-63] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 12/10/2009] [Indexed: 01/23/2023] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) is a nuclear receptor involved in glucose homeostasis and is required for normal β cell function. Mutations in the HNF4α gene are associated with maturity onset diabetes of the young type 1 (MODY1). The aim of the present study was to determine the prevalence and nature of mutations in HNF4α gene in Iranian patients with a clinical diagnosis of MODY and their family members. Twelve families including 30 patients with clinically MODY diagnosis and 21 members of their family were examined using PCR-RFLP method and in case of mutation confirmed by sequencing techniques. Fifty age and sex matched subjects with normal fasting blood sugar (FBS) and Glucose tolerance test (GTT) were constituted the control group and investigated in the similar pattern. Single mutation of V255M in the HNF4α gene was detected. This known mutation was found in 8 of 30 patients and 3 of 21 individuals in relatives. Fifty healthy control subjects did not show any mutation. Here, it is indicated that the prevalence of HNF4α mutation among Iranian patients with clinical MODY is considerable. This mutation was present in 26.6% of our patients, but nothing was found in control group. In the family members, 3 subjects with the age of ≤25 years old carried this mutation. Therefore, holding this mutation in this range of age could be a predisposing factor for developing diabetes in future.
Collapse
Affiliation(s)
- Seyed Morteza Taghavi
- 1Internal Medicine Department, Ghaem Hospital & Endocrine Research Center, Mashhad University of Medical Sciences, Parastar St, Ahmad abad blvd, Mashhad, Iran.
| | | | | | | | | | | |
Collapse
|
157
|
Harries LW, Brown JE, Gloyn AL. Species-specific differences in the expression of the HNF1A, HNF1B and HNF4A genes. PLoS One 2009; 4:e7855. [PMID: 19924231 PMCID: PMC2773013 DOI: 10.1371/journal.pone.0007855] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 10/21/2009] [Indexed: 11/19/2022] Open
Abstract
Background The HNF1A, HNF1B and HNF4A genes are part of an autoregulatory network in mammalian pancreas, liver, kidney and gut. The layout of this network appears to be similar in rodents and humans, but inactivation of HNF1A, HNF1B or HNF4A genes in animal models cause divergent phenotypes to those seen in man. We hypothesised that some differences may arise from variation in the expression profile of alternatively processed isoforms between species. Methodology/Principal Findings We measured the expression of the major isoforms of the HNF1A, HNF1B and HNF4A genes in human and rodent pancreas, islet, liver and kidney by isoform-specific quantitative real-time PCR and compared their expression by the comparative Ct (ΔΔCt) method. We found major changes in the expression profiles of the HNF genes between humans and rodents. The principal difference lies in the expression of the HNF1A gene, which exists as three isoforms in man, but as a single isoform only in rodents. More subtle changes were to the balance of HNF1B and HNF4A isoforms between species; the repressor isoform HNF1B(C) comprised only 6% in human islets compared with 24–26% in rodents (p = 0.006) whereas HNF4A9 comprised 22% of HNF4A expression in human pancreas but only 11% in rodents (p = 0.001). Conclusions/Significance The differences we note in the isoform-specific expression of the human and rodent HNF1A, HNF1B and HNF4A genes may impact on the absolute activity of these genes, and therefore on the activity of the pancreatic transcription factor network as a whole. We conclude that alterations to expression of HNF isoforms may underlie some of the phenotypic variation caused by mutations in these genes.
Collapse
Affiliation(s)
- Lorna W Harries
- Institute of Biomedical and Clinical Sciences, Peninsula Medical School, University of Exeter, Exeter, United Kingdom.
| | | | | |
Collapse
|
158
|
Takahashi H, Martin-Brown S, Washburn MP, Florens L, Conaway JW, Conaway RC. Proteomics reveals a physical and functional link between hepatocyte nuclear factor 4alpha and transcription factor IID. J Biol Chem 2009; 284:32405-12. [PMID: 19805548 DOI: 10.1074/jbc.m109.017954] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proteomic analyses have contributed substantially to our understanding of diverse cellular processes. Improvements in the sensitivity of mass spectrometry approaches are enabling more in-depth analyses of protein-protein networks and, in some cases, are providing surprising new insights into well established, longstanding problems. Here, we describe such a proteomic analysis that exploits MudPIT mass spectrometry and has led to the discovery of a physical and functional link between the orphan nuclear receptor hepatocyte nuclear factor 4alpha (HNF4alpha) and transcription factor IID (TFIID). A systematic characterization of the HNF4alpha-TFIID link revealed that the HNF4alpha DNA-binding domain binds directly to the TATA box-binding protein (TBP) and, through this interaction, can target TBP or TFIID to promoters containing HNF4alpha-binding sites in vitro. Supporting the functional significance of this interaction, an HNF4alpha mutation that blocks binding of TBP to HNF4alpha interferes with HNF4alpha transactivation activity in cells. These findings identify an unexpected role for the HNF4alpha DNA-binding domain in mediating key regulatory interactions and provide new insights into the roles of HNF4alpha and TFIID in RNA polymerase II transcription.
Collapse
Affiliation(s)
- Hidehisa Takahashi
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | |
Collapse
|
159
|
Anderson KR, Torres CA, Solomon K, Becker TC, Newgard CB, Wright CV, Hagman J, Sussel L. Cooperative transcriptional regulation of the essential pancreatic islet gene NeuroD1 (beta2) by Nkx2.2 and neurogenin 3. J Biol Chem 2009; 284:31236-48. [PMID: 19759004 DOI: 10.1074/jbc.m109.048694] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Nkx2.2 and NeuroD1 are two critical regulators of pancreatic beta cell development. Nkx2.2 is a homeodomain transcription factor that is essential for islet cell type specification and mature beta cell function. NeuroD1 is a basic helix-loop-helix transcription factor that is critical for islet beta cell maturation and maintenance. Although both proteins influence beta cell development directly downstream of the endocrine progenitor factor, neurogenin3 (Ngn3), a connection between the two proteins in the regulation of beta cell fate and function has yet to be established. In this study, we demonstrate that Nkx2.2 transcriptional activity is required to facilitate the activation of NeuroD1 by Ngn3. Furthermore, Nkx2.2 is necessary to maintain high levels of NeuroD1 expression in developing mouse and zebrafish islets and in mature beta cells. Interestingly, Nkx2.2 regulates NeuroD1 through two independent promoter elements, one that is bound and activated directly by Nkx2.2 and one that appears to be regulated by Nkx2.2 through an indirect mechanism. Together, these findings suggest that Nkx2.2 coordinately activates NeuroD1 with Ngn3 within the endocrine progenitor cell and also plays a role in the maintenance of NeuroD1 expression to regulate beta cell function in the mature islet. Collectively, these findings further define the conserved regulatory networks involved in islet beta cell formation and function.
Collapse
Affiliation(s)
- Keith R Anderson
- Department of Biochemistry, University of Colorado Health Science Center, Denver, Colorado 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Pramfalk C, Karlsson E, Groop L, Rudel LL, Angelin B, Eriksson M, Parini P. Control of ACAT2 liver expression by HNF4{alpha}: lesson from MODY1 patients. Arterioscler Thromb Vasc Biol 2009; 29:1235-41. [PMID: 19478207 DOI: 10.1161/atvbaha.109.188581] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE ACAT2 is thought to be responsible for cholesteryl ester production in chylomicron and VLDL assembly. Recently, we identified HNF1alpha as an important regulator of the human ACAT2 promoter. Thus, we hypothesized that MODY3 (HNF1alpha gene mutations) and possibly MODY1 (HNF4alpha, upstream regulator of HNF1alpha, gene mutations) subjects may have lower VLDL esterified cholesterol. METHODS AND RESULTS Serum analysis and lipoprotein separation using size-exclusion chromatography were performed in controls and MODY1 and MODY3 subjects. In vitro analyses included mutagenesis and cotransfections in HuH7 cells. Finally, the relevance in vivo of these findings was tested by ChIP assays in human liver. Whereas patients with MODY3 had normal lipoprotein composition, those with MODY1 had lower levels of VLDL and LDL esterified cholesterol, as well as of VLDL triglyceride. Mutagenesis revealed one important HNF4 binding site in the human ACAT2 promoter. ChIP assays and protein-to-protein interaction studies showed that HNF4alpha, directly or indirectly (via HNF1alpha), can bind to the ACAT2 promoter. CONCLUSIONS We identified HNF4alpha as an important regulator of the hepatocyte-specific expression of the human ACAT2 promoter. Our results suggest that the lower levels of esterified cholesterol in VLDL- and LDL-particles in patients with MODY1 may-at least in part-be attributable to lower ACAT2 activity in these patients.
Collapse
Affiliation(s)
- C Pramfalk
- Division of Clinical Chemistry, Department of Laboratory Medicine, C1-74, Karolinska Institutet at Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
161
|
Salbaum JM, Finnell RH, Kappen C. Regulation of folate receptor 1 gene expression in the visceral endoderm. ACTA ACUST UNITED AC 2009; 85:303-13. [PMID: 19180647 DOI: 10.1002/bdra.20537] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Nutrient supply to the developing mammalian embryo is a fundamental requirement. Before completion of the chorioallantoic placenta, the visceral endoderm plays a crucial role in nurturing the embryo. We have found that visceral endoderm cells express folate receptor 1, a high-affinity receptor for the essential micronutrient folic acid, suggesting that the visceral endoderm has an important function for folate transport to the embryo. The mechanisms that direct expression of FOLR1 in the visceral endoderm are unknown. METHODS Sequences were tested for transcriptional activation capabilities in the visceral endoderm utilizing reporter gene assays in a cell model for extraembryonic endoderm in vitro, and in transgenic mice in vivo. RESULTS With F9 embryo carcinoma cells as a model for extraembryonic endoderm, we demonstrate that the P4 promoter of the human FOLR1 gene is active during differentiation of the cells towards visceral endoderm. However, transgenic mouse experiments show that promoter sequences alone are insufficient to elicit reporter gene transcription in vivo. Using sequence conservation as guide to choose genomic sequences from the human FOLR1 gene locus, we demonstrate that the sequence termed F1CE2 exhibits specific enhancer activity in F9 cells in vitro, in the visceral endoderm, and later the yolk sac in transgenic mouse embryos in vivo. We further show that the transcription factor HNF4-alpha can activate this enhancer sequence. CONCLUSIONS We have identified a transcriptional enhancer sequence from the FOLR1 locus with specific activity in vitro and in vivo, and suggest that FOLR1 is a target for regulation by HNF4-alpha.
Collapse
Affiliation(s)
- J Michael Salbaum
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA.
| | | | | |
Collapse
|
162
|
Ruchat SM, Weisnagel JS, Rankinen T, Bouchard C, Vohl MC, Pérusse L. Interaction between HNF4A polymorphisms and physical activity in relation to type 2 diabetes-related traits: results from the Quebec Family Study. Diabetes Res Clin Pract 2009; 84:211-8. [PMID: 19406499 DOI: 10.1016/j.diabres.2009.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 03/10/2009] [Accepted: 03/17/2009] [Indexed: 11/17/2022]
Abstract
AIMS To test for associations between type 2 diabetes mellitus (T2DM)-related traits and polymorphisms (SNPs) in the hepatocyte nuclear factor 4-alpha gene (HNF4A) in the Quebec Family Study cohort, and determine whether these associations are modulated by physical activity (PA). METHODS Two HNF4A SNPs (rs1885088 G>A; rs745975 C>T), previously reported to be associated with T2DM, were studied in 528 non-diabetic subjects who underwent a 75g oral glucose tolerance test (OGTT). Glucose, insulin and C-peptide plasma levels, measured in the fasting state and during the OGTT, were used in the analysis. The amount (hours per week) of PA was assessed by questionnaire. RESULTS The HNF4A rs1885088 SNP was not independently associated with T2DM-related traits, whereas the rs745975 was associated with fasting insulin, HOMA-IR and 2-h glucose levels (p<0.05 for all). Genotype by PA interactions were found for glucose homeostasis (p<0.0001) and insulin secretion (p<or=0.03). When subjects were stratified by PA level (according to the median value), we found that high level of PA (>2h/week) was associated with smaller glucose area under the curve (AUC) and 2-h glucose levels in rs1885088 A/A homozygotes and with lower fasting C-peptide and insulin AUC in rs745975 T/T homozygotes. CONCLUSION These results indicate that the associations of HNF4A rs1885088 with glucose tolerance and rs745975 with insulin secretion are modulated by PA. Our finding therefore suggests that the effect of HNF4A polymorphisms on the risk of T2DM is influenced by PA.
Collapse
|
163
|
Plengvidhya N, Boonyasrisawat W, Chongjaroen N, Jungtrakoon P, Sriussadaporn S, Vannaseang S, Banchuin N, Yenchitsomanus PT. Mutations of maturity-onset diabetes of the young (MODY) genes in Thais with early-onset type 2 diabetes mellitus. Clin Endocrinol (Oxf) 2009; 70:847-53. [PMID: 18811724 DOI: 10.1111/j.1365-2265.2008.03397.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Six known genes responsible for maturity-onset diabetes of the young (MODY) were analysed to evaluate the prevalence of their mutations in Thai patients with MODY and early-onset type 2 diabetes. PATIENTS AND METHODS Fifty-one unrelated probands with early-onset type 2 diabetes, 21 of them fitted into classic MODY criteria, were analysed for nucleotide variations in promoters, exons, and exon-intron boundaries of six known MODY genes, including HNF-4alpha, GCK, HNF-1alpha, IPF-1, HNF-1beta, and NeuroD1/beta2, by the polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) method followed by direct DNA sequencing. Missense mutations or mutations located in regulatory region, which were absent in 130 chromosomes of non-diabetic controls, were classified as potentially pathogenic mutations. RESULTS We found that mutations of the six known MODY genes account for a small proportion of classic MODY (19%) and early-onset type 2 diabetes (10%) in Thais. Five of these mutations are novel including GCK R327H, HNF-1alpha P475L, HNF-1alphaG554fsX556, NeuroD1-1972 G > A and NeuroD1 A322N. Mutations of IPF-1 and HNF-1beta were not identified in the studied probands. CONCLUSIONS Mutations of the six known MODY genes may not be a major cause of MODY and early-onset type 2 diabetes in Thais. Therefore, unidentified genes await discovery in a majority of Thai patients with MODY and early-onset type 2 diabetes.
Collapse
Affiliation(s)
- Nattachet Plengvidhya
- Department of Medicine, Division of Endocrinology and Metabolism, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Borlak J, Niehof M. HNF4alpha and HNF1alpha dysfunction as a molecular rational for cyclosporine induced posttransplantation diabetes mellitus. PLoS One 2009; 4:e4662. [PMID: 19252740 PMCID: PMC2646130 DOI: 10.1371/journal.pone.0004662] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 01/22/2009] [Indexed: 12/21/2022] Open
Abstract
Posttransplantation diabetes mellitus (PTDM) is a frequent complication in
immunosuppressive therapy. To better understand the molecular events associated
with PTDM we investigated the effect of cyclosporine on expression and activity
of hepatic nuclear factor (HNF)1alpha and 4alpha and on genes coding for glucose
metabolism in cultures of the rat insulinoma cell line INS-1E, the human
epithelial cell line Caco-2 and with Zucker diabetic fatty (ZDF) rats. In the
pancreas of untreated but diabetic animals expression of HNF4alpha, insulin1,
insulin2 and of phosphoenolpyruvate carboxykinase was significantly repressed.
Furthermore, cyclosporine treatment of the insulinoma-1E cell line resulted in
remarkable reduction in HNF4alpha protein and INS1 as well as INS2 gene
expression, while transcript expression of HNF4alpha, apolipoprotein C2,
glycerolkinase, pyruvatekinase and aldolase B was repressed in treated Caco-2
cells. Furthermore, with nuclear extracts of cyclosporine treated cell lines
protein expression and DNA binding activity of hepatic nuclear factors was
significantly repressed. As cyclosporine inhibits the calcineurin dependent
dephosphorylation of nuclear factor of activated T-cells (NFAT) we also searched
for binding sites for NFAT in the pancreas specific P2 promoter of HNF4alpha.
Notably, we observed repressed NFAT binding to a novel DNA binding site in the
P2 promoter of HNF4alpha. Thus, cyclosporine caused inhibition of DNA binding of
two important regulators for insulin signaling, i.e. NFAT and HNF4alpha. We
further investigated HNF4alpha transcript expression and observed
>200-fold differences in abundance in
n = 14 patients. Such variability in expression
might help to identify individuals at risk for developing PTDM. We propose
cyclosporine to repress HNF4alpha gene and protein expression, DNA-binding to
targeted promoters and subsequent regulation of genes coding for glucose
metabolism and of pancreatic beta-cell function.
Collapse
Affiliation(s)
- Jürgen Borlak
- Fraunhofer Institute of Toxicology and Experimental Medicine, Medical School of Hannover, Hannover, Germany.
| | | |
Collapse
|
165
|
Palanker L, Tennessen JM, Lam G, Thummel CS. Drosophila HNF4 regulates lipid mobilization and beta-oxidation. Cell Metab 2009; 9:228-39. [PMID: 19254568 PMCID: PMC2673486 DOI: 10.1016/j.cmet.2009.01.009] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 12/15/2008] [Accepted: 01/28/2009] [Indexed: 11/17/2022]
Abstract
Drosophila HNF4 (dHNF4) is the single ancestral ortholog of a highly conserved subfamily of nuclear receptors that includes two mammalian receptors, HNFalpha and HNFgamma, and 269 members in C. elegans. We show here that dHNF4 null mutant larvae are sensitive to starvation. Starved mutant larvae consume glycogen normally but retain lipids in their midgut and fat body and have increased levels of long-chain fatty acids, suggesting that they are unable to efficiently mobilize stored fat for energy. Microarray studies support this model, indicating reduced expression of genes that control lipid catabolism and beta-oxidation. A GAL4-dHNF4;UAS-lacZ ligand sensor can be activated by starvation or exogenous long-chain fatty acids, suggesting that dHNF4 is responsive to dietary signals. Taken together, our results support a feed-forward model for dHNF4, in which fatty acids released from triglycerides activate the receptor, inducing enzymes that drive fatty acid oxidation for energy production.
Collapse
|
166
|
Takegoshi S, Jiang S, Ohashi R, Savchenko AS, Iwanari H, Tanaka T, Hasegawa G, Hamakubo T, Kodama T, Naito M. Protein expression of nuclear receptors in human and murine tissues. Pathol Int 2009; 59:61-72. [DOI: 10.1111/j.1440-1827.2008.02330.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
167
|
Ménesi D, Kitajka K, Molnár E, Kis Z, Belleger J, Narce M, Kang JX, Puskás LG, Das UN. Gene and protein expression profiling of the fat-1 mouse brain. Prostaglandins Leukot Essent Fatty Acids 2009; 80:33-42. [PMID: 19138887 DOI: 10.1016/j.plefa.2008.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 01/07/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential structural components of all cell membranes and, more so, of the central nervous system. Several studies revealed that n-3 PUFAs possess anti-inflammatory actions and are useful in the treatment of dyslipidemia. These actions explain the beneficial actions of n-3 PUFAs in the management of cardiovascular diseases, inflammatory conditions, neuronal dysfunction, and cancer. But, the exact molecular targets of these beneficial actions of n-3 PUFAs are not known. Mice engineered to carry a fat-1 gene from Caenorhabditis elegans add a double bond into an unsaturated fatty acid hydrocarbon chain and convert n-6 to n-3 fatty acids. This results in an abundance of n-3 eicosapentaenoic acid and docosapentaenoic acid specifically in the brain and a reduction in n-6 fatty acids of these mice that can be used to evaluate the actions of n-3 PUFAs. Gene expression profile, RT-PCR and protein microarray studies in the hippocampus and whole brain of wild-type and fat-1 transgenic mice revealed that genes and proteins concerned with inflammation, apoptosis, neurotransmission, and neuronal growth and synapse formation are specifically modulated in fat-1 mice. These results may explain as to why n-3 PUFAs are of benefit in the prevention and treatment of diseases such as Alzheimer's disease, schizophrenia and other diseases associated with neuronal dysfunction, low-grade systemic inflammatory conditions, and bronchial asthma. Based on these data, it is evident that n-3 PUFAs act to modulate specific genes and formation of their protein products and thus, bring about their various beneficial actions.
Collapse
Affiliation(s)
- Dalma Ménesi
- Functional Genomics Laboratory, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Raikwar SP, Zavazava N. Insulin producing cells derived from embryonic stem cells: are we there yet? J Cell Physiol 2008; 218:256-63. [PMID: 18932230 DOI: 10.1002/jcp.21615] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Derivation of insulin producing cells (IPCs) from embryonic stem (ES) cells provides a potentially innovative form of treatment for type 1 diabetes. Here, we discuss the current state of the art, unique challenges, and future directions on generating IPCs.
Collapse
Affiliation(s)
- Sudhanshu P Raikwar
- Division of Allergy and Immunology, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
169
|
Hirota K, Sakamaki JI, Ishida J, Shimamoto Y, Nishihara S, Kodama N, Ohta K, Yamamoto M, Tanimoto K, Fukamizu A. A combination of HNF-4 and Foxo1 is required for reciprocal transcriptional regulation of glucokinase and glucose-6-phosphatase genes in response to fasting and feeding. J Biol Chem 2008; 283:32432-41. [PMID: 18805788 DOI: 10.1074/jbc.m806179200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucokinase (GK) and glucose-6-phosphatase (G6Pase) regulate rate-limiting reactions in the physiologically opposed metabolic cascades, glycolysis and gluconeogenesis, respectively. Expression of these genes is conversely regulated in the liver in response to fasting and feeding. We explored the mechanism of transcriptional regulation of these genes by nutritional condition and found that reciprocal function of HNF-4 and Foxo1 plays an important role in this process. In the GK gene regulation, Foxo1 represses HNF-4-potentiated transcription of the gene, whereas it synergizes with HNF-4 in activating the G6Pase gene transcription. These opposite actions of Foxo1 concomitantly take place in the cells under no insulin stimulus, and such gene-specific action was promoter context-dependent. Interestingly, HNF-4-binding elements (HBEs) in the GK and G6Pase promoters were required both for the insulin-stimulated GK gene activation and insulin-mediated G6Pase gene repression. Indeed, mouse in vivo imaging showed that mutating the HBEs in the GK and G6Pase promoters significantly impaired their reactivity to the nutritional states, even in the presence of intact Foxo1-binding sites (insulin response sequences). Thus, in the physiological response of the GK and G6Pase genes to fasting/feeding conditions, Foxo1 distinctly decodes the promoter context of these genes and differently modulates the function of HBE, which then leads to opposite outcomes of gene transcription.
Collapse
Affiliation(s)
- Keiko Hirota
- Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Sun YM, Zhang Y, Zeng LQ, Wu JP, Wei L, Ren AH, Shao W, Qiao JY, Zhao YC, Zhang L, Mitchelson KR, Cheng J. Broad profiling of DNA-binding transcription factor activities improves regulatory network construction in adult mouse tissues. J Proteome Res 2008; 7:4455-64. [PMID: 18759473 DOI: 10.1021/pr800417e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecular systematics involves the description of the regulatory networks formed by the interconnections between active transcription factors and their target expressed genes. Here, we have determined the activities of 200 different transcription factors in six mouse tissues using an advanced mouse oligonucleotide array-based transcription factor assay (MOUSE OATFA). The transcription factor signatures from MOUSE OATFA were combined with public mRNA expression profiles to construct experimental transcriptional regulatory networks in each tissue. SRF-centered regulatory networks constructed for lung and skeletal muscle with OATFA data were confirmed by ChIP assays, and revealed examples of novel networks of expressed genes coregulated by sets of transcription factors. The combination of MOUSE OATFA with bioinformatics analysis of expressed genes provides a new paradigm for the comprehensive prediction of the transcriptional systems and their regulatory pathways in mouse.
Collapse
Affiliation(s)
- Yi-Min Sun
- Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
The major forms of diabetes are characterized by pancreatic islet beta-cell dysfunction and decreased beta-cell numbers, raising hope for cell replacement therapy. Although human islet transplantation is a cell-based therapy under clinical investigation for the treatment of type 1 diabetes, the limited availability of human cadaveric islets for transplantation will preclude its widespread therapeutic application. The result has been an intense focus on the development of alternate sources of beta cells, such as through the guided differentiation of stem or precursor cell populations or the transdifferentiation of more plentiful mature cell populations. Realizing the potential for cell-based therapies, however, requires a thorough understanding of pancreas development and beta-cell formation. Pancreas development is coordinated by a complex interplay of signaling pathways and transcription factors that determine early pancreatic specification as well as the later differentiation of exocrine and endocrine lineages. This review describes the current knowledge of these factors as they relate specifically to the emergence of endocrine beta cells from pancreatic endoderm. Current therapeutic efforts to generate insulin-producing beta-like cells from embryonic stem cells have already capitalized on recent advances in our understanding of the embryonic signals and transcription factors that dictate lineage specification and will most certainly be further enhanced by a continuing emphasis on the identification of novel factors and regulatory relationships.
Collapse
Affiliation(s)
- Jennifer M. Oliver-Krasinski
- Institute for Diabetes, Obesity and Metabolism and the Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Doris A. Stoffers
- Institute for Diabetes, Obesity and Metabolism and the Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
172
|
Geier A, Martin IV, Dietrich CG, Balasubramaniyan N, Strauch S, Suchy FJ, Gartung C, Trautwein C, Ananthanarayanan M. Hepatocyte nuclear factor-4alpha is a central transactivator of the mouse Ntcp gene. Am J Physiol Gastrointest Liver Physiol 2008; 295:G226-33. [PMID: 18483185 PMCID: PMC2519858 DOI: 10.1152/ajpgi.00012.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sodium taurocholate cotransporting polypeptide (Ntcp) is the major uptake system for conjugated bile acids. Deletions of hepatocyte nuclear factor (HNF)-1alpha and retinoid X receptor-alpha:retinoic acid receptor-alpha binding sites in the mouse 5'-flanking region corresponding to putatively central regulatory elements of rat Ntcp do not significantly reduce promoter activity. We hypothesized that HNF-4alpha, which is increasingly recognized as a central regulator of hepatocyte function, may directly transactivate mouse (mNtcp). A 1.1-kb 5'-upstream region including the mouse Ntcp promoter was cloned and compared with the rat promoter. In contrast to a moderate 3.5-fold activation of mNtcp by HNF-1alpha, HNF-4alpha cotransfection led to a robust 20-fold activation. Deletion analysis of mouse and rat Ntcp promoters mapped a conserved HNF-4alpha consensus site at -345/-326 and -335/-316 bp, respectively. p-475bpmNtcpLUC is not transactivated by HNF-1alpha but shows a 50-fold enhanced activity upon cotransfection with HNF-4alpha. Gel mobility shift assays demonstrated a complex of the HNF-4alpha-element formed with liver nuclear extracts that was blocked by an HNF-4alpha specific antibody. HNF-4alpha binding was confirmed by chromatin immunoprecipitation. Using Hepa 1-6 cells, HNF-4alpha-knockdown resulted in a significant 95% reduction in NTCP mRNA. In conclusion, mouse Ntcp is regulated by HNF-4alpha via a conserved distal cis-element independently of HNF-1alpha.
Collapse
Affiliation(s)
- Andreas Geier
- Dept. of Internal Medicine, Div. of Gastroenterology & Hepatology, Univ. Hospital Zurich (USZ) Rämistrasse 100, CH-8091 Zurich, Switzerland.
| | - Ina V. Martin
- Department of Internal Medicine III, Aachen University (RWTH), University Hospital (UKA), Aachen, Germany; Department of Internal Medicine, Division of Gastroenterology & Hepatology, University Hospital Zurich (USZ), Zurich, Switzerland; and Laboratory of Developmental and Molecular Hepatology, Department of Pediatrics, Mount Sinai Medical Center, New York, New York
| | - Christoph G. Dietrich
- Department of Internal Medicine III, Aachen University (RWTH), University Hospital (UKA), Aachen, Germany; Department of Internal Medicine, Division of Gastroenterology & Hepatology, University Hospital Zurich (USZ), Zurich, Switzerland; and Laboratory of Developmental and Molecular Hepatology, Department of Pediatrics, Mount Sinai Medical Center, New York, New York
| | - Natarajan Balasubramaniyan
- Department of Internal Medicine III, Aachen University (RWTH), University Hospital (UKA), Aachen, Germany; Department of Internal Medicine, Division of Gastroenterology & Hepatology, University Hospital Zurich (USZ), Zurich, Switzerland; and Laboratory of Developmental and Molecular Hepatology, Department of Pediatrics, Mount Sinai Medical Center, New York, New York
| | - Sonja Strauch
- Department of Internal Medicine III, Aachen University (RWTH), University Hospital (UKA), Aachen, Germany; Department of Internal Medicine, Division of Gastroenterology & Hepatology, University Hospital Zurich (USZ), Zurich, Switzerland; and Laboratory of Developmental and Molecular Hepatology, Department of Pediatrics, Mount Sinai Medical Center, New York, New York
| | - Frederick J. Suchy
- Department of Internal Medicine III, Aachen University (RWTH), University Hospital (UKA), Aachen, Germany; Department of Internal Medicine, Division of Gastroenterology & Hepatology, University Hospital Zurich (USZ), Zurich, Switzerland; and Laboratory of Developmental and Molecular Hepatology, Department of Pediatrics, Mount Sinai Medical Center, New York, New York
| | - Carsten Gartung
- Department of Internal Medicine III, Aachen University (RWTH), University Hospital (UKA), Aachen, Germany; Department of Internal Medicine, Division of Gastroenterology & Hepatology, University Hospital Zurich (USZ), Zurich, Switzerland; and Laboratory of Developmental and Molecular Hepatology, Department of Pediatrics, Mount Sinai Medical Center, New York, New York
| | - Christian Trautwein
- Department of Internal Medicine III, Aachen University (RWTH), University Hospital (UKA), Aachen, Germany; Department of Internal Medicine, Division of Gastroenterology & Hepatology, University Hospital Zurich (USZ), Zurich, Switzerland; and Laboratory of Developmental and Molecular Hepatology, Department of Pediatrics, Mount Sinai Medical Center, New York, New York
| | - Meenakshisundaram Ananthanarayanan
- Department of Internal Medicine III, Aachen University (RWTH), University Hospital (UKA), Aachen, Germany; Department of Internal Medicine, Division of Gastroenterology & Hepatology, University Hospital Zurich (USZ), Zurich, Switzerland; and Laboratory of Developmental and Molecular Hepatology, Department of Pediatrics, Mount Sinai Medical Center, New York, New York
| |
Collapse
|
173
|
Kramer MA, Rettie AE, Rieder MJ, Cabacungan ET, Hines RN. Novel CYP2C9 promoter variants and assessment of their impact on gene expression. Mol Pharmacol 2008; 73:1751-60. [PMID: 18310303 PMCID: PMC2413059 DOI: 10.1124/mol.107.044149] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There are a considerable number of reports identifying and characterizing genetic variants within the CYP2C9 coding region. Much less is known about polymorphic promoter sequences that also might contribute to interindividual differences in CYP2C9 expression. To address this problem, approximately 10,000 base pairs of CYP2C9 upstream information were resequenced using 24 DNA samples from the Coriell Polymorphism Discovery Resource. Thirty-one single-nucleotide polymorphisms (SNPs) were identified; nine SNPs were novel, whereas 22 were reported previously. Using both sequencing and multiplex single-base extension, individual SNP frequencies were determined in 193 DNA samples obtained from unrelated, self-reported Hispanic Americans of Mexican descent, and they were compared with similar data obtained from a non-Latino white cohort. Significant interethnic differences were observed in several SNP frequencies, some of which seemed unique to the Hispanic population. Analysis using PHASE 2.1 inferred nine common (>1%) variant haplotypes, two of which included the g.3608C>T (R144C) CYP2C9(*)2 and two the g.42614A>C (I359L) CYP2C9(*)3 SNPs. Haplotype variants were introduced into a CYP2C9/luciferase reporter plasmid using site-directed mutagenesis, and the impact of the variants on promoter activity assessed by transient expression in HepG2 cells. Both constitutive and pregnane X receptor-mediated inducible activities were measured. Haplotypes 1B, 3A, and 3B each exhibited a 65% decrease in constitutive promoter activity relative to the reference haplotype. Haplotypes 1D and 3B exhibited a 50% decrease and a 40% increase in induced promoter activity, respectively. These data suggest that genetic variation within CYP2C9 regulatory sequences is likely to contribute to differences in CYP2C9 phenotype both within and among different populations.
Collapse
Affiliation(s)
- Melissa A Kramer
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee WI 53226, USA
| | | | | | | | | |
Collapse
|
174
|
Affiliation(s)
- Ben Z Stanger
- Division of Gastroenterology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
175
|
Vaxillaire M, Froguel P. Monogenic diabetes in the young, pharmacogenetics and relevance to multifactorial forms of type 2 diabetes. Endocr Rev 2008; 29:254-64. [PMID: 18436708 DOI: 10.1210/er.2007-0024] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Most valuable breakthroughs in the genetics of type 2 diabetes for the past two decades have arisen from candidate gene studies and familial linkage analysis of maturity-onset diabetes of the young (MODY), an autosomal dominant form of diabetes typically occurring before 25 years of age caused by primary insulin secretion defects. Despite its low prevalence, MODY is not a single entity but presents genetic, metabolic and clinical heterogeneity. MODY can result from mutations in at least six different genes encoding the glucose sensor enzyme glucokinase and transcription factors that participate in a regulatory network essential for adult beta-cell function. Additional genes have been described in other discrete phenotypes or syndromic forms of diabetes. Whereas common variants in the MODY genes contribute very modestly to type 2 diabetes susceptibility in adults, major findings emerging from the advent of genome-wide association studies will deliver an increasing number of genes and new pathways for the pathological events of the disease.
Collapse
Affiliation(s)
- Martine Vaxillaire
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8090, Institute of Biology and Pasteur Institute, Lille, France
| | | |
Collapse
|
176
|
Lu P, Liu J, Melikishvili M, Fried MG, Chi YI. Crystallization of hepatocyte nuclear factor 4 alpha (HNF4 alpha) in complex with the HNF1 alpha promoter element. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:313-7. [PMID: 18391435 PMCID: PMC2374247 DOI: 10.1107/s1744309108007136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 03/14/2008] [Indexed: 12/31/2022]
Abstract
Sample preparation, characterization, crystallization and preliminary X-ray analysis are reported for the HNF4α–DNA binary complex. Hepatocyte nuclear factor 4α (HNF4α) is a member of the nuclear receptor superfamily that plays a central role in organ development and metabolic functions. Mutations on HNF4α cause maturity-onset diabetes of the young (MODY), a dominant monogenic cause of diabetes. In order to understand the molecular mechanism of promoter recognition and the molecular basis of disease-causing mutations, the recombinant HNF4α DNA-binding domain was prepared and used in a study of its binding properties and in crystallization with a 21-mer DNA fragment that contains the promoter element of another MODY gene, HNF1α. The HNF4α protein displays a cooperative and specific DNA-binding activity towards its target gene-recognition elements. Crystals of the complex diffract to 2.0 Å using a synchrotron-radiation source under cryogenic (100 K) conditions and belong to space group C2, with unit-cell parameters a = 121.63, b = 35.43, c = 70.99 Å, β = 119.36°. A molecular-replacement solution has been obtained and structure refinement is in progress. This structure and the binding studies will provide the groundwork for detailed functional and biochemical studies of the MODY mutants.
Collapse
Affiliation(s)
- Peng Lu
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
177
|
Staudinger JL, Lichti K. Cell signaling and nuclear receptors: new opportunities for molecular pharmaceuticals in liver disease. Mol Pharm 2008; 5:17-34. [PMID: 18159925 PMCID: PMC2387130 DOI: 10.1021/mp700098c] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liver-enriched nuclear receptors (NRs) collectively function as metabolic and toxicological "sensors" that mediate liver-specific gene-activation in mammals. NR-mediated gene-environment interaction regulates important steps in the hepatic uptake, metabolism, and excretion of glucose, fatty acids, lipoproteins, cholesterol, bile acids, and xenobiotics. Hence, liver-enriched NRs play pivotal roles in the overall control of energy homeostasis in mammals. While it is well-recognized that ligand-binding is the primary mechanism behind activation of NRs, recent research reveals that multiple signal transduction pathways modulate NR-function in liver. The interface between specific signal transduction pathways and NRs helps to determine their overall responsiveness to various environmental and physiological stimuli. In general, phosphorylation of hepatic NRs regulates multiple biological parameters including their transactivation capacity, DNA binding, subcellular location, capacity to interact with protein-cofactors, and protein stability. Certain pathological conditions including inflammation, morbid obesity, hyperlipidemia, atherosclerosis, insulin resistance, and type-2 diabetes are known to modulate selected signal transduction pathways in liver. This review will focus upon recent insights regarding the molecular mechanisms that comprise the interface between disease-mediated activation of hepatic signal transduction pathways and liver-enriched NRs. This review will also highlight the exciting opportunities presented by this new knowledge to develop novel molecular and pharmaceutical strategies for combating these increasingly prevalent human diseases.
Collapse
Affiliation(s)
- Jeff L Staudinger
- University of Kansas, Department of Pharmacology and Toxicology, 1251 Wescoe Hall Dr, 5038 Malott Hall, Lawrence, Kansas 66045, USA.
| | | |
Collapse
|
178
|
Qi L, van Dam RM, Asselbergs FW, Hu FB. Gene-gene interactions between HNF4A and KCNJ11 in predicting Type 2 diabetes in women. Diabet Med 2007; 24:1187-91. [PMID: 17894829 DOI: 10.1111/j.1464-5491.2007.02255.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS Recent studies indicate transcription factor hepatocyte nuclear factor 4 alpha (HNF-4 alpha, HNF4A) modulates the transcription of the pancreatic B-cell ATP-sensitive K+ (KATP) channel subunit Kir6.2 gene (KCNJ11). Both HNF4A and KCNJ11 have previously been associated with diabetes risk but little is known whether the variations in these genes interact with each other. METHODS We conducted a prospective, nested case-control study of 714 incident cases of Type 2 diabetes and 1120 control subjects from the Nurses' Health Study. RESULTS KCNJ11 E23K was significantly associated with an increased diabetes risk (odds ratio 1.26, 95% CI 1.03-1.53) while HNF4A P2 promoter polymorphisms were associated with a moderately increased risk at borderline significance. By using a logistic regression model, we found significant interactions between HNF4A rs2144908, rs4810424 and rs1884613 and KCNJ11 E23K (P for interaction = 0.017, 0.012 and 0.004, respectively). Carrying the minor alleles of the three HNF4A polymorphisms was associated with significantly greater diabetes risk in women carrying the KCNJ11 allele 23K, but not in those who did not carry this allele. Analyses using the multifactor dimensionality reduction (MDR) method confirmed the gene-gene interaction. We identified that the best interaction model included HNF4A rs2144908 and KCNJ11 E23K. Such a two-locus model showed the maximum cross-validation consistency of 10 out of 10 and a significant prediction accuracy of 54.2% (P = 0.01) on the basis of 1000-fold permutation testing. CONCLUSIONS Our data indicate that HNF4A P2 promoter polymorphisms may interact with KCNJ11 E23K in predicting Type 2 diabetes in women.
Collapse
Affiliation(s)
- L Qi
- Department of Nutrition, Harvard Medical School of Public Health, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
179
|
|
180
|
Kamiyama Y, Matsubara T, Yoshinari K, Nagata K, Kamimura H, Yamazoe Y. Role of human hepatocyte nuclear factor 4alpha in the expression of drug-metabolizing enzymes and transporters in human hepatocytes assessed by use of small interfering RNA. Drug Metab Pharmacokinet 2007; 22:287-98. [PMID: 17827783 DOI: 10.2133/dmpk.22.287] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) is an important transcription factor in hepatic gene expression. Here, we have investigated the role of HNF4alpha in the expression of drug-metabolizing enzymes and transporters in human hepatocytes using an adenovirus expressing human HNF4alpha-small interfering RNA (hHNF4alpha-siRNA). The hHNF4alpha-siRNA effectively reduced the mRNA and nuclear protein levels of hHNF4alpha in a concentration-dependent manner. The hHNF4alpha-siRNA also decreased the mRNA levels of CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, UGT1A1, UGT1A9, SULT2A1, ABCB1, ABCB11, ABCC2, OATP1B1 and OCT1, as well as those of PXR and CAR. To discern the role of these nuclear receptors, we co-infected hepatocytes with hHNF4alpha-siRNA and PXR- or CAR-expressing adenovirus. The hHNF4alpha-siRNA-induced reductions of the enzyme and transporter mRNA levels were not restored except CYP2B6 mRNA levels, which were returned to the control level by overexpressing CAR. Furthermore, although hHNF4alpha-siRNA did not significantly affect the fold-induction of CYP2B6, CYP2C8, CYP2C9, or CYP3A4 mRNA levels following treatment with CYP inducers, the levels in hHNF4alpha-suppressed cells fell significantly compared to the control. These results suggest that HNF4alpha plays a dominant role in the expression of drug-metabolizing enzymes and transporters in human hepatocytes, and that HNF4alpha expression levels is a possible determinant for inter-individual variations in the expression of these enzymes and transporters.
Collapse
Affiliation(s)
- Yoshiteru Kamiyama
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
181
|
Bays HE, Cohen DE. Rationale and design of a prospective clinical trial program to evaluate the glucose-lowering effects of colesevelam HCl in patients with type 2 diabetes mellitus. Curr Med Res Opin 2007; 23:1673-84. [PMID: 17588297 DOI: 10.1185/030079907x210525] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Dyslipidemia and type 2 diabetes mellitus (T2DM) increase atherosclerotic coronary heart disease (CHD) risk. In patients with T2DM, improving lipid parameters reduces CHD risk, while optimizing glucose levels reduces microvascular complications and, possibly, macrovascular disease such as CHD. Unfortunately, many patients with T2DM do not achieve either lipid or glucose treatment targets. OBJECTIVE Colesevelam HCl is a specifically engineered bile-acid sequestrant (BAS) indicated to reduce elevated low-density lipoprotein cholesterol concentrations. Earlier studies have demonstrated that BAS not only reduce cholesterol levels, but also lower glucose levels in patients with T2DM. These findings have prompted a robust, prospective phase 3 clinical trial program to further evaluate the safety and tolerability of colesevelam HCl when added to T2DM patients previously treated with metformin, insulin or a sulfonylurea. A limitation of these clinical trials is that none of them assessed colesevelam HCl monotherapy, nor directly compared the glucose-lowering effects of colesevelam HCl to established oral antidiabetes drugs. Nonetheless, this clinical trial program will better determine whether a single agent added to existing diabetes therapy can improve both lipid and glucose parameters in T2DM, which may allow more patients to achieve lipid and glucose treatment targets. CONCLUSIONS This phase 3 clinical trial program will evaluate colesevelam's glucose-lowering effects in patients with T2DM. In addition, based upon a review of the relevant medical literature through an online electronic PubMed search (without restriction to date other than otherwise occurs through PubMed), potential mechanisms as to how BAS may lower glucose levels are discussed.
Collapse
Affiliation(s)
- Harold E Bays
- Louisville Metabolic and Atherosclerosis Research Center Inc., Louisville, KY 40213,USA.
| | | |
Collapse
|
182
|
Pascussi JM, Robert A, Moreau A, Ramos J, Bioulac-Sage P, Navarro F, Blanc P, Assenat E, Maurel P, Vilarem MJ. Differential regulation of constitutive androstane receptor expression by hepatocyte nuclear factor4alpha isoforms. Hepatology 2007; 45:1146-53. [PMID: 17464991 DOI: 10.1002/hep.21592] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Constitutive androstane receptor (CAR; NR1I3) controls the metabolism and elimination of endogenous and exogenous toxic compounds by up-regulating a battery of genes. In this work, we analyzed the expression of human CAR (hCAR) in normal liver during development and in hepatocellular carcinoma (HCC) and investigated the effect of hepatocyte nuclear factor 4alpha isoforms (HNF4alpha1 and HNF4alpha7) on the hCAR gene promoter. By performing functional analysis of hCAR 5'-deletions including mutants, chromatin immunoprecipitation in human hepatocytes, electromobility shift and cotransfection assays, we identified a functional and species-conserved HNF4alpha response element (DR1: ccAGGCCTtTGCCCTga) at nucleotide -144. Both HNF4alpha isoforms bind to this element with similar affinity. However, HNF4alpha1 strongly enhanced hCAR promoter activity whereas HNF4alpha7 was a poor activator and acted as a repressor of HNF4alpha1-mediated transactivation of the hCAR promoter. PGC1alpha stimulated both HNF4alpha1-mediated and HNF4alpha7-mediated hCAR transactivation to the same extent, whereas SRC1 exhibited a marked specificity for HNF4alpha1. Transduction of human hepatocytes by HNF4alpha7-expressing lentivirus confirmed this finding. In addition, we observed a positive correlation between CAR and HNF4alpha1 mRNA levels in human liver samples during development, and an inverse correlation between CAR and HNF4alpha7 mRNA levels in HCC. These observations suggest that HNF4alpha1 positively regulates hCAR expression in normal developing and adult livers, whereas HNF4alpha7 represses hCAR gene expression in HCC.
Collapse
|
183
|
Vincent R, Treff N, Budde M, Kastenberg Z, Odorico J. Generation and characterization of novel tetracycline-inducible pancreatic transcription factor-expressing murine embryonic stem cell lines. Stem Cells Dev 2007; 15:953-62. [PMID: 17253956 DOI: 10.1089/scd.2006.15.953] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pancreatic development in mammals is controlled in part by the expression and function of numerous genes encoding transcription factors. Yet, how these regulate each other and their target genes is incompletely understood. Embryonic stem (ES) cells have recently been shown to be capable of differentiating into pancreatic progenitor cells and insulin-producing cells, representing a useful in vitro model system for studying pancreatic and islet development. To generate tools to study the relationships of transcription factors in pancreatic development we have established seven unique mouse ES cell lines with tetracycline-inducible expression of either Hnf4alpha, Hnf6, Nkx2.2, Nkx6.1, Pax4, Pdx1, and Ptf1a cDNAs. Each of the cell lines was characterized for induction of transgene expression after exposure to doxycycline (DOX) by quantitative real-time PCR and immunofluorescence microscopy. Transgene expression in the presence of DOX was at least 97-fold that seen in untreated cells. Immunofluorescent staining of DOX-treated cultures showed efficient (>95% of cells) transgene protein expression while showing <5% positive staining in uninduced cells. Each of the ES cell lines maintained their pluripotency as measured by teratoma formation. Furthermore, transgene expression can be efficiently achieved in vivo through DOX administration to mice. The establishment of ES cell lines with temporally controllable induction of critical pancreatic transcription factor genes provides a new set of tools that could be used to interrogate gene regulatory networks in pancreatic development and potentially generate greater numbers of beta cells from ES cells.
Collapse
Affiliation(s)
- Robert Vincent
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| | | | | | | | | |
Collapse
|
184
|
Pearson ER, Boj SF, Steele AM, Barrett T, Stals K, Shield JP, Ellard S, Ferrer J, Hattersley AT. Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. PLoS Med 2007; 4:e118. [PMID: 17407387 PMCID: PMC1845156 DOI: 10.1371/journal.pmed.0040118] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 02/01/2007] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Macrosomia is associated with considerable neonatal and maternal morbidity. Factors that predict macrosomia are poorly understood. The increased rate of macrosomia in the offspring of pregnant women with diabetes and in congenital hyperinsulinaemia is mediated by increased foetal insulin secretion. We assessed the in utero and neonatal role of two key regulators of pancreatic insulin secretion by studying birthweight and the incidence of neonatal hypoglycaemia in patients with heterozygous mutations in the maturity-onset diabetes of the young (MODY) genes HNF4A (encoding HNF-4alpha) and HNF1A/TCF1 (encoding HNF-1alpha), and the effect of pancreatic deletion of Hnf4a on foetal and neonatal insulin secretion in mice. METHODS AND FINDINGS We examined birthweight and hypoglycaemia in 108 patients from families with diabetes due to HNF4A mutations, and 134 patients from families with HNF1A mutations. Birthweight was increased by a median of 790 g in HNF4A-mutation carriers compared to non-mutation family members (p < 0.001); 56% (30/54) of HNF4A-mutation carriers were macrosomic compared with 13% (7/54) of non-mutation family members (p < 0.001). Transient hypoglycaemia was reported in 8/54 infants with heterozygous HNF4A mutations, but was reported in none of 54 non-mutation carriers (p = 0.003). There was documented hyperinsulinaemia in three cases. Birthweight and prevalence of neonatal hypoglycaemia were not increased in HNF1A-mutation carriers. Mice with pancreatic beta-cell deletion of Hnf4a had hyperinsulinaemia in utero and hyperinsulinaemic hypoglycaemia at birth. CONCLUSIONS HNF4A mutations are associated with a considerable increase in birthweight and macrosomia, and are a novel cause of neonatal hypoglycaemia. This study establishes a key role for HNF4A in determining foetal birthweight, and uncovers an unanticipated feature of the natural history of HNF4A-deficient diabetes, with hyperinsulinaemia at birth evolving to decreased insulin secretion and diabetes later in life.
Collapse
Affiliation(s)
- Ewan R Pearson
- Peninsula Medical School, Exeter, United Kingdom
- Division of Medicine and Therapeutics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Sylvia F Boj
- Department of Endocrinology, Hospital Clinic de Barcelona, Barcelona, Spain
- Genomic Programming of Beta Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | - Karen Stals
- Peninsula Medical School, Exeter, United Kingdom
| | - Julian P Shield
- Bristol Royal Hospital for Children, Bristol, United Kingdom
- University of Bristol, Bristol, United Kingdom
| | - Sian Ellard
- Peninsula Medical School, Exeter, United Kingdom
| | - Jorge Ferrer
- Department of Endocrinology, Hospital Clinic de Barcelona, Barcelona, Spain
- Genomic Programming of Beta Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Andrew T Hattersley
- Peninsula Medical School, Exeter, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
185
|
Erdmann S, Senkel S, Arndt T, Lucas B, Lausen J, Klein-Hitpass L, Ryffel GU, Thomas H. Tissue-specific transcription factor HNF4alpha inhibits cell proliferation and induces apoptosis in the pancreatic INS-1 beta-cell line. Biol Chem 2007; 388:91-106. [PMID: 17214554 DOI: 10.1515/bc.2007.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) is a tissue-specific transcription factor expressed in many cell types, including pancreatic beta-cells. Mutations in the HNF4alpha gene in humans give rise to maturity-onset diabetes of the young (MODY1) characterized by defective insulin secretion by beta-cells. To elucidate the mechanism underlying this disease, we introduced the splice form HNF4alpha2 or HNF4alpha8 into the rat beta-cell line INS-1. Upon tetracycline-induced expression, both HNF4alpha isoforms caused distinct changes in cell morphology and a massive loss of cell numbers that was correlated with reduced proliferation and induced apoptosis. This differential activity was reflected in oligonucleotide microarray analysis that identified more genes affected by HNF4alpha2 compared to HNF4alpha8, and suggests that both isoforms regulate largely the same set of genes, with HNF4alpha2 being a stronger transactivator. We verified the induction of selected transcripts by real-time RT-PCR, including KAI1 and AIF, both known to have apoptotic potential. By establishing cell lines with inducible expression of these target genes, we deduce that both factors are insufficient to induce apoptosis. We propose that the anti-proliferative and apoptotic properties of HNF4alpha may be an essential feature impaired in MODY1 and possibly also in type 2 diabetes.
Collapse
Affiliation(s)
- Silke Erdmann
- Universitätsklinikum Essen, Institut für Zellbiologie, D-45122 Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Gangaram-Panday ST, Faas MM, de Vos P. Towards stem-cell therapy in the endocrine pancreas. Trends Mol Med 2007; 13:164-73. [PMID: 17307397 DOI: 10.1016/j.molmed.2007.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/18/2007] [Accepted: 02/06/2007] [Indexed: 02/07/2023]
Abstract
Many approaches of stem-cell therapy for the treatment of diabetes have been described. One is the application of stem cells for replacement of nonfunctional islet cells in the native endogenous pancreas; another one is the use of stem cells as an inexhaustible source for islet-cell transplantation. During recent years three types of stem cells have been investigated: embryonic stem cells, bone-marrow-derived stem cells and organ-bound stem cells. We discuss the advantages and limitations of these different cell types. The applicability for the treatment of dysfunction of beta cells in the pancreas has been demonstrated for all three cell types, but more-detailed understanding of the sequence of events during differentiation is required to produce fully functional insulin-producing cells.
Collapse
Affiliation(s)
- Shanti T Gangaram-Panday
- Transplantation Biology and Immunoendocrinology, Section of Medical Biology, Department of Pathology and Laboratory Medicine, University Medical Centre Groningen, Groningen, The Netherlands.
| | | | | |
Collapse
|
187
|
|
188
|
Neumeier M, Sigruener A, Eggenhofer E, Weigert J, Weiss TS, Schaeffler A, Schlitt HJ, Aslanidis C, Piso P, Langmann T, Schmitz G, Schölmerich J, Buechler C. High molecular weight adiponectin reduces apolipoprotein B and E release in human hepatocytes. Biochem Biophys Res Commun 2006; 352:543-8. [PMID: 17129575 DOI: 10.1016/j.bbrc.2006.11.058] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 11/11/2006] [Indexed: 02/06/2023]
Abstract
Low circulating levels of high molecular weight adiponectin (HMW-Apm) have been linked to dyslipidaemia and systemic HMW-Apm negatively correlates with very low density lipoprotein (VLDL), apolipoprotein B (ApoB), and ApoE and is positively associated with ApoA-I. Therefore, it was investigated whether HMW-Apm alters the hepatic synthesis of ApoB, ApoE, and ApoA-I or the activity of the hepatic ATP-binding cassette transporter A1 (ABCA1), as the main determinant of plasma HDL. HMW-Apm reduces hepatic ApoB and ApoE release whereas ABCA1 protein, activity and ApoA-I were not altered. Global gene expression analysis revealed that hepatic nuclear factor 4-alpha (HNF4-alpha) and HNF4-alpha regulated genes like ApoB are downregulated by HMW-Apm and this was confirmed at the mRNA and protein level. Therefore it is concluded that HMW-adiponectin may ameliorate dyslipidaemia by reducing the hepatic release of ApoB and ApoE, whereas ABCA1 function and ApoA-I secretion are not influenced.
Collapse
Affiliation(s)
- Markus Neumeier
- Department of Internal Medicine I, Regensburg University Medical Center, D-93042 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Harries LW. Alternate mRNA processing of the hepatocyte nuclear factor genes and its role in monogenic diabetes. Expert Rev Endocrinol Metab 2006; 1:715-726. [PMID: 30754156 DOI: 10.1586/17446651.1.6.715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Variation in mRNA processing has the capacity to exert fine control over gene expression in most cell types. The hepatic nuclear factor genes, like approximately 74% of the genome, produce multiple transcripts. Hepatic nuclear factor isoforms exhibit both spatial and temporal variation in expression. In this review, the known isoforms of the hepatocyte nuclear factor-1α, hepatocyte nuclear factor-1β and hepatocyte nuclear factor-4α genes are described and their properties are compared. Finally, data are discussed regarding the influence of hepatocyte nuclear factor-1α alternate mRNA processing on the clinical phenotype of maturity-onset diabetes of the young.
Collapse
Affiliation(s)
- Lorna W Harries
- a RCUK Diabetes and Metabolism Academic Fellow, Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
190
|
Shlomai A, Paran N, Shaul Y. PGC-1alpha controls hepatitis B virus through nutritional signals. Proc Natl Acad Sci U S A 2006; 103:16003-8. [PMID: 17043229 PMCID: PMC1635117 DOI: 10.1073/pnas.0607837103] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) is a 3.2-kb DNA virus that replicates preferentially in the liver. Liver-enriched nuclear receptors (NRs) play a major role in the HBV life cycle, operating as essential transcription factors for viral gene expression. Notably, these NRs are also key players in metabolic processes that occur in the liver, serving as central transcription factors for key enzymes of gluconeogenesis, fatty acid beta-oxidation, and ketogenesis. However, the association between these metabolic events and HBV gene expression is poorly understood. Here we show that peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha), a major metabolic regulator and a coactivator of key gluconeogenic genes, robustly coactivates HBV transcription. We further demonstrate that the liver-enriched NR hepatocyte nuclear factor 4alpha that binds HBV plays an important role in this process. Physiologically, we show that a short-term fast that turns on the gluconeogenic program robustly induces HBV gene expression in vivo. This induction is completely reversible by refeeding and depends on PGC-1alpha. We conclude that HBV is tightly regulated by changes in the body's nutritional state through the metabolic regulator PGC-1alpha. Our data provide evidence for nutrition signaling to control viral gene expression and life cycle and thus ascribe to metabolism an important role in virus-host interaction.
Collapse
Affiliation(s)
- Amir Shlomai
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nir Paran
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
191
|
Martínez-Jiménez CP, Gómez-Lechón MJ, Castell JV, Jover R. Underexpressed Coactivators PGC1α AND SRC1 Impair Hepatocyte Nuclear Factor 4α Function and Promote Dedifferentiation in Human Hepatoma Cells. J Biol Chem 2006; 281:29840-9. [PMID: 16891307 DOI: 10.1074/jbc.m604046200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) plays critical roles during liver development and in the transcriptional regulation of many hepatic genes in adult liver. Here we have demonstrated that in human hepatoma HepG2 cells, HNF4alpha is expressed at levels as high as in human liver but its activity on target genes is very low or absent. We have discovered that the low expression of key coactivators (PGC1alpha, SRC1, SRC2, and PCAF) might account for the lack of function of HNF4alpha in HepG2 cells. Among them, PGC1alpha and SRC1 are the two most important HNF4alpha coactivators as revealed by reporter assays with an Apo-CIII promoter construct. Moreover, the expression of these two coactivators was found to be down-regulated in all human hepatomas investigated. Overexpression of SRC1 and PGC1alpha by recombinant adenoviruses led to a significant up-regulation of well characterized HNF4alpha-dependent genes (ApoCIII, ApoAV, PEPCK, AldoB, OTC, and CYP7A1) and forced HepG2 cells toward a more differentiated phenotype as demonstrated by increased ureogenic rate. The positive effect of PGC1alpha was seen to be dependent on HNF4alpha. Finally, insulin treatment of human hepatocytes and HepG2 cells caused repression of PGC1alpha and a concomitant down-regulation of ApoCIII, PEPCK, AldoB, and OTC. Altogether, our results suggest that SRC1, and notably PGC1alpha, are key coactivators for the proper function of HNF4alpha in human liver and for an integrative control of multiple hepatic genes involved in metabolism and homeostasis. The down-regulation of key HNF4alpha coactivators could be a determinant factor for the dedifferentiation of human hepatomas.
Collapse
Affiliation(s)
- Celia P Martínez-Jiménez
- Unidad de Hepatología Experimental, Centro de Investigación, Hospital Universitario La Fe, 46009 Valencia, Spain
| | | | | | | |
Collapse
|
192
|
Palanker L, Necakov AS, Sampson HM, Ni R, Hu C, Thummel CS, Krause HM. Dynamic regulation of Drosophila nuclear receptor activity in vivo. Development 2006; 133:3549-62. [PMID: 16914501 PMCID: PMC2100403 DOI: 10.1242/dev.02512] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nuclear receptors are a large family of transcription factors that play major roles in development, metamorphosis, metabolism and disease. To determine how, where and when nuclear receptors are regulated by small chemical ligands and/or protein partners, we have used a 'ligand sensor' system to visualize spatial activity patterns for each of the 18 Drosophila nuclear receptors in live developing animals. Transgenic lines were established that express the ligand binding domain of each nuclear receptor fused to the DNA-binding domain of yeast GAL4. When combined with a GAL4-responsive reporter gene, the fusion proteins show tissue- and stage-specific patterns of activation. We show that these responses accurately reflect the presence of endogenous and exogenously added hormone, and that they can be modulated by nuclear receptor partner proteins. The amnioserosa, yolk, midgut and fat body, which play major roles in lipid storage, metabolism and developmental timing, were identified as frequent sites of nuclear receptor activity. We also see dynamic changes in activation that are indicative of sweeping changes in ligand and/or co-factor production. The screening of a small compound library using this system identified the angular psoralen angelicin and the insect growth regulator fenoxycarb as activators of the Ultraspiracle (USP) ligand-binding domain. These results demonstrate the utility of this system for the functional dissection of nuclear receptor pathways and for the development of new receptor agonists and antagonists that can be used to modulate metabolism and disease and to develop more effective means of insect control.
Collapse
Affiliation(s)
- Laura Palanker
- Department of Human Genetics, Howard Hughes Medical Institute, University of Utah School of Medicine, 15 N 2030 E Room 5100, Salt Lake City, UT 84112-5331, USA
| | - Aleksandar S. Necakov
- Banting and Best Department of Medical Research, Graduate Department of Molecular and Medical Genetics, University of Toronto, Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Heidi M. Sampson
- Banting and Best Department of Medical Research, Graduate Department of Molecular and Medical Genetics, University of Toronto, Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Ruoyu Ni
- Banting and Best Department of Medical Research, Graduate Department of Molecular and Medical Genetics, University of Toronto, Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Chun Hu
- Banting and Best Department of Medical Research, Graduate Department of Molecular and Medical Genetics, University of Toronto, Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Carl S. Thummel
- Department of Human Genetics, Howard Hughes Medical Institute, University of Utah School of Medicine, 15 N 2030 E Room 5100, Salt Lake City, UT 84112-5331, USA
| | - Henry M. Krause
- Banting and Best Department of Medical Research, Graduate Department of Molecular and Medical Genetics, University of Toronto, Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
- Author for correspondence (e-mail: )
| |
Collapse
|
193
|
Chen S, Saiyin H, Zeng X, Xi J, Liu X, Li X, Yu L. Isolation and functional analysis of human HMBOX1, a homeobox containing protein with transcriptional repressor activity. Cytogenet Genome Res 2006; 114:131-6. [PMID: 16825764 DOI: 10.1159/000093328] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2005] [Accepted: 10/26/2005] [Indexed: 12/17/2022] Open
Abstract
We have identified and isolated a novel human gene, HMBOX1 (homeobox containing 1) from a pancreatic cDNA library. Human HMBOX1 is widely expressed in 18 tissues, and it is highly expressed in pancreas. According to the genome database, HMBOX1 is located at the boundary of 8p12.3 and 8p21.1. HMBOX1 proteins are highly conserved in human, mouse, rat, chicken and Xenopus laevis. A phylogenetic tree shows that HMBOX1 may represent a distinct group in HNF (Hepatocyte Nuclear Factor) transcriptional factors. Functional HMBOX1::EGFP (enhanced green fluorescent protein) fusion protein revealed that HMBOX1 accumulated more in cytoplasm than in nucleus. Co-transfection of HEK-293T cells with pM-HMBOX1 plasmid and reporter plasmid pGAL4(5)tkLUC indicates that HMBOX1 is a transcription repressor. In situ hybridization on paraffin sections of mouse tissues demonstrated that Hmbox1 is widely expressed in pancreas and the expression of this gene can also be detected in pallium, hippocampus and hypothalamus.
Collapse
Affiliation(s)
- S Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
194
|
Andrulionyte L, Laukkanen O, Chiasson JL, Laakso M. Single nucleotide polymorphisms of the HNF4alpha gene are associated with the conversion to type 2 diabetes mellitus: the STOP-NIDDM trial. J Mol Med (Berl) 2006; 84:701-8. [PMID: 16838170 DOI: 10.1007/s00109-006-0063-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 02/22/2006] [Indexed: 10/24/2022]
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) is a transcription factor, which is necessary for normal function of human liver and pancreatic islets. We investigated whether single nucleotide polymorphisms (SNPs) of HNF4A, encoding HNF4alpha, influenced the conversion from impaired glucose tolerance (IGT) to type 2 diabetes mellitus in subjects of the STOP-NIDDM trial. This trial aimed at evaluating the effect of acarbose compared to placebo in the prevention of type 2 diabetes mellitus. Eight SNPs covering the intragenic and alternate P2 promoter regions of HNF4A were genotyped in study samples using the TaqMan Allelic Discrimination Assays. Three SNPs in the P2 promoter region (rs4810424, rs1884614, and rs2144908) were in almost complete association (D'>0.97, r (2)>0.95) and, therefore, only rs4810424 was included in further analyses. Female carriers of the less frequent C allele of rs4810424 had a 1.7-fold elevated risk [95% confidence interval (CI) 1.09-2.66; P=0.020] for the conversion to diabetes compared to women with the common genotype after the adjustment for age, treatment group (placebo or acarbose), smoking, weight at baseline, and weight change. No association was found in men. Haplotype analysis based on three SNPs (rs4810424, rs2071197, and rs3818247) representing the linkage disequilibrium blocks in our study population indicated that the conversion to type 2 diabetes mellitus was dependent on the number of risk alleles in different haplotypes in women. Our results suggest that SNPs of HNF4A and their haplotypes predispose to type 2 diabetes mellitus in female subjects of the STOP-NIDDM study population.
Collapse
|
195
|
Park SH, Wiwi C, Waxman D. Signalling cross-talk between hepatocyte nuclear factor 4alpha and growth-hormone-activated STAT5b. Biochem J 2006; 397:159-68. [PMID: 16584384 PMCID: PMC1479742 DOI: 10.1042/bj20060332] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, we have characterized signalling cross-talk between STAT5b (signal transducer and activator of transcription 5b) and HNF4alpha (hepatocyte nuclear factor 4alpha), two major regulators of sex-dependent gene expression in the liver. In a HepG2 liver cell model, HNF4alpha strongly inhibited beta-casein and ntcp (Na+/taurocholate cotransporting polypeptide) promoter activity stimulated by GH (growth hormone)-activated STAT5b, but had no effect on interferon-gamma-stimulated STAT1 transcriptional activity. By contrast, STAT5b synergistically enhanced the transcriptional activity of HNF4alpha towards the ApoCIII (apolipoprotein CIII) promoter. The inhibitory effect of HNF4alpha on STAT5b transcription was associated with the inhibition of GH-stimulated STAT5b tyrosine phosphorylation and nuclear translocation. The short-chain fatty acid, butyrate, reversed STAT5b transcriptional inhibition by HNF4alpha, but did not reverse the inhibition of STAT5b tyrosine phosphorylation. HNF4alpha inhibition of STAT5b tyrosine phosphorylation was not reversed by pervanadate or by dominant-negative phosphotyrosine phosphatase 1B, suggesting that it does not result from an increase in STAT5b dephosphorylation. Rather, HNF4alpha blocked GH-stimulated tyrosine phosphorylation of JAK2 (Janus kinase 2), a STAT5b tyrosine kinase. Thus STAT5b and HNF4alpha exhibit bi-directional cross-talk that may augment HNF4alpha-dependent gene transcription while inhibiting STAT5b transcriptional activity via the inhibitory effects of HNF4alpha on JAK2 phosphorylation, which leads to inhibition of STAT5b signalling initiated by the GH receptor at the cell surface.
Collapse
Affiliation(s)
- Soo-Hee Park
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, MA 02215, U.S.A
| | - Christopher A. Wiwi
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, MA 02215, U.S.A
| | - David J. Waxman
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, MA 02215, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
196
|
Trajkovski M, Mziaut H, Schwarz PE, Solimena M. Genes of type 2 diabetes in beta cells. Endocrinol Metab Clin North Am 2006; 35:357-69, x. [PMID: 16632098 DOI: 10.1016/j.ecl.2006.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Type 2 diabetes is a complex polygenic metabolic disorder of epidemic proportions. This review provides a brief overview of the susceptibility genes in type 2 diabetes that primarily affect pancreatic 3 cells, with emphasis on their function and most relevant polymorphisms. We focus on calpain 10, the only susceptibility gene identified thus far through a positional cloning approach in subjects with diabetes.
Collapse
Affiliation(s)
- Mirko Trajkovski
- Experimental Diabetology, Carl Gustav Carus Medical School, Dresden University of Technology, Fetscherstrasse 74, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
197
|
Abstract
Most valuable breakthroughs in the genetics of type 2 diabetes mellitus have arisen from familial linkage analysis of maturity-onset diabetes of the young, an autosomal dominant form of diabetes typically occurring before 25 years of age and caused by primary insulin-secretion defects. Despite its low prevalence, MODY is not a single entity but presents genetic, metabolic, and clinical heterogeneity. MODY can result from mutations in at least six different genes;one encodes the glycolytic enzyme glucokinase, which is an important glucose sensor, whereas all the others encode transcription factors that participate in a regulatory network essential for adult beta cell function. Additional genes, yet unidentified, may explain the other MODY cases unlinked to a mutation in the known genes.
Collapse
Affiliation(s)
- Martine Vaxillaire
- CNRS UMR8090 Unit, Institute of Biology and Pasteur Institute of Lille, 1 rue du Professeur Calmette BP 245 59019, Lille, France.
| | | |
Collapse
|
198
|
Hara K, Horikoshi M, Kitazato H, Ito C, Noda M, Ohashi J, Froguel P, Tokunaga K, Tobe K, Nagai R, Kadowaki T. Hepatocyte nuclear factor-4alpha P2 promoter haplotypes are associated with type 2 diabetes in the Japanese population. Diabetes 2006; 55:1260-4. [PMID: 16644680 DOI: 10.2337/db05-0620] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hepatocyte nuclear factor (HNF)-4alpha is a transcription factor known as a key molecule in the development and functions of the beta-cells. In a previously performed genome-wide scan of Japanese type 2 diabetic sibpairs, we observed linkage of type 2 diabetes to chromosome 20q12-q13, a region in which the HNF4A gene is located. Recent studies have reported associations between type 2 diabetes and polymorphisms in the P2 promoter region specific to beta-cells. In this study, we attempted to assess whether the HNF4A gene plays a role in the genetic susceptibility to type 2 diabetes in the Japanese population by analyzing polymorphisms and haplotypes of the HNF4A gene. Linkage disequilibrium across the P2 promoter region was preserved in the Japanese population, consistent with previous reports. Although none of the individual polymorphisms examined showed any significant association with type 2 diabetes, we found very strong evidence of the association between type 2 diabetes and the haplotype consisting of two polymorphisms in the P2 promoter region of the HNF4A gene (P = 3.82 x 10(-4)). In contrast, there was no association between type 2 diabetes and haplotypes consisting of polymorphisms not located in the P2 promoter region, suggesting that the type 2 diabetes susceptibility loci are localized in the P2 promoter region of the HNF4A gene. The association was replicated using two additional cohorts (P = 1.51 x 10(-4) and 0.019, respectively). The results of the present analysis revealed that the HNF4A gene might be a type 2 diabetes susceptibility gene common to different ethnic groups. The study also suggested the possible existence of an as-yet-unidentified but functional polymorphism in the P2 promoter region of the HNF4A gene that directly influences susceptibility to type 2 diabetes.
Collapse
Affiliation(s)
- Kazuo Hara
- Department of Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Garrison WD, Battle MA, Yang C, Kaestner KH, Sladek FM, Duncan SA. Hepatocyte nuclear factor 4alpha is essential for embryonic development of the mouse colon. Gastroenterology 2006; 130:1207-20. [PMID: 16618389 PMCID: PMC3581272 DOI: 10.1053/j.gastro.2006.01.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 12/14/2005] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Hepatocyte nuclear factor 4 alpha (HNF4alpha) is a transcription factor that has been shown to be required for hepatocyte differentiation and development of the liver. It has also been implicated in regulating expression of genes that act in the epithelium of the lower gastrointestinal tract. This implied that HNF4alpha might be required for development of the gut. METHODS Mouse embryos were generated in which Hnf4a was ablated in the epithelial cells of the fetal colon by using Cre-loxP technology. Embryos were examined by using a combination of histology, immunohistochemistry, DNA microarray, reverse-transcription polymerase chain reaction, electrophoretic mobility shift assays, and chromatin immunoprecipitation analyses to define the consequences of loss of HNF4alpha on colon development. RESULTS Embryos were recovered at E18.5 that lacked HNF4alpha in their colons. Although early stages of colonic development occurred, HNF4alpha-null colons failed to form normal crypts. In addition, goblet-cell maturation was perturbed and expression of an array of genes that encode proteins with diverse roles in colon function was disrupted. Several genes whose expression in the colon was dependent on HNF4alpha contained HNF4alpha-binding sites within putative transcriptional regulatory regions and a subset of these sites were occupied by HNF4alpha in vivo. CONCLUSIONS HNF4alpha is a transcription factor that is essential for development of the mammalian colon, regulates goblet-cell maturation, and is required for expression of genes that control normal colon function and epithelial cell differentiation.
Collapse
Affiliation(s)
- Wendy D. Garrison
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michele A. Battle
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Chuhu Yang
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania Medical School, Philadelphia, Pennsylvania
| | - Frances M. Sladek
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| | - Stephen A. Duncan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
200
|
Bohnsack BL, Lai L, Northrop JL, Justice MJ, Hirschi KK. Visceral endoderm function is regulated byquaking and required for vascular development. Genesis 2006; 44:93-104. [PMID: 16470614 DOI: 10.1002/gene.20189] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The quaking (qkI) gene produces three major alternatively spliced variants (qkI-5,-6,-7) that encode for proteins that share the RNA binding, KH domain. Previous studies utilizing the qk(k2) allele, which contains an N-ethyl-N-nitrosourea (ENU)-induced point mutation in the KH domain, demonstrate that this functional region of qkI is required for embryonic vascular development. In the current studies we demonstrate that qk(l-1)/qk(l-1) mutants, which lack the QKI-5 splice variant, also died at midgestation due to vascular remodeling defects. In addition, although all three QKI isoforms were expressed in the visceral endoderm of wildtype yolk sacs, qkI-6 and qkI-7 transcript and protein expression were suppressed in qk(k2)/qk(k2) and qk(l-1)/qk(l-1) mutant yolk sacs, suggesting that the KH-domain of QKI-5 was required for qkI-6 and qkI-7 expression. Further studies revealed that the cellular role of qkI is to regulate visceral endoderm function, including the local synthesis of retinoic acid (RA) and the subsequent control of endothelial cell proliferation, matrix production, and visceral endoderm survival. Although these defects were rescued by exogenous RA, visceral endoderm function or vascular remodeling were not restored. Thus, we conclude that qkI regulates visceral endoderm function, which is critical for vascular remodeling.
Collapse
Affiliation(s)
- Brenda L Bohnsack
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|