151
|
Welten SPM, Baumann NS, Oxenius A. Fuel and brake of memory T cell inflation. Med Microbiol Immunol 2019; 208:329-338. [PMID: 30852648 DOI: 10.1007/s00430-019-00587-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 11/24/2022]
Abstract
Memory T cell inflation is a process in which a large number of effector memory T cells accumulates in peripheral tissues. This phenomenon is observed upon certain low level persistent virus infections, but it is most commonly described upon infection with the β-herpesvirus Cytomegalovirus. Due to the induction of this large pool of functional effector CD8 T cells in peripheral tissues, the interest in using CMV-based vaccine vectors for vaccination purposes is rising. However, the exact mechanisms of memory T cell inflation are not yet fully understood. It is clear that repetitive exposure to antigen is a key determinant for memory inflation, and therefore the viral inoculum dose and the subsequent number of viral reactivation events strongly impact on the magnitude of the inflationary T cell pool. In addition, the number of CMV-specific CD8 T cells that is able to sense these reactivation events affects the size of the inflationary T cell pool. In the following, we will discuss factors that either promote or limit T cell inflation from both the virus and host perspective. These factors mostly operate by influencing the amount of available antigen or by affecting the T cell pool that is able to respond to the antigen. Furthermore, we will discuss the recent use of CMV-based vaccines in pre-clinical experimental settings, where these vectors have shown promising results by inducing prolonged effector memory T cell responses to foreign-introduced epitopes and thereby provided protection from subsequent virus or tumour challenges.
Collapse
Affiliation(s)
- Suzanne P M Welten
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Nicolas S Baumann
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
152
|
Abstract
PURPOSE OF REVIEW CMV-vectored vaccines expressing SIV antigens have mediated unprecedented levels of virus control following SIV challenge in rhesus macaques. Remarkably, protection was dependent on nonclassically restricted CD8 T cells. Here, we review the latest research in CMV-vectored vaccines in both humans and nonhuman primates as well as recent advances in the understanding nonclassically restricted T cells, particularly MHC-E-restricted CD8 T cells. RECENT FINDINGS Recent studies have investigated human translation of CMV-vectored vaccines including studies to ensure vaccine vector safety. Other work has focused on testing of animal models to investigate the relative contribution of MHC diversity and CMV strain on T-cell induction. Lastly, several groups have investigated MHC-E peptide binding, including HLA-E, have found that MHC-E can accommodate different peptide motifs, consistent with the original observations in CMV-vaccinated macaques. SUMMARY CMV remains a promising vaccine vector with the potential to be protective against multiple diseases, including HIV. However, CMV is highly species-specific and in humans, congenital infection can lead to serious birth defects. To ensure safe translation to humans, further clinical and animal studies are needed to better understand CMV-vectored immunity as well as more basic immunological questions relating to the induction of classical vs. nonclassical T cells.
Collapse
Affiliation(s)
- Maria Abad-Fernandez
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nilu Goonetilleke
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
153
|
Martins MA, Gonzalez-Nieto L, Shin YC, Domingues A, Gutman MJ, Maxwell HS, Magnani DM, Ricciardi MJ, Pedreño-Lopez N, Bailey VK, Altman JD, Parks CL, Allison DB, Ejima K, Rakasz EG, Capuano S, Desrosiers RC, Lifson JD, Watkins DI. The Frequency of Vaccine-Induced T-Cell Responses Does Not Predict the Rate of Acquisition after Repeated Intrarectal SIVmac239 Challenges in Mamu-B*08+ Rhesus Macaques. J Virol 2019; 93:e01626-18. [PMID: 30541854 PMCID: PMC6384082 DOI: 10.1128/jvi.01626-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
Approximately 50% of rhesus macaques (RMs) expressing the major histocompatibility complex class I (MHC-I) allele Mamu-B*08 spontaneously control chronic-phase viremia after infection with the pathogenic simian immunodeficiency virus mac239 (SIVmac239) clone. CD8+ T-cell responses in these animals are focused on immunodominant Mamu-B*08-restricted SIV epitopes in Vif and Nef, and prophylactic vaccination with these epitopes increases the incidence of elite control in SIVmac239-infected Mamu-B*08-positive (Mamu-B*08+ ) RMs. Here we evaluated if robust vaccine-elicited CD8+ T-cell responses against Vif and Nef can prevent systemic infection in Mamu-B*08+ RMs following mucosal SIV challenges. Ten Mamu-B*08+ RMs were vaccinated with a heterologous prime/boost/boost regimen encoding Vif and Nef, while six sham-vaccinated MHC-I-matched RMs served as the controls for this experiment. Vaccine-induced CD8+ T cells against Mamu-B*08-restricted SIV epitopes reached high frequencies in blood but were present at lower levels in lymph node and gut biopsy specimens. Following repeated intrarectal challenges with SIVmac239, all control RMs became infected by the sixth SIV exposure. By comparison, four vaccinees were still uninfected after six challenges, and three of them remained aviremic after 3 or 4 additional challenges. The rate of SIV acquisition in the vaccinees was numerically lower (albeit not statistically significantly) than that in the controls. However, peak viremia was significantly reduced in infected vaccinees compared to control animals. We found no T-cell markers that distinguished vaccinees that acquired SIV infection from those that did not. Additional studies will be needed to validate these findings and determine if cellular immunity can be harnessed to prevent the establishment of productive immunodeficiency virus infection.IMPORTANCE It is generally accepted that the antiviral effects of vaccine-induced classical CD8+ T-cell responses against human immunodeficiency virus (HIV) are limited to partial reductions in viremia after the establishment of productive infection. Here we show that rhesus macaques (RMs) vaccinated with Vif and Nef acquired simian immunodeficiency virus (SIV) infection at a lower (albeit not statistically significant) rate than control RMs following repeated intrarectal challenges with a pathogenic SIV clone. All animals in the present experiment expressed the elite control-associated major histocompatibility complex class I (MHC-I) molecule Mamu-B*08 that binds immunodominant epitopes in Vif and Nef. Though preliminary, these results provide tantalizing evidence that the protective efficacy of vaccine-elicited CD8+ T cells may be greater than previously thought. Future studies should examine if vaccine-induced cellular immunity can prevent systemic viral replication in RMs that do not express MHC-I alleles associated with elite control of SIV infection.
Collapse
Affiliation(s)
| | | | - Young C Shin
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Aline Domingues
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Martin J Gutman
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Helen S Maxwell
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Diogo M Magnani
- Department of Pathology, University of Miami, Miami, Florida, USA
| | | | | | - Varian K Bailey
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - John D Altman
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Christopher L Parks
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn, New York, USA
| | - David B Allison
- School of Public Health, Indiana University-Bloomington, Bloomington, Indiana, USA
| | - Keisuke Ejima
- School of Public Health, Indiana University-Bloomington, Bloomington, Indiana, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - David I Watkins
- Department of Pathology, University of Miami, Miami, Florida, USA
| |
Collapse
|
154
|
Abstract
Most studies of T lymphocytes focus on recognition of classical major histocompatibility complex (MHC) class I or II molecules presenting oligopeptides, yet there are numerous variations and exceptions of biological significance based on recognition of a wide variety of nonclassical MHC molecules. These include αβ and γδ T cells that recognize different class Ib molecules (CD1, MR-1, HLA-E, G, F, et al.) that are nearly monomorphic within a given species. Collectively, these T cells can be considered “unconventional,” in part because they recognize lipids, metabolites, and modified peptides. Unlike classical MHC-specific cells, unconventional T cells generally exhibit limited T-cell antigen receptor (TCR) repertoires and often produce innate immune cell-like rapid effector responses. Exploiting this system in new generation vaccines for human immunodeficiency virus (HIV), tuberculosis (TB), other infectious agents, and cancer was the focus of a recent workshop, “Immune Surveillance by Non-classical MHC Molecules: Improving Diversity for Antigens,” sponsored by the National Institute of Allergy and Infectious Diseases. Here, we summarize salient points presented regarding the basic immunobiology of unconventional T cells, recent advances in methodologies to measure unconventional T-cell activity in diseases, and approaches to harness their considerable clinical potential.
Collapse
|
155
|
Abstract
PURPOSE OF REVIEW The purpose is to recall some of the key immunological elements that are at the crossroad and need to be combined for developing a potent therapeutic HIV-1 vaccine. RECENT FINDINGS Therapeutic vaccines and cytokines have been commonly used to enhance and/or recall preexisting HIV-1 specific cell-mediated immune responses aiming to suppress virus replication. While the vaccine is important to stimulate HIV-1 specific T-cell responses, the cytokine may support the expansion of the stimulated virus-specific T cells. Moreover, the current success of immune checkpoint blockers in cancer therapy render them very attractive to use in HIV-1 infected individuals, with the objective to preserve the function of HIV-specific T cells from exhaustion and target directly HIV-1 cell reservoir. More recently, the development of passive immunotherapy using broad neutralizing HIV antibodies (bNAbs) and their potential capacity to elicit innate or adaptive HIV-cellular responses, beyond their neutralizing activity, offers a new opportunity to improve the efficiency of therapeutic vaccine. These major advances provide the scientific basis for developing potent combinatorial interventions in HIV-1 infected patients. SUMMARY Major advances in our immunological understanding resulting from basic science and clinical trials studies have paved the way and established a solid platform to jump over the stumbling blocks that prevent the field from developing a therapeutic HIV-1 vaccine. It is time for immuno-modulation and combinatorial strategies towards HIV-1 eradication.
Collapse
|
156
|
Kolb P, Sijmons S, McArdle MR, Taher H, Womack J, Hughes C, Ventura A, Jarvis MA, Stahl-Hennig C, Hansen S, Picker LJ, Malouli D, Hengel H, Früh K. Identification and Functional Characterization of a Novel Fc Gamma-Binding Glycoprotein in Rhesus Cytomegalovirus. J Virol 2019; 93:e02077-18. [PMID: 30487278 PMCID: PMC6364020 DOI: 10.1128/jvi.02077-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
Receptors recognizing the Fc part of immunoglobulin G (FcγRs) are key determinants in antibody-mediated immune responses. Members of the Herpesviridae interfere with this immune regulatory network by expressing viral FcγRs (vFcγRs). Human cytomegalovirus (HCMV) encodes four distinct vFcγRs that differ with respect to their IgG subtype specificity and their impact on antibody-mediated immune function in vitro The impact of vFcγRs on HCMV pathogenesis and immunomodulation in vivo is not known. The closest evolutionary animal model of HCMV is rhesus CMV (RhCMV) infection of rhesus macaques. To enable the characterization of vFcγR function in this model, we studied IgG binding by RhCMV. We show that lysates of RhCMV-infected cells contain an IgG-binding protein of 30 kDa encoded by the gene Rh05 that is a predicted type I glycoprotein belonging to the RL11 gene family. Upon deletion of Rh05, IgG-Fc binding by RhCMV strain 68-1 is lost, whereas ectopic expression of Rh05 results in IgG binding to transfected cells consistent with Rh05 being a vFcγR. Using a set of reporter cell lines stably expressing human and rhesus FcγRs, we further demonstrate that Rh05 antagonizes host FcγR activation. Compared to Rh05-intact RhCMV, RhCMVΔRh05 showed an increased activation of host FcγR upon exposure of infected cells to IgG from RhCMV-seropositive animals, suggesting that Rh05 protects infected cells from opsonization and IgG-dependent activation of host FcγRs. However, antagonizing host FcγR activation by Rh05 was not required for the establishment and maintenance of infection of RhCMV, even in a seropositive host, as shown by the induction of T cell responses to heterologous antigens expressed by RhCMV lacking the gene region encoding Rh05. In contrast to viral evasion of natural killer cells or T cell recognition, the evasion of antibody-mediated effects does not seem to be absolutely required for infection or reinfection. The identification of the first vFcγR that efficiently antagonizes host FcγR activation in the RhCMV genome will thus permit more detailed studies of this immunomodulatory mechanism in promoting viral dissemination in the presence of natural or vaccine-induced humoral immunity.IMPORTANCE Rhesus cytomegalovirus (RhCMV) offers a unique model for studying human cytomegalovirus (HCMV) pathogenesis and vaccine development. RhCMV infection of nonhuman primates greatly broadened the understanding of mechanisms by which CMVs evade or reprogram T cell and natural killer cell responses in vivo However, the role of humoral immunity and viral modulation of anti-CMV antibodies has not been studied in this model. There is evidence from in vitro studies that HCMVs can evade humoral immunity. By gene mapping and with the help of a novel cell-based reporter assay system we characterized the first RhCMV encoded IgG-Fcγ binding glycoprotein as a potent antagonist of rhesus FcγR activation. We further demonstrate that, unlike evasion of T cell immunity, this viral Fcγ receptor is not required to overcome anti-CMV immunity to establish secondary infections. These findings enable more detailed studies of the in vivo consequences of CMV evasion from IgG responses in nonhuman primate models.
Collapse
Affiliation(s)
- Philipp Kolb
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Steven Sijmons
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Matthew R McArdle
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Husam Taher
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Jennie Womack
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Colette Hughes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Abigail Ventura
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Michael A Jarvis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | | | - Scott Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Hartmut Hengel
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| |
Collapse
|
157
|
Beyranvand Nejad E, Ratts RB, Panagioti E, Meyer C, Oduro JD, Cicin-Sain L, Früh K, van der Burg SH, Arens R. Demarcated thresholds of tumor-specific CD8 T cells elicited by MCMV-based vaccine vectors provide robust correlates of protection. J Immunother Cancer 2019; 7:25. [PMID: 30704520 PMCID: PMC6357411 DOI: 10.1186/s40425-019-0500-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The capacity of cytomegalovirus (CMV) to elicit long-lasting strong T cell responses, and the ability to engineer the genome of this DNA virus positions CMV-based vaccine vectors highly suitable as a cancer vaccine platform. Defined immune thresholds for tumor protection and the factors affecting such thresholds have not well been investigated in cancer immunotherapy. We here determined using CMV as a vaccine platform whether critical thresholds of vaccine-specific T cell responses can be established that relate to tumor protection, and which factors control such thresholds. METHODS We generated CMV-based vaccine vectors expressing the E7 epitope and tested these in preclinical models of HPV16-induced cancer. Vaccination was applied via different doses and routes (intraperitoneal (IP), subcutaneous (SC) and intranasal (IN)). The magnitude, kinetics and phenotype of the circulating tumor-specific CD8+ T cell response were determined. Mice were subsequently challenged with tumor cells, and the tumor protection was monitored. RESULTS Immunization with CMV-based vaccines via the IP or SC route eliciting vaccine-induced CD8+ T cell responses of > 0.3% of the total circulating CD8 T cell population fully protects mice against lethal tumor challenge. However, low dose inoculations via the IP or SC route or IN vaccination elicited vaccine-induced CD8+ T cell responses that did not reach protective thresholds for tumor protection. In addition, whereas weak pre-existing immunity did not alter the protective thresholds of the vaccine-specific T cell response following subsequent immunization with CMV-based vaccine vectors, strong pre-existing immunity inhibited the development of vaccine-induced T cells and their control on tumor progression. CONCLUSIONS This study highlight the effectiveness of CMV-based vaccine vectors, and shows that demarcated thresholds of vaccine-specific T cells could be defined that correlate to tumor protection. Together, these results may hold importance for cancer vaccine development to achieve high efficacy in vaccine recipients.
Collapse
Affiliation(s)
- Elham Beyranvand Nejad
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.,Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Eleni Panagioti
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.,Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jennifer D Oduro
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Virology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Partner site, Hannover/Braunschweig, Germany
| | | | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.
| |
Collapse
|
158
|
Hansen SG, Womack J, Scholz I, Renner A, Edgel KA, Xu G, Ford JC, Grey M, St Laurent B, Turner JM, Planer S, Legasse AW, Richie TL, Aguiar JC, Axthelm MK, Villasante ED, Weiss W, Edlefsen PT, Picker LJ, Früh K. Cytomegalovirus vectors expressing Plasmodium knowlesi antigens induce immune responses that delay parasitemia upon sporozoite challenge. PLoS One 2019; 14:e0210252. [PMID: 30673723 PMCID: PMC6343944 DOI: 10.1371/journal.pone.0210252] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
The development of a sterilizing vaccine against malaria remains one of the highest priorities for global health research. While sporozoite vaccines targeting the pre-erythrocytic stage show great promise, it has not been possible to maintain efficacy long-term, likely due to an inability of these vaccines to maintain effector memory T cell responses in the liver. Vaccines based on human cytomegalovirus (HCMV) might overcome this limitation since vectors based on rhesus CMV (RhCMV), the homologous virus in rhesus macaques (RM), elicit and indefinitely maintain high frequency, non-exhausted effector memory T cells in extralymphoid tissues, including the liver. Moreover, RhCMV strain 68-1 elicits CD8+ T cells broadly recognizing unconventional epitopes exclusively restricted by MHC-II and MHC-E. To evaluate the potential of these unique immune responses to protect against malaria, we expressed four Plasmodium knowlesi (Pk) antigens (CSP, AMA1, SSP2/TRAP, MSP1c) in RhCMV 68-1 or in Rh189-deleted 68-1, which additionally elicits canonical MHC-Ia-restricted CD8+ T cells. Upon inoculation of RM with either of these Pk Ag expressing RhCMV vaccines, we obtained T cell responses to each of the four Pk antigens. Upon challenge with Pk sporozoites we observed a delayed appearance of blood stage parasites in vaccinated RM consistent with a 75-80% reduction of parasite release from the liver. Moreover, the Rh189-deleted RhCMV/Pk vectors elicited sterile protection in one RM. Once in the blood, parasite growth was not affected. In contrast to T cell responses induced by Pk infection, RhCMV vectors maintained sustained T cell responses to all four malaria antigens in the liver post-challenge. The delayed appearance of blood stage parasites is thus likely due to a T cell-mediated inhibition of liver stage parasite development. As such, this vaccine approach can be used to efficiently test new T cell antigens, improve current vaccines targeting the liver stage and complement vaccines targeting erythrocytic antigens.
Collapse
Affiliation(s)
- Scott G Hansen
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Jennie Womack
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Isabel Scholz
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Andrea Renner
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Kimberly A Edgel
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Guangwu Xu
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Julia C Ford
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Mikayla Grey
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Brandyce St Laurent
- National Institutes of Health, Laboratory of Malaria and Vector Research, Malaria Pathogenesis and Human Immunity Unit, Rockville, MD, United States of America
| | - John M Turner
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Shannon Planer
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Al W Legasse
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Thomas L Richie
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Joao C Aguiar
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Michael K Axthelm
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Eileen D Villasante
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Walter Weiss
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Paul T Edlefsen
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Louis J Picker
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Klaus Früh
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| |
Collapse
|
159
|
|
160
|
Wang X, Piersma SJ, Nelson CA, Dai YN, Christensen T, Lazear E, Yang L, Sluijter M, van Hall T, Hansen TH, Yokoyama WM, Fremont DH. A herpesvirus encoded Qa-1 mimic inhibits natural killer cell cytotoxicity through CD94/NKG2A receptor engagement. eLife 2018; 7:38667. [PMID: 30575523 PMCID: PMC6320069 DOI: 10.7554/elife.38667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
A recurrent theme in viral immune evasion is the sabotage of MHC-I antigen presentation, which brings virus the concomitant issue of ‘missing-self’ recognition by NK cells that use inhibitory receptors to detect surface MHC-I proteins. Here, we report that rodent herpesvirus Peru (RHVP) encodes a Qa-1 like protein (pQa-1) via RNA splicing to counteract NK activation. While pQa-1 surface expression is stabilized by the same canonical peptides presented by murine Qa-1, pQa-1 is GPI-anchored and resistant to the activity of RHVP pK3, a ubiquitin ligase that targets MHC-I for degradation. pQa-1 tetramer staining indicates that it recognizes CD94/NKG2A receptors. Consistently, pQa-1 selectively inhibits NKG2A+ NK cells and expression of pQa-1 can protect tumor cells from NK control in vivo. Collectively, these findings reveal an innovative NK evasion strategy wherein RHVP encodes a modified Qa-1 mimic refractory to MHC-I sabotage and capable of specifically engaging inhibitory receptors to circumvent NK activation.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Christopher A Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Ya-Nan Dai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Ted Christensen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Eric Lazear
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Marjolein Sluijter
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ted H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Wayne M Yokoyama
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States.,Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
161
|
Rahman MA, Robert-Guroff M. Accelerating HIV vaccine development using non-human primate models. Expert Rev Vaccines 2018; 18:61-73. [PMID: 30526159 DOI: 10.1080/14760584.2019.1557521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The search for a preventative HIV vaccine is ongoing after three decades of research. Contributions of non-human primate (NHP) models to this research are irrefutable, however interpreting data obtained for translation to humans has been problematic. As knowledge concerning NHP models has accumulated, their utility and value in assessing immunogenicity and efficacy of novel vaccines have become apparent. NHP models have become a critical component of vaccine design. AREAS COVERED Beginning with early vaccine studies, we trace the development and evolution of NHP models concurrent with changes in HIV vaccine concepts and in response to their ability to predict clinical trial efficacy. The value of NHP studies in guiding vaccine design is highlighted along with their importance in opening new areas of investigation and facilitating movement of promising approaches into the clinic. EXPERT COMMENTARY Due to their close relatedness to humans, NHPs are an excellent choice for immunogenicity studies. The ability of NHP models to predict clinical efficacy has improved with the introduction of low-dose challenge viruses and recognition of confounding variables in study outcomes. Use of NHP models has opened new research areas with outstanding potential for generating vaccine efficacy against HIV and other infectious agents.
Collapse
Affiliation(s)
- Mohammad Arif Rahman
- a Vaccine Branch, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Marjorie Robert-Guroff
- a Vaccine Branch, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
162
|
Abstract
One of the major breakthroughs of cancer immunotherapy has come from blocking immune checkpoint molecules on tumor-reactive T cells. Now, two studies examine targeting of a novel immune checkpoint, NKG2A, that can be expressed on both NK cells and on CD8+ T cells, either combined with a tumor-targeting antibody or with a tumor-specific vaccine.
Collapse
Affiliation(s)
- John B Haanen
- Medical Oncology and Molecular Oncology & Immunology Divisions, The Netherlands Cancer Institute, Amsterdam, NL.
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| |
Collapse
|
163
|
Moyo N, Vogel AB, Buus S, Erbar S, Wee EG, Sahin U, Hanke T. Efficient Induction of T Cells against Conserved HIV-1 Regions by Mosaic Vaccines Delivered as Self-Amplifying mRNA. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:32-46. [PMID: 30547051 PMCID: PMC6258890 DOI: 10.1016/j.omtm.2018.10.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022]
Abstract
Focusing T cell responses on the most vulnerable parts of HIV-1, the functionally conserved regions of HIV-1 proteins, is likely a key prerequisite for vaccine success. For a T cell vaccine to efficiently control HIV-1 replication, the vaccine-elicited individual CD8+ T cells and as a population have to display a number of critical traits. If any one of these traits is suboptimal, the vaccine is likely to fail. Fine-tuning of individual protective characteristics of T cells will require iterative stepwise improvements in clinical trials. Although the second-generation tHIVconsvX immunogens direct CD8+ T cells to predominantly protective and conserved epitopes, in the present work, we have used formulated self-amplifying mRNA (saRNA) to deliver tHIVconsvX to the immune system. We demonstrated in BALB/c and outbred mice that regimens employing saRNA vaccines induced broadly specific, plurifunctional CD8+ and CD4+ T cells, which displayed structured memory subpopulations and were maintained at relatively high frequencies over at least 22 weeks post-administration. This is one of the first thorough analyses of mRNA vaccine-elicited T cell responses. The combination of tHIVconsvX immunogens and the highly versatile and easily manufacturable saRNA platform may provide a long-awaited opportunity to define and optimize induction of truly protective CD8+ T cell parameters in human volunteers.
Collapse
Affiliation(s)
- Nathifa Moyo
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Annette B Vogel
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz 55131, Germany
| | - Søren Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Stephanie Erbar
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz 55131, Germany
| | - Edmund G Wee
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Ugur Sahin
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz 55131, Germany
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
164
|
Hannoun Z, Lin Z, Brackenridge S, Kuse N, Akahoshi T, Borthwick N, McMichael A, Murakoshi H, Takiguchi M, Hanke T. Identification of novel HIV-1-derived HLA-E-binding peptides. Immunol Lett 2018; 202:65-72. [PMID: 30172717 PMCID: PMC6291738 DOI: 10.1016/j.imlet.2018.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/07/2018] [Accepted: 08/23/2018] [Indexed: 01/13/2023]
Abstract
Non-classical class Ib MHC-E molecule is becoming an increasingly interesting component of the immune response. It is involved in both the adaptive and innate immune responses to several chronic infections including HIV-1 and, under very specific circumstances, likely mediated a unique vaccine protection of rhesus macaques against pathogenic SIV challenge. Despite being recently in the spotlight for HIV-1 vaccine development, to date there is only one reported human leukocyte antigen (HLA)-E-binding peptide derived from HIV-1. In an effort to help start understanding the possible functions of HLA-E in HIV-1 infection, we determined novel HLA-E binding peptides derived from HIV-1 Gag, Pol and Vif proteins. These peptides were identified in three independent assays, all quantifying cell-surface stabilization of HLA-E*01:01 or HLA-E*01:03 molecules upon peptide binding, which was detected by HLA-E-specific monoclonal antibody and flow cytometry. Thus, following initial screen of over 400 HIV-1-derived 15-mer peptides, 4 novel 9-mer peptides PM9, RL9, RV9 and TP9 derived from 15-mer binders specifically stabilized surface expression of HLA-E*01:03 on the cell surface in two separate assays and 5 other binding candidates EI9, MD9, NR9, QF9 and YG9 gave a binding signal in only one of the two assays, but not both. Overall, we have expanded the current knowledge of HIV-1-derived target peptides stabilizing HLA-E cell-surface expression from 1 to 5, thus broadening inroads for future studies. This is a small, but significant contribution towards studying the fine mechanisms behind HLA-E actions and their possible use in development of a new kind of vaccines.
Collapse
Affiliation(s)
- Zara Hannoun
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Zhansong Lin
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Simon Brackenridge
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Nicola Borthwick
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew McMichael
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
165
|
Beura LK, Jameson SC, Masopust D. Is a Human CD8 T-Cell Vaccine Possible, and if So, What Would It Take? CD8 T-Cell Vaccines: To B or Not to B? Cold Spring Harb Perspect Biol 2018; 10:a028910. [PMID: 29254982 PMCID: PMC6120703 DOI: 10.1101/cshperspect.a028910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although CD8 T-cell vaccines do not have the record of success of humoral-mediated vaccines, they do not receive the same degree of effort. Many diseases, including malaria, tuberculosis, and acquired immune deficiency syndrome (AIDS) have not yielded to vaccines, and intrinsic barriers may impede approaches limited solely to generating antibodies. Moreover, population growth and modernization are driving an increased pace of new emerging global health threats (human immunodeficiency virus [HIV] is a recent example), which will create unpredictable challenges for vaccinologists. Vaccine-elicited CD8 T cells may contribute to protective modalities, although their development will require a more thorough understanding of CD8 T-cell biology, practices for manufacturing and delivering CD8 T-cell-eliciting vectors that have acceptable safety profiles, and, ultimately, the political will and faith of those that make vaccine research funding decisions.
Collapse
Affiliation(s)
- Lalit K Beura
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Stephen C Jameson
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
166
|
McMichael AJ. Is a Human CD8 T-Cell Vaccine Possible, and if So, What Would It Take? Could a CD8 + T-Cell Vaccine Prevent Persistent HIV Infection? Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029124. [PMID: 29254977 DOI: 10.1101/cshperspect.a029124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Vaccines that stimulate CD8+ T cells could clear early virus infection or control ongoing infection and prevent disease. This could be valuable to combat human immunodeficiency virus type 1 (HIV-1) where it has not yet been possible to generate broadly reacting neutralizing antibodies with a vaccine. However, HIV-1 vaccines aimed at stimulating CD8+ T cells have had no success. In contrast, a cytomegalovirus vectored simian immunodeficiency virus (SIV) vaccine enabled clearance of early SIV infection. This may open the door to the design of an effective HIV vaccine.
Collapse
Affiliation(s)
- Andrew J McMichael
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| |
Collapse
|
167
|
Okoye AA, Hansen SG, Vaidya M, Fukazawa Y, Park H, Duell DM, Lum R, Hughes CM, Ventura AB, Ainslie E, Ford JC, Morrow D, Gilbride RM, Legasse AW, Hesselgesser J, Geleziunas R, Li Y, Oswald K, Shoemaker R, Fast R, Bosche WJ, Borate BR, Edlefsen PT, Axthelm MK, Picker LJ, Lifson JD. Early antiretroviral therapy limits SIV reservoir establishment to delay or prevent post-treatment viral rebound. Nat Med 2018; 24:1430-1440. [PMID: 30082858 PMCID: PMC6389357 DOI: 10.1038/s41591-018-0130-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/20/2018] [Indexed: 12/30/2022]
Abstract
Prophylactic vaccination of rhesus macaques with rhesus cytomegalovirus (RhCMV) vectors expressing simian immunodeficiency virus (SIV) antigens (RhCMV/SIV) elicits immune responses that stringently control highly pathogenic SIV infection, with subsequent apparent clearance of the infection, in ~50% of vaccinees. In contrast, here, we show that therapeutic RhCMV/SIV vaccination of rhesus macaques previously infected with SIV and given continuous combination antiretroviral therapy (cART) beginning 4-9 d post-SIV infection does not mediate measurable SIV reservoir clearance during over 600 d of follow-up on cART relative to RhCMV/control vaccination. However, none of the six animals started on cART on day four or five, across both RhCMV/SIV- and RhCMV/control-vaccinated groups, those rhesus macaques with SIV reservoirs most closely resembling those of prophylactically RhCMV/SIV-vaccinated and protected animals early in their course, showed post-cART viral rebound with up to nine months of follow-up. Moreover, at necropsy, these rhesus macaques showed little to no evidence of replication-competent SIV. These results suggest that the early SIV reservoir is limited in durability and that effective blockade of viral replication and spread in this critical time window by either pharmacologic or immunologic suppression may result in reduction, and potentially loss, of rebound-competent virus over a period of ~two years.
Collapse
Affiliation(s)
- Afam A Okoye
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Mukta Vaidya
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Haesun Park
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Derick M Duell
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Richard Lum
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Colette M Hughes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Abigail B Ventura
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Emily Ainslie
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Julia C Ford
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - David Morrow
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Roxanne M Gilbride
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Alfred W Legasse
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | | | | | - Yuan Li
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Randy Fast
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - William J Bosche
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bhavesh R Borate
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Paul T Edlefsen
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
168
|
Walters LC, Harlos K, Brackenridge S, Rozbesky D, Barrett JR, Jain V, Walter TS, O'Callaghan CA, Borrow P, Toebes M, Hansen SG, Sacha JB, Abdulhaqq S, Greene JM, Früh K, Marshall E, Picker LJ, Jones EY, McMichael AJ, Gillespie GM. Pathogen-derived HLA-E bound epitopes reveal broad primary anchor pocket tolerability and conformationally malleable peptide binding. Nat Commun 2018; 9:3137. [PMID: 30087334 PMCID: PMC6081459 DOI: 10.1038/s41467-018-05459-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/04/2018] [Indexed: 12/31/2022] Open
Abstract
Through major histocompatibility complex class Ia leader sequence-derived (VL9) peptide binding and CD94/NKG2 receptor engagement, human leucocyte antigen E (HLA-E) reports cellular health to NK cells. Previous studies demonstrated a strong bias for VL9 binding by HLA-E, a preference subsequently supported by structural analyses. However, Mycobacteria tuberculosis (Mtb) infection and Rhesus cytomegalovirus-vectored SIV vaccinations revealed contexts where HLA-E and the rhesus homologue, Mamu-E, presented diverse pathogen-derived peptides to CD8+ T cells, respectively. Here we present crystal structures of HLA-E in complex with HIV and Mtb-derived peptides. We show that despite the presence of preferred primary anchor residues, HLA-E-bound peptides can adopt alternative conformations within the peptide binding groove. Furthermore, combined structural and mutagenesis analyses illustrate a greater tolerance for hydrophobic and polar residues in the primary pockets than previously appreciated. Finally, biochemical studies reveal HLA-E peptide binding and exchange characteristics with potential relevance to its alternative antigen presenting function in vivo.
Collapse
Affiliation(s)
- Lucy C Walters
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Simon Brackenridge
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Daniel Rozbesky
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Jordan R Barrett
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Vitul Jain
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Thomas S Walter
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Chris A O'Callaghan
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, OX3 7BN, UK
| | - Persephone Borrow
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Mireille Toebes
- Department Molecular Oncology and Immunology, B6 Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Shaheed Abdulhaqq
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Justin M Greene
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Emily Marshall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Geraldine M Gillespie
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
169
|
Hu X, Lu Z, Valentin A, Rosati M, Broderick KE, Sardesai NY, Marx PA, Mullins JI, Pavlakis GN, Felber BK. Gag and env conserved element CE DNA vaccines elicit broad cytotoxic T cell responses targeting subdominant epitopes of HIV and SIV Able to recognize virus-infected cells in macaques. Hum Vaccin Immunother 2018; 14:2163-2177. [PMID: 29939820 PMCID: PMC6183272 DOI: 10.1080/21645515.2018.1489949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
HIV sequence diversity and the propensity of eliciting immunodominant responses targeting inessential variable regions are hurdles in the development of an effective AIDS vaccine. We developed a DNA vaccine comprising conserved elements (CE) of SIV p27Gag and HIV-1 Env and found that priming vaccination with CE DNA is critical to efficiently overcome the dominance imposed by Gag and Env variable regions. Here, we show that DNA vaccinated macaques receiving the CE prime/CE+full-length DNA co-delivery booster vaccine regimens developed broad, potent and durable cytotoxic T cell responses targeting conserved protein segments of SIV Gag and HIV Env. Gag CE-specific T cells showed robust anamnestic responses upon infection with SIVmac239 which led to the identification of CE-specific cytotoxic lymphocytes able to recognize epitopes covering distinct CE on the surface of SIV infected cells in vivo. Though not controlling infection overall, we found an inverse correlation between Gag CE-specific CD8+ T cell responses and peak viremia. The T cell responses induced by the HIV Env CE immunogen were recalled in some animals upon SIV infection, leading to the identification of two cross-reactive epitopes between HIV and SIV Env based in sequence homology. These data demonstrate that a vaccine combining Gag and Env CE DNA subverted the normal immunodominance patterns, eliciting immune responses that included subdominant, highly conserved epitopes. These vaccine regimens augment cytotoxic T cell responses to highly conserved epitopes in the viral proteome and maximize response breadth. The vaccine-induced CE-specific T cells were expanded upon SIV infection, indicating that the predicted CE epitopes incorporated in the DNA vaccine are processed and exposed by infected cells in their natural context within the viral proteome.
Collapse
Affiliation(s)
- Xintao Hu
- a Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , USA
| | - Zhongyan Lu
- a Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , USA
| | - Antonio Valentin
- b Human Retrovirus Section, Vaccine Branch, Center for Cancer Research , National Cancer Institute at Frederick , Frederick, Frederick , MD , USA
| | - Margherita Rosati
- b Human Retrovirus Section, Vaccine Branch, Center for Cancer Research , National Cancer Institute at Frederick , Frederick, Frederick , MD , USA
| | | | | | - Preston A Marx
- d Tulane National Primate Research Center and Department of Tropical Medicine, School of Public Health and Tropical Medicine , Tulane University , New Orleans , LA , USA
| | - James I Mullins
- e Departments of Microbiology, Medicine and Laboratory Medicine , University of Washington , Seattle , WA , USA
| | - George N Pavlakis
- b Human Retrovirus Section, Vaccine Branch, Center for Cancer Research , National Cancer Institute at Frederick , Frederick, Frederick , MD , USA
| | - Barbara K Felber
- a Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , USA
| |
Collapse
|
170
|
Abstract
HIV-infected individuals who maintain control of virus without antiretroviral therapy (ART) are called HIV controllers. The immune responses of these individuals suppress HIV viral replication to low levels or, in the case of elite controllers, to undetectable levels. Although some research indicates a role for inferior virulence of the infecting viral strain in natural control, perhaps by way of defective Nef protein function, we find that the majority of research in HIV controllers highlights CD8 T cells as the main suppressor of viral replication. The most convincing evidence for this argument lies in the strong correlation between certain HLA-I alleles, especially B*57, and HIV control status, a finding that has been replicated by many groups. However, natural control can also occur in individuals lacking these specific HLA alleles, and our understanding of what constitutes an effective CD8 T-cell response remains an incomplete picture. Recent research has broadened our understanding of natural HIV control by illustrating the interactions between different immune cells, including innate immune effectors and antigen-presenting cells. For many years, the immune responses of the natural HIV controllers have been studied for clues on how to achieve functional cure in the rest of the HIV-infected population. The goal of a future functional cure to HIV is one where HIV-infected individuals’ immune responses are able to suppress virus long-term without requiring ART. This review highlights recent advances in our understanding of how HIV controllers’ natural immune responses are able to suppress virus.
Collapse
Affiliation(s)
- Sushma Boppana
- Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Paul Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
171
|
Santos MR, Couto AR, Foroni I, Bettencourt BF, Li Z, Meneses R, Wheeler L, Pereira J, Pimentel-Santos F, Fonseca JE, Alves H, Martinho A, Lima M, Brown MA, Bruges-Armas J. Non-classical human leucocyte antigens in ankylosing spondylitis: possible association with HLA-E and HLA-F. RMD Open 2018; 4:e000677. [PMID: 30018800 PMCID: PMC6045739 DOI: 10.1136/rmdopen-2018-000677] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/18/2018] [Accepted: 06/10/2018] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Ankylosing spondylitis (AS) is the most prevalent form of spondyloarthritis, with a known genetic association with the HLA-B27 molecule. The aim of this study was to assess the contribution of the HLA-G, HLA-E and HLA-F to AS susceptibility/protection in Portuguese patients with HLA-B27 AS and HLA-B27 unaffected controls. METHODS High-resolution typing of HLA-G, HLA-E and HLA-F was performed in 228 patients with HLA-B27 AS and 244 HLA-B27 unaffected controls. Allelic, genotypic and haplotypic frequencies were compared between cohorts. To replicate the results, single nucleotide polymorphisms (SNPs) in HLA-E and HLA-F genes were typed in Australian cohorts. For further confirmation, a group of European-descent patients with AS and unaffected controls were genotyped for Major Histocompatibility Complex SNPs using the Illumina microarray. RESULTS In the Portuguese population, no significant differences were found in HLA-G. For HLA-E, a significant difference was detected for the genotype HLA-E*01:01:01/01:03:01 (p=0.009; pc=0.009; OR=0.51), with a protection effect. For HLA-F, significant differences were detected in the allele HLA-F*01:01:02 (p=0.0049; pc=0.0098; OR=0.60) and corresponding SNP rs2075682 (p=0.0004; pc=0.0008; OR=0.53), suggesting protection and in the genotype HLA-F*01:01:01/01:03:01 (p=0.011; pc=0.043; OR=2.00), suggesting a susceptibility effect. Three G-E-F haplotypes with significant differences were detected but occur in a very small number of individuals. The only significant differences detected in the replication studies were for HLA-E rs1059510 in the Australians and for HLA-F rs1736924 in the European-descent cohorts. CONCLUSION Our results reveal suggestive AS protective and susceptibility effects from both HLA-E and HLA-F loci, however with population differences. To our knowledge, this is the first study showing association of HLA-F with AS.
Collapse
Affiliation(s)
- Margarida Rodrigues Santos
- Serviço Especializado de Epidemiologia e Biologia Molecular, Hospital de Santo Espirito da Ilha Terceira, EPER, Angra do Heroismo, Portugal
| | - Ana Rita Couto
- Serviço Especializado de Epidemiologia e Biologia Molecular, Hospital de Santo Espirito da Ilha Terceira, EPER, Angra do Heroismo, Portugal
| | - Iris Foroni
- Serviço Especializado de Epidemiologia e Biologia Molecular, Hospital de Santo Espirito da Ilha Terceira, EPER, Angra do Heroismo, Portugal
| | - Bruno Filipe Bettencourt
- Serviço Especializado de Epidemiologia e Biologia Molecular, Hospital de Santo Espirito da Ilha Terceira, EPER, Angra do Heroismo, Portugal
| | - Zhixiu Li
- Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Raquel Meneses
- Serviço Especializado de Epidemiologia e Biologia Molecular, Hospital de Santo Espirito da Ilha Terceira, EPER, Angra do Heroismo, Portugal
| | - Lawrie Wheeler
- Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Joaquim Pereira
- Serviço Especializado de Epidemiologia e Biologia Molecular, Hospital de Santo Espirito da Ilha Terceira, EPER, Angra do Heroismo, Portugal
| | | | | | - Helena Alves
- Centro de Histocompatibilidade do Norte, Instituto Português do Sangue e da Transplantação, Porto, Portugal
| | - António Martinho
- Centro de Sangue e Transplantação de Coimbra, Instituto Português do Sangue e da Transplantação, Coimbra, Portugal
| | - Manuela Lima
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jácome Bruges-Armas
- Serviço Especializado de Epidemiologia e Biologia Molecular, Hospital de Santo Espirito da Ilha Terceira, EPER, Angra do Heroismo, Portugal
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
172
|
Liu W, Wong YC, Chen SMY, Tang J, Wang H, Cheung AKL, Chen Z. DNA prime/MVTT boost regimen with HIV-1 mosaic Gag enhances the potency of antigen-specific immune responses. Vaccine 2018; 36:4621-4632. [PMID: 29961605 DOI: 10.1016/j.vaccine.2018.06.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 05/12/2018] [Accepted: 06/21/2018] [Indexed: 10/28/2022]
Abstract
HIV-1 diversity and latent reservoir are the major challenges for the development of an effective AIDS vaccine. It is well indicated that Gag-specific CD8+ T cells serve as the dominant host immune surveillance for HIV-1 control, but it still remains a challenge for vaccine design to induce broader and stronger cytotoxic T cell immunity against the virus. Genetic variation of the HIV-1 gag gene across different clades is one of the reasons for the reduction of antigenic epitope coverage. Here, we report an immunization strategy with heterologous vaccines expressing a mosaic Gag antigen aimed to increase antigenic breadth against a wider spectrum of HIV-1 strains. Priming using a DNA vaccine via in vivo electroporation, followed by boosting with a live replication-competent modified vaccinia TianTan (MVTT) vectored vaccine, elicited greater and broader protective Gag-specific immune responses in mice. Compared to DNA or MVTT homologous immunization, the heterologous DNA/MVTT vaccination resulted in higher frequencies of broadly reactive, Gag-specific, polyfunctional, long-lived cytotoxic CD8+ T cells, as well as increased anti-Gag antibody titer. Importantly, the DNA/MVTT heterologous vaccination induced protection against EcoHIV and mesothelioma AB1-Gag challenges. In summary, the stronger protective Gag-specific immunity induced by the heterologous regimen using two safe vectors shows promise for further development to enhance anti-HIV-1 immunity. Our study has important implications for immunogen design and the development of an effective HIV-1 heterologous vaccination strategy.
Collapse
Affiliation(s)
- Wan Liu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, PR China; HKU-AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, PR China
| | - Yik Chun Wong
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, PR China; HKU-AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, PR China
| | - Samantha M Y Chen
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Jiansong Tang
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, PR China; HKU-AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, PR China
| | - Haibo Wang
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Allen Ka Loon Cheung
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, PR China; HKU-AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, PR China.
| |
Collapse
|
173
|
Hu X, Valentin A, Cai Y, Dayton F, Rosati M, Ramírez-Salazar EG, Kulkarni V, Broderick KE, Sardesai NY, Wyatt LS, Earl PL, Moss B, Mullins JI, Pavlakis GN, Felber BK. DNA Vaccine-Induced Long-Lasting Cytotoxic T Cells Targeting Conserved Elements of Human Immunodeficiency Virus Gag Are Boosted Upon DNA or Recombinant Modified Vaccinia Ankara Vaccination. Hum Gene Ther 2018; 29:1029-1043. [PMID: 29869530 PMCID: PMC6152849 DOI: 10.1089/hum.2018.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
DNA-based vaccines able to induce efficient cytotoxic T-cell responses targeting conserved elements (CE) of human immunodeficiency virus type 1 (HIV-1) Gag have been developed. These CE were selected by stringent conservation, the ability to induce T-cell responses with broad human leukocyte antigen coverage, and the association between recognition of CE epitopes and viral control in HIV-infected individuals. Based on homology to HIV, a simian immunodeficiency virus p27gag CE DNA vaccine has also been developed. This study reports on the durability of the CE-specific T-cell responses induced by HIV and simian immunodeficiency virus CE DNA-based prime/boost vaccine regimens in rhesus macaques, and shows that the initially primed CE-specific T-cell responses were efficiently boosted by a single CE DNA vaccination after the long rest period (up to 2 years). In another cohort of animals, the study shows that a single inoculation with non-replicating recombinant Modified Vaccinia Ankara (rMVA62B) also potently boosted CE-specific responses after around 1.5 years of rest. Both CE DNA and rMVA62B booster vaccinations increased the magnitude and cytotoxicity of the CE-specific responses while maintaining the breadth of CE recognition. Env produced by rMVA62B did not negatively interfere with the recall of the Gag CE responses. rMVA62B could be beneficial to further boosting the immune response to Gag in humans. Vaccine regimens that employ CE DNA as a priming immunogen hold promise for application in HIV prevention and therapy.
Collapse
Affiliation(s)
- Xintao Hu
- 1 Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland
| | - Antonio Valentin
- 2 Human Retrovirus Section, National Cancer Institute, Frederick, Maryland
| | - Yanhui Cai
- 1 Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland
| | - Frances Dayton
- 1 Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland
| | - Margherita Rosati
- 2 Human Retrovirus Section, National Cancer Institute, Frederick, Maryland
| | | | - Viraj Kulkarni
- 1 Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland
| | | | | | - Linda S Wyatt
- 4 Laboratory of Viral Diseases, NIAID, Bethesda, Maryland
| | | | - Bernard Moss
- 4 Laboratory of Viral Diseases, NIAID, Bethesda, Maryland
| | | | - George N Pavlakis
- 2 Human Retrovirus Section, National Cancer Institute, Frederick, Maryland
| | - Barbara K Felber
- 1 Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
174
|
Abstract
Humans have a close phylogenetic relationship with nonhuman primates (NHPs) and share many physiological parallels, such as highly similar immune systems, with them. Importantly, NHPs can be infected with many human or related simian viruses. In many cases, viruses replicate in the same cell types as in humans, and infections are often associated with the same pathologies. In addition, many reagents that are used to study the human immune response cross-react with NHP molecules. As such, NHPs are often used as models to study viral vaccine efficacy and antiviral therapeutic safety and efficacy and to understand aspects of viral pathogenesis. With several emerging viral infections becoming epidemic, NHPs are proving to be a very beneficial benchmark for investigating human viral infections.
Collapse
Affiliation(s)
- Jacob D Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
| | - Scott W Wong
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
175
|
Sengupta S, Siliciano RF. Targeting the Latent Reservoir for HIV-1. Immunity 2018; 48:872-895. [PMID: 29768175 PMCID: PMC6196732 DOI: 10.1016/j.immuni.2018.04.030] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
Antiretroviral therapy can effectively block HIV-1 replication and prevent or reverse immunodeficiency in HIV-1-infected individuals. However, viral replication resumes within weeks of treatment interruption. The major barrier to a cure is a small pool of resting memory CD4+ T cells that harbor latent HIV-1 proviruses. This latent reservoir is now the focus of an intense international research effort. We describe how the reservoir is established, challenges involved in eliminating it, and pharmacologic and immunologic strategies for targeting this reservoir. The development of a successful cure strategy will most likely require understanding the mechanisms that maintain HIV-1 proviruses in a latent state and pathways that drive the proliferation of infected cells, which slows reservoir decay. In addition, a cure will require the development of effective immunologic approaches to eliminating infected cells. There is renewed optimism about the prospect of a cure, and the interventions discussed here could pave the way.
Collapse
Affiliation(s)
- Srona Sengupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Graduate Program in Immunology and Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
176
|
Partridge T, Nicastri A, Kliszczak AE, Yindom LM, Kessler BM, Ternette N, Borrow P. Discrimination Between Human Leukocyte Antigen Class I-Bound and Co-Purified HIV-Derived Peptides in Immunopeptidomics Workflows. Front Immunol 2018; 9:912. [PMID: 29780384 PMCID: PMC5946011 DOI: 10.3389/fimmu.2018.00912] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/12/2018] [Indexed: 12/24/2022] Open
Abstract
Elucidation of novel peptides presented by human leukocyte antigen (HLA) class I alleles by immunopeptidomics constitutes a powerful approach that can inform the rational design of CD8+ T cell inducing vaccines to control infection with pathogens such as human immunodeficiency virus type 1 (HIV-1) or to combat tumors. Recent advances in the sensitivity of liquid chromatography tandem mass spectrometry instrumentation have facilitated the discovery of thousands of natural HLA-restricted peptides in a single measurement. However, the extent of contamination of class I-bound peptides identified using HLA immunoprecipitation (IP)-based immunopeptidomics approaches with peptides from other sources has not previously been evaluated in depth. Here, we investigated the specificity of the IP-based immunopeptidomics methodology using HLA class I- or II-deficient cell lines and membrane protein-specific antibody IPs. We demonstrate that the 721.221 B lymphoblastoid cell line, widely regarded to be HLA class Ia-deficient, actually expresses and presents peptides on HLA-C*01:02. Using this cell line and the C8166 (HLA class I- and II-expressing) cell line, we show that some HLA class II-bound peptides were co-purified non-specifically during HLA class I and membrane protein IPs. Furthermore, IPs of "irrelevant" membrane proteins from HIV-1-infected HLA class I- and/or II-expressing cells revealed that unusually long HIV-1-derived peptides previously reported by us and other immunopeptidomics studies as potentially novel CD8+ T cell epitopes were non-specifically co-isolated, and so constitute a source of contamination in HLA class I IPs. For example, a 16-mer (FLGKIWPSYKGRPGNF), which was detected in all samples studied represents the full p1 segment of the abundant intracellular or virion-associated proteolytically-processed HIV-1 Gag protein. This result is of importance, as these long co-purified HIV-1 Gag peptides may not elicit CD8+ T cell responses when incorporated into candidate vaccines. These results have wider implications for HLA epitope discovery from abundant or membrane-associated antigens by immunopeptidomics in the context of infectious diseases, cancer, and autoimmunity.
Collapse
Affiliation(s)
- Thomas Partridge
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Annalisa Nicastri
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Anna E. Kliszczak
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Louis-Marie Yindom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt M. Kessler
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Nicola Ternette
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
- The Jenner Institute, Target Discovery Institute Mass Spectrometry Laboratory, University of Oxford, Oxford, United Kingdom
| | - Persephone Borrow
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
177
|
Cosma G, Eisenlohr L. CD8 + T-cell responses in vaccination: reconsidering targets and function in the context of chronic antigen stimulation. F1000Res 2018; 7. [PMID: 29770202 PMCID: PMC5931265 DOI: 10.12688/f1000research.14115.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 12/23/2022] Open
Abstract
Cytotoxic CD8 T cells play important roles in eliminating infected and transformed cells. Owing to their potential for therapeutic applications, significant efforts are dedicated toward developing CD8 T cell–based vaccines. Thus far, CD8 T-cell vaccination strategies have had limited success therapeutically in contrast to those targeting antibody-based immunity. However, if the current challenges and gaps in the understanding of T-cell biology are overcome, the full potential of rational CD8 T-cell vaccine design might be realized. Here, we review recent progress in this direction, focusing on target selection and maintenance of function in the settings of chronic infections and cancers.
Collapse
Affiliation(s)
- Gabriela Cosma
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Laurence Eisenlohr
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| |
Collapse
|
178
|
Gordon CL, Lee LN, Swadling L, Hutchings C, Zinser M, Highton AJ, Capone S, Folgori A, Barnes E, Klenerman P. Induction and Maintenance of CX3CR1-Intermediate Peripheral Memory CD8 + T Cells by Persistent Viruses and Vaccines. Cell Rep 2018; 23:768-782. [PMID: 29669283 PMCID: PMC5917822 DOI: 10.1016/j.celrep.2018.03.074] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/26/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
The induction and maintenance of T cell memory is critical to the success of vaccines. A recently described subset of memory CD8+ T cells defined by intermediate expression of the chemokine receptor CX3CR1 was shown to have self-renewal, proliferative, and tissue-surveillance properties relevant to vaccine-induced memory. We tracked these cells when memory is sustained at high levels: memory inflation induced by cytomegalovirus (CMV) and adenovirus-vectored vaccines. In mice, both CMV and vaccine-induced inflationary T cells showed sustained high levels of CX3R1int cells exhibiting an effector-memory phenotype, characteristic of inflationary pools, in early memory. In humans, CX3CR1int CD8+ T cells were strongly induced following adenovirus-vectored vaccination for hepatitis C virus (HCV) (ChAd3-NSmut) and during natural CMV infection and were associated with a memory phenotype similar to that in mice. These data indicate that CX3CR1int cells form an important component of the memory pool in response to persistent viruses and vaccines in both mice and humans.
Collapse
Affiliation(s)
- Claire Louse Gordon
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Lian Ni Lee
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Leo Swadling
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Claire Hutchings
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Madeleine Zinser
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Andrew John Highton
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Stefania Capone
- Reithera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Antonella Folgori
- Reithera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK.
| |
Collapse
|
179
|
Martins MA, Watkins DI. What Is the Predictive Value of Animal Models for Vaccine Efficacy in Humans? Rigorous Simian Immunodeficiency Virus Vaccine Trials Can Be Instructive. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029504. [PMID: 28348034 DOI: 10.1101/cshperspect.a029504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Simian immunodeficiency virus (SIV) challenge of rhesus macaques provides an invaluable tool to evaluate the clinical prospects of HIV-1 vaccine concepts. However, as with any animal model of human disease, it is crucial to understand the advantages and limitations of this system to maximize the translational value of SIV vaccine studies. Here, we discuss the importance of assessing the efficacy of vaccine prototypes using stringent SIV challenge regimens that mimic HIV-1 transmission and pathogenesis. We also review some of the cautionary tales of HIV-1 vaccine research because they provide general lessons for the preclinical assessment of vaccine candidates.
Collapse
Affiliation(s)
| | - David I Watkins
- Department of Pathology, University of Miami, Miami, Florida 33136
| |
Collapse
|
180
|
Jouand N, Bressollette-Bodin C, Gérard N, Giral M, Guérif P, Rodallec A, Oger R, Parrot T, Allard M, Cesbron-Gautier A, Gervois N, Charreau B. HCMV triggers frequent and persistent UL40-specific unconventional HLA-E-restricted CD8 T-cell responses with potential autologous and allogeneic peptide recognition. PLoS Pathog 2018; 14:e1007041. [PMID: 29709038 PMCID: PMC5945056 DOI: 10.1371/journal.ppat.1007041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/10/2018] [Accepted: 04/17/2018] [Indexed: 01/08/2023] Open
Abstract
Immune response against human cytomegalovirus (HCMV) includes a set of persistent cytotoxic NK and CD8 T cells devoted to eliminate infected cells and to prevent reactivation. CD8 T cells against HCMV antigens (pp65, IE1) presented by HLA class-I molecules are well characterized and they associate with efficient virus control. HLA-E-restricted CD8 T cells targeting HCMV UL40 signal peptides (HLA-EUL40) have recently emerged as a non-conventional T-cell response also observed in some hosts. The occurrence, specificity and features of HLA-EUL40 CD8 T-cell responses remain mostly unknown. Here, we detected and quantified these responses in blood samples from healthy blood donors (n = 25) and kidney transplant recipients (n = 121) and we investigated the biological determinants involved in their occurrence. Longitudinal and phenotype ex vivo analyses were performed in comparison to HLA-A*02/pp65-specific CD8 T cells. Using a set of 11 HLA-E/UL40 peptide tetramers we demonstrated the presence of HLA-EUL40 CD8 αβT cells in up to 32% of seropositive HCMV+ hosts that may represent up to 38% of total circulating CD8 T-cells at a time point suggesting a strong expansion post-infection. Host's HLA-A*02 allele, HLA-E *01:01/*01:03 genotype and sequence of the UL40 peptide from the infecting strain are major factors affecting the incidence of HLA-EUL40 CD8 T cells. These cells are effector memory CD8 (CD45RAhighROlow, CCR7-, CD27-, CD28-) characterized by a low level of PD-1 expression. HLA-EUL40 responses appear early post-infection and display a broad, unbiased, Vβ repertoire. Although induced in HCMV strain-dependent, UL4015-23-specific manner, HLA-EUL40 CD8 T cells are reactive toward a broader set of nonapeptides varying in 1-3 residues including most HLA-I signal peptides. Thus, HCMV induces strong and life-long lasting HLA-EUL40 CD8 T cells with potential allogeneic or/and autologous reactivity that take place selectively in at least a third of infections according to virus strain and host HLA concordance.
Collapse
Affiliation(s)
- Nicolas Jouand
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR1064, INSERM, Université de Nantes, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
- CRCINA, UMR1232, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx Immunology-Graft-Oncology (IGO), Nantes, France
| | - Céline Bressollette-Bodin
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR1064, INSERM, Université de Nantes, Nantes, France
- Laboratoire de Virologie, CHU Nantes, Nantes, France
| | - Nathalie Gérard
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR1064, INSERM, Université de Nantes, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Magali Giral
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR1064, INSERM, Université de Nantes, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Pierrick Guérif
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | | | - Romain Oger
- CRCINA, UMR1232, INSERM, Université d’Angers, Université de Nantes, Nantes, France
| | - Tiphaine Parrot
- CRCINA, UMR1232, INSERM, Université d’Angers, Université de Nantes, Nantes, France
| | - Mathilde Allard
- CRCINA, UMR1232, INSERM, Université d’Angers, Université de Nantes, Nantes, France
| | - Anne Cesbron-Gautier
- Etablissement Français du Sang (EFS), Région des Pays de la Loire, Nantes, France
| | - Nadine Gervois
- CRCINA, UMR1232, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx Immunology-Graft-Oncology (IGO), Nantes, France
| | - Béatrice Charreau
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR1064, INSERM, Université de Nantes, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
- LabEx Immunology-Graft-Oncology (IGO), Nantes, France
- Institut Hospitalo-Universitaire European Center for Science in Transplantation and Immunology, Nantes, France
| |
Collapse
|
181
|
Strategies for the cure of HIV infection. Enferm Infecc Microbiol Clin 2018; 37:265-273. [PMID: 29510860 DOI: 10.1016/j.eimc.2018.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/29/2017] [Accepted: 01/13/2018] [Indexed: 12/25/2022]
Abstract
The disadvantages of the long-term administration of antiretroviral therapy as well as the huge number of affected persons have placed the cure of HIV as a primary goal of Public Health. HIV may persist in the organism by at least four mechanisms: a latently infected cellular reservoir, the persistent replication of HIV in spite of ART, anatomic sanctuaries, and the immune dysfunction. Several strategies directed against these mechanisms have been developed. With all this, a complete eradication of HIV has been achieved in a patient using the transplantation of haemopoietic stem cells that were resistant to HIV-infection, and there are examples of functional cure either spontaneously (elite controllers) or after antiretroviral therapy (post-treatment controllers). However, no strategies have been successful in reducing the reservoir size, nor in achieving constant, uniform remissions. The failure of isolated strategies makes it likely that the combination of several of them may be the future solution.
Collapse
|
182
|
Hill AB. The immune response to CMV infection and vaccination in mice, monkeys and humans: recent developments. Curr Opin Virol 2018; 28:161-166. [PMID: 29459261 DOI: 10.1016/j.coviro.2018.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/16/2018] [Indexed: 11/24/2022]
Abstract
The immune response to CMV is characterized by extremely large T cell and antibody responses that persist for a lifetime, but do not prevent superinfection with other CMV strains. This makes generation of a vaccine against CMV very difficult, but has facilitated development of CMV-vectored vaccines, which have shown promise in mouse tumor models and in monkey models of infectious disease. The serendipitous use of a mutant rhesus CMV vector for the SIV vaccine elicited extraordinary, CD8 T cell responses restricted by MHCII and non-classical MHCI molecules which apparently provide protection against SIV. CMV-specific CD8 T cell responses in the mouse model are driven by antigen and live out their lives primarily within the intravascular compartment.
Collapse
Affiliation(s)
- Ann B Hill
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States.
| |
Collapse
|
183
|
Panagioti E, Klenerman P, Lee LN, van der Burg SH, Arens R. Features of Effective T Cell-Inducing Vaccines against Chronic Viral Infections. Front Immunol 2018; 9:276. [PMID: 29503649 PMCID: PMC5820320 DOI: 10.3389/fimmu.2018.00276] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/31/2018] [Indexed: 12/24/2022] Open
Abstract
For many years, the focus of prophylactic vaccines was to elicit neutralizing antibodies, but it has become increasingly evident that T cell-mediated immunity plays a central role in controlling persistent viral infections such as with human immunodeficiency virus, cytomegalovirus, and hepatitis C virus. Currently, various promising prophylactic vaccines, capable of inducing substantial vaccine-specific T cell responses, are investigated in preclinical and clinical studies. There is compelling evidence that protection by T cells is related to the magnitude and breadth of the T cell response, the type and homing properties of the memory T cell subsets, and their cytokine polyfunctionality and metabolic fitness. In this review, we evaluated these key factors that determine the qualitative and quantitative properties of CD4+ and CD8+ T cell responses in the context of chronic viral disease and prophylactic vaccine development. Elucidation of the mechanisms underlying T cell-mediated protection against chronic viral pathogens will facilitate the development of more potent, durable and safe prophylactic T cell-based vaccines.
Collapse
Affiliation(s)
- Eleni Panagioti
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lian N. Lee
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
184
|
Theiler J, Korber B. Graph-based optimization of epitope coverage for vaccine antigen design. Stat Med 2018; 37:181-194. [PMID: 28132437 PMCID: PMC5763320 DOI: 10.1002/sim.7203] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/10/2016] [Accepted: 11/18/2016] [Indexed: 11/23/2022]
Abstract
Epigraph is a recently developed algorithm that enables the computationally efficient design of single or multi-antigen vaccines to maximize the potential epitope coverage for a diverse pathogen population. Potential epitopes are defined as short contiguous stretches of proteins, comparable in length to T-cell epitopes. This optimal coverage problem can be formulated in terms of a directed graph, with candidate antigens represented as paths that traverse this graph. Epigraph protein sequences can also be used as the basis for designing peptides for experimental evaluation of immune responses in natural infections to highly variable proteins. The epigraph tool suite also enables rapid characterization of populations of diverse sequences from an immunological perspective. Fundamental distance measures are based on immunologically relevant shared potential epitope frequencies, rather than simple Hamming or phylogenetic distances. Here, we provide a mathematical description of the epigraph algorithm, include a comparison of different heuristics that can be used when graphs are not acyclic, and we describe an additional tool we have added to the web-based epigraph tool suite that provides frequency summaries of all distinct potential epitopes in a population. We also show examples of the graphical output and summary tables that can be generated using the epigraph tool suite and explain their content and applications. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Statistics in Medicine published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- James Theiler
- Los Alamos National LaboratoryLos Alamos87545NMU.S.A
- New Mexico ConsortiumLos Alamos87545NMU.S.A
| | - Bette Korber
- Los Alamos National LaboratoryLos Alamos87545NMU.S.A
- New Mexico ConsortiumLos Alamos87545NMU.S.A
| |
Collapse
|
185
|
Doorduijn EM, Sluijter M, Querido BJ, Seidel UJE, Oliveira CC, van der Burg SH, van Hall T. T Cells Engaging the Conserved MHC Class Ib Molecule Qa-1 b with TAP-Independent Peptides Are Semi-Invariant Lymphocytes. Front Immunol 2018; 9:60. [PMID: 29422902 PMCID: PMC5788890 DOI: 10.3389/fimmu.2018.00060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
The HLA-E homolog in the mouse (Qa-1b) is a conserved MHC class Ib molecule presenting monomorphic peptides to germline-encoded natural killer receptor CD94/NKG2A. Previously, we demonstrated the replacement of this canonical peptide by a diverse peptidome upon deficiency of the TAP peptide transporter. Analysis of this Qa-1b-restricted T cell repertoire against these non-mutated neoantigens revealed characteristics of conventional hypervariable CD8+ T cells, but also of invariant T cell receptor (TCR)αβ T cells. A shared TCR Vα chain was used by this subset in combination with a variety of Vβ chains. The TCRs target peptide ligands that are conserved between mouse and man, like the identified peptide derived from the transcriptional cofactor Med15. The thymus selection was studied in a TCR-transgenic mouse and emerging naïve CD8+ T cells displayed a slightly activated phenotype, as witnessed by higher CD122 and Ly6C expression. Moreover, the Qa-1b protein was dispensable for thymus selection. Importantly, no self-reactivity was observed as reported for other MHC class Ib-restricted subsets. Naïve Qa-1b restricted T cells expanded, contracted, and formed memory cells in vivo upon peptide vaccination in a similar manner as conventional CD8+ T cells. Based on these data, the Qa-1b restricted T cell subset might be positioned closest to conventional CD8+ T cells of all MHC class Ib populations.
Collapse
Affiliation(s)
- Elien M Doorduijn
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Marjolein Sluijter
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Bianca J Querido
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Ursula J E Seidel
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Claudia C Oliveira
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
186
|
Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine. Nat Med 2018; 24:130-143. [PMID: 29334373 DOI: 10.1038/nm.4473] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023]
Abstract
Despite widespread use of the bacille Calmette-Guérin (BCG) vaccine, tuberculosis (TB) remains a leading cause of global mortality from a single infectious agent (Mycobacterium tuberculosis or Mtb). Here, over two independent Mtb challenge studies, we demonstrate that subcutaneous vaccination of rhesus macaques (RMs) with rhesus cytomegalovirus vectors encoding Mtb antigen inserts (hereafter referred to as RhCMV/TB)-which elicit and maintain highly effector-differentiated, circulating and tissue-resident Mtb-specific CD4+ and CD8+ memory T cell responses-can reduce the overall (pulmonary and extrapulmonary) extent of Mtb infection and disease by 68%, as compared to that in unvaccinated controls, after intrabronchial challenge with the Erdman strain of Mtb at ∼1 year after the first vaccination. Fourteen of 34 RhCMV/TB-vaccinated RMs (41%) across both studies showed no TB disease by computed tomography scans or at necropsy after challenge (as compared to 0 of 17 unvaccinated controls), and ten of these RMs were Mtb-culture-negative for all tissues, an exceptional long-term vaccine effect in the RM challenge model with the Erdman strain of Mtb. These results suggest that complete vaccine-mediated immune control of highly pathogenic Mtb is possible if immune effector responses can intercept Mtb infection at its earliest stages.
Collapse
|
187
|
Humphreys IR, Sebastian S. Novel viral vectors in infectious diseases. Immunology 2018; 153:1-9. [PMID: 28869761 PMCID: PMC5721250 DOI: 10.1111/imm.12829] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/17/2017] [Indexed: 12/17/2022] Open
Abstract
Since the development of vaccinia virus as a vaccine vector in 1984, the utility of numerous viruses in vaccination strategies has been explored. In recent years, key improvements to existing vectors such as those based on adenovirus have led to significant improvements in immunogenicity and efficacy. Furthermore, exciting new vectors that exploit viruses such as cytomegalovirus (CMV) and vesicular stomatitis virus (VSV) have emerged. Herein, we summarize these recent developments in viral vector technologies, focusing on novel vectors based on CMV, VSV, measles and modified adenovirus. We discuss the potential utility of these exciting approaches in eliciting protection against infectious diseases.
Collapse
Affiliation(s)
- Ian R. Humphreys
- Institute of Infection and Immunity/Systems Immunity University Research InstituteCardiff UniversityCardiffUK
- The Wellcome Trust Sanger InstituteHinxtonUK
| | | |
Collapse
|
188
|
Wu HL, Wiseman RW, Hughes CM, Webb GM, Abdulhaqq SA, Bimber BN, Hammond KB, Reed JS, Gao L, Burwitz BJ, Greene JM, Ferrer F, Legasse AW, Axthelm MK, Park BS, Brackenridge S, Maness NJ, McMichael AJ, Picker LJ, O'Connor DH, Hansen SG, Sacha JB. The Role of MHC-E in T Cell Immunity Is Conserved among Humans, Rhesus Macaques, and Cynomolgus Macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:49-60. [PMID: 29150562 PMCID: PMC5736429 DOI: 10.4049/jimmunol.1700841] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/23/2017] [Indexed: 11/19/2022]
Abstract
MHC-E is a highly conserved nonclassical MHC class Ib molecule that predominantly binds and presents MHC class Ia leader sequence-derived peptides for NK cell regulation. However, MHC-E also binds pathogen-derived peptide Ags for presentation to CD8+ T cells. Given this role in adaptive immunity and its highly monomorphic nature in the human population, HLA-E is an attractive target for novel vaccine and immunotherapeutic modalities. Development of HLA-E-targeted therapies will require a physiologically relevant animal model that recapitulates HLA-E-restricted T cell biology. In this study, we investigated MHC-E immunobiology in two common nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM). Compared to humans and MCM, RM expressed a greater number of MHC-E alleles at both the population and individual level. Despite this difference, human, RM, and MCM MHC-E molecules were expressed at similar levels across immune cell subsets, equivalently upregulated by viral pathogens, and bound and presented identical peptides to CD8+ T cells. Indeed, SIV-specific, Mamu-E-restricted CD8+ T cells from RM recognized antigenic peptides presented by all MHC-E molecules tested, including cross-species recognition of human and MCM SIV-infected CD4+ T cells. Thus, MHC-E is functionally conserved among humans, RM, and MCM, and both RM and MCM represent physiologically relevant animal models of HLA-E-restricted T cell immunobiology.
Collapse
Affiliation(s)
- Helen L Wu
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Roger W Wiseman
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53706
| | - Colette M Hughes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Gabriela M Webb
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Shaheed A Abdulhaqq
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Benjamin N Bimber
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Katherine B Hammond
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Jason S Reed
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Lina Gao
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239
| | - Benjamin J Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Justin M Greene
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Fidel Ferrer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Alfred W Legasse
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Michael K Axthelm
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Byung S Park
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
- School of Public Health, Oregon Health and Science University, Portland, OR 97239
| | - Simon Brackenridge
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Nicholas J Maness
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433
- Department of Microbiology and Immunology, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70118; and
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53706
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006;
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| |
Collapse
|
189
|
Sullivan LC, Walpole NG, Farenc C, Pietra G, Sum MJW, Clements CS, Lee EJ, Beddoe T, Falco M, Mingari MC, Moretta L, Gras S, Rossjohn J, Brooks AG. A conserved energetic footprint underpins recognition of human leukocyte antigen-E by two distinct αβ T cell receptors. J Biol Chem 2017; 292:21149-21158. [PMID: 28972140 PMCID: PMC5743087 DOI: 10.1074/jbc.m117.807719] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/20/2017] [Indexed: 11/06/2022] Open
Abstract
αβ T cell receptors (TCRs) interact with peptides bound to the polymorphic major histocompatibility complex class Ia (MHC-Ia) and class II (MHC-II) molecules as well as the essentially monomorphic MHC class Ib (MHC-Ib) molecules. Although there is a large amount of information on how TCRs engage with MHC-Ia and MHC-II, our understanding of TCR/MHC-Ib interactions is very limited. Infection with cytomegalovirus (CMV) can elicit a CD8+ T cell response restricted by the human MHC-Ib molecule human leukocyte antigen (HLA)-E and specific for an epitope from UL40 (VMAPRTLIL), which is characterized by biased TRBV14 gene usage. Here we describe an HLA-E-restricted CD8+ T cell able to recognize an allotypic variant of the UL40 peptide with a modification at position 8 (P8) of the peptide (VMAPRTLVL) that uses the TRBV9 gene segment. We report the structures of a TRBV9+ TCR in complex with the HLA-E molecule presenting the two peptides. Our data revealed that the TRBV9+ TCR adopts a different docking mode and molecular footprint atop HLA-E when compared with the TRBV14+ TCR-HLA-E ternary complex. Additionally, despite their differing V gene segment usage and different docking mechanisms, mutational analyses showed that the TCRs shared a conserved energetic footprint on the HLA-E molecule, focused around the peptide-binding groove. Hence, we provide new insights into how monomorphic MHC molecules interact with T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Clone Cells
- Conserved Sequence
- Crystallography, X-Ray
- Energy Metabolism
- Epitope Mapping
- Epitopes, T-Lymphocyte
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Humans
- Models, Molecular
- Molecular Docking Simulation
- Mutagenesis, Site-Directed
- Mutation
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Protein Conformation
- Protein Interaction Domains and Motifs
- Receptors, Antigen, T-Cell, alpha-beta/agonists
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- HLA-E Antigens
Collapse
Affiliation(s)
- Lucy C Sullivan
- From the Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Nicholas G Walpole
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
| | - Gabriella Pietra
- Department of Experimental Medicine (DiMES) and
- Unità Operativa Complessa Immunologia, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Matthew J W Sum
- From the Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Craig S Clements
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
| | - Eleanor J Lee
- From the Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Travis Beddoe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
| | - Michela Falco
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy, and
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DiMES) and
- Unità Operativa Complessa Immunologia, Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, 16132 Genoa, Italy
| | - Lorenzo Moretta
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy, and
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Andrew G Brooks
- From the Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia,
| |
Collapse
|
190
|
Takata H, Buranapraditkun S, Kessing C, Fletcher JLK, Muir R, Tardif V, Cartwright P, Vandergeeten C, Bakeman W, Nichols CN, Pinyakorn S, Hansasuta P, Kroon E, Chalermchai T, O'Connell R, Kim J, Phanuphak N, Robb ML, Michael NL, Chomont N, Haddad EK, Ananworanich J, Trautmann L. Delayed differentiation of potent effector CD8 + T cells reducing viremia and reservoir seeding in acute HIV infection. Sci Transl Med 2017; 9:9/377/eaag1809. [PMID: 28202771 DOI: 10.1126/scitranslmed.aag1809] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/21/2016] [Accepted: 01/10/2017] [Indexed: 12/11/2022]
Abstract
CD8+ T cells play a critical role in controlling HIV viremia and could be important in reducing HIV-infected cells in approaches to eradicate HIV. The simian immunodeficiency virus model provided the proof of concept for a CD8+ T cell-mediated reservoir clearance but showed conflicting evidence on the role of these cells to eliminate HIV-infected cells. In humans, HIV-specific CD8+ T cell responses have not been associated with a reduction of the HIV-infected cell pool in vivo. We studied HIV-specific CD8+ T cells in the RV254 cohort of individuals initiating ART in the earliest stages of acute HIV infection (AHI). We showed that the HIV-specific CD8+ T cells generated as early as AHI stages 1 and 2 before peak viremia are delayed in expanding and acquiring effector functions but are endowed with higher memory potential. In contrast, the fully differentiated HIV-specific CD8+ T cells at peak viremia in AHI stage 3 were more prone to apoptosis but were associated with a steeper viral load decrease after ART initiation. Their capacity to persist in vivo after ART initiation correlated with a lower HIV DNA reservoir. These findings demonstrate that HIV-specific CD8+ T cell magnitude and differentiation are delayed in the earliest stages of infection. These results also demonstrate that potent HIV-specific CD8+ T cells contribute to the reduction of the pool of HIV-producing cells and the HIV reservoir seeding in vivo and provide the rationale to design interventions aiming at inducing these potent responses to cure HIV infection.
Collapse
Affiliation(s)
- Hiroshi Takata
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Supranee Buranapraditkun
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.,Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Cari Kessing
- The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Roshell Muir
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University, Philadelphia, PA 19102, USA
| | - Virginie Tardif
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University, Philadelphia, PA 19102, USA
| | - Pearline Cartwright
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Claire Vandergeeten
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL 34987, USA
| | - Wendy Bakeman
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL 34987, USA
| | - Carmen N Nichols
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL 34987, USA
| | - Suteeraporn Pinyakorn
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Pokrath Hansasuta
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Nuffield Department of Medicine, University of Oxford, Oxford, U.K
| | - Eugene Kroon
- SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Thep Chalermchai
- SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Robert O'Connell
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jerome Kim
- International Vaccine Institute, Seoul, Republic of Korea
| | | | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Nicolas Chomont
- Department of Microbiology, Infectiology, and Immunology, Centre de Recherche Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Quebec, Canada
| | - Elias K Haddad
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University, Philadelphia, PA 19102, USA
| | - Jintanat Ananworanich
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.,SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Lydie Trautmann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA. .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | | |
Collapse
|
191
|
Cicin-Sain L, Arens R. Exhaustion and Inflation at Antipodes of T Cell Responses to Chronic Virus Infection. Trends Microbiol 2017; 26:498-509. [PMID: 29249600 DOI: 10.1016/j.tim.2017.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/22/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022]
Abstract
Viruses that have coevolved with their host establish chronic infections that are well tolerated by the host. Other viruses, that are partly adapted to their host, may induce chronic infections where persistent replication and viral antigen expression occur. The former induce highly functional and resilient CD8T cell responses called memory inflation. The latter induce dysfunctional and exhausted responses. The reasons compelling T cell responses towards inflationary or exhausted responses are only partly understood. In this review we compare the two conditions and describe mechanistic similarities and differences. We also provide a list of potential reasons why exhaustion or inflation occur in different virus infections. We propose that T cell-mediated transcriptional repression of viral gene expression provides a critical feature of inflation that allows peaceful virus and host coexistence. The virus is controlled, but its genome is not eradicated. If this mechanism is not available, as in the case of RNA viruses, the virus and the host are compelled to an arms race. If virus proliferation and spread proceed uncontrolled for too long, T cells are forced to strike a balance between viral control and tissue destruction, losing antiviral potency and facilitating virus persistence.
Collapse
Affiliation(s)
- Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute for Virology, Medical School Hannover, Hannover, Germany; German Center for Infection Research (DZIF), Partner site Hannover/Braunschweig, Germany.
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
192
|
Abstract
The rapid development of immunomodulatory cancer therapies has led to a concurrent increase in the application of informatics techniques to the analysis of tumors, the tumor microenvironment, and measures of systemic immunity. In this review, the use of tumors to gather genetic and expression data will first be explored. Next, techniques to assess tumor immunity are reviewed, including HLA status, predicted neoantigens, immune microenvironment deconvolution, and T-cell receptor sequencing. Attempts to integrate these data are in early stages of development and are discussed in this review. Finally, we review the application of these informatics strategies to therapy development, with a focus on vaccines, adoptive cell transfer, and checkpoint blockade therapies.
Collapse
Affiliation(s)
- J Hammerbacher
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston
| | - A Snyder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
- Adaptive Biotechnologies, Seattle, USA
| |
Collapse
|
193
|
McMurtrey C, Harriff MJ, Swarbrick GM, Duncan A, Cansler M, Null M, Bardet W, Jackson KW, Lewinsohn DA, Hildebrand W, Lewinsohn DM. T cell recognition of Mycobacterium tuberculosis peptides presented by HLA-E derived from infected human cells. PLoS One 2017; 12:e0188288. [PMID: 29176828 PMCID: PMC5703486 DOI: 10.1371/journal.pone.0188288] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022] Open
Abstract
HLA-E is a non-conventional MHC Class I molecule that has been recently demonstrated to present pathogen-derived ligands, resulting in the TCR-dependent activation of αβ CD8+ T cells. The goal of this study was to characterize the ligandome displayed by HLA-E following infection with Mycobacterium tuberculosis (Mtb) using an in-depth mass spectrometry approach. Here we identified 28 Mtb ligands derived from 13 different source proteins, including the Esx family of proteins. When tested for activity with CD8+ T cells isolated from sixteen donors, nine of the ligands elicited an IFN-γ response from at least one donor, with fourteen of 16 donors responding to the Rv0634A19-29 peptide. Further evaluation of this immunodominant peptide response confirmed HLA-E restriction and the presence of Rv0634A19-29-reactive CD8+ T cells in the peripheral blood of human donors. The identification of an Mtb HLA-E ligand that is commonly recognized may provide a target for a non-traditional vaccine strategy.
Collapse
Affiliation(s)
- Curtis McMurtrey
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States of America
| | - Melanie J. Harriff
- VA Portland Health Care System, Portland, OR, United States of America
- Department of Pulmonary and Critical Care Medicine, Oregon Health and Sciences University, Portland, OR, United States of America
| | - Gwendolyn M. Swarbrick
- Department of Pediatric Medicine, Oregon Health and Sciences University, Portland, OR, United States of America
| | - Amanda Duncan
- Department of Pediatric Medicine, Oregon Health and Sciences University, Portland, OR, United States of America
| | - Meghan Cansler
- Department of Pediatric Medicine, Oregon Health and Sciences University, Portland, OR, United States of America
| | - Megan Null
- Department of Pediatric Medicine, Oregon Health and Sciences University, Portland, OR, United States of America
| | - Wilfried Bardet
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States of America
| | - Kenneth W. Jackson
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States of America
| | - Deborah A. Lewinsohn
- Department of Pediatric Medicine, Oregon Health and Sciences University, Portland, OR, United States of America
| | - William Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States of America
| | - David M. Lewinsohn
- VA Portland Health Care System, Portland, OR, United States of America
- Department of Pulmonary and Critical Care Medicine, Oregon Health and Sciences University, Portland, OR, United States of America
| |
Collapse
|
194
|
Mukhopadhyay M, Galperin M, Patgaonkar M, Vasan S, Ho DD, Nouël A, Claireaux M, Benati D, Lambotte O, Huang Y, Chakrabarti LA. DNA Vaccination by Electroporation Amplifies Broadly Cross-Restricted Public TCR Clonotypes Shared with HIV Controllers. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:3437-3452. [PMID: 28993513 PMCID: PMC5675813 DOI: 10.4049/jimmunol.1700953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/07/2017] [Indexed: 01/20/2023]
Abstract
Rare patients who spontaneously control HIV replication provide a useful model to inform HIV vaccine development. HIV controllers develop particularly efficient antiviral CD4+ T cell responses mediated by shared high-affinity TCRs. To determine whether the candidate DNA vaccine ADVAX could induce similar responses, we analyzed Gag-specific primary CD4+ T cells from healthy volunteers who received ADVAX DNA by electroporation. Vaccinated volunteers had an immunodominant response to the Gag293 epitope with a functional avidity intermediate between that of controllers and treated patients. The TCR repertoire of Gag293-specific CD4+ T cells proved highly biased, with a predominant usage of the TCRβ variable gene 2 (TRBV2) in vaccinees as well as controllers. TCRα variable gene (TRAV) gene usage was more diverse, with the dominance of TRAV29 over TRAV24 genes in vaccinees, whereas TRAV24 predominated in controllers. Sequence analysis revealed an unexpected degree of overlap between the specific repertoires of vaccinees and controllers, with the sharing of TRAV24 and TRBV2 public motifs (>30%) and of public clonotypes characteristic of high-affinity TCRs. MHC class II tetramer binding revealed a broad HLA-DR cross-restriction, explaining how Gag293-specific public clonotypes could be selected in individuals with diverse genetic backgrounds. TRAV29 clonotypes also proved cross-restricted, but conferred responses of lower functional avidity upon TCR transfer. In conclusion, DNA vaccination by electroporation primed for TCR clonotypes that were associated with HIV control, highlighting the potential of this vaccine delivery method. To our knowledge, this study provides the first proof-of-concept that clonotypic analysis may be used as a tool to monitor the quality of vaccine-induced responses and modulate these toward "controller-like" responses.
Collapse
Affiliation(s)
- Madhura Mukhopadhyay
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France
- INSERM U1108, 75015 Paris, France
| | - Moran Galperin
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France
- INSERM U1108, 75015 Paris, France
| | - Mandar Patgaonkar
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France
- INSERM U1108, 75015 Paris, France
| | - Sandhya Vasan
- Aaron Diamond AIDS Research Center, New York, NY 10016
| | - David D Ho
- Aaron Diamond AIDS Research Center, New York, NY 10016
| | - Alexandre Nouël
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France
- INSERM U1108, 75015 Paris, France
| | - Mathieu Claireaux
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France
- INSERM U1108, 75015 Paris, France
| | - Daniela Benati
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France
- INSERM U1108, 75015 Paris, France
| | - Olivier Lambotte
- Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Service de Médecine Interne et Immunologie Clinique, 94275 Le Kremlin-Bicêtre, France
- Université Paris Sud, UMR 1184, 94276 Le Kremlin-Bicêtre, France
- DSV/iMETI, IDMIT, Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses, France; and
- INSERM U1184, Centre d'Immunologie des Infections Virales et Maladies Autoimmunes, 94276 Le Kremlin-Bicêtre, France
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, New York, NY 10016
| | - Lisa A Chakrabarti
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France;
- INSERM U1108, 75015 Paris, France
| |
Collapse
|
195
|
Hölzemer A, Garcia-Beltran WF, Altfeld M. Natural Killer Cell Interactions with Classical and Non-Classical Human Leukocyte Antigen Class I in HIV-1 Infection. Front Immunol 2017; 8:1496. [PMID: 29184550 PMCID: PMC5694438 DOI: 10.3389/fimmu.2017.01496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are effector lymphocytes of the innate immune system that are able to mount a multifaceted antiviral response within hours following infection. This is achieved through an array of cell surface receptors surveilling host cells for alterations in human leukocyte antigen class I (HLA-I) expression and other ligands as signs of viral infection, malignant transformation, and cellular stress. This interaction between HLA-I ligands and NK-cell receptor is not only important for recognition of diseased cells but also mediates tuning of NK-cell-effector functions. HIV-1 alters the expression of HLA-I ligands on infected cells, rendering them susceptible to NK cell-mediated killing. However, over the past years, various HIV-1 evasion strategies have been discovered to target NK-cell-receptor ligands and allow the virus to escape from NK cell-mediated immunity. While studies have been mainly focusing on the role of polymorphic HLA-A, -B, and -C molecules, less is known about how HIV-1 affects the more conserved, non-classical HLA-I molecules HLA-E, -G, and -F. In this review, we will focus on the recent progress in understanding the role of non-classical HLA-I ligands in NK cell-mediated recognition of HIV-1-infected cells.
Collapse
Affiliation(s)
- Angelique Hölzemer
- First Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | | | - Marcus Altfeld
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
196
|
Rogers GL, Cannon PM. Gene Therapy Approaches to Human Immunodeficiency Virus and Other Infectious Diseases. Hematol Oncol Clin North Am 2017; 31:883-895. [PMID: 28895854 DOI: 10.1016/j.hoc.2017.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Advances in gene therapy technologies, particularly in gene editing, are suggesting new avenues for the treatment of human immunodeficiency virus and other infectious diseases. This article outlines recent developments in antiviral gene therapies, including those based on the disruption of entry receptors or that target viral genomes using targeted nucleases, such as the CRISPR/Cas9 system. In addition, new ways to express circulating antiviral factors, such as antibodies, and approaches to harness and engineer the immune system to provide an antiviral effect that is not naturally achieved are described.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 413A, Los Angeles, CA 90033, USA
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 413A, Los Angeles, CA 90033, USA.
| |
Collapse
|
197
|
Perreau M, Banga R, Pantaleo G. Targeted Immune Interventions for an HIV-1 Cure. Trends Mol Med 2017; 23:945-961. [DOI: 10.1016/j.molmed.2017.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 01/13/2023]
|
198
|
Ahmed Y, Tian M, Gao Y. Development of an anti-HIV vaccine eliciting broadly neutralizing antibodies. AIDS Res Ther 2017; 14:50. [PMID: 28893278 PMCID: PMC5594608 DOI: 10.1186/s12981-017-0178-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/11/2017] [Indexed: 11/17/2022] Open
Abstract
The extreme HIV diversity posts a great challenge on development of an effective anti-HIV vaccine. To solve this problem, it is crucial to discover an appropriate immunogens and strategies that are able to prevent the transmission of the diverse viruses that are circulating in the world. Even though there have been a number of broadly neutralizing anti-HIV antibodies (bNAbs) been discovered in recent years, induction of such antibodies to date has only been observed in HIV-1 infection. Here, in this mini review, we review the progress in development of HIV vaccine in eliciting broad immune response, especially production of bNAbs, discuss possible strategies, such as polyvalent sequential vaccination, that facilitates B cell maturation leading to bNAb response.
Collapse
|
199
|
Ranasinghe S, Lamothe PA, Soghoian DZ, Kazer SW, Cole MB, Shalek AK, Yosef N, Jones RB, Donaghey F, Nwonu C, Jani P, Clayton GM, Crawford F, White J, Montoya A, Power K, Allen TM, Streeck H, Kaufmann DE, Picker LJ, Kappler JW, Walker BD. Antiviral CD8 + T Cells Restricted by Human Leukocyte Antigen Class II Exist during Natural HIV Infection and Exhibit Clonal Expansion. Immunity 2017; 45:917-930. [PMID: 27760342 PMCID: PMC5077698 DOI: 10.1016/j.immuni.2016.09.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/21/2022]
Abstract
CD8+ T cell recognition of virus-infected cells is characteristically restricted by major histocompatibility complex (MHC) class I, although rare examples of MHC class II restriction have been reported in Cd4-deficient mice and a macaque SIV vaccine trial using a recombinant cytomegalovirus vector. Here, we demonstrate the presence of human leukocyte antigen (HLA) class II-restricted CD8+ T cell responses with antiviral properties in a small subset of HIV-infected individuals. In these individuals, T cell receptor β (TCRβ) analysis revealed that class II-restricted CD8+ T cells underwent clonal expansion and mediated killing of HIV-infected cells. In one case, these cells comprised 12% of circulating CD8+ T cells, and TCRα analysis revealed two distinct co-expressed TCRα chains, with only one contributing to binding of the class II HLA-peptide complex. These data indicate that class II-restricted CD8+ T cell responses can exist in a chronic human viral infection, and may contribute to immune control. CD8+ T cells restricted by HLA-DRB1 exist in a small number of HIV-infected persons These CD8+ T cells exhibit potent antiviral functions against HIV-infected cells TCRβ usage patterns indicate clonal expansion of class II-restricted CD8+ T cells CD8+ T cells that violate immunologic paradigms may contribute to viral control
Collapse
Affiliation(s)
| | - Pedro A Lamothe
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 01239, USA; Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Samuel W Kazer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 01239, USA; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Broad Institute, Cambridge, MA 01239, USA
| | - Michael B Cole
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Alex K Shalek
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 01239, USA; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Broad Institute, Cambridge, MA 01239, USA
| | - Nir Yosef
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 01239, USA; Department of Physics, University of California, Berkeley, CA 94720, USA
| | - R Brad Jones
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 01239, USA; George Washington University, Washington, DC 20052, USA
| | - Faith Donaghey
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 01239, USA
| | - Chioma Nwonu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 01239, USA
| | - Priya Jani
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 01239, USA
| | - Gina M Clayton
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Frances Crawford
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Janice White
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Alana Montoya
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Karen Power
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 01239, USA
| | - Todd M Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 01239, USA
| | - Hendrik Streeck
- Institute for HIV Research, University Hospital, University Duisburg-Essen, Essen 45147, Germany; U.S. Military HIV Research Program, Henry M. Jackson Foundation, Rockville, MD 20910, USA
| | - Daniel E Kaufmann
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 01239, USA; Centre de Recherche du Centre hospitalier de l'Université de Montréal, Montreal, QC H2X 3J4, Canada
| | - Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - John W Kappler
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 01239, USA; Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Broad Institute, Cambridge, MA 01239, USA.
| |
Collapse
|
200
|
Abstract
PURPOSE OF REVIEW Increasing evidence suggests that purging the latent HIV reservoir in virally suppressed individuals will require both the induction of viral replication from its latent state and the elimination of these reactivated HIV-infected cells ('Shock and Kill' strategy). Boosting potent HIV-specific CD8 T cells is a promising way to achieve an HIV cure. RECENT FINDINGS Recent studies provided the rationale for developing immune interventions to increase the numbers, function and location of HIV-specific CD8 T cells to purge HIV reservoirs. Multiple approaches are being evaluated including very early suppression of HIV replication in acute infection, adoptive cell transfer, therapeutic vaccination or use of immunomodulatory molecules. New assays to measure the killing and antiviral function of induced HIV-specific CD8 T cells have been developed to assess the efficacy of these new approaches. The strategies combining HIV reactivation and immunobased therapies to boost HIV-specific CD8 T cells can be tested in in-vivo and in-silico models to accelerate the design of new clinical trials. SUMMARY New immunobased strategies are explored to boost HIV-specific CD8 T cells able to purge the HIV-infected cells with the ultimate goal of achieving spontaneous control of viral replication without antiretroviral treatment.
Collapse
|