151
|
Munekata PES, Pateiro M, Conte-Junior CA, Domínguez R, Nawaz A, Walayat N, Movilla Fierro E, Lorenzo JM. Marine Alkaloids: Compounds with In Vivo Activity and Chemical Synthesis. Mar Drugs 2021; 19:374. [PMID: 34203532 PMCID: PMC8306672 DOI: 10.3390/md19070374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
Marine alkaloids comprise a class of compounds with several nitrogenated structures that can be explored as potential natural bioactive compounds. The scientific interest in these compounds has been increasing in the last decades, and many studies have been published elucidating their chemical structure and biological effects in vitro. Following this trend, the number of in vivo studies reporting the health-related properties of marine alkaloids has been increasing and providing more information about the effects in complex organisms. Experiments with animals, especially mice and zebrafish, are revealing the potential health benefits against cancer development, cardiovascular diseases, seizures, Alzheimer's disease, mental health disorders, inflammatory diseases, osteoporosis, cystic fibrosis, oxidative stress, human parasites, and microbial infections in vivo. Although major efforts are still necessary to increase the knowledge, especially about the translation value of the information obtained from in vivo experiments to clinical trials, marine alkaloids are promising candidates for further experiments in drug development.
Collapse
Affiliation(s)
- Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Carlos A. Conte-Junior
- Centro de Tecnologia, Programa de Pós-Graduação em Ciência de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil;
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China;
| | - Noman Walayat
- Department of Food Science and Engineering, College of Ocean, Zhejiang University of Technology, Hangzhou 310014, China;
| | | | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
152
|
Han J, Zhang R, Zhang X, Dong J, Chen M, Pan Y, Liao Z, Zhong M, He J, Wang F, Yue Y, Shang J. Zebrafish Model for Screening Antiatherosclerosis Drugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9995401. [PMID: 34257830 PMCID: PMC8245221 DOI: 10.1155/2021/9995401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/23/2021] [Indexed: 01/30/2023]
Abstract
This study is aimed at establishing a zebrafish model of AS, which can be applied for high-throughput screening anti-AS drugs. A zebrafish AS model was induced by high cholesterol diet (HCD) and lipopolysaccharide (LPS). In the early stage of modeling, HCD induced zebrafish to show some early symptoms similar to human AS, mainly cholesterol accumulation, vascular inflammation, lipid metabolism disorder, and oxidative stress. In addition to lipid metabolism disorders, LPS also induced the same symptoms. And when HCD and LPS exist at the same time, these AS symptoms in zebrafish become more severe. When the modeling time reached 45 days, HCD and LPS induce the formation of plaques in zebrafish blood vessels, and these plaques contain fibrous tissue and lipids, which are similar to human AS plaques. We also evaluated the efficacy of some anti-AS drugs (atorvastatin, aspirin, and vitamin C) through these zebrafish AS models. The results found that atorvastatin can significantly reduce the symptoms of AS induced by HCD and LPS, and aspirin and vitamins can significantly reduce the symptoms of AS induced by LPS. It is feasible to use zebrafish to establish an AS model, and the zebrafish AS model can be used for high-throughput screening of anti-AS drugs.
Collapse
Affiliation(s)
- Jichun Han
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Rui Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Xiaofeng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Jing Dong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Minghan Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Yumin Pan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Zixian Liao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Min Zhong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Jingwen He
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Feiqiang Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Yunyun Yue
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Jing Shang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| |
Collapse
|
153
|
Pradhan K, Geng S, Zhang Y, Lin RC, Li L. TRAM-Related TLR4 Pathway Antagonized by IRAK-M Mediates the Expression of Adhesion/Coactivating Molecules on Low-Grade Inflammatory Monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2980-2988. [PMID: 34031144 PMCID: PMC8278277 DOI: 10.4049/jimmunol.2000978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/05/2021] [Indexed: 11/19/2022]
Abstract
Low-grade inflammatory monocytes critically contribute to the pathogenesis of chronic inflammatory diseases such as atherosclerosis. The elevated expression of coactivating molecule CD40 as well as key adhesion molecule CD11a is a critical signature of inflammatory monocytes from both human patients with coronary artery diseases as well as in animal models of atherosclerosis. In this study, we report that subclinical superlow-dose LPS, a key risk factor for low-grade inflammation and atherosclerosis, can potently trigger the induction of CD40 and CD11a on low-grade inflammatory monocytes. Subclinical endotoxin-derived monocytes demonstrate immune-enhancing effects and suppress the generation of regulatory CD8+CD122+ T cells, which further exacerbate the inflammatory environment conducive for chronic diseases. Mechanistically, subclinical endotoxemia activates TRAM-mediated signaling processes, leading to the activation of MAPK and STAT5, which is responsible for the expression of CD40 and CD11a. We also demonstrate that TRAM-mediated monocyte polarization can be suppressed by IRAK-M. IRAK-M-deficient monocytes have increased expression of TRAM, elevated induction of CD40 and CD11a by subclinical-dose endotoxin, and are more potent in suppressing the CD8 regulatory T cells. Mice with IRAK-M deficiency generate an increased population of inflammatory monocytes and a reduced population of CD8 T regulatory cells. In contrast, mice with TRAM deficiency exhibit a significantly reduced inflammatory monocyte population and an elevated CD8 T regulatory cell population. Together, our data reveal a competing intracellular circuitry involving TRAM and IRAK-M that modulate the polarization of low-grade inflammatory monocytes with an immune-enhancing function.
Collapse
Affiliation(s)
- Kisha Pradhan
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Rui-Ci Lin
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
154
|
Meléndez-Fernández OH, Walton JC, DeVries AC, Nelson RJ. Clocks, Rhythms, Sex, and Hearts: How Disrupted Circadian Rhythms, Time-of-Day, and Sex Influence Cardiovascular Health. Biomolecules 2021; 11:883. [PMID: 34198706 PMCID: PMC8232105 DOI: 10.3390/biom11060883] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are the top cause of mortality in the United States, and ischemic heart disease accounts for 16% of all deaths around the world. Modifiable risk factors such as diet and exercise have often been primary targets in addressing these conditions. However, mounting evidence suggests that environmental factors that disrupt physiological rhythms might contribute to the development of these diseases, as well as contribute to increasing other risk factors that are typically associated with cardiovascular disease. Exposure to light at night, transmeridian travel, and social jetlag disrupt endogenous circadian rhythms, which, in turn, alter carefully orchestrated bodily functioning, and elevate the risk of disease and injury. Research into how disrupted circadian rhythms affect physiology and behavior has begun to reveal the intricacies of how seemingly innocuous environmental and social factors have dramatic consequences on mammalian physiology and behavior. Despite the new focus on the importance of circadian rhythms, and how disrupted circadian rhythms contribute to cardiovascular diseases, many questions in this field remain unanswered. Further, neither time-of-day nor sex as a biological variable have been consistently and thoroughly taken into account in previous studies of circadian rhythm disruption and cardiovascular disease. In this review, we will first discuss biological rhythms and the master temporal regulator that controls these rhythms, focusing on the cardiovascular system, its rhythms, and the pathology associated with its disruption, while emphasizing the importance of the time-of-day as a variable that directly affects outcomes in controlled studies, and how temporal data will inform clinical practice and influence personalized medicine. Finally, we will discuss evidence supporting the existence of sex differences in cardiovascular function and outcomes following an injury, and highlight the need for consistent inclusion of both sexes in studies that aim to understand cardiovascular function and improve cardiovascular health.
Collapse
Affiliation(s)
- O. Hecmarie Meléndez-Fernández
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| | - James C. Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| | - A. Courtney DeVries
- Department of Medicine, Division of Oncology/Hematology, West Virginia University, Morgantown, WV 26505, USA;
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26505, USA
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| |
Collapse
|
155
|
Zimmerman B, Kundu P, Rooney WD, Raber J. The Effect of High Fat Diet on Cerebrovascular Health and Pathology: A Species Comparative Review. Molecules 2021; 26:3406. [PMID: 34199898 PMCID: PMC8200075 DOI: 10.3390/molecules26113406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/19/2021] [Accepted: 06/01/2021] [Indexed: 02/08/2023] Open
Abstract
In both humans and animal models, consumption of a high-saturated-fat diet has been linked to vascular dysfunction and cognitive impairments. Laboratory animals provide excellent models for more invasive high-fat-diet-related research. However, the physiological differences between humans and common animal models in terms of how they react metabolically to high-fat diets need to be considered. Here, we review the factors that may affect the translatability of mechanistic research in animal models, paying special attention to the effects of a high-fat diet on vascular outcomes. We draw attention to the dissociation between metabolic syndrome and dyslipidemia in rodents, unlike the state in humans, where the two commonly occur. We also discuss the differential vulnerability between species to the metabolic and vascular effects of macronutrients in the diet. Findings from animal studies are better interpreted as modeling specific aspects of dysfunction. We conclude that the differences between species provide an opportunity to explore why some species are protected from the detrimental aspects of high-fat-diet-induced dysfunction, and to translate these findings into benefits for human health.
Collapse
Affiliation(s)
- Benjamin Zimmerman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (B.Z.); (P.K.); (W.D.R.)
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Payel Kundu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (B.Z.); (P.K.); (W.D.R.)
| | - William D. Rooney
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (B.Z.); (P.K.); (W.D.R.)
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (B.Z.); (P.K.); (W.D.R.)
- Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
156
|
Aravani D, Kassi E, Chatzigeorgiou A, Vakrou S. Cardiometabolic Syndrome: An Update on Available Mouse Models. Thromb Haemost 2021; 121:703-715. [PMID: 33280078 DOI: 10.1055/s-0040-1721388] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiometabolic syndrome (CMS), a disease entity characterized by abdominal obesity, insulin resistance (IR), hypertension, and hyperlipidemia, is a global epidemic with approximately 25% prevalence in adults globally. CMS is associated with increased risk for cardiovascular disease (CVD) and development of diabetes. Due to its multifactorial etiology, the development of several animal models to simulate CMS has contributed significantly to the elucidation of the disease pathophysiology and the design of therapies. In this review we aimed to present the most common mouse models used in the research of CMS. We found that CMS can be induced either by genetic manipulation, leading to dyslipidemia, lipodystrophy, obesity and IR, or obesity and hypertension, or by administration of specific diets and drugs. In the last decade, the ob/ob and db/db mice were the most common obesity and IR models, whereas Ldlr-/- and Apoe-/- were widely used to induce hyperlipidemia. These mice have been used either as a single transgenic or combined with a different background with or without diet treatment. High-fat diet with modifications is the preferred protocol, generally leading to increased body weight, hyperlipidemia, and IR. A plethora of genetically engineered mouse models, diets, drugs, or synthetic compounds that are available have advanced the understanding of CMS. However, each researcher should carefully select the most appropriate model and validate its consistency. It is important to consider the differences between strains of the same animal species, different animals, and most importantly differences to human when translating results.
Collapse
Affiliation(s)
- Dimitra Aravani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Styliani Vakrou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Cardiology, "Laiko" General Hospital, Athens, Greece
| |
Collapse
|
157
|
12-Hydroxyeicosapentaenoic acid inhibits foam cell formation and ameliorates high-fat diet-induced pathology of atherosclerosis in mice. Sci Rep 2021; 11:10426. [PMID: 34001916 PMCID: PMC8129127 DOI: 10.1038/s41598-021-89707-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/26/2021] [Indexed: 02/02/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease associated with macrophage aggregate and transformation into foam cells. In this study, we sought to investigate the impact of dietary intake of ω3 fatty acid on the development of atherosclerosis, and demonstrate the mechanism of action by identifying anti-inflammatory lipid metabolite. Mice were exposed to a high-fat diet (HFD) supplemented with either conventional soybean oil or α-linolenic acid-rich linseed oil. We found that as mice became obese they also showed increased pulsatility and resistive indexes in the common carotid artery. In sharp contrast, the addition of linseed oil to the HFD improved pulsatility and resistive indexes without affecting weight gain. Histological analysis revealed that dietary linseed oil inhibited foam cell formation in the aortic valve. Lipidomic analysis demonstrated a particularly marked increase in the eicosapentaenoic acid-derived metabolite 12-hydroxyeicosapentaenoic acid (12-HEPE) in the serum from mice fed with linseed oil. When we gave 12-HEPE to mice with HFD, the pulsatility and resistive indexes was improved. Indeed, 12-HEPE inhibited the foamy transformation of macrophages in a peroxisome proliferator-activated receptor (PPAR)γ-dependent manner. These results demonstrate that the 12-HEPE-PPARγ axis ameliorates the pathogenesis of atherosclerosis by inhibiting foam cell formation.
Collapse
|
158
|
Zhao L, Zhang S, Su Q, Li S. Effects of withdrawing an atherogenic diet on the atherosclerotic plaque in rabbits. Exp Ther Med 2021; 22:751. [PMID: 34035848 PMCID: PMC8135140 DOI: 10.3892/etm.2021.10183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 12/11/2020] [Indexed: 02/05/2023] Open
Abstract
Lifestyle interventions and pharmacotherapy are the most common of non-invasive treatments for atherosclerosis, but the individual effect of diet on plaques remains unclear. The current study aimed to investigate the effect of withdrawing the atherogenic diet on plaque in the aortas of rabbits. Experimental atheroma was induced in 33 rabbits using a 1% high cholesterol diet for 30 days (H-30 d) or 90 days (H-90 d, baseline group). After 90 days of the atherogenic diet, the remaining animals were divided into four groups: A total of 10 rabbits continued to consume the atherogenic diet for 50 days (H-90 d & H-50 d; n=5) or 140 days (H-90 d & H-140 d; n=5). Another 13 rabbits were switched to a chow diet for 50 days (H-90 d & C-50 d; n=7) or 140 days (H-90 d & C-140 d; n=6). A total of 10 age-matched rabbits in the control groups were fed a chow diet for 90 and 230 days, respectively. The en face or cross-sectional plaque areas were determined using oil red O staining and elastic van Gieson staining. Immunohistochemistry analyses were used to assess the macrophages or smooth muscle cell contents. When fed an atherogenic diet for 90 days, the rabbits' abdominal aortas exhibited severe atherosclerotic lesions (the median en face plaque area was 63.6%). After withdrawing the atherogenic diet, the plaque area did not shrink with feeding the chow diet compared with the baseline, but increased to 71.8 or 80.5% after 50 or 140 days, respectively. After removing cholesterol from the diet, the lipids content in the plaques increased during the first 50 days, and then decreased compared with the baseline group. Furthermore, withdrawing the atherogenic diet increased the total collagen content and the percentage of the smooth muscle cells, alleviated macrophage infiltration, decreased the vulnerable index and promoted the cross-linking of collagen. Feeding the rabbits an atherogenic diet followed by removal of cholesterol from the diet did not lead to the regression of established lesions but instead delayed the progression of the lesions and promoted the stabilization of the plaque.
Collapse
Affiliation(s)
- Lijun Zhao
- Department of General Practice, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shifang Zhang
- Department of Pulmonary Disease, Institute of Respiratory Disease, Chengdu Second People's Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Qiaoli Su
- Department of General Practice, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shuangqing Li
- Department of General Practice, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
159
|
Shin HS, Shin HH, Shudo Y. Current Status and Limitations of Myocardial Infarction Large Animal Models in Cardiovascular Translational Research. Front Bioeng Biotechnol 2021; 9:673683. [PMID: 33996785 PMCID: PMC8116580 DOI: 10.3389/fbioe.2021.673683] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
Establishing an appropriate disease model that mimics the complexities of human cardiovascular disease is critical for evaluating the clinical efficacy and translation success. The multifaceted and complex nature of human ischemic heart disease is difficult to recapitulate in animal models. This difficulty is often compounded by the methodological biases introduced in animal studies. Considerable variations across animal species, modifications made in surgical procedures, and inadequate randomization, sample size calculation, blinding, and heterogeneity of animal models used often produce preclinical cardiovascular research that looks promising but is irreproducible and not translatable. Moreover, many published papers are not transparent enough for other investigators to verify the feasibility of the studies and the therapeutics' efficacy. Unfortunately, successful translation of these innovative therapies in such a closed and biased research is difficult. This review discusses some challenges in current preclinical myocardial infarction research, focusing on the following three major inhibitors for its successful translation: Inappropriate disease model, frequent modifications to surgical procedures, and insufficient reporting transparency.
Collapse
Affiliation(s)
- Hye Sook Shin
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Heather Hyeyoon Shin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
160
|
Díez J, Navarro-González JF, Ortiz A, Santamaría R, de Sequera P. Developing the subspecialty of cardio-nephrology: The time has come. A position paper from the coordinating committee from the Working Group for Cardiorenal Medicine of the Spanish Society of Nephrology. Nefrologia 2021. [PMID: 33892978 DOI: 10.1016/j.nefro.2021.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Patients with the dual burden of chronic kidney disease (CKD) and cardiovascular disease (CVD) experience unacceptably high rates of morbidity and mortality, which also entail unfavorable effects on healthcare systems. Currently, concerted efforts to identify, prevent and treat CVD in CKD patients are lacking at the institutional level, with emphasis still being placed on individual specialty views on this topic. The authors of this position paper endorse the need for a dedicated interdisciplinary team of subspecialists in cardio-nephrology that manages appropriate clinical interventions across the inpatient and outpatient settings. There is a critical need for training programs, guidelines and best clinical practice models, and research funding from nephrology, cardiology and other professional societies, to support the development of the subspecialty of cardio-nephrology. This position paper from the coordinating committee from the Working Group for Cardiorenal Medicine of the Spanish Society of Nephrology (S.E.N.) is intended to be the starting point to develop the subspecialty of cardio-nephrology within the S.E.N.. The implementation of the subspecialty in day-to-day nephrological practice will help to diagnose, treat, and prevent CVD in CKD patients in a precise, clinically effective, and health cost-favorable manner.
Collapse
Affiliation(s)
- Javier Díez
- Departments of Nephrology and Cardiology, University of Navarra Clinic, Pamplona, Spain; Program of Cardiovascular Diseases, Center of Applied Medical Research, University of Navarra, Pamplona, Spain.
| | - Juan F Navarro-González
- Division of Nephrology and Research Unit, University Hospital Nuestra Señora de Candelaria, and Universitary Institute of Biomedical Technologies, University of La Laguna, Santa Cruz de Tenerife, Spain; Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Madrid, Spain; Division of Nephrology IIS-Fundacion Jimenez Diaz, University Autonoma of Madrid, Madrid, Spain
| | - Rafael Santamaría
- Red de Investigación Renal (REDINREN), Madrid, Spain; Division of Nephrology, University Hospital Reina Sofia, Cordoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Spain
| | - Patricia de Sequera
- Nephrology Department, Hospital Universitario Infanta Leonor, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
161
|
Promyelocytic leukemia protein promotes the phenotypic switch of smooth muscle cells in atherosclerotic plaques of human coronary arteries. Clin Sci (Lond) 2021; 135:887-905. [PMID: 33764440 DOI: 10.1042/cs20201399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/31/2022]
Abstract
Promyelocytic leukemia protein (PML) is a constitutive component of PML nuclear bodies (PML-NBs), which function as stress-regulated SUMOylation factories. Since PML can also act as a regulator of the inflammatory and fibroproliferative responses characteristic of atherosclerosis, we investigated whether PML is implicated in this disease. Immunoblotting, ELISA and immunohistochemistry showed a stronger expression of PML in segments of human atherosclerotic coronary arteries and sections compared with non-atherosclerotic ones. In particular, PML was concentrated in PML-NBs from α-smooth muscle actin (α-SMA)-immunoreactive cells in plaque areas. To identify possible functional consequences of PML-accumulation in this cell type, differentiated human coronary artery smooth muscle cells (dHCASMCs) were transfected with a vector containing the intact PML-gene. These PML-transfected dHCASMCs showed higher levels of small ubiquitin-like modifier (SUMO)-1-dependent SUMOylated proteins, but lower levels of markers for smooth muscle cell (SMC) differentiation and revealed more proliferation and migration activities than dHCASMCs transfected with the vector lacking a specific gene insert or with the vector containing a mutated PML-gene coding for a PML-form without SUMOylation activity. When dHCASMCs were incubated with different cytokines, higher PML-levels were observed only after interferon γ (IFN-γ) stimulation, while the expression of differentiation markers was lower. However, these phenotypic changes were not observed in dHCASMCs treated with small interfering RNA (siRNA) suppressing PML-expression prior to IFN-γ stimulation. Taken together, our results imply that PML is a previously unknown functional factor in the molecular cascades associated with the pathogenesis of atherosclerosis and is positioned in vascular SMCs (VSMCs) between upstream IFN-γ activation and downstream SUMOylation.
Collapse
|
162
|
Haemmig S, Gheinani AH, Zaromytidou M, Siasos G, Coskun AU, Cormier MA, Gross DA, Wara AKMK, Antoniadis A, Sun X, Sukhova GK, Welt F, Andreou I, Whatling C, Gan LM, Wikström J, Edelman ER, Libby P, Stone PH, Feinberg MW. Novel Lesional Transcriptional Signature Separates Atherosclerosis With and Without Diabetes in Yorkshire Swine and Humans. Arterioscler Thromb Vasc Biol 2021; 41:1487-1503. [PMID: 33567868 PMCID: PMC7990701 DOI: 10.1161/atvbaha.121.315896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Stefan Haemmig
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Hashemi Gheinani
- Department of Surgery, Urological Diseases Research Center, Boston Children Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marina Zaromytidou
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Gerasimos Siasos
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ahmet Umit Coskun
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michelle A. Cormier
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - David A. Gross
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - AKM Khyrul Wara
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Antonios Antoniadis
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinghui Sun
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Galina K. Sukhova
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Fred Welt
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Ioannis Andreou
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Carl Whatling
- Bioscience Cardiovascular/Early Clinical Development/Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Li-Ming Gan
- Bioscience Cardiovascular/Early Clinical Development/Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Johannes Wikström
- Bioscience Cardiovascular/Early Clinical Development/Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elazer R. Edelman
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter H. Stone
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
163
|
Hoogendoorn A, Avery TD, Li J, Bursill C, Abell A, Grace PM. Emerging Therapeutic Applications for Fumarates. Trends Pharmacol Sci 2021; 42:239-254. [PMID: 33618840 PMCID: PMC7954891 DOI: 10.1016/j.tips.2021.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023]
Abstract
Fumarates are successfully used for the treatment of psoriasis and multiple sclerosis. Their antioxidative, immunomodulatory, and neuroprotective properties make fumarates attractive therapeutic candidates for other pathologies. The exact working mechanisms of fumarates are, however, not fully understood. Further elucidation of the mechanisms is required if these drugs are to be successfully repurposed for other diseases. Towards this, administration route, dosage, and treatment timing, frequency, and duration are important parameters to consider and optimize with clinical paradigms in mind. Here, we summarize the rapidly expanding literature on the pharmacokinetics and pharmacodynamics of fumarates, including a discussion on two recently FDA-approved fumarates VumerityTM and BafiertamTM. We review emerging applications of fumarates, focusing on neurological and cardiovascular diseases.
Collapse
Affiliation(s)
- Ayla Hoogendoorn
- Vascular and Heart Health, Life Long Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Australia.
| | - Thomas D Avery
- ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Australia; Institute for Photonics and Advanced Sensing & Department of Chemistry, The University of Adelaide, Australia
| | - Jiahe Li
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christina Bursill
- Vascular and Heart Health, Life Long Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Australia; Faculty of Health and Medical Science, University of Adelaide, Adelaide, Australia
| | - Andrew Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Australia; Institute for Photonics and Advanced Sensing & Department of Chemistry, The University of Adelaide, Australia
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
164
|
Li Y, Huang X, Guo F, Lei T, Li S, Monaghan-Nichols P, Jiang Z, Xin HB, Fu M. TRIM65 E3 ligase targets VCAM-1 degradation to limit LPS-induced lung inflammation. J Mol Cell Biol 2021; 12:190-201. [PMID: 31310649 PMCID: PMC7181722 DOI: 10.1093/jmcb/mjz077] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/31/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022] Open
Abstract
Although the adhesion molecules-mediated leukocyte adherence and infiltration into tissues is an important step of inflammation, the post-translational regulation of these proteins on the endothelial cells is poorly understood. Here, we report that TRIM65, an ubiquitin E3 ligase of tripartite protein family, selectively targets vascular cell adhesion molecule 1 (VCAM-1) and promotes its ubiquitination and degradation, by which it critically controls the duration and magnitude of sepsis-induced pulmonary inflammation. TRIM65 is constitutively expressed in human vascular endothelial cells. During TNFα-induced endothelial activation, the protein levels of TRIM65 and VCAM-1 are inversely correlated. Expression of wild-type TRIM65, but not expression of a TRIM65 mutant that lacks E3 ubiquitin ligase function in endothelial cells, promotes VCAM-1 ubiquitination and degradation, whereas small interference RNA-mediated knockdown of TRIM65 attenuates VCAM-1 protein degradation. Further experiments show that TRIM65 directly interacts with VCAM-1 protein and directs its polyubiquitination, by which TRIM65 controls monocyte adherence and infiltration into tissues during inflammation. Importantly, TRIM65-deficient mice are more sensitive to lipopolysaccharide-induced death, due to sustained and severe pulmonary inflammation. Taken together, our studies suggest that TRIM65-mediated degradation of VCAM-1 represents a potential mechanism that controls the duration and magnitude of inflammation.
Collapse
Affiliation(s)
- Yong Li
- Department of Biomedical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Xuan Huang
- Department of Biomedical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.,Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Fang Guo
- Department of Biomedical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.,Institute of Cardiovascular Diseases, Department of Pathophysiology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Tianhua Lei
- Department of Biomedical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Shitao Li
- Department of Physiological Sciences, Center for Veterinary and Health sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Paula Monaghan-Nichols
- Department of Biomedical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Zhisheng Jiang
- Institute of Cardiovascular Diseases, Department of Pathophysiology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Hong-Bo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Mingui Fu
- Department of Biomedical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
165
|
Bolea G, Philouze C, Dubois M, Risdon S, Humberclaude A, Ginies C, Charles AL, Geny B, Reboul C, Arnaud C, Dufour C, Meyer G. Digestive n-6 Lipid Oxidation, a Key Trigger of Vascular Dysfunction and Atherosclerosis in the Western Diet: Protective Effects of Apple Polyphenols. Mol Nutr Food Res 2021; 65:e2000487. [PMID: 33450108 DOI: 10.1002/mnfr.202000487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/04/2021] [Indexed: 01/07/2023]
Abstract
SCOPE A main risk factor of atherosclerosis is a Western diet (WD) rich in n-6 polyunsaturated fatty acids (PUFAs) sensitive to oxidation. Their oxidation can be initiated by heme iron of red meat leading to the formation of 4-hydroxy-2-nonenal (4-HNE), a cytotoxic aldehyde. An increased 4-HNE production is implicated in endothelial dysfunction and atherosclerosis. By contrast, a diet rich in proanthocyanidins reduces oxidative stress and arterial diseases. This study evaluates the effects of a WD on vascular integrity in ApolipoproteinE (ApoE-/- ) mice and the protective capacity of apple extract and puree rich in antioxidant proanthocyanidins. METHODS AND RESULTS ApoE-/- mice are fed during 12 weeks with a WD with or without n-6 PUFAs. Moreover, two WD + n-6 PUFAs groups are supplemented with apple puree or phenolic extract. An increase in digestive 4-HNE production associated with a rise in plasmatic 4-HNE and oxidized LDL concentrations is reported. Oxidizable n-6 PUFAs consumption is associated with a worsened endothelial dysfunction and atherosclerosis. Interestingly, supplementations with apple polyphenol extract or puree prevented these impairments while reducing oxidative stress. CONCLUSION n-6 lipid oxidation during digestion may be a key factor of vascular impairments. Nevertheless, an antioxidant strategy can limit 4-HNE formation during digestion and thus durably protect vascular function.
Collapse
Affiliation(s)
- Gaëtan Bolea
- EA4278 LaPEC, Laboratory of Cardiovascular Pharm-ecology, Avignon University, Avignon, F-84000, France
- INRAE, UMR408 SQPOV, Safety and Quality of Plant Products, Avignon University, Avignon, F-84000, France
| | - Clothilde Philouze
- EA4278 LaPEC, Laboratory of Cardiovascular Pharm-ecology, Avignon University, Avignon, F-84000, France
| | - Mathilde Dubois
- EA4278 LaPEC, Laboratory of Cardiovascular Pharm-ecology, Avignon University, Avignon, F-84000, France
| | - Sydney Risdon
- EA4278 LaPEC, Laboratory of Cardiovascular Pharm-ecology, Avignon University, Avignon, F-84000, France
| | - Anaïs Humberclaude
- EA4278 LaPEC, Laboratory of Cardiovascular Pharm-ecology, Avignon University, Avignon, F-84000, France
| | - Christian Ginies
- INRAE, UMR408 SQPOV, Safety and Quality of Plant Products, Avignon University, Avignon, F-84000, France
| | - Anne-Laure Charles
- UR3072, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072, Mitochondria, Oxidative Stress and Muscle Protection, University of Strasbourg, Strasbourg, F-67000, France
| | - Bernard Geny
- UR3072, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072, Mitochondria, Oxidative Stress and Muscle Protection, University of Strasbourg, Strasbourg, F-67000, France
| | - Cyril Reboul
- EA4278 LaPEC, Laboratory of Cardiovascular Pharm-ecology, Avignon University, Avignon, F-84000, France
| | - Claire Arnaud
- U1042 HP2, Cardiovascular and Respiratory Pathophysiology and Hypoxia, INSERM, Grenoble University, Grenoble, F-38000, France
| | - Claire Dufour
- INRAE, UMR408 SQPOV, Safety and Quality of Plant Products, Avignon University, Avignon, F-84000, France
| | - Grégory Meyer
- EA4278 LaPEC, Laboratory of Cardiovascular Pharm-ecology, Avignon University, Avignon, F-84000, France
| |
Collapse
|
166
|
Tang D, Geng F, Yu C, Zhang R. Recent Application of Zebrafish Models in Atherosclerosis Research. Front Cell Dev Biol 2021; 9:643697. [PMID: 33718384 PMCID: PMC7947229 DOI: 10.3389/fcell.2021.643697] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerotic cardiovascular disease is one of the leading causes of death worldwide. Establishing animal models of atherosclerosis is of great benefit for studying its complicated pathogenesis and screening and evaluating related drugs. Although researchers have generated a variety of models for atherosclerosis study in rabbits, mice and rats, the limitations of these models make it difficult to monitor the development of atherosclerosis, and these models are unsuitable for large scale screening of potential therapeutic targets. On the contrast, zebrafish can fulfill these purposes thanks to their fecundity, rapid development ex utero, embryonic transparency, and conserved lipid metabolism process. Thus, zebrafish have become a popular alternative animal model for atherosclerosis research. In this mini review, we summarize different zebrafish models used to study atherosclerosis, focusing on the latest applications of these models to the dynamic monitoring of atherosclerosis progression, mechanistic study of therapeutic intervention and drug screening, and assessment of the impacts of other risk factors.
Collapse
Affiliation(s)
- Dandan Tang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Fang Geng
- School of Life Sciences, Fudan University, Shanghai, China
| | - Chunxiao Yu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
167
|
Brampton C, Pomozi V, Chen LH, Apana A, McCurdy S, Zoll J, Boisvert WA, Lambert G, Henrion D, Blanchard S, Kuo S, Leftheriotis G, Martin L, Le Saux O. ABCC6 deficiency promotes dyslipidemia and atherosclerosis. Sci Rep 2021; 11:3881. [PMID: 33594095 PMCID: PMC7887252 DOI: 10.1038/s41598-021-82966-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
ABCC6 deficiency promotes ectopic calcification; however, circumstantial evidence suggested that ABCC6 may also influence atherosclerosis. The present study addressed the role of ABCC6 in atherosclerosis using Ldlr-/- mice and pseudoxanthoma elasticum (PXE) patients. Mice lacking the Abcc6 and Ldlr genes were fed an atherogenic diet for 16 weeks before intimal calcification, aortic plaque formation and lipoprotein profile were evaluated. Cholesterol efflux and the expression of several inflammation, atherosclerosis and cholesterol homeostasis-related genes were also determined in murine liver and bone marrow-derived macrophages. Furthermore, we examined plasma lipoproteins, vascular calcification, carotid intima-media thickness and atherosclerosis in a cohort of PXE patients with ABCC6 mutations and compared results to dysmetabolic subjects with increased cardiovascular risk. We found that ABCC6 deficiency causes changes in lipoproteins, with decreased HDL cholesterol in both mice and humans, and induces atherosclerosis. However, we found that the absence of ABCC6 does not influence overall vascular mineralization induced with atherosclerosis. Decreased cholesterol efflux from macrophage cells and other molecular changes such as increased pro-inflammation seen in both humans and mice are likely contributors for the phenotype. However, it is likely that other cellular and/or molecular mechanisms are involved. Our study showed a novel physiological role for ABCC6, influencing plasma lipoproteins and atherosclerosis in a haploinsufficient manner, with significant penetrance.
Collapse
Affiliation(s)
- Christopher Brampton
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222E, Honolulu, HI, USA
- Bio-Rad Laboratories, Inc., Hercules, CA, USA
| | - Viola Pomozi
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222E, Honolulu, HI, USA
| | - Li-Hsieh Chen
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222E, Honolulu, HI, USA
| | - Ailea Apana
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222E, Honolulu, HI, USA
| | - Sara McCurdy
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
- Department of Medicine, University of California San Diego, San Diego, USA
| | - Janna Zoll
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222E, Honolulu, HI, USA
| | - William A Boisvert
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Gilles Lambert
- University of La Réunion Medical School (France) INSERM UMR1188 DéTROI, Ste Clotilde, La Réunion, France
| | - Daniel Henrion
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083, University of Angers, Angers, France
| | - Simon Blanchard
- Département d'Immunologie et d'Allergologie, University Hospital of Angers, 49000, Angers, France
- Inserm U1232, CRCINA, University of Angers, 44000, Nantes, France
| | - Sheree Kuo
- Department of Pediatrics Kapi'olani Medical Center for Women and Children, University of Hawaii, Honolulu, HI, USA
| | - Georges Leftheriotis
- Faculty of Medicine, University of Nice-Sophia Antipolis, 06107, Nice, France
- Laboratory of Physiology and Molecular Medicine (LP2M) UMR CNRS 7073, 06107, Nice, France
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Reference Center for Rare Skin Diseases, Angers University Hospital, Angers, France
- BNMI, CNRS 6214/INSERM 1083, University Bretagne-Loire, Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222E, Honolulu, HI, USA.
| |
Collapse
|
168
|
Kim CW, Oh E, Park HJ. A strategy to prevent atherosclerosis via TNF receptor regulation. FASEB J 2021; 35:e21391. [DOI: 10.1096/fj.202000764r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/23/2020] [Accepted: 01/07/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Chan Woo Kim
- Department of Microbiology College of Medicine Inha University Incheon Republic of Korea
- Department of Preclinical Trial Laboratory Animal Center Osong Medical Innovation Foundation Cheongju Republic of Korea
| | - Eun‐Taex Oh
- Hypoxia‐related Disease Research Center College of Medicine Inha University Incheon Republic of Korea
- Department of Biomedical Sciences College of Medicine Inha University Incheon Republic of Korea
| | - Heon Joo Park
- Department of Microbiology College of Medicine Inha University Incheon Republic of Korea
- Hypoxia‐related Disease Research Center College of Medicine Inha University Incheon Republic of Korea
| |
Collapse
|
169
|
Chaudhry F, Kawai H, Johnson KW, Narula N, Shekhar A, Chaudhry F, Nakahara T, Tanimoto T, Kim D, Adapoe MKMY, Blankenberg FG, Mattis JA, Pak KY, Levy PD, Ozaki Y, Arbustini E, Strauss HW, Petrov A, Fuster V, Narula J. Molecular Imaging of Apoptosis in Atherosclerosis by Targeting Cell Membrane Phospholipid Asymmetry. J Am Coll Cardiol 2021; 76:1862-1874. [PMID: 33059832 DOI: 10.1016/j.jacc.2020.08.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Apoptosis in atherosclerotic lesions contributes to plaque vulnerability by lipid core enlargement and fibrous cap attenuation. Apoptosis is associated with exteriorization of phosphatidylserine (PS) and phosphatidylethanolamine (PE) on the cell membrane. Although PS-avid radiolabeled annexin-V has been employed for molecular imaging of high-risk plaques, PE-targeted imaging in atherosclerosis has not been studied. OBJECTIVES This study sought to evaluate the feasibility of molecular imaging with PE-avid radiolabeled duramycin in experimental atherosclerotic lesions in a rabbit model and compare duramycin targeting with radiolabeled annexin-V. METHODS Of the 27 rabbits, 21 were fed high-cholesterol, high-fat diet for 16 weeks. Nine of the 21 rabbits received 99mTc-duramycin (test group), 6 received 99mTc-linear duramycin (duramycin without PE-binding capability, negative radiotracer control group), and 6 received 99mTc-annexin-V for radionuclide imaging. The remaining normal chow-fed 6 animals (disease control group) received 99mTc-duramycin. In vivo microSPECT/microCT imaging was performed, and the aortas were explanted for ex vivo imaging and for histological characterization of atherosclerosis. RESULTS A significantly higher duramycin uptake was observed in the test group compared with that of disease control and negative radiotracer control animals; duramycin uptake was also significantly higher than the annexin-V uptake. Quantitative duramycin uptake, represented as the square root of percent injected dose per cm (√ID/cm) of abdominal aorta was >2-fold higher in atherosclerotic lesions in test group (0.08 ± 0.01%) than in comparable regions of disease control animals (0.039 ± 0.0061%, p = 3.70·10-8). Mean annexin uptake (0.060 ± 0.010%) was significantly lower than duramycin (p = 0.001). Duramycin uptake corresponded to the lesion severity and macrophage burden. The radiation burden to the kidneys was substantially lower with duramycin (0.49% ID/g) than annexin (5.48% ID/g; p = 4.00·10-4). CONCLUSIONS Radiolabeled duramycin localizes in lipid-rich areas with high concentration of apoptotic macrophages in the experimental atherosclerosis model. Duramycin uptake in atherosclerotic lesions was significantly greater than annexin-V uptake and produced significantly lower radiation burden to nontarget organs.
Collapse
Affiliation(s)
- Farhan Chaudhry
- Icahn School of Medicine at Mount Sinai, New York, New York; Wayne State University School of Medicine, Detroit, Michigan
| | - Hideki Kawai
- Icahn School of Medicine at Mount Sinai, New York, New York; Department of Cardiology, Fujita Health University, Toyoake, Aichi, Japan
| | - Kipp W Johnson
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Navneet Narula
- New York University Langone Medical Center, New York, New York
| | - Aditya Shekhar
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | - Dongbin Kim
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Jeffrey A Mattis
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania
| | - Phillip D Levy
- Wayne State University School of Medicine, Detroit, Michigan
| | - Yukio Ozaki
- Department of Cardiology, Fujita Health University, Toyoake, Aichi, Japan
| | | | - H William Strauss
- Icahn School of Medicine at Mount Sinai, New York, New York; Memorial Sloan Kettering Cancer Center, New York, New York
| | - Artiom Petrov
- Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Valentin Fuster
- Icahn School of Medicine at Mount Sinai, New York, New York; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
170
|
Berenji Ardestani S, Matchkov VV, Hansen K, Jespersen NR, Pedersen M, Eftedal I. Extensive Simulated Diving Aggravates Endothelial Dysfunction in Male Pro-atherosclerotic ApoE Knockout Rats. Front Physiol 2021; 11:611208. [PMID: 33424633 PMCID: PMC7786538 DOI: 10.3389/fphys.2020.611208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction The average age of the diving population is rising, and the risk of atherosclerosis and cardiovascular disease in divers are accordingly increasing. It is an open question whether this risk is altered by diving per se. In this study, we examined the effect of 7-weeks simulated diving on endothelial function and mitochondrial respiration in atherosclerosis-prone rats. Methods Twenty-four male ApoE knockout (KO) rats (9-weeks-old) were fed a Western diet for 8 weeks before 12 rats were exposed to simulated heliox dry-diving in a pressure chamber (600 kPa for 60 min, decompression of 50 kPa/min). The rats were dived twice-weekly for 7 weeks, resulting in a total of 14 dives. The remaining 12 non-diving rats served as controls. Endothelial function of the pulmonary and mesenteric arteries was examined in vitro using an isometric myograph. Mitochondrial respiration in cardiac muscle tissues was measured using high-resolution respirometry. Results and Conclusion Both ApoE KO diving and non-diving rats showed changes in endothelial function at the end of the intervention, but the extent of these changes was larger in the diving group. Altered nitric oxide signaling was primarily involved in these changes. Mitochondrial respiration was unaltered. In this pro-atherosclerotic rat model of cardiovascular changes, extensive diving appeared to aggravate endothelial dysfunction rather than promote adaptation to oxidative stress.
Collapse
Affiliation(s)
- Simin Berenji Ardestani
- MEMBRANES, Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Vladimir V Matchkov
- MEMBRANES, Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Kasper Hansen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.,Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| |
Collapse
|
171
|
Coker JK, Moyne O, Rodionov DA, Zengler K. Carbohydrates great and small, from dietary fiber to sialic acids: How glycans influence the gut microbiome and affect human health. Gut Microbes 2021; 13:1-18. [PMID: 33615984 PMCID: PMC7899658 DOI: 10.1080/19490976.2020.1869502] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/20/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Gut microbiome composition depends heavily upon diet and has strong ties to human health. Dietary carbohydrates shape the gut microbiome by providing a potent nutrient source for particular microbes. This review explores how dietary carbohydrates in general, including individual monosaccharides and complex polysaccharides, influence the gut microbiome with subsequent effects on host health and disease. In particular, the effects of sialic acids, a prominent and influential class of monosaccharides, are discussed. Complex plant carbohydrates, such as dietary fiber, generally promote microbial production of compounds beneficial to the host while preventing degradation of host carbohydrates from colonic mucus. In contrast, simple and easily digestible sugars such as glucose are often associated with adverse effects on health and the microbiome. The monosaccharide class of sialic acids exerts a powerful but nuanced effect on gut microbiota. Sialic acid consumption (in monosaccharide form, or as part of human milk oligosaccharides or certain animal-based foods) drives the growth of organisms with sialic acid metabolism capabilities. Minor chemical modifications of Neu5Ac, the most common form of sialic acid, can alter these effects. All aspects of carbohydrate composition are therefore relevant to consider when designing dietary therapeutic strategies to alter the gut microbiome.
Collapse
Affiliation(s)
- Joanna K Coker
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
| | - Oriane Moyne
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
| | - Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| |
Collapse
|
172
|
Oat fiber attenuates circulating oxysterols levels and hepatic inflammation via targeting TLR4 signal pathway in LDL receptor knockout mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
173
|
Darçot E, Yerly J, Hilbert T, Colotti R, Najdenovska E, Kober T, Stuber M, van Heeswijk RB. Compressed sensing with signal averaging for improved sensitivity and motion artifact reduction in fluorine-19 MRI. NMR IN BIOMEDICINE 2021; 34:e4418. [PMID: 33002268 DOI: 10.1002/nbm.4418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Fluorine-19 (19 F) MRI of injected perfluorocarbon emulsions (PFCs) allows for the non-invasive quantification of inflammation and cell tracking, but suffers from a low signal-to-noise ratio and extended scan time. To address this limitation, we tested the hypotheses that a 19 F MRI pulse sequence that combines a specific undersampling regime with signal averaging has both increased sensitivity and robustness against motion artifacts compared with a non-averaged fully sampled pulse sequence, when both datasets are reconstructed with compressed sensing. As a proof of principle, numerical simulations and phantom experiments were performed on selected variable ranges to characterize the point spread function of undersampling patterns, as well as the vulnerability to noise of undersampling and reconstruction parameters with paired numbers of x signal averages and acceleration factor x (NAx-AFx). The numerical simulations demonstrated that a probability density function that uses 25% of the samples to fully sample the k-space central area allowed for an optimal balance between limited blurring and artifact incoherence. At all investigated noise levels, the Dice similarity coefficient (DSC) strongly depended on the regularization parameters and acceleration factor. In phantoms, the motion robustness of an NA8-AF8 undersampling pattern versus NA1-AF1 was evaluated with simulated and real motion patterns. Differences were assessed with the DSC, which was consistently higher for the NA8-AF8 compared with the NA1-AF1 strategy, for both simulated and real cyclic motion patterns (P < 0.001). Both strategies were validated in vivo in mice (n = 2) injected with perfluoropolyether. Here, the images displayed a sharper delineation of the liver with the NA8-AF8 strategy than with the NA1-AF1 strategy. In conclusion, we validated the hypotheses that in 19 F MRI the combination of undersampling and averaging improves both the sensitivity and the robustness against motion artifacts.
Collapse
Affiliation(s)
- Emeline Darçot
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Lausanne and Geneva, Switzerland
| | - Tom Hilbert
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Advanced Clinical Imaging Technology (HC CMEA SUI DI PI), Siemens Healthcare AG, Lausanne, Switzerland
- Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Roberto Colotti
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Elena Najdenovska
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Lausanne and Geneva, Switzerland
| | - Tobias Kober
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Advanced Clinical Imaging Technology (HC CMEA SUI DI PI), Siemens Healthcare AG, Lausanne, Switzerland
- Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthias Stuber
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Lausanne and Geneva, Switzerland
| | - Ruud B van Heeswijk
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Lausanne and Geneva, Switzerland
| |
Collapse
|
174
|
Moses SR, Adorno JJ, Palmer AF, Song JW. Vessel-on-a-chip models for studying microvascular physiology, transport, and function in vitro. Am J Physiol Cell Physiol 2021; 320:C92-C105. [PMID: 33176110 PMCID: PMC7846973 DOI: 10.1152/ajpcell.00355.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/20/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022]
Abstract
To understand how the microvasculature grows and remodels, researchers require reproducible systems that emulate the function of living tissue. Innovative contributions toward fulfilling this important need have been made by engineered microvessels assembled in vitro with microfabrication techniques. Microfabricated vessels, commonly referred to as "vessels-on-a-chip," are from a class of cell culture technologies that uniquely integrate microscale flow phenomena, tissue-level biomolecular transport, cell-cell interactions, and proper three-dimensional (3-D) extracellular matrix environments under well-defined culture conditions. Here, we discuss the enabling attributes of microfabricated vessels that make these models more physiological compared with established cell culture techniques and the potential of these models for advancing microvascular research. This review highlights the key features of microvascular transport and physiology, critically discusses the strengths and limitations of different microfabrication strategies for studying the microvasculature, and provides a perspective on current challenges and future opportunities for vessel-on-a-chip models.
Collapse
Affiliation(s)
- Savannah R Moses
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Jonathan J Adorno
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Andre F Palmer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
175
|
Adivi A, Lucero J, Simpson N, McDonald JD, Lund AK. Exposure to traffic-generated air pollution promotes alterations in the integrity of the brain microvasculature and inflammation in female ApoE -/- mice. Toxicol Lett 2020; 339:39-50. [PMID: 33373663 DOI: 10.1016/j.toxlet.2020.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/11/2020] [Accepted: 12/21/2020] [Indexed: 02/03/2023]
Abstract
Traffic-generated air pollutants have been correlated with alterations in blood-brain barrier (BBB) integrity, which is associated with pathologies in the central nervous system (CNS). Much of the existing literature investigating the effects of air pollution in the CNS has predominately been reported in males, with little known regarding the effects in females. As such, this study characterized the effects of inhalation exposure to mixed vehicle emissions (MVE), as well as the presence of female sex hormones, in the CNS of female ApoE-/- mice, which included cohorts of both ovariectomized (ov-) and ovary-intact (ov+) mice. Ov + and ov- were placed on a high-fat diet and randomly grouped to be exposed to either filtered-air (FA) or MVE (200 PM/m3: 50 μg PM/m3 gasoline engine + 150 μg PM/m3 from diesel engine emissions) for 6 h/d, 7d/wk, for 30d. MVE-exposure resulted in altered cerebral microvascular integrity and permeability, as determined by the decreased immunofluorescent expression of tight junction (TJ) proteins, occludin, and claudin-5, and increased IgG extravasation into the cerebral parenchyma, compared to FA controls, regardless of ovary status. Associated with the altered cerebral microvascular integrity, we also observed an increase in matrix metalloproteinases (MMPs) -2/9 activity in the MVE ov+, MVE ov-, and FA ov- groups, compared to FA ov+. There was also elevated expression of intracellular adhesion molecule (ICAM)-1, inflammatory interleukins (IL-1, IL-1β), and tumor necrosis factor (TNF-α) mRNA in the cerebrum of MVE ov + and MVE ov- animals. IκB kinase (IKK) subunits IKKα and IKKβ mRNA expressions were upregulated in the cerebrum of MVE ov- and FA ov- mice. Our findings indicate that MVE exposure mediates altered integrity of the cerebral microvasculature correlated with increased MMP-2/9 activity and inflammatory signaling, regardless of female hormones present.
Collapse
Affiliation(s)
- Anna Adivi
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, 76201, USA
| | - JoAnn Lucero
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, 76201, USA
| | - Nicholas Simpson
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87108, USA
| | - Jacob D McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87108, USA
| | - Amie K Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, 76201, USA.
| |
Collapse
|
176
|
Zhang YY, Shi YN, Zhu N, Zhao TJ, Guo YJ, Liao DF, Dai AG, Qin L. PVAT targets VSMCs to regulate vascular remodelling: angel or demon. J Drug Target 2020; 29:467-475. [PMID: 33269623 DOI: 10.1080/1061186x.2020.1859515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vascular remodelling refers to abnormal changes in the structure and function of blood vessel walls caused by injury, and is the main pathological basis of cardiovascular diseases such as atherosclerosis, hypertension, and pulmonary hypertension. Among them, the neointimal hyperplasia caused by abnormal proliferation of vascular smooth muscle cells (VSMCs) plays a key role in the pathogenesis of vascular remodelling. Perivascular adipose tissue (PVAT) can release vasoactive substances to target VSMCs and regulate the pathological process of vascular remodelling. Specifically, PVAT can promote the conversion of VSMCs phenotype from contraction to synthesis by secreting visfatin, leptin, and resistin, and participate in the development of vascular remodelling-related diseases. Conversely, it can also inhibit the growth of VSMCs by secreting adiponectin and omentin to prevent neointimal hyperplasia and alleviate vascular remodelling. Therefore, exploring and developing new drugs or other treatments that facilitate the beneficial effects of PVAT on VSMCs is a potential strategy for prevention or treatment of vascular remodelling-related cardiovascular diseases.
Collapse
Affiliation(s)
- Yin-Yu Zhang
- Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, P.R. China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Ya-Ning Shi
- Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, P.R. China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Neng Zhu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Tan-Jun Zhao
- Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, P.R. China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Yi-Jie Guo
- Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, P.R. China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Duan-Fang Liao
- Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, P.R. China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Ai-Guo Dai
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Li Qin
- Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, P.R. China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, P.R. China
| |
Collapse
|
177
|
Golforoush P, Yellon DM, Davidson SM. Mouse models of atherosclerosis and their suitability for the study of myocardial infarction. Basic Res Cardiol 2020; 115:73. [PMID: 33258000 PMCID: PMC7704510 DOI: 10.1007/s00395-020-00829-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerotic plaques impair vascular function and can lead to arterial obstruction and tissue ischaemia. Rupture of an atherosclerotic plaque within a coronary artery can result in an acute myocardial infarction, which is responsible for significant morbidity and mortality worldwide. Prompt reperfusion can salvage some of the ischaemic territory, but ischaemia and reperfusion (IR) still causes substantial injury and is, therefore, a therapeutic target for further infarct limitation. Numerous cardioprotective strategies have been identified that can limit IR injury in animal models, but none have yet been translated effectively to patients. This disconnect prompts an urgent re-examination of the experimental models used to study IR. Since coronary atherosclerosis is the most prevalent morbidity in this patient population, and impairs coronary vessel function, it is potentially a major confounder in cardioprotective studies. Surprisingly, most studies suggest that atherosclerosis does not have a major impact on cardioprotection in mouse models. However, a major limitation of atherosclerotic animal models is that the plaques usually manifest in the aorta and proximal great vessels, and rarely in the coronary vessels. In this review, we examine the commonly used mouse models of atherosclerosis and their effect on coronary artery function and infarct size. We conclude that none of the commonly used strains of mice are ideal for this purpose; however, more recently developed mouse models of atherosclerosis fulfil the requirement for coronary artery lesions, plaque rupture and lipoprotein patterns resembling the human profile, and may enable the identification of therapeutic interventions more applicable in the clinical setting.
Collapse
MESH Headings
- Animals
- Aortic Diseases/complications
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/complications
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Coronary Artery Disease/complications
- Coronary Artery Disease/genetics
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/pathology
- Diet, High-Fat
- Disease Models, Animal
- Genetic Predisposition to Disease
- Mice, Knockout, ApoE
- Myocardial Infarction/etiology
- Myocardial Infarction/genetics
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardium/pathology
- Phenotype
- Plaque, Atherosclerotic
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Rupture, Spontaneous
- Scavenger Receptors, Class B/deficiency
- Scavenger Receptors, Class B/genetics
- Species Specificity
Collapse
Affiliation(s)
- Pelin Golforoush
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
178
|
Cole MF, Cantwell A, Rukundo J, Ajarova L, Fernandez-Navarro S, Atencia R, Rosati AG. Healthy cardiovascular biomarkers across the lifespan in wild-born chimpanzees ( Pan troglodytes). Philos Trans R Soc Lond B Biol Sci 2020; 375:20190609. [PMID: 32951545 PMCID: PMC7540951 DOI: 10.1098/rstb.2019.0609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Chimpanzees (Pan troglodytes) are a crucial model for understanding the evolution of human health and longevity. Cardiovascular disease is a major source of mortality during ageing in humans and therefore a key issue for comparative research. Current data indicate that compared to humans, chimpanzees have proatherogenic blood lipid profiles, an important risk factor for cardiovascular disease in humans. However, most work to date on chimpanzee lipids come from laboratory-living populations where lifestyles diverge from a wild context. Here, we examined cardiovascular profiles in chimpanzees living in African sanctuaries, who range semi-free in large forested enclosures, consume a naturalistic diet, and generally experience conditions more similar to a wild chimpanzee lifestyle. We measured blood lipids, body weight and body fat in 75 sanctuary chimpanzees and compared them to publicly available data from laboratory-living chimpanzees from the Primate Aging Database. We found that semi-free-ranging chimpanzees exhibited lower body weight and lower levels of lipids that are risk factors for human cardiovascular disease, and that some of these disparities increased with age. Our findings support the hypothesis that lifestyle can shape health indices in chimpanzees, similar to effects observed across human populations, and contribute to an emerging understanding of human cardiovascular health in an evolutionary context. This article is part of the theme issue 'Evolution of the primate ageing process'.
Collapse
Affiliation(s)
- Megan F. Cole
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | - Averill Cantwell
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua Rukundo
- Chimpanzee Sanctuary and Wildlife Conservation Trust, Entebbe, Uganda
| | - Lilly Ajarova
- Chimpanzee Sanctuary and Wildlife Conservation Trust, Entebbe, Uganda
| | | | - Rebeca Atencia
- Jane Goodall Institute Congo, Pointe Noire, Republic of Congo
| | - Alexandra G. Rosati
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
179
|
Hamid SM, Citir M, Terzi EM, Cimen I, Yildirim Z, Dogan AE, Kocaturk B, Onat UI, Arditi M, Weber C, Traynor-Kaplan A, Schultz C, Erbay E. Inositol-requiring enzyme-1 regulates phosphoinositide signaling lipids and macrophage growth. EMBO Rep 2020; 21:e51462. [PMID: 33140520 DOI: 10.15252/embr.202051462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
The ER-bound kinase/endoribonuclease (RNase), inositol-requiring enzyme-1 (IRE1), regulates the phylogenetically most conserved arm of the unfolded protein response (UPR). However, the complex biology and pathology regulated by mammalian IRE1 cannot be fully explained by IRE1's one known, specific RNA target, X box-binding protein-1 (XBP1) or the RNA substrates of IRE1-dependent RNA degradation (RIDD) activity. Investigating other specific substrates of IRE1 kinase and RNase activities may illuminate how it performs these diverse functions in mammalian cells. We report that macrophage IRE1 plays an unprecedented role in regulating phosphatidylinositide-derived signaling lipid metabolites and has profound impact on the downstream signaling mediated by the mammalian target of rapamycin (mTOR). This cross-talk between UPR and mTOR pathways occurs through the unconventional maturation of microRNA (miR) 2137 by IRE1's RNase activity. Furthermore, phosphatidylinositol (3,4,5) phosphate (PI(3,4,5)P3 ) 5-phosphatase-2 (INPPL1) is a direct target of miR-2137, which controls PI(3,4,5)P3 levels in macrophages. The modulation of cellular PI(3,4,5)P3 /PIP2 ratio and anabolic mTOR signaling by the IRE1-induced miR-2137 demonstrates how the ER can provide a critical input into cell growth decisions.
Collapse
Affiliation(s)
| | - Mevlut Citir
- The Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Erdem Murat Terzi
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Ismail Cimen
- Institute for Cardiovascular Prevention, LMU Munich, German Cardiovascular Research Centre, partner site Munich Heart Alliance Munich, Munich, Germany
| | - Zehra Yildirim
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Asli Ekin Dogan
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Begum Kocaturk
- Department of Pediatrics and Medicine, Division of Infectious Diseases and Immunology, and Infectious and Immunologic Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Umut Inci Onat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Moshe Arditi
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Pediatrics and Medicine, Division of Infectious Diseases and Immunology, and Infectious and Immunologic Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christian Weber
- Institute for Cardiovascular Prevention, LMU Munich, German Cardiovascular Research Centre, partner site Munich Heart Alliance Munich, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Alexis Traynor-Kaplan
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,ATK Innovation, Analytics and Discovery, North Bend, WA, USA
| | - Carsten Schultz
- The Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Ebru Erbay
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
180
|
Trimethylamine N-oxide and the reverse cholesterol transport in cardiovascular disease: a cross-sectional study. Sci Rep 2020; 10:18675. [PMID: 33122777 PMCID: PMC7596051 DOI: 10.1038/s41598-020-75633-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
The early atherosclerotic lesions develop by the accumulation of arterial foam cells derived mainly from cholesterol-loaded macrophages. Therefore, cholesterol and cholesteryl ester transfer protein (CETP) have been considered as causative in atherosclerosis. Moreover, recent studies indicate the role of trimethylamine N-oxide (TMAO) in development of cardiovascular disease (CVD). The current study aimed to investigate the association between TMAO and CETP polymorphisms (rs12720922 and rs247616), previously identified as a genetic determinant of circulating CETP, in a population of coronary artery disease (CAD) patients (n = 394) and control subjects (n = 153). We also considered age, sex, trimethylamine (TMA) levels and glomerular filtration rate (GFR) as other factors that can potentially play a role in this complex picture. We found no association of TMAO with genetically determined CETP in a population of CAD patients and control subjects. Moreover, we noticed no differences between CAD patients and control subjects in plasma TMAO levels. On the contrary, lower levels of TMA in CAD patients respect to controls were observed. Our results indicated a significant correlation between GFR and TMAO, but not TMA. The debate whether TMAO can be a harmful, diagnostic or protective marker in CVD needs to be continued.
Collapse
|
181
|
Zhang X, Bishawi M, Zhang G, Prasad V, Salmon E, Breithaupt JJ, Zhang Q, Truskey GA. Modeling early stage atherosclerosis in a primary human vascular microphysiological system. Nat Commun 2020; 11:5426. [PMID: 33110060 PMCID: PMC7591486 DOI: 10.1038/s41467-020-19197-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Novel atherosclerosis models are needed to guide clinical therapy. Here, we report an in vitro model of early atherosclerosis by fabricating and perfusing multi-layer arteriole-scale human tissue-engineered blood vessels (TEBVs) by plastic compression. TEBVs maintain mechanical strength, vasoactivity, and nitric oxide (NO) production for at least 4 weeks. Perfusion of TEBVs at a physiological shear stress with enzyme-modified low-density-lipoprotein (eLDL) with or without TNFα promotes monocyte accumulation, reduces vasoactivity, alters NO production, which leads to endothelial cell activation, monocyte accumulation, foam cell formation and expression of pro-inflammatory cytokines. Removing eLDL leads to recovery of vasoactivity, but not loss of foam cells or recovery of permeability, while pretreatment with lovastatin or the P2Y11 inhibitor NF157 reduces monocyte accumulation and blocks foam cell formation. Perfusion with blood leads to increased monocyte adhesion. This atherosclerosis model can identify the role of drugs on specific vascular functions that cannot be assessed in vivo.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Muath Bishawi
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University, Durham, NC, 27708, USA
| | - Ge Zhang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, 116044, Dalian, China
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Varun Prasad
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Ellen Salmon
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jason J Breithaupt
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- University of Miami Miller School of Medicine, Miami, FL, 33163, USA
| | - Qiao Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
182
|
Fernández-García V, González-Ramos S, Martín-Sanz P, Castrillo A, Boscá L. Contribution of Extramedullary Hematopoiesis to Atherosclerosis. The Spleen as a Neglected Hub of Inflammatory Cells. Front Immunol 2020; 11:586527. [PMID: 33193412 PMCID: PMC7649205 DOI: 10.3389/fimmu.2020.586527] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) incidence is becoming higher. This fact is promoted by metabolic disorders such as obesity, and aging. Atherosclerosis is the underlying cause of most of these pathologies. It is a chronic inflammatory disease that begins with the progressive accumulation of lipids and fibrotic materials in the blood-vessel wall, which leads to massive leukocyte recruitment. Rupture of the fibrous cap of the atherogenic cusps is responsible for tissue ischemic events, among them myocardial infarction. Extramedullary hematopoiesis (EMH), or blood cell production outside the bone marrow (BM), occurs when the normal production of these cells is impaired (chronic hematological and genetic disorders, leukemia, etc.) or is altered by metabolic disorders, such as hypercholesterolemia, or after myocardial infarction. Recent studies indicate that the main EMH tissues (spleen, liver, adipose and lymph nodes) complement the hematopoietic function of the BM, producing circulating inflammatory cells that infiltrate into the atheroma. Indeed, the spleen, which is a secondary lymphopoietic organ with high metabolic activity, contains a reservoir of myeloid progenitors and monocytes, constituting an important source of inflammatory cells to the atherosclerotic lesion. Furthermore, the spleen also plays an important role in lipid homeostasis and immune-cell selection. Interestingly, clinical evidence from splenectomized subjects shows that they are more susceptible to developing pathologies, such as dyslipidemia and atherosclerosis due to the loss of immune selection. Although CVDs represent the leading cause of death worldwide, the mechanisms involving the spleen-atherosclerosis-heart axis cross-talk remain poorly characterized.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Unidad de Biomedicina, (Unidad Asociada al CSIC), Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM) and Universidad de Las Palmas, Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Grupo de Investigación Medio Ambiente y Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Unidad de Biomedicina, (Unidad Asociada al CSIC), Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM) and Universidad de Las Palmas, Gran Canaria, Spain
| |
Collapse
|
183
|
Organic Cation Transporters in Human Physiology, Pharmacology, and Toxicology. Int J Mol Sci 2020; 21:ijms21217890. [PMID: 33114309 PMCID: PMC7660683 DOI: 10.3390/ijms21217890] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Individual cells and epithelia control the chemical exchange with the surrounding environment by the fine-tuned expression, localization, and function of an array of transmembrane proteins that dictate the selective permeability of the lipid bilayer to small molecules, as actual gatekeepers to the interface with the extracellular space. Among the variety of channels, transporters, and pumps that localize to cell membrane, organic cation transporters (OCTs) are considered to be extremely relevant in the transport across the plasma membrane of the majority of the endogenous substances and drugs that are positively charged near or at physiological pH. In humans, the following six organic cation transporters have been characterized in regards to their respective substrates, all belonging to the solute carrier 22 (SLC22) family: the organic cation transporters 1, 2, and 3 (OCT1–3); the organic cation/carnitine transporter novel 1 and 2 (OCTN1 and N2); and the organic cation transporter 6 (OCT6). OCTs are highly expressed on the plasma membrane of polarized epithelia, thus, playing a key role in intestinal absorption and renal reabsorption of nutrients (e.g., choline and carnitine), in the elimination of waste products (e.g., trimethylamine and trimethylamine N-oxide), and in the kinetic profile and therapeutic index of several drugs (e.g., metformin and platinum derivatives). As part of the Special Issue Physiology, Biochemistry, and Pharmacology of Transporters for Organic Cations, this article critically presents the physio-pathological, pharmacological, and toxicological roles of OCTs in the tissues in which they are primarily expressed.
Collapse
|
184
|
Tawakol A, Abohashem S, Zureigat H. Imaging Apoptosis in Atherosclerosis: From Cell Death, A Ray of Light. J Am Coll Cardiol 2020; 76:1875-1877. [PMID: 33059833 DOI: 10.1016/j.jacc.2020.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Ahmed Tawakol
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Shady Abohashem
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hadil Zureigat
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
185
|
Le Master E, Ahn SJ, Levitan I. Mechanisms of endothelial stiffening in dyslipidemia and aging: Oxidized lipids and shear stress. CURRENT TOPICS IN MEMBRANES 2020; 86:185-215. [PMID: 33837693 PMCID: PMC8168803 DOI: 10.1016/bs.ctm.2020.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vascular stiffening of the arterial walls is well-known as a key factor in aging and the development of cardiovascular disease; however, the role of endothelial stiffness in vascular dysfunction is still an emerging topic. In this review, the authors discuss the impact of dyslipidemia, oxidized lipids, substrate stiffness, age and pro-atherogenic disturbed flow have on endothelial stiffness. Furthermore, we investigate several mechanistic pathways that are key contributors in endothelial stiffness and discuss their physiological effects in the onset of atherogenesis in the disturbed flow regions of the aortic vasculature. The findings in this chapter describe a novel paradigm of synergistic interaction of plasma dyslipidemia/oxidized lipids and pro-atherogenic disturbed shear stress, as well as aging has on endothelial stiffness and vascular dysfunction.
Collapse
Affiliation(s)
- Elizabeth Le Master
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Sang Joon Ahn
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Irena Levitan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
186
|
Berenji Ardestani S, Eftedal I, Pedersen M, Jeppesen PB, Nørregaard R, Matchkov VV. Endothelial dysfunction in small arteries and early signs of atherosclerosis in ApoE knockout rats. Sci Rep 2020; 10:15296. [PMID: 32943715 PMCID: PMC7499202 DOI: 10.1038/s41598-020-72338-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
Endothelial dysfunction is recognized as a major contributor to atherosclerosis and has been suggested to be evident far before plaque formation. Endothelial dysfunction in small resistance arteries has been suggested to initiate long before changes in conduit arteries. In this study, we address early changes in endothelial function of atherosclerosis prone rats. Male ApoE knockout (KO) rats (11- to 13-weeks-old) were subjected to either a Western or standard diet. The diet intervention continued for a period of 20–24 weeks. Endothelial function of pulmonary and mesenteric arteries was examined in vitro using an isometric myograph. We found that Western diet decreased the contribution of cyclooxygenase (COX) to control the vascular tone of both pulmonary and mesenteric arteries. These changes were associated with early stage atherosclerosis and elevated level of plasma total cholesterol, LDL and triglyceride in ApoE KO rats. Chondroid-transformed smooth muscle cells, calcifications, macrophages accumulation and foam cells were also observed in the aortic arch from ApoE KO rats fed Western diet. The ApoE KO rats are a new model to study endothelial dysfunction during the earlier stages of atherosclerosis and could help us improve preclinical drug development.
Collapse
Affiliation(s)
- Simin Berenji Ardestani
- Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark. .,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Michael Pedersen
- Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Per Bendix Jeppesen
- Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Vladimir V Matchkov
- Department of Biomedicine, MEMBRANES, Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
187
|
Zhang S, Qi J, Zhang L, Chen Y, Li Y. Effects of Cervical Rotation Angle on Atherosclerotic Internal Carotid Artery Blood Flow: A Safety Study Using an Animal Model of Internal Carotid Atherosclerosis. J Manipulative Physiol Ther 2020; 43:521-530. [PMID: 32893020 DOI: 10.1016/j.jmpt.2018.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/03/2018] [Accepted: 12/19/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of the cervical rotation angle (CRA) on atherosclerotic internal carotid artery blood flow (ICA-BF) in an animal model. METHODS Thirty healthy New Zealand white rabbits were included in the study. Twenty of the 30 rabbits were chosen randomly to be the model rabbits, and the remaining 10 were chosen to be the normal rabbits. The model rabbits' left ICAs were treated by atherosclerosis modeling. The left ICAs of the model rabbits with atherosclerotic stenosis were chosen as the experimental group, and the right ICAs of the model rabbits without atherosclerotic stenosis were chosen as the control group. The left ICAs of the normal rabbits were chosen as the blank group. Using color duplex ultrasound, ICA-BF was measured in the artery contralateral to the direction of rotation in the positions of neutral (Pre-0°), 15°, 30°, 45°, 60°, 75°, 90°, and subsequent neutral (Post-0°). RESULTS Statistically significant decreases were seen in ICA-BF after cervical spine rotation (from Pre-0° to 90°) in the control group only (P < .05). All the values of end-diastolic velocity in the experimental group were lower than those in the blank group at the same CRAs. The resistance index and pulsatility index of the experimental group were higher than those of the blank group except at 45° rotation. CONCLUSION In our animal model, in the rabbits with hyperlipidemia but without atherosclerotic stenosis, CRA had the greatest impact on ICA-BF. Furthermore, at some of the same CRAs (especially neutral, 30°, and 60°), there were statistical differences in ICA-BF among the 3 groups.
Collapse
Affiliation(s)
- Shaoqun Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ji Qi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Zhang
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Guangzhou, Guangdong, China
| | - Yili Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yikai Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
188
|
Enriquez J, Mims BMD, Trasti S, Furr KL, Grisham MB. Genomic, microbial and environmental standardization in animal experimentation limiting immunological discovery. BMC Immunol 2020; 21:50. [PMID: 32878597 PMCID: PMC7464063 DOI: 10.1186/s12865-020-00380-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Background The use of inbred mice housed under standardized environmental conditions has been critical in identifying immuno-pathological mechanisms in different infectious and inflammatory diseases as well as revealing new therapeutic targets for clinical trials. Unfortunately, only a small percentage of preclinical intervention studies using well-defined mouse models of disease have progressed to clinically-effective treatments in patients. The reasons for this lack of bench-to-bedside transition are not completely understood; however, emerging data suggest that genetic diversity and housing environment may greatly influence muring immunity and inflammation. Results Accumulating evidence suggests that certain immune responses and/or disease phenotypes observed in inbred mice may be quite different than those observed in their outbred counterparts. These differences have been thought to contribute to differing immune responses to foreign and/or auto-antigens in mice vs. humans. There is also a growing literature demonstrating that mice housed under specific pathogen free conditions possess an immature immune system that remarkably affects their ability to respond to pathogens and/or inflammation when compared with mice exposed to a more diverse spectrum of microorganisms. Furthermore, recent studies demonstrate that mice develop chronic cold stress when housed at standard animal care facility temperatures (i.e. 22–24 °C). These temperatures have been shown alter immune responses to foreign and auto-antigens when compared with mice housed at their thermo-neutral body temperature of 30–32 °C. Conclusions Exposure of genetically diverse mice to a spectrum of environmentally-relevant microorganisms at housing temperatures that approximate their thermo-neutral zone may improve the chances of identifying new and more potent therapeutics to treat infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Josue Enriquez
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, TX, 79430-6591, USA
| | - Brianyell Mc Daniel Mims
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, TX, 79430-6591, USA
| | - Scott Trasti
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, TX, 79430-6591, USA.,Laboratory Animal Research Center, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Kathryn L Furr
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, TX, 79430-6591, USA
| | - Matthew B Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, TX, 79430-6591, USA.
| |
Collapse
|
189
|
Chronic treatment with cinnamaldehyde prevents spontaneous atherosclerotic plaque development in ovariectomized LDLr-/- female mice. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
190
|
Parama D, Boruah M, Yachna K, Rana V, Banik K, Harsha C, Thakur KK, Dutta U, Arya A, Mao X, Ahn KS, Kunnumakkara AB. Diosgenin, a steroidal saponin, and its analogs: Effective therapies against different chronic diseases. Life Sci 2020; 260:118182. [PMID: 32781063 DOI: 10.1016/j.lfs.2020.118182] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic diseases are a major cause of mortality worldwide, and despite the recent development in treatment modalities, synthetic drugs have continued to show toxic side effects and development of chemoresistance, thereby limiting their application. The use of phytochemicals has gained attention as they show minimal side effects. Diosgenin is one such phytochemical which has gained importance for its efficacy against the life-threatening diseases, such as cardiovascular diseases, cancer, nervous system disorders, asthma, arthritis, diabetes, and many more. AIM To evaluate the literature available on the potential of diosgenin and its analogs in modulating different molecular targets leading to the prevention and treatment of chronic diseases. METHOD A detailed literature search has been carried out on PubMed for gathering information related to the sources, biosynthesis, physicochemical properties, biological activities, pharmacokinetics, bioavailability and toxicity of diosgenin and its analogs. KEY FINDINGS The literature search resulted in many in vitro, in vivo and clinical trials that reported the efficacy of diosgenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK, etc., which play a crucial role in the development of most of the diseases. Reports have also revealed the safety of the compound and the adaptation of nanotechnological approaches for enhancing its bioavailability and pharmacokinetic properties. SIGNIFICANCE Thus, the review summarizes the efficacy of diosgenin and its analogs for developing as a potent drug against several chronic diseases.
Collapse
Affiliation(s)
- Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Monikongkona Boruah
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | - Kumari Yachna
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Xinliang Mao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
191
|
Watson MG, Byrne HM, Macaskill C, Myerscough MR. A multiphase model of growth factor-regulated atherosclerotic cap formation. J Math Biol 2020; 81:725-767. [PMID: 32728827 DOI: 10.1007/s00285-020-01526-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 05/13/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is characterised by the growth of fatty plaques in the inner artery wall. In mature plaques, vascular smooth muscle cells (SMCs) are recruited from adjacent tissue to deposit a collagenous cap over the fatty plaque core. This cap isolates the thrombogenic plaque content from the bloodstream and prevents the clotting cascade that leads to myocardial infarction or stroke. Despite the protective role of the cap, the mechanisms that regulate cap formation and maintenance are not well understood. It remains unclear why some caps become stable, while others become vulnerable to rupture. We develop a multiphase PDE model with non-standard boundary conditions to investigate collagen cap formation by SMCs in response to diffusible growth factor signals from the endothelium. Platelet-derived growth factor stimulates SMC migration, proliferation and collagen degradation, while transforming growth factor (TGF)-[Formula: see text] stimulates SMC collagen synthesis and inhibits collagen degradation. The model SMCs respond haptotactically to gradients in the collagen phase and have reduced rates of migration and proliferation in dense collagenous tissue. The model, which is parameterised using in vivo and in vitro experimental data, reproduces several observations from plaque growth in mice. Numerical and analytical results demonstrate that a stable cap can be formed by a relatively small SMC population and emphasise the critical role of TGF-[Formula: see text] in effective cap formation. These findings provide unique insight into the mechanisms that may lead to plaque destabilisation and rupture. This work represents an important step towards the development of a comprehensive in silico plaque model.
Collapse
Affiliation(s)
- Michael G Watson
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia.
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Charlie Macaskill
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | - Mary R Myerscough
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| |
Collapse
|
192
|
Distinct Chemical Changes in Abdominal but Not in Thoracic Aorta upon Atherosclerosis Studied Using Fiber Optic Raman Spectroscopy. Int J Mol Sci 2020; 21:ijms21144838. [PMID: 32650594 PMCID: PMC7402309 DOI: 10.3390/ijms21144838] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 01/02/2023] Open
Abstract
Fiber optic Raman spectroscopy and Raman microscopy were used to investigate alterations in the aorta wall and the surrounding perivascular adipose tissue (PVAT) in the murine model of atherosclerosis (Apoe-/-/Ldlr-/- mice). Both abdominal and thoracic parts of the aorta were studied to account for the heterogenic chemical composition of aorta and its localization-dependent response in progression of atherosclerosis. The average Raman spectra obtained for both parts of aorta cross sections revealed that the chemical composition of intima-media layers along aorta remains relatively homogeneous while the lipid content in the adventitia layer markedly increases with decreasing distance to PVAT. Moreover, our results demonstrate that the increase of the lipid to protein ratio in the aorta wall correlates directly with the increased unsaturation level of lipids in PVAT and these changes occur only in the abdominal, but not in thoracic, aorta. In summary, distinct pathophysiological response in the aortic vascular wall could be uncovered by fiber optic Raman spectroscopy based on simple parameters detecting chemical contents of lipids in PVAT.
Collapse
|
193
|
Grover SP, Mackman N. Tissue factor in atherosclerosis and atherothrombosis. Atherosclerosis 2020; 307:80-86. [PMID: 32674807 DOI: 10.1016/j.atherosclerosis.2020.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease that is characterized by the formation of lipid rich plaques in the wall of medium to large sized arteries. Atherothrombosis represents the terminal manifestation of this pathology in which atherosclerotic plaque rupture or erosion triggers the formation of occlusive thrombi. Occlusion of arteries and resultant tissue ischemia in the heart and brain causes myocardial infarction and stroke, respectively. Tissue factor (TF) is the receptor for the coagulation protease factor VIIa, and formation of the TF:factor VIIa complex triggers blood coagulation. TF is expressed at high levels in atherosclerotic plaques by both macrophage-derived foam cells and vascular smooth muscle cells, as well as extracellular vesicles derived from these cells. Importantly, TF mediated activation of coagulation is critically important for arterial thrombosis in the setting of atherosclerotic disease. The major endogenous inhibitor of the TF:factor VIIa complex is TF pathway inhibitor 1 (TFPI-1), which is also present in atherosclerotic plaques. In mouse models, increased or decreased expression of TFPI-1 has been found to alter atherosclerosis. This review highlights the contribution of TF-dependent activation of coagulation to atherthrombotic disease.
Collapse
Affiliation(s)
- Steven P Grover
- UNC Blood Research Center, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
194
|
Lee J, Choi JH. Deciphering Macrophage Phenotypes upon Lipid Uptake and Atherosclerosis. Immune Netw 2020; 20:e22. [PMID: 32655970 PMCID: PMC7327152 DOI: 10.4110/in.2020.20.e22] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 02/08/2023] Open
Abstract
In the progression of atherosclerosis, macrophages are the key immune cells for foam cell formation. During hyperlipidemic condition, phagocytic cells such as monocytes and macrophages uptake oxidized low-density lipoproteins (oxLDLs) accumulated in subintimal space, and lipid droplets are accumulated in their cytosols. In this review, we discussed the characteristics and phenotypic changes of macrophages in atherosclerosis and the effect of cytosolic lipid accumulation on macrophage phenotype. Due to macrophage plasticity, the inflammatory phenotypes triggered by oxLDL can be re-programmed by cytosolic lipid accumulation, showing downregulation of NF-κB activation followed by activation of anti-inflammatory genes, leading to tissue repair and homeostasis. We also discuss about various in vivo and in vitro models for atherosclerosis research and next generation sequencing technologies for foam cell gene expression profiling. Analysis of the phenotypic changes of macrophages during the progression of atherosclerosis with adequate approach may lead to exact understandings of the cellular mechanisms and hint therapeutic targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jihye Lee
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
195
|
Zhao Y, Qu H, Wang Y, Xiao W, Zhang Y, Shi D. Small rodent models of atherosclerosis. Biomed Pharmacother 2020; 129:110426. [PMID: 32574973 DOI: 10.1016/j.biopha.2020.110426] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022] Open
Abstract
The ease of breeding, low cost of maintenance, and relatively short period for developing atherosclerosis make rodents ideal for atherosclerosis research. However, none of the current models accurately model human lipoprotein profile or atherosclerosis progression since each has its advantages and disadvantages. The advent of transgenic technologies much supports animal models' establishment. Notably, two classic transgenic mouse models, apoE-/- and Ldlr-/-, constitute the primary platforms for studying underlying mechanisms and development of pharmaceutical approaches. However, there exist crucial differences between mice and humans, such as the unhumanized lipoprotein profile, and the different plaque progression and characteristics. Among rodents, hamsters and guinea pigs might be the more realistic models in atherosclerosis research based on the similarities in lipoprotein metabolism to humans. Studies involving rat models, a rodent with natural resistance to atherosclerosis, have revealed evidence of atherosclerotic plaques under dietary induction and genetic manipulation by novel technologies, notably CRISPR-Cas9. Ldlr-/- hamster models were established in recent years with severe hyperlipidemia and atherosclerotic lesion formation, which could offer an alternative to classic transgenic mouse models. In this review, we provide an overview of classic and innovative small rodent models in atherosclerosis researches, including mice, rats, hamsters, and guinea pigs, focusing on their lipoprotein metabolism and histopathological changes.
Collapse
Affiliation(s)
- Yihan Zhao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hua Qu
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Health Science Center, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Wenli Xiao
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Dazhuo Shi
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
196
|
Haimovitz-Friedman A, Mizrachi A, Jaimes EA. Manipulating Oxidative Stress Following Ionizing Radiation. JOURNAL OF CELLULAR SIGNALING 2020; 1:8-13. [PMID: 32550605 PMCID: PMC7299208 DOI: 10.33696/signaling.1.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Aviram Mizrachi
- Department of Otorhinolaryngology Head and Neck Surgery and Center for Translational Research in Head and Neck Cancer, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Edgar A Jaimes
- Department of Medicine, Renal Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
197
|
Hasegawa Y, Cheng C, Hayashi K, Takemoto Y, Kim-Mitsuyama S. Anti-apoptotic effects of BDNF-TrkB signaling in the treatment of hemorrhagic stroke. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2020.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
198
|
Assessment of tissue perfusion and vascular function in mice by scanning laser Doppler perfusion imaging. Biochem Pharmacol 2020; 176:113893. [DOI: 10.1016/j.bcp.2020.113893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/27/2020] [Indexed: 01/20/2023]
|
199
|
Perazza LR, Mitchell PL, Jensen BAH, Daniel N, Boyer M, Varin TV, Bouchareb R, Nachbar RT, Bouchard M, Blais M, Gagné A, Joubert P, Sweeney G, Roy D, Arsenault BJ, Mathieu P, Marette A. Dietary sucrose induces metabolic inflammation and atherosclerotic cardiovascular diseases more than dietary fat in LDLr -/-ApoB 100/100 mice. Atherosclerosis 2020; 304:9-21. [PMID: 32563005 DOI: 10.1016/j.atherosclerosis.2020.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/12/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Poor dietary habits contribute to the obesity pandemic and related cardiovascular diseases but the respective impact of high saturated fat versus added sugar consumption remains debated. Herein, we aimed to disentangle the individual role of dietary fat versus sugar in cardiometabolic disease progression. METHODS We fed pro-atherogenic LDLr-/-ApoB100/100 mice either a low-fat/high-sucrose (LFHS) or a high-fat/low-sucrose (HFLS) diet for 24 weeks. Weekly body weight gain was registered. 16S rRNA gene-based gut microbial analysis was performed to investigate gut microbial modulations. Intraperitoneal insulin (ipITT) and oral glucose tolerance test (oGTT) were conducted to assess glucose homeostasis and insulin sensitivity. Cytokines were assessed in fasted plasma, epididymal white adipose tissue and liver lysates. Heart function was evaluated by echocardiography. Aortic atheroma lesions were quantified according to the en face technique. RESULTS HFLS feeding increased obesity, insulin resistance and dyslipidemia compared to LFHS feeding. Conversely, high sucrose consumption decreased gut microbial diversity while augmenting inflammation and the adaptative immune defense against metabolic endotoxemia and reduced macrophage cholesterol efflux capacity. This led to more severe cardiovascular complications as revealed by remarkably high level of atherosclerotic lesions and the early development of cardiac dysfunction in LFHS vs HFLS fed mice. CONCLUSIONS We uncoupled obesity-associated insulin resistance from cardiovascular diseases and provided novel evidence that dietary sucrose, not fat, is the main driver of metabolic inflammation accelerating severe atherosclerosis in hyperlipidemic mice.
Collapse
Affiliation(s)
- Laís R Perazza
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada; Institute of Nutraceuticals and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Patricia L Mitchell
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada; Institute of Nutraceuticals and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Benjamin A H Jensen
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada; Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Human Genomics and Metagenomics in Metabolism, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Noëmie Daniel
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada; Institute of Nutraceuticals and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Marjorie Boyer
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Thibault V Varin
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada; Institute of Nutraceuticals and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Rihab Bouchareb
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Renato T Nachbar
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Michaël Bouchard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food, Canada, Sherbrooke, Québec, Canada
| | - Mylène Blais
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food, Canada, Sherbrooke, Québec, Canada
| | - Andréanne Gagné
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Philippe Joubert
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Denis Roy
- Institute of Nutraceuticals and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Benoit J Arsenault
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Patrick Mathieu
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - André Marette
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada; Institute of Nutraceuticals and Functional Foods, Laval University, Quebec City, Quebec, Canada.
| |
Collapse
|
200
|
Poznyak AV, Silaeva YY, Orekhov AN, Deykin AV. Animal models of human atherosclerosis: current progress. ACTA ACUST UNITED AC 2020; 53:e9557. [PMID: 32428130 PMCID: PMC7266502 DOI: 10.1590/1414-431x20209557] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/20/2020] [Indexed: 12/24/2022]
Abstract
Atherosclerosis retains the leading position among the causes of global morbidity and mortality worldwide, especially in the industrialized countries. Despite the continuing efforts to investigate disease pathogenesis and find the potential points of effective therapeutic intervention, our understanding of atherosclerosis mechanisms remains limited. This is partly due to the multifactorial nature of the disease pathogenesis, when several factors so different as altered lipid metabolism, increased oxidative stress, and chronic inflammation act together leading to the formation and progression of atherosclerotic plaques. Adequate animal models are currently indispensable for studying these processes and searching for novel therapies. Animal models based on rodents, such as mice and rats, and rabbits represent important tools for studying atherosclerosis. Currently, genetically modified animals allow for previously unknown possibilities in modelling the disease and its most relevant aspects. In this review, we describe the recent progress made in creating such models and discuss the most important findings obtained with them to date.
Collapse
Affiliation(s)
- A V Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Y Y Silaeva
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - A V Deykin
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|