151
|
Amimo JO, Raev SA, Chepngeno J, Mainga AO, Guo Y, Saif L, Vlasova AN. Rotavirus Interactions With Host Intestinal Epithelial Cells. Front Immunol 2021; 12:793841. [PMID: 35003114 PMCID: PMC8727603 DOI: 10.3389/fimmu.2021.793841] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Rotavirus (RV) is the foremost enteric pathogen associated with severe diarrheal illness in young children (<5years) and animals worldwide. RV primarily infects mature enterocytes in the intestinal epithelium causing villus atrophy, enhanced epithelial cell turnover and apoptosis. Intestinal epithelial cells (IECs) being the first physical barrier against RV infection employs a range of innate immune strategies to counteract RVs invasion, including mucus production, toll-like receptor signaling and cytokine/chemokine production. Conversely, RVs have evolved numerous mechanisms to escape/subvert host immunity, seizing translation machinery of the host for effective replication and transmission. RV cell entry process involve penetration through the outer mucus layer, interaction with cell surface molecules and intestinal microbiota before reaching the IECs. For successful cell attachment and entry, RVs use sialic acid, histo-blood group antigens, heat shock cognate protein 70 and cell-surface integrins as attachment factors and/or (co)-receptors. In this review, a comprehensive summary of the existing knowledge of mechanisms underlying RV-IECs interactions, including the role of gut microbiota, during RV infection is presented. Understanding these mechanisms is imperative for developing efficacious strategies to control RV infections, including development of antiviral therapies and vaccines that target specific immune system antagonists within IECs.
Collapse
Affiliation(s)
- Joshua Oluoch Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Sergei Alekseevich Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Juliet Chepngeno
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Alfred Omwando Mainga
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Yusheng Guo
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Linda Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
152
|
Mucins Dynamics in Physiological and Pathological Conditions. Int J Mol Sci 2021; 22:ijms222413642. [PMID: 34948435 PMCID: PMC8707880 DOI: 10.3390/ijms222413642] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
Maintaining intestinal health requires clear segregation between epithelial cells and luminal microbes. The intestinal mucus layer, produced by goblet cells (GCs), is a key element in maintaining the functional protection of the epithelium. The importance of the gut mucus barrier is highlighted in mice lacking Muc2, the major form of secreted mucins. These mice show closer bacterial residence to epithelial cells, develop spontaneous colitis and became moribund when infected with the attaching and effacing pathogen, Citrobacter rodentium. Furthermore, numerous observations have associated GCs and mucus layer dysfunction to the pathogenesis of inflammatory bowel disease (IBD). However, the molecular mechanisms that regulate the physiology of GCs and the mucus layer remain obscured. In this review, we consider novel findings describing divergent functionality and expression profiles of GCs subtypes within intestinal crypts. We also discuss internal (host) and external (diets and bacteria) factors that modulate different aspects of the mucus layer as well as the contribution of an altered mucus barrier to the onset of IBD.
Collapse
|
153
|
Dasgupta S, Maricic I, Tang J, Wandro S, Weldon K, Carpenter CS, Eckmann L, Rivera-Nieves J, Sandborn W, Knight R, Dorrestein P, Swafford AD, Kumar V. Class Ib MHC-Mediated Immune Interactions Play a Critical Role in Maintaining Mucosal Homeostasis in the Mammalian Large Intestine. Immunohorizons 2021; 5:953-971. [PMID: 34911745 PMCID: PMC10026853 DOI: 10.4049/immunohorizons.2100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022] Open
Abstract
Lymphocytes within the intestinal epithelial layer (IEL) in mammals have unique composition compared with their counterparts in the lamina propria. Little is known about the role of some of the key colonic IEL subsets, such as TCRαβ+CD8+ T cells, in inflammation. We have recently described liver-enriched innate-like TCRαβ+CD8αα regulatory T cells, partly controlled by the non-classical MHC molecule, Qa-1b, that upon adoptive transfer protect from T cell-induced colitis. In this study, we found that TCRαβ+CD8αα T cells are reduced among the colonic IEL during inflammation, and that their activation with an agonistic peptide leads to significant Qa-1b-dependent protection in an acute model of colitis. Cellular expression of Qa-1b during inflammation and corresponding dependency in peptide-mediated protection suggest that Batf3-dependent CD103+CD11b- type 1 conventional dendritic cells control the protective function of TCRαβ+CD8αα T cells in the colonic epithelium. In the colitis model, expression of the potential barrier-protective gene, Muc2, is enhanced upon administration of a Qa-1b agonistic peptide. Notably, in steady state, the mucin metabolizing Akkermansia muciniphila was found in significantly lower abundance amid a dramatic change in overall microbiome and metabolome, increased IL-6 in explant culture, and enhanced sensitivity to dextran sulfate sodium in Qa-1b deficiency. Finally, in patients with inflammatory bowel disease, we found upregulation of HLA-E, a Qa-1b analog with inflammation and biologic non-response, in silico, suggesting the importance of this regulatory mechanism across species.
Collapse
Affiliation(s)
- Suryasarathi Dasgupta
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Igor Maricic
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jay Tang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Stephen Wandro
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Kelly Weldon
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Carolina S Carpenter
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Lars Eckmann
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jesus Rivera-Nieves
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - William Sandborn
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA; and
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Peter Dorrestein
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA
| | - Austin D Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Vipin Kumar
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA;
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| |
Collapse
|
154
|
Parrish A, Boudaud M, Kuehn A, Ollert M, Desai MS. Intestinal mucus barrier: a missing piece of the puzzle in food allergy. Trends Mol Med 2021; 28:36-50. [PMID: 34810087 DOI: 10.1016/j.molmed.2021.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
The prevalence of food allergies has reached epidemic levels but the cause remains largely unknown. We discuss the clinical relevance of the gut mucosal barrier as a site for allergic sensitization to food. In this context, we focus on an important but overlooked part of the mucosal barrier in pathogenesis, the glycoprotein-rich mucus layer, and call attention to both beneficial and detrimental aspects of mucus-gut microbiome interactions. Studying the intricate links between the mucus barrier, the associated bacteria, and the mucosal immune system may advance our understanding of the mechanisms and inform prevention and treatment strategies in food allergy.
Collapse
Affiliation(s)
- Amy Parrish
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Marie Boudaud
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark.
| |
Collapse
|
155
|
Zhang Y, Wang L, Ocansey DKW, Wang B, Wang L, Xu Z. Mucin-Type O-Glycans: Barrier, Microbiota, and Immune Anchors in Inflammatory Bowel Disease. J Inflamm Res 2021; 14:5939-5953. [PMID: 34803391 PMCID: PMC8598207 DOI: 10.2147/jir.s327609] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease (IBD), which affects about 7 million people globally, is a chronic inflammatory condition of the gastrointestinal tract caused by gut microbiota alterations, immune dysregulation, and genetic and environmental factors. The association of microbial and immune molecules with mucin-type O-glycans has been increasingly noticed by researchers. Mucin is the main component of mucus, which forms a protective barrier between the microbiota and immune cells in the colon. Mucin-type O-glycans alter the diversity of gastrointestinal microorganisms, which in turn increases the level of O-glycosylation of host intestinal proteins via the utilization of glycans. Additionally, alterations in mucin-type O-glycans not only increase the activity and stability of immune cells but are also involved in the maintenance of intestinal mucosal immune tolerance. Although there is accumulating evidence indicating that mucin-type O-glycans play an important role in IBD, there is limited literature that integrates available data to present a complete picture of exactly how O-glycans affect IBD. This review emphasizes the roles of the mucin-type O-glycans in IBD. This seeks to provide a better understanding and encourages future studies on IBD glycosylation and the design of novel glycan-inspired therapies for IBD.
Collapse
Affiliation(s)
- Yaqin Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Lan Wang
- Danyang Blood Station, Zhenjiang, Jiangsu, 212300, People's Republic of China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China.,Directorate of University Health Services, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Bo Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Li Wang
- Huai'an Maternity and Children Hospital, Huaian, Jiangsu, 223002, People's Republic of China
| | - Zhiwei Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| |
Collapse
|
156
|
Doudakmanis C, Bouliaris K, Kolla C, Efthimiou M, Koukoulis GD. Bacterial translocation in patients undergoing major gastrointestinal surgery and its role in postoperative sepsis. World J Gastrointest Pathophysiol 2021; 12:106-114. [PMID: 34877025 PMCID: PMC8611185 DOI: 10.4291/wjgp.v12.i6.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/14/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Bacteria of the human intestinal microflora have a dual role. They promote digestion and are part of a defense mechanism against pathogens. These bacteria could become potential pathogens under certain circumstances. The term "bacterial translocation" describes the passage of bacteria of the gastrointestinal tract through the intestinal mucosa barrier to mesenteric lymph nodes and other organs. In some cases, the passage of bacteria and endotoxins could result in blood stream infections and in multiple organ failure. Open elective abdominal surgery more frequently results in malfunction of the intestinal barrier and subsequent bacterial translocation and blood stream infections than laparoscopic surgery. Postoperative sepsis is a common finding in patients who have undergone non-elective abdominal surgeries, including trauma patients treated with laparotomy. Postoperative sepsis is an emerging issue, as it changes the treatment plan in surgical patients and prolongs hospital stay. The association between bacterial translocation and postoperative sepsis could provide novel treatment options.
Collapse
Affiliation(s)
- Christos Doudakmanis
- Department of General Surgery, General Hospital of Larissa, Larisa 41221, Greece
| | | | - Christina Kolla
- Department of General Surgery, General Hospital of Larissa, Larisa 41221, Greece
| | - Matthaios Efthimiou
- Department of General Surgery, General Hospital of Larissa, Larisa 41221, Greece
| | - Georgios D Koukoulis
- Department of General Surgery, General Hospital of Larissa, Larisa 41221, Greece
| |
Collapse
|
157
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Corrigendum: Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:790387. [PMID: 34790692 PMCID: PMC8591313 DOI: 10.3389/fnut.2021.790387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
158
|
Toll-Like Receptors as Drug Targets in the Intestinal Epithelium. Handb Exp Pharmacol 2021; 276:291-314. [PMID: 34783909 DOI: 10.1007/164_2021_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Toll-like receptors (TLRs) receptors are responsible for initiation of inflammatory responses by their recognition of molecular patterns present in invading microorganisms (such as bacteria, viruses or fungi) or in molecules released following tissue damage in disease states. Expressed in the intestinal epithelium, they initiate an intracellular signalling cascade in response to molecular patterns resulting in the activation of transcription factors and the release of cytokines, chemokines and vasoactive molecules. Intestinal epithelial cells are exposed to microorganisms on a daily basis and form part of the primary defence against pathogens by using TLRs. TLRs and their accessory molecules are subject to tight regulation in these cells so as to not overreact or react in unnecessary circumstances. TLRs have more recently been associated with chronic inflammatory diseases as a result of inappropriate regulation, this can be damaging and lead to chronic inflammatory diseases such as inflammatory bowel disease (IBD). Targeting Toll-like receptors offers a potential therapeutic approach for IBD. In this review, the current knowledge on the TLRs is reviewed along with their association with intestinal diseases. Finally, compounds that target TLRs in animal models of IBD, clinic trials and their future merit as targets are discussed.
Collapse
|
159
|
Meng Z, Huang S, Sun W, Yan S, Chen X, Diao J, Zhou Z, Zhu W. A Typical Fungicide and Its Main Metabolite Promote Liver Damage in Mice through Impacting Gut Microbiota and Intestinal Barrier Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13436-13447. [PMID: 34735141 DOI: 10.1021/acs.jafc.1c05508] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The environmental risks of prothioconazole (PTC), a popular agricultural fungicide, and its main metabolite, prothioconazole-desthio (PTCd), have attracted more and more attention recently. In this study, the adverse effects of PTC and PTCd on liver function in mice and their underlying mechanisms have been systematically studied from the perspective of gut microbiota. Combining the results of physiological, biochemical, and histopathological analysis showed that PTC and PTCd exposure could cause lipid accumulation and inflammation in the liver of mice. In addition, exposure to PTC and PTCd could also significantly affect the transcriptome of liver tissue, leading to disorders of lipid metabolism of the liver. Particularly, the abundances of bacteria in liver tissues were significantly increased with PTC and PTCd exposure. Further results show that PTC and PTCd could affect the expression of genes related to inflammation and the barrier function in colon tissue, leading to intestinal dysfunction in mice. Last but not least, the results based on 16S rRNA gene sequencing and 1H NMR metabolomics analysis showed that exposure to PTC and PTCd could cause gut microbiota imbalances and cecal content metabolic profile disorders. In short, this study found that PTC and PTCd exposure could cause liver damage in mice by changing the gut microbiota, disrupting the intestinal barrier function and promoting bacterial translocation. These results clarified the key role of gut microbiota in liver damage induced by PTC and PTCd in mice and proposed a new insight into the mechanisms of liver toxicity induced by pesticides through the dialogue of the gut-liver axis.
Collapse
Affiliation(s)
- Zhiyuan Meng
- School of Horticulture and Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaojun Chen
- School of Horticulture and Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
160
|
Wnt-β-Catenin Signaling in Human Dendritic Cells Mediates Regulatory T-Cell Responses to Fungi via the PD-L1 Pathway. mBio 2021; 12:e0282421. [PMID: 34781737 PMCID: PMC8593687 DOI: 10.1128/mbio.02824-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The signaling pathways activated following interaction between dendritic cells (DCs) and a pathogen determine the polarization of effector T-cell and regulatory T-cell (Treg) responses to the infection. Several recent studies, mostly in the context of bacterial infections, have shown that the Wnt/β-catenin pathway plays a major role in imparting tolerogenic features in DCs and in promotion of Treg responses. However, the significance of the Wnt/β-catenin pathway’s involvement in regulating the immune response to the fungal species is not known. Using Aspergillus fumigatus, a ubiquitous airborne opportunistic fungal species, we show here that fungi activate the Wnt/β-catenin pathway in human DCs and are critical for mediating the immunosuppressive Treg responses. Pharmacological inhibition of this pathway in DCs led to inhibition of maturation-associated molecules and interleukin 10 (IL-10) secretion without affecting the majority of the inflammatory cytokines. Furthermore, blockade of Wnt signaling in DCs suppressed DC-mediated Treg responses in CD4+ T cells and downregulated both tumor necrosis factor alpha (TNF-α) and IL-10 responses in CD8+ T cells. Mechanistically, induction of β-catenin pathway by A. fumigatus required C-type lectin receptors and promoted Treg polarization via the induction of programmed death-ligand 1 on DCs. Further investigation on the identity of fungal molecular patterns has revealed that the cell wall polysaccharides β-(1, 3)-glucan and α-(1, 3)-glucan, but not chitin, possess the capacity to activate the β-catenin pathway. Our data suggest that the Wnt/β-catenin pathway is a potential therapeutic target to selectively suppress the Treg response and to sustain the protective Th1 response in the context of invasive aspergillosis caused by A. fumigatus.
Collapse
|
161
|
Hey J, Paulsen M, Toth R, Weichenhan D, Butz S, Schatterny J, Liebers R, Lutsik P, Plass C, Mall MA. Epigenetic reprogramming of airway macrophages promotes polarization and inflammation in muco-obstructive lung disease. Nat Commun 2021; 12:6520. [PMID: 34764283 PMCID: PMC8586227 DOI: 10.1038/s41467-021-26777-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Lung diseases, such as cystic fibrosis and COPD, are characterized by mucus obstruction and chronic airway inflammation, but their mechanistic link remains poorly understood. Here, we focus on the function of the mucostatic airway microenvironment on epigenetic reprogramming of airway macrophages (AM) and resulting transcriptomic and phenotypical changes. Using a mouse model of muco-obstructive lung disease (Scnn1b-transgenic), we identify epigenetically controlled, differentially regulated pathways and transcription factors involved in inflammatory responses and macrophage polarization. Functionally, AMs from Scnn1b-transgenic mice have reduced efferocytosis and phagocytosis, and excessive inflammatory responses upon lipopolysaccharide challenge, mediated through enhanced Irf1 function and expression. Ex vivo stimulation of wild-type AMs with native mucus impairs efferocytosis and phagocytosis capacities. In addition, mucus induces gene expression changes, comparable with those observed in AMs from Scnn1b-transgenic mice. Our data show that mucostasis induces epigenetic reprogramming of AMs, leading to changes favoring tissue damage and disease progression. Targeting these altered AMs may support therapeutic approaches in patients with muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Joschka Hey
- grid.7497.d0000 0004 0492 0584Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Ruprecht Karl University of Heidelberg, Heidelberg, Germany ,grid.452624.3Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Michelle Paulsen
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany. .,Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany. .,Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Reka Toth
- grid.7497.d0000 0004 0492 0584Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Weichenhan
- grid.7497.d0000 0004 0492 0584Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simone Butz
- grid.452624.3Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany
| | - Jolanthe Schatterny
- grid.452624.3Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany
| | - Reinhard Liebers
- grid.7497.d0000 0004 0492 0584Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.461742.2Present Address: National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Pavlo Lutsik
- grid.7497.d0000 0004 0492 0584Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.
| | - Marcus A. Mall
- grid.452624.3Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany ,grid.7468.d0000 0001 2248 7639Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany ,grid.484013.aBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany ,grid.452624.3German Center for Lung Research (DZL), Associated Partner, Berlin, Germany
| |
Collapse
|
162
|
Yin L, Li J, Wang M, Wang Q, Li J, Ding N, Yang H, Yin Y. Dietary high protein-induced diarrhea and intestinal inflammation by activation of NF-κB signaling in piglets. ACTA ACUST UNITED AC 2021; 7:1070-1077. [PMID: 34738037 PMCID: PMC8546374 DOI: 10.1016/j.aninu.2021.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/09/2021] [Accepted: 05/19/2021] [Indexed: 01/29/2023]
Abstract
The present study aimed to investigate whether inflammation-associated responses in piglets are induced by high protein (HP) through activating nuclear factor kappa B (NF-κB) signaling. Sixteen piglets (35 d of age, Duroc × [Landrace × Yorkshire], weaned at d 21, initial BW = 9.70 ± 0.11 kg) were allocated to 18% and 26% CP (HP group) at random, comprising 8 replicate pens per treatment. The piglets were slaughtered to collect intestinal tissues when apparent, persistent, and stable diarrhea syndromes happened (on d 12). No significant differences were observed in their growth performance (P > 0.05), but reduction by 19.11%, 25.31%, 23.64% of ADFI, ADG, and G:F, respectively was detected in the HP group. The HP group had greater (P = 0.002) diarrhea rates. Furthermore, dietary HP had lower ileal villus height (VH; P = 0.048), ratio of villus height to crypt depth (VH/CD ratio; P = 0.016), and colonic CD (P = 0.034), as well as had the trend (P = 0.075) to reduce the ileal villus absorptive area. Moreover, HP diets significantly elevated the goblet cell numbers in the ileal villi (P = 0.016) and colonic crypts (P < 0.001) and up-regulated (P = 0.012) the mRNA expression of mucin2 (Muc2) in the ileum. In addition, HP diets increased the myeloperoxidase concentration in the ileum (P = 0.002) and colon (P = 0.007) of piglets. Dietary HP significantly down-regulated the mRNA expression of tumor necrosis factor-α (TNF-α; P < 0.001) in the ileum, induced nitric oxide synthase (iNOS; P = 0.040) and interleukin-22 (IL-22; P = 0.008) in the colon, and inclined to down-regulate interleukin-1β (IL-1β; P = 0.076) expression in the colon. The relative protein abundance of Galectin-3 (P = 0.046) in the colon and the ratio of phosphorylation NF-κB to NF-κB (p-NF-κB/NF-κB ratio) in the ileum of HP piglets were also greater (P = 0.038). These results suggest that dietary HP may cause diarrhea in piglets by activating NF-κB signaling induced intestinal inflammation.
Collapse
Affiliation(s)
- Lanmei Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jun Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong Biological Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Zhangzhou 363000, China
| | - Meiwei Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Qiye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Nengshui Ding
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong Biological Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Zhangzhou 363000, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
163
|
Scirocchi F, Napoletano C, Pace A, Rahimi Koshkaki H, Di Filippo A, Zizzari IG, Nuti M, Rughetti A. Immunogenic Cell Death and Immunomodulatory Effects of Cabozantinib. Front Oncol 2021; 11:755433. [PMID: 34745989 PMCID: PMC8564482 DOI: 10.3389/fonc.2021.755433] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/30/2021] [Indexed: 01/06/2023] Open
Abstract
Cabozantinib (XL-184) is a multitarget tyrosine kinase inhibitor (TKI) targeting receptor tyrosine kinases (RTKs) involved in oncogenesis and angiogenesis. It is currently the standard therapy for medullary thyroid cancer (MTC), metastatic renal cell carcinoma (mRCC), and hepatocellular carcinoma (HCC). Combination of Cabozantinib with immunotherapy is now a standard treatment in metastatic renal cancer, and its efficacy is being tested in ongoing clinical trial in prostate cancer patients. Here, we report that Cabozantinib may exert an immunostimulatory role by inducing immunogenic stress of prostate cancer cells and directly modulating dendritic cells (DCs). Cabozantinib treatment arrested the cell cycle and triggered immunogenic cell death (ICD) in prostate cancer cells in vitro. Cabozantinib had a direct effect on DCs by the down-modulation of β-catenin and change in migratory and costimulatory phenotype of the DCs. These results may suggest possible immunomodulatory effects induced by Cabozantinib that could be exploited to optimize patient-tailored immunotherapeutic treatments.
Collapse
Affiliation(s)
| | - Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
164
|
Liu L, Li Q, Yang Y, Guo A. Biological Function of Short-Chain Fatty Acids and Its Regulation on Intestinal Health of Poultry. Front Vet Sci 2021; 8:736739. [PMID: 34733901 PMCID: PMC8558227 DOI: 10.3389/fvets.2021.736739] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites generated by bacterial fermentation of dietary fiber (DF) in the hindgut. SCFAs are mainly composed of acetate, propionate and butyrate. Many studies have shown that SCFAs play a significant role in the regulation of intestinal health in poultry. SCFAs are primarily absorbed from the intestine and used by enterocytes as a key substrate for energy production. SCFAs can also inhibit the invasion and colonization of pathogens by lowering the intestinal pH. Additionally, butyrate inhibits the expression of nitric oxide synthase (NOS), which encodes inducible nitric oxide synthase (iNOS) in intestinal cells via the PPAR-γ pathway. This pathway causes significant reduction of iNOS and nitrate, and inhibits the proliferation of Enterobacteriaceae to maintain overall intestinal homeostasis. SCFAs can enhance the immune response by stimulating cytokine production (e.g. TNF-α, IL-2, IL-6, and IL-10) in the immune cells of the host. Similarly, it has been established that SCFAs promote the differentiation of T cells into T regulatory cells (Tregs) and expansion by binding to receptors, such as Toll-like receptors (TLR) and G protein-coupled receptors (GPRs), on immune cells. SCFAs have been shown to repair intestinal mucosa and alleviate intestinal inflammation by activating GPRs, inhibiting histone deacetylases (HDACs), and downregulating the expression of pro-inflammatory factor genes. Butyrate improves tight-junction-dependent intestinal barrier function by promoting tight junction (TJ) assembly. In recent years, the demand for banning antibiotics has increased in poultry production. Therefore, it is extremely important to maintain the intestinal health and sustainable production of poultry. Taking nutrition strategies is important to regulate SCFA production by supplementing dietary fiber and prebiotics, SCFA-producing bacteria (SPB), and additives in poultry diet. However, excessive SCFAs will lead to the enteritis in poultry production. There may be an optimal level and proportion of SCFAs in poultry intestine, which benefits to gut health of poultry. This review summarizes the biological functions of SCFAs and their role in gut health, as well as nutritional strategies to regulate SCFA production in the poultry gut.
Collapse
Affiliation(s)
- Lixuan Liu
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| | - Qingqing Li
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Kunming Xianghao Technology Co., Ltd., Kunming, China
| | - Yajin Yang
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| | - Aiwei Guo
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| |
Collapse
|
165
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:718356. [PMID: 34589512 PMCID: PMC8475765 DOI: 10.3389/fnut.2021.718356] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
The intestinal epithelial barrier (IEB) is one of the largest interfaces between the environment and the internal milieu of the body. It is essential to limit the passage of harmful antigens and microorganisms and, on the other side, to assure the absorption of nutrients and water. The maintenance of this delicate equilibrium is tightly regulated as it is essential for human homeostasis. Luminal solutes and ions can pass across the IEB via two main routes: the transcellular pathway or the paracellular pathway. Tight junctions (TJs) are a multi-protein complex responsible for the regulation of paracellular permeability. TJs control the passage of antigens through the IEB and have a key role in maintaining barrier integrity. Several factors, including cytokines, gut microbiota, and dietary components are known to regulate intestinal TJs. Gut microbiota participates in several human functions including the modulation of epithelial cells and immune system through the release of several metabolites, such as short-chain fatty acids (SCFAs). Mediators released by immune cells can induce epithelial cell damage and TJs dysfunction. The subsequent disruption of the IEB allows the passage of antigens into the mucosa leading to further inflammation. Growing evidence indicates that dysbiosis, immune activation, and IEB dysfunction have a role in several diseases, including irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and gluten-related conditions. Here we summarize the interplay between the IEB and gut microbiota and mucosal immune system and their involvement in IBS, IBD, and gluten-related disorders.
Collapse
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
166
|
Deerhake ME, Shinohara ML. Emerging roles of Dectin-1 in noninfectious settings and in the CNS. Trends Immunol 2021; 42:891-903. [PMID: 34489167 DOI: 10.1016/j.it.2021.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/15/2022]
Abstract
Dectin-1 is a C-type lectin receptor (CLR) expressed on the surface of various mammalian myeloid cells. Dectin-1 recognizes β-glucans and elicits antifungal proinflammatory immune responses. Recent studies have begun to examine the biology of Dectin-1 in previously less explored settings, such as homeostasis, sterile inflammation, and in the central nervous system. Indeed, in certain contexts, Dectin-1 is now known to promote tolerance, and anti-inflammatory and neuroprotective responses. In this review, we provide an overview of the current understanding of the roles of Dectin-1 in immunology beyond the context of fungal infections, mainly focusing on in vivo neuroimmunology studies, which could reveal new therapeutic approaches to modify innate immune responses in neurologic disorders.
Collapse
Affiliation(s)
- M Elizabeth Deerhake
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27705, USA.
| |
Collapse
|
167
|
Chen Z, Luo J, Li J, Kim G, Chen ES, Xiao S, Snapper SB, Bao B, An D, Blumberg RS, Lin CH, Wang S, Zhong J, Liu K, Li Q, Wu C, Kuchroo VK. Foxo1 controls gut homeostasis and commensalism by regulating mucus secretion. J Exp Med 2021; 218:e20210324. [PMID: 34287641 PMCID: PMC8424467 DOI: 10.1084/jem.20210324] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/18/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
Mucus produced by goblet cells in the gastrointestinal tract forms a biological barrier that protects the intestine from invasion by commensals and pathogens. However, the host-derived regulatory network that controls mucus secretion and thereby changes gut microbiota has not been well studied. Here, we identify that Forkhead box protein O1 (Foxo1) regulates mucus secretion by goblet cells and determines intestinal homeostasis. Loss of Foxo1 in intestinal epithelial cells (IECs) results in defects in goblet cell autophagy and mucus secretion, leading to an impaired gut microenvironment and dysbiosis. Subsequently, due to changes in microbiota and disruption in microbiome metabolites of short-chain fatty acids, Foxo1 deficiency results in altered organization of tight junction proteins and enhanced susceptibility to intestinal inflammation. Our study demonstrates that Foxo1 is crucial for IECs to establish commensalism and maintain intestinal barrier integrity by regulating goblet cell function.
Collapse
Affiliation(s)
- Zuojia Chen
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jian Li
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Girak Kim
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Eric S. Chen
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | - Sheng Xiao
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | - Scott B. Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA
| | - Bin Bao
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA
| | - Dingding An
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Cheng-hui Lin
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA
| | - Jiaxin Zhong
- Department of Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Kuai Liu
- Department of Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Qiyuan Li
- Department of Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Chuan Wu
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Vijay K. Kuchroo
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|
168
|
Novel insights on gut microbiota manipulation and immune checkpoint inhibition in cancer (Review). Int J Oncol 2021; 59:75. [PMID: 34396439 PMCID: PMC8360620 DOI: 10.3892/ijo.2021.5255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer affects millions of individuals worldwide. Thus, there is an increased need for the development of novel effective therapeutic approaches. Tumorigenesis is often coupled with immunosuppression which defeats the anticancer immune defense mechanisms activated by the host. Novel anticancer therapies based on the use of immune checkpoint inhibitors (ICIs) are very promising against both solid and hematological tumors, although still exhibiting heterogeneous efficacy, as well as tolerability. Such a differential response seems to derive from individual diversity, including the gut microbiota (GM) composition of specific patients. Experimental evidence supports the key role played by the GM in the activation of the immune system response against malignancies. This observation suggests to aim for patient-tailored complementary therapies able to modulate the GM, enabling the selective enrichment in microbial species, which can improve the positive outcome of ICI-based immunotherapy. Moreover, the research of GM-derived predictive biomarkers may help to identify the selected cancer population, which can benefit from ICI-based therapy, without the occurrence of adverse reactions and/or cancer relapse. The present review summarizes the landmark studies published to date, which have contributed to uncovering the tight link existing between GM composition, cancer development and the host immune system. Bridging this triangle of interactions may ultimately guide towards the identification of novel biomarkers, as well as integrated and patient-tailored anticancer approaches with greater efficacy.
Collapse
|
169
|
The Gut Microbiota-Derived Immune Response in Chronic Liver Disease. Int J Mol Sci 2021; 22:ijms22158309. [PMID: 34361075 PMCID: PMC8347749 DOI: 10.3390/ijms22158309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
In chronic liver disease, the causative factor is important; however, recently, the intestinal microbiome has been associated with the progression of chronic liver disease and the occurrence of side effects. The immune system is affected by the metabolites of the microbiome, and diet is the primary regulator of the microbiota composition and function in the gut–liver axis. These metabolites can be used as therapeutic material, and postbiotics, in the future, can increase or decrease human immunity by modulating inflammation and immune reactions. Therefore, the excessive intake of nutrients and the lack of nutrition have important effects on immunity and inflammation. Evidence has been published indicating that microbiome-induced chronic inflammation and the consequent immune dysregulation affect the development of chronic liver disease. In this research paper, we discuss the overall trend of microbiome-derived substances related to immunity and the future research directions.
Collapse
|
170
|
Diniz AFA, de Oliveira Claudino BF, Duvirgens MV, da Silva Souza PP, Ferreira PB, Júnior FFL, Alves AF, da Silva BA. Spirulina platensis Consumption Prevents Obesity and Improves the Deleterious Effects on Intestinal Reactivity in Rats Fed a Hypercaloric Diet. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3260789. [PMID: 34367461 PMCID: PMC8337120 DOI: 10.1155/2021/3260789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022]
Abstract
The consumption of hypercaloric diets is related to the development of obesity, favoring the etiology of gastrointestinal disorders. In this context, Spirulina platensis (SP), some blue-green algae with antioxidant action, appears as a potential therapeutic alternative to prevent obesity and associated intestinal disorders. Thus, the present study is aimed at evaluating the deleterious effects of the hypercaloric diet on the contractile and relaxing reactivity of the ileum of rats, as well as the possible preventive mechanisms of dietary supplementation with SP. Wistar rats were divided into three groups: fed a standard diet (SD), a hypercaloric diet (HCD), and/or supplemented with 25 mg/kg SP (HCD + SP25) for 8 weeks. The hypercaloric diet was effective in promoting obesity in rats, as well as decreasing potency and ileal relaxing and contractile efficacy. In contrast, dietary supplementation with SP was able to prevent some of the parameters of experimental obesity. In addition, SP prevented the reduction of intestinal reactivity, possibly due to a positive modulation of voltage-gated calcium channels (CaV) and negative regulation of muscarinic receptors (M3). Thus, food supplementation with Spirulina platensis becomes a promising alternative in the prevention of gastrointestinal diseases induced and/or aggravated by obesity.
Collapse
Affiliation(s)
- Anderson Fellyp Avelino Diniz
- Postgraduate Program in Natural and Synthetic Products Bioactive/Health Sciences Center, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | | | | | | | - Paula Benvindo Ferreira
- Postgraduate Program in Natural and Synthetic Products Bioactive/Health Sciences Center, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Francisco Fernandes Lacerda Júnior
- Postgraduate Program in Natural and Synthetic Products Bioactive/Health Sciences Center, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Adriano Francisco Alves
- General Pathology Laboratory-Health Sciences Center-Department of Physiology and Pathology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Bagnólia Araújo da Silva
- Postgraduate Program in Natural and Synthetic Products Bioactive/Health Sciences Center, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
- Pharmaceutical Sciences Department/Health Sciences Center/Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
171
|
Blériot C, Liu Z, Ginhoux F. Water quality check: macrophages setting the standards. Cell Res 2021; 31:3-4. [PMID: 33139927 DOI: 10.1038/s41422-020-00429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos Building #3-4, Biopolis, Singapore, 138648, Singapore. .,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, 169856, Singapore.
| |
Collapse
|
172
|
Yang S, Yu M. Role of Goblet Cells in Intestinal Barrier and Mucosal Immunity. J Inflamm Res 2021; 14:3171-3183. [PMID: 34285541 PMCID: PMC8286120 DOI: 10.2147/jir.s318327] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Goblet cells and the mucus they secrete serve as an important barrier, preventing pathogens from invading the mucosa to cause intestinal inflammation. The perspective regarding goblet cells and mucus has changed, with current evidence suggesting that they are not passive but play a positive role in maintaining intestinal tract immunity and mucosal homeostasis. Goblet cells could obtain luminal antigens, presenting them to the underlying antigen-presenting cells (APCs) that induces adaptive immune responses. Various immunomodulatory factors can promote the differentiation and maturation of goblet cells, and the secretion of mucin. The abnormal proliferation and differentiation of goblet cells, as well as the deficiency synthesis and secretion of mucins, result in intestinal mucosal barrier dysfunction. This review provides an extensive outline of the signaling pathways that regulate goblet cell proliferation and differentiation and control mucins synthesis and secretion to elucidate how altering these pathways affects goblet functionality. Furthermore, the interaction between mucins and goblet cells in intestinal mucosal immunology is described. Therefore, the contribution of goblet cells and mucus in promoting gut defense and homeostasis is illustrated, while clarifying the regulatory mechanisms involved may allow the development of new therapeutic strategies for intestinal disorders.
Collapse
Affiliation(s)
- Songwei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Min Yu
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| |
Collapse
|
173
|
Chou CL, Chen TJ, Tian YF, Chan TC, Yeh CF, Li WS, Tsai HH, Li CF, Lai HY. Upregulated MUC2 Is an Unfavorable Prognostic Indicator for Rectal Cancer Patients Undergoing Preoperative CCRT. J Clin Med 2021; 10:3030. [PMID: 34300195 PMCID: PMC8304358 DOI: 10.3390/jcm10143030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
For locally advanced rectal cancer patients, introducing neoadjuvant concurrent chemoradiotherapy (CCRT) before radical resection allows tumor downstaging and increases the rate of anus retention. Since accurate staging before surgery and sensitivity prediction to CCRT remain challenging, a more precise genetic biomarker is urgently needed to enhance the management of such situations. The epithelial mucous barrier can protect the gut lumen, but aberrant mucin synthesis may defend against drug penetration. In this study, we focused on genes related to maintenance of gastrointestinal epithelium (GO: 0030277) and identified mucin 2 (MUC2) as the most significantly upregulated gene correlated with CCRT resistance through a public rectal cancer transcriptome dataset (GSE35452). We retrieved 172 records of rectal cancer patients undergoing CCRT accompanied by radical resection from our biobank. We also assessed the expression level of MUC2 using immunohistochemistry. The results showed that upregulated MUC2 immunoexpression was considerably correlated with the pre-CCRT and post-CCRT positive nodal status (p = 0.001 and p < 0.001), advanced pre-CCRT and post-CCRT tumor status (p = 0.022 and p < 0.001), vascular invasion (p = 0.015), and no or little response to CCRT (p = 0.006). Upregulated MUC2 immunoexpression was adversely prognostic for all three endpoints, disease-specific survival (DSS), local recurrence-free survival (LRFS), and metastasis-free survival (MeFS) (all p < 0.0001), at the univariate level. Moreover, upregulated MUC2 immunoexpression was an independent prognostic factor for worse DSS (p < 0.001), LRFS (p = 0.008), and MeFS (p = 0.003) at the multivariate level. Collectively, these results imply that upregulated MUC2 expression is characterized by a more advanced clinical course and treatment resistance in rectal cancer patients undergoing CCRT, revealing the potential prognostic utility of MUC2 expression.
Collapse
Affiliation(s)
- Chia-Lin Chou
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan; (C.-L.C.); (Y.-F.T.)
| | - Tzu-Ju Chen
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (H.-H.T.)
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan;
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan; (C.-L.C.); (Y.-F.T.)
| | - Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan;
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Cheng-Fa Yeh
- Department of Internal Medicine, Chi Mei Medical Center, Tainan 710, Taiwan;
| | - Wan-Shan Li
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan;
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Hsin-Hwa Tsai
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (H.-H.T.)
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan;
| | - Chien-Feng Li
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (H.-H.T.)
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan;
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hong-Yue Lai
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (H.-H.T.)
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan;
| |
Collapse
|
174
|
Suárez LJ, Arboleda S, Angelov N, Arce RM. Oral Versus Gastrointestinal Mucosal Immune Niches in Homeostasis and Allostasis. Front Immunol 2021; 12:705206. [PMID: 34290715 PMCID: PMC8287884 DOI: 10.3389/fimmu.2021.705206] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Different body systems (epidermis, respiratory tract, cornea, oral cavity, and gastrointestinal tract) are in continuous direct contact with innocuous and/or potentially harmful external agents, exhibiting dynamic and highly selective interaction throughout the epithelia, which function as both a physical and chemical protective barrier. Resident immune cells in the epithelia are constantly challenged and must distinguish among antigens that must be either tolerated or those to which a response must be mounted for. When such a decision begins to take place in lymphoid foci and/or mucosa-associated lymphoid tissues, the epithelia network of immune surveillance actively dominates both oral and gastrointestinal compartments, which are thought to operate in the same immune continuum. However, anatomical variations clearly differentiate immune processes in both the mouth and gastrointestinal tract that demonstrate a wide array of independent immune responses. From single vs. multiple epithelia cell layers, widespread cell-to-cell junction types, microbial-associated recognition receptors, dendritic cell function as well as related signaling, the objective of this review is to specifically contrast the current knowledge of oral versus gut immune niches in the context of epithelia/lymphoid foci/MALT local immunity and systemic output. Related differences in 1) anatomy 2) cell-to-cell communication 3) antigen capture/processing/presentation 4) signaling in regulatory vs. proinflammatory responses and 5) systemic output consequences and its relations to disease pathogenesis are discussed.
Collapse
Affiliation(s)
- Lina J Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Silie Arboleda
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nikola Angelov
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Roger M Arce
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
175
|
Brescia P, Rescigno M. The gut vascular barrier: a new player in the gut-liver-brain axis. Trends Mol Med 2021; 27:844-855. [PMID: 34229973 DOI: 10.1016/j.molmed.2021.06.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
The intestinal barrier protects our body from external insults through specialized cells organized in a multilayered structure that evolved in symbiosis with the resident microbiota. A breach in the outer mucus and epithelium can be transmitted to the inner gut vascular barrier (GVB), leading to systemic dissemination of microbes or microbe-derived molecules. Several extraintestinal pathologies have been linked to gut microbiota dysbiosis that causes GVB leakage in their early phases. The consequent spreading of inflammatory stimuli to distant organs could be driven by later vascular barrier disruption at different sites, suggesting an interplay between anatomical barriers across the body. Thus, targeting the intestinal barrier holds promise for the prevention and/or therapy of several intestinal, metabolic, and neurological disorders.
Collapse
Affiliation(s)
- Paola Brescia
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy.
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy.
| |
Collapse
|
176
|
Gu Z, Zhu Y, Mei F, Dong X, Xia G, Shen X. Tilapia head glycolipids protect mice against dextran sulfate sodium-induced colitis by ameliorating the gut barrier and suppressing NF-kappa B signaling pathway. Int Immunopharmacol 2021; 96:107802. [PMID: 34162163 DOI: 10.1016/j.intimp.2021.107802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to evaluate the relieving effect of tilapia head glycolipids (TH-GLs) on dextran sulfate sodium (DSS)-induced colitis in mice and to further explore its mechanism. Mice were orally administered 3% (w/v) DSS to establish a model of ulcerative colitis (UC), and subsequently treated with TH-GLs or sulfasalazine. In addition, the expression of key targets in the intestinal mucosal barrier and the inflammatory signal pathway were studied by combining immunochemical analysis techniques. The results showed that varying doses of TH-GLs can significantly improve colon lesions caused by DSS, reduce histological scores, increase mucus secretion, extend colon length, increase weight, and inhibit the occurrence of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), Interleukin-1β (IL-1β), and Interleukin- 6 (IL-6). Further, studies have shown that TH-GLs increase the secretion of MUC2 and up-regulate the expression of tight junction related proteins, such as ZO-1 and Occludin. In addition, TH-GLs significantly down-regulated the protein expression levels of TNF-α, IKK-β, and nuclear factor-κB (NF-κB). Here, we have elucidated the potential mechanism of TH-GLs in protecting mice with colitis. In general, this study shows that TH-GLs could improve the symptoms of UC by improving the gut barrier and inhibiting inflammatory signals, which provides a scientific basis for future clinical applications.
Collapse
Affiliation(s)
- Zhipeng Gu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China; Key Laboratory of Seafood Processing of Haikou, Hainan University, Haikou 570228, Hainan, China; College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Yujie Zhu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China; Key Laboratory of Seafood Processing of Haikou, Hainan University, Haikou 570228, Hainan, China; College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Fengfeng Mei
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
| | - Xiuping Dong
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116000, Liaoning, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China; Key Laboratory of Seafood Processing of Haikou, Hainan University, Haikou 570228, Hainan, China; College of Food Science and Technology, Hainan University, Hainan 570228, China.
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China; Key Laboratory of Seafood Processing of Haikou, Hainan University, Haikou 570228, Hainan, China; College of Food Science and Technology, Hainan University, Hainan 570228, China.
| |
Collapse
|
177
|
Ganesan K, Quiles JL, Daglia M, Xiao J, Xu B. Dietary phytochemicals modulate intestinal epithelial barrier dysfunction and autoimmune diseases. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
- The School of Chinese Medicine The University of Hong Kong Hong Kong China
| | - José L. Quiles
- Institute of Nutrition and Food Technology “José Mataix Verdú,” Department of Physiology Biomedical Research Center University of Granada Granada Spain
| | - Maria Daglia
- Department of Pharmacy University of Naples Federico II Naples Italy
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo Vigo Pontevedra E‐36310 Spain
| | - Baojun Xu
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
| |
Collapse
|
178
|
Chikina A, Matic Vignjevic D. At the right time in the right place: How do luminal gradients position the microbiota along the gut? Cells Dev 2021; 168:203712. [PMID: 34174490 DOI: 10.1016/j.cdev.2021.203712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023]
Abstract
The gastrointestinal system is highly compartmentalized, where individual segments perform separate tasks to achieve common physiological goals. The gut luminal content, chyme, changes its chemical and physical properties as it passes through different intestinal segments. Together, the chyme composition, mucus, pH and oxygen gradients along the gut create a variety of highly distinct ecological niches that form, maintain and reinforce the symbiosis with the particular microbiota. Hosting different microbiota members at specific locations creates one of the most complex and sophisticated gradient - gradient of the local ecosystems that live and interact with each other, providing advantages and challenges to the host and creating our microbial self. Here, we discuss how intestinal luminal gradients are created and maintained in homeostasis, their role in a correct microbiota positioning, and their change upon inflammation and cancer.
Collapse
Affiliation(s)
- Aleksandra Chikina
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France.
| | | |
Collapse
|
179
|
Noel JC, Berin MC. Role of innate immunity and myeloid cells in susceptibility to allergic disease. Ann N Y Acad Sci 2021; 1499:42-53. [PMID: 34159612 DOI: 10.1111/nyas.14654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Allergic diseases, including asthma, food allergy, eczema, and allergic rhinitis, are common diseases increasing in prevalence. Allergy, a failure of immune tolerance to innocuous environmental allergens, is characterized by allergen-specific immune responses, including IgE antibodies and T helper and T follicular helper cells producing type 2 cytokines. Despite the central role of adaptive immunity in pathophysiology of allergy, there is a growing body of evidence indicating an important role for the innate immune system in allergic disease. In this review, we focus on epithelial-mononuclear phagocyte communication in the control of allergy and tolerance. We discuss studies on early life environmental exposures and allergy susceptibility, and the evidence for innate training of mononuclear phagocytes as the mechanistic link between exposure and health or disease.
Collapse
Affiliation(s)
- Justine C Noel
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - M Cecilia Berin
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
180
|
Gasaly N, de Vos P, Hermoso MA. Impact of Bacterial Metabolites on Gut Barrier Function and Host Immunity: A Focus on Bacterial Metabolism and Its Relevance for Intestinal Inflammation. Front Immunol 2021; 12:658354. [PMID: 34122415 PMCID: PMC8187770 DOI: 10.3389/fimmu.2021.658354] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
The diverse and dynamic microbial community of the human gastrointestinal tract plays a vital role in health, with gut microbiota supporting the development and function of the gut immune barrier. Crosstalk between microbiota-gut epithelium and the gut immune system determine the individual health status, and any crosstalk disturbance may lead to chronic intestinal conditions, such as inflammatory bowel diseases (IBD) and celiac disease. Microbiota-derived metabolites are crucial mediators of host-microbial interactions. Some beneficially affect host physiology such as short-chain fatty acids (SCFAs) and secondary bile acids. Also, tryptophan catabolites determine immune responses, such as through binding to the aryl hydrocarbon receptor (AhR). AhR is abundantly present at mucosal surfaces and when activated enhances intestinal epithelial barrier function as well as regulatory immune responses. Exogenous diet-derived indoles (tryptophan) are a major source of endogenous AhR ligand precursors and together with SCFAs and secondary bile acids regulate inflammation by lowering stress in epithelium and gut immunity, and in IBD, AhR expression is downregulated together with tryptophan metabolites. Here, we present an overview of host microbiota-epithelium- gut immunity crosstalk and review how microbial-derived metabolites contribute to host immune homeostasis. Also, we discuss the therapeutic potential of bacterial catabolites for IBD and celiac disease and how essential dietary components such as dietary fibers and bacterial tryptophan catabolites may contribute to intestinal and systemic homeostasis.
Collapse
Affiliation(s)
- Naschla Gasaly
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Marcela A Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
181
|
Chen T, Li R, Chen P. Gut Microbiota and Chemical-Induced Acute Liver Injury. Front Physiol 2021; 12:688780. [PMID: 34122150 PMCID: PMC8187901 DOI: 10.3389/fphys.2021.688780] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Drug overdose or chemical exposures are the main causes of acute liver injury (ALI). Severe liver injury can develop into liver failure that is an important cause of liver-related mortality in intensive care units in most countries. Pharmacological studies have utilized a variety of comprehensive chemical induction models that recapitulate the natural pathogenesis of acute liver injury. Their mechanism is always based on redox imbalance-induced direct hepatotoxicity and massive hepatocyte cell death, which can trigger immune cell activation and recruitment to the liver. However, the pathogenesis of these models has not been fully stated. Many studies showed that gut microbiota plays a crucial role in chemical-induced liver injury. Hepatotoxicity is likely induced by imbalanced microbiota homeostasis, gut mucosal barrier damage, systemic immune activation, microbial-associated molecular patterns, and bacterial metabolites. Meanwhile, many preclinical studies have shown that supplementation with probiotics can improve chemical-induced liver injury. In this review, we highlight the pathogenesis of gut microorganisms in chemical-induced acute liver injury animal models and explore the protective mechanism of exogenous microbial supplements on acute liver injury.
Collapse
Affiliation(s)
- Tao Chen
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China.,Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
182
|
Paparo L, Nocerino R, Ciaglia E, Di Scala C, De Caro C, Russo R, Trinchese G, Aitoro R, Amoroso A, Bruno C, Di Costanzo M, Passariello A, Messina F, Agangi A, Napolitano M, Voto L, Gatta GD, Pisapia L, Montella F, Mollica MP, Calignano A, Puca A, Berni Canani R. Butyrate as a bioactive human milk protective component against food allergy. Allergy 2021; 76:1398-1415. [PMID: 33043467 PMCID: PMC8247419 DOI: 10.1111/all.14625] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Food allergy (FA) is a growing health problem worldwide. Effective strategies are advocated to limit the disease burden. Human milk (HM) could be considered as a protective factor against FA, but its mechanisms remain unclear. Butyrate is a gut microbiota-derived metabolite able to exert several immunomodulatory functions. We aimed to define the butyrate concentration in HM, and to see whether the butyrate concentration detected in HM is able to modulate the mechanisms of immune tolerance. METHODS HM butyrate concentration from 109 healthy women was assessed by GS-MS. The effect of HM butyrate on tolerogenic mechanisms was assessed in in vivo and in vitro models. RESULTS The median butyrate concentration in mature HM was 0.75 mM. This butyrate concentration was responsible for the maximum modulatory effects observed in all experimental models evaluated in this study. Data from mouse model show that in basal condition, butyrate up-regulated the expression of several biomarkers of gut barrier integrity, and of tolerogenic cytokines. Pretreatment with butyrate significantly reduced allergic response in three animal models of FA, with a stimulation of tolerogenic cytokines, inhibition of Th2 cytokines production and a modulation of oxidative stress. Data from human cell models show that butyrate stimulated human beta defensin-3, mucus components and tight junctions expression in human enterocytes, and IL-10, IFN-γ and FoxP3 expression through epigenetic mechanisms in PBMCs from FA children. Furthermore, it promoted the precursors of M2 macrophages, DCs and regulatory T cells. CONCLUSION The study's findings suggest the importance of butyrate as a pivotal HM compound able to protect against FA.
Collapse
Affiliation(s)
- Lorella Paparo
- Department of Translational Medical Science University of Naples Federico II Naples Italy
- ImmunoNutritionLab at the CEINGE‐Biotecnologie Avanzate s.c.ar.l Research Center University of Naples Federico II Naples Italy
- European Laboratory for the Investigation of Food‐Induced Diseases University of Naples Federico II Naples Italy
| | - Rita Nocerino
- Department of Translational Medical Science University of Naples Federico II Naples Italy
- ImmunoNutritionLab at the CEINGE‐Biotecnologie Avanzate s.c.ar.l Research Center University of Naples Federico II Naples Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno Fisciano Italy
| | - Carmen Di Scala
- Department of Translational Medical Science University of Naples Federico II Naples Italy
- ImmunoNutritionLab at the CEINGE‐Biotecnologie Avanzate s.c.ar.l Research Center University of Naples Federico II Naples Italy
| | - Carmen De Caro
- Department of Pharmacy University of Naples Federico II Naples Italy
| | - Roberto Russo
- Department of Pharmacy University of Naples Federico II Naples Italy
| | | | - Rosita Aitoro
- Department of Translational Medical Science University of Naples Federico II Naples Italy
| | - Antonio Amoroso
- Department of Translational Medical Science University of Naples Federico II Naples Italy
| | - Cristina Bruno
- Department of Translational Medical Science University of Naples Federico II Naples Italy
- ImmunoNutritionLab at the CEINGE‐Biotecnologie Avanzate s.c.ar.l Research Center University of Naples Federico II Naples Italy
| | - Margherita Di Costanzo
- Department of Translational Medical Science University of Naples Federico II Naples Italy
- ImmunoNutritionLab at the CEINGE‐Biotecnologie Avanzate s.c.ar.l Research Center University of Naples Federico II Naples Italy
| | - Annalisa Passariello
- Department of Translational Medical Science University of Naples Federico II Naples Italy
- Department of Pediatric Cardiology Monaldi Hospital Naples Italy
| | - Francesco Messina
- Neonatal Intensive Care Unit "Betania" Evangelical Hospital Naples Italy
| | - Annalisa Agangi
- Neonatal Intensive Care Unit "Betania" Evangelical Hospital Naples Italy
| | | | - Luana Voto
- Department of Translational Medical Science University of Naples Federico II Naples Italy
| | - Giusy Della Gatta
- Department of Translational Medical Science University of Naples Federico II Naples Italy
- ImmunoNutritionLab at the CEINGE‐Biotecnologie Avanzate s.c.ar.l Research Center University of Naples Federico II Naples Italy
| | - Laura Pisapia
- Department of Translational Medical Science University of Naples Federico II Naples Italy
- ImmunoNutritionLab at the CEINGE‐Biotecnologie Avanzate s.c.ar.l Research Center University of Naples Federico II Naples Italy
| | - Francesco Montella
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno Fisciano Italy
| | | | - Antonio Calignano
- Department of Pharmacy University of Naples Federico II Naples Italy
| | - Annibale Puca
- European Laboratory for the Investigation of Food‐Induced Diseases University of Naples Federico II Naples Italy
- Cardiovascular Research Unit IRCCS MultiMedica Milan Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science University of Naples Federico II Naples Italy
- ImmunoNutritionLab at the CEINGE‐Biotecnologie Avanzate s.c.ar.l Research Center University of Naples Federico II Naples Italy
- European Laboratory for the Investigation of Food‐Induced Diseases University of Naples Federico II Naples Italy
- Task Force for Microbiome Studies University of Naples Federico II Naples Italy
| |
Collapse
|
183
|
Alonso-Cotoner C, Abril-Gil M, Albert-Bayo M, Mall JPG, Expósito E, González-Castro AM, Lobo B, Santos J. The Role of Purported Mucoprotectants in Dealing with Irritable Bowel Syndrome, Functional Diarrhea, and Other Chronic Diarrheal Disorders in Adults. Adv Ther 2021; 38:2054-2076. [PMID: 33738725 PMCID: PMC7971407 DOI: 10.1007/s12325-021-01676-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
Chronic diarrhea is a frequent presenting symptom, both in primary care medicine and in specialized gastroenterology units. It is estimated that more than 5% of the global population suffers from chronic diarrhea. and that about 40% of these subjects are older than 60 years. The clinician is frequently faced with the need to decide which is the best therapeutic approach for these patients. While the origin of chronic diarrhea is diverse, impairment of intestinal barrier function, dysbiosis. and mucosal micro-inflammation are being increasingly recognized as underlying phenomena characterizing a variety of chronic diarrheal diseases. In addition to current pharmacological therapies, there is growing interest in alternative products such as mucoprotectants, which form a mucoadhesive film over the epithelium to reduce and protect against the development of altered intestinal permeability, dysbiosis, and mucosal micro-inflammation. This manuscript focuses on chronic diarrhea in adults, and we will review recent evidence on the ability of these natural compounds to improve symptoms associated with chronic diarrhea and to exert protective effects for the intestinal barrier.
Collapse
Affiliation(s)
- Carmen Alonso-Cotoner
- Servei de Aparell Digestiu, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Universitat Autònoma de Barcelona, Facultat de Medicina, Bellaterra, Barcelona, Spain
- CIBER de Enfermedades Hepaticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Abril-Gil
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Mercé Albert-Bayo
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - John-P Ganda Mall
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Elba Expósito
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Ana M González-Castro
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Beatriz Lobo
- Servei de Aparell Digestiu, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.
- Universitat Autònoma de Barcelona, Facultat de Medicina, Bellaterra, Barcelona, Spain.
| | - Javier Santos
- Servei de Aparell Digestiu, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.
- Universitat Autònoma de Barcelona, Facultat de Medicina, Bellaterra, Barcelona, Spain.
- CIBER de Enfermedades Hepaticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
184
|
Collins M, Michot JM, Bellanger C, Mussini C, Benhadji K, Massard C, Carbonnel F. Notch inhibitors induce diarrhea, hypercrinia and secretory cell metaplasia in the human colon. EXCLI JOURNAL 2021; 20:819-827. [PMID: 34121974 PMCID: PMC8192874 DOI: 10.17179/excli2021-3572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/21/2021] [Indexed: 11/20/2022]
Abstract
In humans, inhibition of Notch oncogenic signaling leads to tumor regression. Preclinical studies indicate that Notch signaling contributes to the maintenance of intestinal homeostasis. Here, we sought to describe the intestinal effects of a first-in-human Notch inhibitor in an indication of refractory cancer. Between 2014 and 2017, adult patients treated for refractory cancer with the novel Notch inhibitor LY3039478 and who had grade ≥ 2 diarrhea were referred to the gastroenterology department of a tertiary hospital in the Paris region of France. Eleven patients (median (range) age: 72 (29-83)) were included in the study. All patients had advanced cancer: adenoid cystic carcinoma (n=3, 27 %), sarcoma (n=3, 27 %), and other types (n=5, 46 %). In all cases, digestive tract endoscopy revealed abundant mucus in the intestinal lumen, and digestive tract biopsies showed an abnormally low proportion of enterocytes and marked elevation of the proportion of pseudostratified goblet cells. Microscopic inflammation was seen in colon biopsies from 2 of the 11 patients (18 %). The clinical, endoscopic and histological abnormalities were dependent on the dose of Notch inhibitor. All patients resolved their digestive signs or symptoms after discontinuing the dose and the median (range) time interval between discontinuation of the Notch inhibitor and resolution of all the gastrointestinal signs and symptoms was 7 days (4-24). Likewise, the median time interval between discontinuation and resolution of the histological abnormalities was 7 days (1-10). Blocking Notch signaling induces secretory cell metaplasia of the intestinal epithelium, which in turn leads to transient diarrhea. Our results confirm the role of Notch signaling in intestinal homeostasis in humans.
Collapse
Affiliation(s)
- Michael Collins
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hopitaux de Paris, Le Kremlin Bicêtre, France.,Paris Sud University, Le Kremlin Bicêtre, France.,INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Pôle de Biologie Médicale, Paul-Brousse University Hospital, Villejuif, France
| | - Jean-Marie Michot
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Christophe Bellanger
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hopitaux de Paris, Le Kremlin Bicêtre, France.,Paris Sud University, Le Kremlin Bicêtre, France
| | - Charlotte Mussini
- Department of Pathology, Kremlin Bicêtre Hospital, Assistance Publique-Hopitaux de Paris, Le Kremlin Bicêtre, France
| | | | - Christophe Massard
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Franck Carbonnel
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hopitaux de Paris, Le Kremlin Bicêtre, France.,Paris Sud University, Le Kremlin Bicêtre, France
| |
Collapse
|
185
|
The role of mucosal barriers in human gut health. Arch Pharm Res 2021; 44:325-341. [PMID: 33890250 DOI: 10.1007/s12272-021-01327-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022]
Abstract
The intestinal mucosa is continuously exposed to a large number of commensal or pathogenic microbiota and foreign food antigens. The intestinal epithelium forms a dynamic physicochemical barrier to maintain immune homeostasis. To efficiently absorb nutrients from food, the epithelium in the small intestine has thin, permeable layers spread over a vast surface area. Epithelial cells are renewed from the crypt toward the villi, accompanying epithelial cell death and shedding, to control bacterial colonization. Tight junction and adherens junction proteins provide epithelial cell-cell integrity. Microbial signals are recognized by epithelial cells via toll-like receptors. Environmental signals from short-chain fatty acids derived from commensal microbiota metabolites, aryl hydrocarbon receptors, and hypoxia-induced factors fortify gut barrier function. Here we summarize recent findings regarding various environmental factors for gut barrier function. Further, we discuss the role of gut barriers in the pathogenesis of human intestinal disease and the challenges of therapeutic strategies targeting gut barrier restoration.
Collapse
|
186
|
Guo J, Han X, Huang W, You Y, Jicheng Z. Interaction between IgA and gut microbiota and its role in controlling metabolic syndrome. Obes Rev 2021; 22:e13155. [PMID: 33150692 DOI: 10.1111/obr.13155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Immunoglobulin A (IgA) is the most abundant immunoglobulin isotype secreted into the mucosal tissues, mainly intestinal mucus. Humans can produce several grams of IgA every day, accounting for three quarters of the body's total immunoglobulin content. IgA, together with mucus and antimicrobial peptides, forms the first line of defence for intestinal epithelial cells, protecting them from a significant number of intestinal antigens. IgA also plays a principal role in controlling the gut microbiota (GM), and disruption in IgA can result in dysbiosis, such as the enrichment of Proteobacteria, which are generally bound by IgA. Proteobacteria overexpansion is also usually seen in obesity and colitis. Consistent with this, IgA dysfunction frequently results in metabolic syndrome (MetS), including conditions such as obesity, adiposity, insulin resistance, and inflammation. In contrast, enhanced IgA function can improve, and even prevent, MetS. Interactions among IgA, GM, and metabolism provide a promising avenue to combat MetS.
Collapse
Affiliation(s)
- Jielong Guo
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xue Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Zhan Jicheng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
187
|
Galletti JG, de Paiva CS. The ocular surface immune system through the eyes of aging. Ocul Surf 2021; 20:139-162. [PMID: 33621658 PMCID: PMC8113112 DOI: 10.1016/j.jtos.2021.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Since the last century, advances in healthcare, housing, and education have led to an increase in life expectancy. Longevity is accompanied by a higher prevalence of age-related diseases, such as cancer, autoimmunity, diabetes, and infection, and part of this increase in disease incidence relates to the significant changes that aging brings about in the immune system. The eye is not spared by aging either, presenting with age-related disorders of its own, and interestingly, many of these diseases have immune pathophysiology. Being delicate organs that must be exposed to the environment in order to capture light, the eyes are endowed with a mucosal environment that protects them, the so-called ocular surface. As in other mucosal sites, immune responses at the ocular surface need to be swift and potent to eliminate threats but are at the same time tightly controlled to prevent excessive inflammation and bystander damage. This review will detail how aging affects the mucosal immune response of the ocular surface as a whole and how this process relates to the higher incidence of ocular surface disease in the elderly.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (IMEX), CONICET-National Academy of Medicine, Buenos Aires, Argentina.
| | - Cintia S de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
188
|
Increased Listeria monocytogenes Dissemination and Altered Population Dynamics in Muc2-Deficient Mice. Infect Immun 2021; 89:IAI.00667-20. [PMID: 33431704 DOI: 10.1128/iai.00667-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
The mucin Muc2 is a major constituent of the mucus layer that covers the intestinal epithelium and creates a barrier between epithelial cells and luminal commensal or pathogenic microorganisms. The Gram-positive foodborne pathogen Listeria monocytogenes can cause enteritis and also disseminate from the intestine to give rise to systemic disease. L. monocytogenes can bind to intestinal Muc2, but the influence of the Muc2 mucin barrier on L. monocytogenes intestinal colonization and systemic dissemination has not been explored. Here, we used an orogastric L. monocytogenes infection model to investigate the role of Muc2 in host defense against L. monocytogenes Compared to wild-type mice, we found that Muc2-/- mice exhibited heightened susceptibility to orogastric challenge with L. monocytogenes, with higher mortality, elevated colonic pathology, and increased pathogen burdens in both the intestinal tract and distal organs. In contrast, L. monocytogenes burdens were equivalent in wild-type and Muc2-/- animals when the pathogen was administered intraperitoneally, suggesting that systemic immune defects related to Muc2 deficiency do not explain the heightened pathogen dissemination observed in oral infections. Using a barcoded L. monocytogenes library to measure intrahost pathogen population dynamics, we found that Muc2-/- animals had larger pathogen founding population sizes in the intestine and distal sites than observed in wild-type animals. Comparisons of barcode frequencies suggested that the colon becomes the major source for seeding the internal organs in Muc2-/- animals. Together, our findings reveal that Muc2 mucin plays a key role in controlling L. monocytogenes colonization, dissemination, and population dynamics.
Collapse
|
189
|
Abstract
As the professional antigen-presenting cells of the immune system, dendritic cells (DCs) sense the microenvironment and shape the ensuing adaptive immune response. DCs can induce both immune activation and immune tolerance according to the peripheral cues. Recent work has established that DCs comprise several phenotypically and functionally heterogeneous subsets that differentially regulate T lymphocyte differentiation. This review summarizes both mouse and human DC subset phenotypes, development, diversification, and function. We focus on advances in our understanding of how different DC subsets regulate distinct CD4+ T helper (Th) cell differentiation outcomes, including Th1, Th2, Th17, T follicular helper, and T regulatory cells. We review DC subset intrinsic properties, local tissue microenvironments, and other immune cells that together determine Th cell differentiation during homeostasis and inflammation.
Collapse
Affiliation(s)
- Xiangyun Yin
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Shuting Chen
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| |
Collapse
|
190
|
Deerhake ME, Danzaki K, Inoue M, Cardakli ED, Nonaka T, Aggarwal N, Barclay WE, Ji RR, Shinohara ML. Dectin-1 limits autoimmune neuroinflammation and promotes myeloid cell-astrocyte crosstalk via Card9-independent expression of Oncostatin M. Immunity 2021; 54:484-498.e8. [PMID: 33581044 PMCID: PMC7956124 DOI: 10.1016/j.immuni.2021.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
Pathologic roles of innate immunity in neurologic disorders are well described, but their beneficial aspects are less understood. Dectin-1, a C-type lectin receptor (CLR), is largely known to induce inflammation. Here, we report that Dectin-1 limited experimental autoimmune encephalomyelitis (EAE), while its downstream signaling molecule, Card9, promoted the disease. Myeloid cells mediated the pro-resolution function of Dectin-1 in EAE with enhanced gene expression of the neuroprotective molecule, Oncostatin M (Osm), through a Card9-independent pathway, mediated by the transcription factor NFAT. Furthermore, we find that the Osm receptor (OsmR) functioned specifically in astrocytes to reduce EAE severity. Notably, Dectin-1 did not respond to heat-killed Mycobacteria, an adjuvant to induce EAE. Instead, endogenous Dectin-1 ligands, including galectin-9, in the central nervous system (CNS) were involved to limit EAE. Our study reveals a mechanism of beneficial myeloid cell-astrocyte crosstalk regulated by a Dectin-1 pathway and identifies potential therapeutic targets for autoimmune neuroinflammation.
Collapse
MESH Headings
- Animals
- Astrocytes/immunology
- Brain/pathology
- CARD Signaling Adaptor Proteins/metabolism
- Cell Communication
- Cells, Cultured
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Galectins/metabolism
- Gene Expression Regulation
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Multiple Sclerosis/immunology
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Myeloid Cells/immunology
- Neurogenic Inflammation/immunology
- Oncostatin M/genetics
- Oncostatin M/metabolism
- Oncostatin M Receptor beta Subunit/metabolism
- Peptide Fragments/immunology
- Receptors, Mitogen/genetics
- Receptors, Mitogen/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- M Elizabeth Deerhake
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Keiko Danzaki
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Makoto Inoue
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Emre D Cardakli
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Toshiaki Nonaka
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nupur Aggarwal
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - William E Barclay
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
191
|
Benedé S, Pérez-Rodríguez L, Martínez-Blanco M, Molina E, López-Fandiño R. Oral Exposure to House Dust Mite Activates Intestinal Innate Immunity. Foods 2021; 10:foods10030561. [PMID: 33803079 PMCID: PMC8000190 DOI: 10.3390/foods10030561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
SCOPE House dust mite (HDM) induces Th2 responses in lungs and skin, but its effects in the intestine are poorly known. We aimed to study the involvement of HDM in the initial events that would promote sensitization through the oral route and eventually lead to allergy development. METHODS AND RESULTS BALB/c mice were exposed intragastrically to proteolytically active and inactive HDM, as such, or in combination with egg white (EW), and inflammatory and type 2 responses were evaluated. Oral administration of HDM, by virtue of its proteolytic activity, promoted the expression, in the small intestine, of genes encoding tight junction proteins, proinflammatory and Th2-biasing cytokines, and it caused expansion of group 2 innate immune cells, upregulation of Th2 cytokines, and dendritic cell migration and activation. In lymphoid tissues, its proteolytically inactivated counterpart also exerted an influence on the expression of surface DC molecules involved in interactions with T cells and in Th2 cell differentiation, which was confirmed in in vitro experiments. However, in our experimental setting we did not find evidence for the promotion of sensitization to coadministered EW. CONCLUSION Orally administered HDM upregulates tissue damage factors and also acts as an activator of innate immune cells behaving similarly to potent oral Th2 adjuvants.
Collapse
|
192
|
Jensen BAH, Holm JB, Larsen IS, von Burg N, Derer S, Sonne SB, Pærregaard SI, Damgaard MV, Indrelid SA, Rivollier A, Agrinier AL, Sulek K, Arnoldussen YJ, Fjære E, Marette A, Angell IL, Rudi K, Treebak JT, Madsen L, Åkesson CP, Agace W, Sina C, Kleiveland CR, Kristiansen K, Lea TE. Lysates of Methylococcus capsulatus Bath induce a lean-like microbiota, intestinal FoxP3 +RORγt +IL-17 + Tregs and improve metabolism. Nat Commun 2021; 12:1093. [PMID: 33597537 PMCID: PMC7889900 DOI: 10.1038/s41467-021-21408-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
Abstract
Interactions between host and gut microbial communities are modulated by diets and play pivotal roles in immunological homeostasis and health. We show that exchanging the protein source in a high fat, high sugar, westernized diet from casein to whole-cell lysates of the non-commensal bacterium Methylococcus capsulatus Bath is sufficient to reverse western diet-induced changes in the gut microbiota to a state resembling that of lean, low fat diet-fed mice, both under mild thermal stress (T22 °C) and at thermoneutrality (T30 °C). Concomitant with microbiota changes, mice fed the Methylococcus-based western diet exhibit improved glucose regulation, reduced body and liver fat, and diminished hepatic immune infiltration. Intake of the Methylococcu-based diet markedly boosts Parabacteroides abundances in a manner depending on adaptive immunity, and upregulates triple positive (Foxp3+RORγt+IL-17+) regulatory T cells in the small and large intestine. Collectively, these data point to the potential for leveraging the use of McB lysates to improve immunometabolic homeostasis.
Collapse
MESH Headings
- Animals
- Diet
- Forkhead Transcription Factors/immunology
- Forkhead Transcription Factors/metabolism
- Homeostasis/immunology
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Intestine, Large/immunology
- Intestine, Large/metabolism
- Intestine, Large/microbiology
- Intestine, Small/immunology
- Intestine, Small/metabolism
- Intestine, Small/microbiology
- Male
- Methylococcus capsulatus/chemistry
- Methylococcus capsulatus/immunology
- Mice, Inbred C57BL
- Microbiota/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Obesity/immunology
- Proteins/immunology
- Proteins/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Mice
Collapse
Affiliation(s)
- Benjamin A H Jensen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Laval, QC, Canada.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jacob B Holm
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Clinical Microbiomics, Copenhagen, Denmark
| | - Ida S Larsen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Laval, QC, Canada
| | - Nicole von Burg
- Mucosal Immunology, Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Si B Sonne
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Simone I Pærregaard
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Mucosal Immunology, Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Mads V Damgaard
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Integrative Metabolism and Environmental Influences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stine A Indrelid
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Oslo, Norway
| | - Aymeric Rivollier
- Mucosal Immunology, Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Anne-Laure Agrinier
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Laval, QC, Canada
| | - Karolina Sulek
- Novo Nordisk Foundation Center for Basic Metabolic Research, Integrative Metabolism and Environmental Influences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yke J Arnoldussen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Oslo, Norway
| | - Even Fjære
- Institute of Marine Research, Bergen, Norway
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Laval, QC, Canada
| | - Inga L Angell
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Oslo, Norway
| | - Knut Rudi
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Oslo, Norway
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Integrative Metabolism and Environmental Influences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise Madsen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Institute of Marine Research, Bergen, Norway
| | - Caroline Piercey Åkesson
- Department of Anatomy and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - William Agace
- Mucosal Immunology, Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Christian Sina
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Charlotte R Kleiveland
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Oslo, Norway
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
- Institute of Metagenomics, BGI-Shenzhen, Shenzhen, P.R. China.
| | - Tor E Lea
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Oslo, Norway.
| |
Collapse
|
193
|
Coleman OI, Haller D. Microbe-Mucus Interface in the Pathogenesis of Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13040616. [PMID: 33557139 PMCID: PMC7913824 DOI: 10.3390/cancers13040616] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Overlying gastrointestinal epithelial cells is the transparent mucus layer that separates the lumen from the host. The dynamic mucus layer serves to lubricate the mucosal surface, to protect underlying epithelial cells, and as a transport medium between luminal contents and epithelial cells. Furthermore, it provides a habitat for commensal bacteria and signals to the underlying immune system. Mucins are highly glycosylated proteins, and their glycocode is tissue-specific and closely linked to the resident microbiota. Aberrant mucin expression and glycosylation are linked to chronic inflammation and gastrointestinal cancers, including colorectal cancer (CRC). Aberrant mucus production compromises the mucus layer and allows bacteria to come into close contact with the intestinal epithelium, potentially triggering unfavorable host responses and the subsequent development of tumors. Here, we review our current understanding of the interaction between the intestinal microbiota and mucus in healthy and CRC subjects. Deep knowledge of the intricate mechanisms of microbe-mucus interactions may contribute to the development of novel treatment strategies for CRC, in which a dysfunctional mucus layer is observed.
Collapse
Affiliation(s)
- Olivia I. Coleman
- Department of Nutrition and Immunology, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
- Correspondence: ; Tel.: +49-08161-71-2375
| | - Dirk Haller
- Department of Nutrition and Immunology, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
- ZIEL—Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
194
|
das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2021; 49:5058-5100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosal tissues constitute the largest interface between the body and the surrounding environment and they regulate the access of molecules, supramolecular structures, particulate matter, and pathogens into it. All mucosae are characterized by an outer mucus layer that protects the underlying cells from physicochemical, biological and mechanical insults, a mono-layered or stratified epithelium that forms tight junctions and controls the selective transport of solutes across it and associated lymphoid tissues that play a sentinel role. Mucus is a gel-like material comprised mainly of the glycoprotein mucin and water and it displays both hydrophilic and hydrophobic domains, a net negative charge, and high porosity and pore interconnectivity, providing an efficient barrier for the absorption of therapeutic agents. To prolong the residence time, absorption and bioavailability of a broad spectrum of active compounds upon mucosal administration, mucus-penetrating and mucoadhesive particles have been designed by tuning the chemical composition, the size, the density, and the surface properties. The benefits of utilizing nanomaterials that interact intimately with mucosae by different mechanisms in the nanomedicine field have been extensively reported. To ensure the safety of these nanosystems, their compatibility is evaluated in vitro and in vivo in preclinical and clinical trials. Conversely, there is a growing concern about the toxicity of nanomaterials dispersed in air and water effluents that unintentionally come into contact with the airways and the gastrointestinal tract. Thus, deep understanding of the key nanomaterial properties that govern the interplay with mucus and tissues is crucial for the rational design of more efficient drug delivery nanosystems (nanomedicine) and to anticipate the fate and side-effects of nanoparticulate matter upon acute or chronic exposure (nanotoxicology). This review initially overviews the complex structural features of mucosal tissues, including the structure of mucus, the epithelial barrier, the mucosal-associated lymphatic tissues and microbiota. Then, the most relevant investigations attempting to identify and validate the key particle features that govern nanomaterial-mucosa interactions and that are relevant in both nanomedicine and nanotoxicology are discussed in a holistic manner. Finally, the most popular experimental techniques and the incipient use of mathematical and computational models to characterize these interactions are described.
Collapse
Affiliation(s)
- José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde & INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Roni Sverdlov Arzi
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| |
Collapse
|
195
|
Cortez V, Schultz-Cherry S. The role of goblet cells in viral pathogenesis. FEBS J 2021; 288:7060-7072. [PMID: 33507606 PMCID: PMC8013445 DOI: 10.1111/febs.15731] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Goblet cells are specialized epithelial cells that are essential to the formation of the mucus barriers in the airways and intestines. Armed with an arsenal of defenses, goblet cells can rapidly respond to infection but must balance this response with maintaining homeostasis. Whereas goblet cell defenses against bacterial and parasitic infections have been characterized, we are just beginning to understand their responses to viral infections. Here, we outline what is known about the enteric and respiratory viruses that target goblet cells, the direct and bystander effects caused by viral infection and how viral interactions with the mucus barrier can alter the course of infection. Together, these factors can play a significant role in driving viral pathogenesis and disease outcomes.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
196
|
Liu EG, Yin X, Swaminathan A, Eisenbarth SC. Antigen-Presenting Cells in Food Tolerance and Allergy. Front Immunol 2021; 11:616020. [PMID: 33488627 PMCID: PMC7821622 DOI: 10.3389/fimmu.2020.616020] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Food allergy now affects 6%-8% of children in the Western world; despite this, we understand little about why certain people become sensitized to food allergens. The dominant form of food allergy is mediated by food-specific immunoglobulin E (IgE) antibodies, which can cause a variety of symptoms, including life-threatening anaphylaxis. A central step in this immune response to food antigens that differentiates tolerance from allergy is the initial priming of T cells by antigen-presenting cells (APCs), primarily different types of dendritic cells (DCs). DCs, along with monocyte and macrophage populations, dictate oral tolerance versus allergy by shaping the T cell and subsequent B cell antibody response. A growing body of literature has shed light on the conditions under which antigen presentation occurs and how different types of T cell responses are induced by different APCs. We will review APC subsets in the gut and discuss mechanisms of APC-induced oral tolerance versus allergy to food identified using mouse models and patient samples.
Collapse
Affiliation(s)
- Elise G. Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
- Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT, United States
| | - Xiangyun Yin
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Anush Swaminathan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Stephanie C. Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
- Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
197
|
McCullough RW. Barrier therapies supporting the biology of the mucosal barrier-medical devices for common clinical mucosal disorders. Transl Gastroenterol Hepatol 2021; 6:15. [PMID: 33409409 PMCID: PMC7724181 DOI: 10.21037/tgh.2020.02.02] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/18/2020] [Indexed: 12/12/2022] Open
Abstract
Recently mucosal barrier therapies have been either CE marked or licensed by Food and Drug Administration (FDA) as medical devices. A barrier therapy (BT) uses a physical non-drug mode of action as its sole mechanism to manage a clinical syndrome. A BT is verified as technically or biologically safe having efficacy that has been proven by valid clinical trials. However, it remains unclear what anatomical portions of the mucosa are physically engaged by any given BT. Therefore, this article clarifies the physical basis for clinical efficacy of any given mucosal BT's. Current regulatory classification of medical devices is defined. More importantly, the biology of mucosal barrier is detailed by structure, compartmental elements and function. A live-function or cross-sectional anatomical perspective of the mucosa is provided. A cross-sectional anatomical perspective of the mucosa is provided in order to highlight the physical point of contact for any given mucosal BT's. Five traits of an effective mucosal BT are proposed to assess traits of fitness for any given BT. A BT is either classical, possessing four to five traits, or non-classical, possessing three or fewer traits. Among 16 commercially available mucosal BT's which share nine distinct formulations, most are non-classical BT while two (alginate and polymeric sucralfate) are classical mucosal BT's.
Collapse
Affiliation(s)
- Ricky W McCullough
- Translational Medicine Clinic and Research Center at Storrs, Storrs, CT, USA
| |
Collapse
|
198
|
Kanagaratham C, El Ansari YS, Lewis OL, Oettgen HC. IgE and IgG Antibodies as Regulators of Mast Cell and Basophil Functions in Food Allergy. Front Immunol 2020; 11:603050. [PMID: 33362785 PMCID: PMC7759531 DOI: 10.3389/fimmu.2020.603050] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Food allergy is a major health issue, affecting the lives of 8% of U.S. children and their families. There is an urgent need to identify the environmental and endogenous signals that induce and sustain allergic responses to ingested allergens. Acute reactions to foods are triggered by the activation of mast cells and basophils, both of which release inflammatory mediators that lead to a range of clinical manifestations, including gastrointestinal, cutaneous, and respiratory reactions as well as systemic anaphylaxis. Both of these innate effector cell types express the high affinity IgE receptor, FcϵRI, on their surface and are armed for adaptive antigen recognition by very-tightly bound IgE antibodies which, when cross-linked by polyvalent allergen, trigger degranulation. These cells also express inhibitory receptors, including the IgG Fc receptor, FcγRIIb, that suppress their IgE-mediated activation. Recent studies have shown that natural resolution of food allergies is associated with increasing food-specific IgG levels. Furthermore, oral immunotherapy, the sequential administration of incrementally increasing doses of food allergen, is accompanied by the strong induction of allergen-specific IgG antibodies in both human subjects and murine models. These can deliver inhibitory signals via FcγRIIb that block IgE-induced immediate food reactions. In addition to their role in mediating immediate hypersensitivity reactions, mast cells and basophils serve separate but critical functions as adjuvants for type 2 immunity in food allergy. Mast cells and basophils, activated by IgE, are key sources of IL-4 that tilts the immune balance away from tolerance and towards type 2 immunity by promoting the induction of Th2 cells along with the innate effectors of type 2 immunity, ILC2s, while suppressing the development of regulatory T cells and driving their subversion to a pathogenic pro-Th2 phenotype. This adjuvant effect of mast cells and basophils is suppressed when inhibitory signals are delivered by IgG antibodies signaling via FcγRIIb. This review summarizes current understanding of the immunoregulatory effects of mast cells and basophils and how these functions are modulated by IgE and IgG antibodies. Understanding these pathways could provide important insights into innovative strategies for preventing and/or reversing food allergy in patients.
Collapse
Affiliation(s)
- Cynthia Kanagaratham
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Yasmeen S. El Ansari
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Owen L. Lewis
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Hans C. Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
199
|
Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 2020; 69:2232-2243. [PMID: 32917747 PMCID: PMC7677487 DOI: 10.1136/gutjnl-2020-322260] [Citation(s) in RCA: 901] [Impact Index Per Article: 180.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract is often considered as a key organ involved in the digestion of food and providing nutrients to the body for proper maintenance. However, this system is composed of organs that are extremely complex. Among the different parts, the intestine is viewed as an incredible surface of contact with the environment and is colonised by hundreds of trillions of gut microbes. The role of the gut barrier has been studied for decades, but the exact mechanisms involved in the protection of the gut barrier are various and complementary. Among them, the integrity of the mucus barrier is one of the first lines of protection of the gastrointestinal tract. In the past, this 'slimy' partner was mostly considered a simple lubricant for facilitating the progression of the food bolus and the stools in the gut. Since then, different researchers have made important progress, and currently, the regulation of this mucus barrier is gaining increasing attention from the scientific community. Among the factors influencing the mucus barrier, the microbiome plays a major role in driving mucus changes. Additionally, our dietary habits (ie, high-fat diet, low-fibre/high-fibre diet, food additives, pre- probiotics) influence the mucus at different levels. Given that the mucus layer has been linked with the appearance of diseases, proper knowledge is highly warranted. Here, we debate different aspects of the mucus layer by focusing on its chemical composition, regulation of synthesis and degradation by the microbiota as well as some characteristics of the mucus layer in both physiological and pathological situations.
Collapse
Affiliation(s)
- Paola Paone
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
200
|
Yan J, Wang D, Li K, Chen Q, Lai W, Tian L, Lin B, Tan Y, Liu X, Xi Z. Toxic effects of the food additives titanium dioxide and silica on the murine intestinal tract: Mechanisms related to intestinal barrier dysfunction involved by gut microbiota. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103485. [PMID: 32891757 DOI: 10.1016/j.etap.2020.103485] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/16/2020] [Accepted: 08/26/2020] [Indexed: 05/28/2023]
Abstract
This study aimed to compare the effects of three food-grade particles (micro-TiO2, nano-TiO2, and nano-SiO2) on the murine intestinal tract and to investigate their potential mechanisms of action. A 28-day oral exposure murine model was established. Samples of blood, intestinal tissues and colon contents were collected for detection. The results showed that all three particles could cause inflammatory damage to the intestine, with nano-TiO2 showing the strongest effects. Exposure also led to changes in gut microbiota, especially mucus-associated bacteria. Our results suggest that the toxic effects on the intestine were due to reduced intestinal mucus barrier function and an increase in metabolite lipopolysaccharides which activated the expression of inflammatory factors downstream. In mice exposed to nano-TiO2, the intestinal PKC/TLR4/NF-κB signalling pathway was activated. These findings will raise awareness of toxicities associated with the use of food-grade TiO2 and SiO2.
Collapse
Affiliation(s)
- Jun Yan
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Degang Wang
- National Center of Biomedical Analysis, No. 27, Tai-Ping Road, Beijing, 100850, China
| | - Kang Li
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Qi Chen
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Bencheng Lin
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Yizhe Tan
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China.
| |
Collapse
|