151
|
Haonon O, Liu Z, Dangtakot R, Intuyod K, Pinlaor P, Puapairoj A, Cha'on U, Sengthong C, Pongking T, Onsurathum S, Yingklang M, Phetcharaburanin J, Li JV, Pinlaor S. Opisthorchis viverrini Infection Induces Metabolic and Fecal Microbial Disturbances in Association with Liver and Kidney Pathologies in Hamsters. J Proteome Res 2021; 20:3940-3951. [PMID: 34270897 DOI: 10.1021/acs.jproteome.1c00246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Opisthorchis viverrini (Ov) infection causes hepatobiliary diseases and is a major risk factor for cholangiocarcinoma. While several omics approaches have been employed to understand the pathogenesis of opisthorchiasis, effects of Ov infection on the host systemic metabolism and fecal microbiota have not been fully explored. Here, we used a 1H NMR spectroscopy-based metabolic phenotyping approach to investigate Ov infection-induced metabolic disturbances at both the acute (1 month postinfection, 1 mpi) and chronic (4 mpi) stages in hamsters. A total of 22, 3, and 4 metabolites were found to be significantly different in the liver, serum, and urine, respectively, between Ov+ and Ov- groups. Elevated levels of hepatic amino acids and tricarboxylic acid (TCA)-cycle intermediates (fumarate and malate) were co-observed with liver injury in acute infection, whereas fibrosis-associated metabolites (e.g., glycine and glutamate) increased at the chronic infection stage. Lower levels of lipid signals ((CH2)n and CH2CH2CO) and higher levels of lysine and scyllo-inositol were observed in serum from Ov+ hamsters at 1 mpi compared to Ov- controls. Urinary levels of phenylacetylglycine (a host-bacterial cometabolite) and tauro-β-muricholic acid were higher in the Ov+ group, which coexisted with hepatic and mild kidney fibrosis. Furthermore, Ov+ animals showed higher relative abundances of fecal Methanobrevibacter (Archaea), Akkermansia, and Burkholderia-Paraburkholderia compared to the noninfected controls. In conclusion, along with liver and kidney pathologies, O. viverrini infection resulted in hepatic and mild renal pathologies, disturbed hepatic amino acid metabolism and the TCA cycle, and induced changes in the fecal microbial composition and urinary host-microbial cometabolism. This study provides the initial step toward an understanding of local and systemic metabolic responses of the host to O. viverrini infection.
Collapse
Affiliation(s)
- Ornuma Haonon
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Zhigang Liu
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Rungtiwa Dangtakot
- Faculty of Medical Technology, Nakhonratchasima College, Nakhon Ratchasima 30000, Thailand
| | - Kitti Intuyod
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Porntip Pinlaor
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Centre for Research and Development in Medical Diagnostic Laboratory, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anucha Puapairoj
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ubon Cha'on
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chatchawan Sengthong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thatsanapong Pongking
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand.,Centre for Research and Development in Medical Diagnostic Laboratory, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sudarat Onsurathum
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Manachai Yingklang
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jia V Li
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
152
|
Yan Q, Lian C, Huang K, Liang L, Yu H, Yin P, Zhang J, Xing M. Constructing an Acidic Microenvironment by MoS 2 in Heterogeneous Fenton Reaction for Pollutant Control. Angew Chem Int Ed Engl 2021; 60:17155-17163. [PMID: 34041830 DOI: 10.1002/anie.202105736] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 12/18/2022]
Abstract
Although Fenton or Fenton-like reactions have been widely used in the environment, biology, life science, and other fields, the sharp decrease in their activity under macroneutral conditions is still a large problem. This study reports a MoS2 cocatalytic heterogeneous Fenton (CoFe2 O4 /MoS2 ) system capable of sustainably degrading organic pollutants, such as phenol, in a macroneutral buffer solution. An acidic microenvironment in the slipping plane of CoFe2 O4 is successfully constructed by chemically bonding with MoS2 . This microenvironment is not affected by the surrounding pH, which ensures the stable circulation of Fe3+ /Fe2+ on the surface of CoFe2 O4 /MoS2 under neutral or even alkaline conditions. Additionally, CoFe2 O4 /MoS2 always exposes "fresh" active sites for the decomposition of H2 O2 and the generation of 1 O2 , effectively inhibiting the production of iron sludge and enhancing the remediation of organic pollutants, even in actual wastewater. This work not only experimentally verifies the existence of an acidic microenvironment on the surface of heterogeneous catalysts for the first time, but also eliminates the pH limitation of the Fenton reaction for pollutant remediation, thereby expanding the applicability of Fenton technology.
Collapse
Affiliation(s)
- Qingyun Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Kai Huang
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Lihong Liang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Haoran Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Pengcheng Yin
- BCEG Environmental Remediation Co., LTD., NO.6 of Jingshun East St., Chaoyang Dist., Beijing, China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
153
|
Ribeiro CA, Rahman LA, Holmes LG, Woody AM, Webster CM, Monaghan TI, Robinson GK, Mühlschlegel FA, Goodhead IB, Shepherd M. Nitric oxide (NO) elicits aminoglycoside tolerance in Escherichia coli but antibiotic resistance gene carriage and NO sensitivity have not co-evolved. Arch Microbiol 2021; 203:2541-2550. [PMID: 33682076 PMCID: PMC8205896 DOI: 10.1007/s00203-021-02245-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/17/2020] [Accepted: 02/14/2021] [Indexed: 11/26/2022]
Abstract
The spread of multidrug-resistance in Gram-negative bacterial pathogens presents a major clinical challenge, and new approaches are required to combat these organisms. Nitric oxide (NO) is a well-known antimicrobial that is produced by the immune system in response to infection, and numerous studies have demonstrated that NO is a respiratory inhibitor with both bacteriostatic and bactericidal properties. However, given that loss of aerobic respiratory complexes is known to diminish antibiotic efficacy, it was hypothesised that the potent respiratory inhibitor NO would elicit similar effects. Indeed, the current work demonstrates that pre-exposure to NO-releasers elicits a > tenfold increase in IC50 for gentamicin against pathogenic E. coli (i.e. a huge decrease in lethality). It was therefore hypothesised that hyper-sensitivity to NO may have arisen in bacterial pathogens and that this trait could promote the acquisition of antibiotic-resistance mechanisms through enabling cells to persist in the presence of toxic levels of antibiotic. To test this hypothesis, genomics and microbiological approaches were used to screen a collection of E. coli clinical isolates for antibiotic susceptibility and NO tolerance, although the data did not support a correlation between increased carriage of antibiotic resistance genes and NO tolerance. However, the current work has important implications for how antibiotic susceptibility might be measured in future (i.e. ± NO) and underlines the evolutionary advantage for bacterial pathogens to maintain tolerance to toxic levels of NO.
Collapse
Affiliation(s)
- Cláudia A Ribeiro
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK
| | - Luke A Rahman
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK
| | - Louis G Holmes
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK
| | - Ayrianna M Woody
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK
| | - Calum M Webster
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK
| | - Taylor I Monaghan
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK
| | - Gary K Robinson
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK
| | - Fritz A Mühlschlegel
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK
- Clinical Microbiology Service, East Kent Hospitals University NHS Foundation Trust, William Harvey Hospital, Ashford, Kent, TN24 0LZ, UK
- Laboratoire National de Santé 1, Rue Louis Rech, L-3555, Dudelange, Luxembourg
| | - Ian B Goodhead
- School of Science, Engineering & Environment, University of Salford, Lancashire, M5 4WT, UK
| | - Mark Shepherd
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
154
|
Yan Q, Lian C, Huang K, Liang L, Yu H, Yin P, Zhang J, Xing M. Constructing an Acidic Microenvironment by MoS
2
in Heterogeneous Fenton Reaction for Pollutant Control. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105736] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qingyun Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering Shanghai Engineering Research Center of Hierarchical Nanomaterials School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Kai Huang
- State Key Laboratory of Chemical Engineering Shanghai Engineering Research Center of Hierarchical Nanomaterials School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Lihong Liang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Haoran Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Pengcheng Yin
- BCEG Environmental Remediation Co., LTD. NO.6 of Jingshun East St., Chaoyang Dist. Beijing China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
155
|
Reigada I, San-Martin-Galindo P, Gilbert-Girard S, Chiaro J, Cerullo V, Savijoki K, Nyman TA, Fallarero A, Miettinen I. Surfaceome and Exoproteome Dynamics in Dual-Species Pseudomonas aeruginosa and Staphylococcus aureus Biofilms. Front Microbiol 2021; 12:672975. [PMID: 34248881 PMCID: PMC8267900 DOI: 10.3389/fmicb.2021.672975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/21/2021] [Indexed: 01/12/2023] Open
Abstract
Bacterial biofilms are an important underlying cause for chronic infections. By switching into the biofilm state, bacteria can evade host defenses and withstand antibiotic chemotherapy. Despite the fact that biofilms at clinical and environmental settings are mostly composed of multiple microbial species, biofilm research has largely been focused on single-species biofilms. In this study, we investigated the interaction between two clinically relevant bacterial pathogens (Staphylococcus aureus and Pseudomonas aeruginosa) by label-free quantitative proteomics focusing on proteins associated with the bacterial cell surfaces (surfaceome) and proteins exported/released to the extracellular space (exoproteome). The changes observed in the surfaceome and exoproteome of P. aeruginosa pointed toward higher motility and lower pigment production when co-cultured with S. aureus. In S. aureus, lower abundances of proteins related to cell wall biosynthesis and cell division, suggesting increased persistence, were observed in the dual-species biofilm. Complementary phenotypic analyses confirmed the higher motility and the lower pigment production in P. aeruginosa when co-cultured with S. aureus. Higher antimicrobial tolerance associated with the co-culture setting was additionally observed in both species. To the best of our knowledge, this study is among the first systematic explorations providing insights into the dynamics of both the surfaceome and exoproteome of S. aureus and P. aeruginosa dual-species biofilms.
Collapse
Affiliation(s)
- Inés Reigada
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paola San-Martin-Galindo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Shella Gilbert-Girard
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jacopo Chiaro
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kirsi Savijoki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Adyary Fallarero
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ilkka Miettinen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
156
|
Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases. Cells 2021; 10:cells10071591. [PMID: 34202661 PMCID: PMC8307549 DOI: 10.3390/cells10071591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022] Open
Abstract
It was proposed that the last universal common ancestor (LUCA) evolved under high temperatures in an oxygen-free environment, similar to those found in deep-sea vents and on volcanic slopes. Therefore, spontaneous DNA decay, such as base loss and cytosine deamination, was the major factor affecting LUCA’s genome integrity. Cosmic radiation due to Earth’s weak magnetic field and alkylating metabolic radicals added to these threats. Here, we propose that ancient forms of life had only two distinct repair mechanisms: versatile apurinic/apyrimidinic (AP) endonucleases to cope with both AP sites and deaminated residues, and enzymes catalyzing the direct reversal of UV and alkylation damage. The absence of uracil–DNA N-glycosylases in some Archaea, together with the presence of an AP endonuclease, which can cleave uracil-containing DNA, suggests that the AP endonuclease-initiated nucleotide incision repair (NIR) pathway evolved independently from DNA glycosylase-mediated base excision repair. NIR may be a relic that appeared in an early thermophilic ancestor to counteract spontaneous DNA damage. We hypothesize that a rise in the oxygen level in the Earth’s atmosphere ~2 Ga triggered the narrow specialization of AP endonucleases and DNA glycosylases to cope efficiently with a widened array of oxidative base damage and complex DNA lesions.
Collapse
|
157
|
Zhan C, Li X, Yang Y, Nielsen J, Bai Z, Chen Y. Strategies and challenges with the microbial conversion of methanol to high-value chemicals. Biotechnol Bioeng 2021; 118:3655-3668. [PMID: 34133022 DOI: 10.1002/bit.27862] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023]
Abstract
As alternatives to traditional fermentation substrates, methanol (CH3 OH), carbon dioxide (CO2 ) and methane (CH4 ) represent promising one-carbon (C1) sources that are readily available at low-cost and share similar metabolic pathway. Of these C1 compounds, methanol is used as a carbon and energy source by native methylotrophs, and can be obtained from CO2 and CH4 by chemical catalysis. Therefore, constructing and rewiring methanol utilization pathways may enable the use of one-carbon sources for microbial fermentations. Recent bioengineering efforts have shown that both native and nonnative methylotrophic organisms can be engineered to convert methanol, together with other carbon sources, into biofuels and other commodity chemicals. However, many challenges remain and must be overcome before industrial-scale bioprocessing can be established using these engineered cell refineries. Here, we provide a comprehensive summary and comparison of methanol metabolic pathways from different methylotrophs, followed by a review of recent progress in engineering methanol metabolic pathways in vitro and in vivo to produce chemicals. We discuss the major challenges associated with establishing efficient methanol metabolic pathways in microbial cells, and propose improved designs for future engineering.
Collapse
Affiliation(s)
- Chunjun Zhan
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Xiaowei Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.,BioInnovation Institute, Copenhagen N, Denmark
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
158
|
Goff JL, Schaefer JK, Yee N. Extracellular sulfite is protective against reactive oxygen species and antibiotic stress in Shewanella oneidensis MR-1. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:394-400. [PMID: 33870629 DOI: 10.1111/1758-2229.12947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the extracellular reactive sulfur species produced by Shewanella oneidensis MR-1 during growth. The results showed that sulfite is the major extracellular sulfur metabolite released to the growth medium under both aerobic and anaerobic growth conditions. Exogenous sulfite at physiological concentrations protected S. oneidensis MR-1 from hydrogen peroxide toxicity and enhanced tolerance to the beta-lactam antibiotics cefazolin, meropenem, doripenem and ertapenem. These findings suggest that the release of extracellular sulfite is a bacterial defence mechanism that plays a role in the mitigation of environmental stress.
Collapse
Affiliation(s)
- Jennifer L Goff
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, USA
| | - Jeffra K Schaefer
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Nathan Yee
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, USA
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
159
|
Jessop ZM, García-Gareta E, Zhang Y, Jovic TH, Badiei N, Sharma V, Whitaker IS, Kang N. Role of hydrogen peroxide in intra-operative wound preparation based on an in vitro fibrin clot degradation model. JPRAS Open 2021; 29:113-122. [PMID: 34195332 PMCID: PMC8237242 DOI: 10.1016/j.jpra.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Three per cent hydrogen peroxide (H2O2) is widely used to irrigate acute and chronic wounds in the surgical setting and clinical experience tells us that it is more effective at removing dried-on blood than normal saline alone. We hypothesise that this is due to the effect of H2O2 on fibrin clot architecture via fibrinolysis. We investigate the mechanisms and discuss the clinical implications using an in vitro model. Coagulation assays with normal saline (NaCl), 1% and 3% concentrations of H2O2 were performed to determine the effect on fibrin clot formation. These effects were confirmed by spectrophotometry. The effects of 1%, 3% and 10% H2O2 on the macroscopic and microscopic features of fibrin clots were assessed at set time intervals and compared to a NaCl control. Quantitative analysis of fibrin networks was undertaken to determine the fibre length, diameter, branch point density and pore size. Fibrin clots immersed in 1%, 3% and 10% H2O2 demonstrated volume losses of 0.09-0.25mm3/min, whereas those immersed in the normal saline gained in volume by 0.02±0.13 mm3/min. Quantitative analysis showed that H2O2 affects the structure of the fibrin clot in a concentration-dependent manner, with the increase in fibre length, diameter and consequently pore sizes. Our results support our hypothesis that the efficacy of H2O2 in cleaning blood from wounds is enhanced by its effects on fibrin clot architecture in a concentration- and time-dependent manner. The observed changes in fibre size and branch point density suggest that H2O2 is acting on the quaternary structure of the fibrin clot, most likely via its effect on cross-linking of the fibrin monomers and may therefore be of benefit for the removal of other fibrin-dependent structures such as wound slough.
Collapse
Affiliation(s)
- Zita M Jessop
- Reconstructive Surgery & Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University, United Kingdom.,The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom.,Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood, United Kingdom
| | - Elena García-Gareta
- Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood, United Kingdom
| | - Yadan Zhang
- Reconstructive Surgery & Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University, United Kingdom
| | - Thomas H Jovic
- Reconstructive Surgery & Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University, United Kingdom.,The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Nafiseh Badiei
- Centre for NanoHealth, Swansea University, United Kingdom
| | - Vaibhav Sharma
- Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood, United Kingdom
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University, United Kingdom.,The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Norbert Kang
- Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood, United Kingdom.,Department of Plastic and Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
160
|
Evans A, Kavanagh KA. Evaluation of metal-based antimicrobial compounds for the treatment of bacterial pathogens. J Med Microbiol 2021; 70:001363. [PMID: 33961541 PMCID: PMC8289199 DOI: 10.1099/jmm.0.001363] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/08/2021] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) is one of the greatest global health challenges of modern times and its prevalence is rising worldwide. AMR within bacteria reduces the efficacy of antibiotics and increases both the morbidity and the mortality associated with bacterial infections. Despite this growing risk, few antibiotics with a novel mode of action are being produced, leading to a lack of antibiotics that can effectively treat bacterial infections with AMR. Metals have a history of antibacterial use but upon the discovery of antibiotics, often became overlooked as antibacterial agents. Meanwhile, metal-based complexes have been used as treatments for other diseases, such as the gold-containing drug auranofin, used to treat rheumatoid arthritis. Metal-based antibacterial compounds have novel modes of action that provide an advantage for the treatment of bacterial infections with resistance to conventional antibiotics. In this review, the antibacterial activity, mode of action, and potential for systemic use of a number of metal-based antibacterial complexes are discussed. The current limitations of these compounds are highlighted to determine if metal-based agents are a potential solution for the treatment of bacterial infections, especially those resistant to conventional antibiotics.
Collapse
Affiliation(s)
- Andris Evans
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Kevin A. Kavanagh
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Co. Kildare, Ireland
| |
Collapse
|
161
|
Sen A, Imlay JA. How Microbes Defend Themselves From Incoming Hydrogen Peroxide. Front Immunol 2021; 12:667343. [PMID: 33995399 PMCID: PMC8115020 DOI: 10.3389/fimmu.2021.667343] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 12/02/2022] Open
Abstract
Microbes rely upon iron as a cofactor for many enzymes in their central metabolic processes. The reactive oxygen species (ROS) superoxide and hydrogen peroxide react rapidly with iron, and inside cells they can generate both enzyme and DNA damage. ROS are formed in some bacterial habitats by abiotic processes. The vulnerability of bacteria to ROS is also apparently exploited by ROS-generating host defense systems and bacterial competitors. Phagocyte-derived O 2 - can toxify captured bacteria by damaging unidentified biomolecules on the cell surface; it is unclear whether phagocytic H2O2, which can penetrate into the cell interior, also plays a role in suppressing bacterial invasion. Both pathogenic and free-living microbes activate defensive strategies to defend themselves against incoming H2O2. Most bacteria sense the H2O2via OxyR or PerR transcription factors, whereas yeast uses the Grx3/Yap1 system. In general these regulators induce enzymes that reduce cytoplasmic H2O2 concentrations, decrease the intracellular iron pools, and repair the H2O2-mediated damage. However, individual organisms have tailored these transcription factors and their regulons to suit their particular environmental niches. Some bacteria even contain both OxyR and PerR, raising the question as to why they need both systems. In lab experiments these regulators can also respond to nitric oxide and disulfide stress, although it is unclear whether the responses are physiologically relevant. The next step is to extend these studies to natural environments, so that we can better understand the circumstances in which these systems act. In particular, it is important to probe the role they may play in enabling host infection by microbial pathogens.
Collapse
Affiliation(s)
| | - James A. Imlay
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
162
|
Sinulingga K, Sirait M, Siregar N, Abdullah H. Synthesis and characterizations of natural limestone-derived nano-hydroxyapatite (HAp): a comparison study of different metals doped HAps on antibacterial activity. RSC Adv 2021; 11:15896-15904. [PMID: 35481166 PMCID: PMC9030672 DOI: 10.1039/d1ra00308a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022] Open
Abstract
Earth-abundant mineral limestone obtained from North Sumatera, Indonesia, has been utilized to synthesize nano-hydroxyapatite (HAp). Although HAp is biocompatible to the human bone, its antibacterial activity is still very low. Herein, different metal ions (i.e., Ag, Cu, Zn, and Mg) were doped into HAp to improve the antibacterial activity. The as-synthesized HAp was characterized by X-ray ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), energy disperse spectroscopy (EDS), Fourier transmission infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET). The antibacterial test showed that the performance of HAp to inactivate bacterial growth was significantly improved after incorporating the metal ion dopants into HAp. Ag-HAp exhibited the highest activity toward E. coli and S. aureus with an antibacterial rate of 99.9 ± 0.1%, followed by Zn-HAp, Cu-HAp, and Mg-HAp. Antibacterial activities of different metal ion doped HAp towards (a) E. coli and (b) S. aureus bacteria.![]()
Collapse
Affiliation(s)
- Karya Sinulingga
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan 20221 Indonesia
| | - Makmur Sirait
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan 20221 Indonesia
| | - Nurdin Siregar
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan 20221 Indonesia
| | - Hairus Abdullah
- Department of Industrial Engineering, Universitas Prima Indonesia Medan Indonesia
| |
Collapse
|
163
|
Liao Z, Li F, Tang Y, Liu W, Gao J, Lan T, Yang J, Liao J, Liu N, Yang Y. Preliminary in vitro comparison of 111In and 131I labeled nimotuzumabs. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07677-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
164
|
Tayyaba, Rehman FU, Shaikh S, Tanziela, Semcheddine F, Du T, Jiang H, Wang X. In situ self-assembled Ag-Fe 3O 4 nanoclusters in exosomes for cancer diagnosis. J Mater Chem B 2021; 8:2845-2855. [PMID: 32175535 DOI: 10.1039/c9tb02610j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recently, exosomes have gained attention as an effective tool for early cancer detection. Almost all types of cells release exosomes, making them substantially important for disease diagnosis. In this study, we have utilized HepG2 cancer cells for the in situ biosynthesis of silver and iron oxide nanoclusters (NCs) from their respective salts (i.e., AgNO3 and FeCl2, respectively) in the presence of glutathione (GSH). The self-assembled biosynthesized silver and iron NCs were readily loaded on exosomes as payloads and secreted into the cell culture medium. The cargo loaded exosomes were then isolated and characterized by electron microscopy for nano-silver and iron oxide NC confirmation. Ag NCs have potential as a fluorescent probe and Fe3O4 NCs as a contrast agent for CT and MRI. Furthermore, these isolated exosomes from HepG2 cancer cells have a significant influence on cellular uptake and cell viability when exposed to both HepG2 and U87 cancer cells. These findings demonstrate that the biocompatible nature of these self-assembled NCs loaded on exosomes could be utilized to bioimage cancer in the initial stages through fluorescence imaging.
Collapse
Affiliation(s)
- Tayyaba
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Fawad Ur Rehman
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Sana Shaikh
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Tanziela
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Farouk Semcheddine
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Tianyu Du
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
165
|
Wallace SS. Molecular radiobiology and the origins of the base excision repair pathway: an historical perspective. Int J Radiat Biol 2021; 99:891-902. [DOI: 10.1080/09553002.2021.1908639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Susan S. Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
166
|
Oxidative Potential, Cytotoxicity, and Intracellular Oxidative Stress Generating Capacity of PM10: A Case Study in South of Italy. ATMOSPHERE 2021. [DOI: 10.3390/atmos12040464] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Long and short-term exposure to atmospheric particulate matter (PM) has detrimental effects on human health. The effective mechanisms leading to PM toxicity are still not fully understood, even if it is known that physical-chemical properties, strongly influenced by sources and atmospheric processes, are known to play an important role. In this work, PM10 samples were collected, at an urban background site in southern Italy, to determine cytotoxicity (using MTT test on A549 cells), genotoxicity (using the comet assay), and intracellular oxidative stress on A549 cells exposed for 24 h to aqueous extracts of PM10 samples. Organic carbon (OC) and elemental carbon (EC) content of PM10 and acellular determination of oxidative potential with DTT assay were performed to compare results of acellular and cellular biological assays. Cellular (OSGCV and MTTV) and acellular (OPDTTV) outcomes, normalized in volume, are well correlated (statistically significant results) with carbon content suggesting that combustion sources play an important role in determining cellular oxidative stress and cytotoxicity of PM10. Even if the number of data is limited, genotoxicity results are well correlated (Pearson r > 0.95) with OSGCV and MTTV, and a weaker, but statistically significant correlation was observed with OPDTTV. OSGCV is well correlated with the cell mortality observed with the MTTV test and a lower, but still statistically significant correlation is observed between MTTV and OPDDTV. A statistically significant correlation was found between OPDTTV and OSGCV results. When the outcomes of the cellular and acellular assay are compared normalized in mass (i.e., intrinsic values), the correlations become significantly weaker suggesting that the different sources acting on the site produces particulate matter with different toxicological potential influencing differently the biological tests studied.
Collapse
|
167
|
Agashe P, Kuzminov A. Catalase inhibition by nitric oxide potentiates hydrogen peroxide to trigger catastrophic chromosome fragmentation in Escherichia coli. Genetics 2021; 218:6214516. [PMID: 34027548 DOI: 10.1093/genetics/iyab057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/02/2021] [Indexed: 01/01/2023] Open
Abstract
Hydrogen peroxide (H2O2, HP) is a universal toxin that organisms deploy to kill competing or invading cells. Bactericidal action of H2O2 presents several questions. First, the lethal H2O2 concentrations in bacterial cultures are 1000x higher than, for example, those calculated for the phagosome. Second, H2O2-alone kills bacteria in cultures either by mode-one, via iron-mediated chromosomal damage, or by mode-two, via unknown targets, but the killing mode in phagosomes is unclear. Third, phagosomal H2O2 toxicity is enhanced by production of nitric oxide (NO), but in vitro studies disagree: some show NO synergy with H2O2 antimicrobial action, others instead report alleviation. To investigate this "NO paradox," we treated Escherichia coli with various concentrations of H2O2-alone or H2O2+NO, measuring survival and chromosome stability. We found that all NO concentrations make sublethal H2O2 treatments highly lethal, via triggering catastrophic chromosome fragmentation (mode-one killing). Yet, NO-alone is not lethal, potentiating H2O2 toxicity by blocking H2O2 scavenging in cultures. Catalases represent obvious targets of NO inhibition, and catalase-deficient mutants are indeed killed equally by H2O2-alone or H2O2+NO treatments, also showing similar levels of chromosome fragmentation. Interestingly, iron chelation blocks chromosome fragmentation in catalase-deficient mutants without blocking H2O2-alone lethality, indicating mode-two killing. In fact, mode-two killing of WT cells by much higher H2O2 concentrations is transiently alleviated by NO, reproducing the "NO paradox." We conclude that NO potentiates H2O2 toxicity by promoting mode-one killing (via catastrophic chromosome fragmentation) by otherwise static low H2O2 concentrations, while transiently suppressing mode-two killing by immediately lethal high H2O2 concentrations.
Collapse
Affiliation(s)
- Pooja Agashe
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
168
|
Zlotnicki J, Gabrielli A, Urish KL, Brothers KM. Clinical Evidence of Current Irrigation Practices and the Use of Oral Antibiotics to Prevent and Treat Periprosthetic Joint Infection. Orthop Clin North Am 2021; 52:93-101. [PMID: 33752842 PMCID: PMC7990073 DOI: 10.1016/j.ocl.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jason Zlotnicki
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Alexandra Gabrielli
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Kenneth L Urish
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Kimberly M Brothers
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA.
| |
Collapse
|
169
|
The gut microbiota metabolite urolithin A inhibits NF-κB activation in LPS stimulated BMDMs. Sci Rep 2021; 11:7117. [PMID: 33782464 PMCID: PMC8007722 DOI: 10.1038/s41598-021-86514-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a natural defense process of the innate immune system, associated with the release of proinflammatory cytokines such as interleukin-1β, interleukin-6, interleukin-12 and TNFα; and enzymes including iNOS through the activation and nuclear translocation of NF-κB p65 due to the phosphorylation of IκBα. Regulation of intracellular Ca2+ is considered a promising strategy for the prevention of reactive oxygen species (ROS) production and accumulation of DNA double strand breaks (DSBs) that occurs in inflammatory-associated-diseases. Among the metabolites of ellagitannins that are produced in the gut microbiome, urolithin A (UA) has received an increasing attention as a novel candidate with anti-inflammatory and anti-oxidant effects. Here, we investigated the effect of UA on the suppression of pro-inflammatory molecules and NF-κB activation by targeting TLR4 signalling pathway. We also identified the influence of UA on Ca2+ entry, ROS production and DSBs availability in murine bone-marrow-derived macrophages challenged with lipopolysaccharides (LPS). We found that UA inhibits IκBα phosphorylation and supresses MAPK and PI3K activation. In addition, UA was able to reduce calcium entry, ROS production and DSBs availability. In conclusion, we suggest that urolithin A is a promising therapeutic agent for treating inflammatory diseases through suppression of NF-κB and preserving DNA through maintaining intracellular calcium and ROS homeostasis.
Collapse
|
170
|
Barbouti A, Lagopati N, Veroutis D, Goulas V, Evangelou K, Kanavaros P, Gorgoulis VG, Galaris D. Implication of Dietary Iron-Chelating Bioactive Compounds in Molecular Mechanisms of Oxidative Stress-Induced Cell Ageing. Antioxidants (Basel) 2021; 10:491. [PMID: 33800975 PMCID: PMC8003849 DOI: 10.3390/antiox10030491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
One of the prevailing perceptions regarding the ageing of cells and organisms is the intracellular gradual accumulation of oxidatively damaged macromolecules, leading to the decline of cell and organ function (free radical theory of ageing). This chemically undefined material known as "lipofuscin," "ceroid," or "age pigment" is mainly formed through unregulated and nonspecific oxidative modifications of cellular macromolecules that are induced by highly reactive free radicals. A necessary precondition for reactive free radical generation and lipofuscin formation is the intracellular availability of ferrous iron (Fe2+) ("labile iron"), catalyzing the conversion of weak oxidants such as peroxides, to extremely reactive ones like hydroxyl (HO•) or alcoxyl (RO•) radicals. If the oxidized materials remain unrepaired for extended periods of time, they can be further oxidized to generate ultimate over-oxidized products that are unable to be repaired, degraded, or exocytosed by the relevant cellular systems. Additionally, over-oxidized materials might inactivate cellular protection and repair mechanisms, thus allowing for futile cycles of increasingly rapid lipofuscin accumulation. In this review paper, we present evidence that the modulation of the labile iron pool distribution by nutritional or pharmacological means represents a hitherto unappreciated target for hampering lipofuscin accumulation and cellular ageing.
Collapse
Affiliation(s)
- Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Nefeli Lagopati
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece; (N.L.); (D.V.); (K.E.); (V.G.G.)
| | - Dimitris Veroutis
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece; (N.L.); (D.V.); (K.E.); (V.G.G.)
| | - Vlasios Goulas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Lemesos, Cyprus;
| | - Konstantinos Evangelou
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece; (N.L.); (D.V.); (K.E.); (V.G.G.)
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Vassilis G. Gorgoulis
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece; (N.L.); (D.V.); (K.E.); (V.G.G.)
- Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- Faculty of Biology, Medicine and Health Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Galaris
- Laboratory of Biological Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
171
|
Huang M, Liu M, Liu J, Zhu D, Tang Q, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Wang M, Cheng A. Functional characterization of Fur in iron metabolism, oxidative stress resistance and virulence of Riemerella anatipestifer. Vet Res 2021; 52:48. [PMID: 33741064 PMCID: PMC7976709 DOI: 10.1186/s13567-021-00919-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Iron is essential for most bacteria to survive, but excessive iron leads to damage by the Fenton reaction. Therefore, the concentration of intracellular free iron must be strictly controlled in bacteria. Riemerella anatipestifer (R. anatipestifer), a Gram-negative bacterium, encodes the iron uptake system. However, the iron homeostasis mechanism remains largely unknown. In this study, it was shown that compared with the wild type R. anatipestifer CH-1, R. anatipestifer CH-1Δfur was more sensitive to streptonigrin, and this effect was alleviated when the bacteria were cultured in iron-depleted medium, suggesting that the fur mutant led to excess iron accumulation inside cells. Similarly, compared with R. anatipestifer CH-1∆recA, R. anatipestifer CH-1∆recAΔfur was more sensitive to H2O2-induced oxidative stress when the bacteria were grown in iron-rich medium rather than iron-depleted medium. Accordingly, it was shown that R. anatipestifer CH-1∆recAΔfur produced more intracellular ROS than R. anatipestifer CH-1∆recA in iron-rich medium. Electrophoretic mobility shift assays showed that R. anatipestifer CH-1 Fur suppressed the transcription of putative iron uptake genes through binding to their promoter regions. Finally, it was shown that compared with the wild type, R. anatipestifer CH-1Δfur was significantly attenuated in ducklings and that the colonization ability of R. anatipestifer CH-1Δfur in various tissues or organs was decreased. All these results suggested that Fur is important for iron homeostasis in R. anatipestifer and its pathogenic mechanism.
Collapse
Affiliation(s)
- Mi Huang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Jiajun Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Qianying Tang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
172
|
Paul BD. Neuroprotective Roles of the Reverse Transsulfuration Pathway in Alzheimer's Disease. Front Aging Neurosci 2021; 13:659402. [PMID: 33796019 PMCID: PMC8007787 DOI: 10.3389/fnagi.2021.659402] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
The reverse transsulfuration pathway has emerged as a central hub that integrates the metabolism of sulfur-containing amino acids and redox homeostasis. Transsulfuration involves the transfer of sulfur from homocysteine to cysteine. Cysteine serves as the precursor for several sulfur-containing molecules, which play diverse roles in cellular processes. Recent evidence shows that disruption of the flux through the pathway has deleterious consequences. In this review article, I will discuss the actions and regulation of the reverse transsulfuration pathway and its links to other metabolic pathways, which are disrupted in Alzheimer’s disease (AD). The potential nodes of therapeutic intervention are also discussed, which may pave the way for the development of novel treatments.
Collapse
Affiliation(s)
- Bindu Diana Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
173
|
Wang Y, Jin S, Luo D, He D, Shi C, Zhu L, Guan B, Li Z, Zhang T, Zhou Y, Wang CY, Liu Y. Functional regeneration and repair of tendons using biomimetic scaffolds loaded with recombinant periostin. Nat Commun 2021; 12:1293. [PMID: 33637721 PMCID: PMC7910464 DOI: 10.1038/s41467-021-21545-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Tendon injuries disrupt the balance between stability and mobility, causing compromised functions and disabilities. The regeneration of mature, functional tendons remains a clinical challenge. Here, we perform transcriptional profiling of tendon developmental processes to show that the extracellular matrix-associated protein periostin (Postn) contributes to the maintenance of tendon stem/progenitor cell (TSPC) functions and promotes tendon regeneration. We show that recombinant periostin (rPOSTN) promotes the proliferation and stemness of TSPCs, and maintains the tenogenic potentials of TSPCs in vitro. We also find that rPOSTN protects TSPCs against functional impairment during long-term passage in vitro. For in vivo tendon formation, we construct a biomimetic parallel-aligned collagen scaffold to facilitate TSPC tenogenesis. Using a rat full-cut Achilles tendon defect model, we demonstrate that scaffolds loaded with rPOSTN promote endogenous TSPC recruitment, tendon regeneration and repair with native-like hierarchically organized collagen fibers. Moreover, newly regenerated tendons show recovery of mechanical properties and locomotion functions. The regeneration of functional tendons remains a clinical challenge. Here the authors develop a biomimetic scaffold loaded with recombinant periostin and demonstrate its functionality in promoting tendon stem/progenitor cell recruitment and tenogenic differentiation, and tendon regeneration in a rat full-cut Achilles tendon defect model.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Shanshan Jin
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Dan Luo
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing, China
| | - Danqing He
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Chunyan Shi
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung & Vascular Diseases, Capital Medical University, Beijing, China
| | - Lisha Zhu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Bo Guan
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zixin Li
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ting Zhang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yanheng Zhou
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry and Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, United States
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China.
| |
Collapse
|
174
|
Anti-metastasis and anti-proliferation effect of mitochondria-accumulating ruthenium(II) complexes via redox homeostasis disturbance and energy depletion. J Inorg Biochem 2021; 217:111380. [PMID: 33578250 DOI: 10.1016/j.jinorgbio.2021.111380] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/10/2023]
Abstract
The antiproliferative activity of three cyclometalated Ru(II) complexes with the formula [Ru(bpy)2L]PF6, where bpy = 2,2'-bipyridine, Ru1: L1 = phenanthro[4,5-fgh]quinoxaline; Ru2: L2 = benzo[f]naphtho[2,1-h]quinoxaline; and Ru3: L3 = phenanthro[9,10-b]pyrazine, have been synthesized and characterized. The lipophilicity of the three Ru(II) complexes was modulated by the alteration of the planarity in the ligands of the complexes. With appropriate lipophilicity, Ru1-Ru3 exhibited mitochondrial accumulating property and cytotoxic activity against a spectrum of cancer cell lines. The underlying mechanism study indicated that these Ru(II) complexes can selectively accumulate in mitochondria and disrupt physiological processes, including the redox balance and energy generation in cancer cells. Elevation of iron content in triple-negative breast cancer (MDA-MB-231 cells) was observed after treatment with Ru(II) complexes, which may contribute to the production of reactive oxygen species (ROS) via Fenton reaction chemistry. Besides, the Ru(II) complexes decreased the intracellular glutathione (GSH) in cancer cells, leading to the failure in the cells to combat oxidative damage. Both of the mentioned processes contribute to the high oxidative stress and eventually lead to cancer cell death. On the other hand, Ru1-Ru3 significantly induced the depletion of adenosine triphosphate (ATP), causing disturbance of energy generation. Moreover, the results of wound-healing assay and transwell invasion assay, as well as the tube formation assay indicated the anti-migration and anti-angiogenesis properties of Ru1-Ru3. Our study demonstrated that these Ru(II) complexes are promising chemotherapeutic agents with oxidative stress induction and energy generation disturbance.
Collapse
|
175
|
Abstract
During the past 85 years of antibiotic use, we have learned a great deal about how these 'miracle' drugs work. We know the molecular structures and interactions of these drugs and their targets and the effects on the structure, physiology and replication of bacteria. Collectively, we know a great deal about these proximate mechanisms of action for virtually all antibiotics in current use. What we do not know is the ultimate mechanism of action; that is, how these drugs irreversibly terminate the 'individuality' of bacterial cells by removing barriers to the external world (cell envelopes) or by destroying their genetic identity (DNA). Antibiotics have many different 'mechanisms of action' that converge to irreversible lethal effects. In this Perspective, we consider what our knowledge of the proximate mechanisms of action of antibiotics and the pharmacodynamics of their interaction with bacteria tell us about the ultimate mechanisms by which these antibiotics kill bacteria.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain.
| | - Bruce R Levin
- Department of Biology, Emory University, Atlanta, GA, USA.
- Antibiotic Resistance Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
176
|
Mai-Prochnow A, Zhou R, Zhang T, Ostrikov K(K, Mugunthan S, Rice SA, Cullen PJ. Interactions of plasma-activated water with biofilms: inactivation, dispersal effects and mechanisms of action. NPJ Biofilms Microbiomes 2021; 7:11. [PMID: 33504802 PMCID: PMC7841176 DOI: 10.1038/s41522-020-00180-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/11/2020] [Indexed: 01/30/2023] Open
Abstract
Biofilms have several characteristics that ensure their survival in a range of adverse environmental conditions, including high cell numbers, close cell proximity to allow easy genetic exchange (e.g., for resistance genes), cell communication and protection through the production of an exopolysaccharide matrix. Together, these characteristics make it difficult to kill undesirable biofilms, despite the many studies aimed at improving the removal of biofilms. An elimination method that is safe, easy to deliver in physically complex environments and not prone to microbial resistance is highly desired. Cold atmospheric plasma, a lightning-like state generated from air or other gases with a high voltage can be used to make plasma-activated water (PAW) that contains many active species and radicals that have antimicrobial activity. Recent studies have shown the potential for PAW to be used for biofilm elimination without causing the bacteria to develop significant resistance. However, the precise mode of action is still the subject of debate. This review discusses the formation of PAW generated species and their impacts on biofilms. A focus is placed on the diffusion of reactive species into biofilms, the formation of gradients and the resulting interaction with the biofilm matrix and specific biofilm components. Such an understanding will provide significant benefits for tackling the ubiquitous problem of biofilm contamination in food, water and medical areas.
Collapse
Affiliation(s)
- Anne Mai-Prochnow
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2006 Australia
| | - Renwu Zhou
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2006 Australia
| | - Tianqi Zhang
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2006 Australia
| | - Kostya (Ken) Ostrikov
- grid.1024.70000000089150953School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000 Australia
| | - Sudarsan Mugunthan
- grid.59025.3b0000 0001 2224 0361The Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Scott A. Rice
- grid.59025.3b0000 0001 2224 0361The Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 639798 Singapore ,grid.59025.3b0000 0001 2224 0361The School of Biological Sciences, Nanyang Technological University, Singapore, 639798 Singapore ,grid.117476.20000 0004 1936 7611The ithree Institute, The University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Patrick J. Cullen
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2006 Australia
| |
Collapse
|
177
|
Rosenblatt RB, Frank JA, Burks SR. Cytosolic Ca 2+ transients during pulsed focused ultrasound generate reactive oxygen species and cause DNA damage in tumor cells. Am J Cancer Res 2021; 11:602-613. [PMID: 33391495 PMCID: PMC7738866 DOI: 10.7150/thno.48353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Mechanical forces from non-ablative pulsed focused ultrasound (pFUS) generate pro-inflammatory tumor microenvironments (TME), marked by increased cytokines, chemokines, and trophic factors, as well as immune cell infiltration and reduced tumor growth. pFUS also causes DNA damage within tumors, which is a potent activator of immunity and could contribute to changes in the TME. This study investigated mechanisms behind the mechanotransductive effects of pFUS causing DNA damage in several tumor cell types. Methods: 4T1 (murine breast tumor), B16 (murine melanoma), C6 (rat glioma), or MDA-MB-231 (human breast tumor) cells were sonicated in vitro (1.1MHz; 6MPa PNP; 10ms pulses; 10% duty cycle; 300 pulses). DNA damage was detected by TUNEL, apoptosis was measured by immunocytochemistry for cleaved caspase-3. Calcium, superoxide, and H2O2 were detected by fluorescent indicators and modulated by BAPTA-AM, mtTEMPOL, or Trolox, respectively. Results: pFUS increased TUNEL reactivity (range = 1.6-2.7-fold) in all cell types except C6 and did not induce apoptosis in any cell line. All lines displayed cytosolic Ca2+ transients during sonication. pFUS increased superoxide (range = 1.6-2.0-fold) and H2O2 (range = 2.3-2.8-fold) in all cell types except C6. BAPTA-AM blocked increased TUNEL reactivity, superoxide and H2O2 formation, while Trolox also blocked increased TUNEL reactivity increased after pFUS. mtTEMPOL allowed H2O2 formation and did not block increased TUNEL reactivity after pFUS. Unsonicated C6 cells had higher baseline concentrations of cytosolic Ca2+, superoxide, and H2O2, which were not associated with greater baseline TUNEL reactivity than the other cell lines. Conclusions: Mechanotransduction of pFUS directly induces DNA damage in tumor cells by cytosolic Ca2+ transients causing formation of superoxide and subsequently, H2O2. These results further suggest potential clinical utility for pFUS. However, the lack of pFUS-induced DNA damage in C6 cells demonstrates a range of potential tumor responses that may arise from physiological differences such as Ca2+ or redox homeostasis.
Collapse
|
178
|
Shi YG, Zhang RR, Zhu CM, Xu MF, Gu Q, Ettelaie R, Lin S, Wang YF, Leng XY. Antimicrobial mechanism of alkyl gallates against Escherichia coli and Staphylococcus aureus and its combined effect with electrospun nanofibers on Chinese Taihu icefish preservation. Food Chem 2020; 346:128949. [PMID: 33418419 DOI: 10.1016/j.foodchem.2020.128949] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/29/2020] [Accepted: 12/22/2020] [Indexed: 01/17/2023]
Abstract
The objective of this study was to investigate the antibacterial activity and potential mechanism of alkyl gallates against Escherichia coli and Staphylococcus aureus. Results show that the length of the alkyl chain plays a pivotal role in eliciting the activity and octyl gallate (OG) exerted excellent bactericidal activity through a multiple bactericidal mechanism. OG functions against both bacteria through damaging bacterial cell wall integrity, permeating into cells and then interacting with DNA, as well as disturbing the activity of the respiratory electron transport chain to induce a high-level toxic ROS (hydroxyl radicals) generation and up-regulation of the ROS genes. Also, electrospun nanofibers with OG have unique superiorities for maintaining the freshness of the icefish (4 °C). This research not only provides a more in-depth understanding of the interaction between OG and microorganisms but also highlights the great promise of using OG as a safe multi-functionalized food additive for food preservations.
Collapse
Affiliation(s)
- Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| | - Run-Run Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Chen-Min Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Ming-Feng Xu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Rammile Ettelaie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Shan Lin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yi-Fan Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Xin-Yi Leng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| |
Collapse
|
179
|
Oliveira R, Bush MJ, Pires S, Chandra G, Casas-Pastor D, Fritz G, Mendes MV. The novel ECF56 SigG1-RsfG system modulates morphological differentiation and metal-ion homeostasis in Streptomyces tsukubaensis. Sci Rep 2020; 10:21728. [PMID: 33303917 PMCID: PMC7730460 DOI: 10.1038/s41598-020-78520-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Extracytoplasmic function (ECF) sigma factors are key transcriptional regulators that prokaryotes have evolved to respond to environmental challenges. Streptomyces tsukubaensis harbours 42 ECFs to reprogram stress-responsive gene expression. Among them, SigG1 features a minimal conserved ECF σ2-σ4 architecture and an additional C-terminal extension that encodes a SnoaL_2 domain, which is characteristic for ECF σ factors of group ECF56. Although proteins with such domain organisation are widely found among Actinobacteria, the functional role of ECFs with a fused SnoaL_2 domain remains unknown. Our results show that in addition to predicted self-regulatory intramolecular amino acid interactions between the SnoaL_2 domain and the ECF core, SigG1 activity is controlled by the cognate anti-sigma protein RsfG, encoded by a co-transcribed sigG1-neighbouring gene. Characterisation of ∆sigG1 and ∆rsfG strains combined with RNA-seq and ChIP-seq experiments, suggests the involvement of SigG1 in the morphological differentiation programme of S. tsukubaensis. SigG1 regulates the expression of alanine dehydrogenase, ald and the WhiB-like regulator, wblC required for differentiation, in addition to iron and copper trafficking systems. Overall, our work establishes a model in which the activity of a σ factor of group ECF56, regulates morphogenesis and metal-ions homeostasis during development to ensure the timely progression of multicellular differentiation.
Collapse
Affiliation(s)
- Rute Oliveira
- Bioengineering and Synthetic Microbiology Group, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCBiology), ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sílvia Pires
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Jill Roberts Institute for IBD Research, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Delia Casas-Pastor
- Center for Synthetic Microbiology, Philipps-University Marburg, 35032, Marburg, Germany
| | - Georg Fritz
- School for Molecular Sciences, University of Western Australia, Perth, 6009, Australia
| | - Marta V Mendes
- Bioengineering and Synthetic Microbiology Group, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
180
|
Ha KP, Clarke RS, Kim GL, Brittan JL, Rowley JE, Mavridou DAI, Parker D, Clarke TB, Nobbs AH, Edwards AM. Staphylococcal DNA Repair Is Required for Infection. mBio 2020; 11:e02288-20. [PMID: 33203752 PMCID: PMC7683395 DOI: 10.1128/mbio.02288-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/14/2020] [Indexed: 01/07/2023] Open
Abstract
To cause infection, Staphylococcus aureus must withstand damage caused by host immune defenses. However, the mechanisms by which staphylococcal DNA is damaged and repaired during infection are poorly understood. Using a panel of transposon mutants, we identified the rexBA operon as being important for the survival of Staphylococcus aureus in whole human blood. Mutants lacking rexB were also attenuated for virulence in murine models of both systemic and skin infections. We then demonstrated that RexAB is a member of the AddAB family of helicase/nuclease complexes responsible for initiating the repair of DNA double-strand breaks. Using a fluorescent reporter system, we were able to show that neutrophils cause staphylococcal DNA double-strand breaks through reactive oxygen species (ROS) generated by the respiratory burst, which are repaired by RexAB, leading to the induction of the mutagenic SOS response. We found that RexAB homologues in Enterococcus faecalis and Streptococcus gordonii also promoted the survival of these pathogens in human blood, suggesting that DNA double-strand break repair is required for Gram-positive bacteria to survive in host tissues. Together, these data demonstrate that DNA is a target of host immune cells, leading to double-strand breaks, and that the repair of this damage by an AddAB-family enzyme enables the survival of Gram-positive pathogens during infection.IMPORTANCE To cause infection, bacteria must survive attack by the host immune system. For many bacteria, including the major human pathogen Staphylococcus aureus, the greatest threat is posed by neutrophils. These immune cells ingest the invading organisms and try to kill them with a cocktail of chemicals that includes reactive oxygen species (ROS). The ability of S. aureus to survive this attack is crucial for the progression of infection. However, it was not clear how the ROS damaged S. aureus and how the bacterium repaired this damage. In this work, we show that ROS cause breaks in the staphylococcal DNA, which must be repaired by a two-protein complex known as RexAB; otherwise, the bacterium is killed, and it cannot sustain infection. This provides information on the type of damage that neutrophils cause S. aureus and the mechanism by which this damage is repaired, enabling infection.
Collapse
Affiliation(s)
- Kam Pou Ha
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Rebecca S Clarke
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Gyu-Lee Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jane L Brittan
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Jessica E Rowley
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Thomas B Clarke
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
181
|
Anand A, Chen K, Catoiu E, Sastry AV, Olson CA, Sandberg TE, Seif Y, Xu S, Szubin R, Yang L, Feist AM, Palsson BO. OxyR Is a Convergent Target for Mutations Acquired during Adaptation to Oxidative Stress-Prone Metabolic States. Mol Biol Evol 2020; 37:660-667. [PMID: 31651953 PMCID: PMC7038661 DOI: 10.1093/molbev/msz251] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Oxidative stress is concomitant with aerobic metabolism. Thus, bacterial genomes encode elaborate mechanisms to achieve redox homeostasis. Here we report that the peroxide-sensing transcription factor, oxyR, is a common mutational target using bacterial species belonging to two genera, Escherichia coli and Vibrio natriegens, in separate growth conditions implemented during laboratory evolution. The mutations clustered in the redox active site, dimer interface, and flexible redox loop of the protein. These mutations favor the oxidized conformation of OxyR that results in constitutive expression of the genes it regulates. Independent component analysis of the transcriptome revealed that the constitutive activity of OxyR reduces DNA damage from reactive oxygen species, as inferred from the activity of the SOS response regulator LexA. This adaptation to peroxide stress came at a cost of lower growth, as revealed by calculations of proteome allocation using genome-scale models of metabolism and macromolecular expression. Further, identification of similar sequence changes in natural isolates of E. coli indicates that adaptation to oxidative stress through genetic changes in oxyR can be a common occurrence.
Collapse
Affiliation(s)
- Amitesh Anand
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Ke Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Edward Catoiu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Connor A Olson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Troy E Sandberg
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Yara Seif
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Sibei Xu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Laurence Yang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
- Present address: Department of Chemical Engineering, Queen’s University, Kingston, ON, Canada
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark
- Corresponding author: E-mail:
| |
Collapse
|
182
|
Zhang H, Li S, Liu Y, Yu Y, Lin S, Wang Q, Miao L, Wei H, Sun W. Fe 3O 4@GO magnetic nanocomposites protect mesenchymal stem cells and promote osteogenic differentiation of rat bone marrow mesenchymal stem cells. Biomater Sci 2020; 8:5984-5993. [PMID: 32985626 DOI: 10.1039/d0bm00906g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fe3O4 nanoparticles (Fe3O4 NPs) are typical magnetic materials for bone tissue regeneration. However, the accompanying oxidative stress during the reaction process of Fe3O4 NPs and H2O2 in bone remodeling and disease may hinder their application. In order to reduce this side effect, we selected graphene oxide (GO) to modify Fe3O4 NPs. We showed that Fe3O4@GO magnetic nanocomposites (Fe3O4@GO MNCs) eliminated 30% of H2O2 in 3 h, and reduced the amount of ˙OH, the intermediate product of the Fenton reaction. The cellular study demonstrated that Fe3O4@GO MNCs reduced the cell damage caused by reactive oxygen species (ROS) and improved the activity of mesenchymal stem cells (MSCs). Moreover, when the magnetic field and bone morphogenetic protein-2 (BMP2) delivered by Fe3O4@GO MNCs worked together, osteogenic differentiation of MSCs in vitro was well promoted.
Collapse
Affiliation(s)
- He Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, China
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Somerville R, Fisher M, Persson L, Ehnert-Russo S, Gelsleichter J, Bielmyer-Fraser G. Analysis of Trace Element Concentrations and Antioxidant Enzyme Activity in Muscle Tissue of the Atlantic Sharpnose Shark, Rhizoprionodon terraenovae. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:371-390. [PMID: 32865634 DOI: 10.1007/s00244-020-00753-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Metals occur naturally in the environment; however, anthropogenic practices have greatly increased metal concentrations in waterways, sediments, and biota. Metals pose health risks to marine organisms and have been associated with oxidative stress, which can lead to protein denaturation, DNA mutations, and cellular apoptosis. Sharks are important species ecologically, recreationally, and commercially. Because they occupy a high trophic level, assessing muscle tissue metal concentrations in sharks may reflect metal transfer in marine food webs. In this study, concentrations of cadmium, copper, lead, nickel, selenium, silver, and zinc were measured in the muscle of Rhizoprionodon terraenovae (Atlantic sharpnose shark) from 12 sites along the coast of the southeastern United States. Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) also were examined in the muscle tissue of R. terraenovae. A total of 165 samples were analyzed, and differences in trace element bioaccumulation and enzyme activity were observed across sites. R. terraenovae samples collected from South Florida and South Carolina had the highest cumulative trace element concentrations whereas those collected from North Carolina and Alabama had the lowest cumulative concentrations. Trace element concentrations in shark muscle tissue were significantly correlated to antioxidant enzyme activity, particularly with glutathione peroxidase, suggesting that this enzyme may serve as a non-lethal, biomarker of metal exposure in R. terraenovae. This is one of the most extensive studies providing reference levels of trace elements and oxidative stress enzymes in a single elasmobranch species within the U.S.
Collapse
Affiliation(s)
- Rachel Somerville
- Jacksonville University, 2800 University Blvd N, Jacksonville, FL, 32211, USA.
| | - Maya Fisher
- Jacksonville University, 2800 University Blvd N, Jacksonville, FL, 32211, USA
| | - Louise Persson
- Jacksonville University, 2800 University Blvd N, Jacksonville, FL, 32211, USA
| | | | | | | |
Collapse
|
184
|
Zhai L, Xie J, Feng H, Sun S, Cheng K, Yao S. Mechanism of TonB-dependent transport system in Halomonas alkalicola CICC 11012s in response to alkaline stress. Extremophiles 2020; 25:39-49. [PMID: 33123748 DOI: 10.1007/s00792-020-01209-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022]
Abstract
Halomonas alkalicola CICC 11012s can grow at pH 12.5, the highest pH at which the organisms in the genus Halomonas can grow. Genomic analysis reveals that H. alkalicola adapts to alkaline stress using a variety of adaptive strategies; however, the detailed mechanism for its growth at high-alkaline conditions has not been elucidated. Therefore, in this study, the adaptations of H. alkalicola in response to extreme alkaline stress were investigated. A sharp decrease of alkaliphilic tolerance was observed in mutants E. coli ΔEctonB and H. alkalicola ΔHatonB. Expressions of the gene clusters encoding TonB-dependent transport system and iron complex transport system in H. alkalicola grown under extreme alkaline conditions were markedly up-regulated. We then compared the intracellular ionic iron content and iron-chelating ability of mutant strain with those of wild-type strain to understand the influence of TonB-dependent transport system on the alkaline responses. The results indicated that the presence of TonB-dependent transport system increased the alkaline tolerance of H. alkalicola grown at high-alkaline conditions, but had no effects when the strain was grown at neutral pH and low-alkaline conditions. Meanwhile, the presence of this system increased the transport and accumulation of ionic irons to maintain intracellular metabolic homeostasis, which in turn could increase the tolerance of the strain to extreme alkaline conditions. Based on the results, we established a model representing the interactions between TonB-dependent transport system, alkaline tolerance, and intracellular ionic iron that could help deepen the understanding of the alkaline response mechanism of alkaliphilic bacteria.
Collapse
Affiliation(s)
- Lei Zhai
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Building 6, No. 24 Yard, Jiuxianqiao Middle Road, Chaoyang District, Beijing, China
| | - Jiuyan Xie
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Building 6, No. 24 Yard, Jiuxianqiao Middle Road, Chaoyang District, Beijing, China
| | - Huijun Feng
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Building 6, No. 24 Yard, Jiuxianqiao Middle Road, Chaoyang District, Beijing, China
| | - Sijia Sun
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Building 6, No. 24 Yard, Jiuxianqiao Middle Road, Chaoyang District, Beijing, China
| | - Kun Cheng
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Building 6, No. 24 Yard, Jiuxianqiao Middle Road, Chaoyang District, Beijing, China
| | - Su Yao
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Building 6, No. 24 Yard, Jiuxianqiao Middle Road, Chaoyang District, Beijing, China.
| |
Collapse
|
185
|
Inoue H, Hanawa N, Katsumata SI, Aizawa Y, Katsumata-Tsuboi R, Tanaka M, Takahashi N, Uehara M. Iron deficiency negatively regulates protein methylation via the downregulation of protein arginine methyltransferase. Heliyon 2020; 6:e05059. [PMID: 33033759 PMCID: PMC7533365 DOI: 10.1016/j.heliyon.2020.e05059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
Iron is an essential trace metal for all biological processes and plays a role in almost every aspect of body growth. Previously, we found that iron-depletion downregulated the expression of proteins, arginine methyltransferase-1 and 3 (PRMT1 and PRMT3), by an iron-specific chelator, deferoxamine (DFO), in rat liver FAO cell line using DNA microarray analysis (unpublished data). However, regulatory mechanisms underlying the association between iron deficiency and PRMT expression are unclear in vitro and in vivo. In the present study, we revealed that the treatment of cells with two iron-specific chelators, DFO and deferasirox (DFX), downregulated the gene and protein expression of PRMT1 and 3 as compared with the untreated cells. Subsequently, DFO and DFX treatments decreased protein methylation. Importantly, these effects were attenuated by a holo-transferrin treatment. Furthermore, weanling Wistar-strain rats were fed a control diet or an iron-deficient diet for 4 weeks. Dietary iron deficiency was found to decrease the concentration of hemoglobin and liver iron while increasing the heart weight. PRMT and protein methylation levels were also significantly reduced in the iron-deficient group as compared to the control group. To our knowledge, this is the first study to demonstrate that PRMT levels and protein methylation are reduced in iron-deficient models, in vitro and in vivo.
Collapse
Affiliation(s)
- Hirofumi Inoue
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Japan
| | - Nobuaki Hanawa
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Japan
| | - Shin-Ichi Katsumata
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Japan
| | - Yumi Aizawa
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Rie Katsumata-Tsuboi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Japan
| | - Miori Tanaka
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Japan
| | - Nobuyuki Takahashi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Japan
| | - Mariko Uehara
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Japan
| |
Collapse
|
186
|
Liu S, Zhou Y, Hu C, Cai L, Pang M. Covalent Organic Framework-Based Nanocomposite for Synergetic Photo-, Chemodynamic-, and Immunotherapies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43456-43465. [PMID: 32880166 DOI: 10.1021/acsami.0c12824] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cancer deaths are mainly caused by tumor metastases. However, tumor ablation therapies can only target the primary tumor but not inhibit tumor metastasis. Herein, a multifunctional covalent organic framework (COF)-based nanocomposite is designed for synergetic photo-, chemodynamic- and immunotherapies. Specifically, the synthesized COF possesses the ability to produce singlet oxygen under the 650 nm laser irradiation. After being metallized with FeCl3, p-phenylenediamine is polymerized on the surface of COF with Fe3+ as the oxidant. The obtained poly(p-phenylenediamine) can be used for photothermal therapy. Meanwhile, the overexpressed H2O2 in the tumor would be further catalyzed and decomposed into hydroxyl radicals (•OH) by the Fe3+/Fe2+ redox couple via Fenton reaction. Intriguingly, the increase of temperature caused by photothermal therapy can accelerate the production of •OH. Moreover, the tumor-associated antigen induced a robust antitumor immune response and effectively inhibited tumor metastasis in the presence of anti-PD-L1 checkpoint blockade. Such a COF-based multifunctional nanoplatform provides an efficacious treatment strategy for both the primary tumor and tumor metastasis.
Collapse
Affiliation(s)
- Sainan Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ying Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China
| | - Chunling Hu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lihan Cai
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Maolin Pang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
187
|
Hirayama T, Niwa M, Hirosawa S, Nagasawa H. High-Throughput Screening for the Discovery of Iron Homeostasis Modulators Using an Extremely Sensitive Fluorescent Probe. ACS Sens 2020; 5:2950-2958. [PMID: 32885952 DOI: 10.1021/acssensors.0c01445] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High-throughput methods for monitoring subcellular labile Fe(II) are important for conducting studies on iron homeostasis and for the discovery of potential drug candidates for the treatment of iron deficiency or overload. Herein, a highly sensitive and robust fluorescent probe for the detection of intracellular labile Fe(II) is described. The probe was designed through the rational optimization of the reactivity and responsiveness for an Fe(II)-induced fluorogenic reaction based on deoxygenation of an N-oxide, which was developed in-house. The probe is ready to use for a 96-well-plate-based high-content imaging of labile Fe(II) in living cells. Using this simple method, we were able to conduct high-throughput screening of a chemical library containing 3399 compounds. The compound lomofungin was identified as a potential drug candidate for the intracellular enhancement of labile Fe(II) via a novel mechanism in which the ferritin protein was downregulated.
Collapse
Affiliation(s)
- Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Masato Niwa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Shusaku Hirosawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
188
|
Simmnacher K, Krach F, Schneider Y, Alecu JE, Mautner L, Klein P, Roybon L, Prots I, Xiang W, Winner B. Unique signatures of stress-induced senescent human astrocytes. Exp Neurol 2020; 334:113466. [PMID: 32949572 DOI: 10.1016/j.expneurol.2020.113466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Senescence was recently linked to neurodegeneration and astrocytes are one of the major cell types to turn senescent under neurodegenerative conditions. Senescent astrocytes were detected in Parkinson's disease (PD) patients' brains besides reactive astrocytes, yet the difference between senescent and reactive astrocytes is unclear. We aimed to characterize senescent astrocytes in comparison to reactive astrocytes and investigate differences and similarities. In a cell culture model of human fetal astrocytes, we determined a unique senescent transcriptome distinct from reactive astrocytes, which comprises dysregulated pathways. Both, senescent and reactive human astrocytes activated a proinflammatory pattern. Astrocyte senescence was at least partially depending on active mechanistic-target-of-rapamycin (mTOR) and DNA-damage response signaling, both drivers of senescence. To further investigate how PD and senescence connect to each other, we asked if a PD-linked environmental factor induces senescence and if senescence impairs midbrain neurons. We could show that the PD-linked pesticide rotenone causes astrocyte senescence. We further delineate, that the senescent secretome exaggerates rotenone-induced neurodegeneration in midbrain neurons differentiated from human induced pluripotent stem cells (hiPSC) of PD patients with alpha-synuclein gene (SNCA) locus duplication.
Collapse
Affiliation(s)
- Katrin Simmnacher
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Florian Krach
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yanni Schneider
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Julian E Alecu
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Lena Mautner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Paulina Klein
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Iryna Prots
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Wei Xiang
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
189
|
During Oxidative Stress the Clp Proteins of Escherichia coli Ensure that Iron Pools Remain Sufficient To Reactivate Oxidized Metalloenzymes. J Bacteriol 2020; 202:JB.00235-20. [PMID: 32601069 DOI: 10.1128/jb.00235-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/20/2020] [Indexed: 11/20/2022] Open
Abstract
Hydrogen peroxide (H2O2) is formed in natural environments by both biotic and abiotic processes. It easily enters the cytoplasms of microorganisms, where it can disrupt growth by inactivating iron-dependent enzymes. It also reacts with the intracellular iron pool, generating hydroxyl radicals that can lethally damage DNA. Therefore, virtually all bacteria possess H2O2-responsive transcription factors that control defensive regulons. These typically include catalases and peroxidases that scavenge H2O2 Another common component is the miniferritin Dps, which sequesters loose iron and thereby suppresses hydroxyl-radical formation. In this study, we determined that Escherichia coli also induces the ClpS and ClpA proteins of the ClpSAP protease complex. Mutants that lack this protease, plus its partner, ClpXP protease, cannot grow when H2O2 levels rise. The growth defect was traced to the inactivity of dehydratases in the pathway of branched-chain amino acid synthesis. These enzymes rely on a solvent-exposed [4Fe-4S] cluster that H2O2 degrades. In a typical cell the cluster is continuously repaired, but in the clpSA clpX mutant the repair process is defective. We determined that this disability is due to an excessively small iron pool, apparently due to the oversequestration of iron by Dps. Dps was previously identified as a substrate of both the ClpSAP and ClpXP proteases, and in their absence its levels are unusually high. The implication is that the stress response to H2O2 has evolved to strike a careful balance, diminishing iron pools enough to protect the DNA but keeping them substantial enough that critical iron-dependent enzymes can be repaired.IMPORTANCE Hydrogen peroxide mediates the toxicity of phagocytes, lactic acid bacteria, redox-cycling antibiotics, and photochemistry. The underlying mechanisms all involve its reaction with iron atoms, whether in enzymes or on the surface of DNA. Accordingly, when bacteria perceive toxic H2O2, they activate defensive tactics that are focused on iron metabolism. In this study, we identify a conundrum: DNA is best protected by the removal of iron from the cytoplasm, but this action impairs the ability of the cell to reactivate its iron-dependent enzymes. The actions of the Clp proteins appear to hedge against the oversequestration of iron by the miniferritin Dps. This buffering effect is important, because E. coli seeks not just to survive H2O2 but to grow in its presence.
Collapse
|
190
|
Nie W, Wang S, He R, Xu Q, Wang P, Wu Y, Tian F, Yuan J, Zhu B, Chen G. A-to-I RNA editing in bacteria increases pathogenicity and tolerance to oxidative stress. PLoS Pathog 2020; 16:e1008740. [PMID: 32822429 PMCID: PMC7467310 DOI: 10.1371/journal.ppat.1008740] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/02/2020] [Accepted: 06/24/2020] [Indexed: 01/25/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is an important posttranscriptional event in eukaryotes; however, many features remain largely unexplored in prokaryotes. This study focuses on a serine-to-proline recoding event (S128P) that originated in the mRNA of fliC, which encodes a flagellar filament protein; the editing event was observed in RNA-seq samples exposed to oxidative stress. Using Sanger sequencing, we show that the S128P editing event is induced by H2O2. To investigate the in vivo interaction between RNAs and TadA, which is the principal enzyme for A-to-I editing, genome-wide RNA immunoprecipitation–coupled high-throughput sequencing (iRIP-Seq) analysis was performed using HA-tagged TadA from Xanthomonas oryzae pv. oryzicola. We found that TadA can bind to the mRNA of fliC and the binding motif is identical to that previously reported by Bar-Yaacov and colleagues. This editing event increased motility and enhanced tolerance to oxidative stress due to changes in flagellar filament structure, which was modelled in 3D and measured by TEM. The change in filament structure due to the S128P mutant increased biofilm formation, which was measured by the 3D laser scanning confocal microscopy. RNA-seq revealed that a gene cluster that contributes to siderophore biosynthesis and Fe3+ uptake was upregulated in S128P compared with WT. Based on intracellular levels of reactive oxygen species and an oxidative stress survival assay, we found that this gene cluster can contribute to the reduction of the Fenton reaction and increases biofilm formation and bacterial virulence. This oxidative stress response was also confirmed in Pseudomonas putida. Overall, our work demonstrates that A-to-I RNA editing plays a role in bacterial pathogenicity and adaptation to oxidative stress. Adenosine-to-inosine (A-to-I) RNA editing is an important posttranscriptional event in eukaryotes that has only been recently documented in bacteria. In this study, we use multiple ‘omic’ approaches to show that A-to-I RNA editing can occur in fliC, a flagellar filament protein. We show that TadA, which encodes adenosine deaminase, can directly bind to mRNA of target genes through recognition of a GACG motif. This editing event changes a single amino acid residue from serine to proline in FliC, resulting in a structural change in the flagellar filament. This posttranscriptional editing event contributes to virulence and increases tolerance to oxidative stress by enhancing biofilm formation. Our results provide insight into a new mechanism that bacterial pathogens use to adapt to oxidative stress, which can also increase virulence.
Collapse
Affiliation(s)
- Wenhan Nie
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sai Wang
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism, and SJTU-Yale Joint Center for Biostatistics and Data Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Peihong Wang
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Bo Zhu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (BZ); (GC)
| | - Gongyou Chen
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (BZ); (GC)
| |
Collapse
|
191
|
Luna BM, Ershova K, Yan J, Ulhaq A, Nielsen TB, Hsieh S, Pantapalangkoor P, Vanscoy B, Ambrose P, Rudin S, Hujer K, Bonomo RA, Actis L, Skaar EP, Spellberg B. Adjunctive transferrin to reduce the emergence of antibiotic resistance in Gram-negative bacteria. J Antimicrob Chemother 2020; 74:2631-2639. [PMID: 31170282 PMCID: PMC6736376 DOI: 10.1093/jac/dkz225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 11/14/2022] Open
Abstract
Background New strategies are needed to slow the emergence of antibiotic resistance among bacterial pathogens. In particular, society is experiencing a crisis of antibiotic-resistant infections caused by Gram-negative bacterial pathogens and novel therapeutics are desperately needed to combat such diseases. Acquisition of iron from the host is a nearly universal requirement for microbial pathogens—including Gram-negative bacteria—to cause infection. We have previously reported that apo-transferrin (lacking iron) can inhibit the growth of Staphylococcus aureus in culture and diminish emergence of resistance to rifampicin. Objectives To define the potential of apo-transferrin to inhibit in vitro growth of Klebsiella pneumoniae and Acinetobacter baumannii, key Gram-negative pathogens, and to reduce emergence of resistance to antibiotics. Methods The efficacy of apo-transferrin alone or in combination with meropenem or ciprofloxacin against K. pneumoniae and A. baumannii clinical isolates was tested by MIC assay, time–kill assay and assays for the selection of resistant mutants. Results We confirmed that apo-transferrin had detectable MICs for all strains tested of both pathogens. Apo-transferrin mediated an additive antimicrobial effect for both antibiotics against multiple strains in time–kill assays. Finally, adding apo-transferrin to ciprofloxacin or meropenem reduced the emergence of resistant mutants during 20 day serial passaging of both species. Conclusions These results suggest that apo-transferrin may have promise to suppress the emergence of antibiotic-resistant mutants when treating infections caused by Gram-negative bacteria.
Collapse
Affiliation(s)
- Brian M Luna
- Department of Medicine, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, USA.,Molecular Microbiology and Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, USA
| | - Ksenia Ershova
- Department of Medicine, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, USA.,Molecular Microbiology and Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, USA
| | - Jun Yan
- Department of Medicine, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, USA.,Molecular Microbiology and Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, USA
| | - Amber Ulhaq
- Department of Medicine, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, USA.,Molecular Microbiology and Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, USA
| | - Travis B Nielsen
- Department of Medicine, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, USA.,Molecular Microbiology and Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, USA
| | - Sarah Hsieh
- Department of Medicine, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, USA.,Molecular Microbiology and Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, USA
| | - Paul Pantapalangkoor
- Department of Medicine, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, USA.,Molecular Microbiology and Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, USA
| | - Brian Vanscoy
- Institute for Clinical Pharmacodynamics, Schenectady, NY, USA
| | - Paul Ambrose
- Institute for Clinical Pharmacodynamics, Schenectady, NY, USA
| | - Sue Rudin
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kristine Hujer
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Robert A Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Departments of Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA
| | - Luis Actis
- Department of Microbiology, Miami University, Oxford, OH, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brad Spellberg
- Department of Medicine, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, USA.,Molecular Microbiology and Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, USA
| |
Collapse
|
192
|
Mei X, Hu T, Wang H, Liang R, Bu W, Wei M. Highly dispersed nano-enzyme triggered intracellular catalytic reaction toward cancer specific therapy. Biomaterials 2020; 258:120257. [PMID: 32798739 DOI: 10.1016/j.biomaterials.2020.120257] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 01/06/2023]
Abstract
Currently, reactive oxygen species (ROS)-induced apoptosis systems have drawn increasing attention in cancer therapy, owing to their specific tumor inhibition ability and great biocompatibility. Herein, we developed a highly dispersed nano-enzyme based on the assembly of natural glucose oxidase (GOD) onto CoFe-layered double hydroxides (CoFe-LDHs) monolayer nanosheets. By virtue of the high dispersion of Fe3+ within the host layer, the CoFe-LDHs nanosheets exhibit a collaborative enhanced Fenton catalytic activity with a rate constant of 3.26 × 10-4 s-1, which is 1-3 orders of magnitude higher than other iron-containing Fenton reaction agents. Subsequently, with a massive H2O2 triggered by GOD, GOD/CoFe-LDHs nanohybrid converts a cascade of glucose into hydroxyl radicals under tumor acid conditions, which is validated by a high maximum velocity (Vmax = 2.23 × 10-6 M) and low Michaelis-Menten constant (KM = 5.40 mM). Through the intracellular catalytic Fenton reaction within the tumor environment, both in vitro and in vivo results demonstrate the excellent antitumor effect of GOD/CoFe-LDHs. Therefore, a self-supplied, ultra-efficient and sequential catalytic tumor-specific therapy has been achieved based on GOD/CoFe-LDHs nano-enzyme, which holds great promise in clinical cancer therapy with minimum side effects.
Collapse
Affiliation(s)
- Xuan Mei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hui Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Wenbo Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
193
|
Eickhoff MJ, Bassler BL. Vibrio fischeri siderophore production drives competitive exclusion during dual-species growth. Mol Microbiol 2020; 114:244-261. [PMID: 32259318 PMCID: PMC7541421 DOI: 10.1111/mmi.14509] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/21/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
When two or more bacterial species inhabit a shared niche, often, they must compete for limited nutrients. Iron is an essential nutrient that is especially scarce in the marine environment. Bacteria can use the production, release, and re-uptake of siderophores, small molecule iron chelators, to scavenge iron. Siderophores provide fitness advantages to species that employ them by enhancing iron acquisition, and moreover, by denying iron to competitors incapable of using the siderophore-iron complex. Here, we show that cell-free culture fluids from the marine bacterium Vibrio fischeri ES114 prevent the growth of other vibrio species. Mutagenesis reveals the aerobactin siderophore as the inhibitor. Our analysis reveals a gene, that we name aerE, encodes the aerobactin exporter, and LuxT is a transcriptional activator of aerobactin production. In co-culture, under iron-limiting conditions, aerobactin production allows V. fischeri ES114 to competitively exclude Vibrio harveyi, which does not possess aerobactin production and uptake genes. In contrast, V. fischeri ES114 mutants incapable of aerobactin production lose in competition with V. harveyi. Introduction of iutA, encoding the aerobactin receptor, together with fhuCDB, encoding the aerobactin importer are sufficient to convert V. harveyi into an "aerobactin cheater."
Collapse
Affiliation(s)
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
194
|
Proteomic Study of the Survival and Resuscitation Mechanisms of Filamentous Persisters in an Evolved Escherichia coli Population from Cyclic Ampicillin Treatment. mSystems 2020; 5:5/4/e00462-20. [PMID: 32723793 PMCID: PMC7394356 DOI: 10.1128/msystems.00462-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Through adaptive laboratory evolution (ALE) experiments, it was recently found that when a bacterial population was repetitively treated with antibiotics, they will adapt to the treatment conditions and become tolerant to the drug. In this study, we utilized an ampicillin-tolerant Escherichia coli population isolated from an ALE experiment to study the mechanisms of persistence during ampicillin treatment and resuscitation. Interestingly, the persisters of this population exhibit filamentous morphology upon ampicillin treatment, and the filaments are getting longer over time. Proteomics analysis showed that proteins involved in carbohydrate metabolism are upregulated during antibiotic treatment, in addition to those involved in the oxidative stress response. Bacterial SOS response, which is associated with filamentation, was found to be induced on account of the increasing expression of RecA. Measurement of endogenous reactive oxygen species (ROS) revealed that the population have ∼100-fold less ROS generation under ampicillin treatment than the wild type, leading to a lower mutagenesis rate. Single-cell observations through time-lapse microscopy show that resuscitation of the filaments is stochastic. During resuscitation, proteins involved in the tricarboxylic acid (TCA) cycle, glyoxylate cycle and glycolytic processes, and ATP generation are downregulated, while ribosomal proteins and porins are upregulated in the filaments. One particular protein, ElaB, was upregulated by over 7-fold in the filaments after 3 h of resuspension in fresh medium, but its expression went down after the filaments divided. Knockout of elaB increased persistence on wild-type E. coli, and upon resumption of growth, mutants lacking elaB have a higher fraction of small colony variants (SCVs) than the wild type.IMPORTANCE Persisters are a subpopulation of cells with enhanced survival toward antibiotic treatment and have the ability to resume normal growth when the antibiotic stress is lifted. Although proteomics is the most suitable tool to study them from a system-level perspective, the number of persisters that present naturally is too few for proteomics analysis, and thus the complex mechanisms through which they are able to survive antibiotic stresses and resuscitate in fresh medium remain poorly understood. To overcome that challenge, we studied an evolved Escherichia coli population with elevated persister fraction under ampicillin treatment and obtained its proteome profiles during antibiotic treatment and resuscitation. We discovered that during treatment with ampicillin, this tolerant population employs an active oxidative stress response and exhibits lower ROS levels than the wild type. Moreover, an inner membrane protein which has implications in various stress responses, ElaB, was found to be highly upregulated in the persisters during resuscitation, and its knockout caused increased formation of small colony variants after ampicillin treatment, suggesting that ElaB is important for persisters to resume normal growth.
Collapse
|
195
|
Barahona S, Castro-Severyn J, Dorador C, Saavedra C, Remonsellez F. Determinants of Copper Resistance in Acidithiobacillus Ferrivorans ACH Isolated from the Chilean Altiplano. Genes (Basel) 2020; 11:genes11080844. [PMID: 32722087 PMCID: PMC7463520 DOI: 10.3390/genes11080844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022] Open
Abstract
The use of microorganisms in mining processes is a technology widely employed around the world. Leaching bacteria are characterized by having resistance mechanisms for several metals found in their acidic environments, some of which have been partially described in the Acidithiobacillus genus (mainly on ferrooxidans species). However, the response to copper has not been studied in the psychrotolerant Acidithiobacillus ferrivorans strains. Therefore, we propose to elucidate the response mechanisms of A. ferrivorans ACH to high copper concentrations (0-800 mM), describing its genetic repertoire and transcriptional regulation. Our results show that A. ferrivorans ACH can grow in up to 400 mM of copper. Moreover, we found the presence of several copper-related makers, belonging to cop and cus systems, as well as rusticyanins and periplasmatic acop protein in the genome. Interestingly, the ACH strain is the only one in which we find three copies of copB and copZ genes. Moreover, transcriptional expression showed an up-regulation response (acop, copZ, cusA, rusA, and rusB) to high copper concentrations. Finally, our results support the important role of these genes in A. ferrivorans copper stress resistance, promoting the use of the ACH strain in industrial leaching under low temperatures, which could decrease the activation times of oxidation processes and the energy costs.
Collapse
Affiliation(s)
- Sergio Barahona
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta 1240000, Chile;
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recurso Biológicos, Universidad de Antofagasta, Antofagasta 1240000, Chile;
- Programa de Doctorado en Ingeniería de Procesos de Minerales, Facultad de Ingeniería, Universidad de Antofagasta, Antofagasta 1240000, Chile
- Correspondence: (S.B.); (F.R.)
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta 1240000, Chile;
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recurso Biológicos, Universidad de Antofagasta, Antofagasta 1240000, Chile;
- Centro de Biotecnología y Bioingeniería (CeBiB), Universidad de Antofagasta, Antofagasta 1240000, Chile
| | - Claudia Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8320000, Chile;
| | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta 1240000, Chile;
- Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta 1240000, Chile
- Correspondence: (S.B.); (F.R.)
| |
Collapse
|
196
|
Abstract
Coxiella burnetii, the causative agent of Query (Q) fever in humans, is a highly infectious obligate intracellular bacterium. Following uptake into a host cell, C. burnetii replicates within a phagolysosome-derived compartment referred to as the Coxiella-containing vacuole (CCV). During infection, C. burnetii exhibits tropism for tissues related to iron storage and recycling (e.g., the liver and splenic red pulp), suggesting that pathogen physiology is linked to host iron metabolism. Iron has been described to have a limited role in C. burnetii virulence regulation, despite evidence that C. burnetii -infected host cells increase expression of transferrin receptors, thereby suggesting that active iron acquisition by the bacterium occurs upon infection. Through the use of host cell-free culture, C. burnetii was separated from the host cell in order to directly assess the role of different forms of iron in C. burnetii replication and viability, and therefore virulence. Results indicate that C. burnetii tolerates molecular iron over a broad concentration range (i.e., ∼0.001 to 1 mM) and undergoes gross loss of viability upon iron starvation. C. burnetii protein synthesis and energy metabolism, however, occur nearly uninhibited under iron concentrations not permissive to replication. Despite the apparent absence of genes related to acquisition of host-associated iron-containing proteins, C. burnetii replication is supported by hemoglobin, transferrin, and ferritin, likely due to release of iron from such proteins under acidic conditions. Moreover, chelation of host iron pools inhibited pathogen replication during infection of cultured cells.IMPORTANCE Host organisms restrict the availability of iron to invading pathogens in order to reduce pathogen replication. To counteract the host's response to infection, bacteria can rely on redundant mechanisms to obtain biologically diverse forms of iron during infection. C. burnetii appears specifically dependent on molecular iron for replication and viability and exhibits a response to iron akin to bacteria that colonize iron-rich environments. Physiological adaptation of C. burnetii to the unique acidic and degradative environment of the CCV is consistent with access of this pathogen to molecular iron.
Collapse
|
197
|
Rajapakse A, Suraweera A, Boucher D, Naqi A, O'Byrne K, Richard DJ, Croft LV. Redox Regulation in the Base Excision Repair Pathway: Old and New Players as Cancer Therapeutic Targets. Curr Med Chem 2020; 27:1901-1921. [PMID: 31258058 DOI: 10.2174/0929867326666190430092732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/09/2019] [Accepted: 04/05/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Reactive Oxygen Species (ROS) are by-products of normal cellular metabolic processes, such as mitochondrial oxidative phosphorylation. While low levels of ROS are important signalling molecules, high levels of ROS can damage proteins, lipids and DNA. Indeed, oxidative DNA damage is the most frequent type of damage in the mammalian genome and is linked to human pathologies such as cancer and neurodegenerative disorders. Although oxidative DNA damage is cleared predominantly through the Base Excision Repair (BER) pathway, recent evidence suggests that additional pathways such as Nucleotide Excision Repair (NER) and Mismatch Repair (MMR) can also participate in clearance of these lesions. One of the most common forms of oxidative DNA damage is the base damage 8-oxoguanine (8-oxoG), which if left unrepaired may result in G:C to A:T transversions during replication, a common mutagenic feature that can lead to cellular transformation. OBJECTIVE Repair of oxidative DNA damage, including 8-oxoG base damage, involves the functional interplay between a number of proteins in a series of enzymatic reactions. This review describes the role and the redox regulation of key proteins involved in the initial stages of BER of 8-oxoG damage, namely Apurinic/Apyrimidinic Endonuclease 1 (APE1), human 8-oxoguanine DNA glycosylase-1 (hOGG1) and human single-stranded DNA binding protein 1 (hSSB1). Moreover, the therapeutic potential and modalities of targeting these key proteins in cancer are discussed. CONCLUSION It is becoming increasingly apparent that some DNA repair proteins function in multiple repair pathways. Inhibiting these factors would provide attractive strategies for the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Aleksandra Rajapakse
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia.,School of Natural Sciences, Griffith University, Nathan, QLD, Australia
| | - Amila Suraweera
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| | - Didier Boucher
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| | - Ali Naqi
- Department of Chemistry, Pennsylvania State University, United States
| | - Kenneth O'Byrne
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia.,Cancer Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J Richard
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| | - Laura V Croft
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
198
|
Zhang Y, Pan X, Liao S, Jiang C, Wang L, Tang Y, Wu G, Dai G, Chen L. Quantitative Proteomics Reveals the Mechanism of Silver Nanoparticles against Multidrug-Resistant Pseudomonas aeruginosa Biofilms. J Proteome Res 2020; 19:3109-3122. [PMID: 32567865 DOI: 10.1021/acs.jproteome.0c00114] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The decline of clinically effective antibiotics has made it necessary to develop more effective antimicrobial agents, especially for refractory biofilm-related infections. Silver nanoparticles (AgNPs) are a new type of antimicrobial agent that can eradicate biofilms and reduce bacterial resistance, but its anti-biofilm mechanism has not been elucidated. In this study, we investigated the molecular mechanism of AgNPs against multidrug-resistant Pseudomonas aeruginosa by means of anti-biofilm tests, scanning electron microscopy (SEM), and tandem mass tag (TMT)-labeled quantitative proteomics. The results of anti-biofilm tests demonstrated that AgNPs inhibited the formation of P. aeruginosa biofilm and disrupted its preformed biofilm. SEM showed that when exposed to AgNPs, the structure of the P. aeruginosa biofilm was destroyed, along with significant reduction of its biomass. TMT-labeled quantitative proteomic analysis revealed that AgNPs could defeat the P. aeruginosa biofilm in multiple ways by inhibiting its adhesion and motility, stimulating strong oxidative stress response, destroying iron homeostasis, blocking aerobic and anaerobic respiration, and affecting quorum sensing systems. Our findings offer a new insight into clarifying the mechanism of AgNPs against biofilms, thus providing a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Yapeng Zhang
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Xuanhe Pan
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Shijing Liao
- Department of Clinical Laboratory, The First People's Hospital of Yueyang, Yueyang 414000, China
| | - Congyuan Jiang
- Hunan Anson Biotechnology Company Ltd., Changsha 410008, China
| | - Linqian Wang
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yurong Tang
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Guojun Wu
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Gan Dai
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Liyu Chen
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
199
|
Gabashvili AN, Chmelyuk NS, Efremova MV, Malinovskaya JA, Semkina AS, Abakumov MA. Encapsulins-Bacterial Protein Nanocompartments: Structure, Properties, and Application. Biomolecules 2020; 10:biom10060966. [PMID: 32604934 PMCID: PMC7355545 DOI: 10.3390/biom10060966] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, a new class of prokaryotic compartments, collectively called encapsulins or protein nanocompartments, has been discovered. The shell proteins of these structures self-organize to form icosahedral compartments with a diameter of 25-42 nm, while one or more cargo proteins with various functions can be encapsulated in the nanocompartment. Non-native cargo proteins can be loaded into nanocompartments and the surface of the shells can be further functionalized, which allows for developing targeted drug delivery systems or using encapsulins as contrast agents for magnetic resonance imaging. Since the genes encoding encapsulins can be integrated into the cell genome, encapsulins are attractive for investigation in various scientific fields, including biomedicine and nanotechnology.
Collapse
Affiliation(s)
- Anna N. Gabashvili
- Laboratory “Biomedical Nanomaterials”, National University of Science and Technology “MISiS”, Leninskiy Prospect, 4, 119049 Moscow, Russia; (A.N.G.); (N.S.C.)
- Department of Medical Nanobiotechnoilogy, Pirogov Russian National Research Medical University, Ostrovityanova st, 1, 117997 Moscow, Russia;
| | - Nelly S. Chmelyuk
- Laboratory “Biomedical Nanomaterials”, National University of Science and Technology “MISiS”, Leninskiy Prospect, 4, 119049 Moscow, Russia; (A.N.G.); (N.S.C.)
| | - Maria V. Efremova
- Department of Nuclear Medicine, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- Institute of Biological and Medical Imaging and Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | - Alevtina S. Semkina
- Department of Medical Nanobiotechnoilogy, Pirogov Russian National Research Medical University, Ostrovityanova st, 1, 117997 Moscow, Russia;
| | - Maxim A. Abakumov
- Laboratory “Biomedical Nanomaterials”, National University of Science and Technology “MISiS”, Leninskiy Prospect, 4, 119049 Moscow, Russia; (A.N.G.); (N.S.C.)
- Department of Medical Nanobiotechnoilogy, Pirogov Russian National Research Medical University, Ostrovityanova st, 1, 117997 Moscow, Russia;
- Correspondence: ; Tel.: +7-903-586-4777
| |
Collapse
|
200
|
Hassan M, Nakayama M, Salah M, Akasaka H, Kubota H, Nakahana M, Tagawa T, Morita K, Nakaoka A, Ishihara T, Miyawaki D, Yoshida K, Nishimura Y, Ogino C, Sasaki R. A Comparative Assessment of Mechanisms and Effectiveness of Radiosensitization by Titanium Peroxide and Gold Nanoparticles. NANOMATERIALS 2020; 10:nano10061125. [PMID: 32517328 PMCID: PMC7353194 DOI: 10.3390/nano10061125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
The development of potentially safe radiosensitizing agents is essential to enhance the treatment outcomes of radioresistant cancers. The titanium peroxide nanoparticle (TiOxNP) was originally produced using the titanium dioxide nanoparticle, and it showed excellent reactive oxygen species (ROS) generation in response to ionizing radiation. Surface coating the TiOxNPs with polyacrylic acid (PAA) showed low toxicity to the living body and excellent radiosensitizing effect on cancer cells. Herein, we evaluated the mechanism of radiosensitization by PAA-TiOxNPs in comparison with gold nanoparticles (AuNPs) which represent high-atomic-number nanoparticles that show a radiosensitizing effect through the emission of secondary electrons. The anticancer effects of both nanoparticles were compared by induction of apoptosis, colony-forming assay, and the inhibition of tumor growth. PAA-TiOxNPs showed a significantly more radiosensitizing effect than that of AuNPs. A comparison of the types and amounts of ROS generated showed that hydrogen peroxide generation by PAA-TiOxNPs was the major factor that contributed to the nanoparticle radiosensitization. Importantly, PAA-TiOxNPs were generally nontoxic to healthy mice and caused no histological abnormalities in the liver, kidney, lung, and heart tissues.
Collapse
Affiliation(s)
- Mennaallah Hassan
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
- Department of Clinical Oncology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Masao Nakayama
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
- Discipline of Medical Radiations, School of Biomedical & Health Sciences, RMIT University, Bundoora Campus, Victoria 3083, Australia
| | - Mohammed Salah
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena 83522, Egypt
| | - Hiroaki Akasaka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Hikaru Kubota
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Makiko Nakahana
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Tatsuichiro Tagawa
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan; (K.M.); (Y.N.); (C.O.)
- Research Facility Center for Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Ai Nakaoka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Takeaki Ishihara
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Daisuke Miyawaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Kenji Yoshida
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Yuya Nishimura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan; (K.M.); (Y.N.); (C.O.)
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan; (K.M.); (Y.N.); (C.O.)
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
- Correspondence: ; Tel.: +81-78-3825687; Fax: +81-78-3826734
| |
Collapse
|