151
|
Goyal V, Jhanghel D, Mehrotra S. Emerging warriors against salinity in plants: Nitric oxide and hydrogen sulphide. PHYSIOLOGIA PLANTARUM 2021; 171:896-908. [PMID: 33665834 DOI: 10.1111/ppl.13380] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The agriculture sector is vulnerable to various environmental stresses, which significantly affect plant growth, performance, and development. Abiotic stresses, such as salinity and drought, cause severe losses in crop productivity worldwide. Soil salinity is a major stress suppressing plant development through osmotic stress accompanied by ion toxicity, nutritional imbalance, and oxidative stress. Various defense mechanisms like osmolytes accumulations, activation of stress-induced genes, and transcription factors, production of plant growth hormones, accumulation of antioxidants, and redox defense system in plants are responsible for combating salt stress. Nitric oxide (NO) and hydrogen sulphide (H2 S) have emerged as novel bioactive gaseous signaling molecules that positively impact seed germination, homeostasis, plant metabolism, growth, and development, and are involved in several plant acclimation responses to impart stress tolerance in plants. NO and H2 S trigger cell signaling by activating a cascade of biochemical events that result in plant tolerance to environmental stresses. NO- and H2 S-mediated signaling networks, interactions, and crosstalks facilitate stress tolerance in plants. Research on the roles and mechanisms of NO and H2 S as challengers of salinity is entering an exponential exploration era. The present review focuses on the current knowledge of the mechanisms of stress tolerance in plants and the role of NO and H2 S in adaptive plant responses to salt stress and provides an overview of the signaling mechanisms and interplay of NO and H2 S in the regulation of growth and development as well as modulation of defense responses in plants and their long term priming effects for imparting salinity tolerance in plants.
Collapse
Affiliation(s)
- Vinod Goyal
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Dharmendra Jhanghel
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Shweta Mehrotra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
152
|
Wilmowicz E, Kućko A, Pokora W, Kapusta M, Jasieniecka-Gazarkiewicz K, Tranbarger TJ, Wolska M, Panek K. EPIP-Evoked Modifications of Redox, Lipid, and Pectin Homeostasis in the Abscission Zone of Lupine Flowers. Int J Mol Sci 2021; 22:3001. [PMID: 33809409 PMCID: PMC7999084 DOI: 10.3390/ijms22063001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
Yellow lupine is a great model for abscission-related research given that excessive flower abortion reduces its yield. It has been previously shown that the EPIP peptide, a fragment of LlIDL (INFLORESCENCE DEFICIENT IN ABSCISSION) amino-acid sequence, is a sufficient molecule to induce flower abortion, however, the question remains: What are the exact changes evoked by this peptide locally in abscission zone (AZ) cells? Therefore, we used EPIP peptide to monitor specific modifications accompanied by early steps of flower abscission directly in the AZ. EPIP stimulates the downstream elements of the pathway-HAESA and MITOGEN-ACTIVATED PROTEIN KINASE6 and induces cellular symptoms indicating AZ activation. The EPIP treatment disrupts redox homeostasis, involving the accumulation of H2O2 and upregulation of the enzymatic antioxidant system including superoxide dismutase, catalase, and ascorbate peroxidase. A weakening of the cell wall structure in response to EPIP is reflected by pectin demethylation, while a changing pattern of fatty acids and acyl lipids composition suggests a modification of lipid metabolism. Notably, the formation of a signaling molecule-phosphatidic acid is induced locally in EPIP-treated AZ. Collectively, all these changes indicate the switching of several metabolic and signaling pathways directly in the AZ in response to EPIP, which inevitably leads to flower abscission.
Collapse
Affiliation(s)
- Emilia Wilmowicz
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (M.W.); (K.P.)
| | - Agata Kućko
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159 Street, 02-776 Warsaw, Poland;
| | - Wojciech Pokora
- Department of Plant Physiology and Biotechnology, University of Gdańsk, 59 Wita Stwosza, 80-308 Gdańsk, Poland;
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, University of Gdańsk, 59 Wita Stwosza, 80-308 Gdańsk, Poland;
| | | | - Timothy John Tranbarger
- UMR DIADE, IRD Centre de Montpellier, Institut de Recherche pour le Développement, Université de Montpellier, 911 Avenue Agropolis BP 64501, 34394 CEDEX 5 Montpellier, France;
| | - Magdalena Wolska
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (M.W.); (K.P.)
| | - Katarzyna Panek
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (M.W.); (K.P.)
| |
Collapse
|
153
|
He Y, Liu Y, Li M, Lamin-Samu AT, Yang D, Yu X, Izhar M, Jan I, Ali M, Lu G. The Arabidopsis SMALL AUXIN UP RNA32 Protein Regulates ABA-Mediated Responses to Drought Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:625493. [PMID: 33777065 PMCID: PMC7994887 DOI: 10.3389/fpls.2021.625493] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/02/2021] [Indexed: 05/27/2023]
Abstract
SMALL AUXIN UP-REGULATED RNAs (SAURs) are recognized as auxin-responsive genes involved in the regulation of abiotic stress adaptive growth. Among the growth-limiting factors, water-deficit condition significantly affects plant growth and development. The putative function of SAUR family member AtSAUR32 has the potential to diminish the negative impact of drought stress, but the exact function and mode of action remain unclear in Arabidopsis. In the current study, AtSAUR32 gene was cloned and functionally analyzed. AtSAUR32 localized to the plasma membrane and nucleus was dominantly expressed in roots and highly induced by abscisic acid and drought treatment at certain time points. The stomatal closure and seed germination of saur32 were less sensitive to ABA relative to AtSAUR32-overexpressed line (OE32-5) and wild type (WT). Moreover, the saur32 mutant under drought stress showed increased ion leakage while quantum yield of photosystem II (ΦPSII) and endogenous ABA accumulation were reduced, along with the expression pattern of ABA/stress-responsive genes compared with WT and the OE32-5 transgenic line. Additionally, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that AtSAUR32 interacted with clade-A PP2C proteins (AtHAI1 and AtAIP1) to regulate ABA sensitivity in Arabidopsis. Taken together, these results indicate that AtSAUR32 plays an important role in drought stress adaptation via mediating ABA signal transduction.
Collapse
Affiliation(s)
- Yanjun He
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yue Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengzhuo Li
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Anthony Tumbeh Lamin-Samu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Dandan Yang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaolin Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Izhar
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Ibadullah Jan
- Department of Agriculture, University of Swabi, Swabi, Pakistan
| | - Muhammad Ali
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Gang Lu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou, China
| |
Collapse
|
154
|
Oikawa K, Imai T, Thagun C, Toyooka K, Yoshizumi T, Ishikawa K, Kodama Y, Numata K. Mitochondrial movement during its association with chloroplasts in Arabidopsis thaliana. Commun Biol 2021; 4:292. [PMID: 33674706 PMCID: PMC7935954 DOI: 10.1038/s42003-021-01833-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/11/2021] [Indexed: 02/05/2023] Open
Abstract
Plant mitochondria move dynamically inside cells and this movement is classified into two types: directional movement, in which mitochondria travel long distances, and wiggling, in which mitochondria travel short distances. However, the underlying mechanisms and roles of both types of mitochondrial movement, especially wiggling, remain to be determined. Here, we used confocal laser-scanning microscopy to quantitatively characterize mitochondrial movement (rate and trajectory) in Arabidopsis thaliana mesophyll cells. Directional movement leading to long-distance migration occurred at high speed with a low angle-change rate, whereas wiggling leading to short-distance migration occurred at low speed with a high angle-change rate. The mean square displacement (MSD) analysis could separate these two movements. Directional movement was dependent on filamentous actin (F-actin), whereas mitochondrial wiggling was not, but slightly influenced by F-actin. In mesophyll cells, mitochondria could migrate by wiggling, and most of these mitochondria associated with chloroplasts. Thus, mitochondria migrate via F-actin-independent wiggling under the influence of F-actin during their association with chloroplasts in Arabidopsis. Oikawa et al. investigate the rate and trajectory of mitochondria in Arabidopsis thaliana mesophyll cells, using confocal laser-scanning microscopy. They find that mitochondria migrate via wiggling during their association with chloroplasts, providing insights into how mitochondria-chloroplast interaction affects the movement of mitochondria.
Collapse
Affiliation(s)
- Kazusato Oikawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Takuto Imai
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Chonprakun Thagun
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Kiminori Toyooka
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Takeshi Yoshizumi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Kazuya Ishikawa
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Yutaka Kodama
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan. .,Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan.
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan. .,Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan.
| |
Collapse
|
155
|
Effect of electron beam radiation on disease resistance and quality of harvested mangoes. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109289] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
156
|
Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M. Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants (Basel) 2021; 10:277. [PMID: 33670123 PMCID: PMC7916865 DOI: 10.3390/antiox10020277] [Citation(s) in RCA: 410] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Climate change is an invisible, silent killer with calamitous effects on living organisms. As the sessile organism, plants experience a diverse array of abiotic stresses during ontogenesis. The relentless climatic changes amplify the intensity and duration of stresses, making plants dwindle to survive. Plants convert 1-2% of consumed oxygen into reactive oxygen species (ROS), in particular, singlet oxygen (1O2), superoxide radical (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (•OH), etc. as a byproduct of aerobic metabolism in different cell organelles such as chloroplast, mitochondria, etc. The regulatory network comprising enzymatic and non-enzymatic antioxidant systems tends to keep the magnitude of ROS within plant cells to a non-damaging level. However, under stress conditions, the production rate of ROS increases exponentially, exceeding the potential of antioxidant scavengers instigating oxidative burst, which affects biomolecules and disturbs cellular redox homeostasis. ROS are similar to a double-edged sword; and, when present below the threshold level, mediate redox signaling pathways that actuate plant growth, development, and acclimatization against stresses. The production of ROS in plant cells displays both detrimental and beneficial effects. However, exact pathways of ROS mediated stress alleviation are yet to be fully elucidated. Therefore, the review deposits information about the status of known sites of production, signaling mechanisms/pathways, effects, and management of ROS within plant cells under stress. In addition, the role played by advancement in modern techniques such as molecular priming, systems biology, phenomics, and crop modeling in preventing oxidative stress, as well as diverting ROS into signaling pathways has been canvassed.
Collapse
Affiliation(s)
- Swati Sachdev
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rae Bareli Road, Lucknow 226 025, India;
| | | | | | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
157
|
Nguyen TT, Uthairatanakij A, Srilaong V, Laohakunjit N, Kato M, Jitareerat P. Impact of electron beam irradiation on the chlorophyll degradation and antioxidant capacity of mango fruit. APPLIED BIOLOGICAL CHEMISTRY 2021; 64:19. [PMID: 33553856 PMCID: PMC7854327 DOI: 10.1186/s13765-021-00592-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/13/2021] [Indexed: 05/27/2023]
Abstract
At the present, the mechanism of chlorophyll degradation in response to ionizing irradiation in harvested fruits have not been examined. To understand the effect of electron beam (E-beam) irradiation on the chlorophyll degrading pathway in relation to chlorophyll degrading enzymes activity, reactive oxygen species (ROS) and antioxidant capacities of harvested mangoes stored at 13 °C for 16 days were studied. E-beam-treated fruit significantly suppressed the activities of chlorophyll degrading enzymes especially pheophytinase (PPH) and chlorophyll degrading peroxidase (Chl-POX) in the late stage of storage. This resulted in the chlorophyll content being maintained. However, E-beam irradiation did not affect the activities of chlorophyllase (Chlase) and magnesium de-chelatase (MD). The respiration rate, ethylene production, ROS accumulation (hydrogen peroxide [H2O2] and superoxide radical [O-. 2]) immediately increased after E-beam treatment, following which they significantly decreased in comparison to the control. E-beam treatment enhanced the fruit's antioxidant capacity by activating the activities of catalase (CAT) and ascorbate peroxidase (APX) and glutathione (GSH) content, and inactivated the activity of superoxide dismutase (SOD). Further, it did not affect the activity of glutathione reductase (GR) and glutathione disulfide (GSSG), vitamin C content, or total phenolic content. These results imply that E-beam treatment has the potential to delay chlorophyll degradation by suppressing the Chl-POX and PPH activities as well as reduce ROS production via CAT, APX, and SOD activities and GSH content.
Collapse
Affiliation(s)
- Truc Trung Nguyen
- Division of Postharvest Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, 10140 Thailand
| | - Apiradee Uthairatanakij
- Division of Postharvest Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, 10140 Thailand
- Postharvest Technology Innovation Center, Commission of Higher Education, Bangkok, 10400 Thailand
| | - Varit Srilaong
- Division of Postharvest Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, 10140 Thailand
- Postharvest Technology Innovation Center, Commission of Higher Education, Bangkok, 10400 Thailand
| | - Natta Laohakunjit
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, 10140 Thailand
| | - Masaya Kato
- Department of Bioresource Science, Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529 Japan
| | - Pongphen Jitareerat
- Division of Postharvest Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, 10140 Thailand
- Postharvest Technology Innovation Center, Commission of Higher Education, Bangkok, 10400 Thailand
| |
Collapse
|
158
|
Wang Y, Zhao Y, Wang S, Liu J, Wang X, Han Y, Liu F. Up-regulated 2-alkenal reductase expression improves low-nitrogen tolerance in maize by alleviating oxidative stress. PLANT, CELL & ENVIRONMENT 2021; 43:2957-2968. [PMID: 33215716 DOI: 10.1111/pce.13907] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 05/13/2023]
Abstract
In plants, cellular lipid peroxidation is enhanced under low nitrogen (LN) stress; this increases the lipid-derived reactive carbonyl species (RCS) levels. The cellular toxicity of RCS can be reduced by various RCS-scavenging enzymes. However, the roles of these enzymes in alleviating oxidative stress and improving nutrient use efficiency (NUE) under nutrient stress remain unknown. Here, we overexpressed maize endogenous NADPH-dependent 2-alkenal reductase (ZmAER) in maize; it significantly increased the tolerance of transgenic plants (OX-AER) to LN stress. Under LN condition, the biomass, nitrogen accumulation, NUE, and leaf photosynthesis of the OX-AER plants were significantly higher than those of the wild-type (WT) plants. The leaf and root malondialdehyde and H2 O2 levels in the transgenic plants were significantly lower than those in WT. The expression of antioxidant enzyme-related genes ZmCAT3, ZmPOD5 and ZmPOD13 was significantly higher in the transgenic lines than in WT. Under LN stress, the nitrate reductase activity in the OX-AER leaves was significantly increased compared with that in the WT leaves. Furthermore, under LN stress, ZmNRT1.1 and ZmNRT2.5 expression was upregulated in the OX-AER plants compared with that in WT. Overall, up-regulated ZmAER expression could enhance maize's tolerance to LN stress by alleviating oxidative stress and improve NUE.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yanxiang Zhao
- College of Plant Protection, China Agricultural University, Beijing, China
- Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shanshan Wang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Junfeng Liu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiqing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Yanlai Han
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fang Liu
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
159
|
Jurdak R, Launay-Avon A, Paysant-Le Roux C, Bailly C. Retrograde signalling from the mitochondria to the nucleus translates the positive effect of ethylene on dormancy breaking of Arabidopsis thaliana seeds. THE NEW PHYTOLOGIST 2021; 229:2192-2205. [PMID: 33020928 DOI: 10.1111/nph.16985] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 05/22/2023]
Abstract
Ethylene and reactive oxygen species (ROS) regulate seed dormancy alleviation, but the molecular basis of their action and crosstalk remains largely unknown. Here we studied the mechanism of Arabidopsis seed dormancy release by ethylene using cell imaging, and genetic and transcriptomics approaches, in order to tackle its possible interaction with ROS homeostasis. We found that the effect of ethylene on seed germination required ROS production by the mitochondrial electron transport chain. Seed response to ethylene involved a mitochondrial retrograde response (MRR) through nuclear ROS production and upregulation of the MRR components AOX1a and ANAC013, but also required the activation of the ethylene canonical pathway. Together our data allowed deciphering of the mode of action of ethylene on seed germination and the associated dynamics of ROS production. Our findings highlight the occurrence of retrograde signalling in seed germination.
Collapse
Affiliation(s)
- Rana Jurdak
- IBPS, CNRS, UMR 7622 Biologie du Développement, Sorbonne Université, Paris, F-75005, France
- Biodiversity and Functional Genomics Laboratory, Université Saint-Joseph de Beyrouth, Beyrouth, 1107 2050, Lebanon
| | - Alexandra Launay-Avon
- CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Orsay, 91405, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, Orsay, 91405, France
| | - Christine Paysant-Le Roux
- CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Orsay, 91405, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, Orsay, 91405, France
| | - Christophe Bailly
- IBPS, CNRS, UMR 7622 Biologie du Développement, Sorbonne Université, Paris, F-75005, France
| |
Collapse
|
160
|
Effect of Ozonation Process on the Energy Metabolism in Raspberry Fruit During Storage at Room Temperature. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02591-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractThe major aim of this research was to investigate the effect of ozone treatment on the energy metabolism in raspberry fruit during storage at room temperature. Raspberries were ozonated with an ozone concentration of 8–10 mg L−1, for 30 min, every 12 h of storage at room temperature for 72 h. The results indicated that ozone treatment significantly enhanced the activities of mitochondrial respiratory enzymes, such as succinate dehydrogenase, cytochrome C oxidase, and H+-ATPase, which contributed to maintain the high level of ATP and energy charge in fruit during storage. Moreover, the energy metabolism in mitochondria was closely correlated with the antioxidant potential of raspberry fruit. This study has given an experimental evidence that ozonation procedure in proposed process conditions significantly affects the mitochondrial respiratory system leading to maintain the high quality of the fruit over a long period of storage at room temperature.
Collapse
|
161
|
Eljebbawi A, Guerrero YDCR, Dunand C, Estevez JM. Highlighting reactive oxygen species as multitaskers in root development. iScience 2021; 24:101978. [PMID: 33490891 PMCID: PMC7808913 DOI: 10.1016/j.isci.2020.101978] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Reactive oxygen species (ROS) are naturally produced by several redox reactions during plant regular metabolism such as photosynthesis and respiration. Due to their chemical properties and high reactivity, ROS were initially described as detrimental for cells during oxidative stress. However, they have been further recognized as key players in numerous developmental and physiological processes throughout the plant life cycle. Recent studies report the important role of ROS as growth regulators during plant root developmental processes such as in meristem maintenance, in root elongation, and in lateral root, root hair, endodermis, and vascular tissue differentiation. All involve multifaceted interplays between steady-state levels of ROS with transcriptional regulators, phytohormones, and nutrients. In this review, we attempt to summarize recent findings about how ROS are involved in multiple stages of plant root development during cell proliferation, elongation, and differentiation.
Collapse
Affiliation(s)
- Ali Eljebbawi
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326 Castanet Tolosan, France
| | | | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326 Castanet Tolosan, France
| | - José Manuel Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida (FCsV), Universidad Andres Bello and Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
162
|
Otsuka K, Mamiya A, Konishi M, Nozaki M, Kinoshita A, Tamaki H, Arita M, Saito M, Yamamoto K, Hachiya T, Noguchi K, Ueda T, Yagi Y, Kobayashi T, Nakamura T, Sato Y, Hirayama T, Sugiyama M. Temperature-dependent fasciation mutants provide a link between mitochondrial RNA processing and lateral root morphogenesis. eLife 2021; 10:61611. [PMID: 33443014 PMCID: PMC7846275 DOI: 10.7554/elife.61611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Although mechanisms that activate organogenesis in plants are well established, much less is known about the subsequent fine-tuning of cell proliferation, which is crucial for creating properly structured and sized organs. Here we show, through analysis of temperature-dependent fasciation (TDF) mutants of Arabidopsis, root redifferentiation defective 1 (rrd1), rrd2, and root initiation defective 4 (rid4), that mitochondrial RNA processing is required for limiting cell division during early lateral root (LR) organogenesis. These mutants formed abnormally broadened (i.e. fasciated) LRs under high-temperature conditions due to extra cell division. All TDF proteins localized to mitochondria, where they were found to participate in RNA processing: RRD1 in mRNA deadenylation, and RRD2 and RID4 in mRNA editing. Further analysis suggested that LR fasciation in the TDF mutants is triggered by reactive oxygen species generation caused by defective mitochondrial respiration. Our findings provide novel clues for the physiological significance of mitochondrial activities in plant organogenesis.
Collapse
Affiliation(s)
- Kurataka Otsuka
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Akihito Mamiya
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mineko Konishi
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mamoru Nozaki
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Atsuko Kinoshita
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Tamaki
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masaki Arita
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masato Saito
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kayoko Yamamoto
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takushi Hachiya
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Shimane, Japan
| | - Ko Noguchi
- Department of Applied Life Science, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Aichi, Japan
| | - Yusuke Yagi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takehito Kobayashi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takahiro Nakamura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yasushi Sato
- Biology and Environmental Science, Graduate School of Science and Engineering, Ehime University, Ehime, Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Munetaka Sugiyama
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
163
|
Biswas MS, Mano J. Lipid Peroxide-Derived Reactive Carbonyl Species as Mediators of Oxidative Stress and Signaling. FRONTIERS IN PLANT SCIENCE 2021; 12:720867. [PMID: 34777410 PMCID: PMC8581730 DOI: 10.3389/fpls.2021.720867] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/01/2021] [Indexed: 05/12/2023]
Abstract
Oxidation of membrane lipids by reactive oxygen species (ROS) or O2/lipoxygenase leads to the formation of various bioactive compounds collectively called oxylipins. Reactive carbonyl species (RCS) are a group of oxylipins that have the α,β-unsaturated carbonyl structure, including acrolein and 4-hydroxy-(E)-2-nonenal. RCS provides a missing link between ROS stimuli and cellular responses in plants via their electrophilic modification of proteins. The physiological significance of RCS in plants has been established based on the observations that the RCS-scavenging enzymes that are overexpressed in plants or the RCS-scavenging chemicals added to plants suppress the plants' responses to ROS, i.e., photoinhibition, aluminum-induced root damage, programmed cell death (PCD), senescence, abscisic acid-induced stomata closure, and auxin-induced lateral root formation. The functions of RCS are thus a key to ROS- and redox-signaling in plants. The chemical species involved in distinct RCS signaling/damaging phenomena were recently revealed, based on comprehensive carbonyl determinations. This review presents an overview of the current status of research regarding RCS signaling functions in plants and discusses present challenges for gaining a more complete understanding of the signaling mechanisms.
Collapse
Affiliation(s)
- Md. Sanaullah Biswas
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Jun’ichi Mano
- Science Research Center, Yamaguchi University, Yamaguchi, Japan
- *Correspondence: Jun’ichi Mano,
| |
Collapse
|
164
|
Yang Y, Li HG, Wang J, Wang HL, He F, Su Y, Zhang Y, Feng CH, Niu M, Li Z, Liu C, Yin W, Xia X. ABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating ADF5 in Populus euphratica. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7270-7285. [PMID: 32822499 DOI: 10.1093/jxb/eraa383] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/17/2020] [Indexed: 05/20/2023]
Abstract
Water availability is a main limiting factor for plant growth, development, and distribution throughout the world. Stomatal movement mediated by abscisic acid (ABA) is particularly important for drought adaptation, but the molecular mechanisms in trees are largely unclear. Here, we isolated an ABA-responsive element binding factor, PeABF3, in Populus euphratica. PeABF3 was preferentially expressed in the xylem and young leaves, and was induced by dehydration and ABA treatments. PeABF3 showed transactivation activity and was located in the nucleus. To study its functional mechanism in poplar responsive to drought stress, transgenic triploid white poplars (Populus tomentosa 'YiXianCiZhu B385') overexpressing PeABF3 were generated. PeABF3 overexpression significantly enhanced stomatal sensitivity to exogenous ABA. When subjected to drought stress, PeABF3 overexpression maintained higher photosynthetic activity and promoted cell membrane integrity, resulting in increased water-use efficiency and enhanced drought tolerance compared with wild-type controls. Moreover, a yeast one-hybrid assay and an electrophoretic mobility shift assay revealed that PeABF3 activated the expression of Actin-Depolymerizing Factor-5 (PeADF5) by directly binding to its promoter, promoting actin cytoskeleton remodeling and stomatal closure in poplar under drought stress. Taken together, our results indicate that PeABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating PeADF5 expression.
Collapse
Affiliation(s)
- Yanli Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hui-Guang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jie Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hou-Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Fang He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yanyan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ying Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Cong-Hua Feng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mengxue Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
165
|
Guo HM, Li HC, Zhou SR, Xue HW, Miao XX. Deficiency of mitochondrial outer membrane protein 64 confers rice resistance to both piercing-sucking and chewing insects in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1967-1982. [PMID: 32542992 DOI: 10.1111/jipb.12983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
The brown planthopper (BPH) and striped stem borer (SSB) are the most devastating insect pests in rice (Oryza sativa) producing areas. Screening for endogenous resistant genes is the most practical strategy for rice insect-resistance breeding. Forty-five mutants showing high resistance against BPH were identified in a rice T-DNA insertion population (11,000 putative homozygous lines) after 4 years of large-scale field BPH-resistance phenotype screening. Detailed analysis showed that deficiency of rice mitochondrial outer membrane protein 64 (OM64) gene resulted in increased resistance to BPH. Mitochondrial outer membrane protein 64 protein is located in the outer mitochondrial membrane by subcellular localization and its deficiency constitutively activated hydrogen peroxide (H2 O2 ) signaling, which stimulated antibiosis and tolerance to BPH. The om64 mutant also showed enhanced resistance to SSB, a chewing insect, which was due to promotion of Jasmonic acid biosynthesis and related responses. Importantly, om64 plants presented no significant changes in rice yield-related characters. This study confirmed OM64 as a negative regulator of rice herbivore resistance through regulating H2 O2 production. Mitochondrial outer membrane protein 64 is a potentially efficient candidate to improve BPH and SSB resistance through gene deletion. Why the om64 mutant was resistant to both piercing-sucking and chewing insects via a gene deficiency in mitochondria is discussed.
Collapse
Affiliation(s)
- Hui-Min Guo
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hai-Chao Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shi-Rong Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xue-Xia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
166
|
Meyer AJ, Dreyer A, Ugalde JM, Feitosa-Araujo E, Dietz KJ, Schwarzländer M. Shifting paradigms and novel players in Cys-based redox regulation and ROS signaling in plants - and where to go next. Biol Chem 2020; 402:399-423. [PMID: 33544501 DOI: 10.1515/hsz-2020-0291] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Cys-based redox regulation was long regarded a major adjustment mechanism of photosynthesis and metabolism in plants, but in the recent years, its scope has broadened to most fundamental processes of plant life. Drivers of the recent surge in new insights into plant redox regulation have been the availability of the genome-scale information combined with technological advances such as quantitative redox proteomics and in vivo biosensing. Several unexpected findings have started to shift paradigms of redox regulation. Here, we elaborate on a selection of recent advancements, and pinpoint emerging areas and questions of redox biology in plants. We highlight the significance of (1) proactive H2O2 generation, (2) the chloroplast as a unique redox site, (3) specificity in thioredoxin complexity, (4) how to oxidize redox switches, (5) governance principles of the redox network, (6) glutathione peroxidase-like proteins, (7) ferroptosis, (8) oxidative protein folding in the ER for phytohormonal regulation, (9) the apoplast as an unchartered redox frontier, (10) redox regulation of respiration, (11) redox transitions in seed germination and (12) the mitochondria as potential new players in reductive stress safeguarding. Our emerging understanding in plants may serve as a blueprint to scrutinize principles of reactive oxygen and Cys-based redox regulation across organisms.
Collapse
Affiliation(s)
- Andreas J Meyer
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113Bonn, Germany
| | - Anna Dreyer
- Biochemistry and Physiology of Plants, Faculty of Biology, W5-134, Bielefeld University, University Street 25, D-33501Bielefeld, Germany
| | - José M Ugalde
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113Bonn, Germany
| | - Elias Feitosa-Araujo
- Plant Energy Biology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143Münster, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, W5-134, Bielefeld University, University Street 25, D-33501Bielefeld, Germany
| | - Markus Schwarzländer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143Münster, Germany
| |
Collapse
|
167
|
Hasanuzzaman M, Bhuyan MHMB, Parvin K, Bhuiyan TF, Anee TI, Nahar K, Hossen MS, Zulfiqar F, Alam MM, Fujita M. Regulation of ROS Metabolism in Plants under Environmental Stress: A Review of Recent Experimental Evidence. Int J Mol Sci 2020; 21:ijms21228695. [PMID: 33218014 PMCID: PMC7698618 DOI: 10.3390/ijms21228695] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
- Correspondence: (M.H.); (M.F.)
| | | | - Khursheda Parvin
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan;
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Tasnim Farha Bhuiyan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.F.B.); (K.N.)
| | - Taufika Islam Anee
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.F.B.); (K.N.)
| | | | - Faisal Zulfiqar
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Md. Mahabub Alam
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan;
- Correspondence: (M.H.); (M.F.)
| |
Collapse
|
168
|
Mencia R, Céccoli G, Fabro G, Torti P, Colombatti F, Ludwig-Müller J, Alvarez ME, Welchen E. OXR2 Increases Plant Defense against a Hemibiotrophic Pathogen via the Salicylic Acid Pathway. PLANT PHYSIOLOGY 2020; 184:1112-1127. [PMID: 32727912 PMCID: PMC7536703 DOI: 10.1104/pp.19.01351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 05/03/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) OXIDATION RESISTANCE2 (AtOXR2) is a mitochondrial protein belonging to the Oxidation Resistance (OXR) protein family, recently described in plants. We analyzed the impact of AtOXR2 in Arabidopsis defense mechanisms against the hemibiotrophic bacterial pathogen Pseudomonas syringae oxr2 mutant plants are more susceptible to infection by the pathogen and, conversely, plants overexpressing AtOXR2 (oeOXR2 plants) show enhanced disease resistance. Resistance in these plants is accompanied by higher expression of WRKY transcription factors, induction of genes involved in salicylic acid (SA) synthesis, accumulation of free SA, and overall activation of the SA signaling pathway. Accordingly, defense phenotypes are dependent on SA synthesis and SA perception pathways, since they are lost in isochorismate synthase1/salicylic acid induction deficient2 and nonexpressor of pathogenesis-related genes1 (npr1) mutant backgrounds. Overexpression of AtOXR2 leads to faster and stronger oxidative burst in response to the bacterial flagellin peptide flg22 Moreover, AtOXR2 affects the nuclear localization of the transcriptional coactivator NPR1, a master regulator of SA signaling. oeOXR2 plants have increased levels of total glutathione and a more oxidized cytosolic redox cellular environment under normal growth conditions. Therefore, AtOXR2 contributes to establishing plant protection against infection by P. syringae acting on the activity of the SA pathway.
Collapse
Affiliation(s)
- Regina Mencia
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Gabriel Céccoli
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Georgina Fabro
- Centro de Investigaciones en Química Biológica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Pablo Torti
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Francisco Colombatti
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | | | - Maria Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
169
|
Moreno JE. On How to Build a Larger and Healthier Arabidopsis ROSette Using a Mitochondrial Protein (Spoiler: Reactive Oxygen Species). PLANT PHYSIOLOGY 2020; 184:566-567. [PMID: 33020324 PMCID: PMC7536706 DOI: 10.1104/pp.20.01159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Javier Edgardo Moreno
- Instituto de Agrobiotecnología del Litoral (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| |
Collapse
|
170
|
Paper-Based Analytical Devices for the Rapid and Direct Electrochemical Detection of Hydrogen Peroxide in Tomato Leaves Inoculated with Botrytis cinerea. SENSORS 2020; 20:s20195512. [PMID: 32993080 PMCID: PMC7582799 DOI: 10.3390/s20195512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/29/2023]
Abstract
Hydrogen peroxide (H2O2) is an important signaling molecule and plays key roles in multiple plant physiological processes. The rapid and direct monitoring of H2O2 could improve our understanding of its regulatory mechanisms in plants. In this study, we developed a paper-based analytical device consisting of a disposable nano-gold modified indium tin oxide working electrode to provide a platform for the rapid and direct detection of H2O2. The total analytical time was dramatically shortened to be approximate 3 min due to the avoidance of the time-consuming and complex treatment of plant samples. In addition, the amount of plant samples required was less than 3 mg in our approach. We used this system to monitor the concentrations of H2O2 in tomato leaves infected by Botrytiscinerea within 24 h. Our results showed that the concentration of H2O2 in tomato leaves was increased in the initial phase, peaked at 1.5 μmol gFW−1 at 6 h, and then decreased. The production trend of H2O2 in tomato leaves inoculated with Botrytiscinerea detected with our approach is similar to the 3,3-diaminobenzidine staining method. Taken together, our study offers a rapid and direct approach for the detection of H2O2, which will not only pave the way for the further investigation of the regulation mechanisms of H2O2 in plants, but also promote the development of precision agriculture technology.
Collapse
|
171
|
Petereit J, Duncan O, Murcha MW, Fenske R, Cincu E, Cahn J, Pružinská A, Ivanova A, Kollipara L, Wortelkamp S, Sickmann A, Lee J, Lister R, Millar AH, Huang S. Mitochondrial CLPP2 Assists Coordination and Homeostasis of Respiratory Complexes. PLANT PHYSIOLOGY 2020; 184:148-164. [PMID: 32571844 PMCID: PMC7479914 DOI: 10.1104/pp.20.00136] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/12/2020] [Indexed: 05/04/2023]
Abstract
Protein homeostasis in eukaryotic organelles and their progenitor prokaryotes is regulated by a series of proteases including the caseinolytic protease (CLPP). CLPP has essential roles in chloroplast biogenesis and maintenance, but the significance of the plant mitochondrial CLPP remains unknown and factors that aid coordination of nuclear- and mitochondrial-encoded subunits for complex assembly in mitochondria await discovery. We generated knockout lines of the single gene for the mitochondrial CLP protease subunit, CLPP2, in Arabidopsis (Arabidopsis thaliana). Mutants showed a higher abundance of transcripts from mitochondrial genes encoding oxidative phosphorylation protein complexes, whereas nuclear genes encoding other subunits of the same complexes showed no change in transcript abundance. By contrast, the protein abundance of specific nuclear-encoded subunits in oxidative phosphorylation complexes I and V increased in CLPP2 knockouts, without accumulation of mitochondrial-encoded counterparts in the same complex. Complexes with subunits mainly or entirely encoded in the nucleus were unaffected. Analysis of protein import and function of complex I revealed that while function was retained, protein homeostasis was disrupted, leading to accumulation of soluble subcomplexes of nuclear-encoded subunits. Therefore, CLPP2 contributes to the mitochondrial protein degradation network through supporting coordination and homeostasis of protein complexes encoded across mitochondrial and nuclear genomes.
Collapse
Affiliation(s)
- Jakob Petereit
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
| | - Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
| | - Monika W Murcha
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
| | - Emilia Cincu
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
| | - Jonathan Cahn
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
| | - Adriana Pružinská
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
| | - Aneta Ivanova
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
| | - Stefanie Wortelkamp
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3FX, Scotland, United Kingdom
- Medizinische Fakultät, Medizinische Proteom-Center, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Jiwon Lee
- Centre for advanced Microscopy, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Ryan Lister
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
- The Harry Perkins Institute of Medical Research, Perth, Washington 6009, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
| | - Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Washington 6009, Australia
| |
Collapse
|
172
|
Bednarek PT, Zebrowski J, Orłowska R. Exploring the Biochemical Origin of DNA Sequence Variation in Barley Plants Regenerated via in Vitro Anther Culture. Int J Mol Sci 2020; 21:E5770. [PMID: 32796744 PMCID: PMC7461140 DOI: 10.3390/ijms21165770] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue culture is an essential tool for the regeneration of uniform plant material. However, tissue culture conditions can be a source of abiotic stress for plants, leading to changes in the DNA sequence and methylation patterns. Despite the growing evidence on biochemical processes affected by abiotic stresses, how these altered biochemical processes affect DNA sequence and methylation patterns remains largely unknown. In this study, the methylation-sensitive Amplified Fragment Length Polymorphism (metAFLP) approach was used to investigate de novo methylation, demethylation, and sequence variation in barley regenerants derived by anther culture. Additionally, we used Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy to identify the spectral features of regenerants, which were then analyzed by mediation analysis. The infrared spectrum ranges (710-690 and 1010-940 cm-1) identified as significant in the mediation analysis were most likely related to β-glucans, cellulose, and S-adenosyl-L-methionine (SAM). Additionally, the identified compounds participated as predictors in moderated mediation analysis, explaining the role of demethylation of CHG sites (CHG_DMV) in in vitro tissue culture-induced sequence variation, depending on the duration of tissue culture. The data demonstrate that ATR-FTIR spectroscopy is a useful tool for studying the biochemical compounds that may affect DNA methylation patterns and sequence variation, if combined with quantitative characteristics determined using metAFLP molecular markers and mediation analysis. The role of β-glucans, cellulose, and SAM in DNA methylation, and in cell wall, mitochondria, and signaling, are discussed to highlight the putative cellular mechanisms involved in sequence variation.
Collapse
Affiliation(s)
- Piotr T. Bednarek
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland;
| | - Jacek Zebrowski
- Institute of Biology and Biotechnology, University of Rzeszow, Al. Rejtana 16c A, 35-959 Rzeszow, Poland;
| | - Renata Orłowska
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland;
| |
Collapse
|
173
|
Lemke P, Moerschbacher BM, Singh R. Transcriptome Analysis of Solanum Tuberosum Genotype RH89-039-16 in Response to Chitosan. FRONTIERS IN PLANT SCIENCE 2020; 11:1193. [PMID: 32903855 PMCID: PMC7438930 DOI: 10.3389/fpls.2020.01193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Potato (Solanum tuberosum L.) is the worldwide most important nongrain crop after wheat, rice, and maize. The autotetraploidy of the modern commercial potato makes breeding of new resistant and high-yielding cultivars challenging due to complicated and time-consuming identification and selection processes of desired crop features. On the other hand, plant protection of existing cultivars using conventional synthetic pesticides is increasingly restricted due to safety issues for both consumers and the environment. Chitosan is known to display antimicrobial activity against a broad range of plant pathogens and shows the ability to trigger resistance in plants by elicitation of defense responses. As chitosan is a renewable, biodegradable and nontoxic compound, it is considered as a promising next-generation plant-protecting agent. However, the molecular and cellular modes of action of chitosan treatment are not yet understood. In this study, transcriptional changes in chitosan-treated potato leaves were investigated via RNA sequencing. Leaves treated with a well-defined chitosan polymer at low concentration were harvested 2 and 5 h after treatment and their expression profile was compared against water-treated control plants. We observed 32 differentially expressed genes (fold change ≥ 1; p-value ≤ 0.05) 2 h after treatment and 83 differentially expressed genes 5 h after treatment. Enrichment analysis mainly revealed gene modulation associated with electron transfer chains in chloroplasts and mitochondria, accompanied by the upregulation of only a very limited number of genes directly related to defense. As chitosan positively influences plant growth, yield, and resistance, we conclude that activation of electron transfer might result in the crosstalk of different organelles via redox signals to activate immune responses in preparation for pathogen attack, concomitantly resulting in a generally improved metabolic state, fostering plant growth and development. This conclusion is supported by the rapid and transient production of reactive oxygen species in a typical oxidative burst in the potato leaves upon chitosan treatment. This study furthers our knowledge on the mode of action of chitosan as a plant-protecting agent, as a prerequisite for improving its ability to replace or reduce the use of less environmentally friendly agro-chemicals.
Collapse
Affiliation(s)
| | - Bruno M. Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | - Ratna Singh
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| |
Collapse
|
174
|
Nadarajah KK. ROS Homeostasis in Abiotic Stress Tolerance in Plants. Int J Mol Sci 2020; 21:E5208. [PMID: 32717820 PMCID: PMC7432042 DOI: 10.3390/ijms21155208] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Climate change-induced abiotic stress results in crop yield and production losses. These stresses result in changes at the physiological and molecular level that affect the development and growth of the plant. Reactive oxygen species (ROS) is formed at high levels due to abiotic stress within different organelles, leading to cellular damage. Plants have evolved mechanisms to control the production and scavenging of ROS through enzymatic and non-enzymatic antioxidative processes. However, ROS has a dual function in abiotic stresses where, at high levels, they are toxic to cells while the same molecule can function as a signal transducer that activates a local and systemic plant defense response against stress. The effects, perception, signaling, and activation of ROS and their antioxidative responses are elaborated in this review. This review aims to provide a purview of processes involved in ROS homeostasis in plants and to identify genes that are triggered in response to abiotic-induced oxidative stress. This review articulates the importance of these genes and pathways in understanding the mechanism of resistance in plants and the importance of this information in breeding and genetically developing crops for resistance against abiotic stress in plants.
Collapse
Affiliation(s)
- Kalaivani K Nadarajah
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM BANGI, Malaysia
| |
Collapse
|
175
|
Asfaw KG, Liu Q, Xu X, Manz C, Purper S, Eghbalian R, Münch SW, Wehl I, Bräse S, Eiche E, Hause B, Bogeski I, Schepers U, Riemann M, Nick P. A mitochondria-targeted coenzyme Q peptoid induces superoxide dismutase and alleviates salinity stress in plant cells. Sci Rep 2020; 10:11563. [PMID: 32665569 PMCID: PMC7360622 DOI: 10.1038/s41598-020-68491-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 06/10/2020] [Indexed: 11/08/2022] Open
Abstract
Salinity is a serious challenge to global agriculture and threatens human food security. Plant cells can respond to salt stress either by activation of adaptive responses, or by programmed cell death. The mechanisms deciding the respective response are far from understood, but seem to depend on the degree, to which mitochondria can maintain oxidative homeostasis. Using plant PeptoQ, a Trojan Peptoid, as vehicle, it is possible to transport a coenzyme Q10 (CoQ10) derivative into plant mitochondria. We show that salinity stress in tobacco BY-2 cells (Nicotiana tabacum L. cv Bright Yellow-2) can be mitigated by pretreatment with plant PeptoQ with respect to numerous aspects including proliferation, expansion, redox homeostasis, and programmed cell death. We tested the salinity response for transcripts from nine salt-stress related-genes representing different adaptive responses. While most did not show any significant response, the salt response of the transcription factor NtNAC, probably involved in mitochondrial retrograde signaling, was significantly modulated by the plant PeptoQ. Most strikingly, transcripts for the mitochondrial, Mn-dependent Superoxide Dismutase were rapidly and drastically upregulated in presence of the peptoid, and this response was disappearing in presence of salt. The same pattern, albeit at lower amplitude, was seen for the sodium exporter SOS1. The findings are discussed by a model, where plant PeptoQ modulates retrograde signalling to the nucleus leading to a strong expression of mitochondrial SOD, what renders mitochondria more resilient to perturbations of oxidative balance, such that cells escape salt induced cell death and remain viable.
Collapse
Affiliation(s)
- Kinfemichael Geressu Asfaw
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany.
| | - Qiong Liu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Xiaolu Xu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Christina Manz
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Sabine Purper
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Rose Eghbalian
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Stephan W Münch
- Institute of Organic Chemistry, Organic Chemistry I, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry, Organic Chemistry I, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Organic Chemistry I, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Elisabeth Eiche
- Institute of Applied Geochemistry (AGW), Geochemistry and Economic Geology Group, Karlsruhe Institute of Technology (KIT), Adenauerring 20b, D-76131, Karlsruhe, Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, 37073, Göttingen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Organic Chemistry I, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| |
Collapse
|
176
|
Barreto P, Couñago RM, Arruda P. Mitochondrial uncoupling protein-dependent signaling in plant bioenergetics and stress response. Mitochondrion 2020; 53:109-120. [DOI: 10.1016/j.mito.2020.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/06/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022]
|
177
|
Huang S, Li L, Petereit J, Millar AH. Protein turnover rates in plant mitochondria. Mitochondrion 2020; 53:57-65. [DOI: 10.1016/j.mito.2020.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
|
178
|
Sweetman C, Miller TK, Booth NJ, Shavrukov Y, Jenkins CL, Soole KL, Day DA. Identification of Alternative Mitochondrial Electron Transport Pathway Components in Chickpea Indicates a Differential Response to Salinity Stress between Cultivars. Int J Mol Sci 2020; 21:E3844. [PMID: 32481694 PMCID: PMC7312301 DOI: 10.3390/ijms21113844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/16/2022] Open
Abstract
All plants contain an alternative electron transport pathway (AP) in their mitochondria, consisting of the alternative oxidase (AOX) and type 2 NAD(P)H dehydrogenase (ND) families, that are thought to play a role in controlling oxidative stress responses at the cellular level. These alternative electron transport components have been extensively studied in plants like Arabidopsis and stress inducible isoforms identified, but we know very little about them in the important crop plant chickpea. Here we identify AP components in chickpea (Cicer arietinum) and explore their response to stress at the transcript level. Based on sequence similarity with the functionally characterized proteins of Arabidopsis thaliana, five putative internal (matrix)-facing NAD(P)H dehydrogenases (CaNDA1-4 and CaNDC1) and four putative external (inter-membrane space)-facing NAD(P)H dehydrogenases (CaNDB1-4) were identified in chickpea. The corresponding activities were demonstrated for the first time in purified mitochondria of chickpea leaves and roots. Oxidation of matrix NADH generated from malate or glycine in the presence of the Complex I inhibitor rotenone was high compared to other plant species, as was oxidation of exogenous NAD(P)H. In leaf mitochondria, external NADH oxidation was stimulated by exogenous calcium and external NADPH oxidation was essentially calcium dependent. However, in roots these activities were low and largely calcium independent. A salinity experiment with six chickpea cultivars was used to identify salt-responsive alternative oxidase and NAD(P)H dehydrogenase gene transcripts in leaves from a three-point time series. An analysis of the Na:K ratio and Na content separated these cultivars into high and low Na accumulators. In the high Na accumulators, there was a significant up-regulation of CaAOX1, CaNDB2, CaNDB4, CaNDA3 and CaNDC1 in leaf tissue under long term stress, suggesting the formation of a stress-modified form of the mitochondrial electron transport chain (mETC) in leaves of these cultivars. In particular, stress-induced expression of the CaNDB2 gene showed a striking positive correlation with that of CaAOX1 across all genotypes and time points. The coordinated salinity-induced up-regulation of CaAOX1 and CaNDB2 suggests that the mitochondrial alternative pathway of respiration is an important facet of the stress response in chickpea, in high Na accumulators in particular, despite high capacities for both of these activities in leaf mitochondria of non-stressed chickpeas.
Collapse
Affiliation(s)
- Crystal Sweetman
- College of Science & Engineering, Flinders University, GPO Box 5100, Adelaide SA 5001, Australia; (T.K.M.); (N.J.B.); (Y.S.); (C.L.D.J.); (K.L.S.); (D.A.D.)
| | | | | | | | | | | | | |
Collapse
|
179
|
Wang Y, Selinski J, Mao C, Zhu Y, Berkowitz O, Whelan J. Linking mitochondrial and chloroplast retrograde signalling in plants. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190410. [PMID: 32362265 PMCID: PMC7209950 DOI: 10.1098/rstb.2019.0410] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retrograde signalling refers to the regulation of nuclear gene expression in response to functional changes in organelles. In plants, the two energy-converting organelles, mitochondria and chloroplasts, are tightly coordinated to balance their activities. Although our understanding of components involved in retrograde signalling has greatly increased in the last decade, studies on the regulation of the two organelle signalling pathways have been largely independent. Thus, the mechanism of how mitochondrial and chloroplastic retrograde signals are integrated is largely unknown. Here, we summarize recent findings on the function of mitochondrial signalling components and their links to chloroplast retrograde responses. From this, a picture emerges showing that the major regulators are integrators of both organellar retrograde signalling pathways. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Yan Wang
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Jennifer Selinski
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Chunli Mao
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.,Department of Animal Science and Technology, Grassland Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yanqiao Zhu
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.,Department of Animal Science and Technology, Grassland Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
180
|
Zhao Y, Yu H, Zhou JM, Smith SM, Li J. Malate Circulation: Linking Chloroplast Metabolism to Mitochondrial ROS. TRENDS IN PLANT SCIENCE 2020; 25:446-454. [PMID: 32304657 DOI: 10.1016/j.tplants.2020.01.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/29/2019] [Accepted: 01/27/2020] [Indexed: 05/02/2023]
Abstract
In photosynthetic cells, chloroplasts and mitochondria are the sites of the core redox reactions underpinning energy metabolism. Such reactions generate reactive oxygen species (ROS) when oxygen is partially reduced. ROS signaling leads to responses by cells which enable them to adjust to changes in redox status. Recent studies in Arabidopsis thaliana reveal that chloroplast NADH can be used to generate malate which is exported to the mitochondrion where its oxidation regenerates NADH. Oxidation of this NADH produces mitochondrial ROS (mROS) which can activate signaling systems to modulate energy metabolism, and in certain cases can lead to programmed cell death (PCD). We propose the term 'malate circulation' to describe such redistribution of reducing equivalents to mediate energy homeostasis in the cell.
Collapse
Affiliation(s)
- Yannan Zhao
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Steven M Smith
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
181
|
Horn PJ, Smith MD, Clark TR, Froehlich JE, Benning C. PEROXIREDOXIN Q stimulates the activity of the chloroplast 16:1 Δ3trans FATTY ACID DESATURASE4. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:718-729. [PMID: 31856363 DOI: 10.1111/tpj.14657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 05/03/2023]
Abstract
Thylakoid membrane lipids, comprised of glycolipids and the phospholipid phosphatidylglycerol (PG), are essential for normal plant growth and development. Unlike other lipid classes, chloroplast PG in nearly all plants contains a substantial fraction of the unusual trans fatty acid 16:1Δ3trans or 16:1t. We determined that, in Arabidopsis thaliana, 16:1t biosynthesis requires both FATTY ACID DESATURASE4 (FAD4) and a thylakoid-associated redox protein, PEROXIREDOXIN Q (PRXQ), to produce wild-type levels of 16:1t. The FAD4-PRXQ biochemical relationship appears to be very specific in planta, as other fatty acids (FA) desaturases do not require peroxiredoxins for their activity, nor does FAD4 require other chloroplast peroxiredoxins under standard growth conditions. Although most of chloroplast PG assembly occurs at the inner envelope membrane, FAD4 was primarily associated with the thylakoid membranes facing the stroma. Furthermore, co-production of PRXQ with FAD4 was required to produce Δ3-desaturated FAs in yeast. Alteration of the redox state of FAD4 or PRXQ through site-directed mutagenesis of conserved cysteine residues impaired Δ3 FA production. However, these mutations did not appear to directly alter disulfide status of FAD4. These results collectively demonstrate that the production of 16:1t is linked to the redox status of the chloroplast through PRXQ associated with the thylakoids.
Collapse
Affiliation(s)
- Patrick J Horn
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Montgomery D Smith
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Tessa R Clark
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - John E Froehlich
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Christoph Benning
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
182
|
Zhang T, Ma M, Chen T, Zhang L, Fan L, Zhang W, Wei B, Li S, Xuan W, Noctor G, Han Y. Glutathione-dependent denitrosation of GSNOR1 promotes oxidative signalling downstream of H 2 O 2. PLANT, CELL & ENVIRONMENT 2020; 43:1175-1191. [PMID: 31990075 DOI: 10.1111/pce.13727] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Photorespiratory hydrogen peroxide (H2 O2 ) plays key roles in pathogenesis responses by triggering the salicylic acid (SA) pathway in Arabidopsis. However, factors linking intracellular H2 O2 to activation of the SA pathway remain elusive. In this work, the catalase-deficient Arabidopsis mutant, cat2, was exploited to elucidate the impact of S-nitrosoglutathione reductase 1 (GSNOR1) on H2 O2 -dependent signalling pathways. Introducing the gsnor1-3 mutation into the cat2 background increased S-nitrosothiol levels and abolished cat2-triggered cell death, SA accumulation, and associated gene expression but had little additional effect on the major components of the ascorbate-glutathione system or glycolate oxidase activities. Differential transcriptome profiles between gsnor1-3 and cat2 gsnor1-3 together with damped ROS-triggered gene expression in cat2 gsnor1-3 further indicated that GSNOR1 acts to mediate the SA pathway downstream of H2 O2 . Up-regulation of GSNOR activity was compromised in cat2 cad2 and cat2 pad2 mutants in which glutathione accumulation was genetically prevented. Experiments with purified recombinant GSNOR revealed that the enzyme is posttranslationally regulated by direct denitrosation in a glutathione-dependent manner. Together, our findings identify GSNOR1-controlled nitrosation as a key factor in activation of the SA pathway by H2 O2 and reveal that glutathione is required to maintain this biological function.
Collapse
Affiliation(s)
- Tianru Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Mingyue Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Tao Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Linlin Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Lingling Fan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Wei Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Bo Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Graham Noctor
- Institute of Plant Sciences Paris Saclay IPS2, Université Paris-Sud, CNRS, INRA, Université Evry, Paris Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Orsay, France
- Institut Universitaire de France, Paris, France
| | - Yi Han
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| |
Collapse
|
183
|
Abstract
Rising CO2 concentrations and their effects on plant productivity present challenging issues. Effects on the photosynthesis/photorespiration balance and changes in primary metabolism are known, caused by the competitive interaction of CO2 and O2 at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase. However, impacts on stress resistance are less clear. Reactive oxygen species are key players in biotic and abiotic stress responses, but there is no consensus on whether elevated CO2 constitutes a stress. Although high CO2 increases yield in C3 plants, it can also increase cellular oxidation and activate phytohormone defense pathways. Reduction-oxidation processes play key roles in acclimation to high CO2, with specific enzymes acting in compartment-specific signaling. Traditionally, acclimation to high CO2 has been considered in terms of altered carbon gain, but emerging evidence suggests that CO2 is a signal as well as a substrate. Some CO2 effects on defense are likely mediated independently of primary metabolism. Nonetheless, primary photosynthetic metabolism is highly integrated with defense and stress signaling pathways, meaning that plants will be able to acclimate to the changing environment over the coming decades.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom;
| | - Graham Noctor
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France;
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Institut Universitaire de France (IUF)
| |
Collapse
|
184
|
Beneficial Effects of Biochar and Chitosan on Antioxidative Capacity, Osmolytes Accumulation, and Anatomical Characters of Water-Stressed Barley Plants. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10050630] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The impact of biochar and chitosan on barley plants under drought stress conditions was investigated during two field experiments. Our results confirmed that drought stress negatively affected morphological and physiological growth traits of barley plants such as plant height, number of leaves, chlorophyll concentrations, and relative water content. However, electrolyte leakage (EL%), lipid peroxidation (MDA), soluble sugars, sucrose and starch contents significantly increased as a response to drought stress. Additionally, 1000 grain weight, grains yield ha−1 and biological yield significantly decreased in stressed barley plants, also anatomical traits such as upper epidermis, lower epidermis, lamina, and mesophyll tissue thickness as well as vascular bundle diameter of flag leaves significantly decreased compared with control. The use of biochar and chitosan led to significant increases in plant height, number of leaves, and chlorophyll concentrations as well as relative water content; nevertheless these treatments led to significant decreases in electrolyte leakage (EL%) and lipid peroxidation (MDA) in the stressed plants. Moreover, anatomical and yield characters of stressed barley plants were improved with application of biochar and chitosan. The results proved the significance of biochar and chitosan in alleviating the damaging impacts of drought on barley plants.
Collapse
|
185
|
Vanlerberghe GC, Dahal K, Alber NA, Chadee A. Photosynthesis, respiration and growth: A carbon and energy balancing act for alternative oxidase. Mitochondrion 2020; 52:197-211. [PMID: 32278748 DOI: 10.1016/j.mito.2020.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/28/2020] [Accepted: 04/06/2020] [Indexed: 12/26/2022]
Abstract
This review summarizes knowledge of alternative oxidase, a mitochondrial electron transport chain component that lowers the ATP yield of plant respiration. Analysis of mutant and transgenic plants has established that alternative oxidase activity supports leaf photosynthesis. The interaction of alternative oxidase respiration with chloroplast metabolism is important under conditions that challenge energy and/or carbon balance in the photosynthetic cell. Under such conditions, alternative oxidase provides an extra-chloroplastic means to optimize the status of chloroplast energy pools (ATP, NADPH) and to manage cellular carbohydrate pools in response to changing rates of carbon fixation and carbon demand for growth and maintenance. Transcriptional and post-translational mechanisms ensure that alternative oxidase can respond effectively when carbon and energy balance are being challenged. This function appears particularly significant under abiotic stress conditions such as water deficit, high salinity, or temperature extremes. Under such conditions, alternative oxidase respiration positively affects growth and stress tolerance, despite it lowering the energy yield and carbon use efficiency of respiration. In part, this beneficial effect relates to the ability of alternative oxidase respiration to prevent excessive reactive oxygen species generation in both mitochondria and chloroplasts. Recent evidence suggests that alternative oxidase respiration is an interesting target for crop improvement.
Collapse
Affiliation(s)
- Greg C Vanlerberghe
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada.
| | - Keshav Dahal
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, P.O. Box 20280, Fredericton, New Brunswick E3B4Z7, Canada
| | - Nicole A Alber
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada
| | - Avesh Chadee
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada
| |
Collapse
|
186
|
MTA, an RNA m 6A Methyltransferase, Enhances Drought Tolerance by Regulating the Development of Trichomes and Roots in Poplar. Int J Mol Sci 2020; 21:ijms21072462. [PMID: 32252292 PMCID: PMC7177244 DOI: 10.3390/ijms21072462] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification present in the mRNAs of all higher eukaryotes, where it is present within both coding and noncoding regions. In mammals, methylation requires the catalysis of a multicomponent m6A methyltransferase complex. Proposed biological functions for m6A modification include pre-mRNA splicing, RNA stability, cell fate regulation, and embryonic development. However, few studies have been conducted on m6A modification in trees. In particular, the regulation mechanism of RNA m6A in Populus development remains to be further elucidated. Here, we show that PtrMTA (Populus trichocarpa methyltransferase) was colocalized with PtrFIP37 in the nucleus. Importantly, the PtrMTA-overexpressing plants significantly increased the density of trichomes and exhibited a more developed root system than that of wild-type controls. Moreover, we found that PtrMTA-overexpressing plants had better tolerance to drought stress. We also found PtrMTA was a component of the m6A methyltransferase complex, which participated in the formation of m6A methylation in poplar. Taken together, these results demonstrate that PtrMTA is involved in drought resistance by affecting the development of trichomes and roots, which will provide new clues for the study of RNA m6A modification and expand our understanding of the epigenetic molecular mechanism in woody plants.
Collapse
|
187
|
Møller IM, Igamberdiev AU, Bykova NV, Finkemeier I, Rasmusson AG, Schwarzländer M. Matrix Redox Physiology Governs the Regulation of Plant Mitochondrial Metabolism through Posttranslational Protein Modifications. THE PLANT CELL 2020; 32:573-594. [PMID: 31911454 PMCID: PMC7054041 DOI: 10.1105/tpc.19.00535] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/28/2019] [Accepted: 01/06/2020] [Indexed: 05/18/2023]
Abstract
Mitochondria function as hubs of plant metabolism. Oxidative phosphorylation produces ATP, but it is also a central high-capacity electron sink required by many metabolic pathways that must be flexibly coordinated and integrated. Here, we review the crucial roles of redox-associated posttranslational protein modifications (PTMs) in mitochondrial metabolic regulation. We discuss several major concepts. First, the major redox couples in the mitochondrial matrix (NAD, NADP, thioredoxin, glutathione, and ascorbate) are in kinetic steady state rather than thermodynamic equilibrium. Second, targeted proteomics have produced long lists of proteins potentially regulated by Cys oxidation/thioredoxin, Met-SO formation, phosphorylation, or Lys acetylation, but we currently only understand the functional importance of a few of these PTMs. Some site modifications may represent molecular noise caused by spurious reactions. Third, different PTMs on the same protein or on different proteins in the same metabolic pathway can interact to fine-tune metabolic regulation. Fourth, PTMs take part in the repair of stress-induced damage (e.g., by reducing Met and Cys oxidation products) as well as adjusting metabolic functions in response to environmental variation, such as changes in light irradiance or oxygen availability. Finally, PTMs form a multidimensional regulatory system that provides the speed and flexibility needed for mitochondrial coordination far beyond that provided by changes in nuclear gene expression alone.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, DK-4200 Slagelse, Denmark
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - Natalia V Bykova
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Manitoba R6M 1Y5, Canada
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, DE-48149 Münster, Germany
| | | | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, DE-48143 Münster, Germany
| |
Collapse
|
188
|
Poór P. Effects of Salicylic Acid on the Metabolism of Mitochondrial Reactive Oxygen Species in Plants. Biomolecules 2020; 10:E341. [PMID: 32098073 PMCID: PMC7072379 DOI: 10.3390/biom10020341] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 01/16/2023] Open
Abstract
Different abiotic and biotic stresses lead to the production and accumulation of reactive oxygen species (ROS) in various cell organelles such as in mitochondria, resulting in oxidative stress, inducing defense responses or programmed cell death (PCD) in plants. In response to oxidative stress, cells activate various cytoprotective responses, enhancing the antioxidant system, increasing the activity of alternative oxidase and degrading the oxidized proteins. Oxidative stress responses are orchestrated by several phytohormones such as salicylic acid (SA). The biomolecule SA is a key regulator in mitochondria-mediated defense signaling and PCD, but the mode of its action is not known in full detail. In this review, the current knowledge on the multifaceted role of SA in mitochondrial ROS metabolism is summarized to gain a better understanding of SA-regulated processes at the subcellular level in plant defense responses.
Collapse
Affiliation(s)
- Péter Poór
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
189
|
Role of Stomatal Conductance in Modifying the Dose Response of Stress-Volatile Emissions in Methyl Jasmonate Treated Leaves of Cucumber ( Cucumis sativa). Int J Mol Sci 2020; 21:ijms21031018. [PMID: 32033119 PMCID: PMC7038070 DOI: 10.3390/ijms21031018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/22/2022] Open
Abstract
Treatment by volatile plant hormone methyl jasmonate (MeJA) leads to release of methanol and volatiles of lipoxygenase pathway (LOX volatiles) in a dose-dependent manner, but how the dose dependence is affected by stomatal openness is poorly known. We studied the rapid (0-60 min after treatment) response of stomatal conductance (Gs), net assimilation rate (A), and LOX and methanol emissions to varying MeJA concentrations (0.2-50 mM) in cucumber (Cucumis sativus) leaves with partly open stomata and in leaves with reduced Gs due to drought and darkness. Exposure to MeJA led to initial opening of stomata due to an osmotic shock, followed by MeJA concentration-dependent reduction in Gs, whereas A initially decreased, followed by recovery for lower MeJA concentrations and time-dependent decline for higher MeJA concentrations. Methanol and LOX emissions were elicited in a MeJA concentration-dependent manner, whereas the peak methanol emissions (15-20 min after MeJA application) preceded LOX emissions (20-60 min after application). Furthermore, peak methanol emissions occurred earlier in treatments with higher MeJA concentration, while the opposite was observed for LOX emissions. This difference reflected the circumstance where the rise of methanol release partly coincided with MeJA-dependent stomatal opening, while stronger stomatal closure at higher MeJA concentrations progressively delayed peak LOX emissions. We further observed that drought-dependent reduction in Gs ameliorated MeJA effects on foliage physiological characteristics, underscoring that MeJA primarily penetrates through the stomata. However, despite reduced Gs, dark pretreatment amplified stress-volatile release upon MeJA treatment, suggesting that increased leaf oxidative status due to sudden illumination can potentiate the MeJA response. Taken together, these results collectively demonstrate that the MeJA dose response of volatile emission is controlled by stomata that alter MeJA uptake and volatile release kinetics and by leaf oxidative status in a complex manner.
Collapse
|
190
|
Meng L, Zhang Q, Yang J, Xie G, Liu JH. PtrCDPK10 of Poncirus trifoliata functions in dehydration and drought tolerance by reducing ROS accumulation via phosphorylating PtrAPX. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110320. [PMID: 31928664 DOI: 10.1016/j.plantsci.2019.110320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are important calcium signaling components that have been shown to play crucial roles in modulating plant abiotic stress responses. However, the physiological and regulatory roles of most CDPKs are still poorly understood. Here, we report the functional characterization of PtrCDPK10 from trifoliate orange (Poncirus trifoliata (L.) Raf.) in dehydration and drought stress tolerance. PtrCDPK10, categorized in the Type III subgroup of the CDPK family, was localized to the nucleus and plasma membrane. Transcript levels of PtrCDPK10 were up-regulated by dehydration, salt and ABA treatments. Transgenic trifoliate orange plants overexpressing PtrCDPK10 showed enhanced dehydration tolerance compared with the wild type (WT), whereas VIGS (virus-induced gene silencing)-mediated knockdown of PtrCDPK10 resulted in elevated susceptibility to dehydration and drought stresses. Yeast two-hybrid screening identified several proteins that interacted with PtrCDPK10, including an ascorbate peroxidase (PtrAPX). PtrCDPK10 was shown to phosphorylate PtrAPX based on an in vitro kinase assay. PtrCDPK10-overexpressing transgenic lines exhibited higher PtrAPX mRNA abundance and APX activity and accumulated dramatically less ROS in comparison with the WT, while PtrCDPK10-silenced VIGS lines showed decreased PtrAPX expression and increased ROS level. Taken together, these results demonstrate that PtrCDPK10 promotes dehydration and drought tolerance by, at least in part, phosphorylating APX to modulate ROS homeostasis.
Collapse
Affiliation(s)
- Lin Meng
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinghua Zhang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Yang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan,430070, China
| | - Guosheng Xie
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan,430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
191
|
Dhanya Thomas TT, Dinakar C, Puthur JT. Effect of UV-B priming on the abiotic stress tolerance of stress-sensitive rice seedlings: Priming imprints and cross-tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:21-30. [PMID: 31837557 DOI: 10.1016/j.plaphy.2019.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 05/22/2023]
Abstract
Ultraviolet (UV)-B priming can boost the abiotic stress tolerance of plants by activating stress-responsive pathways. The main objective of the present study was to investigate the persistence of priming imprints and cross-tolerance inducing effects of UV-B priming in abiotic stress-sensitive rice (Oryza sativa L. 'Aiswarya') when subjected to various abiotic stressors (NaCl, PEG, and UV-B). The UV-B priming of rice seeds and seedlings effectively enhanced photosynthetic efficiency, antioxidant machinery activity, and antioxidative enzyme production, especially when seedlings were exposed to NaCl, followed by UV-B and PEG. The ability of UV-B priming to induce cross-tolerance against NaCl stress was substantiated by the greater antioxidant activity of the primed and NaCl-stressed seedlings. The greater performance and stress tolerance of the seedlings from UV-B-primed seeds were attributed to the carryover of priming imprints from seeds into the seedlings. Indeed, UV-B priming activated the antioxidant systems of the seedlings, even under non-stress conditions, and resulted in greater responses upon subsequent stress exposure, which suggested that preparedness for encountering imminent stress was attained by UV-B priming in a stress-sensitive rice.
Collapse
Affiliation(s)
- T T Dhanya Thomas
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Kerala, 673635, India
| | - Challabathula Dinakar
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Kerala, 673635, India.
| |
Collapse
|
192
|
Zhang QF, Li J, Bi FC, Liu Z, Chang ZY, Wang LY, Huang LQ, Yao N. Ceramide-Induced Cell Death Depends on Calcium and Caspase-Like Activity in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:145. [PMID: 32161611 PMCID: PMC7054224 DOI: 10.3389/fpls.2020.00145] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/30/2020] [Indexed: 05/12/2023]
Abstract
Ceramide sphingolipids are major components of membranes. C2 and C6 ceramides induce programmed cell death (PCD) in animals and plants, and we previously showed that C2 and C6 ceramides induce PCD in rice (Oryza sativa) protoplasts. However, the mechanistic link between sphingolipids and PCD in rice remains unclear. Here, we observed that calcium levels increased rapidly after ceramide treatment. Moreover, the calcium channel inhibitor LaCl3 and the intracellular calcium chelator acetoxymethyl-1, 2-bis (2-aminophenoxy) ethic acid (BAPTA-AM) inhibited this calcium increase and prevented ceramide-induced PCD. Moreover, caspase-3-like protease activity increased significantly in C6 ceramide-treated protoplasts, and a caspase-specific inhibitor prevented C6 ceramide-induced cell death. We also detected the other typical PCD events including ATP loss. DIDS (4, 49-diisothiocyanatostilbene- 2, 29-disulfonic acid), an inhibitor of voltage-dependent anion channels (VDACs), decreased C6 ceramide-induced cell death. Together, this evidence suggests that mitochondria played an important role in C6 ceramide-induced PCD.
Collapse
Affiliation(s)
| | - Jian Li
- *Correspondence: Jian Li, ; Nan Yao,
| | | | | | | | | | | | - Nan Yao
- *Correspondence: Jian Li, ; Nan Yao,
| |
Collapse
|
193
|
Fuchs P, Rugen N, Carrie C, Elsässer M, Finkemeier I, Giese J, Hildebrandt TM, Kühn K, Maurino VG, Ruberti C, Schallenberg-Rüdinger M, Steinbeck J, Braun HP, Eubel H, Meyer EH, Müller-Schüssele SJ, Schwarzländer M. Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:420-441. [PMID: 31520498 DOI: 10.1111/tpj.14534] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 05/14/2023]
Abstract
Mitochondria host vital cellular functions, including oxidative phosphorylation and co-factor biosynthesis, which are reflected in their proteome. At the cellular level plant mitochondria are organized into hundreds of discrete functional entities, which undergo dynamic fission and fusion. It is the individual organelle that operates in the living cell, yet biochemical and physiological assessments have exclusively focused on the characteristics of large populations of mitochondria. Here, we explore the protein composition of an individual average plant mitochondrion to deduce principles of functional and structural organisation. We perform proteomics on purified mitochondria from cultured heterotrophic Arabidopsis cells with intensity-based absolute quantification and scale the dataset to the single organelle based on criteria that are justified by experimental evidence and theoretical considerations. We estimate that a total of 1.4 million protein molecules make up a single Arabidopsis mitochondrion on average. Copy numbers of the individual proteins span five orders of magnitude, ranging from >40 000 for Voltage-Dependent Anion Channel 1 to sub-stoichiometric copy numbers, i.e. less than a single copy per single mitochondrion, for several pentatricopeptide repeat proteins that modify mitochondrial transcripts. For our analysis, we consider the physical and chemical constraints of the single organelle and discuss prominent features of mitochondrial architecture, protein biogenesis, oxidative phosphorylation, metabolism, antioxidant defence, genome maintenance, gene expression, and dynamics. While assessing the limitations of our considerations, we exemplify how our understanding of biochemical function and structural organization of plant mitochondria can be connected in order to obtain global and specific insights into how organelles work.
Collapse
Affiliation(s)
- Philippe Fuchs
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Nils Rugen
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Chris Carrie
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Grosshadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Marlene Elsässer
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
- Institut für Zelluläre und Molekulare Botanik (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Iris Finkemeier
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Jonas Giese
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Tatjana M Hildebrandt
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Kristina Kühn
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany
| | - Veronica G Maurino
- Institute of Developmental and Molecular Biology of Plants, and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Cristina Ruberti
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Mareike Schallenberg-Rüdinger
- Institut für Zelluläre und Molekulare Botanik (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Janina Steinbeck
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Holger Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Etienne H Meyer
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany
| | - Stefanie J Müller-Schüssele
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Markus Schwarzländer
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| |
Collapse
|
194
|
Nguyen PN, Tossounian MA, Kovacs DS, Thu TT, Stijlemans B, Vertommen D, Pauwels J, Gevaert K, Angenon G, Messens J, Tompa P. Dehydrin ERD14 activates glutathione transferase Phi9 in Arabidopsis thaliana under osmotic stress. Biochim Biophys Acta Gen Subj 2019; 1864:129506. [PMID: 31870857 DOI: 10.1016/j.bbagen.2019.129506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Fully intrinsically disordered plant dehydrin ERD14 can protect enzymes via its chaperone-like activity, but it was not formally linked with enzymes of the plant redox system yet. This is of particular interest, as the level of H2O2 in Arabidopsis plants increases during osmotic stress, which can be counteracted by overexpression of ERD14. METHODS The proteomic mass-spectrometry analysis of stressed plants was performed to find the candidates affected by ERD14. With cross-linking, microscale thermophoresis, and active-site titration kinetics, the interaction and influence of ERD14 on the function of two target proteins: glutathione transferase Phi9 and catalase was examined. RESULTS Under osmotic stress, redox enzymes, specifically the glutathione transferase Phi enzymes, are upregulated. Using microscale thermophoresis, we showed that ERD14 directly interacts with GSTF9 with a KD of ~25 μM. ERD14 activates the inactive GSTF9 molecules, protects GSTF9 from oxidation, and can also increases the activity of the enzyme. Aside from GSTF9, we found that ERD14 can also interact with catalase, an important cellular H2O2 scavenging enzyme, with a KD of ~0.13 μM, and protects it from dehydration-induced loss of activity. CONCLUSIONS We propose that fully intrinsically disordered dehydrin ERD14 might protect and even activate redox enzymes, helping plants to survive oxidative stress under dehydration conditions. GENERAL SIGNIFICANCE ERD14 has a direct effect on the activity of redox enzymes.
Collapse
Affiliation(s)
- Phuong N Nguyen
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium; Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; Department of Biology, College of Natural Sciences, Cantho University, Viet Nam; Laboratory of Plant Genetics (PLAN), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Maria-Armineh Tossounian
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium; Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium
| | - Denes S Kovacs
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium; Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Tran T Thu
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium; Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Benoit Stijlemans
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, University of Ghent, B9000 Ghent, Belgium; Department of Biomolecular Medicine, University of Ghent, B9000 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, University of Ghent, B9000 Ghent, Belgium; Department of Biomolecular Medicine, University of Ghent, B9000 Ghent, Belgium
| | - Geert Angenon
- Laboratory of Plant Genetics (PLAN), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium; Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium.
| | - Peter Tompa
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium; Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
195
|
Biofilms Positively Contribute to Bacillus amyloliquefaciens 54-induced Drought Tolerance in Tomato Plants. Int J Mol Sci 2019; 20:ijms20246271. [PMID: 31842360 PMCID: PMC6940783 DOI: 10.3390/ijms20246271] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/31/2022] Open
Abstract
Drought stress is a major obstacle to agriculture. Although many studies have reported on plant drought tolerance achieved via genetic modification, application of plant growth-promoting rhizobacteria (PGPR) to achieve tolerance has rarely been studied. In this study, the ability of three isolates, including Bacillus amyloliquefaciens 54, from 30 potential PGPR to induce drought tolerance in tomato plants was examined via greenhouse screening. The results indicated that B. amyloliquefaciens 54 significantly enhanced drought tolerance by increasing survival rate, relative water content and root vigor. Coordinated changes were also observed in cellular defense responses, including decreased concentration of malondialdehyde and elevated concentration of antioxidant enzyme activities. Moreover, expression levels of stress-responsive genes, such as lea, tdi65, and ltpg2, increased in B. amyloliquefaciens 54-treated plants. In addition, B. amyloliquefaciens 54 induced stomatal closure through an abscisic acid-regulated pathway. Furthermore, we constructed biofilm formation mutants and determined the role of biofilm formation in B. amyloliquefaciens 54-induced drought tolerance. The results showed that biofilm-forming ability was positively correlated with plant root colonization. Moreover, plants inoculated with hyper-robust biofilm (ΔabrB and ΔywcC) mutants were better able to resist drought stress, while defective biofilm (ΔepsA-O and ΔtasA) mutants were more vulnerable to drought stress. Taken altogether, these results suggest that biofilm formation is crucial to B. amyloliquefaciens 54 root colonization and drought tolerance in tomato plants.
Collapse
|
196
|
Asefpour Vakilian K. Gold nanoparticles-based biosensor can detect drought stress in tomato by ultrasensitive and specific determination of miRNAs. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:195-204. [PMID: 31706222 DOI: 10.1016/j.plaphy.2019.10.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 05/16/2023]
Abstract
Drought stress can significantly affect the yield and quality of tomato production. However, the development of a sensitive and specific method for the determination of drought stress is somehow challenging since plant common morpho-physiological and biochemical characteristic are not generally specific to biotic and abiotic stresses. As a solution, the concentration of miRNAs in plant tissues can be a selective and specific indicator of plant stress. In this study, an optical biosensor based on gold nanoparticles is introduced to determine miRNA-1886 in tomato plant roots. Results showed that irrigation levels from 100% to 60% of field capacity increased the concentration of miRNA-1886 in a range from ca. 100 to 6800 fM (fM) causing a linear change in the biosensor response (R2 = 0.97). Results also revealed that in contrast with plant conventional morpho-physiological and biochemical characteristic, miRNA-1886 concentration was not significantly affected (P < 0.01) by other stresses, i.e., salinity and temperature during the growth period. The biosensor introduced in this study is a reliable method to study stress-related functions of miRNAs in plants and their application in specific plant stress determination.
Collapse
Affiliation(s)
- Keyvan Asefpour Vakilian
- Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran; Private Laboratory of Biosensor Applications, Hamadan, Iran.
| |
Collapse
|
197
|
Liang Y, Kang K, Gan L, Ning S, Xiong J, Song S, Xi L, Lai S, Yin Y, Gu J, Xiang J, Li S, Wang B, Li M. Drought-responsive genes, late embryogenesis abundant group3 (LEA3) and vicinal oxygen chelate, function in lipid accumulation in Brassica napus and Arabidopsis mainly via enhancing photosynthetic efficiency and reducing ROS. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2123-2142. [PMID: 30972883 PMCID: PMC6790364 DOI: 10.1111/pbi.13127] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/18/2019] [Accepted: 04/04/2019] [Indexed: 05/10/2023]
Abstract
Drought is an abiotic stress that affects plant growth, and lipids are the main economic factor in the agricultural production of oil crops. However, the molecular mechanisms of drought response function in lipid metabolism remain little known. In this study, overexpression (OE) of different copies of the drought response genes LEA3 and VOC enhanced both drought tolerance and oil content in Brassica napus and Arabidopsis. Meanwhile, seed size, membrane stability and seed weight were also improved in OE lines. In contrast, oil content and drought tolerance were decreased in the AtLEA3 mutant (atlea3) and AtVOC-RNAi of Arabidopsis and in both BnLEA-RNAi and BnVOC-RNAi B. napus RNAi lines. Hybrids between two lines with increased or reduced expression (LEA3-OE with VOC-OE, atlea3 with AtVOC-RNAi) showed corresponding stronger trends in drought tolerance and lipid metabolism. Comparative transcriptomic analysis revealed the mechanisms of drought response gene function in lipid accumulation and drought tolerance. Gene networks involved in fatty acid (FA) synthesis and FA degradation were up- and down-regulated in OE lines, respectively. Key genes in the photosynthetic system and reactive oxygen species (ROS) metabolism were up-regulated in OE lines and down-regulated in atlea3 and AtVOC-RNAi lines, including LACS9, LIPASE1, PSAN, LOX2 and SOD1. Further analysis of photosynthetic and ROS enzymatic activities confirmed that the drought response genes LEA3 and VOC altered lipid accumulation mainly via enhancing photosynthetic efficiency and reducing ROS. The present study provides a novel way to improve lipid accumulation in plants, especially in oil production crops.
Collapse
Affiliation(s)
- Yu Liang
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Kai Kang
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Lu Gan
- Center for Plant Science Innovation and Department of BiochemistryUniversity of Nebraska LincolnLincolnNEUSA
| | - Shaobo Ning
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jinye Xiong
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Shuyao Song
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Lingzhi Xi
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Senying Lai
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Yongtai Yin
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jianwei Gu
- Hubei Research Institute of New Socialist Countryside DevelopmentHubei Engineering UniversityXiaoganChina
| | - Jun Xiang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive UtilizationHubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie MountainsHuanggang Normal UniversityHuanggangChina
| | - Shisheng Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive UtilizationHubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie MountainsHuanggang Normal UniversityHuanggangChina
| | - Baoshan Wang
- College of Life ScienceShandong Normal UniversityJinanChina
| | - Maoteng Li
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive UtilizationHubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie MountainsHuanggang Normal UniversityHuanggangChina
| |
Collapse
|
198
|
Butsanets PA, Baik AS, Shugaev AG, Kuznetsov VV. Melatonin Inhibits Peroxide Production in Plant Mitochondria. DOKL BIOCHEM BIOPHYS 2019; 489:367-369. [PMID: 32130601 DOI: 10.1134/s1607672919060036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Indexed: 11/22/2022]
Abstract
The effect of melatonin on respiration and production (release) of hydrogen peroxide during succinate oxidation in mitochondria isolated from lupine cotyledons and epicotyls of pea seedlings was studied. It was shown for the first time that melatonin (10-7-10-3 M) had a significant inhibitory effect on the production of peroxide by plant mitochondria, which was characterized by concentration dependence and species specificity. At the same time, melatonin (at a concentration of up to 100 μM) had virtually no effect on mitochondrial respiration rate and respiratory control coefficient. The results confirm the antioxidant function of melatonin and indicate that it is involved in the regulation of ROS levels and maintenance of redox balance in plant mitochondria.
Collapse
Affiliation(s)
- P A Butsanets
- Timiryazev Institute of Plant Physiology, Russian Academy of Science, 127276, Moscow, Russia
| | - A S Baik
- Timiryazev Institute of Plant Physiology, Russian Academy of Science, 127276, Moscow, Russia
| | - A G Shugaev
- Timiryazev Institute of Plant Physiology, Russian Academy of Science, 127276, Moscow, Russia.
| | - Vl V Kuznetsov
- Timiryazev Institute of Plant Physiology, Russian Academy of Science, 127276, Moscow, Russia
| |
Collapse
|
199
|
He F, Li H, Wang J, Su Y, Wang H, Feng C, Yang Y, Niu M, Liu C, Yin W, Xia X. PeSTZ1, a C2H2-type zinc finger transcription factor from Populus euphratica, enhances freezing tolerance through modulation of ROS scavenging by directly regulating PeAPX2. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2169-2183. [PMID: 30977939 PMCID: PMC6790368 DOI: 10.1111/pbi.13130] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/07/2019] [Accepted: 04/09/2019] [Indexed: 05/04/2023]
Abstract
In the present study, PeSTZ1, a cysteine-2/histidine-2-type zinc finger transcription factor, was isolated from the desert poplar, Populus euphratica, which serves as a model stress adaptation system for trees. PeSTZ1 was preferentially expressed in the young stems and was significantly up-regulated during chilling and freezing treatments. PeSTZ1 was localized to the nucleus and bound specifically to the PeAPX2 promoter. To examine the potential functions of PeSTZ1, we overexpressed it in poplar 84K hybrids (Populus alba × Populus glandulosa), which are known to be stress-sensitive. Upon exposure to freezing stress, transgenic poplars maintained higher photosynthetic activity and dissipated more excess light energy (in the form of heat) than wild-type poplars. Thus, PeSTZ1 functions as a transcription activator to enhance freezing tolerance without sacrificing growth. Under freezing stress, PeSTZ1 acts upstream of ASCORBATE PEROXIDASE2 (PeAPX2) and directly regulates its expression by binding to its promoter. Activated PeAPX2 promotes cytosolic APX that scavenges reactive oxygen species (ROS) under cold stress. PeSTZ1 may operate in parallel with C-REPEAT-BINDING FACTORS to regulate COLD-REGULATED gene expression. Moreover, PeSTZ1 up-regulation reduces malondialdehyde and ROS accumulation by activating the antioxidant system. Taken together, these results suggested that overexpressing PeSTZ1 in 84K poplar enhances freezing tolerance through the modulation of ROS scavenging via the direct regulation of PeAPX2 expression.
Collapse
Affiliation(s)
- Fang He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Hui‐Guang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jing‐Jing Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yanyan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Hou‐Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Cong‐Hua Feng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yanli Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Meng‐Xue Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
200
|
Kitagawa M, Balkunde R, Bui H, Jackson D. An Aminoacyl tRNA Synthetase, OKI1, Is Required for Proper Shoot Meristem Size in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:2597-2608. [PMID: 31393575 DOI: 10.1093/pcp/pcz153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
In plants, the stem cells that form the shoot system reside within the shoot apical meristem (SAM), which is regulated by feedback signaling between the WUSCHEL (WUS) homeobox protein and CLAVATA (CLV) peptides and receptors. WUS-CLV feedback signaling can be modulated by various endogenous or exogenous factors, such as chromatin state, hormone signaling, reactive oxygen species (ROS) signaling and nutrition, leading to a dynamic control of SAM size corresponding to meristem activity. Despite these insights, however, the knowledge of genes that control SAM size is still limited, and in particular, the regulation by ROS signaling is only beginning to be comprehended. In this study, we report a new function in maintenance of SAM size, encoded by the OKINA KUKI1 (OKI1) gene. OKI1 is expressed in the SAM and encodes a mitochondrial aspartyl tRNA synthetase (AspRS). oki1 mutants display enlarged SAMs with abnormal expression of WUS and CLV3 and overaccumulation of ROS in the meristem. Our findings support the importance of normal AspRS function in the maintenance of the WUS-CLV3 feedback loop and SAM size.
Collapse
Affiliation(s)
- Munenori Kitagawa
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY, USA
| | - Rachappa Balkunde
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY, USA
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO, USA
| | - Huyen Bui
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY, USA
- Center of Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY, USA
| |
Collapse
|