151
|
Zubirán R, Neufeld EB, Dasseux A, Remaley AT, Sorokin AV. Recent Advances in Targeted Management of Inflammation In Atherosclerosis: A Narrative Review. Cardiol Ther 2024; 13:465-491. [PMID: 39031302 PMCID: PMC11333429 DOI: 10.1007/s40119-024-00376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of morbidity and mortality despite effective low-density lipoprotein cholesterol-targeted therapies. This review explores the crucial role of inflammation in the residual risk of ASCVD, emphasizing its impact on atherosclerosis progression and plaque stability. Evidence suggests that high-sensitivity C-reactive protein (hsCRP), and potentially other inflammatory biomarkers, can be used to identify the inflammatory residual ASCVD risk phenotype and may serve as future targets for the development of more efficacious therapeutic approaches. We review the biological basis for the association of inflammation with ASCVD, propose new therapeutic strategies for the use of inflammation-targeted treatments, and discuss current challenges in the implementation of this new treatment paradigm for ASCVD.
Collapse
Affiliation(s)
- Rafael Zubirán
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Edward B Neufeld
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amaury Dasseux
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexander V Sorokin
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Section of Inflammation and Cardiometabolic Diseases, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Section of Lipoprotein Metabolism, Clinical Research Center, National Heart, Lung and Blood Institute, 9000 Rockville Pike, Bldg 10, Room 5-5150, Bethesda, MD, 20892, USA.
| |
Collapse
|
152
|
Zisser L, Binder CJ. Extracellular Vesicles as Mediators in Atherosclerotic Cardiovascular Disease. J Lipid Atheroscler 2024; 13:232-261. [PMID: 39355407 PMCID: PMC11439751 DOI: 10.12997/jla.2024.13.3.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 10/03/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial intima, characterized by accumulation of lipoproteins and accompanying inflammation, leading to the formation of plaques that eventually trigger occlusive thrombotic events, such as myocardial infarction and ischemic stroke. Although many aspects of plaque development have been elucidated, the role of extracellular vesicles (EVs), which are lipid bilayer-delimited vesicles released by cells as mediators of intercellular communication, has only recently come into focus of atherosclerosis research. EVs comprise several subtypes that may be differentiated by their size, mode of biogenesis, or surface marker expression and cargo. The functional effects of EVs in atherosclerosis depend on their cellular origin and the specific pathophysiological context. EVs have been suggested to play a role in all stages of plaque formation. In this review, we highlight the known mechanisms by which EVs modulate atherogenesis and outline current limitations and challenges in the field.
Collapse
Affiliation(s)
- Lucia Zisser
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
153
|
Bosco G, Mszar R, Piro S, Sabouret P, Gallo A. Cardiovascular Risk Estimation and Stratification Among Individuals with Hypercholesterolemia. Curr Atheroscler Rep 2024; 26:537-548. [PMID: 38965183 DOI: 10.1007/s11883-024-01225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
PURPOSE OF THE REVIEW This review aims to assess the variability in considering hypercholesterolemia for cardiovascular risk stratification in the general population. Recent literature on the integration of hypercholesterolemia into clinical risk scores and its interaction with other risk factors will be explored. RECENT FINDINGS The impact of hypercholesterolemia on risk estimation varies among different cardiovascular risk calculators. Elevated lipid levels during early life stages contribute to atherosclerotic plaque development, influencing disease severity despite later treatment initiation. The interplay between low-density lipoprotein cholesterol (LDLc), inflammatory markers and non-LDL lipid parameters enhances cardiovascular risk stratification. Studies have also examined the role of coronary artery calcium (CAC) score as a negative risk marker in populations with severe hypercholesterolemia. Furthermore, polygenic risk scores (PRS) may aid in diagnosing non-monogenic hypercholesterolemia, refining cardiovascular risk stratification and guiding lipid-lowering therapy strategies. Understanding the heterogeneity in risk estimation and the role of emerging biomarkers and imaging techniques is crucial for optimizing cardiovascular risk prediction and guiding personalized treatment strategies in individuals with hypercholesterolemia.
Collapse
Affiliation(s)
- Giosiana Bosco
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Sorbonne Université, INSERM UMR1166, Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié-Salpètriêre, 47/83 Boulevard de L'Hôpital, 75013, Paris, France
| | - Reed Mszar
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Pierre Sabouret
- Heart Institute, Cardiology Department, Sorbonne University, 47-83 Boulevard de L'Hôpital, 75013, Paris, FR, France
- National College of French Cardiologists, 13 Rue Niepce, 75014, Paris, FR, France
| | - Antonio Gallo
- Sorbonne Université, INSERM UMR1166, Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié-Salpètriêre, 47/83 Boulevard de L'Hôpital, 75013, Paris, France.
| |
Collapse
|
154
|
Li G, Li S, Li X, He W, Tan X, Liang J, Zhou Z. A novel electrochemical aptasensor based on NrGO-H-Mn 3O 4 NPs integrated CRISPR/Cas12a system for ultrasensitive low-density lipoprotein determination. Mikrochim Acta 2024; 191:547. [PMID: 39162876 DOI: 10.1007/s00604-024-06628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
Atherosclerosis cardiovascular disease (ASCVD) has become one of the leading death causes in humans. Low-density lipoprotein (LDL) is an important biomarker for assessing ASCVD risk level. Thus, monitoring LDL levels can be an important means for early diagnosis of ASCVD. Herein, a novel electrochemical aptasensor for determination LDL was designed based on nitrogen-doped reduced graphene oxide-hemin-manganese oxide nanoparticles (NrGO-H-Mn3O4 NPs) integrated with clustered regularly interspaced short palindromic repeats and associated proteins (CRISPR/Cas12a) system. NrGO-H-Mn3O4 NPs not only have a large surface area and remarkable enhanced electrical conductivity but also the interconversion of different valence states of iron in hemin can provide an electrical signal. Nonspecific single-stranded DNA (ssDNA) was bound to NrGO-H-Mn3O4 NPs to form a signaling probe and was immobilized on the electrode surface. The CRISPR/Cas12a system has excellent trans-cleavage activity, which can be used to cleave ssDNA, thus detaching the NrGO-H-Mn3O4 NPs from the sensing interface and attenuating the electrical signal. Significant signal change triggered by the target was ultimately obtained, thus achieving sensitive detection of the LDL in range from 0.005 to 1000.0 nM with the detection limit of 0.005 nM. The proposed sensor exhibited good stability, selectivity, and stability and achieved reliable detection of LDL in serum samples, demonstrating its promising application prospects for the diagnostic application of LDL.
Collapse
Affiliation(s)
- Guiyin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China.
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
| | - Shengnan Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Xinhao Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Wei He
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China
| | - Xiaohong Tan
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China
| | - Jintao Liang
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
| | - Zhide Zhou
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
| |
Collapse
|
155
|
Garcia-Moll X. Residual lipidic risk and atherosclerosis: not that residual. Eur J Prev Cardiol 2024; 31:1249-1250. [PMID: 38593199 DOI: 10.1093/eurjpc/zwae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Affiliation(s)
- Xavier Garcia-Moll
- Cardiology Department, Santa Creu i Sant Pau University Hospital, 91 Mas Casanovas St, 08041 Barcelona, Spain
| |
Collapse
|
156
|
Rosati E, Condello G, Tacente C, Mariani I, Tommolini V, Calvaruso L, Fulignati P, Grandaliano G, Pesce F. Potential Add-On Benefits of Dietary Intervention in the Treatment of Autosomal Dominant Polycystic Kidney Disease. Nutrients 2024; 16:2582. [PMID: 39203719 PMCID: PMC11357151 DOI: 10.3390/nu16162582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of renal failure. The pathogenesis of the disease encompasses several pathways and metabolic alterations, including the hyperactivation of mTOR and suppression of AMPK signaling pathways, as well as mitochondrial dysfunction. This metabolic reprogramming makes epithelial cyst-lining cells highly dependent on glucose for energy and unable to oxidize fatty acids. Evidence suggests that high-carbohydrate diets may worsen the progression of ADPKD, providing the rationale for treating ADPKD patients with calorie restriction and, in particular, with ketogenic dietary interventions, already used for other purposes such as in overweight/obese patients or in the treatment of refractory epilepsy in children. Preclinical studies have demonstrated that calorie restriction may prevent and/or slow disease progression by inducing ketosis, particularly through increased beta-hydroxybutyrate (BHB) levels, which may modulate the metabolic signaling pathways altered in ADKPK. In these patients, although limited, ketogenic intervention studies have shown promising beneficial effects. However, larger and longer randomized controlled trials are needed to confirm their tolerability and safety in long-term maintenance and their additive role in the therapy of polycystic kidney disease.
Collapse
Affiliation(s)
- Erica Rosati
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.R.); (G.C.); (C.T.); (I.M.); (V.T.); (L.C.); (P.F.); (G.G.)
- Unità Operativa Complessa di Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giulia Condello
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.R.); (G.C.); (C.T.); (I.M.); (V.T.); (L.C.); (P.F.); (G.G.)
- Unità Operativa Complessa di Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Chiara Tacente
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.R.); (G.C.); (C.T.); (I.M.); (V.T.); (L.C.); (P.F.); (G.G.)
- Unità Operativa Complessa di Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Ilaria Mariani
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.R.); (G.C.); (C.T.); (I.M.); (V.T.); (L.C.); (P.F.); (G.G.)
- Unità Operativa Complessa di Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Valeria Tommolini
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.R.); (G.C.); (C.T.); (I.M.); (V.T.); (L.C.); (P.F.); (G.G.)
- Unità Operativa Complessa di Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luca Calvaruso
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.R.); (G.C.); (C.T.); (I.M.); (V.T.); (L.C.); (P.F.); (G.G.)
- Unità Operativa Complessa di Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Pierluigi Fulignati
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.R.); (G.C.); (C.T.); (I.M.); (V.T.); (L.C.); (P.F.); (G.G.)
- Unità Operativa Complessa di Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giuseppe Grandaliano
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.R.); (G.C.); (C.T.); (I.M.); (V.T.); (L.C.); (P.F.); (G.G.)
- Unità Operativa Complessa di Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Pesce
- Division of Renal Medicine, Ospedale Isola Tiberina—Gemelli Isola, 00186 Rome, Italy
| |
Collapse
|
157
|
Tarugi P, Bertolini S, Calandra S, Arca M, Angelico F, Casula M, Cefalù AB, D'Erasmo L, Fortunato G, Perrone-Filardi P, Rubba P, Suppressa P, Averna M, Catapano AL. Consensus document on diagnosis and management of familial hypercholesterolemia from the Italian Society for the Study of Atherosclerosis (SISA). Nutr Metab Cardiovasc Dis 2024; 34:1819-1836. [PMID: 38871496 DOI: 10.1016/j.numecd.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/04/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024]
Abstract
AIMS Familial Hypercholesterolemia (FH) is a genetic disorder of lipoprotein metabolism that causes an increased risk of premature atherosclerotic cardiovascular disease (ASCVD). Although early diagnosis and treatment of FH can significantly improve the cardiovascular prognosis, this disorder is underdiagnosed and undertreated. For these reasons the Italian Society for the Study of Atherosclerosis (SISA) assembled a Consensus Panel with the task to provide guidelines for FH diagnosis and treatment. DATA SYNTHESIS Our guidelines include: i) an overview of the genetic complexity of FH and the role of candidate genes involved in LDL metabolism; ii) the prevalence of FH in the population; iii) the clinical criteria adopted for the diagnosis of FH; iv) the screening for ASCVD and the role of cardiovascular imaging techniques; v) the role of molecular diagnosis in establishing the genetic bases of the disorder; vi) the current therapeutic options in both heterozygous and homozygous FH. Treatment strategies and targets are currently based on low-density lipoprotein cholesterol (LDL-C) levels, as the prognosis of FH largely depends on the magnitude of LDL-C reduction achieved by lipid-lowering therapies. Statins with or without ezetimibe are the mainstay of treatment. Addition of novel medications like PCSK9 inhibitors, ANGPTL3 inhibitors or lomitapide in homozygous FH results in a further reduction of LDL-C levels. LDL apheresis is indicated in FH patients with inadequate response to cholesterol-lowering therapies. CONCLUSION FH is a common, treatable genetic disorder and, although our understanding of this disease has improved, many challenges still remain with regard to its identification and management.
Collapse
Affiliation(s)
- Patrizia Tarugi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | - Sebastiano Calandra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine (DTPM), Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | | | - Manuela Casula
- Department of Pharmacological and Biomolecular Sciences (DisFeB), Epidemiology and Preventive Pharmacology Service (SEFAP), University of Milan, Milan, Italy; IRCCS Multimedica, Sesto San Giovanni (Milan), Italy
| | - Angelo B Cefalù
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine (DTPM), Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Giuliana Fortunato
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II and CEINGE Biotecnologie avanzate "Franco Salvatore", Naples, Italy
| | | | - Paolo Rubba
- Department of Internal Medicine and Surgery, Federico II University, Naples, Italy
| | - Patrizia Suppressa
- Department of Internal Medicine and Rare Diseases Centre "C. Frugoni", University of Bari A. Moro, Bari, Italy
| | - Maurizio Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy; Biophysical Institute CNR, Palermo, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy; IRCCS Multimedica, Milano, Italy
| |
Collapse
|
158
|
Adolph TE, Tilg H. Western diets and chronic diseases. Nat Med 2024; 30:2133-2147. [PMID: 39085420 DOI: 10.1038/s41591-024-03165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
'Westernization', which incorporates industrial, cultural and dietary trends, has paralleled the rise of noncommunicable diseases across the globe. Today, the Western-style diet emerges as a key stimulus for gut microbial vulnerability, chronic inflammation and chronic diseases, affecting mainly the cardiovascular system, systemic metabolism and the gut. Here we review the diet of modern times and evaluate the threat it poses for human health by summarizing recent epidemiological, translational and clinical studies. We discuss the links between diet and disease in the context of obesity and type 2 diabetes, cardiovascular diseases, gut and liver diseases and solid malignancies. We collectively interpret the evidence and its limitations and discuss future challenges and strategies to overcome these. We argue that healthcare professionals and societies must react today to the detrimental effects of the Western diet to bring about sustainable change and improved outcomes in the future.
Collapse
Affiliation(s)
- Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
159
|
Hu D, Qin D, Kuang J, Yang Y, Weng S, Chen J, Wu S, Wang S, Mao L, Peng D, Yu B. Metformin-Induced Proprotein Convertase Subtilisin/Kexin Type 9 Inhibition Further Decreases Low-Density Lipoprotein Cholesterol Following Statin Treatment in Patients With Coronary Artery Disease and Without Diabetes. J Cardiovasc Pharmacol 2024; 84:261-269. [PMID: 38922587 DOI: 10.1097/fjc.0000000000001592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/07/2024] [Indexed: 06/27/2024]
Abstract
ABSTRACT In vitro investigations have established metformin's capacity to downregulate proprotein convertase subtilisin/kexin type 9 (PCSK9) expression, suggesting a potential beneficial effect on atherogenic lipoprotein particles when combined with metformin therapy. Our objective was to assess whether metformin could mitigate statin-induced adverse effects on PCSK9, thereby improving lipid profiles in patients with coronary artery disease (CAD) but without diabetes. Employing an open-label, placebo-controlled, randomized trial, we randomized patients with CAD but without diabetes into CLA (cholesterol-lowering agents alone: atorvastatin ± ezetimibe, n = 38) and Met + CLA groups (metformin plus CLA, n = 33) in a 1:1 ratio. The primary end point was the therapeutic impact of 1-month metformin combination treatment on low-density lipoprotein cholesterol (LDL-C) and PCSK9 levels. Baseline LDL-C and PCSK9 levels were 76.18 mg·dL -1 and 80.54 ng·mL -1 , respectively. After 1 month, metformin significantly reduced LDL-C (-20.81%, P < 0.001), enabling 72% of patients to attain guideline-recommended LDL-C goals. Noteworthy reductions in PCSK9 levels (-15.03%, P < 0.001) were observed. Moreover, Met + CLA markedly reduced LDL particle number more than CLA alone (-10.65% vs. 1.45%, P = 0.009), primarily due to diminished small-dense LDL particle count. Mechanistically, our study demonstrated metformin's inhibition of statin-induced PCSK9 expression in human hepatocellular cells. In summary, a 1-month metformin combination regimen reduced LDL-C levels in patients with CAD but without diabetes by inhibiting PCSK9 expression. TRIAL REGISTRATION Chinese Clinical Trial Registry identifier: ChiCTR1900026925 (26/10/2019).
Collapse
Affiliation(s)
- Die Hu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
| | - Donglu Qin
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
| | - Jie Kuang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
| | - Yang Yang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
| | - Shuwei Weng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
| | - Jin Chen
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
| | - Sha Wu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
| | - Shuai Wang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
| | - Ling Mao
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
| | - Daoquang Peng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
| | - Bilian Yu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
- FuRong Laboratory, Changsha, Hunan, China
| |
Collapse
|
160
|
Nicholls SJ, Nelson AJ, Ditmarsch M, Kastelein JJP, Ballantyne CM, Ray KK, Navar AM, Nissen SE, Goldberg AC, Brunham LR, Curcio D, Wuerdeman E, Neild A, Kling D, Hsieh A, Dicklin MR, Ference BA, Laufs U, Banach M, Mehran R, Catapano AL, Davidson MH. Obicetrapib on top of maximally tolerated lipid-modifying therapies in participants with or at high risk for atherosclerotic cardiovascular disease: rationale and designs of BROADWAY and BROOKLYN. Am Heart J 2024; 274:32-45. [PMID: 38705341 DOI: 10.1016/j.ahj.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Obicetrapib, a novel, selective cholesteryl ester transfer protein (CETP) inhibitor, reduces low-density lipoprotein cholesterol (LDL-C), LDL particles, apolipoprotein (Apo) B, and lipoprotein(a) [Lp(a)] and increases high-density lipoprotein cholesterol (HDL-C) when added to statins with or without ezetimibe. By substantially reducing LDL-C, obicetrapib has the potential to lower atherogenic lipoproteins in patients with atherosclerotic cardiovascular disease (ASCVD) or heterozygous familial hypercholesterolemia (HeFH) whose LDL-C levels remain high despite treatment with available maximally tolerated lipid-modifying therapies, addressing an unmet medical need in a patient population at high risk for cardiovascular events. METHODS AND RESULTS BROADWAY (NCT05142722) and BROOKLYN (NCT05425745) are ongoing placebo-controlled, double-blind, randomized Phase III trials designed to examine the efficacy, safety, and tolerability of obicetrapib as an adjunct to dietary intervention and maximally tolerated lipid-modifying therapies in participants with a history of ASCVD and/or underlying HeFH whose LDL-C is not adequately controlled. The primary efficacy endpoint was the percent change in LDL-C from baseline to day 84. Other endpoints included changes in Apo B, non-HDL-C, HDL-C, Apo A1, Lp(a), and triglycerides in addition to parameters evaluating safety, tolerability, and pharmacokinetics. BROADWAY also included an adjudicated assessment of major adverse cardiovascular events, measurements of glucose homeostasis, and an ambulatory blood pressure monitoring substudy. A total of 2,532 participants were randomized in BROADWAY and 354 in BROOKLYN to receive obicetrapib 10 mg or placebo (2:1) for 365 days with follow-up through 35 days after the last dose. Results from both trials are anticipated in 2024. CONCLUSION These trials will provide safety and efficacy data to support the potential use of obicetrapib among patients with ASCVD or HeFH with elevated LDL-C for whom existing therapies are not sufficiently effective or well-tolerated.
Collapse
Affiliation(s)
| | - Adam J Nelson
- Victorian Heart Institute, Monash University, Victoria, Australia
| | | | | | | | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial College London, London, UK
| | | | - Steven E Nissen
- Cleveland Clinic Lerner School of Medicine at Case Western Reserve University, Cleveland, OH
| | | | - Liam R Brunham
- UBC Centre for Heart Lung Innovation, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Annie Neild
- NewAmsterdam Pharma, Naarden, The Netherlands
| | | | | | | | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK
| | - Ulrich Laufs
- Klinik und Poliklinkk für Kardiologie, Leipzig University, Germany
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidologym, Medical University of Lodz (MUL), Lodz, Poland
| | - Roxana Mehran
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alberico L Catapano
- IRCCS MultiMedica, Milan, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | |
Collapse
|
161
|
Yoo TK, Lee MY, Sung KC. The Risk of Coronary Artery Calcification according to Different Lipid Parameters and Average Lipid Parameters. J Atheroscler Thromb 2024; 31:1194-1214. [PMID: 38417908 PMCID: PMC11300743 DOI: 10.5551/jat.64600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/08/2024] [Indexed: 03/01/2024] Open
Abstract
AIM We compared the association between the baseline and average lipid parameters over time and the coronary artery calcification (CAC) risk. METHODS Participants who underwent annual (biannual) health examinations and coronary artery computed tomography to measure CAC at least twice between March 2010 and December 2019, with a baseline CAC of 0, were included. The levels of apolipoprotein B (ApoB), Apolipoprotein A-I (ApoA1), ApoB/ApoA1, non-high-density lipoprotein cholesterol (non-HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglycerides (TG), TG/HDL-C, and TC/HDL-C were measured or calculated. The remnant cholesterol (RC) levels were calculated. The average lipid parameters before study entry were calculated using data from 2002 to 2010. The participants were divided into quartiles (Q) according to the parameter values. Cox proportional hazard modeling, adjusted for confounding factors, compared the CAC risk of the highest quartile to the lowest quartile. RESULTS Among 29,278 participants (mean age, 39.19±5.21; men, 88.27%), 2,779 developed CAC >0. The highest quartile of ApoB showed a numerically strong association with CAC risk, compared with the lowest quartile of ApoB (Q1: reference; Q2: HR,1.41, 95% CI,1.25-1.59; Q3: HR,1.97, 95% CI,1.75-2.21; Q4: HR,2.72, 95% CI,2.41-3.07). RC showed a modest association with CAC risk (Q1: reference; Q2: HR,1.13, 95% CI,0.99-1.28; Q3: HR,1.3, 95% CI,1.15-1.47; Q4: HR,1.7, 95% CI,1.51-1.91). The strength of the association was comparable between the parameters at baseline and the average lipid parameters over time. CONCLUSIONS A high ApoB level showed a strong association with CAC risk compared with the lowest ApoB quartile. The baseline lipid parameters can predict CAC development as effectively as the average of multiple measurements can.
Collapse
Affiliation(s)
- Tae Kyung Yoo
- Department of Medicine, MetroWest Medical Center, Framingham, MA, USA
| | - Mi Yeon Lee
- Division of Biostatistics, Department of R&D Management, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ki-Chul Sung
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
162
|
Perez de Isla L, Liberopoulos E, Dovizio M, Veronesi C, Degli Esposti L, Zambon A. Differential Adherence to Free and Single-Pill Combination of Rosuvastatin/Ezetimibe: Findings from a Real-World Analysis in Italy. Adv Ther 2024; 41:3407-3418. [PMID: 38963586 PMCID: PMC11263226 DOI: 10.1007/s12325-024-02916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Adherence to cardiovascular drug treatment can significantly benefit from a reduced pill burden, but data on this matter derived from real-life settings are currently scanty. This analysis assessed the possible changes in adherence in patients treated with rosuvastatin and ezetimibe (ROS/EZE) as free multi-pill combination who switched to ROS/EZE as single-pill combination in the setting of real clinical practice in Italy. METHODS A retrospective analysis was conducted on the administrative databases for a catchment area of about seven million health-assisted residents. Adults receiving ROS/EZE as a single-pill combination from January 2010 to June 2020 (followed up to 2021) were identified. The date of the first prescription of single-pill combination of ROS/EZE was considered as the index date. The analysis included the users of ROS/EZE as a free combination during the year before the index date. Baseline demographic and clinical characteristics were collected during the period of data availability prior to the index date. Adherence to therapy was evaluated as proportion of days covered (PDC), namely the percentage of days during which a patient had access to medication, in the 12-month interval preceding or following the index date (PDC < 25% non-adherence; PDC = 25-75% partial adherence; PDC > 75% adherence). RESULTS A total of 1219 patients (61.1% male, aged 66.2 ± 10.4 years) were included. Cardiovascular comorbidities were found in 83.3% of them, diabetes in 26.4%, and a combination of both in 16.2%. Single-pill combination of ROS/EZE was associated with a higher proportion of adherent patients compared to free-pill combination (75.2% vs 51.8%, p < 0.001). CONCLUSIONS This real-world analysis suggested that switching from a regimen based on separate pills to one based on a single-pill combination resulted in improved adherence to ROS/EZE therapy.
Collapse
Affiliation(s)
- Leopoldo Perez de Isla
- Cardiology Department, Hospital Clínico San Carlos, Servicio de Cardiología, C/Profesor Martín Lagos s/n, 28040, Madrid, Spain.
| | - Evangelos Liberopoulos
- 1st Department of Propedeutic Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Melania Dovizio
- CliCon S.r.l., Società Benefit-Health, Economics and Outcomes Research, Bologna, Italy
| | - Chiara Veronesi
- CliCon S.r.l., Società Benefit-Health, Economics and Outcomes Research, Bologna, Italy
| | - Luca Degli Esposti
- CliCon S.r.l., Società Benefit-Health, Economics and Outcomes Research, Bologna, Italy
| | - Alberto Zambon
- Department of Medicine, University of Padua Medical School, Padua, Italy
| |
Collapse
|
163
|
Barkas F, Sener YZ, Golforoush PA, Kheirkhah A, Rodriguez-Sanchez E, Novak J, Apellaniz-Ruiz M, Akyea RK, Bianconi V, Ceasovschih A, Chee YJ, Cherska M, Chora JR, D'Oria M, Demikhova N, Kocyigit Burunkaya D, Rimbert A, Macchi C, Rathod K, Roth L, Sukhorukov V, Stoica S, Scicali R, Storozhenko T, Uzokov J, Lupo MG, van der Vorst EPC, Porsch F. Advancements in risk stratification and management strategies in primary cardiovascular prevention. Atherosclerosis 2024; 395:117579. [PMID: 38824844 DOI: 10.1016/j.atherosclerosis.2024.117579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of morbidity and mortality worldwide, highlighting the urgent need for advancements in risk assessment and management strategies. Although significant progress has been made recently, identifying and managing apparently healthy individuals at a higher risk of developing atherosclerosis and those with subclinical atherosclerosis still poses significant challenges. Traditional risk assessment tools have limitations in accurately predicting future events and fail to encompass the complexity of the atherosclerosis trajectory. In this review, we describe novel approaches in biomarkers, genetics, advanced imaging techniques, and artificial intelligence that have emerged to address this gap. Moreover, polygenic risk scores and imaging modalities such as coronary artery calcium scoring, and coronary computed tomography angiography offer promising avenues for enhancing primary cardiovascular risk stratification and personalised intervention strategies. On the other hand, interventions aiming against atherosclerosis development or promoting plaque regression have gained attention in primary ASCVD prevention. Therefore, the potential role of drugs like statins, ezetimibe, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, omega-3 fatty acids, antihypertensive agents, as well as glucose-lowering and anti-inflammatory drugs are also discussed. Since findings regarding the efficacy of these interventions vary, further research is still required to elucidate their mechanisms of action, optimize treatment regimens, and determine their long-term effects on ASCVD outcomes. In conclusion, advancements in strategies addressing atherosclerosis prevention and plaque regression present promising avenues for enhancing primary ASCVD prevention through personalised approaches tailored to individual risk profiles. Nevertheless, ongoing research efforts are imperative to refine these strategies further and maximise their effectiveness in safeguarding cardiovascular health.
Collapse
Affiliation(s)
- Fotios Barkas
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.
| | - Yusuf Ziya Sener
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | - Azin Kheirkhah
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elena Rodriguez-Sanchez
- Division of Cardiology, Department of Medicine, Department of Physiology, and Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Jan Novak
- 2(nd) Department of Internal Medicine, St. Anne's University Hospital in Brno and Faculty of Medicine of Masaryk University, Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Maria Apellaniz-Ruiz
- Genomics Medicine Unit, Navarra Institute for Health Research - IdiSNA, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Ralph Kwame Akyea
- Centre for Academic Primary Care, School of Medicine, University of Nottingham, United Kingdom
| | - Vanessa Bianconi
- Department of Medicine and Surgery, University of Perugia, Italy
| | - Alexandr Ceasovschih
- Internal Medicine Department, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Ying Jie Chee
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore
| | - Mariia Cherska
- Cardiology Department, Institute of Endocrinology and Metabolism, Kyiv, Ukraine
| | - Joana Rita Chora
- Unidade I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Mario D'Oria
- Division of Vascular and Endovascular Surgery, Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Nadiia Demikhova
- Sumy State University, Sumy, Ukraine; Tallinn University of Technology, Tallinn, Estonia
| | | | - Antoine Rimbert
- Nantes Université, CNRS, INSERM, l'institut du Thorax, Nantes, France
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| | - Krishnaraj Rathod
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Barts Interventional Group, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Vasily Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Svetlana Stoica
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania; Institute of Cardiovascular Diseases Timisoara, Timisoara, Romania
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Tatyana Storozhenko
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Prevention and Treatment of Emergency Conditions, L.T. Malaya Therapy National Institute NAMSU, Kharkiv, Ukraine
| | - Jamol Uzokov
- Republican Specialized Scientific Practical Medical Center of Therapy and Medical Rehabilitation, Tashkent, Uzbekistan
| | | | - Emiel P C van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074, Aachen, Germany; Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074, Aachen, Germany; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336, Munich, Germany; Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074, Aachen, Germany
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
164
|
Borén J, Taskinen MR, Packard CJ. Biosynthesis and Metabolism of ApoB-Containing Lipoproteins. Annu Rev Nutr 2024; 44:179-204. [PMID: 38635875 DOI: 10.1146/annurev-nutr-062222-020716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Recent advances in human genetics, together with a substantial body of epidemiological, preclinical and clinical trial evidence, strongly support a causal relationship between triglyceride-rich lipoproteins (TRLs) and atherosclerotic cardiovascular disease. Consequently, the secretion and metabolism of TRLs have a significant impact on cardiovascular health. This knowledge underscores the importance of understanding the molecular mechanisms and regulation of very-low-density lipoprotein (VLDL) and chylomicron biogenesis. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL, leading to many ground-breaking molecular insights. Furthermore, the identification of molecular control mechanisms related to triglyceride metabolism has greatly advanced our understanding of the complex metabolism of TRLs. In this review, we explore recent advances in the assembly, secretion, and metabolism of TRLs. We also discuss available treatment strategies for hypertriglyceridemia.
Collapse
Affiliation(s)
- Jan Borén
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden;
| | - Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
165
|
Hang S, Hegele RA. Elderly patients with very high plasma lipoprotein(a) concentrations and few cardiovascular consequences: a case series. J Int Med Res 2024; 52:3000605241271876. [PMID: 39197866 PMCID: PMC11375631 DOI: 10.1177/03000605241271876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024] Open
Abstract
Lipoprotein(a) (Lp(a)) is an atherogenic low-density lipoprotein (LDL)-like particle that is currently regarded as a non-modifiable risk factor for atherosclerotic cardiovascular disease. The number of patients detected with elevated Lp(a) concentrations has been increasing in recent years, although the implication of this finding is unclear for patients and physicians. We screened our lipid clinic database for patients aged >65 years with very high Lp(a) concentrations, which were defined as >230 nmol/L, and cardiovascular outcomes were assessed. The patients' (n = 16) mean (±standard deviation) age was 72.2 ± 7.1 years and the mean Lp(a) concentration was 313 ± 68 nmol/L. After a cumulative 129.0 patient-year follow-up (mean: 8.1 ± 4.2 years), the mean age was 80.3 ± 7.0 years. We observed a low baseline prevalence of cardiovascular events, with only two patients having a history of cardiovascular events. Furthermore, zero incident adverse cardiovascular events were recorded over the follow-up. Therefore, very high Lp(a) concentrations and disease-free old age are not mutually exclusive. Our aggregated clinical experience is that there is only a modest association between elevated Lp(a) concentrations and adverse outcomes. Nonetheless, we still advise treating modifiable risk factors in these patients.
Collapse
Affiliation(s)
| | - Robert A Hegele
- Departments of Medicine and
- Biochemistry, and
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
166
|
Ozde S, Akture G, Ozel MA, Yavuzyilmaz F, Arslanoglu I, Ozde C, Kayapinar O, Coskun G. Evaluation of the systemic-immune inflammation index (SII) and systemic immune-inflammation response index (SIRI) in children with type 1 diabetes mellitus and its relationship with cumulative glycemic exposure. J Pediatr Endocrinol Metab 2024; 37:635-643. [PMID: 38826052 DOI: 10.1515/jpem-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/11/2024] [Indexed: 06/04/2024]
Abstract
OBJECTIVES In this study, the systemic proinflammatory status was assessed using the systemic immune-inflammation index (SII) and SIRI systemic immune-inflammatory response index (SIRI) in children and adolescents with type 1 diabetes mellitus (T1DM). METHODS The study involved 159 patients aged between 6 and 16 years. The SII and SIRI values were calculated based on the complete blood count. Basic blood biochemistry evaluated, and carotid intima-media thickness (cIMT) was measured and recorded. The cumulative glycemic exposure was calculated by multiplying the value above the normal reference range of the HbA1c value. The sum of all these values obtained from the time of diagnosis to obtain the cumulative glycemic exposure. All findings were compared statistically. All statistically significant parameters were evaluated in the multivariate logistic regression analysis. RESULTS The analysis revealed that only cIMT (Exp(B)/OR: 0.769, 95 % CI: 0.694-0.853, p<0.001), high-density lipoprotein (Exp(B)/OR: 3.924, 95 % CI: 2.335-6.596, p<0.001), monocyte count (Exp(B)/OR: 1.650, 95 % CI: 1.257-2.178, p<0.001), hematocrit (Exp(B)/OR: 0.675, 95 % CI: 0.523-0.870, p<0.001), and SIRI (Exp(B)/OR: 1.005, 95 % CI: 1.002-1.008, p<0.001) were significantly associated with T1DM. A statistically significant positive association was found between cumulative glycemic exposure and SIRI only (r=0.213, p=0.032). To our knowledge, this is the first study to evaluate SII and SIRI in children with type 1 diabetes. CONCLUSIONS These findings indicate that SIRI could serve as a potential biomarker for detecting early-onset proatherosclerotic processes in diabetic children. However, further clinical studies are required to confirm this.
Collapse
Affiliation(s)
- Sukriye Ozde
- Department of General Pediatric, Duzce University Faculty of Medicine, Duzce, Türkiye
| | - Gulsah Akture
- Department of Cardiology, Duzce University Faculty of Medicine, Duzce, Türkiye
| | - Mehmet Ali Ozel
- Department of Radiology, Duzce University Faculty of Medicine, Duzce, Türkiye
| | - Fatma Yavuzyilmaz
- Department of Radiology, Duzce University Faculty of Medicine, Duzce, Türkiye
| | - Ilknur Arslanoglu
- Department of Pediatric Endocrinology, Duzce University Faculty of Medicine, Duzce, Türkiye
| | - Cem Ozde
- Department of Cardiology, Duzce University Faculty of Medicine, Duzce, Türkiye
| | - Osman Kayapinar
- Department of Cardiology, Duzce University Faculty of Medicine, Duzce, Türkiye
| | - Gokhan Coskun
- Department of Cardiology, Duzce University Faculty of Medicine, Duzce, Türkiye
| |
Collapse
|
167
|
Zhou Z, Liu Y, Xie P, Yin Z. A ROS-responsive multifunctional targeted prodrug micelle for atherosclerosis treatment. Int J Pharm 2024; 660:124352. [PMID: 38901540 DOI: 10.1016/j.ijpharm.2024.124352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Atherosclerosis is a chronic multifactorial cardiovascular disease. To combat atherosclerosis effectively, it is necessary to develop precision and targeted therapy in the early stages of plaque formation. In this study, a simvastatin (SV)-containing prodrug micelle SPCPV was developed by incorporating a peroxalate ester bond (PO). SPCPV could specifically target VCAM-1 overexpressed at atherosclerotic lesions. SPCPV contains a carrier (CP) composed of cyclodextrin (CD) and polyethylene glycol (PEG). At the lesions, CP and SV exerted multifaceted anti-atherosclerotic effects. In vitro studies demonstrated that intracellular reactive oxygen species (ROS) could induce the release of SV from SPCPV. The uptake of SPCPV was higher in inflammatory cells than in normal cells. Furthermore, in vitro experiments showed that SPCPV effectively reduced ROS levels, possessed anti-inflammatory properties, inhibited foam cell formation, and promoted cholesterol efflux. In vivo studies using atherosclerotic rats showed that SPCPV reduced the thickness of the vascular wall and low-density lipoprotein (LDL). This study developed a drug delivery strategy that could target atherosclerotic plaques and treat atherosclerosis by integrating the carrier with SV. The findings demonstrated that SPCPV possessed high stability and safety and had great therapeutic potential for treating early-stage atherosclerosis.
Collapse
Affiliation(s)
- Zishuo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaxue Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Pei Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
168
|
Hong S, Kim KS, Han K, Park CY. Fenofibrate's impact on cardiovascular risk in patients with diabetes: a nationwide propensity-score matched cohort study. Cardiovasc Diabetol 2024; 23:263. [PMID: 39026240 PMCID: PMC11264858 DOI: 10.1186/s12933-024-02353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The beneficial effects of fenofibrate on atherosclerotic cardiovascular disease (ASCVD) outcomes in patients with diabetes and statin treatment are unclear. We investigated the effects of fenofibrate on all-cause mortality and ASCVD in patients with diabetes, high triglyceride (TG) levels and statin treatment. METHODS We performed a nationwide propensity-score matched (1:1) cohort study using data from the National Health Information Database in the Republic of Korea from 2010 to 2017. The study included 110,723 individuals with diabetes, TG levels ≥ 150 mg/dL, and no prior diagnoses of ASCVD who used statins and fenofibrate, and an equal matched number of similar patients who used statins alone (control group). The study outcomes included newly diagnosed myocardial infarction (MI), stroke, both (MI and/or stroke), and all-cause mortality. RESULTS Over a mean 4.03-year follow-up period, the hazard ratios (HR) for outcomes in the fenofibrate group in comparison to the control group were 0.878 [95% confidence interval (CI) 0.827-0.933] for MI, 0.901 (95% CI 0.848-0.957) for stroke, 0.897 (95% CI 0.858-0.937) for MI and/or stroke, and 0.716 (95% CI 0.685-0.749) for all-cause death. These beneficial effects of fenofibrate were consistent in the subgroup with TG 150-199 mg/dL but differed according to low-density lipoprotein cholesterol (LDL-C) levels. CONCLUSION In this nationwide propensity-score matched cohort study involving individuals with diabetes and TG ≥ 150 mg/dL, the risk of all-cause death and ASCVD was significantly lower with fenofibrate use in conjunction with statin treatment compared to statin treatment alone. However, this finding was significant only in individuals with relatively high LDL-C levels.
Collapse
Affiliation(s)
- Sangmo Hong
- Department of Internal Medicine, Guri Hospital, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Kyung-Soo Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Cheol-Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, Pyung-Dong, Jongro-Gu, (03181), Seoul, Republic of Korea.
| |
Collapse
|
169
|
Wang YW, Xu J, Ma L, Hu H, Chen HW, Hua JS, Kong XY, Li D, Li LW, Pan JY, Wu J. Safety and efficacy of PCSK9 inhibitor (evolocumab) in patients with non-ST segment elevation acute coronary syndrome and non-culprit artery critical lesions: a randomised controlled trial protocol (SPECIAL study). BMJ Open 2024; 14:e083730. [PMID: 39009458 PMCID: PMC11253731 DOI: 10.1136/bmjopen-2023-083730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
INTRODUCTION Patients with non-ST segment elevation acute coronary syndrome (NSTE-ACS) and concomitant multivessel coronary artery disease (CAD) are considered patients with extremely high-risk atherosclerotic cardiovascular disease (ASCVD), and current guidelines specify a lower low-density lipoprotein cholesterol (LDL-C) target for this population. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have been shown to effectively reduce LDL-C levels on a statin background. Additionally, several studies have confirmed the role of PCSK9 inhibitors in plaque regression and reducing residual cardiovascular risk in patients with ACS. However, those studies included coronary lesions with a degree of stenosis <50%. Whether the application of PCSK9 inhibitors in patients with NSTE-ACS with non-culprit artery critical lesions (stenosis degree between 50% and 75%) has a similar effect on plaque regression and improvement of cardiovascular outcomes remains unknown, with a lack of relevant research. This study aims to further investigate the safety and efficacy of evolocumab in patients with NSTE-ACS and concomitant multivessel CAD (non-culprit artery stenosis between 50% and 75%). METHODS AND ANALYSIS In this single-centre clinical randomised controlled trial, 122 patients with NSTE-ACS and concomitant multivessel CAD (non-culprit artery stenosis between 50% and 75%) will be randomly assigned to either the evolocumab treatment group or the standard treatment group after completing culprit vessel revascularisation. The evolocumab treatment group will receive evolocumab in addition to statin therapy, while the standard treatment group will receive standard statin therapy. At baseline and week 50, patients in the evolocumab treatment group will undergo coronary angiography and OCT imaging to visualise pre-existing non-lesional vessels. The primary end point is the absolute change in average minimum fibrous cap thickness (FCT) from baseline to week 50. Secondary end points include changes in plaque lipid arc, lipid length, macrophage grading, lipid levels and major adverse cardiovascular events during the 1-year follow-up period. ETHICS AND DISSEMINATION Ethics: this study will adhere to the principles outlined in the Helsinki Declaration and other applicable ethical guidelines. This study protocol has received approval from the Medical Research Ethics Committee of the First Affiliated Hospital of the University of Science and Technology of China (Anhui Provincial Hospital), with approval number 2022-ky214. DISSEMINATION we plan to disseminate the findings of this study through various channels. This includes publication in peer-reviewed academic journals, presentation at relevant academic conferences and communication to the public, policymakers and healthcare professionals. We will also share updates on the research progress through social media and other online platforms to facilitate the exchange and application of scientific knowledge. Efforts will be made to ensure widespread dissemination of the research results and to have a positive impact on society. TRIAL REGISTRATION NUMBER ChiCTR2200066675.
Collapse
Affiliation(s)
- Yu-Wei Wang
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology, Hefei, China
| | - Jie Xu
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology, Hefei, China
| | - Likun Ma
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology, Hefei, China
| | - Hao Hu
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology, Hefei, China
| | - Hong-Wu Chen
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology, Hefei, China
| | - Jing-Sheng Hua
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology, Hefei, China
| | - Xiang-Yong Kong
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology, Hefei, China
| | - Dan Li
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology, Hefei, China
| | - Long-Wei Li
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology, Hefei, China
| | - Jian-Yuan Pan
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology, Hefei, China
| | - Jiawei Wu
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology, Hefei, China
| |
Collapse
|
170
|
Rajtar-Salwa R, Bobrowska B, Socha S, Dziewierz A, Siudak Z, Batko J, Bartuś S, Krawczyk-Ożóg A. Efficacy of Alirocumab, Evolocumab, and Inclisiran in Patients with Hypercholesterolemia at Increased Cardiovascular Risk. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1124. [PMID: 39064553 PMCID: PMC11278919 DOI: 10.3390/medicina60071124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Lowering low-density lipoprotein (LDL-C) levels is critical for preventing atherosclerotic cardiovascular disease, yet some patients fail to reach the LDL-C targets despite available intensive lipid-lowering therapies. This study assessed the effectiveness and safety profile of alirocumab, evolocumab, and inclisiran in lipid reduction. Materials and Methods: A cohort of 51 patients (median (Q1-Q3) age: 49.0 (39.5-57.5) years) was analyzed. Eligibility included an LDL-C level > 2.5 mmol/L while on the maximum tolerated dose of statin and ezetimibe, a diagnosis of familial hypercholesterolemia, or a very high risk of cardiovascular diseases following myocardial infarction within 12 months prior to the study. Follow-ups and lab assessments were conducted at baseline (51 patients), 3 months (51 patients), and 15 months (26 patients) after the treatment initiation. Results: Median initial LDL-C levels 4.1 (2.9-5.0) mmol/L, decreasing significantly to 1.1 (0.9-1.6) mmol/L at 3 months and 1.0 (0.7-1.8) mmol/L at 15 months (p < 0.001). Total cholesterol also reduced significantly compared to baseline at both intervals (p < 0.001). No substantial differences in LDL-C or total cholesterol levels were observed between 3- and 15-month observations (p > 0.05). No statistically significant differences were noted in cholesterol reduction among the alirocumab, evolocumab, and inclisiran groups at 3 months. The safety profile was favorable, with no reported adverse cardiovascular events or significant changes in alanine transaminase, creatinine, or creatine kinase levels. Conclusions: Alirocumab, evolocumab, and inclisiran notably decreased LDL-C and total cholesterol levels without significant adverse effects, underscoring their potential as effective treatments in patients who do not achieve lipid targets with conventional therapies.
Collapse
Affiliation(s)
- Renata Rajtar-Salwa
- Clinical Department of Cardiology and Cardiovascular Interventions, University Hospital, Macieja Jakubowskiego 2 Street, 30-688 Krakow, Poland (A.D.)
| | - Beata Bobrowska
- Clinical Department of Cardiology and Cardiovascular Interventions, University Hospital, Macieja Jakubowskiego 2 Street, 30-688 Krakow, Poland (A.D.)
| | - Sylwia Socha
- Clinical Department of Cardiology and Cardiovascular Interventions, University Hospital, Macieja Jakubowskiego 2 Street, 30-688 Krakow, Poland (A.D.)
| | - Artur Dziewierz
- Clinical Department of Cardiology and Cardiovascular Interventions, University Hospital, Macieja Jakubowskiego 2 Street, 30-688 Krakow, Poland (A.D.)
- 2nd Department of Cardiology, Jagiellonian University Medical College, Macieja Jakubowskiego 2 Street, 30-688 Krakow, Poland
| | - Zbigniew Siudak
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland
| | - Jakub Batko
- Department of Anatomy, Jagiellonian University Medical College, 12 Kopernika Street, 31-034 Krakow, Poland
| | - Stanisław Bartuś
- Clinical Department of Cardiology and Cardiovascular Interventions, University Hospital, Macieja Jakubowskiego 2 Street, 30-688 Krakow, Poland (A.D.)
- 2nd Department of Cardiology, Jagiellonian University Medical College, Macieja Jakubowskiego 2 Street, 30-688 Krakow, Poland
| | - Agata Krawczyk-Ożóg
- Clinical Department of Cardiology and Cardiovascular Interventions, University Hospital, Macieja Jakubowskiego 2 Street, 30-688 Krakow, Poland (A.D.)
- Department of Anatomy, Jagiellonian University Medical College, 12 Kopernika Street, 31-034 Krakow, Poland
| |
Collapse
|
171
|
Wang Q, Ding X, Xu Z, Wang B, Wang A, Wang L, Ding Y, Song S, Chen Y, Zhang S, Jiang L, Ding X. The mouse multi-organ proteome from infancy to adulthood. Nat Commun 2024; 15:5752. [PMID: 38982135 PMCID: PMC11233712 DOI: 10.1038/s41467-024-50183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
The early-life organ development and maturation shape the fundamental blueprint for later-life phenotype. However, a multi-organ proteome atlas from infancy to adulthood is currently not available. Herein, we present a comprehensive proteomic analysis of ten mouse organs (brain, heart, lung, liver, kidney, spleen, stomach, intestine, muscle and skin) at three crucial developmental stages (1-, 4- and 8-weeks after birth) acquired using data-independent acquisition mass spectrometry. We detect and quantify 11,533 protein groups across the ten organs and obtain 115 age-related differentially expressed protein groups that are co-expressed in all organs from infancy to adulthood. We find that spliceosome proteins prevalently play crucial regulatory roles in the early-life development of multiple organs, and detect organ-specific expression patterns and sexual dimorphism. This multi-organ proteome atlas provides a fundamental resource for understanding the molecular mechanisms underlying early-life organ development and maturation.
Collapse
Affiliation(s)
- Qingwen Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinwen Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhixiao Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Boqian Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Aiting Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sunfengda Song
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Youming Chen
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
172
|
Peres M, Moreira-Rosário A, Padeira G, Gaspar Silva P, Correia C, Nunes A, Garcia E, Faria A, Teixeira D, Calhau C, Pereira-da-Silva L, Ferreira AC, Rocha JC. Biochemical and Anthropometric Outcomes in Paediatric Patients with Heterozygous Familial Hypercholesterolemia after COVID-19 Pandemic Lockdowns: An Exploratory Analysis. Nutrients 2024; 16:2170. [PMID: 38999917 PMCID: PMC11242984 DOI: 10.3390/nu16132170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
The COVID-19 pandemic lockdowns affected the lifestyles of children and adolescents, leading to an increase in childhood obesity. Paediatric patients with familial hypercholesterolemia (FH) may be more susceptible to lockdown effects due to their increased cardiovascular risk. However, data are lacking. We investigated the effect of lockdowns on the metabolic profile of paediatric patients with FH. Blood lipids and anthropometry measured in September 2021-April 2022 were retrospectively compared with pre-pandemic values. Thirty participants were included (1-16 years; 57% female). From baseline to post-pandemic, median [P25, P75] blood LDL-C concentration was 125 [112, 150] mg/dL vs. 125 [100, 147] mg/dL (p = 0.894); HDL-C was 58 [52, 65] mg/dL vs. 56 [51, 61] mg/dL (p = 0.107); triglycerides were 64 [44, 86] mg/dL vs. 59 [42, 86] mg/dL (p = 0.178). The BMI z-score did not change significantly (0.19 [-0.58, 0.89] vs. 0.30 [-0.48, 1.10], p = 0.524). The lack of deterioration in metabolic profiles during lockdowns is positive, as some deterioration was expected. We speculate that patients and caregivers were successfully educated about healthy lifestyle and dietary habits. Our results should be interpreted with caution since the study sample was small and heterogeneous. Multicentre research is needed to better understand the impact of lockdowns on this population.
Collapse
Affiliation(s)
- Maria Peres
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - André Moreira-Rosário
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CHRC-Comprehensive Health Research Centre, Nutrition Group, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CINTESIS-Center for Health Technology and Services Research, NOVA Medical School, 1169-056 Lisboa, Portugal
| | - Gonçalo Padeira
- Reference Centre of Inherited Metabolic Diseases, Unidade Local de Saúde São José, Centro Clínico Académico de Lisboa, 1169-045 Lisboa, Portugal
| | - Patrícia Gaspar Silva
- Reference Centre of Inherited Metabolic Diseases, Unidade Local de Saúde São José, Centro Clínico Académico de Lisboa, 1169-045 Lisboa, Portugal
| | - Carla Correia
- Reference Centre of Inherited Metabolic Diseases, Unidade Local de Saúde São José, Centro Clínico Académico de Lisboa, 1169-045 Lisboa, Portugal
| | - Andreia Nunes
- Reference Centre of Inherited Metabolic Diseases, Unidade Local de Saúde São José, Centro Clínico Académico de Lisboa, 1169-045 Lisboa, Portugal
| | - Elisabete Garcia
- Reference Centre of Inherited Metabolic Diseases, Unidade Local de Saúde São José, Centro Clínico Académico de Lisboa, 1169-045 Lisboa, Portugal
| | - Ana Faria
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CHRC-Comprehensive Health Research Centre, Nutrition Group, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Diana Teixeira
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CHRC-Comprehensive Health Research Centre, Nutrition Group, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Conceição Calhau
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CHRC-Comprehensive Health Research Centre, Nutrition Group, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CINTESIS-Center for Health Technology and Services Research, NOVA Medical School, 1169-056 Lisboa, Portugal
| | - Luís Pereira-da-Silva
- CHRC-Comprehensive Health Research Centre, Nutrition Group, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- Medicine of Woman, Childhood and Adolescence Academic Area, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Ana Cristina Ferreira
- Reference Centre of Inherited Metabolic Diseases, Unidade Local de Saúde São José, Centro Clínico Académico de Lisboa, 1169-045 Lisboa, Portugal
| | - Júlio César Rocha
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CHRC-Comprehensive Health Research Centre, Nutrition Group, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CINTESIS-Center for Health Technology and Services Research, NOVA Medical School, 1169-056 Lisboa, Portugal
- Reference Centre of Inherited Metabolic Diseases, Unidade Local de Saúde São José, Centro Clínico Académico de Lisboa, 1169-045 Lisboa, Portugal
| |
Collapse
|
173
|
Koba S, Satoh N, Ito Y, Yokota Y, Tsunoda F, Sakai K, Nakamura Y, Shoji M, Hirano T, Shinke T. Impact of Direct Measurement of Small Dense Low-Density Lipoprotein Cholesterol for Long-Term Secondary Prevention in Patients with Stable Coronary Artery Disease. Clin Chem 2024; 70:957-966. [PMID: 38757272 DOI: 10.1093/clinchem/hvae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/25/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND This study investigated whether directly measured small dense low-density lipoprotein cholesterol (D-sdLDL-C) can predict long-term coronary artery disease (CAD) events compared with low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (non-HDL-C), apolipoprotein B (apoB), and estimated small dense low-density lipoprotein cholesterol (E-sdLDL-C) determined by the Sampson equation in patients with stable CAD. METHODS D-sdLDL-C measured at Showa University between 2010 and 2022, and E-sdLDL-C were evaluated in 790 male and 244 female patients with stable CAD. CAD events, defined as sudden cardiac death, onset of acute coronary syndrome, and/or need for coronary revascularization, were monitored for 12 years. Cutoff lipid levels were determined by receiver operating characteristic curves. RESULTS CAD events were observed in 238 male and 67 female patients. The Kaplan-Meier event-free survival curves showed that patients with D-sdLDL-C ≥32.1 mg/dL (0.83 mmol/L) had an increased risk for CAD events (P = 0.007), whereas risk in patients with E-sdLDL-C ≥36.2 mg/dL (0.94 mmol/L) was not increased. In the group with high D-sdLDL-C, the multivariable-adjusted hazard ratio (HR) was 1.47 (95% CI, 1.15-1.89), and it remained significant after adjustment for LDL-C, non-HDL-C, or apoB and in patients treated with statins. HRs for high LDL-C, non-HDL-C, or apoB were not statistically significant after adjustment for high D-sdLDL-C. Higher D-sdLDL-C was associated with enhanced risk of high LDL-C, non-HDL-C, and apoB (HR 1.73; 95% CI, 1.27-2.37). CONCLUSIONS Higher D-sdLDL-C can predict long-term recurrence of CAD in stable CAD patients independently of apoB and non-HDL-C. D-sdLDL-C is an independent risk enhancer for secondary CAD prevention, whereas E-sdLDL-C is not.UMIN-CTR Clinical Trial Number: UMIN000027504.
Collapse
Affiliation(s)
- Shinji Koba
- Department of General Medicine, Showa University Graduate School of Dentistry, Tokyo, Japan
- Department of Medicine, Division of Cardiology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Noriyuki Satoh
- Clinical Diagnostics Development Department, Denka Co. Ltd, Tokyo, Japan
| | - Yasuki Ito
- Clinical Diagnostics Development Department, Denka Co. Ltd, Tokyo, Japan
| | - Yuya Yokota
- Department of Medicine, Division of Cardiology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Fumiyoshi Tsunoda
- Department of Medicine, Division of Cardiology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Koshiro Sakai
- Department of Medicine, Division of Cardiology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Nakamura
- Department of Medicine, Division of Cardiology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Makoto Shoji
- Department of Medicine, Division of Cardiology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Tsutomu Hirano
- Diabetes Center, Ebina General Hospital, Kanagawa, Japan
| | - Toshiro Shinke
- Department of Medicine, Division of Cardiology, Showa University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
174
|
Cui J, Zhang Y, Zhang W, Li D, Hong Z, Zhao L, Sun J, Chen Y, Zhang N. Research Hotspots and Development Trends on Apolipoprotein B in the Field of Atherosclerosis: A Bibliometric Analysis. Mol Biotechnol 2024:10.1007/s12033-024-01218-2. [PMID: 38963531 DOI: 10.1007/s12033-024-01218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Cardiovascular diseases caused by atherosclerosis (AS) are the leading causes of disability and death worldwide. Apolipoprotein B (ApoB), the core protein of low-density lipoproteins, is a major contributor to cardiovascular disease-related morbidity and mortality, with apolipoprotein B (ApoB) playing a critical role in its pathogenesis. However, no bibliometric studies on the involvement of ApoB in AS have been published. This study aimed to conduct a comprehensive bibliometric analysis to explore the current and future trends regarding the role of ApoB in AS. METHODS Utilizing the Web of Science Core Collection, a thorough search was conducted for ApoB in AS-related papers related to research on ApoB in the field of AS during 1991-2023. The analysis focused on annual publication trends, leading countries/regions and institutions, influential authors, journal and key journals. CiteSpace and VOSviewer were employed to visualize reference co-citations, and keyword co-occurrences, offering insights into the research landscape and emerging trends. RESULTS This bibliometric analysis employed network diagrams for cluster analysis of a total of 2105 articles and reviews, evidencing a discernible upward trend in annual publication volume. This corpus of research emanates from 76 countries/regions and 2343 organizations, illustrating the widespread international engagement in ApoB-related AS studies. Notably, the United States and the University of California emerge as the most prolific contributors, which underscores their pivotal roles in advancing this research domain. The thematic investigation has increasingly focused on elucidating the mechanistic involvement of ApoB in atherosclerosis, its potential as a diagnostic biomarker, and its implications for therapeutic strategies. CONCLUSION This bibliometric analysis provides the first comprehensive perspective on the evolving promise of ApoB in AS-related research, emphasizing the importance of this molecule in opening up new diagnostic and therapeutic avenues. This study emphasizes the need for continued research and interdisciplinary efforts to strengthen the fight against AS. Furthermore, it emphasizes the critical role of international collaboration and interdisciplinary exploration in leveraging new insights to achieve clinical breakthroughs, thereby addressing the complexities of AS by focusing on ApoB.
Collapse
Affiliation(s)
- Jing Cui
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Yan Zhang
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Wenhong Zhang
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Dongtao Li
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Zhibo Hong
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Li Zhao
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Jiachen Sun
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Yu Chen
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China.
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China.
| | - Ningkun Zhang
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
175
|
Nazli SA, Rosman A, Mohd Kasim NA, Al-Khateeb A, Ul-Saufie AZ, Md Radzi AB, Ibrahim KS, Kasim SS, Nawawi H. Coronary risk factor profiles according to different age categories in premature coronary artery disease patients who have undergone percutaneous coronary intervention. Sci Rep 2024; 14:15326. [PMID: 38961082 PMCID: PMC11222582 DOI: 10.1038/s41598-024-53539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 02/01/2024] [Indexed: 07/05/2024] Open
Abstract
Many studies have investigated the coronary risk factors (CRFs) among premature coronary artery disease (PCAD) patients. However, reports on the proportion and CRFs of PCAD according to different age cut-offs for PCAD is globally under-reported. This study aimed to determine the proportion of PCAD patients and analyse the significant CRFs according to different age cut-offs among percutaneous coronary intervention (PCI)-treated patients. Patients who underwent PCI between 2007 and 2018 in two cardiology centres were included (n = 29,241) and were grouped into four age cut-off groups that defines PCAD: (A) Males/females: < 45, (B) Males: < 50; Females: < 55, (C) Males: < 55; Females: < 60 and (D) Males: < 55; Females: < 65 years old. The average proportion of PCAD was 28%; 9.2% for group (A), 21.5% for group (B), 38.6% and 41.9% for group (C) and (D), respectively. The top three CRFs of PCAD were LDL-c level, TC level and hypertension (HTN). Malay ethnicity, smoking, obesity, family history of PCAD, TC level and history of MI were the independent predictors of PCAD across all age groups. The proportion of PCAD in Malaysia is higher compared to other studies. The most significant risk factors of PCAD are LDL-c, TC levels and HTN. Early prevention, detection and management of the modifiable risk factors are highly warranted to prevent PCAD.
Collapse
Affiliation(s)
- Sukma Azureen Nazli
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Selangor, Malaysia.
- Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia.
| | - Azhari Rosman
- Institut Jantung Negara (IJN), Kuala Lumpur, Malaysia
| | - Noor Alicezah Mohd Kasim
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Selangor, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - Alyaa Al-Khateeb
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Selangor, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - Ahmad Zia Ul-Saufie
- Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Selangor, Malaysia
| | | | | | - Sazzli Shahlan Kasim
- Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
- Cardiac Vascular and Lung Research Institute (CaVaLRI), Universiti Teknologi MARA, Selangor, Malaysia
| | - Hapizah Nawawi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Selangor, Malaysia.
- Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia.
| |
Collapse
|
176
|
Roshanravan N, Seyed Ghiasi N, Ghaffari S, Ghasemnezhad Saadatlou S, Seifimansour S, Hamzezadeh S, Naseri A, Ghanivash A, Mosharkesh E, Nasiri E, Javanshir E, Banisefid E. Lipid profile and mortality in patients with pulmonary thromboembolism; a systematic review and meta-analysis. J Basic Clin Physiol Pharmacol 2024; 35:205-212. [PMID: 39091249 DOI: 10.1515/jbcpp-2024-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Acute pulmonary thromboembolism (PTE) is a life-threatening disease. Considering the availability and accessibility of assessing the serum lipids, this study aims to define the predictive value of lipid profile, as well as the history of lipid disorders, for the mortality of PTE patients. CONTENT Clinical studies, in which the relation of lipid profile, including triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and total cholesterol, as well as history of imbalance of lipids, with mortality of PTE patients was reported, were included. Non-English articles, reviews, letters, editorials, and non-English papers were excluded. A systematic search was conducted in PubMed, Embase, Scopus, and Web of Science databases. The risk of bias was assessed using the Joanna Briggs Institute (JBI) Critical Appraisal tools and CMA 4 was utilized for the quantitative synthesis. Out of 3,724 records, six studies were included in this systematic review. Lipid profile is suggested as a prognostic marker for survival in patients with PTE so higher initial serum HDL, LDL, and total cholesterol levels were associated with lower mortality rates in PTE patients. In addition, dyslipidemia was found to be associated with mortality of PTE patients. Based on the quantitative synthesis, there was a greater serum level of HDL in the survival group (standardized mean difference: -0.98; 95 % CI: -1.22 to -0.75; p-value<0.01). SUMMARY AND OUTLOOK Mortality is lower in PTE patients with greater serum lipid levels; therefore, the early prognosis of PTE may be ascertained by measuring serum lipids within the first 24 h of admission.
Collapse
Affiliation(s)
- Neda Roshanravan
- Cardiovascular Research Center, 48432 Tabriz University of Medical Sciences , Tabriz, Iran
| | - Nikan Seyed Ghiasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, 48432 Tabriz University of Medical Sciences , Tabriz, Iran
| | | | - Sina Seifimansour
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sina Hamzezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Naseri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Evidence Based-Medicine, Iranian EBM Center: A Joanna Briggs Institute Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Ghanivash
- Cardiovascular Research Center, 48432 Tabriz University of Medical Sciences , Tabriz, Iran
| | - Erfan Mosharkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Nasiri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Javanshir
- Cardiovascular Research Center, 48432 Tabriz University of Medical Sciences , Tabriz, Iran
| | - Erfan Banisefid
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
177
|
Di Gioia G, Buzzelli L, Ferrera A, Squeo MR, Lemme E, Pelliccia A. Differences Between Afro-Caribbean and White Caucasian Olympic Athletes in Plasma Lipids Profile: A Cross-Sectional Single Center Study. High Blood Press Cardiovasc Prev 2024; 31:411-415. [PMID: 38814499 DOI: 10.1007/s40292-024-00654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
INTRODUCTION Ethnic and gender differences in plasma lipid composition have been widely reported among the general population, but there are scarce data on athletes. AIM To assess ethnic and gender differences in lipid profile across a large cohort of Olympic athletes practicing different sport disciplines METHODS: We enrolled 1165 Olympic athletes divided into power, endurance, and mixed disciplines according to European Society of Cardiology classification. Sixty-two (5.3%) were Afro-Caribbean. Body composition and fat mass percentage were measured. Blood samples were collected and lipid profile was investigated. RESULTS Compared to Caucasians, Afro-Caribbeans had better lipid profile characterized by lower LDL (90 ± 25 mg/dL vs. 97.1 ± 26.2 mg/dL, p = 0.032) lower LDL/HDL ratio (1.39 ± 0.5 vs. 1.58 ± 0.6, p = 0.012), lower non-HDL-cholesterol (102.5 ± 27.4 mg/dL vs. 111.5 ± 28.5 mg/dL, p = 0.015) and lower TC/HDL (2.59 ± 0.6 vs. 2.82 ± 0.7, p = 0.010). Female Afro-Caribbeans showed lower TG/HDL ratio (p = 0.045) and TC/HDL ratio (p = 0.028), due to higher HDL (p = 0.005) compared to male Afro-Caribbeans. In Caucasian athletes, females showed even more evident differences with lower TC, LDL, and higher HDL with subsequent lower ratios compared to men. Moreover, endurance Caucasian athletes had lower LDL (p = 0.003) and TG (p = 0.017) plasmatic levels and higher HDL levels compared to non-endurance Caucasian athletes (p< 0.0001) CONCLUSIONS: Ethnicity and gender have a significant influence on plasmatic lipid balance in elite athletes and Afro-Caribbeans have favorable lipid profiles compared to Caucasians. Moreover, endurance sports, particularly in Caucasian athletes, are associated with better lipid profile compared to other type of sports.
Collapse
Affiliation(s)
- Giuseppe Di Gioia
- Institute of Sport Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli, 1, 00197, Rome, Italy.
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis, 15, 00135, Rome, Italy.
| | - Lorenzo Buzzelli
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - Armando Ferrera
- Institute of Sport Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli, 1, 00197, Rome, Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189, Rome, Italy
| | - Maria Rosaria Squeo
- Institute of Sport Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli, 1, 00197, Rome, Italy
| | - Erika Lemme
- Institute of Sport Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli, 1, 00197, Rome, Italy
| | - Antonio Pelliccia
- Institute of Sport Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli, 1, 00197, Rome, Italy
| |
Collapse
|
178
|
Hassen H, Škvorová P, Pokhrel K, Kulma M, Piątkowska E, Kostogrys RB, Kouřimská L, Tarko T, Franczyk-Żarów M. Effect of Diets with the Addition of Edible Insects on the Development of Atherosclerotic Lesions in ApoE/LDLR -/- Mice. Int J Mol Sci 2024; 25:7256. [PMID: 39000363 PMCID: PMC11242574 DOI: 10.3390/ijms25137256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Foods enriched with insects can potentially prevent several health disorders, including cardiovascular diseases, by reducing inflammation and improving antioxidant status. In this study, Tenebrio molitor and Gryllus assimilis were selected to determine the effect on the development of atherosclerosis in ApoE/LDLR-/- mice. Animals were fed AIN-93G-based diets (control) with 10% Tenebrio molitor (TM) and 10% Gryllus assimilis (GA) for 8 weeks. The nutritional value as well as antioxidant activity of selected insects were determined. The lipid profile, liver enzyme activity, and the fatty acid composition of liver and adipose tissue of model mice were evaluated. Quantitative analysis of atherosclerotic lesions in the entire aorta was performed using the en face method, and for aortic roots, the cross-section method was used. The antioxidant status of the GA cricket was significantly higher compared to the TM larvae. The results showed that the area of atherosclerosis (en face method) was not significantly different between groups. Dietary GA reduced plaque formation in the aortic root; additionally, significant differences were observed in sections at 200 and 300 µm compared to other groups. Furthermore, liver enzyme ALT activity was lower in insect-fed groups compared to the control group. The finding suggests that a diet containing edible insect GA potentially prevents atherosclerotic plaque development in the aortic root, due to its high antioxidant activity.
Collapse
Affiliation(s)
- Hayat Hassen
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, A. Mickiewicz Av. 21, 31-120 Kraków, Poland; (H.H.); (E.P.); (R.B.K.)
- Department of Human Nutrition, Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar P.O. Box 26, Ethiopia
| | - Petra Škvorová
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic; (P.Š.); (K.P.); (L.K.)
| | - Kshitiz Pokhrel
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic; (P.Š.); (K.P.); (L.K.)
| | - Martin Kulma
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic;
| | - Ewa Piątkowska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, A. Mickiewicz Av. 21, 31-120 Kraków, Poland; (H.H.); (E.P.); (R.B.K.)
| | - Renata B. Kostogrys
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, A. Mickiewicz Av. 21, 31-120 Kraków, Poland; (H.H.); (E.P.); (R.B.K.)
| | - Lenka Kouřimská
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic; (P.Š.); (K.P.); (L.K.)
| | - Tomasz Tarko
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, A. Mickiewicz Av. 21, 31-120 Kraków, Poland
| | - Magdalena Franczyk-Żarów
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, A. Mickiewicz Av. 21, 31-120 Kraków, Poland; (H.H.); (E.P.); (R.B.K.)
| |
Collapse
|
179
|
Nagra M, Tsam F, Ward S, Ur E. Animal vs Plant-Based Meat: A Hearty Debate. Can J Cardiol 2024; 40:1198-1209. [PMID: 38934982 DOI: 10.1016/j.cjca.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 06/28/2024] Open
Abstract
Plant-based meat alternatives (PBMAs) are highly processed food products that typically replace meat in the diet. In Canada, the growing demand for PBMAs coincides with public health recommendations to reduce ultra-processed food consumption, which prompts the need to investigate the long-term health implications of PBMAs. This review assesses the available literature on PBMAs and cardiovascular disease (CVD), including an evaluation of their nutritional profile and impact on CVD risk factors. Overall, the nutritional profiles of PBMAs vary considerably but generally align with recommendations for improving cardiovascular health; compared with meat, PBMAs are usually lower in saturated fat and higher in polyunsaturated fat and dietary fibre. Some dietary trials that have replaced meat with PBMAs have reported improvements in CVD risk factors, including total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B-100, and body weight. No currently available evidence suggests that the concerning aspects of PMBAs (eg, food processing and high sodium content) negate the potential cardiovascular benefits. We conclude that replacing meat with PBMAs may be cardioprotective; however, long-term randomised controlled trials and prospective cohort studies that evaluate CVD events (eg, myocardial infarction, stroke) are essential to draw more definitive conclusions.
Collapse
Affiliation(s)
- Matthew Nagra
- Division of Endocrinology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Felicia Tsam
- Division of Endocrinology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Shaun Ward
- Division of Endocrinology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ehud Ur
- Division of Endocrinology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
180
|
Rangwala HS, Fatima H, Ali M, Shafiq MA, Rangwala BS, Virwani V, Kumar A, Arsal SA, Raja A, Raja S, Mustafa MS. Evaluating the Effectiveness and Safety of Evinacumab in Treating Hypercholesterolemia and Hypertriglyceridemia: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Am J Cardiovasc Drugs 2024; 24:523-535. [PMID: 38713309 DOI: 10.1007/s40256-024-00649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Cardiovascular disease remains a significant global health concern, with high low-density lipoprotein cholesterol (LDL-C) levels contributing to an increased risk. Familial hypercholesterolemia (FH) further complicates its management, necessitating additional lipid-lowering therapies. Evinacumab, an angiopoietin-like protein 3 monoclonal antibody, has emerged as a potential treatment, particularly for patients with FH, by effectively reducing LDL-C and triglyceride levels. This meta-analysis aimed to evaluate the efficacy and safety of evinacumab across diverse patient populations. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria, relevant randomized controlled trials (RCTs) were systematically retrieved from multiple databases until November 24, 2023. The inclusion criteria were studies comparing evinacumab (at doses of 5 and 15 mg) to placebo, with outcomes focusing on lipid levels and adverse events. Standardized protocols were employed for data extraction and quality assessment, and statistical analysis was conducted using RevMan software. RESULTS Four RCTs, involving 270 patients, were included in the analysis. The analysis revealed significant reductions in lipid markers, particularly with the 15-mg dose of evinacumab, including triacylglycerols (standard mean difference [SMD] = -6.09, 95% confidence interval [CI] - 14.53 to 2.36, P = 0.16), total cholesterol (SMD = - 6.20, 95% CI - 11.53 to - 0.88, P = 0.02), high-density lipoprotein cholesterol (SMD = - 0.79, 95% CI - 1.27 to - 0.31, P = 0.001), LDL-C (SMD = - 4.58, 95% CI - 9.13 to - 0.03, P = 0.05), apolipoprotein (Apo) B (SMD = - 4.01, 95% CI - 7.53 to - 0.46, P = 0.03), and Apo C3 (SMD = - 7.67, 95% CI - 12.94 to - 2.41, P = 0.004). Adverse event analysis revealed no significant association, indicating good tolerability. CONCLUSION High-dose evinacumab (15 mg) consistently demonstrated efficacy in reducing cholesterol and other lipid markers, with favorable tolerability. Further research is warranted to comprehensively assess its safety and clinical effectiveness, emphasizing the need for additional data to support its use in managing cardiovascular disease.
Collapse
Affiliation(s)
- Hussain Sohail Rangwala
- Department of Medicine, Jinnah Sindh Medical University, Iqbal Shaheed Rd, Karachi, Pakistan.
| | - Hareer Fatima
- Department of Medicine, Jinnah Sindh Medical University, Iqbal Shaheed Rd, Karachi, Pakistan
| | - Mirha Ali
- Department of Medicine, Jinnah Sindh Medical University, Iqbal Shaheed Rd, Karachi, Pakistan
| | - Muhammad Ashir Shafiq
- Department of Medicine, Jinnah Sindh Medical University, Iqbal Shaheed Rd, Karachi, Pakistan
| | | | - Vikash Virwani
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Aashish Kumar
- Department of Medicine, Shaheed Mohtarma Benazir Bhutto Medical College Lyari, Karachi, Pakistan
| | - Syed Ali Arsal
- Department of Medicine, Shaheed Mohtarma Benazir Bhutto Medical College Lyari, Karachi, Pakistan
| | - Adarsh Raja
- Department of Medicine, Shaheed Mohtarma Benazir Bhutto Medical College Lyari, Karachi, Pakistan
| | - Sandesh Raja
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | |
Collapse
|
181
|
Luciani L, Pedrelli M, Parini P. Modification of lipoprotein metabolism and function driving atherogenesis in diabetes. Atherosclerosis 2024; 394:117545. [PMID: 38688749 DOI: 10.1016/j.atherosclerosis.2024.117545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, characterized by raised blood glucose levels and impaired lipid metabolism resulting from insulin resistance and relative insulin deficiency. In diabetes, the peculiar plasma lipoprotein phenotype, consisting in higher levels of apolipoprotein B-containing lipoproteins, hypertriglyceridemia, low levels of HDL cholesterol, elevated number of small, dense LDL, and increased non-HDL cholesterol, results from an increased synthesis and impaired clearance of triglyceride rich lipoproteins. This condition accelerates the development of the atherosclerotic cardiovascular disease (ASCVD), the most common cause of death in T2DM patients. Here, we review the alteration of structure, functions, and distribution of circulating lipoproteins and the pathophysiological mechanisms that induce these modifications in T2DM. The review analyzes the influence of diabetes-associated metabolic imbalances throughout the entire process of the atherosclerotic plaque formation, from lipoprotein synthesis to potential plaque destabilization. Addressing the different pathophysiological mechanisms, we suggest improved approaches for assessing the risk of adverse cardiovascular events and clinical strategies to reduce cardiovascular risk in T2DM and cardiometabolic diseases.
Collapse
Affiliation(s)
- Lorenzo Luciani
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Interdisciplinary Center for Health Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
182
|
Lui DTW, Tan KCB. High-density lipoprotein in diabetes: Structural and functional relevance. J Diabetes Investig 2024; 15:805-816. [PMID: 38416054 PMCID: PMC11215696 DOI: 10.1111/jdi.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Low levels of high-density lipoprotein-cholesterol (HDL-C) is considered a major cardiovascular risk factor. However, recent studies have suggested a more U-shaped association between HDL-C and cardiovascular disease. It has been shown that the cardioprotective effect of HDL is related to the functions of HDL particles rather than their cholesterol content. HDL particles are highly heterogeneous and have multiple functions relevant to cardiometabolic conditions including cholesterol efflux capacity, anti-oxidative, anti-inflammatory, and vasoactive properties. There are quantitative and qualitative changes in HDL as well as functional abnormalities in both type 1 and type 2 diabetes. Non-enzymatic glycation, carbamylation, oxidative stress, and systemic inflammation can modify the HDL composition and therefore the functions, especially in situations of poor glycemic control. Studies of HDL proteomics and lipidomics have provided further insights into the structure-function relationship of HDL in diabetes. Interestingly, HDL also has a pleiotropic anti-diabetic effect, improving glycemic control through improvement in insulin sensitivity and β-cell function. Given the important role of HDL in cardiometabolic health, HDL-based therapeutics are being developed to enhance HDL functions rather than to increase HDL-C levels. Among these, recombinant HDL and small synthetic apolipoprotein A-I mimetic peptides may hold promise for preventing and treating diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- David Tak Wai Lui
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Kathryn Choon Beng Tan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| |
Collapse
|
183
|
Ma Y, Han J, Wang K, Han H, Hu Y, Li H, Wu S, Zhang L. Research progress of Ganoderma lucidum polysaccharide in prevention and treatment of Atherosclerosis. Heliyon 2024; 10:e33307. [PMID: 39022015 PMCID: PMC11253544 DOI: 10.1016/j.heliyon.2024.e33307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease resulting from dysregulated lipid metabolism, constituting the pathophysiological foundation of cardiovascular and cerebrovascular diseases. AS has a high incidence rate and mortality rate worldwide. As such, traditional Chinese medicine (TCM) has been widely used recently due to its stable therapeutic effect and high safety. Ganoderma lucidum polysaccharides (GLP) are the main active ingredients of Ganoderma lucidum, a Chinese herbal medicine. Research has also shown that GLP has anti-inflammatory and antioxidant properties, regulates gut microbiota, improves blood glucose and lipid levels, and inhibits obesity. Most of the current research on GLP anti-AS is focused on animal models. Thus, its clinical application remains to be discovered. In this review, we combine relevant research results and start with the pathogenesis and risk factors of GLP on AS, proving that GLP can prevent and treat AS, providing a scientific basis and reference for the future prevention and treatment of AS with GLP.
Collapse
Affiliation(s)
- YiZheng Ma
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - JingBo Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - KangFeng Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - Huan Han
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - YiBin Hu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - He Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - ShengXian Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - LiJuan Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| |
Collapse
|
184
|
Bay B, Fuh MM, Rohde J, Worthmann A, Goßling A, Arnold N, Koester L, Lorenz T, Blaum C, Kirchhof P, Blankenberg S, Seiffert M, Brunner FJ, Waldeyer C, Heeren J. Sex differences in lipidomic and bile acid plasma profiles in patients with and without coronary artery disease. Lipids Health Dis 2024; 23:197. [PMID: 38926753 PMCID: PMC11201360 DOI: 10.1186/s12944-024-02184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Lipids, including phospholipids and bile acids, exert various signaling effects and are thought to contribute to the development of coronary artery disease (CAD). Here, we aimed to compare lipidomic and bile acid profiles in the blood of patients with and without CAD stratified by sex. METHODS From 2015 to 2022, 3,012 patients who underwent coronary angiography were recruited in the INTERCATH cohort. From the overall cohort, subgroups were defined using patient characteristics such as CAD vs. no CAD, 1st vs. 3rd tertile of LDL-c, and female vs. male sex. Hereafter, a matching algorithm based on age, BMI, hypertension status, diabetes mellitus status, smoking status, the Mediterranean diet score, and the intake of statins, triglycerides, HDL-c and hs-CRP in a 1:1 ratio was implemented. Lipidomic analyses of stored blood samples using the Lipidyzer platform (SCIEX) and bile acid analysis using liquid chromatography with tandem mass spectrometry (LC‒MS/MS) were carried out. RESULTS A total of 177 matched individuals were analyzed; the median ages were 73.5 years (25th and 75th percentile: 64.1, 78.2) and 71.9 years (65.7, 77.2) for females and males with CAD, respectively, and 67.6 years (58.3, 75.3) and 69.2 years (59.8, 76.8) for females and males without CAD, respectively. Further baseline characteristics, including cardiovascular risk factors, were balanced between the groups. Women with CAD had decreased levels of phosphatidylcholine and diacylglycerol, while no differences in bile acid profiles were detected in comparison to those of female patients without CAD. In contrast, in male patients with CAD, decreased concentrations of the secondary bile acid species glycolithocholic and lithocholic acid, as well as altered levels of specific lipids, were detected compared to those in males without CAD. Notably, male patients with low LDL-c and CAD had significantly greater concentrations of various phospholipid species, particularly plasmalogens, compared to those in high LDL-c subgroup. CONCLUSIONS We present hypothesis-generating data on sex-specific lipidomic patterns and bile acid profiles in CAD patients. The data suggest that altered lipid and bile acid composition might contribute to CAD development and/or progression, helping to understand the different disease trajectories of CAD in women and men. REGISTRATION https://clinicaltrials.gov/ct2/show/NCT04936438 , Unique identifier: NCT04936438.
Collapse
Affiliation(s)
- Benjamin Bay
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.
| | - Marceline M Fuh
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Julia Rohde
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Alina Goßling
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalie Arnold
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Lukas Koester
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Thiess Lorenz
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Blaum
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Stefan Blankenberg
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Moritz Seiffert
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
- Department of Cardiology and Angiology, BG University Hospital Bergmannsheil, Ruhr- University Bochum, Bochum, Germany
| | - Fabian J Brunner
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Christoph Waldeyer
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
185
|
Kim J, Kim JY, Byeon HE, Kim JW, Kim HA, Suh CH, Choi S, Linton MF, Jung JY. Inhibition of Toll-like Receptors Alters Macrophage Cholesterol Efflux and Foam Cell Formation. Int J Mol Sci 2024; 25:6808. [PMID: 38928513 PMCID: PMC11203583 DOI: 10.3390/ijms25126808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Arterial macrophage cholesterol accumulation and impaired cholesterol efflux lead to foam cell formation and the development of atherosclerosis. Modified lipoproteins interact with toll-like receptors (TLR), causing an increased inflammatory response and altered cholesterol homeostasis. We aimed to determine the effects of TLR antagonists on cholesterol efflux and foam cell formation in human macrophages. Stimulated monocytes were treated with TLR antagonists (MIP2), and the cholesterol efflux transporter expression and foam cell formation were analyzed. The administration of MIP2 attenuated the foam cell formation induced by lipopolysaccharides (LPS) and oxidized low-density lipoproteins (ox-LDL) in stimulated THP-1 cells (p < 0.001). The expression of ATP-binding cassette transporters A (ABCA)-1, ABCG-1, scavenger receptor (SR)-B1, liver X receptor (LXR)-α, and peroxisome proliferator-activated receptor (PPAR)-γ mRNA and proteins were increased (p < 0.001) following MIP2 administration. A concentration-dependent decrease in the phosphorylation of p65, p38, and JNK was also observed following MIP2 administration. Moreover, an inhibition of p65 phosphorylation enhanced the expression of ABCA1, ABCG1, SR-B1, and LXR-α. TLR inhibition promoted the cholesterol efflux pathway by increasing the expression of ABCA-1, ABCG-1, and SR-B1, thereby reducing foam cell formation. Our results suggest a potential role of the p65/NF-kB/LXR-α/ABCA1 axis in TLR-mediated cholesterol homeostasis.
Collapse
Affiliation(s)
- Jaemi Kim
- Department of Rheumatology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.K.); (C.-H.S.)
| | - Ji-Yun Kim
- Institute of Medical Science, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.-Y.K.)
| | - Hye-Eun Byeon
- Institute of Medical Science, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.-Y.K.)
| | - Ji-Won Kim
- Department of Rheumatology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.K.); (C.-H.S.)
| | - Hyoun-Ah Kim
- Department of Rheumatology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.K.); (C.-H.S.)
| | - Chang-Hee Suh
- Department of Rheumatology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.K.); (C.-H.S.)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea;
| | - MacRae F. Linton
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA
| | - Ju-Yang Jung
- Department of Rheumatology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.K.); (C.-H.S.)
| |
Collapse
|
186
|
Tan H, Liu L, Qi Y, Zhang D, Zhi Y, Li Y, Zhang H, Liu J. Atorvastatin Attenuates Endothelial Cell Injury in Atherosclerosis Through Inhibiting ACSL4-Mediated Ferroptosis. Cardiovasc Ther 2024; 2024:5522013. [PMID: 39742023 PMCID: PMC11211010 DOI: 10.1155/2024/5522013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/27/2024] [Accepted: 05/18/2024] [Indexed: 01/03/2025] Open
Abstract
Objective: This study is aimed at investigating the effects of atorvastatin (ATV) on endothelial cell injury in atherosclerosis (AS) through inhibiting acyl-CoA synthetase long-chain family member 4 (ACSL4)-mediated ferroptosis. Methods: Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to establish an in vitro model of AS. The cell viability, lactate dehydrogenase (LDH) release, apoptosis, and expression levels of apoptotic proteins were assessed. The levels of inflammatory factors and adhesion molecules were determined by ELISA and Western blot, respectively. Cellular iron content, lipid peroxidation, glutathione (GSH) levels, and lipid reactive oxygen species (ROS) were measured. ACSL4 overexpression was performed to investigate its role in ATV-mediated protection against ferroptosis. Results: ATV alleviated ox-LDL-induced HUVEC damage by restoring cell viability, reducing LDH levels, and inhibiting apoptosis. It also attenuated inflammation and adhesion by decreasing the levels of inflammatory factors TNF-α, IL-6, and IL-8, as well as adhesion molecules ICAM-1 and VCAM-1. ATV inhibited ferroptosis by regulating iron content, malondialdehyde (MDA) levels, ROS levels, and ACSL4 protein expression. Overexpression of ACSL4 (oe-ACSL4) hindered the protective effects of ATV on cell viability, antiapoptotic protein expression, LDH levels, apoptosis, and inflammatory factors. Conclusion: Our findings suggest that ATV attenuates endothelial cell injury in AS by inhibiting ACSL4-mediated ferroptosis. These results provide insights into the potential therapeutic strategies for the treatment of AS.
Collapse
Affiliation(s)
- Huilian Tan
- Department of CardiologyThe First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ling Liu
- Department of CardiologyThe First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanchao Qi
- Department of CardiologyThe First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dahong Zhang
- Department of CardiologyThe First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanchun Zhi
- Department of CardiologyThe First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yu Li
- Department of CardiologyThe First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huimin Zhang
- Department of CardiologyThe First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jun Liu
- Department of CardiologyThe First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
187
|
Fang Q, Lu X, Zhu Y, Lv X, Yu F, Ma X, Liu B, Zhang H. Development of a PCSK9-targeted nanoparticle vaccine to effectively decrease the hypercholesterolemia. Cell Rep Med 2024; 5:101614. [PMID: 38897173 PMCID: PMC11228807 DOI: 10.1016/j.xcrm.2024.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/28/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low-density lipoprotein receptor (LDLR) and mediates its internalization and degradation, resulting in an increase in LDL cholesterol levels. Recently, PCSK9 emerged as a therapeutic target for hypercholesterolemia and atherosclerosis. In this study, we develop a PCSK9 nanoparticle (NP) vaccine by covalently conjugating the catalytic domain (aa 153-aa 454, D374Y) of PCSK9 to self-assembled 24-mer ferritin NPs. We demonstrate that the PCSK9 NP vaccine effectively induces interfering antibodies against PCSK9 and reduces serum lipids levels in both a high-fat diet-induced hypercholesterolemia model and an adeno-associated virus-hPCSK9D374Y-induced hypercholesterolemia model. Additionally, the vaccine significantly reduces plaque lesion areas in the aorta and macrophages infiltration in an atherosclerosis mouse model. Furthermore, we discover that the vaccine's efficacy relied on T follicular help cells and LDLR. Overall, these findings suggest that the PCSK9 NP vaccine holds promise as an effective treatment for hypercholesterolemia and atherosclerosis.
Collapse
Affiliation(s)
- Qiannan Fang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Xinyu Lu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Yuanqiang Zhu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University·Zhaoqing Hospital, Zhaoqing, Guangdong 510630, China
| | - Xi Lv
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Fei Yu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Xiancai Ma
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510005, China
| | - Bingfeng Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
188
|
Benaiges D, Goday A, Casajoana A, Flores-Le Roux JA, Fitó M, Pozo OJ, Serra C, Pera M, Llauradó G, Climent E, Villatoro M, Lazaro I, Castañer O, Pedro-Botet J. Short-term effects of gastric bypass versus sleeve gastrectomy on high LDL cholesterol: The BASALTO randomized clinical trial. Cardiovasc Diabetol 2024; 23:205. [PMID: 38879559 PMCID: PMC11180388 DOI: 10.1186/s12933-024-02296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/04/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND There has been a substantial increase in the use of laparoscopic sleeve gastrectomy (SG) to treat morbid obesity despite observational evidence demonstrating the superiority of Roux-en-Y gastric bypass (RYGB) for reducing low-density lipoprotein (LDL) cholesterol. The main aim was to ascertain whether high LDL cholesterol levels should be considered when selecting the most appropriate surgical procedure for each patient (RYGB or SG). METHODS In this single-center, randomized clinical trial using intention-to-treat analysis, 38 patients with severe obesity and elevated levels of LDL cholesterol were randomly assigned to undergo RYGB or SG. The primary outcome was LDL cholesterol remission at 12 months, defined as LDL cholesterol < 3.36 nmol/l without lipid-lowering medications. Secondary outcomes included changes in weight, other comorbidities, qualitative lipoprotein traits, cholesterol esters, glycoproteins, cholesterol absorption and synthesis metabolites and complications. RESULTS Intention-to-treat analysis revealed that LDL cholesterol remission occurred in 66.6% of RYGB patients compared to 27.8% of SG patients (p = 0.019). Among patients completing follow-up, RYGB demonstrated superior remission (80.0% vs. 29.4%, p = 0.005). Exclusive benefits of RYGB included a reduction in large, medium, and small LDL particles. Cholesterol absorption markers showed differential behavior after both techniques: campesterol (Δ -15.2 µg/mg, 95% CI -30.2 to -0.1) decreased after RYGB, and sitosterol (Δ 21.1 µg/mg, 95% CI 0.9 to 41.2), cholestanol (Δ 30.6 µg/mg, 95% CI 14.8 to 57.9) and campesterol (Δ 18.4 µg/mg, 95% CI 4.4 to 32.3) increased after SG. No differences in weight loss, cholesterol esters, glycoproteins, cholesterol synthesis metabolites or postoperative complications were observed between techniques. CONCLUSION In conclusion, RYGB is superior to SG in terms of short-term of high LDL cholesterol remission. Furthermore, RYGB also led to a greater improvement in lipoprotein parameters that confer an atherogenic profile. Therefore, the presence of elevated levels of LDL cholesterol should be considered when determining the optimal bariatric surgery procedure for each patient. TRIAL REGISTRATION Clinicaltrials.gov number, NCT03975478).
Collapse
Affiliation(s)
- David Benaiges
- Department of Endocrinology and Nutrition, Hospital del Mar, Passeig Marítim, 25-29, Barcelona, 08003, Spain.
- Department of Medicine, Universitat Pompeu Fabra, Plaça de la Mercè, 10-12, Barcelona, 08002, Spain.
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 80, Barcelona, 08003, Spain.
- Consorci Sanitari de l'Alt Penedès i Garraf, Vilafranca del Penedès, Spain.
- CiberOBN. Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain.
| | - Albert Goday
- Department of Endocrinology and Nutrition, Hospital del Mar, Passeig Marítim, 25-29, Barcelona, 08003, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 80, Barcelona, 08003, Spain
- CiberOBN. Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
- Department of Medicine, Universitat Autònoma de Barcelona. Plaça Cívica, Bellaterra, Barcelona, 08193, Spain
| | - Anna Casajoana
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 80, Barcelona, 08003, Spain
- Esophago-Gastric and Bariatric Surgery Unit, Department of Surgery, Hospital del Mar, Passeig Marítim, 25-29, Barcelona, 08003, Spain
| | - Juana A Flores-Le Roux
- Department of Endocrinology and Nutrition, Hospital del Mar, Passeig Marítim, 25-29, Barcelona, 08003, Spain
- Department of Medicine, Universitat Pompeu Fabra, Plaça de la Mercè, 10-12, Barcelona, 08002, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 80, Barcelona, 08003, Spain
| | - Montserrat Fitó
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 80, Barcelona, 08003, Spain
- CiberOBN. Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
| | - Oscar J Pozo
- Applied Metabolomics Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Research Institute), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Carme Serra
- Department of Endocrinology and Nutrition, Hospital del Mar, Passeig Marítim, 25-29, Barcelona, 08003, Spain
| | - Manuel Pera
- Esophago-Gastric and Bariatric Surgery Unit, Department of Surgery, Hospital del Mar, Passeig Marítim, 25-29, Barcelona, 08003, Spain
| | - Gemma Llauradó
- Department of Endocrinology and Nutrition, Hospital del Mar, Passeig Marítim, 25-29, Barcelona, 08003, Spain
- Department of Medicine, Universitat Pompeu Fabra, Plaça de la Mercè, 10-12, Barcelona, 08002, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 80, Barcelona, 08003, Spain
| | - Elisenda Climent
- Department of Endocrinology and Nutrition, Hospital del Mar, Passeig Marítim, 25-29, Barcelona, 08003, Spain
- Department of Medicine, Universitat Pompeu Fabra, Plaça de la Mercè, 10-12, Barcelona, 08002, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 80, Barcelona, 08003, Spain
| | - Montserrat Villatoro
- Department of Endocrinology and Nutrition, Hospital del Mar, Passeig Marítim, 25-29, Barcelona, 08003, Spain
| | - Iolanda Lazaro
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 80, Barcelona, 08003, Spain
- CiberOBN. Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
| | - Olga Castañer
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 80, Barcelona, 08003, Spain
- CiberOBN. Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
- Ciber Epidemiología y Salud Pública (CiberESP), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
| | - Juan Pedro-Botet
- Department of Endocrinology and Nutrition, Hospital del Mar, Passeig Marítim, 25-29, Barcelona, 08003, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 80, Barcelona, 08003, Spain
- Department of Medicine, Universitat Autònoma de Barcelona. Plaça Cívica, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
189
|
Kaur G, Mason RP, Steg PG, Bhatt DL. Omega-3 fatty acids for cardiovascular event lowering. Eur J Prev Cardiol 2024; 31:1005-1014. [PMID: 38169319 DOI: 10.1093/eurjpc/zwae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024]
Abstract
Low-density lipoprotein cholesterol (LDL-C) is the main target for therapeutics aimed at reducing the risk of atherosclerotic cardiovascular disease (ASCVD) and downstream cardiovascular (CV) events. However, multiple studies have demonstrated that high-risk patient populations harbour residual risk despite effective LDL-C lowering. While data support the causal relationship between triglycerides and ASCVD risk, triglyceride-lowering therapies such as omega-3 fatty acids have shown mixed results in CV outcomes trials. Notably, icosapent ethyl, a purified formulation of eicosapentaenoic acid (EPA), has garnered compelling evidence in lowering residual CV risk in patients with hypertriglyceridaemia and treated with statins. In this review, we summarize studies that have investigated omega-3-fatty acids for CV event lowering and discuss the clinical implementation of these agents based on trial data and guidelines.
Collapse
Affiliation(s)
- Gurleen Kaur
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R Preston Mason
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Elucida Research LLC, Beverly, MA, USA
| | - Ph Gabriel Steg
- Paris Cité University, Public Hospitals of Paris (AP-HP), Bichat Hospital, Paris, France
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
190
|
Zhang Y, Wu S, Tian X, Xu Q, Xia X, Zhang X, Li J, Chen S, Liu F, Wang A. Discordance between Remnant Cholesterol and Low-density Lipoprotein Cholesterol Predicts Cardiovascular Disease: the Kailuan Prospective Cohort Study. Hellenic J Cardiol 2024:S1109-9666(24)00106-4. [PMID: 38838914 DOI: 10.1016/j.hjc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/20/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Previous studies have shown that remnant cholesterol (RC) was associated with cardiovascular disease (CVD). The study aim to identify the association of RC and the discordance between RC and lipoprotein cholesterol (LDL-C) with CVD. METHODS Data was obtained from the Kailuan study. RC was calculated as the non high-density lipoprotein cholesterol minus LDL-C. Discordant RC and LDL-C were defined by percentile difference and clinical cutoff points. Cox proportional hazard models were used to explore the association of RC and the discordance between RC and LDL-C with CVD. RESULTS Total of 96,769 participants were inclued, with the median age of 51.61 years, 79.56% of male. There was a significant association between RC levels and the risk of CVD, with an HR of 1.10 (95% CI, 1.08-1.13) in the continuous analysis. The discordantly high RC group had a significant increase in CVD, MI, and stroke risk, with HRs of 1.18 (95%CI, 1.10-1.26), 1.23 (1.06-1.43), and 1.15 (1.07-1.24), respectively. Compared to the group with low LDL-C and low RC, the group with low LDL-C and high RC had significantly higher incidences of CVD (HR, 1.33 [95% CI, 1.26-1.40]), MI (HR, 1.59 [95% CI, 1.41-1.80]), and stroke (HR, 1.28 [95% CI, 1.20-1.35]). CONCLUSIONS Elevated levels of RC and discordantly high RC with LDL-C both were associated with the risk of CVD, MI, and stroke. These findings demonstrate the clinical significance of identifying residual risk related to RC.
Collapse
Affiliation(s)
- Yijun Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Clinical Epidemiology and Clinical Trial, Capital Medical University, Beijing, China
| | - Shouling Wu
- Department of Cardiology, Kailuan Hospital, North China University of Science and Technology, Tangshan, China
| | - Xue Tian
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Clinical Epidemiology and Clinical Trial, Capital Medical University, Beijing, China
| | - Qin Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Clinical Epidemiology and Clinical Trial, Capital Medical University, Beijing, China
| | - Xue Xia
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Clinical Epidemiology and Clinical Trial, Capital Medical University, Beijing, China
| | - Xiaoli Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Clinical Epidemiology and Clinical Trial, Capital Medical University, Beijing, China
| | - Jing Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Clinical Epidemiology and Clinical Trial, Capital Medical University, Beijing, China
| | - Shuohua Chen
- Department of Cardiology, Kailuan Hospital, North China University of Science and Technology, Tangshan, China
| | - Fen Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China.
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Clinical Epidemiology and Clinical Trial, Capital Medical University, Beijing, China.
| |
Collapse
|
191
|
Ibrahim S, Nurmohamed NS, Nierman MC, de Goeij JN, Zuurbier L, van Rooij J, Schonck WAM, de Vries J, Hovingh GK, Reeskamp LF, Stroes ESG. Enhanced identification of familial hypercholesterolemia using central laboratory algorithms. Atherosclerosis 2024; 393:117548. [PMID: 38643673 DOI: 10.1016/j.atherosclerosis.2024.117548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND AND AIMS Familial hypercholesterolemia (FH) is a highly prevalent genetic disorder resulting in markedly elevated LDL cholesterol levels and premature coronary artery disease. FH underdiagnosis and undertreatment require novel detection methods. This study evaluated the effectiveness of using an LDL cholesterol cut-off ≥99.5th percentile (sex- and age-adjusted) to identify clinical and genetic FH, and investigated underutilization of genetic testing and undertreatment in FH patients. METHODS Individuals with at least one prior LDL cholesterol level ≥99.5th percentile were selected from a laboratory database containing lipid profiles of 590,067 individuals. The study comprised three phases: biochemical validation of hypercholesterolemia, clinical identification of FH, and genetic determination of FH. RESULTS Of 5614 selected subjects, 2088 underwent lipid profile reassessment, of whom 1103 completed the questionnaire (mean age 64.2 ± 12.7 years, 48% male). In these 1103 subjects, mean LDL cholesterol was 4.0 ± 1.4 mmol/l and 722 (65%) received lipid-lowering therapy. FH clinical diagnostic criteria were met by 282 (26%) individuals, of whom 85% had not received guideline-recommended genetic testing and 97% failed to attain LDL cholesterol targets. Of 459 individuals consenting to genetic validation, 13% carried an FH-causing variant, which increased to 19% in clinically diagnosed FH patients. CONCLUSIONS The identification of a substantial number of previously undiagnosed and un(der)treated clinical and genetic FH patients within a central laboratory database highlights the feasibility and clinical potential of this targeted screening strategy; both in identifying new FH patients and in improving treatment in this high-risk population.
Collapse
Affiliation(s)
- Shirin Ibrahim
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nick S Nurmohamed
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Melchior C Nierman
- Department of Thrombosis and Anticoagulation, Atalmedial Medical Diagnostic Centers, Amsterdam, the Netherlands
| | - Jim N de Goeij
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Linda Zuurbier
- Department of Human Genetics, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jeroen van Rooij
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Willemijn A M Schonck
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jard de Vries
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - G Kees Hovingh
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Laurens F Reeskamp
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
192
|
Bays HE. Obesity, dyslipidemia, and cardiovascular disease: A joint expert review from the Obesity Medicine Association and the National Lipid Association 2024. OBESITY PILLARS 2024; 10:100108. [PMID: 38706496 PMCID: PMC11066689 DOI: 10.1016/j.obpill.2024.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 05/07/2024]
Abstract
Background This joint expert review by the Obesity Medicine Association (OMA) and National Lipid Association (NLA) provides clinicians an overview of the pathophysiologic and clinical considerations regarding obesity, dyslipidemia, and cardiovascular disease (CVD) risk. Methods This joint expert review is based upon scientific evidence, clinical perspectives of the authors, and peer review by the OMA and NLA leadership. Results Among individuals with obesity, adipose tissue may store over 50% of the total body free cholesterol. Triglycerides may represent up to 99% of lipid species in adipose tissue. The potential for adipose tissue expansion accounts for the greatest weight variance among most individuals, with percent body fat ranging from less than 5% to over 60%. While population studies suggest a modest increase in blood low-density lipoprotein cholesterol (LDL-C) levels with excess adiposity, the adiposopathic dyslipidemia pattern most often described with an increase in adiposity includes elevated triglycerides, reduced high density lipoprotein cholesterol (HDL-C), increased non-HDL-C, elevated apolipoprotein B, increased LDL particle concentration, and increased small, dense LDL particles. Conclusions Obesity increases CVD risk, at least partially due to promotion of an adiposopathic, atherogenic lipid profile. Obesity also worsens other cardiometabolic risk factors. Among patients with obesity, interventions that reduce body weight and improve CVD outcomes are generally associated with improved lipid levels. Given the modest improvement in blood LDL-C with weight reduction in patients with overweight or obesity, early interventions to treat both excess adiposity and elevated atherogenic cholesterol (LDL-C and/or non-HDL-C) levels represent priorities in reducing the risk of CVD.
Collapse
Affiliation(s)
- Harold Edward Bays
- Corresponding author. Louisville Metabolic and Atherosclerosis Research Center, Louisville, KY, 40213, USA.
| |
Collapse
|
193
|
Wang Y, Zou Y, Jiang Q, Li W, Chai X, Zhao T, Liu S, Yuan Z, Yu C, Wang T. Ox-LDL-induced CD80 + macrophages expand pro-atherosclerotic NKT cells via CD1d in atherosclerotic mice and hyperlipidemic patients. Am J Physiol Cell Physiol 2024; 326:C1563-C1572. [PMID: 38586879 DOI: 10.1152/ajpcell.00043.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Atherosclerosis is an inflammatory disease of blood vessels involving the immune system. Natural killer T (NKT) cells, as crucial components of the innate and acquired immune systems, play critical roles in the development of atherosclerosis. However, the mechanism and clinical relevance of NKT cells in early atherosclerosis are largely unclear. The study investigated the mechanism influencing NKT cell function in apoE deficiency-induced early atherosclerosis. Our findings demonstrated that there were higher populations of NKT cells and interferon-gamma (IFN-γ)-producing NKT cells in the peripheral blood of patients with hyperlipidemia and in the aorta, blood, spleen, and bone marrow of early atherosclerotic mice compared with the control groups. Moreover, we discovered that the infiltration of CD80+ macrophages and CD1d expression on CD80+ macrophages in atherosclerotic mice climbed remarkably. CD1d expression increased in CD80+ macrophages stimulated by oxidized low-density lipoprotein (ox-LDL) ex vivo and in vitro. Ex vivo coculture of macrophages with NKT cells revealed that ox-LDL-induced CD80+ macrophages presented lipid antigen α-Galcer (alpha-galactosylceramide) to NKT cells via CD1d, enabling NKT cells to express more IFN-γ. Furthermore, a greater proportion of CD1d+ monocytes and CD1d+CD80+ monocytes were found in peripheral blood of hyperlipidemic patients compared with that of healthy donors. Positive correlations were found between CD1d+CD80+ monocytes and NKT cells or IFN-γ+ NKT cells in hyperlipidemic patients. Our findings illustrated that CD80+ macrophages stimulated NKT cells to secrete IFN-γ via CD1d-presenting α-Galcer, which may accelerate the progression of early atherosclerosis. Inhibiting lipid antigen presentation by CD80+ macrophages to NKT cells may be a promising immune target for the treatment of early atherosclerosis.NEW & NOTEWORTHY This work proposed the ox-LDL-CD80+ monocyte/macrophage-CD1d-NKT cell-IFN-γ axis in the progression of atherosclerosis. The proinflammatory IFN-γ+ NKT cells are closely related to CD1d+CD80+ monocytes in hyperlipidemic patients. Inhibiting CD80+ macrophages to present lipid antigens to NKT cells through CD1d blocking may be a new therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Yin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Yao Zou
- Department of Pharmacy, People's Hospital of Chongqing Liangjiang New District, Chongqing, People's Republic of China
| | - Qingsong Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, People's Republic of China
| | - Wenming Li
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xinyu Chai
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Tingrui Zhao
- Department of Clinical Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Sichuan, People's Republic of China
| | - Siyi Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Zhiyi Yuan
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Tingting Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| |
Collapse
|
194
|
Takase M, Nakamura T, Nakaya N, Kogure M, Hatanaka R, Nakaya K, Chiba I, Kanno I, Nochioka K, Tsuchiya N, Hirata T, Obara T, Ishikuro M, Uruno A, Kobayashi T, Kodama EN, Hamanaka Y, Orui M, Ogishima S, Nagaie S, Fuse N, Sugawara J, Izumi Y, Kuriyama S, Hozawa A. Relationships of Fat Mass Index and Fat-Free Mass Index with Low-Density Lipoprotein Cholesterol Levels in the Tohoku Medical Megabank Community-Based Cohort Study. J Atheroscler Thromb 2024; 31:979-1003. [PMID: 38325860 DOI: 10.5551/jat.64535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
AIMS Although fat mass (FM) and fat-free mass (FFM) have an impact on lipid metabolism, the relationship between different body composition phenotypes and lipid profiles is still unclear. By dividing the FM and FFM by the square of the height, respectively, the fat mass index (FMI) and fat-free mass index (FFMI) can be used to determine the variations in body composition. This study aimed to investigate the relationship of combined FMI and FFMI with low-density lipoprotein cholesterol (LDL-C) levels. METHODS This cross-sectional study comprised 5,116 men and 13,630 women without cardiovascular disease and without treatment for hypertension, and diabetes. Following sex-specific quartile classification, FMI and FFMI were combined into 16 groups. Elevated LDL-C levels were defined as LDL-C ≥ 140 mg/dL and/or dyslipidemia treatment. Multivariable logistic regression models were used to examine the relationships between combined FMI and FFMI and elevated LDL-C levels. RESULTS Overall, elevated LDL-C levels were found in 1,538 (30.1%) men and 5,434 (39.9%) women. In all FFMI subgroups, a higher FMI was associated with elevated LDL-C levels. Conversely, FFMI was inversely associated with elevated LDL-C levels in most FMI subgroups. Furthermore, the groups with the highest FMI and lowest FFMI had higher odds ratios for elevated LDL-C levels than those with the lowest FMI and highest FFMI. CONCLUSIONS Regardless of FFMI, FMI was positively associated with elevated LDL-C levels. Conversely, in the majority of FMI subgroups, FFMI was inversely associated with elevated LDL-C levels.
Collapse
Affiliation(s)
| | - Tomohiro Nakamura
- Tohoku Medical Megabank Organization, Tohoku University
- Kyoto Women's University
| | - Naoki Nakaya
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Mana Kogure
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Rieko Hatanaka
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Kumi Nakaya
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Ippei Chiba
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Ikumi Kanno
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Kotaro Nochioka
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
- Tohoku University Hospital, Tohoku University
| | - Naho Tsuchiya
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Takumi Hirata
- Tohoku Medical Megabank Organization, Tohoku University
- Institute for Clinical and Translational Science, Nara Medical University
| | - Taku Obara
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Mami Ishikuro
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Akira Uruno
- Tohoku Medical Megabank Organization, Tohoku University
| | - Tomoko Kobayashi
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
- Tohoku University Hospital, Tohoku University
| | - Eiichi N Kodama
- Tohoku Medical Megabank Organization, Tohoku University
- International Research Institute of Disaster Science, Tohoku University
| | | | - Masatsugu Orui
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Soichi Ogishima
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Satoshi Nagaie
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Nobuo Fuse
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Junichi Sugawara
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
- Tohoku University Hospital, Tohoku University
- Suzuki Memorial Hospital
| | - Yoko Izumi
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Shinichi Kuriyama
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
- International Research Institute of Disaster Science, Tohoku University
| | - Atsushi Hozawa
- Graduate School of Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| |
Collapse
|
195
|
Zhang Q, Wu C, Tan X, Li C, Liu Y, Hu S. Homocysteine Facilitates the Formation of Carotid Atherosclerotic Plaque Through Inflammatory and Noninflammatory Mechanisms. Metab Syndr Relat Disord 2024; 22:365-371. [PMID: 38422209 DOI: 10.1089/met.2023.0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Background: Elevated homocysteine (Hcy) was considered a significant risk factor in the development and progression of carotid atherosclerosis (CAS), which involves a combination of inflammatory and noninflammatory mechanisms. However, epidemiological surveys have presented conflicting results. In this study, we aim to offer an epidemiological viewpoint on how elevated Hcy impacts CAS and its potential mechanisms. Methods: Levels of high-sensitivity C-reactive protein (hsCRP) were measured to assess the inflammatory status. The estimation of CAS events was performed by assessing carotid intima-media thickness using Doppler ultrasonography. Univariate analysis was conducted to investigate the variations in biochemical parameters among three groups: normal, carotid atherosclerotic thickening (CAT), and carotid atherosclerotic plaque (CAP) formation. Logistic regression analysis was conducted to identify the risk factors associated with the progression of CAT and CAP. In addition, multivariate linear regression analysis was conducted to identify the independent factors that correlated with hsCRP levels. Results: The study encompassed 3897 participants, with 2992 (76.8%) being males and 905 (23.2%) being females. The incidence of CAT and CAP rose with higher Hcy levels, with an overall odds ratio (OR) of 2.04 [95% confidence intervals (CI) 1.69-2.40] for CAT and 2.68 (95% CI 2.32-3.05) for CAP. After adjusting for gender, age, and blood markers, the OR for CAT and CAP decreased, with an overall OR of 1.05 (95% CI 0.81-1.28) and OR of 1.24 (95% CI 1.02-1.46), respectively. CAP risk independently increased when Hcy level exceeded 19.7 μmol/L (P = 0.030), but not CAT risk (P = 0.299). The impact of hsCRP on CAS events is similar to that of Hcy, and a multiple linear analysis found a significant independent correlation between hsCRP and Hcy (P = 0.001). Conclusions: Elevated Hcy levels can facilitate the formation of CAP through both inflammatory and noninflammatory processes, but it does not independently influence CAT.
Collapse
Affiliation(s)
- Qiang Zhang
- Health Management Center, Chongqing General Hospital, Chongqing, China
| | - Chunxi Wu
- Department of Blood Transfusion, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaoqing Tan
- Health Management Center, Chongqing General Hospital, Chongqing, China
| | - Can Li
- Health Management Center, Chongqing General Hospital, Chongqing, China
| | - Ying Liu
- Health Management Center, Chongqing General Hospital, Chongqing, China
| | - Shixia Hu
- Health Management Center, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
196
|
Corredoira P, Marco-Benedi V, Cenarro A, Peribáñez S, Olmos S, Civeira F. Factors associated with the presence of tendon xanthomas in familial hypercholesterolemia. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2024; 77:462-470. [PMID: 38185215 DOI: 10.1016/j.rec.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
INTRODUCTION AND OBJECTIVES Tendon xanthomas (TX) are lipid deposits highly specific to familial hypercholesterolemia (FH). However, there is significant variability in their presentation among FH patients, primarily due to largely unknown causes. Lipoprotein(a) is a well-established independent risk factor for atherosclerotic cardiovascular disease in the general population as well as in FH. Given the wide variability of lipoprotein(a) among FH individuals and the likelihood that TX may result from a proatherogenic and proinflammatory condition, the objective of this study was to analyze the size of TX in the Achilles tendons of FH participants and the variables associated with their presence, including lipoprotein(a) concentration. METHODS A cross-sectional study was conducted on 377 participants with a molecular diagnosis of heterozygous FH. Achilles tendon maximum thickness (ATMT) was measured using ultrasonography with standardized equipment and procedures. Demographic variables and lipid profiles were collected. A multivariate linear regression model using a log-Gaussian approach was used to predict TX size. Classical cardiovascular risk factors and lipoprotein(a) were included as explanatory variables. RESULTS The mean low-density lipoprotein cholesterol level was 277mg/dL without lipid-lowering treatment, and the median ATMT was 5.50mm. We demonstrated that age, sex, low-density lipoprotein cholesterol, and lipoprotein(a) were independently associated with ATMT. However, these 4 variables did not account for most the interindividual variability observed (R2=0.205). CONCLUSIONS TX, a characteristic hallmark of FH, exhibit heterogeneity in their presentation. Interindividual variability can partially be explained by age, male sex, low-density lipoprotein cholesterol, and lipoprotein(a) but these factors account for only 20% of this heterogeneity.
Collapse
Affiliation(s)
- Pablo Corredoira
- Unidad de Lípidos, Servicio de Medicina Interna, Hospital Universitario Miguel Servet, Zaragoza, Spain; Servicio de Cardiología, Hospital Universitario Miguel Servet, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.
| | - Victoria Marco-Benedi
- Unidad de Lípidos, Servicio de Medicina Interna, Hospital Universitario Miguel Servet, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Departamento de Medicina, Psiquiatría y Dermatología, Universidad de Zaragoza, Zaragoza, Spain
| | - Ana Cenarro
- Unidad de Lípidos, Servicio de Medicina Interna, Hospital Universitario Miguel Servet, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Departamento de Medicina, Psiquiatría y Dermatología, Universidad de Zaragoza, Zaragoza, Spain
| | - Sonia Peribáñez
- Servicio de Cardiología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Salvador Olmos
- Instituto Universitario de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza, Spain
| | - Fernando Civeira
- Unidad de Lípidos, Servicio de Medicina Interna, Hospital Universitario Miguel Servet, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Departamento de Medicina, Psiquiatría y Dermatología, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
197
|
Kriemler L, Rudin S, Gawinecka J, Gross F, Arnold M, Schweizer J, Westphal L, Inauen C, Pokorny T, Dittrich T, Toebak A, Arnold M, Christ-Crain M, von Eckardstein A, Rentsch K, Katan M, De Marchis GM. Discordance between LDL-C and apolipoprotein B is associated with large-artery-atherosclerosis ischemic stroke in patients ⩽70 years of age. Eur Stroke J 2024; 9:494-500. [PMID: 38279527 PMCID: PMC11318434 DOI: 10.1177/23969873231221619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/04/2023] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND AND AIMS Low density lipoprotein (LDL-C) and other atherogenic lipoproteins are coated by apolipoprotein B100 (apoB). The correlation between LDL-C and apoB is usually thight, but in some cases LDL-C underestimates apoB levels and residual cardiovascular risk. We aimed to assess if a discordance of LDL-C-levels with apoB levels is associated with LAA stroke. METHODS We included patients with an acute ischemic stroke from two prospective studies enrolled at the University Hospital Bern, Basel and Zurich, Switzerland. LDL-C and apoB were measured within 24 h of symptom onset. By linear regression, for each LDL-C, we computed the expected apoB level assuming a perfect correlation. Higher-than-expected apoB was defined as apoB level being in the upper residual tertile. RESULTS Overall, we included 1783 patients, of which 260 had a LAA stroke (15%). In the overall cohort, higher-than-expected apoB values were not associated with LAA. However, a significant interaction with age was present. Among the 738 patients ⩽70 years of age, a higher-than-expected apoB was more frequent in patients with LAA- versus non LAA-stroke (48% vs 36%, p = 0.02). In multivariate analysis, a higher-than-expected apoB was associated with LAA stroke (aOR = aOR 2.48, 95%CI 1.14-5.38). Among those aged ⩽70 years and with LAA, 11.7% had higher than guideline-recommended apoB despite LDL-C ⩽ 1.8 mmol/L (<70 mg/dl), compared to 5.9% among patients with other stroke etiologies (p = 0.04). A triglyceride cut-off of ⩾0.95 mmol/L had, in external validation, a sensitivity of 71% and specificity of 52% for apoB ⩾ 0.65 g/L among patients with LDL-C <1.8 mmol/L. CONCLUSIONS Among patients aged ⩽70 years, a higher-than-expected apoB was independently associated with LAA stroke. Measuring apoB may help identify younger stroke patients potentially benefiting from intensified lipid-lowering therapy.
Collapse
Affiliation(s)
- Lilian Kriemler
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Clinic for Internal Medicine, Kantonsspital Schaffhausen, Schaffhausen, Switzerland
| | - Salome Rudin
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Joanna Gawinecka
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Switzerland
| | - Felix Gross
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Markus Arnold
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Juliane Schweizer
- Department of Neurology, Stadtspital Zürich, Triemli, Zurich, Switzerland
| | - Laura Westphal
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Corinne Inauen
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Thomas Pokorny
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Tolga Dittrich
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Neurology and Stroke Center, Kantonsspital St. Gallen, St.Gallen, Switzerland
| | - Anna Toebak
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Neurology and Stroke Center, Kantonsspital St. Gallen, St.Gallen, Switzerland
| | - Marcel Arnold
- Department of Neurology, Inselspital, University Hospital Bern and University of Bern, Bern, Switzerland
| | - Mirjam Christ-Crain
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Endocrinology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Switzerland
| | - Katharina Rentsch
- Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Mira Katan
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Gian Marco De Marchis
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Neurology and Stroke Center, Kantonsspital St. Gallen, St.Gallen, Switzerland
| |
Collapse
|
198
|
Abbasi S, Khan A, Choudhry MW. New Insights Into the Treatment of Hyperlipidemia: Pharmacological Updates and Emerging Treatments. Cureus 2024; 16:e63078. [PMID: 38919858 PMCID: PMC11196920 DOI: 10.7759/cureus.63078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 06/27/2024] Open
Abstract
Cardiovascular diseases are the leading causes of global mortality and morbidity. Hyperlipidemia is a significant risk factor for atherosclerosis and subsequent cardiovascular diseases. Hyperlipidemia is characterized by imbalances in blood cholesterol levels, particularly elevated low-density lipoprotein cholesterol and triglycerides, and is influenced by genetic and environmental factors. Current management consists of lifestyle modifications and pharmacological interventions most commonly consisting of statins. This review paper explores pathophysiology, management strategies, and pharmacotherapies including commonly used well-established medications including statins, fibrates, and ezetimibe, exciting novel therapies including proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and RNA interference therapies (inclisiran), lomitapide, and bempedoic acid, highlighting their mechanisms of action, clinical efficacy, and safety profiles. Additionally, emerging therapies under clinical trials including ApoC-III inhibitors, DGAT2 inhibitors, ACAT2 Inhibitors, and LPL gene therapies are examined for their potential to improve lipid homeostasis and cardiovascular outcomes. The evolving landscape of hyperlipidemia management underscores the importance of continued research into both established therapies and promising new candidates, offering hope for more effective treatment strategies in the future.
Collapse
Affiliation(s)
| | - Adnan Khan
- Cardiology, St. Joseph's Medical Center, Stockton, USA
| | | |
Collapse
|
199
|
Doi T, Langsted A, Nordestgaard BG. Remnant cholesterol, LDL cholesterol, and apoB absolute mass changes explain results of the PROMINENT trial. Atherosclerosis 2024; 393:117556. [PMID: 38678642 DOI: 10.1016/j.atherosclerosis.2024.117556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND AND AIMS The PROMINENT trial, a cardiovascular outcome trial of the triglyceride- and remnant cholesterol-lowering agent pemafibrate, has shown neutral results despite reduction in plasma triglycerides and remnant cholesterol. We tested the hypothesis that absolute mass changes in remnant cholesterol, LDL cholesterol, and apolipoprotein B explain the results of the PROMINENT trial. METHODS Among 108,431 individuals from the Copenhagen General Population Study (CGPS), those who met the key inclusion criteria of the PROMINENT trial were analyzed to mimic the trial design. Endpoint atherosclerotic cardiovascular disease (ASCVD) was cardiovascular death, myocardial infarction, ischemic stroke, and coronary revascularization as defined in PROMINENT. RESULTS In the PROMINENT trial, treatment with pemafibrate resulted in -7 mg/dL (-0.18 mmol/L; -18 %) change in remnant cholesterol, +10 mg/dL (+0.26 mmol/L; +12 %) LDL cholesterol, and +5 mg/dL (+0.05 g/L; +5 %) apolipoprotein B. In the CGPS mimicking PROMINENT, the estimated hazard ratios for ASCVD were 0.97 (95 % confidence interval: 0.94-0.99) for a -7 mg/dL (-0.18 mmol/L) change in remnant cholesterol, 1.04 (1.01-1.07) for a +10 mg/dL (+0.26 mmol/L) change in LDL cholesterol, and 1.02 (1.01-1.03) for a +5 mg/dL (+0.05 g/L) change in apolipoprotein B. When combining absolute changes in remnant cholesterol, LDL cholesterol, and apolipoprotein B, the estimated hazard ratio for ASCVD was 1.05 (0.96-1.14) in the CGPS mimicking PROMINENT compared to 1.03 (0.91-1.15) in the PROMINENT trial. CONCLUSIONS Absolute mass changes in remnant cholesterol, LDL cholesterol, and apolipoprotein B can explain results of the PROMINENT trial. The 3 mg/dL (0.08 mmol/L) higher total atherogenic cholesterol together with 5 mg/dL (0.05 g/L) higher apolipoprotein B seem to explain the trend toward more ASCVD in the pemafibrate arm.
Collapse
Affiliation(s)
- Takahito Doi
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; The Copenhagen General Population Study, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Langsted
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; The Copenhagen General Population Study, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; The Copenhagen General Population Study, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
200
|
Okamura T, Tsukamoto K, Arai H, Fujioka Y, Ishigaki Y, Koba S, Ohmura H, Shoji T, Yokote K, Yoshida H, Yoshida M, Deguchi J, Dobashi K, Fujiyoshi A, Hamaguchi H, Hara M, Harada-Shiba M, Hirata T, Iida M, Ikeda Y, Ishibashi S, Kanda H, Kihara S, Kitagawa K, Kodama S, Koseki M, Maezawa Y, Masuda D, Miida T, Miyamoto Y, Nishimura R, Node K, Noguchi M, Ohishi M, Saito I, Sawada S, Sone H, Takemoto M, Wakatsuki A, Yanai H. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2022. J Atheroscler Thromb 2024; 31:641-853. [PMID: 38123343 DOI: 10.5551/jat.gl2022] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Tomonori Okamura
- Preventive Medicine and Public Health, Keio University School of Medicine
| | | | | | - Yoshio Fujioka
- Faculty of Nutrition, Division of Clinical Nutrition, Kobe Gakuin University
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Hirotoshi Ohmura
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate school of Medicine
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital
| | | | - Juno Deguchi
- Department of Vascular Surgery, Saitama Medical Center, Saitama Medical University
| | - Kazushige Dobashi
- Department of Pediatrics, School of Medicine, University of Yamanashi
| | | | | | - Masumi Hara
- Department of Internal Medicine, Mizonokuchi Hospital, Teikyo University School of Medicine
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| | - Takumi Hirata
- Institute for Clinical and Translational Science, Nara Medical University
| | - Mami Iida
- Department of Internal Medicine and Cardiology, Gifu Prefectural General Medical Center
| | - Yoshiyuki Ikeda
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, School of Medicine
- Current affiliation: Ishibashi Diabetes and Endocrine Clinic
| | - Hideyuki Kanda
- Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Shinji Kihara
- Medical Laboratory Science and Technology, Division of Health Sciences, Osaka University graduate School of medicine
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University Hospital
| | - Satoru Kodama
- Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Daisaku Masuda
- Department of Cardiology, Center for Innovative Medicine and Therapeutics, Dementia Care Center, Doctor's Support Center, Health Care Center, Rinku General Medical Center
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine
| | | | - Rimei Nishimura
- Department of Diabetes, Metabolism and Endocrinology, The Jikei University School of Medicine
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Midori Noguchi
- Division of Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Isao Saito
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University
| | - Shojiro Sawada
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Minoru Takemoto
- Department of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare
| | | | - Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital
| |
Collapse
|