151
|
Uskudar-Guclu A, Unlu S, Salih-Dogan H, Yalcin S, Basustaoglu A. Biological and genomic characteristics of three novel bacteriophages and a phage-plasmid of Klebsiella pneumoniae. Can J Microbiol 2024; 70:213-225. [PMID: 38447122 DOI: 10.1139/cjm-2023-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Bacteriophages have emerged as promising candidates for the treatment of difficult-to-treat bacterial infections. The aim of this study is to isolate and characterize phages infecting carbapenem-resistant and extended-spectrum beta-lactamase producer Klebsiella pneumoniae isolates. Water samples were taken for the isolation of bacteriophages. One-step growth curve, the optimal multiplicity of infection (MOI), thermal and pH stabilities, transmission electron microscopy and whole-genome sequencing of phages were studied. Four phages were isolated and named Klebsiella phage Kpn02, Kpn17, Kpn74, and Kpn13. The optimal MOI and latent periods of phage Kpn02, Kpn17, Kpn74, and Kpn13 were 10, 1, 0.001, and 100 PFU/CFU and 20, 10, 20, and 30 min, respectively. Burst sizes ranged from 811 to 2363. No known antibiotic resistance and virulence genes were identified. No tRNAs were detected except Klebsiella phage Kpn02 which encodes 24 tRNAs. Interestingly, Klebsiella phage Kpn74 was predicted to be a lysogenic phage whose prophage is a linear plasmid molecule with covalently closed ends. Of the Klebsiella-infecting phages presented in current study, virulent phages suggest that they may represent candidate therapeutic agents against MDR K. pneumoniae, based on short latent period, high burst sizes and no known antibiotic resistance and virulence genes in their genomes.
Collapse
Affiliation(s)
- Aylin Uskudar-Guclu
- Baskent University, Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkiye
| | - Sezin Unlu
- Baskent University, Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkiye
| | - Hanife Salih-Dogan
- Aydin Adnan Menderes University, Recombinant DNA and Recombinant Protein Research Center (REDPROM), Aydin, Turkiye
| | - Suleyman Yalcin
- Ministry of Health General Directorate of Public Health, Microbiology References Laboratory, Ankara, Turkiye
| | - Ahmet Basustaoglu
- Baskent University, Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkiye
| |
Collapse
|
152
|
Ridgway R, Lu H, Blower TR, Evans NJ, Ainsworth S. Genomic and taxonomic evaluation of 38 Treponema prophage sequences. BMC Genomics 2024; 25:549. [PMID: 38824509 PMCID: PMC11144348 DOI: 10.1186/s12864-024-10461-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Despite Spirochetales being a ubiquitous and medically important order of bacteria infecting both humans and animals, there is extremely limited information regarding their bacteriophages. Of the genus Treponema, there is just a single reported characterised prophage. RESULTS We applied a bioinformatic approach on 24 previously published Treponema genomes to identify and characterise putative treponemal prophages. Thirteen of the genomes did not contain any detectable prophage regions. The remaining eleven contained 38 prophage sequences, with between one and eight putative prophages in each bacterial genome. The prophage regions ranged from 12.4 to 75.1 kb, with between 27 and 171 protein coding sequences. Phylogenetic analysis revealed that 24 of the prophages formed three distinct sequence clusters, identifying putative myoviral and siphoviral morphology. ViPTree analysis demonstrated that the identified sequences were novel when compared to known double stranded DNA bacteriophage genomes. CONCLUSIONS In this study, we have started to address the knowledge gap on treponeme bacteriophages by characterising 38 prophage sequences in 24 treponeme genomes. Using bioinformatic approaches, we have been able to identify and compare the prophage-like elements with respect to other bacteriophages, their gene content, and their potential to be a functional and inducible bacteriophage, which in turn can help focus our attention on specific prophages to investigate further.
Collapse
Affiliation(s)
- Rachel Ridgway
- Department of Infection Biology and Microbiomes, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK.
| | - Hanshuo Lu
- Department of Infection Biology and Microbiomes, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7BE, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Nicholas James Evans
- Department of Infection Biology and Microbiomes, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK
| | - Stuart Ainsworth
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| |
Collapse
|
153
|
Zhu X, Tang L, Wang Z, Xie F, Zhang W, Li Y. A comparative analysis of phage classification methods in light of the recent ICTV taxonomic revisions. Virology 2024; 594:110016. [PMID: 38461619 DOI: 10.1016/j.virol.2024.110016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 03/12/2024]
Abstract
Recent ICTV taxonomy updates significantly changed phage taxonomy, yet a thorough phage classification workflow doesn't exist. This study compares six categorization tools and establishes a novel multi-method approach, combining genome similarity and specialized protein analysis. Applying the method to APEC phage P151 showed consistent categorization across platforms. A possible workflow for phage classification is proposed; offering a versatile tool for phage research and development.
Collapse
Affiliation(s)
- Xihui Zhu
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China; College of Animal Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Luqi Tang
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China; College of Animal Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhiwei Wang
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Feng Xie
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China; College of Animal Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wei Zhang
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China; College of Animal Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Yubao Li
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China.
| |
Collapse
|
154
|
Zhang Y, Chu M, Liao YT, Salvador A, Wu VCH. Characterization of two novel Salmonella phages having biocontrol potential against Salmonella spp. in gastrointestinal conditions. Sci Rep 2024; 14:12294. [PMID: 38811648 PMCID: PMC11137056 DOI: 10.1038/s41598-024-59502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/11/2024] [Indexed: 05/31/2024] Open
Abstract
Salmonella is a primary enteric pathogen related to the contamination of poultry and other food products in numerous foodborne outbreaks. The continuous emergence of multidrug-resistant bacteria has become a serious issue due to the overuse of antibiotics. Hence, lytic phages are considered alternative biocontrol agents against these bacterial superbugs. Here, two Salmonella phages-S4lw and D5lw-were subjected to genomic and biological characterization and further encapsulated to improve the stability under acidic conditions mimicking gastrointestinal conditions. The two lytic phages, S4lw and D5lw, taxonomically belong to new species under the Guernseyvirinae and Ackermannviridae families, respectively. Each phage showed antimicrobial activities against diverse Salmonella spp., such as S. Enteritidis and S. Typhimurium, achieving 1.7-3.4 log reduction after 2-6 h of treatment. The phage cocktail at a multiplicity of infection (MOI) of 100 or 1000 completely inhibited these Salmonella strains for at least 14 h at 25 °C. Additionally, the bead-encapsulated phage cocktail could withstand low pH and different simulated gut environments for at least 1 h. Overall, the newly isolated phages can potentially mitigate Salmonella spp. under the gastrointestinal environments through encapsulation and may be further applied via oral administration to resolve common antimicrobial resistance issues in the poultry production chain.
Collapse
Affiliation(s)
- Yujie Zhang
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Mackenna Chu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Yen-Te Liao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA.
| |
Collapse
|
155
|
Shymialevich D, Błażejak S, Średnicka P, Cieślak H, Ostrowska A, Sokołowska B, Wójcicki M. Biological Characterization and Genomic Analysis of Three Novel Serratia- and Enterobacter-Specific Virulent Phages. Int J Mol Sci 2024; 25:5944. [PMID: 38892136 PMCID: PMC11172527 DOI: 10.3390/ijms25115944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Due to the high microbiological contamination of raw food materials and the increase in the incidence of multidrug-resistant bacteria, new methods of ensuring microbiological food safety are being sought. One solution may be to use bacteriophages (so-called phages) as natural bacterial enemies. Therefore, the aim of this study was the biological and genomic characterization of three newly isolated Serratia- and Enterobacter-specific virulent bacteriophages as potential candidates for food biocontrol. Serratia phage KKP_3708 (vB_Sli-IAFB_3708), Serratia phage KKP_3709 (vB_Sma-IAFB_3709), and Enterobacter phage KKP_3711 (vB_Ecl-IAFB_3711) were isolated from municipal sewage against Serratia liquefaciens strain KKP 3654, Serratia marcescens strain KKP 3687, and Enterobacter cloacae strain KKP 3684, respectively. The effect of phage addition at different multiplicity of infection (MOI) rates on the growth kinetics of the bacterial hosts was determined using a Bioscreen C Pro growth analyzer. The phages retained high activity in a wide temperature range (from -20 °C to 60 °C) and active acidity values (pH from 3 to 12). Based on transmission electron microscopy (TEM) imaging and whole-genome sequencing (WGS), the isolated bacteriophages belong to the tailed bacteriophages from the Caudoviricetes class. Genomic analysis revealed that the phages have linear double-stranded DNA of size 40,461 bp (Serratia phage KKP_3708), 67,890 bp (Serratia phage KKP_3709), and 113,711 bp (Enterobacter phage KKP_3711). No virulence, toxins, or antibiotic resistance genes were detected in the phage genomes. The lack of lysogenic markers indicates that all three bacteriophages may be potential candidates for food biocontrol.
Collapse
Affiliation(s)
- Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (D.S.); (H.C.)
| | - Stanisław Błażejak
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS–SGGW), Nowoursynowska 166 Str., 02-776 Warsaw, Poland;
| | - Paulina Średnicka
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland;
| | - Hanna Cieślak
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (D.S.); (H.C.)
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS–SGGW), Ciszewskiego 8 Str., 02-786 Warsaw, Poland;
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland;
| | - Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland;
| |
Collapse
|
156
|
Sabri M, El Handi K, Cara O, De Stradis A, Valentini F, Elbeaino T. Xylella phage MATE 2: a novel bacteriophage with potent lytic activity against Xylella fastidiosa subsp. pauca. Front Microbiol 2024; 15:1412650. [PMID: 38863752 PMCID: PMC11165191 DOI: 10.3389/fmicb.2024.1412650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Xylella fastidiosa (Xf) is a major phytosanitary threat to global agricultural production. The complexity and difficulty of controlling Xf underscore the pressing need for novel antibacterial agents, i.e., bacteriophages, which are natural predators of bacteria. In this study, a novel lytic bacteriophage of Xf subsp. pauca, namely Xylella phage MATE 2 (MATE 2), was isolated from sewage water in southern Italy. Biological characterization showed that MATE 2 possessed a broad-spectrum of antibacterial activity against various phytobacteria within the family Xanthomonadaceae, a rapid adsorption time (10 min), and high resistance to a broad range of pH (4-10) and temperatures (4-60°C). Most importantly, MATE 2 was able to suppress the growth of Xf subsp. pauca cells in liquid culture for 7 days, demonstrating its potential as an effective antibacterial agent against Xf. The genomic and electron microscopy analyses revealed that MATE 2 is a new species tentatively belonging to the genus Carpasinavirus within the class Caudoviricetes, with an isometric capsid head of 60 ± 5 nm along with a contractile tail of 120 ± 7.5 nm. Furthermore, the high-throughput sequencing and de novo assembly generated a single contig of 63,695 nucleotides in length; representing a complete genome composed of 95 Open Reading Frames. Bioinformatics analysis performed on MATE 2 genome revealed the absence of lysogenic mediated genes, and genes encoding virulence factors, antibiotic resistance, and toxins. This study adds a new phage to the very short list of Xf-infecting lytic phages, whose in-vitro antibacterial activity has been ascertained, while its efficacy on Xf-infected olive trees in the field has yet to be determined.
Collapse
Affiliation(s)
- Miloud Sabri
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Valenzano, Italy
| | - Kaoutar El Handi
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Valenzano, Italy
| | - Orges Cara
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Valenzano, Italy
- Department of Soil, Plant and Food Science, University of Bari, Bari, Italy
| | - Angelo De Stradis
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), University of Bari, Bari, Italy
| | - Franco Valentini
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Valenzano, Italy
| | - Toufic Elbeaino
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Valenzano, Italy
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Portici, Italy
| |
Collapse
|
157
|
Barno AR, Green K, Rohwer F, Silveira CB. Snow viruses and their implications on red snow algal blooms. mSystems 2024; 9:e0008324. [PMID: 38647296 PMCID: PMC11097641 DOI: 10.1128/msystems.00083-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024] Open
Abstract
Algal blooms can give snowmelt a red color, reducing snow albedo and creating a runaway effect that accelerates snow melting. The occurrence of red snow is predicted to grow in polar and subpolar regions with increasing global temperatures. We hypothesize that these algal blooms affect virus-bacteria interactions in snow, with potential effects on snowmelt dynamics. A genomic analysis of double-stranded DNA virus communities in red and white snow from the Whistler region of British Columbia, Canada, identified 792 putative viruses infecting bacteria. The most abundant putative snow viruses displayed low genomic similarity with known viruses. We recovered the complete circular genomes of nine putative viruses, two of which were classified as temperate. Putative snow viruses encoded genes involved in energy metabolisms, such as NAD+ synthesis and salvage pathways. In model phages, these genes facilitate increased viral particle production and lysis rates. The frequency of temperate phages was positively correlated with microbial abundance in the snow samples. These results suggest the increased frequency of temperate virus-bacteria interactions as microbial densities increase during snowmelt. We propose that this virus-bacteria dynamic may facilitate the red snow algae growth stimulated by bacteria.IMPORTANCEMicrobial communities in red snow algal blooms contribute to intensifying snowmelt rates. The role of viruses in snow during this environmental shift, however, has yet to be elucidated. Here, we characterize novel viruses extracted from snow viral metagenomes and define the functional capacities of snow viruses in both white and red snow. These results are contextualized using the composition and functions observed in the bacterial communities from the same snow samples. Together, these data demonstrate the energy metabolism performed by viruses and bacteria in a snow algal bloom, as well as expand the overall knowledge of viral genomes in extreme environments.
Collapse
Affiliation(s)
- Adam R. Barno
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kevin Green
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | | |
Collapse
|
158
|
An N, Wu Q, Fang Z, Xiang L, Liu Q, Tan L, Weng Q. Genome analysis and classification of Xanthomonas bacteriophage AhaSv, a new member of the genus Salvovirus. Arch Virol 2024; 169:117. [PMID: 38739272 DOI: 10.1007/s00705-024-06047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Xanthomonas phage AhaSv was isolated from lake water. Genome sequencing showed that its genome is a linear dsDNA molecule with a length of 55,576 bp and a G+C content of 63.23%. Seventy-one open reading frames (ORFs) were predicted, and no tRNAs were found in the genome. Phylogenetic analysis showed that AhaSv is closely related to members of the genus Salvovirus of the family Casjensviridae. Intergenomic similarity values between phage AhaSv and homologous phages were up to 90.6%, suggesting that phage AhaSv should be considered a member of a new species in the genus Salvovirus.
Collapse
Affiliation(s)
- Ni An
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Qingshan Wu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Zheng Fang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Lan Xiang
- Qiannan Normal College for Nationalities, Duyun, 558000, People's Republic of China
| | - Qiuping Liu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Leitao Tan
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Qingbei Weng
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China.
- Qiannan Normal College for Nationalities, Duyun, 558000, People's Republic of China.
| |
Collapse
|
159
|
Li P, Guo G, Zheng X, Xu S, Zhou Y, Qin X, Hu Z, Yu Y, Tan Z, Ma J, Chen L, Zhang W. Therapeutic efficacy of a K5-specific phage and depolymerase against Klebsiella pneumoniae in a mouse model of infection. Vet Res 2024; 55:59. [PMID: 38715095 PMCID: PMC11077817 DOI: 10.1186/s13567-024-01311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/14/2024] [Indexed: 05/12/2024] Open
Abstract
Klebsiella pneumoniae has become one of the most intractable gram-negative pathogens infecting humans and animals due to its severe antibiotic resistance. Bacteriophages and protein products derived from them are receiving increasing amounts of attention as potential alternatives to antibiotics. In this study, we isolated and investigated the characteristics of a new lytic phage, P1011, which lyses K5 K. pneumoniae specifically among 26 serotypes. The K5-specific capsular polysaccharide-degrading depolymerase dep1011 was identified and expressed. By establishing murine infection models using bovine strain B16 (capable of supporting phage proliferation) and human strain KP181 (incapable of sustaining phage expansion), we explored the safety and efficacy of phage and dep1011 treatments against K5 K. pneumoniae. Phage P1011 resulted in a 60% survival rate of the mice challenged with K. pneumoniae supporting phage multiplication, concurrently lowering the bacterial burden in their blood, liver, and lungs. Unexpectedly, even when confronted with bacteria impervious to phage multiplication, phage therapy markedly decreased the number of viable organisms. The protective efficacy of the depolymerase was significantly better than that of the phage. The depolymerase achieved 100% survival in both treatment groups regardless of phage propagation compatibility. These findings indicated that P1011 and dep1011 might be used as potential antibacterial agents to control K5 K. pneumoniae infection.
Collapse
Affiliation(s)
- Pei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China
| | - Genglin Guo
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai, China
| | - Xiangkuan Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China
| | - Sixiang Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China
| | - Yu Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China
| | - Xiayan Qin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Zimeng Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China
| | - Yanfei Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Zhongming Tan
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210014, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Long Chen
- Department of Clinical Laboratory, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, 215600, China.
| | - Wei Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China.
| |
Collapse
|
160
|
Tominaga K, Ozaki S, Sato S, Katayama T, Nishimura Y, Omae K, Iwasaki W. Frequent nonhomologous replacement of replicative helicase loaders by viruses in Vibrionaceae. Proc Natl Acad Sci U S A 2024; 121:e2317954121. [PMID: 38683976 PMCID: PMC11087808 DOI: 10.1073/pnas.2317954121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/14/2024] [Indexed: 05/02/2024] Open
Abstract
Several microbial genomes lack textbook-defined essential genes. If an essential gene is absent from a genome, then an evolutionarily independent gene of unknown function complements its function. Here, we identified frequent nonhomologous replacement of an essential component of DNA replication initiation, a replicative helicase loader gene, in Vibrionaceae. Our analysis of Vibrionaceae genomes revealed two genes with unknown function, named vdhL1 and vdhL2, that were substantially enriched in genomes without the known helicase-loader genes. These genes showed no sequence similarities to genes with known function but encoded proteins structurally similar with a viral helicase loader. Analyses of genomic syntenies and coevolution with helicase genes suggested that vdhL1/2 encodes a helicase loader. The in vitro assay showed that Vibrio harveyi VdhL1 and Vibrio ezurae VdhL2 promote the helicase activity of DnaB. Furthermore, molecular phylogenetics suggested that vdhL1/2 were derived from phages and replaced an intrinsic helicase loader gene of Vibrionaceae over 20 times. This high replacement frequency implies the host's advantage in acquiring a viral helicase loader gene.
Collapse
Affiliation(s)
- Kento Tominaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
| | - Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Shohei Sato
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Yuki Nishimura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
| | - Kimiho Omae
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba277-8564, Japan
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo113-0032, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo113-8657, Japan
| |
Collapse
|
161
|
Tamura A, Azam AH, Nakamura T, Lee K, Iyoda S, Kondo K, Ojima S, Chihara K, Yamashita W, Cui L, Akeda Y, Watashi K, Takahashi Y, Yotsuyanagi H, Kiga K. Synthetic phage-based approach for sensitive and specific detection of Escherichia coli O157. Commun Biol 2024; 7:535. [PMID: 38710842 PMCID: PMC11074155 DOI: 10.1038/s42003-024-06247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Escherichia coli O157 can cause foodborne outbreaks, with infection leading to severe disease such as hemolytic-uremic syndrome. Although phage-based detection methods for E. coli O157 are being explored, research on their specificity with clinical isolates is lacking. Here, we describe an in vitro assembly-based synthesis of vB_Eco4M-7, an O157 antigen-specific phage with a 68-kb genome, and its use as a proof of concept for E. coli O157 detection. Linking the detection tag to the C-terminus of the tail fiber protein, gp27 produces the greatest detection sensitivity of the 20 insertions sites tested. The constructed phage detects all 53 diverse clinical isolates of E. coli O157, clearly distinguishing them from 35 clinical isolates of non-O157 Shiga toxin-producing E. coli. Our efficient phage synthesis methods can be applied to other pathogenic bacteria for a variety of applications, including phage-based detection and phage therapy.
Collapse
Affiliation(s)
- Azumi Tamura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Aa Haeruman Azam
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tomohiro Nakamura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kenichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kohei Kondo
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Shinjiro Ojima
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kotaro Chihara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Wakana Yamashita
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Koichi Watashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kotaro Kiga
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan.
| |
Collapse
|
162
|
Lossouarn J, Beurrier E, Bouteau A, Moncaut E, Sir Silmane M, Portalier H, Zouari A, Cattoir V, Serror P, Petit MA. The virtue of training: extending phage host spectra against vancomycin-resistant Enterococcus faecium strains using the Appelmans method. Antimicrob Agents Chemother 2024; 68:e0143923. [PMID: 38591854 PMCID: PMC11210271 DOI: 10.1128/aac.01439-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Phage therapy has (re)emerged as a serious possibility for combating multidrug-resistant bacterial infections, including those caused by vancomycin-resistant Enterococcus faecium strains. These opportunistic pathogens belong to a specific clonal complex 17, against which relatively few phages have been screened. We isolated a collection of 21 virulent phages growing on these vancomycin-resistant isolates. Each of these phages harbored a typical narrow plaquing host range, lysing at most 5 strains and covering together 10 strains of our panel of 14 clinical isolates. To enlarge the host spectrum of our phages, the Appelmans protocol was used. We mixed four out of our most complementary phages in a cocktail that we iteratively grew on eight naive strains from our panel, of which six were initially refractory to at least three of the combined phages. Fifteen successive passages permitted to significantly improve the lytic activity of the cocktail, from which phages with extended host ranges within the E. faecium species could be isolated. A single evolved phage able to kill up to 10 of the 14 initial E. faecium strains was obtained, and it barely infected nearby species. All evolved phages had acquired point mutations or a recombination event in the tail fiber genetic region, suggesting these genes might have driven phage evolution by contributing to their extended host spectra.
Collapse
Affiliation(s)
- Julien Lossouarn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elsa Beurrier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Astrid Bouteau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elisabeth Moncaut
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Maria Sir Silmane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Heïdi Portalier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Asma Zouari
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière et CNR de la Résistance aux Antibiotiques (laboratoire associé "Entérocoques"), Rennes, France
| | - Vincent Cattoir
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière et CNR de la Résistance aux Antibiotiques (laboratoire associé "Entérocoques"), Rennes, France
- Université de Rennes, INSERM, UMR_S1230 BRM, Rennes, France
| | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
163
|
Cook R, Crisci MA, Pye HV, Telatin A, Adriaenssens EM, Santini JM. Decoding huge phage diversity: a taxonomic classification of Lak megaphages. J Gen Virol 2024; 105. [PMID: 38814706 PMCID: PMC11165621 DOI: 10.1099/jgv.0.001997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
High-throughput sequencing for uncultivated viruses has accelerated the understanding of global viral diversity and uncovered viral genomes substantially larger than any that have so far been cultured. Notably, the Lak phages are an enigmatic group of viruses that present some of the largest known phage genomes identified in human and animal microbiomes, and are dissimilar to any cultivated viruses. Despite the wealth of viral diversity that exists within sequencing datasets, uncultivated viruses have rarely been used for taxonomic classification. We investigated the evolutionary relationships of 23 Lak phages and propose a taxonomy for their classification. Predicted protein analysis revealed the Lak phages formed a deeply branching monophyletic clade within the class Caudoviricetes which contained no other phage genomes. One of the interesting features of this clade is that all current members are characterised by an alternative genetic code. We propose the Lak phages belong to a new order, the 'Grandevirales'. Protein and nucleotide-based analyses support the creation of two families, three sub-families, and four genera within the order 'Grandevirales'. We anticipate that the proposed taxonomy of Lak megaphages will simplify the future classification of related viral genomes as they are uncovered. Continued efforts to classify divergent viruses are crucial to aid common analyses of viral genomes and metagenomes.
Collapse
Affiliation(s)
- Ryan Cook
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Marco A Crisci
- Department of Structural and Molecular Biology, Division of Biosciences, UCL, London, UK
| | - Hannah V Pye
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Andrea Telatin
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Joanne M Santini
- Department of Structural and Molecular Biology, Division of Biosciences, UCL, London, UK
| |
Collapse
|
164
|
Manley R, Fitch C, Francis V, Temperton I, Turner D, Fletcher J, Phil M, Michell S, Temperton B. Resistance to bacteriophage incurs a cost to virulence in drug-resistant Acinetobacter baumannii. J Med Microbiol 2024; 73:001829. [PMID: 38743467 PMCID: PMC11170128 DOI: 10.1099/jmm.0.001829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction . Acinetobacter baumannii is a critical priority pathogen for novel antimicrobials (World Health Organization) because of the rise in nosocomial infections and its ability to evolve resistance to last resort antibiotics. A. baumannii is thus a priority target for phage therapeutics. Two strains of a novel, virulent bacteriophage (LemonAid and Tonic) able to infect carbapenem-resistant A. baumannii (strain NCTC 13420), were isolated from environmental water samples collected through a citizen science programme.Gap statement. Phage-host coevolution can lead to emergence of host resistance, with a concomitant reduction in the virulence of host bacteria; a potential benefit to phage therapy applications.Methodology. In vitro and in vivo assays, genomics and microscopy techniques were used to characterize the phages; determine mechanisms and impact of phage resistance on host virulence, and the efficacy of the phages against A. baumannii.Results. A. baumannii developed resistance to both viruses, LemonAid and Tonic. Resistance came at a cost to virulence, with the resistant variants causing significantly reduced mortality in a Galleria mellonella larval in vivo model. A replicated 8 bp insertion increased in frequency (~40 % higher frequency than in the wild-type) within phage-resistant A. baumannii mutants, putatively resulting in early truncation of a protein of unknown function. Evidence from comparative genomics and an adsorption assay suggests this protein acts as a novel phage receptor site in A. baumannii. We find no evidence linking resistance to changes in capsule structure, a known virulence factor. LemonAid efficiently suppressed growth of A. baumanni in vitro across a wide range of titres. However, in vivo, while survival of A. baumannii infected larvae significantly increased with both remedial and prophylactic treatment with LemonAid (107 p.f.u. ml-1), the effect was weak and not sufficient to save larvae from morbidity and mortality.Conclusion. While LemonAid and Tonic did not prove effective as a treatment in a Galleria larvae model, there is potential to harness their ability to attenuate virulence in drug-resistant A. baumannii.
Collapse
Affiliation(s)
- Robyn Manley
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Christian Fitch
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Vanessa Francis
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Isaac Temperton
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Dann Turner
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Julie Fletcher
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Mitchelmore Phil
- University of Exeter, College of Medicine and Health, Department of Respiratory Medicine, Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Steve Michell
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Ben Temperton
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| |
Collapse
|
165
|
Nair S, Barker CR, Bird M, Greig DR, Collins C, Painset A, Chattaway M, Pickard D, Larkin L, Gharbia S, Didelot X, Ribeca P. Presence of phage-plasmids in multiple serovars of Salmonella enterica. Microb Genom 2024; 10:001247. [PMID: 38717818 PMCID: PMC11165635 DOI: 10.1099/mgen.0.001247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/17/2024] [Indexed: 06/13/2024] Open
Abstract
Evidence is accumulating in the literature that the horizontal spread of antimicrobial resistance (AMR) genes mediated by bacteriophages and bacteriophage-like plasmid (phage-plasmid) elements is much more common than previously envisioned. For instance, we recently identified and characterized a circular P1-like phage-plasmid harbouring a bla CTX-M-15 gene conferring extended-spectrum beta-lactamase (ESBL) resistance in Salmonella enterica serovar Typhi. As the prevalence and epidemiological relevance of such mechanisms has never been systematically assessed in Enterobacterales, in this study we carried out a follow-up retrospective analysis of UK Salmonella isolates previously sequenced as part of routine surveillance protocols between 2016 and 2021. Using a high-throughput bioinformatics pipeline we screened 47 784 isolates for the presence of the P1 lytic replication gene repL, identifying 226 positive isolates from 25 serovars and demonstrating that phage-plasmid elements are more frequent than previously thought. The affinity for phage-plasmids appears highly serovar-dependent, with several serovars being more likely hosts than others; most of the positive isolates (170/226) belonged to S. Typhimurium ST34 and ST19. The phage-plasmids ranged between 85.8 and 98.2 kb in size, with an average length of 92.1 kb; detailed analysis indicated a high amount of diversity in gene content and genomic architecture. In total, 132 phage-plasmids had the p0111 plasmid replication type, and 94 the IncY type; phylogenetic analysis indicated that both horizontal and vertical gene transmission mechanisms are likely to be involved in phage-plasmid propagation. Finally, phage-plasmids were present in isolates that were resistant and non-resistant to antimicrobials. In addition to providing a first comprehensive view of the presence of phage-plasmids in Salmonella, our work highlights the need for a better surveillance and understanding of phage-plasmids as AMR carriers, especially through their characterization with long-read sequencing.
Collapse
Affiliation(s)
| | - Clare R. Barker
- UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Genomics and Enabling Data, University of Warwick, Warwick, UK
| | - Matthew Bird
- UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - David R. Greig
- UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Caitlin Collins
- UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Genomics and Enabling Data, University of Warwick, Warwick, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Marie Chattaway
- UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Genomics and Enabling Data, University of Warwick, Warwick, UK
| | - Derek Pickard
- The Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, UK
| | | | - Saheer Gharbia
- UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Genomics and Enabling Data, University of Warwick, Warwick, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Xavier Didelot
- NIHR Health Protection Research Unit in Genomics and Enabling Data, University of Warwick, Warwick, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
- School of Public Health and Department of Statistics, University of Warwick, Warwick, UK
| | - Paolo Ribeca
- UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Genomics and Enabling Data, University of Warwick, Warwick, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
- Biomathematics and Statistics Scotland, The James Hutton Institute, Edinburgh, UK
| |
Collapse
|
166
|
Sprotte S, Brinks E, Neve H, Franz CM. Complete genome sequence of the novel virulent phage PMBT24 infecting Enterocloster bolteae from the human gut. Heliyon 2024; 10:e28813. [PMID: 38655313 PMCID: PMC11035940 DOI: 10.1016/j.heliyon.2024.e28813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
PMBT24, the first reported virulent bacteriophage infecting the anaerobic human gut bacterium Enterocloster bolteae strain MBT-21, was isolated from a municipal sewage sample and its genome was sequenced and analysed. Transmission electron microscopy revealed a phage with an icosahedral head and a long, non-contractile tail. The circularly permutated, 99,962-bp dsDNA genome of the pac-type phage has a mol% G + C content of 32.1 and comprises 173 putative ORFs. Using amino acid sequence-based phylogeny, phage PMBT24 showed similarity to other, hitherto non-published phage genomes in the databases. Our data suggested phage PMBT24 to present the type phage of a novel genus (proposed name Kielvirus) and novel family of phages (proposed name Kielviridae).
Collapse
Affiliation(s)
- Sabrina Sprotte
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Hermann-Weigmann-Str. 1, 24103, Kiel, Germany
| | - Erik Brinks
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Hermann-Weigmann-Str. 1, 24103, Kiel, Germany
| | | | - Charles M.A.P. Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Hermann-Weigmann-Str. 1, 24103, Kiel, Germany
| |
Collapse
|
167
|
Takebe H, Tominaga K, Isozaki T, Watanabe T, Yamamoto K, Kamikawa R, Yoshida T. Taxonomic difference in marine bloom-forming phytoplanktonic species affects the dynamics of both bloom-responding prokaryotes and prokaryotic viruses. mSystems 2024; 9:e0094923. [PMID: 38441030 PMCID: PMC11019789 DOI: 10.1128/msystems.00949-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
The production of dissolved organic matter during phytoplankton blooms and consumption by heterotrophic prokaryotes promote marine carbon biogeochemical cycling. Although prokaryotic viruses presumably affect this process, their dynamics during blooms are not fully understood. Here, we investigated the effects of taxonomic difference in bloom-forming phytoplankton on prokaryotes and their viruses. We analyzed the dynamics of coastal prokaryotic communities and viruses under the addition of dissolved intracellular fractions from taxonomically distinct phytoplankton, the diatom Chaetoceros sp. (CIF) and the raphidophycean alga Heterosigma akashiwo (HIF), using microcosm experiments. Ribosomal RNA gene amplicon and viral metagenomic analyses revealed that particular prokaryotes and prokaryotic viruses specifically increased in either CIF or HIF, indicating that taxonomic difference in bloom-forming phytoplankton promotes distinct dynamics of not only the prokaryotic community but also prokaryotic viruses. Furthermore, combining our microcosm experiments with publicly available environmental data mining, we identified both known and novel possible host-virus pairs. In particular, the growth of prokaryotes associating with phytoplanktonic organic matter, such as Bacteroidetes (Polaribacter and NS9 marine group), Vibrio spp., and Rhodobacteriales (Nereida and Planktomarina), was accompanied by an increase in viruses predicted to infect Bacteroidetes, Vibrio, and Rhodobacteriales, respectively. Collectively, our findings suggest that changes in bloom-forming species can be followed by an increase in a specific group of prokaryotes and their viruses and that elucidating these tripartite relationships among specific phytoplankton, prokaryotes, and prokaryotic viruses improves our understanding of coastal biogeochemical cycling in blooms.IMPORTANCEThe primary production during marine phytoplankton bloom and the consumption of the produced organic matter by heterotrophic prokaryotes significantly contribute to coastal biogeochemical cycles. While the activities of those heterotrophic prokaryotes are presumably affected by viral infection, the dynamics of their viruses during blooms are not fully understood. In this study, we experimentally demonstrated that intracellular fractions of taxonomically distinct bloom-forming phytoplankton species, the diatom Chaetoceros sp. and the raphidophycean alga Heterosigma akashiwo, promoted the growth of taxonomically different prokaryotes and prokaryotic viruses. Based on their dynamics and predicted hosts of those viruses, we succeeded in detecting already-known and novel possible host-virus pairs associating with either phytoplankton species. Altogether, we propose that the succession of bloom-forming phytoplankton would change the composition of the abundant prokaryotes, resulting in an increase in their viruses. These changes in viral composition, depending on bloom-forming species, would alter the dynamics and metabolism of prokaryotes, affecting biogeochemical cycling in blooms.
Collapse
Affiliation(s)
- Hiroaki Takebe
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kento Tominaga
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | - Keigo Yamamoto
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Osaka, Japan
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
168
|
Turchi B, Campobasso C, Nardinocchi A, Wagemans J, Torracca B, Lood C, Di Giuseppe G, Nieri P, Bertelloni F, Turini L, Ruffo V, Lavigne R, Di Luca M. Isolation and characterization of novel Staphylococcus aureus bacteriophage Hesat from dairy origin. Appl Microbiol Biotechnol 2024; 108:299. [PMID: 38619619 PMCID: PMC11018700 DOI: 10.1007/s00253-024-13129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
A novel temperate phage, named Hesat, was isolated by the incubation of a dairy strain of Staphylococcus aureus belonging to spa-type t127 with either bovine or ovine milk. Hesat represents a new species of temperate phage within the Phietavirus genus of the Azeredovirinae subfamily. Its genome has a length of 43,129 bp and a GC content of 35.11% and contains 75 predicted ORFs, some of which linked to virulence. This includes (i) a pathogenicity island (SaPln2), homologous to the type II toxin-antitoxin system PemK/MazF family toxin; (ii) a DUF3113 protein (gp30) that is putatively involved in the derepression of the global repressor Stl; and (iii) a cluster coding for a PVL. Genomic analysis of the host strain indicates Hesat is a resident prophage. Interestingly, its induction was obtained by exposing the bacterium to milk, while the conventional mitomycin C-based approach failed. The host range of phage Hesat appears to be broad, as it was able to lyse 24 out of 30 tested S. aureus isolates. Furthermore, when tested at high titer (108 PFU/ml), Hesat phage was also able to lyse a Staphylococcus muscae isolate, a coagulase-negative staphylococcal strain. KEY POINTS: • A new phage species was isolated from a Staphylococcus aureus bovine strain. • Pathogenicity island and PVL genes are encoded within phage genome. • The phage is active against most of S. aureus strains from both animal and human origins.
Collapse
Affiliation(s)
- Barbara Turchi
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Claudia Campobasso
- Department of Biology, University of Pisa, Via San Zeno 37, 56127, Pisa, Italy
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Box 2462, 3001, Louvain, Belgium
| | - Arianna Nardinocchi
- Department of Biology, University of Pisa, Via San Zeno 37, 56127, Pisa, Italy
| | - Jeroen Wagemans
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Box 2462, 3001, Louvain, Belgium
| | - Beatrice Torracca
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Cédric Lood
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Box 2462, 3001, Louvain, Belgium
- Department of Microbial and Molecular Systems, Centre for Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium
| | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| | - Fabrizio Bertelloni
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Luca Turini
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Valeria Ruffo
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Box 2462, 3001, Louvain, Belgium
| | - Mariagrazia Di Luca
- Department of Biology, University of Pisa, Via San Zeno 37, 56127, Pisa, Italy.
| |
Collapse
|
169
|
Wang T, Cheng B, Jiao R, Zhang X, Zhang D, Cheng X, Ling N, Ye Y. Characterization of a novel high-efficiency cracking Burkholderia gladiolus phage vB_BglM_WTB and its application in black fungus. Int J Food Microbiol 2024; 414:110615. [PMID: 38325260 DOI: 10.1016/j.ijfoodmicro.2024.110615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Burkholderia gladiolus (B. gladiolus) is foodborne pathogenic bacteria producing bongkrekic acid (BA), which causes food poisoning and has a mortality rate of up to 40 % or more. However, no drugs have been reported in the literature for the prevention and treatment of this infection. In this study, a phage was identified to control B. gladiolus. The novel phage vB_BglM_WTB (WTB), which lyse B. gladiolus with high efficiency, was isolated from sewage of Huaihe Road Throttle Well Sewage Treatment Plant in Hefei. Transmission electron microscopy showed that WTB had an icosahedral head (69 ± 2 nm) and a long retractable tail (108 ± 2 nm). Its optimal temperature and pH ranges to control B. gladiolus were 25 °C -65 °C and 3-11 respectively. The phage WTB was identified as a linear double-stranded DNA phage of 68, 541 bp with 60.04 % G + C content, with a long latent period of 60 min. Phylogenetic analysis and comparative genetic analysis indicated that phage WTB has low identity (<50 %) with other phages, with the highest similarity to Burkholderia phage Maja (25.7 %), which showed that it does not belong to any previous genera recognized by the International Committee on Taxonomy of Viruses (ICTV) and was a candidate for a new genus within the Caudoviricetes. We have submitted a new proposal to ICTV to create a new genus, Bglawtbvirus. No transfer RNA (tRNA), virulence associated and antibiotic resistance genes were detected in phage WTB. Experimental results indicated that WTB at 4 °C and 25 °C had excellent inhibition activity against B. gladiolus in the black fungus, with an inhibition efficiency of over 99 %. The amount of B. gladiolus in the black fungus was reduced to a minimum of 89 CFU/mL when treated by WTB at 25 °C for 2 h. The inhibition rate remained at 99.97 % even after 12 h. The findings showed that the phage WTB could be applied as a food-cleaning agent for enhancing food safety and contributed to our understanding of phage biology and diversity.
Collapse
Affiliation(s)
- Ting Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Bin Cheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Jiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiyan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Diwei Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiangyu Cheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Na Ling
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Yingwang Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
170
|
Withatanung P, Janesomboon S, Vanaporn M, Muangsombut V, Charoensudjai S, Baker DJ, Wuthiekanun V, Galyov EE, Clokie MRJ, Gundogdu O, Korbsrisate S. Induced Burkholderia prophages detected from the hemoculture: a biomarker for Burkholderia pseudomallei infection. Front Microbiol 2024; 15:1361121. [PMID: 38633694 PMCID: PMC11022660 DOI: 10.3389/fmicb.2024.1361121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Bacteriophages (phages), viruses that infect bacteria, are found in abundance not only in the environment but also in the human body. The use of phages for the diagnosis of melioidosis, a tropical infectious disease caused by Burkholderia pseudomallei, is emerging as a promising novel approach, but our understanding of conditions under which Burkholderia prophages can be induced remains limited. Here, we first demonstrated the isolation of Burkholderia phages from the hemocultures of melioidosis patients. The B. pseudomallei-positive hemoculture bottles were filtered to remove bacteria, and then phages were isolated and purified by spot and double agar overlay plaque assays. Forty blood samples (hemoculture-confirmed melioidosis) were tested, and phages were found in 30% of the samples. Transmission electron microscopy and genome analysis of the isolated phages, vB_HM387 and vB_HM795, showed that both phages are Myoviruses. These two phages were stable at a pH of 5-7 and temperatures of 25-37°C, suggesting their ability to survive in human blood. The genome sizes of vB_HM387 and vB_HM795 are 36.3 and 44.0 kb, respectively. A phylogenetic analysis indicated that vB_HM387 has homologs, but vB_HM795 is a novel Myovirus, suggesting the heterogeneity of Burkholderia phages in melioidosis patients. The key finding that Burkholderia phages could be isolated from the blood of melioidosis patients highlights the potential application of phage-based assays by detecting phages in blood as a pathogen-derived biomarker of infection.
Collapse
Affiliation(s)
- Patoo Withatanung
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sujintana Janesomboon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Muthita Vanaporn
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Veerachat Muangsombut
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Dave J. Baker
- Science Operations, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Edouard E. Galyov
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ozan Gundogdu
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
171
|
Du S, Wu Y, Ying H, Wu Z, Yang M, Chen F, Shao J, Liu H, Zhang Z, Zhao Y. Genome sequences of the first Autographiviridae phages infecting marine Roseobacter. Microb Genom 2024; 10. [PMID: 38630615 DOI: 10.1099/mgen.0.001240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The ubiquitous and abundant marine phages play critical roles in shaping the composition and function of bacterial communities, impacting biogeochemical cycling in marine ecosystems. Autographiviridae is among the most abundant and ubiquitous phage families in the ocean. However, studies on the diversity and ecology of Autographiviridae phages in marine environments are restricted to isolates that infect SAR11 bacteria and cyanobacteria. In this study, ten new roseophages that infect marine Roseobacter strains were isolated from coastal waters. These new roseophages have a genome size ranging from 38 917 to 42 634 bp and G+C content of 44.6-50 %. Comparative genomics showed that they are similar to known Autographiviridae phages regarding gene content and architecture, thus representing the first Autographiviridae roseophages. Phylogenomic analysis based on concatenated conserved genes showed that the ten roseophages form three distinct subgroups within the Autographiviridae, and sequence analysis revealed that they belong to eight new genera. Finally, viromic read-mapping showed that these new Autographiviridae phages are widely distributed in global oceans, mostly inhabiting polar and estuarine locations. This study has expanded the current understanding of the genomic diversity, evolution and ecology of Autographiviridae phages and roseophages. We suggest that Autographiviridae phages play important roles in the mortality and community structure of roseobacters, and have broad ecological applications.
Collapse
Affiliation(s)
- Sen Du
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Ying Wu
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Hanqi Ying
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Zuqing Wu
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Mingyu Yang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Jiabing Shao
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - He Liu
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Zefeng Zhang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Yanlin Zhao
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| |
Collapse
|
172
|
Morimoto D, Tateishi N, Takahashi M, Nagasaki K. Isolation of viruses, including mollivirus, with the potential to infect Acanthamoeba from a Japanese warm temperate zone. PLoS One 2024; 19:e0301185. [PMID: 38547190 PMCID: PMC10977731 DOI: 10.1371/journal.pone.0301185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Acanthamoeba castellanii is infected with diverse nucleocytoplasmic large DNA viruses. Here, we report the co-isolation of 12 viral strains from marine sediments in Uranouchi Inlet, Kochi, Japan. Based on the morphological features revealed by electron microscopy, these isolates were classified into four viral groups including Megamimiviridae, Molliviridae, Pandoraviridae, and Pithoviridae. Genomic analyses indicated that these isolates showed high similarities to the known viral genomes with which they are taxonomically clustered, and their phylogenetic relationships were also supported by core gene similarities. It is noteworthy that Molliviridae was isolated from the marine sediments in the Japanese warm temperate zone because other strains have only been found in the subarctic region. Furthermore, this strain has 19 and 4 strain-specific genes found in Mollivirus sibericum and Mollivirus kamchatka, respectively. This study extends our knowledge about the habitat and genomic diversity of Molliviridae.
Collapse
Affiliation(s)
- Daichi Morimoto
- Faculty of Science and Technology, Kochi University, Nankoku, Kochi, Japan
| | - Naohisa Tateishi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | | | - Keizo Nagasaki
- Faculty of Science and Technology, Kochi University, Nankoku, Kochi, Japan
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
173
|
Babkin IV, Tikunov AY, Baykov IK, Morozova VV, Tikunova NV. Genome Analysis of Epsilon CrAss-like Phages. Viruses 2024; 16:513. [PMID: 38675856 PMCID: PMC11054128 DOI: 10.3390/v16040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
CrAss-like phages play an important role in maintaining ecological balance in the human intestinal microbiome. However, their genetic diversity and lifestyle are still insufficiently studied. In this study, a novel CrAssE-Sib phage genome belonging to the epsilon crAss-like phage genomes was found. Comparative analysis indicated that epsilon crAss-like phages are divided into two putative genera, which were proposed to be named Epsilonunovirus and Epsilonduovirus; CrAssE-Sib belongs to the former. The crAssE-Sib genome contains a diversity-generating retroelement (DGR) cassette with all essential elements, including the reverse transcriptase (RT) and receptor binding protein (RBP) genes. However, this RT contains the GxxxSP motif in its fourth domain instead of the usual GxxxSQ motif found in all known phage and bacterial DGRs. RBP encoded by CrAssE-Sib and other Epsilonunoviruses has an unusual structure, and no similar phage proteins were found. In addition, crAssE-Sib and other Epsilonunoviruses encode conserved prophage repressor and anti-repressors that could be involved in lysogenic-to-lytic cycle switches. Notably, DNA primase sequences of epsilon crAss-like phages are not included in the monophyletic group formed by the DNA primases of all other crAss-like phages. Therefore, epsilon crAss-like phage substantially differ from other crAss-like phages, indicating the need to classify these phages into a separate family.
Collapse
Affiliation(s)
- Igor V. Babkin
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (I.K.B.); (V.V.M.)
| | - Artem Y. Tikunov
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (I.K.B.); (V.V.M.)
| | - Ivan K. Baykov
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (I.K.B.); (V.V.M.)
- Shared Research Facility “Siberian Circular Photon Source” (SRF “SKIF”) of Boreskov Institute of Catalysis SB RAS, 630090 Novosibirsk, Russia
| | - Vera V. Morozova
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (I.K.B.); (V.V.M.)
| | - Nina V. Tikunova
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (I.K.B.); (V.V.M.)
| |
Collapse
|
174
|
Arce M, Venegas G, Paez K, Latz S, Navarrete P, Caruffo M, Feijoo C, García K, Bastías R. Valp1, a Newly Identified Temperate Phage Facilitating Coexistence of Lysogenic and Non-Lysogenic Populations of Vibrio anguillarum. Pathogens 2024; 13:285. [PMID: 38668240 PMCID: PMC11054321 DOI: 10.3390/pathogens13040285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/29/2024] Open
Abstract
Vibrio anguillarum is a pathogen for several fish and shellfish species. Its ecology is influenced by diverse factors, including bacteriophages. Here, we identify and characterize a new temperate bacteriophage (Valp1) of V. anguillarum. Valp1 is a myovirus with a 60 nm head and a 90 nm contractile tail. Its double-stranded DNA genome of 42,988 bp contains 68 genes, including a protelomerase gene, typical of telomeric phages. Valp1 inhibits the growth of the virulent strain of V. anguillarum PF4, while the derived lysogenic strain P1.1 presents a slight reduction in its growth but is not affected by the presence of Valp1. Both strains present similar virulence in a larval zebrafish (Danio rerio) model, and only slight differences have been observed in their biochemical profile. Co-culture assays reveal that PF4 and P1.1 can coexist for 10 h in the presence of naturally induced Valp1, with the proportion of PF4 ranging between 28% and 1.6%. By the end of the assay, the phage reached a concentration of ~108 PFU/mL, and all the non-lysogenic PF4 strains were resistant to Valp1. This equilibrium was maintained even after five successive subcultures, suggesting the existence of a coexistence mechanism between the lysogenic and non-lysogenic populations of V. anguillarum in conjunction with the phage Valp1.
Collapse
Affiliation(s)
- Manuel Arce
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (M.A.)
| | - Guillermo Venegas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (M.A.)
| | - Karla Paez
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (M.A.)
| | - Simone Latz
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (M.A.)
| | - Paola Navarrete
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago 7830490, Chile
| | - Mario Caruffo
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago 7830490, Chile
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago 8820000, Chile
| | - Carmen Feijoo
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Roberto Bastías
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (M.A.)
| |
Collapse
|
175
|
Martinez-Soto CE, McClelland M, Kropinski AM, Lin JT, Khursigara CM, Anany H. Multireceptor phage cocktail against Salmonella enterica to circumvent phage resistance. MICROLIFE 2024; 5:uqae003. [PMID: 38545601 PMCID: PMC10972627 DOI: 10.1093/femsml/uqae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Non-Typhoidal Salmonella (NTS) is one of the most common food-borne pathogens worldwide, with poultry products being the major vehicle for pathogenesis in humans. The use of bacteriophage (phage) cocktails has recently emerged as a novel approach to enhancing food safety. Here, a multireceptor Salmonella phage cocktail of five phages was developed and characterized. The cocktail targets four receptors: O-antigen, BtuB, OmpC, and rough Salmonella strains. Structural analysis indicated that all five phages belong to unique families or subfamilies. Genome analysis of four of the phages showed they were devoid of known virulence or antimicrobial resistance factors, indicating enhanced safety. The phage cocktail broad antimicrobial spectrum against Salmonella, significantly inhibiting the growth of all 66 strains from 20 serovars tested in vitro. The average bacteriophage insensitive mutant (BIM) frequency against the cocktail was 6.22 × 10-6 in S. Enteritidis, significantly lower than that of each of the individual phages. The phage cocktail reduced the load of Salmonella in inoculated chicken skin by 3.5 log10 CFU/cm2 after 48 h at 25°C and 15°C, and 2.5 log10 CFU/cm2 at 4°C. A genome-wide transduction assay was used to investigate the transduction efficiency of the selected phage in the cocktail. Only one of the four phages tested could transduce the kanamycin resistance cassette at a low frequency comparable to that of phage P22. Overall, the results support the potential of cocktails of phage that each target different host receptors to achieve complementary infection and reduce the emergence of phage resistance during biocontrol applications.
Collapse
Affiliation(s)
- Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, 811 Health Sciences Road, CA 92614, United States
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, 419 Gordon St, Guelph, ON N1G 2W1, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| |
Collapse
|
176
|
Acton L, Pye HV, Thilliez G, Kolenda R, Matthews M, Turner AK, Yasir M, Holden E, Al-Khanaq H, Webber M, Adriaenssens EM, Kingsley RA. Collateral sensitivity increases the efficacy of a rationally designed bacteriophage combination to control Salmonella enterica. J Virol 2024; 98:e0147623. [PMID: 38376991 PMCID: PMC10949491 DOI: 10.1128/jvi.01476-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
The ability of virulent bacteriophages to lyse bacteria influences bacterial evolution, fitness, and population structure. Knowledge of both host susceptibility and resistance factors is crucial for the successful application of bacteriophages as biological control agents in clinical therapy, food processing, and agriculture. In this study, we isolated 12 bacteriophages termed SPLA phage which infect the foodborne pathogen Salmonella enterica. To determine phage host range, a diverse collection of Enterobacteriaceae and Salmonella enterica was used and genes involved in infection by six SPLA phages were identified using Salmonella Typhimurium strain ST4/74. Candidate host receptors included lipopolysaccharide (LPS), cellulose, and BtuB. Lipopolysaccharide was identified as a susceptibility factor for phage SPLA1a and mutations in LPS biosynthesis genes spontaneously emerged during culture with S. Typhimurium. Conversely, LPS was a resistance factor for phage SPLA5b which suggested that emergence of LPS mutations in culture with SPLA1a represented collateral sensitivity to SPLA5b. We show that bacteria-phage co-culture with SPLA1a and SPLA5b was more successful in limiting the emergence of phage resistance compared to single phage co-culture. Identification of host susceptibility and resistance genes and understanding infection dynamics are critical steps in the rationale design of phage cocktails against specific bacterial pathogens.IMPORTANCEAs antibiotic resistance continues to emerge in bacterial pathogens, bacterial viruses (phage) represent a potential alternative or adjunct to antibiotics. One challenge for their implementation is the predisposition of bacteria to rapidly acquire resistance to phages. We describe a functional genomics approach to identify mechanisms of susceptibility and resistance for newly isolated phages that infect and lyse Salmonella enterica and use this information to identify phage combinations that exploit collateral sensitivity, thus increasing efficacy. Collateral sensitivity is a phenomenon where resistance to one class of antibiotics increases sensitivity to a second class of antibiotics. We report a functional genomics approach to rationally design a phage combination with a collateral sensitivity dynamic which resulted in increased efficacy. Considering such evolutionary trade-offs has the potential to manipulate the outcome of phage therapy in favor of resolving infection without selecting for escape mutants and is applicable to other virus-host interactions.
Collapse
Affiliation(s)
- Luke Acton
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| | - Hannah V. Pye
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| | - Gaëtan Thilliez
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Rafał Kolenda
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Michaela Matthews
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - A. Keith Turner
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Muhammad Yasir
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Emma Holden
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Haider Al-Khanaq
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Mark Webber
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| | | | - Robert A. Kingsley
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
177
|
Biosca EG, Delgado Santander R, Morán F, Figàs-Segura À, Vázquez R, Català-Senent JF, Álvarez B. First European Erwinia amylovora Lytic Bacteriophage Cocktails Effective in the Host: Characterization and Prospects for Fire Blight Biocontrol. BIOLOGY 2024; 13:176. [PMID: 38534446 DOI: 10.3390/biology13030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
Fire blight, caused by the plant-pathogenic bacterium Erwinia amylovora, is a highly contagious and difficult-to-control disease due to its efficient dissemination and survival and the scarcity of effective control methods. Copper and antibiotics are the most used treatments but pose environmental and human health risks. Bacteriophages (phages) constitute an ecological, safe, and sustainable fire blight control alternative. The goal of this study was to search for specific E. amylovora phages from plant material, soil, and water samples in Mediterranean environments. A collection of phages able to specifically infect and lyse E. amylovora strains was generated from former fire blight-affected orchards in Eastern Spain. Following in vitro characterization, assays in immature fruit revealed that preventively applying some of the phages or their combinations delayed the onset of fire blight symptoms and reduced the disease's severity, suggesting their biocontrol potential in Spain and other countries. The morphological and molecular characterization of the selected E. amylovora phages classified them as members of the class Caudoviricetes (former Myoviridae family) and genus Kolesnikvirus. This study reveals Mediterranean settings as plausible sources of E. amylovora-specific bacteriophages and provides the first effective European phage cocktails in plant material for the development of sustainable fire blight management measures.
Collapse
Affiliation(s)
- Elena G Biosca
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
| | - Ricardo Delgado Santander
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
- Irrigated Agriculture Research and Extension Center, Department of Plant Pathology, Washington State University, Prosser, WA 99350, USA
| | - Félix Morán
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
| | - Àngela Figàs-Segura
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
| | - Rosa Vázquez
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
| | | | - Belén Álvarez
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
- Departamento de Investigación Aplicada y Extensión Agraria, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), 28805 Madrid, Spain
| |
Collapse
|
178
|
Tarakanov RI, Evseev PV, Vo HTN, Troshin KS, Gutnik DI, Ignatov AN, Toshchakov SV, Miroshnikov KA, Jafarov IH, Dzhalilov FSU. Xanthomonas Phage PBR31: Classifying the Unclassifiable. Viruses 2024; 16:406. [PMID: 38543771 PMCID: PMC10975493 DOI: 10.3390/v16030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 05/23/2024] Open
Abstract
The ability of bacteriophages to destroy bacteria has made them the subject of extensive research. Interest in bacteriophages has recently increased due to the spread of drug-resistant bacteria, although genomic research has not kept pace with the growth of genomic data. Genomic analysis and, especially, the taxonomic description of bacteriophages are often difficult due to the peculiarities of the evolution of bacteriophages, which often includes the horizontal transfer of genes and genomic modules. The latter is particularly pronounced for temperate bacteriophages, which are capable of integration into the bacterial chromosome. Xanthomonas phage PBR31 is a temperate bacteriophage, which has been neither described nor classified previously, that infects the plant pathogen Xanthomonas campestris pv. campestris. Genomic analysis, including phylogenetic studies, indicated the separation of phage PBR31 from known classified bacteriophages, as well as its distant relationship with other temperate bacteriophages, including the Lederbervirus group. Bioinformatic analysis of proteins revealed distinctive features of PBR31, including the presence of a protein similar to the small subunit of D-family DNA polymerase and advanced lysis machinery. Taxonomic analysis showed the possibility of assigning phage PBR31 to a new taxon, although the complete taxonomic description of Xanthomonas phage PBR31 and other related bacteriophages is complicated by the complex evolutionary history of the formation of its genome. The general biological features of the PBR31 phage were analysed for the first time. Due to its presumably temperate lifestyle, there is doubt as to whether the PBR31 phage is appropriate for phage control purposes. Bioinformatics analysis, however, revealed the presence of cell wall-degrading enzymes that can be utilised for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Rashit I. Tarakanov
- Department of Plant Protection, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (R.I.T.); (K.S.T.)
| | - Peter V. Evseev
- Department of Plant Protection, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (R.I.T.); (K.S.T.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia
| | - Ha T. N. Vo
- Faculty of Agronomy, Nong Lam University, Quarter 6, Thu Duc District, Ho Chi Minh City 721400, Vietnam
| | - Konstantin S. Troshin
- Department of Plant Protection, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (R.I.T.); (K.S.T.)
| | - Daria I. Gutnik
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia;
| | - Aleksandr N. Ignatov
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia;
| | - Stepan V. Toshchakov
- Center for Genome Research, National Research Center “Kurchatov Institute”, Kurchatov Sq., 1, 123098 Moscow, Russia
| | - Konstantin A. Miroshnikov
- Department of Plant Protection, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (R.I.T.); (K.S.T.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Ibrahim H. Jafarov
- Azerbaijan Scientific Research Institute for Plant Protection and Industrial Crops, AZ 4200 Ganja, Azerbaijan
| | - Fevzi S.-U. Dzhalilov
- Department of Plant Protection, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (R.I.T.); (K.S.T.)
| |
Collapse
|
179
|
Holtappels D, Abelson SA, Nouth SC, Rickus GEJ, Amare SZ, Giller JP, Jian DZ, Koskella B. Genomic characterization of Pseudomonas syringae pv. syringae from Callery pear and the efficiency of associated phages in disease protection. Microbiol Spectr 2024; 12:e0283323. [PMID: 38323825 PMCID: PMC10913373 DOI: 10.1128/spectrum.02833-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/11/2023] [Indexed: 02/08/2024] Open
Abstract
The Pseudomonas syringae species complex is a heterogeneous group of plant pathogenic bacteria associated with a wide distribution of plant species. Advances in genomics are revealing the complex evolutionary history of this species complex and the wide array of genetic adaptations underpinning their diverse lifestyles. Here, we genomically characterize two P. syringae isolates collected from diseased Callery pears (Pyrus calleryana) in Berkeley, California in 2019 and 2022. We also isolated a lytic bacteriophage, which we characterized and evaluated for biocontrol efficiency. Using a multilocus sequence analysis and core genome alignment, we classified the P. syringae isolates as members of phylogroup 2, related to other strains previously isolated from Pyrus and Prunus. An analysis of effector proteins demonstrated an evolutionary conservation of effectoromes across isolates classified in PG2 and yet uncovered unique effector profiles for each, including the two newly identified isolates. Whole-genome sequencing of the associated phage uncovered a novel phage genus related to Pseudomonas syringae pv. actinidiae phage PHB09 and the Flaumdravirus genus. Finally, using in planta infection assays, we demonstrate that the phage was equally useful in symptom mitigation of immature pear fruit regardless of the Pss strain tested. Overall, this study demonstrates the diversity of P. syringae and their viruses associated with ornamental pear trees, posing spill-over risks to commercial pear trees and the possibility of using phages as biocontrol agents to reduce the impact of disease.IMPORTANCEGlobal change exacerbates the spread and impact of pathogens, especially in agricultural settings. There is a clear need to better monitor the spread and diversity of plant pathogens, including in potential spillover hosts, and for the development of novel and sustainable control strategies. In this study, we characterize the first described strains of Pseudomonas syringae pv. syringae isolated from Callery pear in Berkeley, California from diseased tissues in an urban environment. We show that these strains have divergent virulence profiles from previously described strains and that they can cause disease in commercial pears. Additionally, we describe a novel bacteriophage that is associated with these strains and explore its potential to act as a biocontrol agent. Together, the data presented here demonstrate that ornamental pear trees harbor novel P. syringae pv. syringae isolates that potentially pose a risk to local fruit production, or vice versa-but also provide us with novel associated phages, effective in disease mitigation.
Collapse
Affiliation(s)
- D. Holtappels
- Integrative Biology University of California, Berkeley, California, USA
| | - S. A. Abelson
- Integrative Biology University of California, Berkeley, California, USA
| | - S. C. Nouth
- Integrative Biology University of California, Berkeley, California, USA
| | - G. E. J. Rickus
- Integrative Biology University of California, Berkeley, California, USA
| | - S. Z. Amare
- Integrative Biology University of California, Berkeley, California, USA
| | - J. P. Giller
- Integrative Biology University of California, Berkeley, California, USA
| | - D. Z. Jian
- Integrative Biology University of California, Berkeley, California, USA
| | - B. Koskella
- Integrative Biology University of California, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
180
|
Klose SM, Legione AR, Bushell RN, Browning GF, Vaz PK. Unveiling genome plasticity and a novel phage in Mycoplasma felis: Genomic investigations of four feline isolates. Microb Genom 2024; 10:001227. [PMID: 38546735 PMCID: PMC11004492 DOI: 10.1099/mgen.0.001227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Mycoplasma felis has been isolated from diseased cats and horses, but to date only a single fully assembled genome of this species, of an isolate from a horse, has been characterized. This study aimed to characterize and compare the completely assembled genomes of four clinical isolates of M. felis from three domestic cats, assembled with the aid of short- and long-read sequencing methods. The completed genomes encoded a median of 759 ORFs (range 743-777) and had a median average nucleotide identity of 98.2 % with the genome of the available equid origin reference strain. Comparative genomic analysis revealed the occurrence of multiple horizontal gene transfer events and significant genome reassortment. This had resulted in the acquisition or loss of numerous genes within the Australian felid isolate genomes, encoding putative proteins involved in DNA transfer, metabolism, DNA replication, host cell interaction and restriction modification systems. Additionally, a novel mycoplasma phage was detected in one Australian felid M. felis isolate by genomic analysis and visualized using cryo-transmission electron microscopy. This study has highlighted the complex genomic dynamics in different host environments. Furthermore, the sequences obtained in this work will enable the development of new diagnostic tools, and identification of future infection control and treatment options for the respiratory disease complex in cats.
Collapse
Affiliation(s)
- Sara M. Klose
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, VIC, Australia
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, NRW, Germany
| | - Alistair R. Legione
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, VIC, Australia
| | - Rhys N. Bushell
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, VIC, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, VIC, Australia
| | - Paola K. Vaz
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, VIC, Australia
| |
Collapse
|
181
|
Choudhary A, Midha T, Gulati I, Baranwal S. Isolation, Genomic Characterization of Shigella prophage fPSFA that effectively infects multi-drug resistant Shigella isolates from the Indian Poultry Sector. Microb Pathog 2024; 188:106538. [PMID: 38184177 DOI: 10.1016/j.micpath.2024.106538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024]
Abstract
Because of uncontrolled use of antibiotics, emergence of multidrug-resistant Shigella species poses a huge potential of zoonotic transfer from poultry sector. With increasing resistance to current antibiotics, there is a critical need to explore antibiotic alternatives. Using a Shigella flexneri reference strain, we isolated a novel fPSFA phage after inducing with mitomycin C. The phage was found to be stable for wide ranges of temperature -20 °C-65 °C and pH 3 to 11. fPSFA shows a latent period that ranges from 20 to 30 min and generation times of 50-60 min. The genome analysis of phage reveals two major contigs of 23788 bp and 23285 bp with 50.16 % and 39.33 % G + C content containing a total of 80 CDS and 2 tRNA genes. The phage belongs to Straboviridae family and lacks any virulence or antimicrobial resistance gene, thus making it a suitable candidate for treatment of drug-resistant infections. To confirm lytic ability of novel phage, we isolated 54 multidrug-resistant Shigella species from thirty-five poultry fecal samples that shows multiple antibiotic resistance index ranging from 0.15 to 0.75 (from 3 Indian states). The fPSFA showed lytic activity against multidrug-resistant Shigella isolates (73.08 %) (MARI≥0.50). The wide host ranges of fPSFA phage demonstrate its potential to be used as a biocontrol agent.
Collapse
Affiliation(s)
- Aaina Choudhary
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, 151401, India
| | - Tushar Midha
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, 151401, India
| | - Ishita Gulati
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, 151401, India
| | - Somesh Baranwal
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, 151401, India.
| |
Collapse
|
182
|
Forni D, Pozzoli U, Cagliani R, Sironi M. Dinucleotide biases in the genomes of prokaryotic and eukaryotic dsDNA viruses and their hosts. Mol Ecol 2024; 33:e17287. [PMID: 38263702 DOI: 10.1111/mec.17287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
The genomes of cellular organisms display CpG and TpA dinucleotide composition biases. Such biases have been poorly investigated in dsDNA viruses. Here, we show that in dsDNA virus, bacterial, and eukaryotic genomes, the representation of TpA and CpG dinucleotides is strongly dependent on genomic G + C content. Thus, the classical observed/expected ratios do not fully capture dinucleotide biases across genomes. Because a larger portion of the variance in TpA frequency was explained by G + C content, we explored which additional factors drive the distribution of CpG dinucleotides. Using the residuals of the linear regressions as a measure of dinucleotide abundance and ancestral state reconstruction across eukaryotic and prokaryotic virus trees, we identified an important role for phylogeny in driving CpG representation. Nonetheless, phylogenetic ANOVA analyses showed that few host associations also account for significant variations. Among eukaryotic viruses, most significant differences were observed between arthropod-infecting viruses and viruses that infect vertebrates or unicellular organisms. However, an effect of viral DNA methylation status (either driven by the host or by viral-encoded methyltransferases) is also likely. Among prokaryotic viruses, cyanobacteria-infecting phages resulted to be significantly CpG-depleted, whereas phages that infect bacteria in the genera Burkolderia and Staphylococcus were CpG-rich. Comparison with bacterial genomes indicated that this effect is largely driven by the general tendency for phages to resemble the host's genomic CpG content. Notably, such tendency is stronger for temperate than for lytic phages. Our data shed light into the processes that shape virus genome composition and inform manipulation strategies for biotechnological applications.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
183
|
Golosova NN, Matveev AL, Tikunova NV, Khlusevich YA, Kozlova YN, Morozova VV, Babkin IV, Ushakova TA, Zhirakovskaya EV, Panina EA, Ryabchikova EI, Tikunov AY. Bacteriophage vB_SepP_134 and Endolysin LysSte_134_1 as Potential Staphylococcus-Biofilm-Removing Biological Agents. Viruses 2024; 16:385. [PMID: 38543751 PMCID: PMC10975630 DOI: 10.3390/v16030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 05/23/2024] Open
Abstract
Bacteria of the genus Staphylococcus are significant challenge for medicine, as many species are resistant to multiple antibiotics and some are even to all of the antibiotics we use. One of the approaches to developing new therapeutics to treat staphylococcal infections is the use of bacteriophages specific to these bacteria or the lytic enzymes of such bacteriophages, which are capable of hydrolyzing the cell walls of these bacteria. In this study, a new bacteriophage vB_SepP_134 (St 134) specific to Staphylococcus epidermidis was described. This podophage, with a genome of 18,275 bp, belongs to the Andhravirus genus. St 134 was able to infect various strains of 12 of the 21 tested coagulase-negative Staphylococcus species and one clinical strain from the Staphylococcus aureus complex. The genes encoding endolysin (LysSte134_1) and tail tip lysin (LysSte134_2) were identified in the St 134 genome. Both enzymes were cloned and produced in Escherichia coli cells. The endolysin LysSte134_1 demonstrated catalytic activity against peptidoglycans isolated from S. aureus, S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus warneri. LysSte134_1 was active against S. aureus and S. epidermidis planktonic cells and destroyed the biofilms formed by clinical strains of S. aureus and S. epidermidis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Artem Y. Tikunov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (N.N.G.); (N.V.T.); (Y.A.K.); (Y.N.K.); (V.V.M.); (I.V.B.); (T.A.U.); (E.A.P.); (E.I.R.)
| |
Collapse
|
184
|
Putzeys L, Wicke L, Boon M, van Noort V, Vogel J, Lavigne R. Refining the transcriptional landscapes for distinct clades of virulent phages infecting Pseudomonas aeruginosa. MICROLIFE 2024; 5:uqae002. [PMID: 38444699 PMCID: PMC10914365 DOI: 10.1093/femsml/uqae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/24/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
The introduction of high-throughput sequencing has resulted in a surge of available bacteriophage genomes, unveiling their tremendous genomic diversity. However, our current understanding of the complex transcriptional mechanisms that dictate their gene expression during infection is limited to a handful of model phages. Here, we applied ONT-cappable-seq to reveal the transcriptional architecture of six different clades of virulent phages infecting Pseudomonas aeruginosa. This long-read microbial transcriptomics approach is tailored to globally map transcription start and termination sites, transcription units, and putative RNA-based regulators on dense phage genomes. Specifically, the full-length transcriptomes of LUZ19, LUZ24, 14-1, YuA, PAK_P3, and giant phage phiKZ during early, middle, and late infection were collectively charted. Beyond pinpointing traditional promoter and terminator elements and transcription units, these transcriptional profiles provide insights in transcriptional attenuation and splicing events and allow straightforward validation of Group I intron activity. In addition, ONT-cappable-seq data can guide genome-wide discovery of novel regulatory element candidates, including noncoding RNAs and riboswitches. This work substantially expands the number of annotated phage-encoded transcriptional elements identified to date, shedding light on the intricate and diverse gene expression regulation mechanisms in Pseudomonas phages, which can ultimately be sourced as tools for biotechnological applications in phage and bacterial engineering.
Collapse
Affiliation(s)
- Leena Putzeys
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Laura Wicke
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
- Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Maarten Boon
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Jörg Vogel
- Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| |
Collapse
|
185
|
Su Q, Lu D, Kong J, Lin H, Xuan G, Wang J. PqsA mutation-mediated enhancement of phage-mediated combat against Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1296777. [PMID: 38469347 PMCID: PMC10925624 DOI: 10.3389/fcimb.2024.1296777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/17/2024] [Indexed: 03/13/2024] Open
Abstract
Phage therapy is a potential approach in the biocontrol of foodborne pathogens. However, the emergence of phage resistance and the narrow host range of most phage isolates continue to limit the antimicrobial efficacy of phages. Here, we investigated the potential of the pqsA gene, encoding the anthranilate-CoA ligase enzyme, as an adjuvant for phage therapy. The knockout of the pqsA gene significantly enhanced the bactericidal effect of phages vB_Pae_QDWS and vB_Pae_S1 against Pseudomonas aeruginosa. Under phage infection pressure, the growth of the PaΔpqsA was significantly inhibited within 8 h compared to the wild-type PAO1. Furthermore, we found that altering phage adsorption is not how PaΔpqsA responds to phage infection. Although pqsA represents a promising target for enhancing phage killing, it may not be applicable to all phages, such as types vB_Pae_W3 and vB_Pae_TR. Our findings provide new material reserves for the future design of novel phage-based therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Guanhua Xuan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jingxue Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
186
|
Nazir A, Li L, Li F, Tong Y, Liu Y, Chen Y. Characterization, taxonomic classification, and genomic analysis of two newly isolated bacteriophages with potential to infect Escherichia coli. Microbiol Spectr 2024:e0223023. [PMID: 38376266 DOI: 10.1128/spectrum.02230-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Escherichia coli is a pathogenic bacterium that is widely distributed and can lead to serious illnesses in both humans and animals. As there is rising incidence of multidrug resistance among these bacteria, it has become imperative to discover alternative therapies beyond antibiotics to effectively treat such infections. Bacteriophage (phage) therapy has the potential to treat infections caused by E. coli, as phages contain enzymes that can cause lysis or destruction of bacterial cells. Simultaneously, the easy accessibility and cost-effectiveness of next-generation sequencing technologies have led to the accumulation of a vast amount of phage sequence data. Here, phages IME177 and IME267 were isolated from sewage water of a hospital in China. Modern phylogenetic approaches and key findings from the genomic analysis revealed that phages IME177 and IME267 are classified as members of the Kayfunavirus genus, Autographiviridae family, and a newly proposed Suseptimavirus genus under subfamily Gordonclarkvirinae, respectively. Further, the Kuravirus genus reshaped into three different genera: Kuravirus, Nieuwekanaalvirus, and Suspeptimavirus, which are classified together under a higher taxonomic rank (subfamily) named Gordonclarkvirinae. No genes related to virulence were detected in the genomes of the phages IME177 and IME267. Both phages exhibited a high degree of resilience to a wide range of conditions, including pH, temperature, exposure to chloroform, and UV radiation. Phages IME177 and IME267 are promising biological agents that can infect E. coli, making them suitable candidates for use in phage therapies.IMPORTANCEBiological and taxonomic characterization of phages is essential for facilitating the development of effective strategies for phage therapy and disease control. Escherichia coli phages are incredibly diverse, and their isolation and classification help us understand the scope and nature of this diversity. By identifying new phages and grouping them into families, we can better understand the genetic and structural variations between phages and how they affect their infectivity and interactions with bacteria. Overall, the isolation and classification of E. coli phages have broad implications for both basic and applied research, clinical practice, and public health.
Collapse
Affiliation(s)
- Amina Nazir
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lulu Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Fei Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yuqing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Yibao Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| |
Collapse
|
187
|
Rastegar S, Sabouri S, Tadjrobehkar O, Samareh A, Niaz H, Sanjari N, Hosseini-Nave H, Skurnik M. Characterization of bacteriophage vB_AbaS_SA1 and its synergistic effects with antibiotics against clinical multidrug-resistant Acinetobacter baumannii isolates. Pathog Dis 2024; 82:ftae028. [PMID: 39435653 PMCID: PMC11536755 DOI: 10.1093/femspd/ftae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/26/2024] [Accepted: 10/19/2024] [Indexed: 10/23/2024] Open
Abstract
Acinetobacter baumannii is a major cause of nosocomial infections globally. The increasing prevalence of multidrug-resistant (MDR) A. baumannii has become an important public health concern. To combat drug resistance, alternative methods such as phage therapy have been suggested. In total, 30 MDR A. baumannii strains were isolated from clinical specimens, and their antibiotic susceptibilities were determined. The Acinetobacter phage vB_AbaS_SA1, isolated from hospital sewage, was characterized. In addition to its plaque size, particle morphology, and host range, its genome sequence was determined and annotated. Finally, the antibacterial effects of phage alone, antibiotics alone, and phage/antibiotic combinations were assessed against the A. baumannii strains. Phage vB_AbaS_SA1 had siphovirus morphology, showed a latent period of 20 min, and a 250 PFU/cell (plaque forming unit/cell) burst size. When combined with antibiotics, vB_AbaS_SA1 (SA1) showed a significant phage-antibiotic synergy effect and reduced the overall effective concentration of antibiotics in time-kill assessments. The genome of SA1 is a linear double-stranded DNA of 50 108 bp in size with a guanine-cytosine (GC) content of 39.15%. Despite the potent antibacterial effect of SA1, it is necessary to perform additional research to completely elucidate the mechanisms of action and potential constraints associated with utilizing this bacteriophage.
Collapse
Affiliation(s)
- Sanaz Rastegar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Salehe Sabouri
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Omid Tadjrobehkar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hira Niaz
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nafise Sanjari
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hosseini-Nave
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
188
|
Li Y, Miyani B, Faust RA, David RE, Xagoraraki I. A broad wastewater screening and clinical data surveillance for virus-related diseases in the metropolitan Detroit area in Michigan. Hum Genomics 2024; 18:14. [PMID: 38321488 PMCID: PMC10845806 DOI: 10.1186/s40246-024-00581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Periodic bioinformatics-based screening of wastewater for assessing the diversity of potential human viral pathogens circulating in a given community may help to identify novel or potentially emerging infectious diseases. Any identified contigs related to novel or emerging viruses should be confirmed with targeted wastewater and clinical testing. RESULTS During the COVID-19 pandemic, untreated wastewater samples were collected for a 1-year period from the Great Lakes Water Authority Wastewater Treatment Facility in Detroit, MI, USA, and viral population diversity from both centralized interceptor sites and localized neighborhood sewersheds was investigated. Clinical cases of the diseases caused by human viruses were tabulated and compared with data from viral wastewater monitoring. In addition to Betacoronavirus, comparison using assembled contigs against a custom Swiss-Prot human virus database indicated the potential prevalence of other pathogenic virus genera, including: Orthopoxvirus, Rhadinovirus, Parapoxvirus, Varicellovirus, Hepatovirus, Simplexvirus, Bocaparvovirus, Molluscipoxvirus, Parechovirus, Roseolovirus, Lymphocryptovirus, Alphavirus, Spumavirus, Lentivirus, Deltaretrovirus, Enterovirus, Kobuvirus, Gammaretrovirus, Cardiovirus, Erythroparvovirus, Salivirus, Rubivirus, Orthohepevirus, Cytomegalovirus, Norovirus, and Mamastrovirus. Four nearly complete genomes were recovered from the Astrovirus, Enterovirus, Norovirus and Betapolyomavirus genera and viral species were identified. CONCLUSIONS The presented findings in wastewater samples are primarily at the genus level and can serve as a preliminary "screening" tool that may serve as indication to initiate further testing for the confirmation of the presence of species that may be associated with human disease. Integrating innovative environmental microbiology technologies like metagenomic sequencing with viral epidemiology offers a significant opportunity to improve the monitoring of, and predictive intelligence for, pathogenic viruses, using wastewater.
Collapse
Affiliation(s)
- Yabing Li
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI, 48823, USA
| | - Brijen Miyani
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI, 48823, USA
| | - Russell A Faust
- Oakland County Health Division, 1200 Telegraph Rd, Pontiac, MI, 48341, USA
| | - Randy E David
- School of Medicine, Wayne State University, Detroit, MI, 48282, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI, 48823, USA.
| |
Collapse
|
189
|
Wang H, Zheng K, Wang M, Ma K, Ren L, Guo R, Ma L, Zhang H, Liu Y, Xiong Y, Wu M, Shao H, Sung YY, Mok WJ, Wong LL, McMinn A, Liang Y. Shewanella phage encoding a putative anti-CRISPR-like gene represents a novel potential viral family. Microbiol Spectr 2024; 12:e0336723. [PMID: 38214523 PMCID: PMC10846135 DOI: 10.1128/spectrum.03367-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
Shewanella is a prevalent bacterial genus in deep-sea environments including marine sediments, exhibiting diverse metabolic capabilities that indicate its significant contributions to the marine biogeochemical cycles. However, only a few Shewanella phages were isolated and deposited in the NCBI database. In this study, we report the isolation and characterization of a novel Shewanella phage, vB_SbaS_Y11, that infects Shewanella KR11 and was isolated from the sewage in Qingdao, China. Transmission electron microscopy revealed that vB_SbaS_Y11 has an icosahedral head and a long tail. The genome of vB_SbaS_Y11 is a linear, double-stranded DNA with a length of 62,799 bp and a G+C content of 46.9%, encoding 71 putative open reading frames. No tRNA genes or integrase-related feature genes were identified. An uncharacterized anti-CRISPR AcrVA2 gene was detected in its genome. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analyses indicate that vB_SbaS_Y11 has a novel genomic architecture and shares low similarity to Pseudomonas virus H66 and Pseudomonas phage F116. vB_SbaS_Y11 represents a potential new family-level virus cluster with eight metagenomic assembled viral genomes named Ranviridae.IMPORTANCEThe Gram-negative Shewanella bacterial genus currently includes about 80 species of mostly aquatic Gammaproteobacteria, which were isolated around the globe in a multitude of environments, such as freshwater, seawater, coastal sediments, and the deepest trenches. Here, we present a Shewanella phage vB_SbaS_Y11 that contains an uncharacterized anti-CRISPR AcrVA2 gene and belongs to a potential virus family, Ranviridae. This study will enhance the knowledge about the genome, diversity, taxonomic classification, and global distribution of Shewanella phage populations.
Collapse
Affiliation(s)
- Hongmin Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Haide College, Ocean University of China, Qingdao, China
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Keran Ma
- Haide College, Ocean University of China, Qingdao, China
| | - Linyi Ren
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ruizhe Guo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Lina Ma
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yundan Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yao Xiong
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Miaolan Wu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
| |
Collapse
|
190
|
Sánchez C, Garde S, Landete JM, Calzada J, Baker DJ, Evans R, Narbad A, Mayer MJ, Ávila M. Identification, activity and delivery of new LysFA67 endolysin to target cheese spoilage Clostridium tyrobutyricum. Food Microbiol 2024; 117:104401. [PMID: 37919009 DOI: 10.1016/j.fm.2023.104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 11/04/2023]
Abstract
Bacteriophages and their endolysins are potential biocontrol agents for the anaerobic spoilage organism Clostridium tyrobutyricum, which causes cheese late blowing defect. This study sequenced and compared the genomes of eight bacteriophages from Spanish dairy farms that were active against C. tyrobutyricum, to identify novel species and phage proteins. Phages vB_CtyS-FA67 and vB_CtyS-FA70 shared >94% intergenomic similarity to each other but neither phage had significant similarity to ΦCTP1, the unique C. tyrobutyricum phage sequenced to date. Taxonomic analysis indicated that both phages belong to the class Caudoviricetes and are related to dsDNA viruses with long non-contractile tails. vB_CtyS-FA67 had no other close relatives and encoded a novel endolysin, LysFA67, predicted to belong to the glycoside hydrolase GH24 family. LysFA67 lysed 93% of C. tyrobutyricum cells after 4 min in turbidity reduction assays, retaining lytic activity at pHs 4.2-8.1 and at 30-45 °C. The endolysin remained stable after 30 d storage at 4, 12 and 25 °C, while its activity decreased at -20 °C. LysFA67 lysed several clostridia species, while common dairy bacteria were not affected. Lactococcus lactis INIA 437, used as a cheese starter, was engineered to deliver LysFA67 and red fluorescent LysFA67-mCherry to dairy products. We demonstrated that these engineered strains were able to maintain lytic activity and fluorescence without affecting their technological properties in milk.
Collapse
Affiliation(s)
- Carmen Sánchez
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña km 7, 28040, Madrid, Spain
| | - Sonia Garde
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña km 7, 28040, Madrid, Spain.
| | - José María Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña km 7, 28040, Madrid, Spain
| | - Javier Calzada
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña km 7, 28040, Madrid, Spain
| | - Dave J Baker
- Science Operations, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Rhiannon Evans
- Science Operations, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Arjan Narbad
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK
| | - Melinda J Mayer
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK.
| | - Marta Ávila
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña km 7, 28040, Madrid, Spain.
| |
Collapse
|
191
|
Nweze JE, Schweichhart JS, Angel R. Viral communities in millipede guts: Insights into the diversity and potential role in modulating the microbiome. Environ Microbiol 2024; 26:e16586. [PMID: 38356108 DOI: 10.1111/1462-2920.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Millipedes are important detritivores harbouring a diverse microbiome. Previous research focused on bacterial and archaeal diversity, while the virome remained neglected. We elucidated the DNA and RNA viral diversity in the hindguts of two model millipede species with distinct microbiomes: the tropical Epibolus pulchripes (methanogenic, dominated by Bacillota) and the temperate Glomeris connexa (non-methanogenic, dominated by Pseudomonadota). Based on metagenomic and metatranscriptomic assembled viral genomes, the viral communities differed markedly and preferentially infected the most abundant prokaryotic taxa. The majority of DNA viruses were Caudoviricetes (dsDNA), Cirlivirales (ssDNA) and Microviridae (ssDNA), while RNA viruses consisted of Leviviricetes (ssRNA), Potyviridae (ssRNA) and Eukaryotic viruses. A high abundance of subtypes I-C, I-B and II-C CRISPR-Cas systems was found, primarily from Pseudomonadota, Bacteroidota and Bacillota. In addition, auxiliary metabolic genes that modulate chitin degradation, vitamins and amino acid biosynthesis and sulphur metabolism were also detected. Lastly, we found low virus-to-microbe-ratios and a prevalence of lysogenic viruses, supporting a Piggyback-the-Winner dynamic in both hosts.
Collapse
Affiliation(s)
- Julius Eyiuche Nweze
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Johannes Sergej Schweichhart
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Roey Angel
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
| |
Collapse
|
192
|
Ni Y, Xu T, Yan S, Chen L, Wang Y. Hiding in plain sight: The discovery of complete genomes of 11 hypothetical spindle-shaped viruses that putatively infect mesophilic ammonia-oxidizing archaea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13230. [PMID: 38263861 PMCID: PMC10866085 DOI: 10.1111/1758-2229.13230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
The genome of a putative Nitrosopumilaceae virus with a hypothetical spindle-shaped particle morphology was identified in the Yangshan Harbour metavirome from the East China Sea through protein similarity comparison and structure analysis. This discovery was accompanied by a set of 10 geographically dispersed close relatives found in the environmental virus datasets from typical locations of ammonia-oxidizing archaeon distribution. Its host prediction was supported by iPHoP prediction and protein sequence similarity. The structure of the predicted major capsid protein, together with the overall N-glycosylation site, the transmembrane helices prediction, the hydrophilicity profile, and the docking simulation of the major capsid proteins, indicate that these viruses resemble spindle-shaped viruses. It suggests a similarly assembled structure and, consequently, a possibly spindle-shaped morphology of these newly discovered archaeal viruses.
Collapse
Affiliation(s)
- Yimin Ni
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| | - Tianqi Xu
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| | - Shuling Yan
- Entwicklungsgenetik und Zellbiologie der TierePhilipps‐Universität MarburgMarburgGermany
| | - Lanming Chen
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai)Ministry of AgricultureShanghaiChina
| | - Yongjie Wang
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai)Ministry of AgricultureShanghaiChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
193
|
Evseev PV, Tarakanov RI, Vo HTN, Suzina NE, Vasilyeva AA, Ignatov AN, Miroshnikov KA, Dzhalilov FSU. Characterisation of New Foxunavirus Phage Murka with the Potential of Xanthomonas campestris pv. campestris Control. Viruses 2024; 16:198. [PMID: 38399973 PMCID: PMC10892653 DOI: 10.3390/v16020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Phages of phytopathogenic bacteria are considered to be promising agents for the biological control of bacterial diseases in plants. This paper reports on the isolation and characterisation of a new Xanthomonas campestris pv. campestris phage, Murka. Phage morphology and basic kinetic characteristics of the infection were determined, and a phylogenomic analysis was performed. The phage was able to lyse a reasonably broad range (64%, 9 of the 14 of the Xanthomonas campestris pv. campestris strains used in the study) of circulating strains of the cabbage black rot pathogen. This lytic myovirus has a DNA genome of 44,044 bp and contains 83 predicted genes. Taxonomically, it belongs to the genus Foxunavirus. This bacteriophage is promising for use as a possible means of biological control of cabbage black rot.
Collapse
Affiliation(s)
- Peter V. Evseev
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.A.V.); (A.N.I.); (K.A.M.); (F.S.-U.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia
| | - Rashit I. Tarakanov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.A.V.); (A.N.I.); (K.A.M.); (F.S.-U.D.)
| | - Ha T. N. Vo
- Faculty of Agronomy, Nong Lam University, Quarter 6, Thu Duc District, Ho Chi Minh City 721400, Vietnam;
| | - Natalia E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, Prosp. Nauki, 5, 142290 Pushchino, Russia;
| | - Anna A. Vasilyeva
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.A.V.); (A.N.I.); (K.A.M.); (F.S.-U.D.)
| | - Alexander N. Ignatov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.A.V.); (A.N.I.); (K.A.M.); (F.S.-U.D.)
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str., 6, 117198 Moscow, Russia
| | - Konstantin A. Miroshnikov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.A.V.); (A.N.I.); (K.A.M.); (F.S.-U.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia
| | - Fevzi S.-U. Dzhalilov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.A.V.); (A.N.I.); (K.A.M.); (F.S.-U.D.)
| |
Collapse
|
194
|
Fletcher J, Manley R, Fitch C, Bugert C, Moore K, Farbos A, Michelsen M, Alathari S, Senior N, Mills A, Whitehead N, Soothill J, Michell S, Temperton B. The Citizen Phage Library: Rapid Isolation of Phages for the Treatment of Antibiotic Resistant Infections in the UK. Microorganisms 2024; 12:253. [PMID: 38399657 PMCID: PMC10893117 DOI: 10.3390/microorganisms12020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Antimicrobial resistance poses one of the greatest threats to global health and there is an urgent need for new therapeutic options. Phages are viruses that infect and kill bacteria and phage therapy could provide a valuable tool for the treatment of multidrug-resistant infections. In this study, water samples collected by citizen scientists as part of the Citizen Phage Library (CPL) project, and wastewater samples from the Environment Agency yielded phages with activity against clinical strains Klebsiella pneumoniae BPRG1484 and Enterobacter cloacae BPRG1482. A total of 169 and 163 phages were found for K. pneumoniae and E. cloacae, respectively, within four days of receiving the strains. A third strain (Escherichia coli BPRG1486) demonstrated cross-reactivity with 42 E. coli phages already held in the CPL collection. Seed lots were prepared for four K. pneumoniae phages and a cocktail combining these phages was found to reduce melanisation in a Galleria mellonella infection model. The resources and protocols utilised by the Citizen Phage Library enabled the rapid isolation and characterisation of phages targeted against multiple strains. In the future, within a clearly defined regulatory framework, phage therapy could be made available on a named-patient basis within the UK.
Collapse
Affiliation(s)
- Julie Fletcher
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Robyn Manley
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Christian Fitch
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Christina Bugert
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Karen Moore
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Audrey Farbos
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Michelle Michelsen
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Shayma Alathari
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Nicola Senior
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Alice Mills
- Exeter Science Centre, Kaleider Studios, 45 Preston Street, Exeter EX1 1DF, UK
| | - Natalie Whitehead
- Exeter Science Centre, Kaleider Studios, 45 Preston Street, Exeter EX1 1DF, UK
| | - James Soothill
- Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Trust, Great Ormond Street, London WC1N 3JH, UK
| | - Stephen Michell
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Ben Temperton
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| |
Collapse
|
195
|
Sato Y, Takebe H, Tominaga K, Yasuda J, Kumagai H, Hirooka H, Yoshida T. A rumen virosphere with implications of contribution to fermentation and methane production, and endemism in cattle breeds and individuals. Appl Environ Microbiol 2024; 90:e0158123. [PMID: 38112444 PMCID: PMC10807420 DOI: 10.1128/aem.01581-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/12/2023] [Indexed: 12/21/2023] Open
Abstract
Viruses have a potential to modify the ruminal digestion via infection and cell lysis of prokaryotes, suggesting that viruses are related to animal performance and methane production. This study aimed to elucidate the genome-based diversity of rumen viral communities and the differences in virus structure between individuals and cattle breeds and to understand how viruses influence on the rumen. To these ends, a metagenomic sequencing of virus-like particles in the rumen of 22 Japanese cattle, including Japanese Black (JB, n = 8), Japanese Shorthorn (n = 2), and Japanese Black sires × Holstein dams crossbred steers (F1, n = 12) was conducted. Additionally, the rumen viromes of six JB and six F1 that were fed identical diets and kept in a single barn were compared. A total of 8,232 non-redundant viral genomes (≥5-kb length and ≥50% completeness), including 982 complete genomes, were constructed, and rumen virome exhibited lysogenic signatures. Furthermore, putative hosts of 1,223 viral genomes were predicted using tRNA and clustered regularly interspaced short palindromic repeat (CRISPR)-spacer matching. The genomes included 1 and 10 putative novel complete genomes associated with Fibrobacter and Ruminococcus, respectively, which are the main rumen cellulose-degrading bacteria. Additionally, the hosts of 22 viral genomes, including 2 complete genomes, were predicted as methanogens, such as Methanobrevibacter and Methanomethylophilus. Most rumen viruses were highly rumen and individual specific and related to rumen-specific prokaryotes. Furthermore, the rumen viral community structure was significantly different between JB and F1 steers, indicating that cattle breed is one of the factors influencing the rumen virome composition.IMPORTANCEHere, we investigated the individual and breed differences of the rumen viral community in Japanese cattle. In the process, we reconstructed putative novel complete viral genomes related to rumen fiber-degrading bacteria and methanogen. The finding strongly suggests that rumen viruses contribute to cellulose and hemicellulose digestion and methanogenesis. Notably, this study also found that rumen viruses are highly rumen and individual specific, suggesting that rumen viruses may not be transmitted through environmental exposure. More importantly, we revealed differences of viral communities between JB and F1 cattle, indicating that cattle breed is a factor that influences the establishment of rumen virome. These results suggest the possibility of rumen virus transmission from mother to offspring and its potential to influence beef production traits. These rumen viral genomes and findings provide new insights into the characterizations of the rumen viruses.
Collapse
Affiliation(s)
- Yoshiaki Sato
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Tochigi, Japan
| | - Hiroaki Takebe
- Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kento Tominaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Chiba, Japan
| | - Jumpei Yasuda
- Iwate Agricultural Research Center Animal Industry Research Institute, Iwate, Japan
| | - Hajime Kumagai
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hiroyuki Hirooka
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
196
|
Rozwalak P, Barylski J, Wijesekara Y, Dutilh BE, Zielezinski A. Ultraconserved bacteriophage genome sequence identified in 1300-year-old human palaeofaeces. Nat Commun 2024; 15:495. [PMID: 38263397 PMCID: PMC10805732 DOI: 10.1038/s41467-023-44370-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
Bacteriophages are widely recognised as rapidly evolving biological entities. However, knowledge about ancient bacteriophages is limited. Here, we analyse DNA sequence datasets previously generated from ancient palaeofaeces and human gut-content samples, and identify an ancient phage genome nearly identical to present-day Mushuvirus mushu, a virus that infects gut commensal bacteria. The DNA damage patterns of the genome are consistent with its ancient origin and, despite 1300 years of evolution, the ancient Mushuvirus genome shares 97.7% nucleotide identity with its modern counterpart, indicating a long-term relationship between the prophage and its host. In addition, we reconstruct and authenticate 297 other phage genomes from the last 5300 years, including those belonging to unknown families. Our findings demonstrate the feasibility of reconstructing ancient phage genome sequences, thus expanding the known virosphere and offering insights into phage-bacteria interactions spanning several millennia.
Collapse
Affiliation(s)
- Piotr Rozwalak
- Department of Computational Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, 61-614, Poland
| | - Jakub Barylski
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, Poznan, 61-614, Poland
| | - Yasas Wijesekara
- Institute of Bioinformatics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475, Greifswald, Germany
| | - Bas E Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany.
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| | - Andrzej Zielezinski
- Department of Computational Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, 61-614, Poland.
| |
Collapse
|
197
|
Silva EC, Quinde CA, Cieza B, Basu A, Vila MMDC, Balcão VM. Molecular Characterization and Genome Mechanical Features of Two Newly Isolated Polyvalent Bacteriophages Infecting Pseudomonas syringae pv. garcae. Genes (Basel) 2024; 15:113. [PMID: 38255005 PMCID: PMC10815195 DOI: 10.3390/genes15010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Coffee plants have been targeted by a devastating bacterial disease, a condition known as bacterial blight, caused by the phytopathogen Pseudomonas syringae pv. garcae (Psg). Conventional treatments of coffee plantations affected by the disease involve frequent spraying with copper- and kasugamycin-derived compounds, but they are both highly toxic to the environment and stimulate the appearance of bacterial resistance. Herein, we report the molecular characterization and mechanical features of the genome of two newly isolated (putative polyvalent) lytic phages for Psg. The isolated phages belong to class Caudoviricetes and present a myovirus-like morphotype belonging to the genuses Tequatrovirus (PsgM02F) and Phapecoctavirus (PsgM04F) of the subfamilies Straboviridae (PsgM02F) and Stephanstirmvirinae (PsgM04F), according to recent bacterial viruses' taxonomy, based on their complete genome sequences. The 165,282 bp (PsgM02F) and 151,205 bp (PsgM04F) genomes do not feature any lysogenic-related (integrase) genes and, hence, can safely be assumed to follow a lytic lifestyle. While phage PsgM02F produced a morphogenesis yield of 124 virions per host cell, phage PsgM04F produced only 12 virions per host cell, indicating that they replicate well in Psg with a 50 min latency period. Genome mechanical analyses established a relationship between genome bendability and virion morphogenesis yield within infected host cells.
Collapse
Affiliation(s)
- Erica C. Silva
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, SP, Brazil; (E.C.S.); (M.M.D.C.V.)
| | - Carlos A. Quinde
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA;
| | - Basilio Cieza
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Aakash Basu
- Department of Biosciences, Durham University, Durham DH1 3LE, UK;
| | - Marta M. D. C. Vila
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, SP, Brazil; (E.C.S.); (M.M.D.C.V.)
| | - Victor M. Balcão
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, SP, Brazil; (E.C.S.); (M.M.D.C.V.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| |
Collapse
|
198
|
Rubio-Portillo E, Robertson S, Antón J. Coral mucus as a reservoir of bacteriophages targeting Vibrio pathogens. THE ISME JOURNAL 2024; 18:wrae017. [PMID: 38366190 PMCID: PMC10945359 DOI: 10.1093/ismejo/wrae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
The increasing trend in sea surface temperature promotes the spread of Vibrio species, which are known to cause diseases in a wide range of marine organisms. Among these pathogens, Vibrio mediterranei has emerged as a significant threat, leading to bleaching in the coral species Oculina patagonica. Bacteriophages, or phages, are viruses that infect bacteria, thereby regulating microbial communities and playing a crucial role in the coral's defense against pathogens. However, our understanding of phages that infect V. mediterranei is limited. In this study, we identified two phage species capable of infecting V. mediterranei by utilizing a combination of cultivation and metagenomic approaches. These phages are low-abundance specialists within the coral mucus layer that exhibit rapid proliferation in the presence of their hosts, suggesting a potential role in coral defense. Additionally, one of these phages possesses a conserved domain of a leucine-rich repeat protein, similar to those harbored in the coral genome, that plays a key role in pathogen recognition, hinting at potential coral-phage coevolution. Furthermore, our research suggests that lytic Vibrio infections could trigger prophage induction, which may disseminate genetic elements, including virulence factors, in the coral mucus layer. Overall, our findings underscore the importance of historical coral-phage interactions as a form of coral immunity against invasive Vibrio pathogens.
Collapse
Affiliation(s)
- Esther Rubio-Portillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | - Sophia Robertson
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States
| | - Josefa Antón
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
- Multidisciplinary Institute of Environmental Studies Ramon Margalef, Alicante 03690, Spain
| |
Collapse
|
199
|
Nishikawa Y, Wagatsuma R, Tsukada Y, Chia-ling L, Chijiiwa R, Hosokawa M, Takeyama H. Large-scale single-virus genomics uncovers hidden diversity of river water viruses and diversified gene profiles. THE ISME JOURNAL 2024; 18:wrae124. [PMID: 38976038 PMCID: PMC11283719 DOI: 10.1093/ismejo/wrae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/18/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Environmental viruses (primarily bacteriophages) are widely recognized as playing an important role in ecosystem homeostasis through the infection of host cells. However, the majority of environmental viruses are still unknown as their mosaic structure and frequent mutations in their sequences hinder genome construction in current metagenomics. To enable the large-scale acquisition of environmental viral genomes, we developed a new single-viral genome sequencing platform with microfluidic-generated gel beads. Amplification of individual DNA viral genomes in mass-produced gel beads allows high-throughput genome sequencing compared to conventional single-virus genomics. The sequencing analysis of river water samples yielded 1431 diverse viral single-amplified genomes, whereas viral metagenomics recovered 100 viral metagenome-assembled genomes at the comparable sequence depth. The 99.5% of viral single-amplified genomes were determined novel at the species level, most of which could not be recovered by a metagenomic assembly. The large-scale acquisition of diverse viral genomes identified protein clusters commonly detected in different viral strains, allowing the gene transfer to be tracked. Moreover, comparative genomics within the same viral species revealed that the profiles of various methyltransferase subtypes were diverse, suggesting an enhanced escape from host bacterial internal defense mechanisms. Our use of gel bead-based single-virus genomics will contribute to exploring the nature of viruses by accelerating the accumulation of draft genomes of environmental DNA viruses.
Collapse
Affiliation(s)
- Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST-Waseda University, 3-4-1 Okubo, Tokyo 169-0082, Japan
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda Tsurumaki-cho, Tokyo 162–0041, Japan
| | - Ryota Wagatsuma
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST-Waseda University, 3-4-1 Okubo, Tokyo 169-0082, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yuko Tsukada
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Lin Chia-ling
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Rieka Chijiiwa
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda Tsurumaki-cho, Tokyo 162–0041, Japan
| | - Masahito Hosokawa
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST-Waseda University, 3-4-1 Okubo, Tokyo 169-0082, Japan
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda Tsurumaki-cho, Tokyo 162–0041, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Haruko Takeyama
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST-Waseda University, 3-4-1 Okubo, Tokyo 169-0082, Japan
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda Tsurumaki-cho, Tokyo 162–0041, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
200
|
Ramos-Barbero MD, Aldeguer-Riquelme B, Viver T, Villamor J, Carrillo-Bautista M, López-Pascual C, Konstantinidis KT, Martínez-García M, Santos F, Rossello-Mora R, Antón J. Experimental evolution at ecological scales allows linking of viral genotypes to specific host strains. THE ISME JOURNAL 2024; 18:wrae208. [PMID: 39579348 PMCID: PMC11631230 DOI: 10.1093/ismejo/wrae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Viruses shape microbial community structure and activity through the control of population diversity and cell abundances. Identifying and monitoring the dynamics of specific virus-host pairs in nature is hampered by the limitations of culture-independent approaches such as metagenomics, which do not always provide strain-level resolution, and culture-based analyses, which eliminate the ecological background and in-situ interactions. Here, we have explored the interaction of a specific "autochthonous" host strain and its viruses within a natural community. Bacterium Salinibacter ruber strain M8 was spiked into its environment of isolation, a crystallizer pond from a coastal saltern, and the viral and cellular communities were monitored for one month using culture, metagenomics, and microscopy. Metagenome sequencing indicated that the M8 abundance decreased sharply after being added to the pond, likely due to forces other than viral predation. However, the presence of M8 selected for two species of a new viral genus, Phoenicisalinivirus, for which 120 strains were isolated. During this experiment, an assemblage of closely related viral genomic variants was replaced by a single population with the ability to infect M8, a scenario which was compatible with the selection of a genomic variant from the rare biosphere. Further analysis implicated a viral genomic region putatively coding for a tail fiber protein to be responsible for M8 specificity. Our results indicate that low abundance viral genotypes provide a viral seed bank that allows for a highly specialized virus-host response within a complex ecological background.
Collapse
Affiliation(s)
- María Dolores Ramos-Barbero
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643. Annex. Floor 0, Barcelona E-08028, Spain
| | - Borja Aldeguer-Riquelme
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332, GA, United States
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Esporles 07190, Spain
| | - Judith Villamor
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | - Miryam Carrillo-Bautista
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | - Cristina López-Pascual
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | | | - Manuel Martínez-García
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | - Fernando Santos
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Esporles 07190, Spain
| | - Josefa Antón
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
- Multidisciplinary Institute of Environmental Studies Ramon Margalef, Alicante 03690, Spain
| |
Collapse
|