151
|
Kollars TM. Potential for the Invasive Species Aedes Albopictus and Arboviral Transmission through the Chabahar Port in Iran. IRANIAN JOURNAL OF MEDICAL SCIENCES 2018; 43:393-400. [PMID: 30046208 PMCID: PMC6055213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dengue, chikungunya, and Zika viruses are emerging infectious disease threats wherever suitable vectors, hosts, and habitat are present. The aim of the present study was to use the bioagent transport and environmental modeling system (BioTEMS) to identify the potential for arbovirus-infected Aedes species to invade the Chabahar area in southeastern Iran. METHODS ArcGIS geospatial analysis software, Statistica software, and BioTEMS were used to analyze geographic information and conduct data analysis. BioTEMS utilizes up to several hundred abiotic and biotic factors to produce risk and vulnerability assessments for biological agents and infectious diseases. The output of BioTEMS was validated using published predictive models, and most importantly published collection data of Aedes species in Iran. RESULTS There appears to have been two separate invasion events by Ae. albopictus into the southern region of Iran, first preceding 2009 and then again in 2013. BioTEMS identified two probable areas of introduction during the 2009 time frame, either through one or both the Chabahar ports or the Iranshahr airport with subsequent spread through vehicular transport. BioTEMS identified the port as an introduction zone for ZIKAV with high-risk zones and identifies gap zones during the 2013 time frame. Recommended surveillance sites are provided. CONCLUSION The air and maritime ports of Iran serve international customers, and are therefore vulnerable to import and invasion of mosquito vectors and arboviruses. Based on comparisons with other published low-resolution models, BioTEMS provides information for medical and public health professionals conducting integrated mosquito management, preventive medicine, and epidemiological surveillance.
Collapse
|
152
|
Tan Y, Pickett BE, Shrivastava S, Gresh L, Balmaseda A, Amedeo P, Hu L, Puri V, Fedorova NB, Halpin RA, LaPointe MP, Cone MR, Heberlein-Larson L, Kramer LD, Ciota AT, Gordon A, Shabman RS, Das SR, Harris E. Differing epidemiological dynamics of Chikungunya virus in the Americas during the 2014-2015 epidemic. PLoS Negl Trop Dis 2018; 12:e0006670. [PMID: 30059496 PMCID: PMC6085065 DOI: 10.1371/journal.pntd.0006670] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/09/2018] [Accepted: 07/07/2018] [Indexed: 02/07/2023] Open
Abstract
Chikungunya virus (CHIKV) has been detected sporadically since the 1950s and includes three distinct co-circulating genotypes. In late 2013, the Asian genotype of CHIKV was responsible for the Caribbean outbreak (CO) that rapidly became an epidemic throughout the Americas. There is a limited understanding of the molecular evolution of CHIKV in the Americas during this epidemic. We sequenced 185 complete CHIKV genomes collected mainly from Nicaragua in Central America and Florida in the United States during the 2014-2015 Caribbean/Americas epidemic. Our comprehensive phylogenetic analyses estimated the epidemic history of the Asian genotype and the recent Caribbean outbreak (CO) clade, revealed considerable genetic diversity within the CO clade, and described different epidemiological dynamics of CHIKV in the Americas. Specifically, we identified multiple introductions in both Nicaragua and Florida, with rapid local spread of viruses in Nicaragua but limited autochthonous transmission in Florida in the US. Our phylogenetic analysis also showed phylogeographic clustering of the CO clade. In addition, we identified the significant amino acid substitutions that were observed across the entire Asian genotype during its evolution and examined amino acid changes that were specific to the CO clade. Deep sequencing analysis identified specific minor variants present in clinical specimens below-consensus levels. Finally, we investigated the association between viral phylogeny and geographic/clinical metadata in Nicaragua. To date, this study represents the largest single collection of CHIKV complete genomes during the Caribbean/Americas epidemic and significantly expands our understanding of the emergence and evolution of CHIKV CO clade in the Americas.
Collapse
Affiliation(s)
- Yi Tan
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Brett E. Pickett
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Lionel Gresh
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Paolo Amedeo
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Lihui Hu
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Vinita Puri
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Nadia B. Fedorova
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rebecca A. Halpin
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Marshall R. Cone
- Florida Department of Health, Bureau of Public Health Laboratories, Tampa, Florida, United States of America
| | - Lea Heberlein-Larson
- Florida Department of Health, Bureau of Public Health Laboratories, Tampa, Florida, United States of America
| | - Laura D. Kramer
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Alexander T. Ciota
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Aubree Gordon
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Reed S. Shabman
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Suman R. Das
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
153
|
Abstract
Chikungunya (CHIKV) is an emerging arboviral infection with recent spikes in transmission in the Americas. Chikungunya is most commonly transmitted by mosquitos, specifically Aedes aegypti and Aedes albopictus. These mosquitoes are found throughout many parts of the United States. The classic tetrad of symptoms for CHIKV is fever, symmetric polyarthralgia, maculopapular rash, and nonpurulent conjunctivitis. Although the majority (3 of 4) of infected people will be symptomatic, the viral illness generally runs a benign course. Nevertheless, when compared with infected adults, children more commonly have neurological and dermatological symptoms and are less likely to have arthralgia. The key differential diagnosis to consider is dengue, which has greater immediate morbidity and which can cause coinfection. Local health departments facilitate diagnostic testing, using either RNA polymerase chain reaction or antibody screening based on the timing of presentation. Management is supportive. The purpose of this review article is to provide readers basic knowledge regarding the microbiology, epidemiology, risk factors for transmission, and typical clinical presentation of CHIKV. A practical approach to diagnosis and management of infected children is provided.
Collapse
|
154
|
Antony S. Mosquito and Tick-borne Illnesses in the United States. Guidelines for the Recognition and Empiric Treatment of Zoonotic Diseases in the Wilderness. Infect Disord Drug Targets 2018; 19:238-257. [PMID: 29943705 DOI: 10.2174/1871526518666180626123340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/21/2018] [Accepted: 06/20/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the United States, tick-borne illnesses account for a significant number of patients that have been seen and treated by health care facilities. This in turn, has resulted in a significant morbidity and mortality and economic costs to the country. METHODS The distribution of these illnesses is geographically variable and is related to the climate as well. Many of these illnesses can be diagnosed and treated successfully, if recognized and started on appropriate antimicrobial therapy early in the disease process. Patient with illnesses such as Lyme disease, Wet Nile illness can result in chronic debilitating diseases if not recognized early and treated. CONCLUSION This paper covers illnesses such as Lyme disease, West Nile illness, Rocky Mountain Spotted fever, Ehrlichia, Tularemia, typhus, mosquito borne illnesses such as enteroviruses, arboviruses as well as arthropod and rodent borne virus infections as well. It covers the epidemiology, clinical features and diagnostic tools needed to make the diagnosis and treat these patients as well.
Collapse
Affiliation(s)
- Suresh Antony
- Texas Tech University Health Sciences Center, Department of Infectious Diseases, and Center for Infectious Diseases and Travel Medicine, El Paso, Texas, United States
| |
Collapse
|
155
|
Rivarola ME, de Olmos S, Albrieu-Llinás G, Tauro LB, Gorosito-Serrán M, Konigheim BS, Contigiani MS, Gruppi A. Neuronal Degeneration in Mice Induced by an Epidemic Strain of Saint Louis Encephalitis Virus Isolated in Argentina. Front Microbiol 2018; 9:1181. [PMID: 29930541 PMCID: PMC6000731 DOI: 10.3389/fmicb.2018.01181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/15/2018] [Indexed: 11/13/2022] Open
Abstract
Saint Louis encephalitis virus (SLEV) is a neglected flavivirus that causes severe neurological disorders. The epidemic strain of SLEV, CbaAr-4005, isolated during an outbreak in Córdoba city (Argentina), causes meningitis and encephalitis associated with neurological symptoms in a murine experimental model. Here, we identified the affected brain areas and the damage triggered by this neurotropic arbovirus. We performed a detailed analysis of brain neurodegeneration associated with CbaAr-4005 SLEV infection in mice. The motor cortex, corpus striatum and cerebellum were the most affected structures. Neurodegeneration was also found in the olfactory bulb, thalamus, hypothalamus, hippocampus, and hindbrain. SLEV infection triggered brain cell apoptosis as well as somatodendritic and terminal degeneration. In addition, we observed massive excitotoxic-like degeneration in many cortical structures. Apoptosis was also detected in the neuroblastoma cell line N2a cultured with SLEV. The results evidenced that SLEV CbaAr-4005 infection induced severe degenerative alterations within the central nervous system of infected mice, providing new information about the targets of this flavivirus infection.
Collapse
Affiliation(s)
- María E Rivarola
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Soledad de Olmos
- Laboratorio de Neuroanatomía e Histología Experimental, Instituto de Investigación Médica Mercedes y Martín Ferreyra - INIMEC-CONICET-UNC, Córdoba, Argentina
| | - Guillermo Albrieu-Llinás
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura B Tauro
- Instituto Nacional de Medicina Tropical, Ministerio de Salud, Puerto Iguazú, Argentina
| | - Melisa Gorosito-Serrán
- Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Brenda S Konigheim
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marta S Contigiani
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adriana Gruppi
- Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
156
|
Moizéis RNC, Fernandes TAADM, Guedes PMDM, Pereira HWB, Lanza DCF, de Azevedo JWV, Galvão JMDA, Fernandes JV. Chikungunya fever: a threat to global public health. Pathog Glob Health 2018; 112:182-194. [PMID: 29806537 PMCID: PMC6147074 DOI: 10.1080/20477724.2018.1478777] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chikungunya fever is an emerging arbovirus infection, representing a serious public health problem. Its etiological agent is the Chikungunya virus (CHIKV). Transmission of this virus is mainly vector by mosquitoes of the genus Aedes, although transmission by blood transfusions and vertical transmission has also been reported. The disease presents high morbidity caused mainly by the arthralgia and arthritis generated. Cardiovascular and neurological manifestations have also been reported. The severity of the infection seems to be directly associated with the action of the virus, but also with the decompensation of preexisting comorbidities. Currently, there are no therapeutic products neither vaccines licensed to the infection CHIKV control, although several vaccine candidates are being evaluated and human polyvalent immunoglobulins anti-CHIKV had been tested. Antibodies can protect against the infection, but in sub-neutralizing concentrations can augment virus infection and exacerbate disease severity. So, the prevention still depends on the use of personal protection measures and vector control, which are only minimally effective.
Collapse
Affiliation(s)
- Raíza Nara Cunha Moizéis
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Paulo Marcos da Matta Guedes
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | | | | | - Josélio Maria de Araújo Galvão
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - José Veríssimo Fernandes
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
157
|
Wong KZ, Chu JJH. The Interplay of Viral and Host Factors in Chikungunya Virus Infection: Targets for Antiviral Strategies. Viruses 2018; 10:E294. [PMID: 29849008 PMCID: PMC6024654 DOI: 10.3390/v10060294] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/13/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
Chikungunya virus (CHIKV) has re-emerged as one of the many medically important arboviruses that have spread rampantly across the world in the past decade. Infected patients come down with acute fever and rashes, and a portion of them suffer from both acute and chronic arthralgia. Currently, there are no targeted therapeutics against this debilitating virus. One approach to develop potential therapeutics is by understanding the viral-host interactions. However, to date, there has been limited research undertaken in this area. In this review, we attempt to briefly describe and update the functions of the different CHIKV proteins and their respective interacting host partners. In addition, we also survey the literature for other reported host factors and pathways involved during CHIKV infection. There is a pressing need for an in-depth understanding of the interaction between the host environment and CHIKV in order to generate potential therapeutics.
Collapse
Affiliation(s)
- Kai Zhi Wong
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore.
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore.
- Institute of Molecular & Cell Biology, Agency for Science, Technology & Research (A*STAR), 61 Biopolis Drive, Proteos #06-05, Singapore 138673, Singapore.
| |
Collapse
|
158
|
Abstract
Alphaviruses are transmitted to humans via bites of infected mosquitoes. Although alphaviruses have caused a wide range of outbreaks and crippling disease, the availability of licensed vaccines or antiviral therapies remains limited. Mosquito vectors such as Aedes and Culex are the main culprits in the transmission of alphaviruses. This review explores how mosquito saliva may promote alphavirus infection. Identifying the roles of mosquito-derived factors in alphavirus pathogenesis will generate novel tools to circumvent and control mosquito-borne alphavirus infections in humans.
Collapse
|
159
|
Chattopadhyay A, Aguilar PV, Bopp NE, Yarovinsky TO, Weaver SC, Rose JK. A recombinant virus vaccine that protects against both Chikungunya and Zika virus infections. Vaccine 2018; 36:3894-3900. [PMID: 29807712 DOI: 10.1016/j.vaccine.2018.05.095] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/30/2022]
Abstract
Chikungunya virus (CHIKV) and Zika virus (ZIKV) have recently expanded their range in the world and caused serious and widespread outbreaks of near pandemic proportions. There are no licensed vaccines that protect against these co-circulating viruses that are transmitted by invasive mosquito vectors. We report here on the development of a single-dose, bivalent experimental vaccine for CHIKV and ZIKV. This vaccine is based on a chimeric vesicular stomatitis virus (VSV) that expresses the CHIKV envelope polyprotein (E3-E2-6K-E1) in place of the VSV glycoprotein (G) and also expresses the membrane-envelope (ME) glycoproteins of ZIKV. This vaccine induced neutralizing antibody responses to both CHIKV and ZIKV in wild-type mice and in interferon receptor-deficient A129 mice, animal models for CHIKV and ZIKV infection. A single vaccination of A129 mice with the vector protected these mice against infection with both CHIKV and ZIKV. Our single-dose vaccine could provide durable, low-cost protection against both CHIKV and ZIKV for people traveling to or living in areas where both viruses are circulating, which include most tropical regions in the world.
Collapse
Affiliation(s)
- Anasuya Chattopadhyay
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Patricia V Aguilar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nathen E Bopp
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Timur O Yarovinsky
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Scott C Weaver
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - John K Rose
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
160
|
Lopez-Jimena B, Wehner S, Harold G, Bakheit M, Frischmann S, Bekaert M, Faye O, Sall AA, Weidmann M. Development of a single-tube one-step RT-LAMP assay to detect the Chikungunya virus genome. PLoS Negl Trop Dis 2018; 12:e0006448. [PMID: 29813065 PMCID: PMC5973553 DOI: 10.1371/journal.pntd.0006448] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/12/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND A single-tube one-step real-time reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for rapid detection of chikungunya virus (CHIKV) targeting the conserved 6K-E1 target region was developed. The assay was validated with sera collected from a CHIKV outbreak in Senegal in 2015. METHODOLOGY/PRINCIPAL FINDINGS A novel design approach by combining Principal Component Analysis and phylogenetic analysis of 110 available CHIKV sequences and the LAMP oligonucleotide design software LAVA was used. The assay was evaluated with an External Quality Assessment panel from the European Network for Diagnostics of "Imported" Viral Diseases and was shown to be sensitive and specific and did not cross-detect other arboviruses. The limit of detection as determined by probit analysis, was 163 molecules, and 100% reproducibility in the assays was obtained for 103 molecules (7/8 repetitions were positive for 102 molecules). The assay was validated using 35 RNA samples extracted from sera, and results were compared with those obtained by quantitative RT-PCR carried out at the Institut Pasteur Dakar, demonstrating that the RT-LAMP is 100% sensitive and 80% specific, with a positive predictive value of 97% and negative predictive value of 100%. CONCLUSIONS/SIGNIFICANCE The RT-LAMP appeared to show superior performance with material stored for months compared to qRT-PCR and can be therefore recommended for use in infrastructures with poor settings.
Collapse
Affiliation(s)
- Benjamin Lopez-Jimena
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Stefanie Wehner
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Graham Harold
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | | | | | - Michaël Bekaert
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Oumar Faye
- Arbovirus and viral haemorrhagic fever unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Amadou Alpha Sall
- Arbovirus and viral haemorrhagic fever unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Manfred Weidmann
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| |
Collapse
|
161
|
Wong G, Qiu XG. Type I interferon receptor knockout mice as models for infection of highly pathogenic viruses with outbreak potential. Zool Res 2018; 39:3-14. [PMID: 29511140 PMCID: PMC5869239 DOI: 10.24272/j.issn.2095-8137.2017.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Due to their inability to generate a complete immune response, mice knockout for type I interferon (IFN) receptors (Ifnar–/–) are more susceptible to viral infections, and are thus commonly used for pathogenesis studies. This mouse model has been used to study many diseases caused by highly pathogenic viruses from many families, including the Flaviviridae, Filoviridae, Arenaviridae, Bunyaviridae, Henipaviridae, and Togaviridae. In this review, we summarize the findings from these animal studies, and discuss the pros and cons of using this model versus other known methods for studying pathogenesis in animals.
Collapse
Affiliation(s)
- Gary Wong
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Shenzhen Guangzhou 518020, China. .,Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Xiang-Guo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| |
Collapse
|
162
|
Singh A, Kumar A, Yadav R, Uversky VN, Giri R. Deciphering the dark proteome of Chikungunya virus. Sci Rep 2018; 8:5822. [PMID: 29643398 PMCID: PMC5895634 DOI: 10.1038/s41598-018-23969-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/21/2018] [Indexed: 12/24/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus. The outbreak of CHIKV infection has been seen in many tropical and subtropical regions of the biosphere. Current reports evidenced that after outbreaks in 2005-06, the fitness of this virus propagating in Aedes albopictus enhanced due to the epistatic mutational changes in its envelope protein. In our study, we evaluated the prevalence of intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) in CHIKV proteome. IDPs/IDPRs are known as members of a 'Dark Proteome' that defined as a set of polypeptide segments or whole protein without unique three-dimensional structure within the cellular milieu but with significant biological functions, such as cell cycle regulation, control of signaling pathways, and maintenance of viral proteomes. However, the intrinsically disordered aspects of CHIKV proteome and roles of IDPs/IDPRs in the pathogenic mechanism of this important virus have not been evaluated as of yet. There are no existing reports on the analysis of intrinsic disorder status of CHIKV. To fulfil this goal, we have analyzed the abundance and functionality of IDPs/IDPRs in CHIKV proteins, involved in the replication and maturation. It is likely that these IDPs/IDPRs can serve as novel targets for disorder based drug design.
Collapse
Affiliation(s)
- Ankur Singh
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, 175005, India
| | - Ankur Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, 175005, India
| | - Rakhi Yadav
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, 175005, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, 175005, India.
- BioX Centre, Indian Institute of Technology Mandi, VPO Kamand, 175005, India.
| |
Collapse
|
163
|
Lykouras MV, Tsika AC, Lichière J, Papageorgiou N, Coutard B, Bentrop D, Spyroulias GA. NMR study of non-structural proteins-part III: 1H, 13C, 15N backbone and side-chain resonance assignment of macro domain from Chikungunya virus (CHIKV). BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:31-35. [PMID: 28875416 DOI: 10.1007/s12104-017-9775-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Macro domains are conserved protein domains found in eukaryotic organisms, bacteria, and archaea as well as in certain viruses. They consist of 130-190 amino acids and can bind ADP-ribose. Although the exact role of these domains is not fully understood, the conserved binding affinity for ADP-ribose indicates that this ligand is important for the function of the domain. Such a macro domain is also present in the non-structural protein 3 (nsP3) of Chikungunya Alphavirus (CHIKV) and consists of 160 amino acids. In this study we describe the high yield expression of the macro domain from CHIKV and its preliminary structural analysis via solution NMR spectroscopy. The macro domain seems to be folded in solution and an almost complete backbone assignment was achieved. In addition, the α/β/α sandwich topology with 4 α-helices and 6 β-strands was predicted by TALOS+.
Collapse
Affiliation(s)
| | | | - Julie Lichière
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288, Marseille, France
| | | | - Bruno Coutard
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288, Marseille, France
| | - Detlef Bentrop
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | | |
Collapse
|
164
|
Darrigo LG, de Sant'Anna Carvalho AM, Machado CM. Chikungunya, Dengue, and Zika in Immunocompromised Hosts. Curr Infect Dis Rep 2018; 20:5. [PMID: 29551005 PMCID: PMC5857271 DOI: 10.1007/s11908-018-0612-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW Describe the characteristics of chikungunya, dengue, and Zika in transplant recipients and immunocompromised hosts. RECENT FINDINGS Stem cell/bone marrow grafts, organs, and blood transfusions can transmit CHIKV/DENV/ZIKV infections, which are clinically similar, resembling influenza-like illness. Laboratory confirmation is necessary. In the acute phase, RT-PCR is preferred. DENV and ZIKV serology may cross-react. Delayed engraftment and extended viruria is observed in ZIKV+/HSCT recipients, while longer viremia is observed in DENV+/HSCT patients. Arbovirus persistence in organ tissues is generally unknown. Vaccine development is in early stages for CHIKV/ZIKV. No data is available to recommend the licensed DENV vaccine in transplant recipients. In endemic areas, the assessment of epidemiological risk is mandatory. Donor deferral for 120 days in suspected or confirmed ZIKV+ has been recommended, while CHIKV+ donors should wait 30 days. No deferral is recommended for DENV+ donors. CHIKV/DENV/ZIKV tests should be included in the differential of febrile neutropenia and other transplant syndromes. Reassessment of DENV serology is urgently needed. Prospective studies are necessary to determine the impact of CHIKV/DENV/ZIKV in this special population.
Collapse
Affiliation(s)
- Luiz Guilherme Darrigo
- Bone Marrow Transplant Unit - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexandre Machado de Sant'Anna Carvalho
- Virology Laboratory - Institute of Tropical Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470 - 2nd floor, São Paulo, SP, 05403-000, Brazil
| | - Clarisse Martins Machado
- Virology Laboratory - Institute of Tropical Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470 - 2nd floor, São Paulo, SP, 05403-000, Brazil.
- HSCT Program, Amaral Carvalho Foundation, Jahu, São Paulo, Brazil.
| |
Collapse
|
165
|
Rashad AA, Neyts J, Leyssen P, Keller PA. A reassessment of mycophenolic acid as a lead compound for the development of inhibitors of chikungunya virus replication. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.12.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
166
|
Rheumatism and chronic fatigue, the two facets of post-chikungunya disease: the TELECHIK cohort study on Reunion island. Epidemiol Infect 2018; 146:633-641. [PMID: 29486812 PMCID: PMC5892425 DOI: 10.1017/s0950268818000031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Prolonged fatigue is increasingly reported among chikungunya virus (CHIKV)-infected populations. We investigated the relationships between CHIKV exposure, long-lasting rheumatic musculoskeletal pain (LRMSP) and chronic fatigue. 1094 participants (512 CHIKV seropositive and 582 seronegative) of the TELECHIK population-based cohort were analysed considering the duration of the manifestations throughout an average 2-year follow-up. Weighted prevalence rates and prevalence ratios for LRMSP, idiopathic chronic fatigue (ICF), and chronic fatigue syndrome (CFS)-like illness, both latter syndromes adapted from Centers for Disease Control (CDC)-1994/Fukuda criteria, were compared. Population attributable fractions (PAF) were estimated to assess the contribution of CHIKV infection to each of the three phenotypes. Among 362 adult subjects who had reported either rheumatic pain or fatigue at the onset of the infection, weighted prevalence rates of LRMSP, ICF and CFS-like illness were respectively of 32.9%, 38.7% and 23.9%, and of 8.7%, 8.5% and 7.4% among initially asymptomatic peers (P < 0.01, respectively). Each of the three outcomes was highly attributable to chikungunya (PAF of 43.2%, 36.2% and 41.0%, respectively). In the sub-cohort of CHIKV-infected subjects, LRMSP, ICF and CFS-like illness, which overlapped in 70%, accounted for 53% of the chronic manifestations. In addition to rheumatic disease, chronic fatigue could be considered in caring for patients with chronic chikungunya disease.
Collapse
|
167
|
Affiliation(s)
- Shefali Khanna Sharma
- Unit of Clinical Immunology and Rheumatology; Department of Internal Medicine; Postgraduate Institute of Medical Education and Research; Chandigarh India
| | - Sanjay Jain
- Unit of Clinical Immunology and Rheumatology; Department of Internal Medicine; Postgraduate Institute of Medical Education and Research; Chandigarh India
| |
Collapse
|
168
|
Broad and long-lasting immune protection against various Chikungunya genotypes demonstrated by participants in a cross-sectional study in a Cambodian rural community. Emerg Microbes Infect 2018; 7:13. [PMID: 29410416 PMCID: PMC5837154 DOI: 10.1038/s41426-017-0010-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/15/2022]
Abstract
Chikungunya virus (CHIKV) is an alphavirus circulating worldwide. Its presence in Asia has been reported since the 1950s, constituting the Asian genotype. Since 2005, strains from the Eastern, Central, and Southern African (ECSA) genotype have caused several outbreaks across Asia. Viruses from the ECSA genotype were also detected in Cambodia in late 2011 and led to an outbreak in a rural community in 2012. A former investigation from 2012 found a higher risk of infection in people younger than 40 years, suggesting a pre-existing herd immunity in the older Cambodian population due to infection with an Asian genotype. In 2016, we collected serum from equivalent numbers of individuals born before 1975 and born after 1980 that were also part of the 2012 study. We analyzed the 154 serum samples from 2016 for neutralization against the Cambodian ECSA isolate and three strains belonging to the Asian genotype. This experiment revealed that 22.5% (18/80) of the younger study participants had no CHIKV antibodies, whereas 5.4% (4/74) of the older population remained naive. Study participants infected during the ECSA outbreak had twofold neutralizing titers against the ECSA and the most ancient Asian genotype virus (Thailand 1958) compared to the other two Asian genotype viruses. The neutralization data also support the older population’s exposure to an Asian genotype virus during the 1960s. The observed cross-reactivity confirms that the investigated CHIKV strains belong to a single serotype despite the emergence of novel ECSA genotype viruses and supports the importance of the development of a Chikungunya vaccine.
Collapse
|
169
|
Yang CF, Su CL, Hsu TC, Chang SF, Lin CC, Huang JC, Shu PY. Imported Chikungunya Virus Strains, Taiwan, 2006-2014. Emerg Infect Dis 2018; 22:1981-1984. [PMID: 27767908 PMCID: PMC5088036 DOI: 10.3201/eid2211.160404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We identified 78 imported chikungunya cases in Taiwan during 2006–2014. Sixty-six (84.6%) cases were initially suspected to be dengue, which indicates the necessity for laboratory diagnostics in differentiation between dengue and chikungunya. Results also emphasize the need for active surveillance of febrile illness at points of entry.
Collapse
|
170
|
Teo TH, Chan YH, Lee WWL, Lum FM, Amrun SN, Her Z, Rajarethinam R, Merits A, Rötzschke O, Rénia L, Ng LFP. Fingolimod treatment abrogates chikungunya virus-induced arthralgia. Sci Transl Med 2018; 9:9/375/eaal1333. [PMID: 28148838 DOI: 10.1126/scitranslmed.aal1333] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/30/2016] [Accepted: 12/02/2016] [Indexed: 12/30/2022]
Abstract
Chikungunya virus (CHIKV) is one of the many rheumatic arthropod-borne alphaviruses responsible for debilitating joint inflammation in humans. Despite the severity in many endemic regions, clinically approved intervention targeting the virus remains unavailable. CD4+ T cells have been shown to mediate CHIKV-induced joint inflammation in mice. We demonstrate here that transfer of splenic CD4+ T cells from virus-infected C57BL/6 mice into virus-infected T cell receptor-deficient (TCR-/-) mice recapitulated severe joint pathology including inflammation, vascular leakages, subcutaneous edema, and skeletal muscle necrosis. Proteome-wide screening identified dominant CD4+ T cell epitopes in nsP1 and E2 viral antigens. Transfer of nsP1- or E2-specific primary CD4+ T cell lines into CHIKV-infected TCR-/- recipients led to severe joint inflammation and vascular leakage. This pathogenic role of virus-specific CD4+ T cells in CHIKV infections led to the assessment of clinically approved T cell-suppressive drugs for disease intervention. Although drugs targeting interleukin-2 pathway were ineffective, treatment with fingolimod, an agonist of sphingosine 1-phosphate receptor, successfully abrogated joint pathology in CHIKV-infected animals by blocking the migration of CD4+ T cells into the joints without any effect on viral replication. These results set the stage for further clinical evaluation of fingolimod in the treatment of CHIKV-induced joint pathologies.
Collapse
Affiliation(s)
- Teck-Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Yi-Hao Chan
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Wendy W L Lee
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Fok-Moon Lum
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Siti Naqiah Amrun
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Zhisheng Her
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | | | - Andres Merits
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Olaf Rötzschke
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore.
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Infection and Global Health, University of Liverpool, Liverpool, U.K
| |
Collapse
|
171
|
Nakayama E, Tajima S, Kotaki A, Shibasaki KI, Itokawa K, Kato K, Yamashita A, Sekizuka T, Kuroda M, Tomita T, Saijo M, Takasaki T. A summary of the imported cases of Chikungunya fever in Japan from 2006 to June 2016. J Travel Med 2018; 25:4763690. [PMID: 29394382 DOI: 10.1093/jtm/tax072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Indexed: 11/14/2022]
Abstract
BACKGROUND Due to the huge 2-way human traffic between Japan and Chikungunya (CHIK) fever-endemic regions, 89 imported cases of CHIK fever were confirmed in Japan from January 2006 to June 2016. Fifty-four of 89 cases were confirmed virologically and serologically at the National Institute of Infectious Diseases, Japan and we present the demographic profiles of the patients and the phylogenetic features of 14 CHIK virus (CHIKV) isolates. METHODS Patients were diagnosed with CHIK fever by a combination of virus isolation, viral RNA amplification, IgM antibody-, IgG antibody-, and/or neutralizing antibody detection. The whole-genome sequences of the CHIKV isolates were determined by next-generation sequencing. RESULTS Prior to 2014, the source countries of the imported CHIK fever cases were limited to South and Southeast Asian countries. After 2014, when outbreaks occurred in the Pacific and Caribbean Islands and Latin American countries, there was an increase in the number of imported cases from these regions. A phylogenetic analysis of 14 isolates revealed that four isolates recovered from three patients who returned from Sri Lanka, Malaysia and Angola, belonged to the East/Central/South African genotype, while 10 isolates from 10 patients who returned from Indonesia, the Philippines, Tonga, the Commonwealth of Dominica, Colombia and Cuba, belonged to the Asian genotype. CONCLUSION Through the phylogenetic analysis of the isolates, we could predict the situations of the CHIK fever epidemics in Indonesia, Angola and Cuba. Although Japan has not yet experienced an autochthonous outbreak of CHIK fever, the possibility of the future introduction of CHIKV through an imported case and subsequent local transmission should be considered, especially during the mosquito-active season. The monitoring and reporting of imported cases will be useful to understand the situation of the global epidemic, to increase awareness of and facilitate the diagnosis of CHIK fever, and to identify a future CHIK fever outbreak in Japan.
Collapse
Affiliation(s)
- Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigeru Tajima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akira Kotaki
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken-Ichi Shibasaki
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Itokawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan.,Japan Agency for Medical Research and Development (AMED), Japan
| | - Kengo Kato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akifumi Yamashita
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Tomita
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomohiko Takasaki
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan.,Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| |
Collapse
|
172
|
McCarthy MK, Davenport BJJ, Morrison TE. Chronic Chikungunya Virus Disease. Curr Top Microbiol Immunol 2018; 435:55-80. [DOI: 10.1007/82_2018_147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
173
|
Ang LW, Kam YW, Lin C, Krishnan PU, Tay J, Ng LC, James L, Lee VJM, Goh KT, Ng LFP, Lin RTP. Seroprevalence of antibodies against chikungunya virus in Singapore resident adult population. PLoS Negl Trop Dis 2017; 11:e0006163. [PMID: 29281644 PMCID: PMC5760101 DOI: 10.1371/journal.pntd.0006163] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/09/2018] [Accepted: 12/12/2017] [Indexed: 11/24/2022] Open
Abstract
Objectives We determined the seroprevalence of chikungunya virus (CHIKV) infection in the adult resident population in Singapore following local outbreaks of chikungunya fever (CHIKF) in 2008–2009. Methods Our cross-sectional study involved residual sera from 3,293 adults aged 18–79 years who had participated in the National Health Survey in 2010. Sera were tested for IgG antibodies against CHIKV and dengue virus (DENV) and neutralizing antibodies against CHIKV. Results The prevalence of CHIKV-neutralizing antibodies among Singapore residents aged 18–79 years was 1.9% (95% confidence interval: 1.4%– 2.3%). The CHIKV seroprevalence was highest in the elderly aged 70–79 years at 11.5%, followed by those aged 30–39 years at 3.1%. Men had significantly higher CHIKV seroprevalence than women (2.5% versus 1.3%, p = 0.01). Among the three main ethnic groups, Indians had the highest seroprevalence (3.5%) compared to Chinese (1.6%) and Malays (0.7%) (p = 0.02 and p = 0.01, respectively). Multivariable logistic regression identified adults aged 30–39 years and 70–79 years, men, those of Indian ethnicity and ethnic minority groups, and residence on ground floor of public and private housing apartments as factors that were significantly associated with a higher likelihood of exposure to CHIKV. The overall prevalence of anti-DENV IgG antibodies was 56.8% (95% CI: 55.1%– 58.5%), while 1.5% (95% CI: 1.1%– 2.0%) of adults possessed both neutralizing antibodies against CHIKV and IgG antibodies against DENV. Conclusions Singapore remains highly susceptible to CHIKV infection. There is a need to maintain a high degree of vigilance through disease surveillance and vector control. Findings from such serological study, when conducted on a regular periodic basis, could supplement surveillance to provide insights on CHIKV circulation in at-risk population. The prevalence of neutralizing antibodies against chikungunya virus (CHIKV) was low at 1.9% among resident adults in Singapore after local outbreaks in 2008–2009. Adults aged 30–39 years and 70–79 years, men, those of Indian ethnicity and ethnic minority groups, and residence on ground floor of public and private housing apartments were significantly associated with a higher likelihood of exposure to CHIKV.
Collapse
Affiliation(s)
- Li Wei Ang
- Public Health Group, Ministry of Health, Singapore
- * E-mail:
| | - Yiu Wing Kam
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Cui Lin
- Public Health Group, Ministry of Health, Singapore
| | - Prabha Unny Krishnan
- Public Health Group, Ministry of Health, Singapore
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore
| | - Joanne Tay
- Public Health Group, Ministry of Health, Singapore
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore
| | - Lyn James
- Public Health Group, Ministry of Health, Singapore
| | | | - Kee Tai Goh
- Public Health Group, Ministry of Health, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Lisa F. P. Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | | |
Collapse
|
174
|
Delgado-Enciso I, Paz-Michel B, Melnikov V, Guzman-Esquivel J, Espinoza-Gomez F, Soriano-Hernandez AD, Rodriguez-Sanchez IP, Martinez-Fierro ML, Ceja-Espiritu G, Olmedo-Buenrostro BA, Galvan-Salazar HR, Delgado-Enciso OG, Delgado-Enciso J, Lopez-Lemus UA, Montes-Galindo DA. Smoking and female sex as key risk factors associated with severe arthralgia in acute and chronic phases of Chikungunya virus infection. Exp Ther Med 2017; 15:2634-2642. [PMID: 29467856 DOI: 10.3892/etm.2017.5668] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/27/2017] [Indexed: 01/05/2023] Open
Abstract
Arthralgia is a potentially incapacitating condition and a persistent symptom in chronic or acute episodes of Chikungunya fever caused by infection with the Chikungunya virus (CHIKV). To the best of our knowledge, there are no reports on risk factors associated with the intensity of arthralgias in typical acute episodes of the disease. Although a number of studies have reported on risk factors associated with the development of the chronic stage of the disease, smoking habits have not been analyzed. Smoking is an interesting factor to consider since it is the main environmental risk factor for the development of rheumatoid arthritis (RA), a similar disease to CHIKV in many aspects. In the present study, 140 patients infected with CHIKV were assessed for risk factors associated with severe arthralgia intensity in the acute phase (pain of 9/10 on the visual analog scale of 0-10) and moderate to severe intensity (according to the Routine Assessment of Patient Index Data 3) 3.5 months after infection in patients that experienced the chronic phase of the disease. Women and smokers were 2- to 3-times more likely to experience severe pain in the acute and chronic stages. Likewise, the presence of severe arthralgia during the acute disease phase resulted in a 4-fold increased risk for entering the chronic phase. Smoking was a more important risk factor in males compared with females. Smoking resulted in a 20-fold increased risk for severe arthralgia during the acute phase in men, as well as a 10-fold increased risk for developing chronic disease with moderate-to-severe pain 3.5 months after the acute stage. The presence of rash, headache, muscular weakness or conjunctivitis in the acute phase, the presence of diabetes and age >40 years were considered significant risk factors due to their influence on illness progression. In conclusion, smoking and female sex were the main risk factors associated with development of severe joint pain in the acute and chronic phases of Chikungunya fever. These risk factors are similar to those associated with the development and severity of RA, possibly because the two diseases share pathophysiological mechanisms, including elevated interleukin-6 levels.
Collapse
Affiliation(s)
- Ivan Delgado-Enciso
- School of Medicine, University of Colima, Colima 28030, Mexico.,Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico
| | | | - Valery Melnikov
- School of Medicine, University of Colima, Colima 28030, Mexico
| | - Jose Guzman-Esquivel
- Research Unit, IMSS Hospital General de Zona No. 1, Villa de Álvarez, Colima 28983, Mexico
| | | | - Alejandro D Soriano-Hernandez
- School of Medicine, University of Colima, Colima 28030, Mexico.,Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico
| | - Iram P Rodriguez-Sanchez
- Department of Genetics, School of Medicine, Nuevo Leon Autonomous University, Monterrey, Nuevo Leon 64460, Mexico
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| | - Gabriel Ceja-Espiritu
- School of Medicine, University of Colima, Colima 28030, Mexico.,Research Unit, IMSS Hospital General de Zona No. 1, Villa de Álvarez, Colima 28983, Mexico
| | | | - Hector R Galvan-Salazar
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico.,Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| | - Osiris G Delgado-Enciso
- Ethics Foundation, Study and Cancer Research of The State Institute of Cancerology of Colima, Colima 28000, Mexico
| | - Josuel Delgado-Enciso
- Ethics Foundation, Study and Cancer Research of The State Institute of Cancerology of Colima, Colima 28000, Mexico
| | - Uriel A Lopez-Lemus
- Department of Health Sciences, Biodefense and Global Infectious Diseases Center, Colima 28000, Mexico
| | | |
Collapse
|
175
|
Raut CG, Hanumaiah H, Raut WC. Utilization and Assessment of Throat Swab and Urine Specimens for Diagnosis of Chikungunya Virus Infection. Methods Mol Biol 2017; 1426:75-83. [PMID: 27233262 DOI: 10.1007/978-1-4939-3618-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Chikungunya is a mosquito-borne infection with clinical presentation of fever, arthralgia, and rash. The etiological agent Chikungunya virus (CHIKV) is generally transmitted from primates to humans through the bites of infected Aedes aegypti and Aedes albopictus mosquitoes. Outbreaks of Chikungunya occur commonly with varied morbidity, mortality, and sequele according to the epidemiological, ecological, seasonal, and geographical impact. Investigations are required to be conducted as a part of the public health service to understand and report the suspected cases as confirmed by laboratory diagnosis. Holistic sampling at a time of different types would be useful for laboratory testing, result conclusion, and reporting in a valid way. The use of serum samples for virus detection, virus isolation, and serology is routinely practiced, but sometimes serum samples from pediatric and other cases may not be easily available. In such a situation, easily available throat swabs and urine samples could be useful. It is already well reported for measles, rubella, and mumps diseases to have the virus diagnosis from throat swabs and urine. Here, we present the protocols for diagnosis of CHIKV using throat swab and urine specimens.
Collapse
Affiliation(s)
- Chandrashekhar G Raut
- National Institute of Virology, Bangalore Unit, RGICD Premises, 1st main Someshwarnagar, Near NIMHANS, DRC Post, Bangalore, 560029, India.
| | - H Hanumaiah
- National Institute of Virology, Bangalore Unit, RGICD Premises, 1st main Someshwarnagar, Near NIMHANS, DRC Post, Bangalore, 560029, India
| | - Wrunda C Raut
- Dr.D.Y.Patil Medical College, Hospital & Research Centre, Sant Tukaram Nagar, Pimpri, Pune, 411018, India
| |
Collapse
|
176
|
Sarangan G, Nayar SA, Sundarrajan S, Mani M, Sankar S, Srikanth P. Novel mutations in E2 gene of 2009 CHIKV isolates from South India and the clinical correlation. CANADIAN JOURNAL OF BIOTECHNOLOGY 2017. [DOI: 10.24870/cjb.2017-a240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
177
|
Chan Y, Ng LFP. Age has a role in driving host immunopathological response to alphavirus infection. Immunology 2017; 152:545-555. [PMID: 28744856 PMCID: PMC5680050 DOI: 10.1111/imm.12799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/15/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses are a group of arthropod-borne pathogens capable of causing a wide spectrum of clinical symptoms, ranging from milder symptoms like rashes, fever and polyarthralgia, to life-threatening encephalitis. This genus of viruses is prevalent globally, and can infect patients across a wide age range. Interestingly, disease severity of virus-infected patients is wide-ranging. Definitions of the pathogenesis of alphaviruses, as well as the host factors influencing disease severity, remain limited. The innate and adaptive immune systems are important host defences against alphavirus infections. Several reports have highlighted the roles of specific immune subsets in contributing to the immune pathogenesis of these viruses. However, immunosenescence, a gradual deterioration of the immune system brought about by the natural advancement of age, affects the functional roles of these immune subsets. This phenomenon compromises the host's ability to defend against alphavirus infection and pathogenesis. In addition, the lack of maturity in the immune system in newborns and infants also results in more severe disease outcomes. In this review, we will summarize the subtle yet diverse physiological changes in the immune system during aging, and how these changes underlie the differences in disease severity for common alphaviruses.
Collapse
Affiliation(s)
- Yi‐Hao Chan
- Singapore Immunology NetworkAgency for ScienceTechnology and Research (A*STAR)Singapore
- NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore
| | - Lisa F. P. Ng
- Singapore Immunology NetworkAgency for ScienceTechnology and Research (A*STAR)Singapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Institute of Infection and Global HealthUniversity of LiverpoolLiverpoolUK
- Present address:
8A Biomedical Grove, Biopolis#04‐06 Immunos138648Singapore
| |
Collapse
|
178
|
Thanapati S, Ganu MA, Tripathy AS. Differential inhibitory and activating NK cell receptor levels and NK/NKT-like cell functionality in chronic and recovered stages of chikungunya. PLoS One 2017; 12:e0188342. [PMID: 29182664 PMCID: PMC5705157 DOI: 10.1371/journal.pone.0188342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/06/2017] [Indexed: 11/18/2022] Open
Abstract
The role of natural killer (NK; CD3-CD56+)/NKT (CD3+CD56+)-like cells in chikungunya virus (CHIKV) disease progression/recovery remains unclear. Here, we investigated the expression profiles and function of NK and NKT-like cells from 35 chronic chikungunya patients, 30 recovered individuals, and 69 controls. Percentage of NKT-like cells was low in chronic chikungunya patients. NKp30+, CD244+, DNAM-1+, and NKG2D+ NK cell percentages were also lower (MFI and/or percentage), while those of CD94+ and NKG2A+ NKT-like cells were higher (MFI and/or percentage) in chronic patients than in recovered subjects. IFN-γ and TNF-α expression on NKT-like cells was high in the chronic patients, while only IFN-γ expression on NK cells was high in the recovered individuals. Furthermore, percentage of perforin+NK cells was low in the chronic patients. Lower cytotoxic activity was observed in the chronic patients than in the controls. CD107a expression on NK and NKT-like cells post anti-CD94/anti-NKG2A blocking was comparable among the patients and controls. Upregulated inhibitory and downregulated activating NK receptor expressions on NK/NKT-like cells, lower perforin+ and CD107a+NK cells are likely responsible for inhibiting the NK and NKT-like cell function in the chronic stage of chikungunya. Therefore, deregulation of NKR expression might underlie CHIKV-induced chronicity.
Collapse
Affiliation(s)
- Subrat Thanapati
- Hepatitis Group, National Institute of Virology, Pune, Pashan, Pune, Maharashtra, India
| | - Mohini A. Ganu
- Sanjeevan Hospital, Majage Nagar, Latur, Maharashtra, India
| | - Anuradha S. Tripathy
- Hepatitis Group, National Institute of Virology, Pune, Pashan, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
179
|
Wu J, Zhao C, Liu Q, Huang W, Wang Y. Development and application of a bioluminescent imaging mouse model for Chikungunya virus based on pseudovirus system. Vaccine 2017; 35:6387-6394. [PMID: 29031692 DOI: 10.1016/j.vaccine.2017.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/09/2017] [Accepted: 10/03/2017] [Indexed: 01/28/2023]
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne virus that is transmitted to humans primarily via the bite of an infected mosquito. Infection of humans by CHIKV can cause chikungunya fever which is an acute febrile illness associated with severe, often debilitating polyarthralgias. Since a re-emergence of CHIKV in 2004, the virus has spread into novel locations in nearly 40 countries including non-endemic regions and has led to millions of cases of disease throughout countries. Handling of CHIKV is restricted to the high-containment Biosafety Level 3 (BSL-3) facilities, which greatly impede the research progress of this virus. In this study, an envelope-pseudotyped virus expressing the firefly luciferase reporter protein (pHIV-CHIKV-Fluc) was generated. An in vitro sensitive neutralizing assay and an in vivo bioluminescent-imaging-based mouse infection model had been developed based on the CHIKV pseudovirus. Utilizing the platform, protection effect of DNA vaccine was evaluated. Therefore, this study provides a safe, sensitive and visualizing model for evaluating vaccines and antiviral therapies against CHIKV in low containment BSL-2 laboratories.
Collapse
Affiliation(s)
- Jiajing Wu
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Qiang Liu
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Weijin Huang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Youchun Wang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China.
| |
Collapse
|
180
|
Dutta P, Khan SA, Hazarika NK, Chetry S. Molecular and phylogenetic evidence of chikungunya virus circulating in Assam, India. Indian J Med Microbiol 2017; 35:389-393. [PMID: 29063884 DOI: 10.4103/ijmm.ijmm_16_127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
PURPOSE Northeast Region of India possesses an abundant number of Aedes mosquitoes, the common vector for Dengue and Chikungunya (CHIK). Dengue is reported every year from Assam, but active surveillance for CHIK virus (CHIKV) infection is lacking in this part of India. Therefore, this present study has been undertaken to detect any CHIKV infection during a dengue outbreak in Assam. MATERIALS AND METHODS A total of 42 dengue negative samples collected from Guwahati were screened for the presence of CHIK IgM antibodies. Further, all the samples were processed for CHIKV RNA detection by reverse transcriptase-polymerase chain reaction (RT-PCR). Phylogenetic analysis was done by Maximum Likelihood method using Kimura-2 parameter model. RESULTS No IgM positivity was found in the processed samples; however, 7 samples were positive for CHIKV by RT-PCR. Phylogenetic analysis revealed that the circulating CHIKV belonged to Eastern, Central and Southern African genotype. Sequence analysis showed two uniform nucleotide substitutions and very less amino acid substitution. CONCLUSION Silent existence of CHIKV beside dengue is reported from this study. Therefore, CHIKV diagnosis should be included as a regular practice for active surveillance of the disease and its accomplishment before commencing an outbreak.
Collapse
Affiliation(s)
- Prafulla Dutta
- Arbovirology Group, Entomology Division, Regional Medical Research Centre, Dibrugarh, Assam, India
| | - Siraj Ahmed Khan
- Arbovirology Group, Entomology Division, Regional Medical Research Centre, Dibrugarh, Assam, India
| | - Naba Kumar Hazarika
- Department of Microbiology, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Sumi Chetry
- Arbovirology Group, Entomology Division, Regional Medical Research Centre, Dibrugarh, Assam, India
| |
Collapse
|
181
|
Interferon regulated gene (IRG) expression-signature in a mouse model of chikungunya virus neurovirulence. J Neurovirol 2017; 23:886-902. [PMID: 29067635 DOI: 10.1007/s13365-017-0583-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/29/2017] [Accepted: 09/27/2017] [Indexed: 01/12/2023]
Abstract
Interferon regulated genes (IRGs) are critical in controlling virus infections. Here, we analyzed the expression profile of IRGs in the brain tissue in a mouse model of chikungunya virus (CHIKV) neurovirulence. Neurovirulence is one of the newer complications identified in disease caused by re-emerging strains of CHIKV, an alphavirus with positive-strand RNA in the Togaviridae family. In microarray analysis, we identified significant upregulation of 269 genes, out of which a predominant percentage (76%) was IRGs. The highly modulated IRGs included Ifit1, Ifi44, Ddx60, Usp18, Stat1, Rtp4, Mnda, Gbp3, Gbp4, Gbp7, Oasl2, Oas1g, Ly6a, Igtp, and Gbp10, along with many others exhibiting lesser changes in expression levels. We found that these IRG mRNA transcripts are modulated in parallel across CHIKV-infected mouse brain tissues, human neuronal cell line IMR-32 and hepatic cell line Huh-7. The genes identified to be highly modulated both in mouse brain and human neuronal cells were Ifit1, Ifi44, Ddx60, Usp18, and Mnda. In Huh-7 cells, however, only two IRGs (Gbp4 and Gbp7) showed a similar level of upregulation. Concordant modulation of IRGs in both mice and human cells indicates that they might play important roles in regulating CHIKV replication in the central nervous system (CNS). The induction of several IRGs in CNS during infection underscores the robustness of IRG-mediated innate immune response in CHIKV restriction. Further studies on these IRGs would help in evolving possibilities for their targeting in host-directed therapeutic interventions against CHIKV.
Collapse
|
182
|
Grossi-Soyster EN, Cook EAJ, de Glanville WA, Thomas LF, Krystosik AR, Lee J, Wamae CN, Kariuki S, Fèvre EM, LaBeaud AD. Serological and spatial analysis of alphavirus and flavivirus prevalence and risk factors in a rural community in western Kenya. PLoS Negl Trop Dis 2017; 11:e0005998. [PMID: 29040262 PMCID: PMC5659799 DOI: 10.1371/journal.pntd.0005998] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/27/2017] [Accepted: 09/27/2017] [Indexed: 01/29/2023] Open
Abstract
Alphaviruses, such as chikungunya virus, and flaviviruses, such as dengue virus, are (re)-emerging arboviruses that are endemic in tropical environments. In Africa, arbovirus infections are often undiagnosed and unreported, with febrile illnesses often assumed to be malaria. This cross-sectional study aimed to characterize the seroprevalence of alphaviruses and flaviviruses among children (ages 5-14, n = 250) and adults (ages 15 ≥ 75, n = 250) in western Kenya. Risk factors for seropositivity were explored using Lasso regression. Overall, 67% of participants showed alphavirus seropositivity (CI95 63%-70%), and 1.6% of participants showed flavivirus seropositivity (CI95 0.7%-3%). Children aged 10-14 were more likely to be seropositive to an alphavirus than adults (p < 0.001), suggesting a recent transmission period. Alphavirus and flavivirus seropositivity was detected in the youngest participants (age 5-9), providing evidence of inter-epidemic transmission. Demographic variables that were significantly different amongst those with previous infection versus those without infection included age, education level, and occupation. Behavioral and environmental variables significantly different amongst those in with previous infection to those without infection included taking animals for grazing, fishing, and recent village flooding. Experience of recent fever was also found to be a significant indicator of infection (p = 0.027). These results confirm alphavirus and flavivirus exposure in western Kenya, while illustrating significantly higher alphavirus transmission compared to previous studies.
Collapse
Affiliation(s)
- Elysse N. Grossi-Soyster
- Departments of Pediatrics, Infectious Disease Division, Stanford University School of Medicine, Stanford, California, United States of America
| | - Elizabeth A. J. Cook
- Zoonotic and Emerging Diseases Group, International Livestock Research Institute, Nairobi, Kenya
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - William A. de Glanville
- Zoonotic and Emerging Diseases Group, International Livestock Research Institute, Nairobi, Kenya
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Lian F. Thomas
- Zoonotic and Emerging Diseases Group, International Livestock Research Institute, Nairobi, Kenya
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Amy R. Krystosik
- Departments of Pediatrics, Infectious Disease Division, Stanford University School of Medicine, Stanford, California, United States of America
| | - Justin Lee
- Quantitative Sciences Unit, Stanford University School of Medicine, Stanford, California, United States of America
| | - C. Njeri Wamae
- Department of Microbiology, School of Medicine, Mount Kenya University, Thika, Kenya
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Eric M. Fèvre
- Zoonotic and Emerging Diseases Group, International Livestock Research Institute, Nairobi, Kenya
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - A. Desiree LaBeaud
- Departments of Pediatrics, Infectious Disease Division, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
183
|
Asian genotype of Chikungunya virus circulating in Venezuela during 2014. Acta Trop 2017; 174:88-90. [PMID: 28690146 DOI: 10.1016/j.actatropica.2017.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 12/25/2022]
Abstract
Chikungunya virus emerged on Saint-Martin Island in the Caribbean in late 2013. Since then in July of 2104 Venezuela reported autochthonous cases. This study reports the first phylogenetic characterization of CHIKV autochthonous cases in Venezuela, 2014. The phylogenetic analysis showed that the CHIKV circulating in Venezuela (Aragua state) belong to the Asian genotype (Caribbean clade) and it is related to viruses that circulated in the same year in the Caribbean.
Collapse
|
184
|
Lorente E, Barriga A, García-Arriaza J, Lemonnier FA, Esteban M, López D. Complex antigen presentation pathway for an HLA-A*0201-restricted epitope from Chikungunya 6K protein. PLoS Negl Trop Dis 2017; 11:e0006036. [PMID: 29084215 PMCID: PMC5679651 DOI: 10.1371/journal.pntd.0006036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/09/2017] [Accepted: 10/13/2017] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The adaptive cytotoxic T lymphocyte (CTL)-mediated immune response is critical for clearance of many viral infections. These CTL recognize naturally processed short viral antigenic peptides bound to human leukocyte antigen (HLA) class I molecules on the surface of infected cells. This specific recognition allows the killing of virus-infected cells. The T cell immune T cell response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe musculoskeletal disorders, has not been fully defined; nonetheless, the importance of HLA class I-restricted immune response in this virus has been hypothesized. METHODOLOGY/PRINCIPAL FINDINGS By infection of HLA-A*0201-transgenic mice with a recombinant vaccinia virus that encodes the CHIKV structural polyprotein (rVACV-CHIKV), we identified the first human T cell epitopes from CHIKV. These three novel 6K transmembrane protein-derived epitopes are presented by the common HLA class I molecule, HLA-A*0201. One of these epitopes is processed and presented via a complex pathway that involves proteases from different subcellular locations. Specific chemical inhibitors blocked these events in rVACV-CHIKV-infected cells. CONCLUSIONS/SIGNIFICANCE Our data have implications not only for the identification of novel Alphavirus and Togaviridae antiviral CTL responses, but also for analyzing presentation of antigen from viruses of different families and orders that use host proteinases to generate their mature envelope proteins.
Collapse
Affiliation(s)
- Elena Lorente
- Unidad de Procesamiento Antigénico, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Alejandro Barriga
- Unidad de Procesamiento Antigénico, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - François A. Lemonnier
- Unité d'Immunité Cellulaire Antivirale, Département d'Immunologie, Institut Pasteur, France
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Daniel López
- Unidad de Procesamiento Antigénico, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
185
|
Godaert L, Najioullah F, Bartholet S, Colas S, Yactayo S, Cabié A, Fanon JL, Césaire R, Dramé M. Atypical Clinical Presentations of Acute Phase Chikungunya Virus Infection in Older Adults. J Am Geriatr Soc 2017; 65:2510-2515. [PMID: 28940357 DOI: 10.1111/jgs.15004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES We aimed to determine whether the presentation of Chikungunya virus (CHIKV) infection differs between older and younger adults with regard to clinical form during the acute phase defined by the World Health Organization: acute clinical, atypical, and severe acute. DESIGN Cross-sectional, retrospective. SETTING University Hospital of Martinique. PARTICIPANTS Individuals aged 65 and older (n = 267, mean age 80.4 ± 87.9) who attended the emergency department with a positive biological diagnosis of CHIKV (reverse transcriptase polymerase chain reaction) between January and December 2014 and a randomly selected sample of individuals younger than 65 (n = 109, mean age 46.2 ± 12.7). RESULTS Typical presentation was present in 8.2% of older adults and 59.6% of younger individuals (P < .001), atypical presentation in 29.6% of older adults and 5.6% of younger individuals (P < .001), and severe presentation in 19.5% of older adults and 17.4% of younger individuals (P = .65). One hundred fourteen (42.7%) of the older group and 19 (17.4%) of the younger group could not be classified in any category (absence of fever, absence of joint pain, or both) (P < .001). CONCLUSION Only 8.2% of the older adults presenting in the acute phase of CHIKV have typical forms, suggesting that the most-frequent clinical presentation of CHIKV in older adults differs from that in younger individuals.
Collapse
Affiliation(s)
- Lidvine Godaert
- Department of Geriatrics, University Hospitals of Martinique, Fort-de-France, Martinique
| | - Fatiha Najioullah
- Department of Virology, University Hospitals of Martinique, Fort-de-France, Martinique
| | - Seendy Bartholet
- Department of Geriatrics, University Hospitals of Martinique, Fort-de-France, Martinique
| | - Sébastien Colas
- Department of Geriatrics, University Hospitals of Martinique, Fort-de-France, Martinique
| | - Sergio Yactayo
- Department of Pandemic and Epidemic Diseases, World Health Organization, Geneva, Switzerland
| | - André Cabié
- Department of Infectious Diseases, University Hospitals of Martinique, Fort-de-France, Martinique
| | - Jean-Luc Fanon
- Department of Geriatrics, University Hospitals of Martinique, Fort-de-France, Martinique
| | - Raymond Césaire
- Department of Virology, University Hospitals of Martinique, Fort-de-France, Martinique
| | - Moustapha Dramé
- Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France.,Department of Research and Public Health, University Hospital of Reims, Robert Debré Hospital, Reims, France
| |
Collapse
|
186
|
Jain J, Kumari A, Somvanshi P, Grover A, Pai S, Sunil S. In silico analysis of natural compounds targeting structural and nonstructural proteins of chikungunya virus. F1000Res 2017; 6:1601. [PMID: 29333236 PMCID: PMC5747330 DOI: 10.12688/f1000research.12301.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2017] [Indexed: 02/01/2023] Open
Abstract
Background: Chikungunya fever presents as a high-grade fever during its acute febrile phase and can be prolonged for months as chronic arthritis in affected individuals. Currently, there are no effective drugs or vaccines against this virus. The present study was undertaken to evaluate protein-ligand interactions of all chikungunya virus (CHIKV) proteins with natural compounds from a MolBase library in order to identify potential inhibitors of CHIKV. Methods: Virtual screening of the natural compound library against four non-structural and five structural proteins of CHIKV was performed. Homology models of the viral proteins with unknown structures were created and energy minimized by molecular dynamic simulations. Molecular docking was performed to identify the potential inhibitors for CHIKV. The absorption, distribution, metabolism and excretion (ADME) toxicity parameters for the potential inhibitors were predicted for further prioritization of the compounds. Results: Our analysis predicted three compounds, Catechin-5-O-gallate, Rosmarinic acid and Arjungenin, to interact with CHIKV proteins; two (Catechin-5-O-gallate and Rosmarinic acid) with capsid protein, and one (Arjungenin) with the E3. Conclusion: The compounds identified show promise as potential antivirals, but further in vitro studies are required to test their efficacy against CHIKV.
Collapse
Affiliation(s)
- Jaspreet Jain
- Vector Borne Disease group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Anchala Kumari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Department of Biotechnology, Teri University, New Delhi, India
| | | | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Somnath Pai
- Department of Virology and Immunology, Amity University, Uttar Pradesh, India
| | - Sujatha Sunil
- Vector Borne Disease group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
187
|
da Silva-Júnior EF, Leoncini GO, Rodrigues ÉES, Aquino TM, Araújo-Júnior JX. The medicinal chemistry of Chikungunya virus. Bioorg Med Chem 2017; 25:4219-4244. [PMID: 28689975 PMCID: PMC7126832 DOI: 10.1016/j.bmc.2017.06.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023]
Abstract
Arthropod-borne viruses (arboviruses) are an important threat to human and animal health globally. Among these, zoonotic diseases account for billions of cases of human illness and millions of deaths every year, representing an increasing public health problem. Chikungunya virus belongs to the genus Alphavirus of the family Togariridae, and is transmitted mainly by the bite of female mosquitoes of the Aedes aegypti and/or A. albopictus species. The focus of this review will be on the medicinal chemistry of Chikungunya virus, including synthetic and natural products, as well as rationally designed compounds.
Collapse
Affiliation(s)
- Edeildo F da Silva-Júnior
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil; Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil.
| | - Giovanni O Leoncini
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil; Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil
| | - Érica E S Rodrigues
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil
| | - Thiago M Aquino
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil
| | - João X Araújo-Júnior
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil; Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil.
| |
Collapse
|
188
|
da Cunha RV, Trinta KS. Chikungunya virus: clinical aspects and treatment - A Review. Mem Inst Oswaldo Cruz 2017; 112:523-531. [PMID: 28767976 PMCID: PMC5530543 DOI: 10.1590/0074-02760170044] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/27/2017] [Indexed: 11/21/2022] Open
Abstract
Chikungunya is a severe and debilitating disease. Currently, Brazil is experiencing an epidemic caused by three arboviruses, which has changed the way health professionals have diagnosed and treated infected patients. The difficulty of diagnosis and the lack of a protocol for patient treatment, which fits Brazilian health system models, have made it difficult to manage this disease. It is necessary to implement a multidisciplinary network of patient care, in which primary care units play the main role. This review aims to present current information regarding the clinical aspects and treatment of Chikungunya virus infection.
Collapse
Affiliation(s)
- Rivaldo V da Cunha
- Fundação Oswaldo Cruz, Campo Grande, MS, Brasil
- Universidade Federal do Mato Grosso do Sul, Faculdade de Medicina, Campo Grande, MS, Brasil
| | - Karen S Trinta
- Fundação Oswaldo Cruz, Bio-Manguinhos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
189
|
Olajiga OM, Adesoye OE, Emilolorun AP, Adeyemi AJ, Adeyefa EO, Aderibigbe IA, Adejumo SA, Adebimpe WO, Opaleye OO, Sule WF, Oluwayelu DO. Chikungunya Virus Seroprevalence and Associated Factors among Hospital Attendees in Two States of Southwest Nigeria: A Preliminary Assessment. Immunol Invest 2017; 46:552-565. [PMID: 28742401 DOI: 10.1080/08820139.2017.1319383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chikungunya virus (CHIKV) is a re-emerging pathogen causing long-term polyarthritis and encephalitis. In conducting a preliminary investigation, we hypothesized that there is no serologic evidence of CHIKV infection among attendees of selected hospitals in Lagos and Osun States, Nigeria. Sera from 304 consecutively selected participants were screened for CHIKV IgG and IgM using ELISA. Findings were analyzed vis-à-vis participants' demographic and clinical data. Over 90.0% of the participants had never heard of CHIKV despite the fact that a large proportion of them (88.8%) had secondary/tertiary education. Overall, 41.8% were positive for, at least, one antibody type (IgG or IgM), while about 16.0% of the participants had dual seropositivity (CHIKV IgG and IgM) with gender as associated factor (odds ratio [OR]: 2.8, p = 0.03). Prevalence rates were 31.8% and 38.4% for CHIKV IgG and IgM, respectively. Only hospital location (Osogbo) was associated with CHIKV IgG (OR: 2.2, p = 0.009), while gender alone was associated with CHIKV IgM (OR: 3.0, p = 0.001). Participants seropositive for CHIKV antibodies were mostly adults (18-59 yrs) belonging to the active work-force; five (22.7%) and three (20.0%) of the pregnant participants had CHIKV IgG and IgM, respectively. Detection of CHIKV IgM in some participants might make them potentially infectious to the newborn and mosquito vectors. Importantly, participants positive for either IgG or IgM had fever (72.8%, 67.2%) and general body pains (61.7%, 57.6%), respectively. This ELISA-based study revealed serologic evidence of CHIKV infection among hospital attendees in Lagos and Osun states with the group-specific prevalence rates being considerably high. ABBREVIATIONS Chikungunya virus (CHIKV); Chikungunya (CHIK); enzyme-linked immunosorbent assay (ELISA); immunoglobulin G or M (IgG/IgM); odds ratio (OR); non-structural proteins (nsP); hemagglutination inhibiting (HI); complement fixing (CF); neutralization test (NT); immunofluorescence assay (IFA); plaque reduction neutralization test (PRNT); confidence interval (CI); analysis of variance (ANOVA); body temperature (BT); Building Nigeria's Response to Climate Change (BNRCC).
Collapse
Affiliation(s)
- Olayinka M Olajiga
- a Department of Biological Sciences, Faculty of Basic and Applied Sciences , Osun State University , Osogbo , Nigeria
| | - Olajumoke E Adesoye
- a Department of Biological Sciences, Faculty of Basic and Applied Sciences , Osun State University , Osogbo , Nigeria
| | - Adewale P Emilolorun
- a Department of Biological Sciences, Faculty of Basic and Applied Sciences , Osun State University , Osogbo , Nigeria
| | - Abiodun J Adeyemi
- a Department of Biological Sciences, Faculty of Basic and Applied Sciences , Osun State University , Osogbo , Nigeria
| | - Emmanuel O Adeyefa
- a Department of Biological Sciences, Faculty of Basic and Applied Sciences , Osun State University , Osogbo , Nigeria
| | - Ismail A Aderibigbe
- a Department of Biological Sciences, Faculty of Basic and Applied Sciences , Osun State University , Osogbo , Nigeria
| | - Salmot A Adejumo
- a Department of Biological Sciences, Faculty of Basic and Applied Sciences , Osun State University , Osogbo , Nigeria
| | - Wasiu O Adebimpe
- b Department of Community Medicine, College of Health Sciences , Osun State University , Osogbo , Nigeria
| | - Oluyinka O Opaleye
- c Department of Medical Microbiology and Parasitology, College of Health Sciences , Ladoke Akintola University of Technology , Osogbo , Nigeria
| | - Waidi F Sule
- a Department of Biological Sciences, Faculty of Basic and Applied Sciences , Osun State University , Osogbo , Nigeria
| | - Daniel O Oluwayelu
- d Department of Veterinary Microbiology and Parasitology, Faculty of Veterinary Medicine , University of Ibadan , Ibadan , Nigeria
| |
Collapse
|
190
|
Mendenhall IH, Manuel M, Moorthy M, Lee TTM, Low DHW, Missé D, Gubler DJ, Ellis BR, Ooi EE, Pompon J. Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities. PLoS Negl Trop Dis 2017. [PMID: 28650959 PMCID: PMC5501678 DOI: 10.1371/journal.pntd.0005667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dengue and chikungunya are global re-emerging mosquito-borne diseases. In Singapore, sustained vector control coupled with household improvements reduced domestic mosquito populations for the past 45 years, particularly the primary vector Aedes aegypti. However, while disease incidence was low for the first 30 years following vector control implementation, outbreaks have re-emerged in the past 15 years. Epidemiological observations point to the importance of peridomestic infection in areas not targeted by control programs. We investigated the role of vectors in peri-domestic areas. METHODS We carried out entomological surveys to identify the Aedes species present in vegetated sites in highly populated areas and determine whether mosquitoes were present in open-air areas frequented by people. We compared vector competence of Aedes albopictus and Aedes malayensis with Ae. aegypti after oral infection with sympatric dengue serotype 2 and chikungunya viruses. Mosquito saliva was tested for the presence of infectious virus particles as a surrogate for transmission following oral infection. RESULTS We identified Aedes albopictus and Aedes malayensis throughout Singapore and quantified their presence in forested and opened grassy areas. Both Ae. albopictus and Ae. malayensis can occupy sylvatic niches and were highly susceptible to both arboviruses. A majority of saliva of infected Ae. malayensis contained infectious particles for both viruses. CONCLUSIONS Our study reveals the prevalence of competent vectors in peri-domestic areas, including Ae. malayensis for which we established the vector status. Epidemics can be driven by infection foci, which are epidemiologically enhanced in the context of low herd immunity, selective pressure on arbovirus transmission and the presence of infectious asymptomatic persons, all these conditions being present in Singapore. Learning from Singapore's vector control success that reduced domestic vector populations, but has not sustainably reduced arboviral incidence, we suggest including peri-domestic vectors in the scope of vector management.
Collapse
Affiliation(s)
- Ian H. Mendenhall
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
- * E-mail: (IHM); (JP)
| | - Menchie Manuel
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
| | - Mahesh Moorthy
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
- Department of Clinical Virology, Christian Medical College, Vellore, Tamilnadu, India
| | - Theodore T. M. Lee
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Dolyce H. W. Low
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
| | - Dorothée Missé
- MIVEGEC, UMR IRD 224-CNRS5290-Université de Montpellier, Montpellier, France
| | - Duane J. Gubler
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
| | - Brett R. Ellis
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
| | - Julien Pompon
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
- MIVEGEC, UMR IRD 224-CNRS5290-Université de Montpellier, Montpellier, France
- * E-mail: (IHM); (JP)
| |
Collapse
|
191
|
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne alphavirus that causes acute and chronic arthritis. The virus reemerged in the Indian Ocean islands in 2005-2006 and is responsible for outbreaks in the Caribbean islands and the Americas since late 2013. Despite the wealth of research over the past 10 years, there are no commercially available antiviral drugs or vaccines. Treatment usually involves analgesics, anti-inflammatory drugs, and supportive care. Most studies have been focused on understanding the pathogenesis of CHIKV infection through clinical observation and with animal models. In this review, the clinical manifestations of CHIKV that define the disease and the use of relevant animal models, from mice to nonhuman primates, are discussed. Understanding key cellular factors in CHIKV infection and the interplay with the immune system will aid in the development of preventive and therapeutic approaches to combat this painful viral disease in humans.
Collapse
Affiliation(s)
- Lisa F P Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648; .,Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
192
|
Imipramine Inhibits Chikungunya Virus Replication in Human Skin Fibroblasts through Interference with Intracellular Cholesterol Trafficking. Sci Rep 2017; 7:3145. [PMID: 28600536 PMCID: PMC5466638 DOI: 10.1038/s41598-017-03316-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/26/2017] [Indexed: 02/06/2023] Open
Abstract
Chikungunya virus (CHIKV) is an emerging arbovirus of the Togaviridae family that poses a present worldwide threat to human in the absence of any licensed vaccine or antiviral treatment to control viral infection. Here, we show that compounds interfering with intracellular cholesterol transport have the capacity to inhibit CHIKV replication in human skin fibroblasts, a major viral entry site in the human host. Pretreatment of these cells with the class II cationic amphiphilic compound U18666A, or treatment with the FDA-approved antidepressant drug imipramine resulted in a near total inhibition of viral replication and production at the highest concentration used without any cytotoxic effects. Imipramine was found to affect both the fusion and replication steps of the viral life cycle. The key contribution of cholesterol availability to the CHIKV life cycle was validated further by the use of fibroblasts from Niemann-Pick type C (NPC) patients in which the virus was unable to replicate. Interestingly, imipramine also strongly inhibited the replication of several Flaviviridae family members, including Zika, West Nile and Dengue virus. Together, these data show that this compound is a potential drug candidate for anti-arboviral treatment.
Collapse
|
193
|
DeZure AD, Berkowitz NM, Graham BS, Ledgerwood JE. Whole-Inactivated and Virus-Like Particle Vaccine Strategies for Chikungunya Virus. J Infect Dis 2017; 214:S497-S499. [PMID: 27920180 DOI: 10.1093/infdis/jiw352] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chikungunya virus (CHIKV) is a global public health threat, having been identified in >60 countries in Asia, Africa, Europe, and the Americas. There is no cure for or licensed vaccine against CHIKV infection. Initial attempts at CHIKV vaccine development began in the early 1960s. Whole-inactivated and virus-like particle (VLP) vaccines are 2 of the current approaches being evaluated. Success of these approaches is dependent on a safe, well-tolerated vaccine that is immunogenic and deployable in regard to manufacturing, stability, and delivery characteristics.
Collapse
Affiliation(s)
- Adam D DeZure
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Nina M Berkowitz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
194
|
Abstract
Chikungunya is caused by an alphavirus that is transmitted to humans via the Aedes species mosquito. Chikungunya is endemic to tropical Africa and South and Southeast Asia, but over the past decade, the geographic distribution of the virus has been expanding rapidly. The disease is characterized by fever and severe polyarthritis, and although symptoms typically resolve within 7 to 10 days, some patients experience persistent arthritis and arthralgias for months to years.In December 2013, the first local transmission of chikungunya virus in the Americas was identified in the Caribbean Island of Saint Martin. Since then, the number of afflicted individuals has spread throughout the Caribbean and Central America, as well as into South America. The United States reported 2788 chikungunya virus disease cases among travelers returning from affected areas in 2014. In addition, 11 locally acquired cases were reported in Florida. Further spread and establishment of the disease in the Americas are likely considering the high levels of viremia in infected individuals, widespread distribution of effective vectors, lack of immunity among people living in the Americas, and the popularity of international travel.Considering the prominent rheumatic manifestations of chikungunya, rheumatologists are likely to encounter patients with the disease in their practice. We recommend that rheumatologists consider chikungunya in their differential diagnosis when evaluating patients presenting with fever and joint pain following travel to a chikungunya endemic area. Early diagnosis would ensure timely management and reduction of polypharmacy and its associated complications. In this article, we briefly describe the epidemiology of chikungunya, the clinical features, laboratory testing, prevention, and treatment of disease.
Collapse
|
195
|
Zeller H, Van Bortel W, Sudre B. Chikungunya: Its History in Africa and Asia and Its Spread to New Regions in 2013-2014. J Infect Dis 2017; 214:S436-S440. [PMID: 27920169 DOI: 10.1093/infdis/jiw391] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chikungunya virus (CHIKV) is transmitted by Aedes aegypti and Aedes albopictus mosquitoes and causes febrile illness with severe arthralgia in humans. There are 3 circulating CHIKV genotypes, Asia, East/Central/South Africa, and West Africa. CHIKV was first reported in 1953 in Tanzania, and up until the early 2000s, a few outbreaks and sporadic cases of CHIKV were mainly reported in Africa and Asia. However, from 2004 to 2005, a large epidemic spanned from Kenya over to the southwestern Indian Ocean region, India, and Southeast Asia. Identified in 2005, the E1 glycoprotein A226V mutation of the East/Central/South Africa genotype conferred enhanced transmission by the A. albopictus mosquito and has been implicated in CHIKV's further spread in the last decade. In 2013, the Asian CHIKV genotype emerged in the Caribbean and quickly took the Americas by storm. This review will discuss the history of CHIKV as well as its expanding geographic distribution.
Collapse
Affiliation(s)
- Herve Zeller
- Emerging and Vector-borne Diseases Programme, European Centre for Disease Prevention and Control, Solna, Sweden
| | - Wim Van Bortel
- Emerging and Vector-borne Diseases Programme, European Centre for Disease Prevention and Control, Solna, Sweden
| | - Bertrand Sudre
- Emerging and Vector-borne Diseases Programme, European Centre for Disease Prevention and Control, Solna, Sweden
| |
Collapse
|
196
|
Christofferson RC, Mores CN, Wearing HJ. Bridging the Gap Between Experimental Data and Model Parameterization for Chikungunya Virus Transmission Predictions. J Infect Dis 2017; 214:S466-S470. [PMID: 27920175 DOI: 10.1093/infdis/jiw283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chikungunya virus (CHIKV) has experienced 2 major expansion events in the last decade. The most recently emerged sublineage (ECSA-V) was shown to have increased efficiency in a historically secondary vector, Aedes albopictus, leading to speculation that this was a major factor in expansion. Subsequently, a number of experimental studies focused on the vector competence of CHIKV, as well as transmission modeling efforts. Mathematical models have used these data to inform their own investigations, but some have incorrectly parameterized the extrinsic incubation period (EIP) of the mosquitoes, using vector competence data. Vector competence and EIP are part of the same process but are not often correctly reported together. Thus, the way these metrics are used for model parameterization can be problematic. We offer suggestions for bridging this gap for the purpose of standardization of reporting and to promote appropriate use of experimental data in modeling efforts.
Collapse
Affiliation(s)
| | - Christopher N Mores
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge
| | - Helen J Wearing
- Department of Biology.,Department of Mathematics and Statistics, University of New Mexico, Albuquerque
| |
Collapse
|
197
|
Haese NN, Broeckel RM, Hawman DW, Heise MT, Morrison TE, Streblow DN. Animal Models of Chikungunya Virus Infection and Disease. J Infect Dis 2017; 214:S482-S487. [PMID: 27920178 DOI: 10.1093/infdis/jiw284] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging alphavirus that causes acute febrile illness and severe joint pain in humans. Although acute symptoms often resolve within a few days, chronic joint and muscle pain can be long lasting. In the last decade, CHIKV has caused widespread outbreaks of unprecedented scale in the Americas, Asia, and the Indian Ocean island regions. Despite these outbreaks and the continued expansion of CHIKV into new areas, mechanisms of chikungunya pathogenesis and disease are not well understood. Experimental animal models are indispensable to the field of CHIKV research. The most commonly used experimental animal models of CHIKV infection are mice and nonhuman primates; each model has its advantages for studying different aspects of CHIKV disease. This review will provide an overview of animal models used to study CHIKV infection and disease and major advances in our understanding of chikungunya obtained from studies performed in these models.
Collapse
Affiliation(s)
- Nicole N Haese
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton
| | - Rebecca M Broeckel
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton
| | - David W Hawman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora
| | - Mark T Heise
- Departments of Genetics, Microbiology, and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton
| |
Collapse
|
198
|
Lourenço-de-Oliveira R, Failloux AB. High risk for chikungunya virus to initiate an enzootic sylvatic cycle in the tropical Americas. PLoS Negl Trop Dis 2017; 11:e0005698. [PMID: 28662031 PMCID: PMC5507584 DOI: 10.1371/journal.pntd.0005698] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/12/2017] [Accepted: 06/10/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) has dispersed in the Americas since 2013, and its range of distribution has overlapped large forested areas. Herein, we assess vector competence of two sylvatic Neotropical mosquito species, Haemagogus leucocelaenus and Aedes terrens, to evaluate the risk of CHIKV to initiate a sylvatic cycle in the continent. METHODOLOGY/PRINCIPAL FINDINGS Haemagogus leucocelaenus and Ae. terrens from the state of Rio de Janeiro, Brazil were orally challenged with the two CHIKV lineages circulating in the Americas. Fully engorged females were kept in incubators at 28±1°C and 70±10% humidity and examined at 3 and 7 days after virus exposure. Body (thorax plus abdomen), head and saliva samples were analyzed for respectively determining infection, dissemination and transmission. Both Hg. leucocelaenus and Ae. terrens exhibited high infection and dissemination rates with both CHIKV isolates at 7 dpi, demonstrating that they are susceptible to CHIKV, regardless of the lineage. Remarkably, Hg. leucocelaenus expectorated infectious viral particles as rapidly as 3 days after the infectious blood meal, displaying higher values of transmission rate and efficiency than Ae. terrens. Nevertheless, both species were competent to experimentally transmit both CHIKV genotypes, exhibiting vector competence similar to several American Aedes aegypti. CONCLUSIONS/SIGNIFICANCE These results point out the high risk for CHIKV to establish a sylvatic transmission cycle in the Americas, which could be a serious health issue as CHIKV would become another zoonotic infection difficult to control in the continent.
Collapse
Affiliation(s)
- Ricardo Lourenço-de-Oliveira
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
- Institut Pasteur, Arboviruses and Insect Vectors, Paris, France
| | | |
Collapse
|
199
|
Passoni G, Langevin C, Palha N, Mounce BC, Briolat V, Affaticati P, De Job E, Joly JS, Vignuzzi M, Saleh MC, Herbomel P, Boudinot P, Levraud JP. Imaging of viral neuroinvasion in the zebrafish reveals that Sindbis and chikungunya viruses favour different entry routes. Dis Model Mech 2017; 10:847-857. [PMID: 28483796 PMCID: PMC5536907 DOI: 10.1242/dmm.029231] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Alphaviruses, such as chikungunya virus (CHIKV) and Sindbis virus (SINV), are vector-borne pathogens that cause acute illnesses in humans and are sometimes associated with neuropathies, especially in infants and elderly patients. Little is known about their mechanism of entry into the central nervous system (CNS), even for SINV, which has been used extensively as a model for viral encephalopathies. We previously established a CHIKV infection model in the optically transparent zebrafish larva; here we describe a new SINV infection model in this host. We imaged in vivo the onset and progression of the infection caused by intravenous SINV inoculation. Similar to that described for CHIKV, infection in the periphery was detected early and was transient, whereas CNS infection started at later time points and was persistent or progressive. We then tested the possible mechanisms of neuroinvasion by CHIKV and SINV. Neither virus relied on macrophage-mediated transport to access the CNS. CHIKV, but not SINV, always infects endothelial cells of the brain vasculature. By contrast, axonal transport was much more efficient with SINV than CHIKV, both from the periphery to the CNS and between neural tissues. Thus, the preferred mechanisms of neuroinvasion by these two related viruses are distinct, providing a powerful imaging-friendly system to compare mechanisms and prevention methods of encephalopathies.
Collapse
Affiliation(s)
- Gabriella Passoni
- Virology and Molecular Immunology, INRA, Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas F-78352, France.,Macrophages and Development of Immunity, Institut Pasteur, CNRS UMR 3738, 25 rue du docteur Roux, Paris F-75015, France
| | - Christelle Langevin
- Virology and Molecular Immunology, INRA, Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas F-78352, France
| | - Nuno Palha
- Macrophages and Development of Immunity, Institut Pasteur, CNRS UMR 3738, 25 rue du docteur Roux, Paris F-75015, France
| | - Bryan C Mounce
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, Paris F-75015, France
| | - Valérie Briolat
- Macrophages and Development of Immunity, Institut Pasteur, CNRS UMR 3738, 25 rue du docteur Roux, Paris F-75015, France
| | - Pierre Affaticati
- Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Yvette F-91190, France
| | - Elodie De Job
- Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Yvette F-91190, France
| | - Jean-Stéphane Joly
- Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Gif-sur-Yvette F-91190, France
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, Paris F-75015, France
| | - Maria-Carla Saleh
- Viruses and RNA Interference, Institut Pasteur, CNRS UMR 3569, Paris F-75015, France
| | - Philippe Herbomel
- Macrophages and Development of Immunity, Institut Pasteur, CNRS UMR 3738, 25 rue du docteur Roux, Paris F-75015, France
| | - Pierre Boudinot
- Virology and Molecular Immunology, INRA, Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas F-78352, France
| | - Jean-Pierre Levraud
- Macrophages and Development of Immunity, Institut Pasteur, CNRS UMR 3738, 25 rue du docteur Roux, Paris F-75015, France
| |
Collapse
|
200
|
Thanapati S, Ganu M, Giri P, Kulkarni S, Sharma M, Babar P, Ganu A, Tripathy AS. Impaired NK cell functionality and increased TNF-α production as biomarkers of chronic chikungunya arthritis and rheumatoid arthritis. Hum Immunol 2017; 78:370-374. [DOI: 10.1016/j.humimm.2017.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/06/2017] [Accepted: 02/11/2017] [Indexed: 01/16/2023]
|