151
|
Vinckier NK, Patel NA, Geusz RJ, Wang A, Wang J, Matta I, Harrington AR, Wortham M, Wetton N, Wang J, Jhala US, Rosenfeld MG, Benner CW, Shih HP, Sander M. LSD1-mediated enhancer silencing attenuates retinoic acid signalling during pancreatic endocrine cell development. Nat Commun 2020; 11:2082. [PMID: 32350257 PMCID: PMC7190832 DOI: 10.1038/s41467-020-16017-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/07/2020] [Indexed: 01/22/2023] Open
Abstract
Developmental progression depends on temporally defined changes in gene expression mediated by transient exposure of lineage intermediates to signals in the progenitor niche. To determine whether cell-intrinsic epigenetic mechanisms contribute to signal-induced transcriptional responses, here we manipulate the signalling environment and activity of the histone demethylase LSD1 during differentiation of hESC-gut tube intermediates into pancreatic endocrine cells. We identify a transient requirement for LSD1 in endocrine cell differentiation spanning a short time-window early in pancreas development, a phenotype we reproduced in mice. Examination of enhancer and transcriptome landscapes revealed that LSD1 silences transiently active retinoic acid (RA)-induced enhancers and their target genes. Furthermore, prolonged RA exposure phenocopies LSD1 inhibition, suggesting that LSD1 regulates endocrine cell differentiation by limiting the duration of RA signalling. Our findings identify LSD1-mediated enhancer silencing as a cell-intrinsic epigenetic feedback mechanism by which the duration of the transcriptional response to a developmental signal is limited.
Collapse
Affiliation(s)
- Nicholas K Vinckier
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nisha A Patel
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ryan J Geusz
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Allen Wang
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jinzhao Wang
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ileana Matta
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Austin R Harrington
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Matthew Wortham
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nichole Wetton
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jianxun Wang
- Howard Hughes Medical Institute and Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ulupi S Jhala
- Department of Pediatrics and Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute and Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Christopher W Benner
- Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hung-Ping Shih
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
152
|
Yu XX, Xu CR. Understanding generation and regeneration of pancreatic β cells from a single-cell perspective. Development 2020; 147:147/7/dev179051. [PMID: 32280064 DOI: 10.1242/dev.179051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Understanding the mechanisms that underlie the generation and regeneration of β cells is crucial for developing treatments for diabetes. However, traditional research methods, which are based on populations of cells, have limitations for defining the precise processes of β-cell differentiation and trans-differentiation, and the associated regulatory mechanisms. The recent development of single-cell technologies has enabled re-examination of these processes at a single-cell resolution to uncover intermediate cell states, cellular heterogeneity and molecular trajectories of cell fate specification. Here, we review recent advances in understanding β-cell generation and regeneration, in vivo and in vitro, from single-cell technologies, which could provide insights for optimization of diabetes therapy strategies.
Collapse
Affiliation(s)
- Xin-Xin Yu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
153
|
Baumann D, Wong A, Akhaphong B, Jo S, Pritchard S, Mohan R, Chung G, Zhang Y, Alejandro EU. Role of nutrient-driven O-GlcNAc-post-translational modification in pancreatic exocrine and endocrine islet development. Development 2020; 147:dev186643. [PMID: 32165492 PMCID: PMC7174839 DOI: 10.1242/dev.186643] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/25/2020] [Indexed: 12/16/2022]
Abstract
Although the developing pancreas is exquisitely sensitive to nutrient supply in utero, it is not entirely clear how nutrient-driven post-translational modification of proteins impacts the pancreas during development. We hypothesized that the nutrient-sensing enzyme O-GlcNAc transferase (Ogt), which catalyzes an O-GlcNAc-modification onto key target proteins, integrates nutrient-signaling networks to regulate cell survival and development. In this study, we investigated the heretofore unknown role of Ogt in exocrine and endocrine islet development. By genetic manipulation in vivo and by using morphometric and molecular analyses, such as immunofluorescence imaging and single cell RNA sequencing, we show the first evidence that Ogt regulates pancreas development. Genetic deletion of Ogt in the pancreatic epithelium (OgtKOPanc) causes pancreatic hypoplasia, in part by increased apoptosis and reduced levels of of Pdx1 protein. Transcriptomic analysis of single cell and bulk RNA sequencing uncovered cell-type heterogeneity and predicted upstream regulator proteins that mediate cell survival, including Pdx1, Ptf1a and p53, which are putative Ogt targets. In conclusion, these findings underscore the requirement of O-GlcNAcylation during pancreas development and show that Ogt is essential for pancreatic progenitor survival, providing a novel mechanistic link between nutrients and pancreas development.
Collapse
Affiliation(s)
- Daniel Baumann
- Department of Integrative Biology and Physiology, University of Minnesota Medical School. Minneapolis, MN 55455, USA
| | - Alicia Wong
- Department of Integrative Biology and Physiology, University of Minnesota Medical School. Minneapolis, MN 55455, USA
| | - Brian Akhaphong
- Department of Integrative Biology and Physiology, University of Minnesota Medical School. Minneapolis, MN 55455, USA
| | - Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School. Minneapolis, MN 55455, USA
| | - Samantha Pritchard
- Department of Integrative Biology and Physiology, University of Minnesota Medical School. Minneapolis, MN 55455, USA
| | - Ramkumar Mohan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School. Minneapolis, MN 55455, USA
| | - Grace Chung
- Department of Integrative Biology and Physiology, University of Minnesota Medical School. Minneapolis, MN 55455, USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School. Minneapolis, MN 55455, USA
| |
Collapse
|
154
|
Hogrebe NJ, Augsornworawat P, Maxwell KG, Velazco-Cruz L, Millman JR. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat Biotechnol 2020; 38:460-470. [PMID: 32094658 PMCID: PMC7274216 DOI: 10.1038/s41587-020-0430-6] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/09/2020] [Indexed: 12/31/2022]
Abstract
Generation of pancreatic β cells from human pluripotent stem cells (hPSCs) holds promise as a cell replacement therapy for diabetes. In this study, we establish a link between the state of the actin cytoskeleton and the expression of pancreatic transcription factors that drive pancreatic lineage specification. Bulk and single-cell RNA sequencing demonstrated that different degrees of actin polymerization biased cells toward various endodermal lineages and that conditions favoring a polymerized cytoskeleton strongly inhibited neurogenin 3-induced endocrine differentiation. Using latrunculin A to depolymerize the cytoskeleton during endocrine induction, we developed a two-dimensional differentiation protocol for generating human pluripotent stem-cell-derived β (SC-β) cells with improved in vitro and in vivo function. SC-β cells differentiated from four hPSC lines exhibited first- and second-phase dynamic glucose-stimulated insulin secretion. Transplantation of islet-sized aggregates of these cells rapidly reversed severe preexisting diabetes in mice at a rate close to that of human islets and maintained normoglycemia for at least 9 months.
Collapse
Affiliation(s)
- Nathaniel J Hogrebe
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Punn Augsornworawat
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Kristina G Maxwell
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Leonardo Velazco-Cruz
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
155
|
Wang Y, Ni Q, Sun J, Xu M, Xie J, Zhang J, Fang Y, Ning G, Wang Q. Paraneoplastic β Cell Dedifferentiation in Nondiabetic Patients with Pancreatic Cancer. J Clin Endocrinol Metab 2020; 105:5645541. [PMID: 31781763 DOI: 10.1210/clinem/dgz224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
CONTEXT Beta-cell dedifferentiation was recently proposed as a mechanism of β-cell dysfunction, but whether it can be a trigger of β-cell failure preceding hyperglycemia in humans is uncertain. Pancreatic cancer can cause new-onset diabetes, yet the underlying mechanism is unknown. OBJECTIVE To investigate whether β-cell dedifferentiation is present in nondiabetic pancreatic ductal adenocarcinoma (PDAC) patients, we examined pancreatic islets from 15 nondiabetic patients with benign tumors (control) and 15 nondiabetic PDAC patients. DESIGN We calculated the number of hormone-negative endocrine cells and evaluated important markers of β-cell dedifferentiation and function in the paraneoplastic islets. We assessed tumor-related inflammatory changes under the pancreatic cancer microenvironment and their influence on β-cell identity. RESULTS We found nearly 10% of nonhormone expressing endocrine cells in nondiabetic PDAC subjects. The PDAC islets were dysfunctional, evidenced by low expression of Glucose transporter 2 (GLUT2) and Urocortin3 (UCN3), and concomitant upregulation of Aldehyde Dehydrogenase 1 Family Member A3 (ALDH1A3) expression and proinsulin accumulation. Pancreatic cancer caused paraneoplastic inflammation with enhanced tissue fibrosis, monocytes/macrophages infiltration, and elevated inflammatory cytokines. Moreover, we detected β-cell dedifferentiation and defects in GSIS in islets exposed to PANC-1 (a cell line established from a pancreatic carcinoma of ductal origin from a 56-year-old Caucasian male)-conditioned medium. In a larger cohort, we showed high prevalence of new-onset diabetes in PDAC subjects, and fasting blood glucose (FBG) was found to be an additional useful parameter for early diagnosis of PDAC. CONCLUSIONS Our data provide a rationale for β-cell dedifferentiation in the pathogenesis of pancreatic cancer-associated diabetes. We propose that β-cell dedifferentiation can be a trigger for β-cell failure in humans, before hyperglycemia occurs.
Collapse
Affiliation(s)
- Yichen Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the PR China, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qicheng Ni
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the PR China, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Sun
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the PR China, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the PR China, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Fang
- Research Institute of Pancreatic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the PR China, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the PR China, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
156
|
Sasaki B, Uemoto S, Kawaguchi Y. Transient FOXO1 inhibition in pancreatic endoderm promotes the generation of NGN3+ endocrine precursors from human iPSCs. Stem Cell Res 2020; 44:101754. [PMID: 32179491 DOI: 10.1016/j.scr.2020.101754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
In the multi-step differentiation protocol used to generate pancreatic endocrine cells from human pluripotent stem cells, the induction of NGN3+ endocrine precursors from the PDX1+/NKX6.1+ pancreatic endoderm is crucial for efficient endocrine cell production. Here, we demonstrate that transient, not prolonged FOXO1 inhibition results in enhanced NGN3+ endocrine precursors and hormone-producing cell production. FOXO1 inhibition does not directly induce NGN3 expression but stimulates PDX1+/NKX6.1+ cell proliferation. NOTCH activity, whose suppression is important for Ngn3 expression, is not suppressed but Wnt signaling is stimulated by FOXO1 inhibition. Reversely, Wnt inhibition suppresses the effects of FOXO1 inhibitor. These findings indicate that FOXO1 and Wnt are involved in regulating the proliferation of PDX1+/NKX6.1+ pancreatic endoderm that gives rise to NGN3+ endocrine precursors.
Collapse
Affiliation(s)
- Ben Sasaki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinji Uemoto
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshiya Kawaguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
157
|
Seymour PA, Collin CA, Egeskov-Madsen ALR, Jørgensen MC, Shimojo H, Imayoshi I, de Lichtenberg KH, Kopan R, Kageyama R, Serup P. Jag1 Modulates an Oscillatory Dll1-Notch-Hes1 Signaling Module to Coordinate Growth and Fate of Pancreatic Progenitors. Dev Cell 2020; 52:731-747.e8. [PMID: 32059775 DOI: 10.1016/j.devcel.2020.01.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/25/2019] [Accepted: 01/14/2020] [Indexed: 12/30/2022]
Abstract
Notch signaling controls proliferation of multipotent pancreatic progenitor cells (MPCs) and their segregation into bipotent progenitors (BPs) and unipotent pro-acinar cells (PACs). Here, we showed that fast ultradian oscillations of the ligand Dll1 and the transcriptional effector Hes1 were crucial for MPC expansion, and changes in Hes1 oscillation parameters were associated with selective adoption of BP or PAC fate. Conversely, Jag1, a uniformly expressed ligand, restrained MPC growth. However, when its expression later segregated to PACs, Jag1 became critical for the specification of all but the most proximal BPs, and BPs were entirely lost in Jag1; Dll1 double mutants. Anatomically, ductal morphogenesis and organ architecture are minimally perturbed in Jag1 mutants until later stages, when ductal remodeling fails, and signs of acinar-to-ductal metaplasia appear. Our study thus uncovers that oscillating Notch activity in the developing pancreas, modulated by Jag1, is required to coordinate MPC growth and fate.
Collapse
Affiliation(s)
- Philip Allan Seymour
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Caitlin Alexis Collin
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Anuska la Rosa Egeskov-Madsen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Mette Christine Jørgensen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Hiromi Shimojo
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Itaru Imayoshi
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Palle Serup
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark.
| |
Collapse
|
158
|
Xu Y, Chen J, Zhou H, Wang J, Song J, Xie J, Guo Q, Wang C, Huang Q. Effects and mechanism of stem cells from human exfoliated deciduous teeth combined with hyperbaric oxygen therapy in type 2 diabetic rats. Clinics (Sao Paulo) 2020; 75:e1656. [PMID: 32520222 PMCID: PMC7247751 DOI: 10.6061/clinics/2020/e1656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/10/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Mesenchymal stem cells (MSCs) are potentially ideal for type 2 diabetes treatment, owing to their multidirectional differentiation ability and immunomodulatory properties. Here we investigated whether the stem cells from human exfoliated deciduous teeth (SHED) in combination with hyperbaric oxygen (HBO) could treat type 2 diabetic rats, and explored the underlying mechanism. METHODS SD rats were used to generate a type 2 diabetes model, which received stem cell therapy, HBO therapy, or both together. Before and after treatment, body weight, blood glucose, and serum insulin, blood lipid, pro-inflammatory cytokines (tumor necrosis factor-alpha and interleukin-6), and urinary proteins were measured and compared. After 6 weeks, rats were sacrificed and their organs were subjected to hematoxylin and eosin staining and immunofluorescence staining for insulin and glucagon; apoptosis and proliferation were analyzed in islet cells. Structural changes in islets were observed under an electron microscope. Expression levels of Pdx1, Ngn3, and Pax4 mRNAs in the pancreas were assessed by real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS In comparison with diabetic mice, those treated with the combination or SHE therapy showed decreased blood glucose, insulin resistance, serum lipids, and pro-inflammatory cytokines and increased body weight and serum insulin. The morphology and structure of pancreatic islets improved, as evident from an increase in insulin-positive cells and a decrease in glucagon-positive cells. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining of islet cells revealed the decreased apoptosis index, while Ki67 and proliferating cell nuclear antigen staining showed increased proliferation index. Pancreatic expression of Pdx1, Ngn3, and Pax4 was upregulated. CONCLUSION SHED combined with HBO therapy was effective for treating type 2 diabetic rats. The underlying mechanism may involve SHED-mediated increase in the proliferation and trans-differentiation of islet β-cells and decrease in pro-inflammatory cytokines and apoptosis of islets.
Collapse
Affiliation(s)
- Yifeng Xu
- Department of Endocrinology, Changhai Hospital, the First Affiliated Hospital of the Naval Medical University, Shanghai 200433, China
- Department of Endocrinology, Air Force Hospital of Northern Theater Command of PLA, Shenyang 110042, China
| | - Jin Chen
- Department of Endocrinology, Changhai Hospital, the First Affiliated Hospital of the Naval Medical University, Shanghai 200433, China
| | - Hui Zhou
- Department of Out-patient, Changning retired cadre retreat of Shanghai garrison command, Shanghai 200050, China
| | - Jing Wang
- Department of Endocrinology, Changhai Hospital, the First Affiliated Hospital of the Naval Medical University, Shanghai 200433, China
- Department of Internal Medcine, Hotan Country People’s Hospital of Xinjiang, Hotan Country 848000, China
| | - Jingyun Song
- Department of Endocrinology, Changhai Hospital, the First Affiliated Hospital of the Naval Medical University, Shanghai 200433, China
| | - Junhao Xie
- Department of Endocrinology, Changhai Hospital, the First Affiliated Hospital of the Naval Medical University, Shanghai 200433, China
| | - Qingjun Guo
- Department of Endocrinology, Changhai Hospital, the First Affiliated Hospital of the Naval Medical University, Shanghai 200433, China
| | - Chaoqun Wang
- Department of Endocrinology, Changhai Hospital, the First Affiliated Hospital of the Naval Medical University, Shanghai 200433, China
| | - Qin Huang
- Department of Endocrinology, Changhai Hospital, the First Affiliated Hospital of the Naval Medical University, Shanghai 200433, China
- *Corresponding author. E-mail:
| |
Collapse
|
159
|
Iacomino G, Lauria F, Venezia A, Iannaccone N, Russo P, Siani A. microRNAs in Obesity and Metabolic Diseases. OBESITY AND DIABETES 2020:71-95. [DOI: 10.1007/978-3-030-53370-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
160
|
Dayem AA, Lee SB, Kim K, Lim KM, Jeon TI, Cho SG. Recent advances in organoid culture for insulin production and diabetes therapy: methods and challenges. BMB Rep 2019. [PMID: 30940326 PMCID: PMC6549913 DOI: 10.5483/bmbrep.2019.52.5.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Breakthroughs in stem cell technology have contributed to disease modeling and drug screening via organoid technology. Organoid are defined as three-dimensional cellular aggregations derived from adult tissues or stem cells. They recapitulate the intricate pattern and functionality of the original tissue. Insulin is secreted mainly by the pancreatic β cells. Large-scale production of insulin-secreting β cells is crucial for diabetes therapy. Here, we provide a brief overview of organoids and focus on recent advances in protocols for the generation of pancreatic islet organoids from pancreatic tissue or pluripotent stem cells for insulin secretion. The feasibility and limitations of organoid cultures derived from stem cells for insulin production will be described. As the pancreas and gut share the same embryological origin and produce insulin, we will also discuss the possible application of gut organoids for diabetes therapy. Better understanding of the challenges associated with the current protocols for organoid culture facilitates development of scalable organoid cultures for applications in biomedicine.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Soo Bin Lee
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Kyung Min Lim
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Tak-Il Jeon
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
161
|
Sufu- and Spop-mediated downregulation of Hedgehog signaling promotes beta cell differentiation through organ-specific niche signals. Nat Commun 2019; 10:4647. [PMID: 31604927 PMCID: PMC6789033 DOI: 10.1038/s41467-019-12624-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 09/20/2019] [Indexed: 12/22/2022] Open
Abstract
Human embryonic stem cell-derived beta cells offer a promising cell-based therapy for diabetes. However, efficient stem cell to beta cell differentiation has proven difficult, possibly due to the lack of cross-talk with the appropriate mesenchymal niche. To define organ-specific niche signals, we isolated pancreatic and gastrointestinal stromal cells, and analyzed their gene expression during development. Our genetic studies reveal the importance of tightly regulated Hedgehog signaling in the pancreatic mesenchyme: inactivation of mesenchymal signaling leads to annular pancreas, whereas stroma-specific activation of signaling via loss of Hedgehog regulators, Sufu and Spop, impairs pancreatic growth and beta cell genesis. Genetic rescue and transcriptome analyses show that these Sufu and Spop knockout defects occur through Gli2-mediated activation of gastrointestinal stromal signals such as Wnt ligands. Importantly, inhibition of Wnt signaling in organoid and human stem cell cultures significantly promotes insulin-producing cell generation, altogether revealing the requirement for organ-specific regulation of stromal niche signals.
Collapse
|
162
|
Villamayor L, Cano DA, Rojas A. GATA factors in pancreas development and disease. IUBMB Life 2019; 72:80-88. [PMID: 31580534 DOI: 10.1002/iub.2170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022]
Abstract
There is an urgent need for the development of novel therapeutics options for diabetic patients given the high prevalence of diabetes worldwide and that, currently, there is no cure for this disease. The transplantation of pancreatic islets that contain insulin-producing cells is a promising therapeutic alternative, particularly for type 1 diabetes. However, the shortage of organ donors constitutes a major limitation for this approach; thus, developing alternative sources of insulin-producing cells is of critical importance. In the last decade, our knowledge of the molecular mechanisms controlling embryonic pancreas development has significantly advanced. More importantly, this knowledge has provided the basis for the in vitro generation of insulin-producing cells from stem cells. Recent studies have revealed that GATA transcription factors are involved in various stages of pancreas formation and in the adult ß cell function. Here, we review the fundamental role of GATA transcription factors in pancreas morphogenesis and their association with congenital diseases associated with pancreas.
Collapse
Affiliation(s)
- Laura Villamayor
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad Pablo de Olavide, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - David A Cano
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Anabel Rojas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad Pablo de Olavide, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
163
|
Lee K, Kim H, Lee J, Oh CM, Song H, Kim H, Koo SH, Lee J, Lim A, Kim H. Essential Role of Protein Arginine Methyltransferase 1 in Pancreas Development by Regulating Protein Stability of Neurogenin 3. Diabetes Metab J 2019; 43:649-658. [PMID: 30968621 PMCID: PMC6834834 DOI: 10.4093/dmj.2018.0232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/24/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Protein arginine methyltransferase 1 (PRMT1) is a major enzyme responsible for the formation of methylarginine in mammalian cells. Recent studies have revealed that PRMT1 plays important roles in the development of various tissues. However, its role in pancreas development has not yet been elucidated. METHODS Pancreatic progenitor cell-specific Prmt1 knock-out (Prmt1 PKO) mice were generated and characterized for their metabolic and histological phenotypes and their levels of Neurog3 gene expression and neurogenin 3 (NGN3) protein expression. Protein degradation assays were performed in mPAC cells. RESULTS Prmt1 PKO mice showed growth retardation and a severely diabetic phenotype. The pancreatic size and β-cell mass were significantly reduced in Prmt1 PKO mice. Proliferation of progenitor cells during the secondary transition was decreased and endocrine cell differentiation was impaired. These defects in pancreas development could be attributed to the sustained expression of NGN3 in progenitor cells. Protein degradation assays in mPAC cells revealed that PRMT1 was required for the rapid degradation of NGN3. CONCLUSION PRMT1 critically contributes to pancreas development by destabilizing the NGN3 protein.
Collapse
Affiliation(s)
- Kanghoon Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hyunki Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Joonyub Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Chang Myung Oh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Heein Song
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hyeongseok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Seung Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Junguee Lee
- Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Korea
| | - Ajin Lim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
| |
Collapse
|
164
|
Krentz NAJ, Lee MYY, Xu EE, Sproul SLJ, Maslova A, Sasaki S, Lynn FC. Single-Cell Transcriptome Profiling of Mouse and hESC-Derived Pancreatic Progenitors. Stem Cell Reports 2019; 11:1551-1564. [PMID: 30540962 PMCID: PMC6294286 DOI: 10.1016/j.stemcr.2018.11.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 01/06/2023] Open
Abstract
Human embryonic stem cells (hESCs) are a potential unlimited source of insulin-producing β cells for diabetes treatment. A greater understanding of how β cells form during embryonic development will improve current hESC differentiation protocols. All pancreatic endocrine cells, including β cells, are derived from Neurog3-expressing endocrine progenitors. This study characterizes the single-cell transcriptomes of 6,905 mouse embryonic day (E) 15.5 and 6,626 E18.5 pancreatic cells isolated from Neurog3-Cre; Rosa26mT/mG embryos, allowing for enrichment of endocrine progenitors (yellow; tdTomato + EGFP) and endocrine cells (green; EGFP). Using a NEUROG3-2A-eGFP CyT49 hESC reporter line (N5-5), 4,462 hESC-derived GFP+ cells were sequenced. Differential expression analysis revealed enrichment of markers that are consistent with progenitor, endocrine, or previously undescribed cell-state populations. This study characterizes the single-cell transcriptomes of mouse and hESC-derived endocrine progenitors and serves as a resource (https://lynnlab.shinyapps.io/embryonic_pancreas) for improving the formation of functional β-like cells from hESCs. Single-cell transcriptome of embryonic mouse pancreas and hESC-derived cells Identification of novel cell types during mouse pancreas development Pseudotime analysis reveals developmental trajectories of endocrine cell lineage hESC-derived endocrine cells resemble immature β cells
Collapse
Affiliation(s)
- Nicole A J Krentz
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada.
| | - Michelle Y Y Lee
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Eric E Xu
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada
| | - Shannon L J Sproul
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada
| | - Alexandra Maslova
- Graduate Program in Bioinformatics, University of British Columbia, 100-570 7(th) Avenue West, Vancouver, BC V5Z 4S6, Canada
| | - Shugo Sasaki
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada.
| |
Collapse
|
165
|
Allosteric modulation of β-cell M 3 muscarinic acetylcholine receptors greatly improves glucose homeostasis in lean and obese mice. Proc Natl Acad Sci U S A 2019; 116:18684-18690. [PMID: 31451647 DOI: 10.1073/pnas.1904943116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Given the global epidemic in type 2 diabetes, novel antidiabetic drugs with increased efficacy and reduced side effects are urgently needed. Previous work has shown that M3 muscarinic acetylcholine (ACh) receptors (M3Rs) expressed by pancreatic β cells play key roles in stimulating insulin secretion and maintaining physiological blood glucose levels. In the present study, we tested the hypothesis that a positive allosteric modulator (PAM) of M3R function can improve glucose homeostasis in mice by promoting insulin release. One major advantage of this approach is that allosteric agents respect the ACh-dependent spatiotemporal control of M3R activity. In this study, we first demonstrated that VU0119498, a drug known to act as a PAM at M3Rs, significantly augmented ACh-induced insulin release from cultured β cells and mouse and human pancreatic islets. This stimulatory effect was absent in islets prepared from mice lacking M3Rs, indicative of the involvement of M3Rs. VU0119498 treatment of wild-type mice caused a significant increase in plasma insulin levels, accompanied by a striking improvement in glucose tolerance. These effects were mediated by β-cell M3Rs, since they were absent in mutant mice selectively lacking M3Rs in β cells. Moreover, acute VU0119498 treatment of obese, glucose-intolerant mice triggered enhanced insulin release and restored normal glucose tolerance. Interestingly, doses of VU0119498 that led to pronounced improvements in glucose homeostasis did not cause any significant side effects due to activation of M3Rs expressed by other peripheral cell types. Taken together, the data from this proof-of-concept study strongly suggest that M3R PAMs may become clinically useful as novel antidiabetic agents.
Collapse
|
166
|
Adolph TE, Mayr L, Grabherr F, Schwärzler J, Tilg H. Pancreas–Microbiota Cross Talk in Health and Disease. Annu Rev Nutr 2019; 39:249-266. [DOI: 10.1146/annurev-nutr-082018-124306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pancreas controls metabolism through endocrine and exocrine functions. Pancreatic diseases comprise a spectrum of mild to life-threatening conditions, including acute and chronic pancreatitis, diabetes, and pancreatic cancer, which affect endocrine and exocrine pancreatic function and impose a substantial disease burden on individuals. Increasing experimental evidence demonstrates that the intestinal microbiota has an important impact on pancreatic function and diseases. This influence may be conferred by bacterial metabolites, such as short-chain fatty acids, or the modulation of immune responses. In turn, pancreatic factors, such as the excretion of antimicrobials, might have a substantial impact on the composition and functional properties of the gut microbiota. Here, we summarize experimental and clinical approaches used to untie the intricate pancreas–microbiota cross talk. Future advances will allow clinicians to manipulate the intestinal microbiota and guide patient management in pancreatic diseases.
Collapse
Affiliation(s)
- Timon E. Adolph
- Department of Internal Medicine I (Gastroenterology, Hepatology, Endocrinology and Metabolism), Medical University Innsbruck, Innsbruck 6020, Austria
| | - Lisa Mayr
- Department of Internal Medicine I (Gastroenterology, Hepatology, Endocrinology and Metabolism), Medical University Innsbruck, Innsbruck 6020, Austria
| | - Felix Grabherr
- Department of Internal Medicine I (Gastroenterology, Hepatology, Endocrinology and Metabolism), Medical University Innsbruck, Innsbruck 6020, Austria
| | - Julian Schwärzler
- Department of Internal Medicine I (Gastroenterology, Hepatology, Endocrinology and Metabolism), Medical University Innsbruck, Innsbruck 6020, Austria
| | - Herbert Tilg
- Department of Internal Medicine I (Gastroenterology, Hepatology, Endocrinology and Metabolism), Medical University Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
167
|
EMT and Stemness-Key Players in Pancreatic Cancer Stem Cells. Cancers (Basel) 2019; 11:cancers11081136. [PMID: 31398893 PMCID: PMC6721598 DOI: 10.3390/cancers11081136] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Metastasis and tumor progression are the major cause of death in patients suffering from pancreatic ductal adenocarcinoma. Tumor growth and especially dissemination are typically associated with activation of an epithelial-to-mesenchymal transition (EMT) program. This phenotypic transition from an epithelial to a mesenchymal state promotes migration and survival both during development and in cancer progression. When re-activated in pathological contexts such as cancer, this type of developmental process confers additional stemness properties to specific subsets of cells. Cancer stem cells (CSCs) are a subpopulation of cancer cells with stem-like features that are responsible for the propagation of the tumor as well as therapy resistance and cancer relapse, but also for circulating tumor cell release and metastasis. In support of this concept, EMT transcription factors generate cells with stem cell properties and mediate chemoresistance. However, their role in pancreatic ductal adenocarcinoma metastasis remains controversial. As such, a better characterization of CSC populations will be crucial in future development of therapies targeting these cells. In this review, we will discuss the latest updates on the mechanisms common to pancreas development and CSC-mediated tumor progression.
Collapse
|
168
|
Sakhneny L, Khalifa-Malka L, Landsman L. Pancreas organogenesis: Approaches to elucidate the role of epithelial-mesenchymal interactions. Semin Cell Dev Biol 2019; 92:89-96. [DOI: 10.1016/j.semcdb.2018.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022]
|
169
|
Solorzano-Vargas RS, Bjerknes M, Wu SV, Wang J, Stelzner M, Dunn JCY, Dhawan S, Cheng H, Georgia S, Martín MG. The cellular regulators PTEN and BMI1 help mediate NEUROGENIN-3-induced cell cycle arrest. J Biol Chem 2019; 294:15182-15192. [PMID: 31341016 DOI: 10.1074/jbc.ra119.008926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/25/2019] [Indexed: 11/06/2022] Open
Abstract
Neurogenin-3 (NEUROG3) is a helix-loop-helix (HLH) transcription factor involved in the production of endocrine cells in the intestine and pancreas of humans and mice. However, the human NEUROG3 loss-of-function phenotype differs subtly from that in mice, but the reason for this difference remains poorly understood. Because NEUROG3 expression precedes exit of the cell cycle and the expression of endocrine cell markers during differentiation, we investigated the effect of lentivirus-mediated overexpression of the human NEUROG3 gene on the cell cycle of BON4 cells and various human nonendocrine cell lines. NEUROG3 overexpression induced a reversible cell cycle exit, whereas expression of a neuronal lineage homolog, NEUROG1, had no such effect. In endocrine lineage cells, the cellular quiescence induced by short-term NEUROG3 expression required cyclin-dependent kinase inhibitor 1A (CDKN1A)/p21CIP1 expression. Expression of endocrine differentiation markers required sustained NEUROG3 expression in the quiescent, but not in the senescent, state. Inhibition of the phosphatase and tensin homolog (PTEN) pathway reversed quiescence by inducing cyclin-dependent kinase 2 (CDK2) and reducing p21CIP1 and NEUROG3 protein levels in BON4 cells and human enteroids. We discovered that NEUROG3 expression stimulates expression of CDKN2a/p16INK4a and BMI1 proto-oncogene polycomb ring finger (BMI1), with the latter limiting expression of the former, delaying the onset of CDKN2a/p16INK4a -driven cellular senescence. Furthermore, NEUROG3 bound to the promoters of both CDKN1a/p21CIP1 and BMI1 genes, and BMI1 attenuated NEUROG3 binding to the CDKN1a/p21CIP1 promoter. Our findings reveal how human NEUROG3 integrates inputs from multiple signaling pathways and thereby mediates cell cycle exit at the onset of differentiation.
Collapse
Affiliation(s)
- R Sergio Solorzano-Vargas
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Matthew Bjerknes
- Department of Medicine, Medical Sciences Building, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - S Vincent Wu
- Veterans Affairs Greater Los Angeles Healthcare System, and Department of Medicine, University of California, Los Angeles, Los Angeles, California 90073
| | - Jiafang Wang
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Matthias Stelzner
- Division of General Surgery, Department of Surgery, University of California, Los Angeles, Los Angeles, California 90095
| | - James C Y Dunn
- Division of Pediatric Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, California 91010
| | - Hazel Cheng
- Department of Medicine, Medical Sciences Building, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Senta Georgia
- Department of Pediatrics, Division of Endocrinology, Children's Hospital of Los Angeles, University of Southern California, Los Angeles, Los Angeles, California 90027
| | - Martín G Martín
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
170
|
Jo S, Lockridge A, Alejandro EU. eIF4G1 and carboxypeptidase E axis dysregulation in O-GlcNAc transferase-deficient pancreatic β-cells contributes to hyperproinsulinemia in mice. J Biol Chem 2019; 294:13040-13050. [PMID: 31300553 DOI: 10.1074/jbc.ra119.008670] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
An early hallmark of type 2 diabetes is a failure of proinsulin-to-insulin processing in pancreatic β-cells, resulting in hyperproinsulinemia. Proinsulin processing is quite sensitive to nutrient flux, and β-cell-specific deletion of the nutrient-sensing protein modifier OGlcNAc transferase (βOGTKO) causes β-cell failure and diabetes, including early development of hyperproinsulinemia. The mechanisms underlying this latter defect are unknown. Here, using several approaches, including site-directed mutagenesis, Click O-GlcNAc labeling, immunoblotting, and immunofluorescence and EM imaging, we provide the first evidence for a relationship between the O-GlcNAcylation of eukaryotic translation initiation factor 4γ1 (eIF4G1) and carboxypeptidase E (CPE)-dependent proinsulin processing in βOGTKO mice. We first established that βOGTKO hyperproinsulinemia is independent of age, sex, glucose levels, and endoplasmic reticulum-CCAAT enhancer-binding protein homologous protein (CHOP)-mediated stress status. Of note, OGT loss was associated with a reduction in β-cell-resident CPE, and genetic reconstitution of CPE in βOGTKO islets rescued the dysfunctional proinsulin-to-insulin ratio. We show that although CPE is not directly OGlcNAc modified in islets, overexpression of the suspected OGT target eIF4G1, previously shown to regulate CPE translation in β-cells, increases islet CPE levels, and fully reverses βOGTKO islet-induced hyperproinsulinemia. Furthermore, our results reveal that OGT O-GlcNAc-modifies eIF4G1 at Ser-61 and that this modification is critical for eIF4G1 protein stability. Together, these results indicate a direct link between nutrient-sensitive OGT and insulin processing, underscoring the importance of post-translational O-GlcNAc modification in general cell physiology.
Collapse
Affiliation(s)
- Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Amber Lockridge
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455.
| |
Collapse
|
171
|
Braitsch CM, Azizoglu DB, Htike Y, Barlow HR, Schnell U, Chaney CP, Carroll TJ, Stanger BZ, Cleaver O. LATS1/2 suppress NFκB and aberrant EMT initiation to permit pancreatic progenitor differentiation. PLoS Biol 2019; 17:e3000382. [PMID: 31323030 PMCID: PMC6668837 DOI: 10.1371/journal.pbio.3000382] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 07/31/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022] Open
Abstract
The Hippo pathway directs cell differentiation during organogenesis, in part by restricting proliferation. How Hippo signaling maintains a proliferation-differentiation balance in developing tissues via distinct molecular targets is only beginning to be understood. Our study makes the unexpected finding that Hippo suppresses nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) signaling in pancreatic progenitors to permit cell differentiation and epithelial morphogenesis. We find that pancreas-specific deletion of the large tumor suppressor kinases 1 and 2 (Lats1/2PanKO) from mouse progenitor epithelia results in failure to differentiate key pancreatic lineages: acinar, ductal, and endocrine. We carried out an unbiased transcriptome analysis to query differentiation defects in Lats1/2PanKO. This analysis revealed increased expression of NFκB activators, including the pantetheinase vanin1 (Vnn1). Using in vivo and ex vivo studies, we show that VNN1 activates a detrimental cascade of processes in Lats1/2PanKO epithelium, including (1) NFκB activation and (2) aberrant initiation of epithelial-mesenchymal transition (EMT), which together disrupt normal differentiation. We show that exogenous stimulation of VNN1 or NFκB can trigger this cascade in wild-type (WT) pancreatic progenitors. These findings reveal an unexpected requirement for active suppression of NFκB by LATS1/2 during pancreas development, which restrains a cell-autonomous deleterious transcriptional program and thereby allows epithelial differentiation.
Collapse
Affiliation(s)
- Caitlin M. Braitsch
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - D. Berfin Azizoglu
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yadanar Htike
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Haley R. Barlow
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ulrike Schnell
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Christopher P. Chaney
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Thomas J. Carroll
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ben Z. Stanger
- Department of Medicine and Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ondine Cleaver
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
172
|
Abstract
Single cell biology is currently revolutionizing developmental and evolutionary biology, revealing new cell types and states in an impressive range of biological systems. With the accumulation of data, however, the field is grappling with a central unanswered question: what exactly is a cell type? This question is further complicated by the inherently dynamic nature of developmental processes. In this Hypothesis article, we propose that a 'periodic table of cell types' can be used as a framework for distinguishing cell types from cell states, in which the periods and groups correspond to developmental trajectories and stages along differentiation, respectively. The different states of the same cell type are further analogous to 'isotopes'. We also highlight how the concept of a periodic table of cell types could be useful for predicting new cell types and states, and for recognizing relationships between cell types throughout development and evolution.
Collapse
Affiliation(s)
- Bo Xia
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Itai Yanai
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
173
|
Barella LF, Rossi M, Zhu L, Cui Y, Mei FC, Cheng X, Chen W, Gurevich VV, Wess J. β-Cell-intrinsic β-arrestin 1 signaling enhances sulfonylurea-induced insulin secretion. J Clin Invest 2019; 129:3732-3737. [PMID: 31184597 DOI: 10.1172/jci126309] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Beta-arrestin-1 and -2 (Barr1 and Barr2, respectively) are intracellular signaling molecules that regulate many important metabolic functions. We previously demonstrated that mice lacking Barr2 selectively in pancreatic beta-cells showed pronounced metabolic impairments. Here we investigated whether Barr1 plays a similar role in regulating beta-cell function and whole body glucose homeostasis. Initially, we inactivated the Barr1 gene in beta-cells of adult mice (beta-barr1-KO mice). Beta-barr1-KO mice did not display any obvious phenotypes in a series of in vivo and in vitro metabolic tests. However, glibenclamide and tolbutamide, two widely used antidiabetic drugs of the sulfonylurea (SU) family, showed greatly reduced efficacy in stimulating insulin secretion in the KO mice in vivo and in perifused KO islets in vitro. Additional in vivo and in vitro studies demonstrated that Barr1 enhanced SU-stimulated insulin secretion by promoting SU-mediated activation of Epac2. Pull-down and co-immunoprecipitation experiments showed that Barr1 can directly interact with Epac2 and that SUs such as glibenclamide promote Barr1/Epac2 complex formation, triggering enhanced Rap1 signaling and insulin secretion. These findings suggest that strategies aimed at promoting Barr1 signaling in beta-cells may prove useful for the development of efficacious antidiabetic drugs.
Collapse
Affiliation(s)
- Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Lu Zhu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Yinghong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Fang C Mei
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Wei Chen
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| |
Collapse
|
174
|
Abstract
Cancer-initiating cells (CIC) are the driving force in tumor progression. There is strong evidence that CIC fulfill this task via exosomes (TEX), which modulate and reprogram stroma, nontransformed cells, and non-CIC. Characterization of CIC, besides others, builds on expression of CIC markers, many of which are known as metastasis-associated molecules. We here discuss that the linkage between CIC/CIC-TEX and metastasis-associated molecules is not fortuitously, but relies on the contribution of these markers to TEX biogenesis including loading and TEX target interactions. In addition, CIC markers contribute to TEX binding- and uptake-promoted activation of signaling cascades, transcription initiation, and translational control. Our point of view will be outlined for pancreas and colon CIC highly expressing CD44v6, Tspan8, EPCAM, claudin7, and LGR5, which distinctly but coordinately contribute to tumor progression. Despite overwhelming progress in unraveling the metastatic cascade and the multiple tasks taken over by CIC-TEX, there remains a considerable gap in linking CIC biomarkers, TEX, and TEX-initiated target modulation with metastasis. We will try to outline possible bridges, which could allow depicting pathways for new and expectedly powerful therapeutic interference with tumor progression.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany.
| |
Collapse
|
175
|
Hara A, Nakagawa Y, Nakao K, Tamaki M, Ikemoto T, Shimada M, Matsuhisa M, Mizukami H, Maruyama N, Watada H, Fujitani Y. Development of monoclonal mouse antibodies that specifically recognize pancreatic polypeptide. Endocr J 2019; 66:459-468. [PMID: 30842364 DOI: 10.1507/endocrj.ej18-0441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pancreatic polypeptide (PP) is a 36-amino acid peptide encoded by the Ppy gene, which is produced by a small population of cells located in the periphery of the islets of Langerhans. Owing to the high amino acid sequence similarity among neuropeptide Y family members, antibodies against PP that are currently available are not convincingly specific to PP. Here we report the development of mouse monoclonal antibodies that specifically bind to PP. We generated Ppy knockout (Ppy-KO) mice in which the Ppy-coding region was replaced by Cre recombinase. The Ppy-KO mice were immunized with mouse PP peptide, and stable hybridoma cell lines producing anti-PP antibodies were isolated. Firstly, positive clones were selected in an enzyme-linked immunosorbent assay for reactivity with PP coupled to bovine serum albumin. During the screening, hybridoma clones producing antibodies that cross-react to the peptide YY (PYY) were excluded. In the second screening, hybridoma clones in which their culture media produce no signal in Ppy-KO islets but detect specific cells in the peripheral region of wild-type islets, were selected. Further studies demonstrated that the selected monoclonal antibody (23-2D3) specifically recognizes PP-producing cells, not only in mouse, but also in human and rat islets. The monoclonal antibodies with high binding specificity for PP developed in this study will be fundamental for future studies towards elucidating the expression profiles and the physiological roles of PP.
Collapse
Affiliation(s)
- Akemi Hara
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Center for Therapeutic Innovation in Diabetes, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yuko Nakagawa
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Keiko Nakao
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Motoyuki Tamaki
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Tetsuya Ikemoto
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima 770-8503, Japan
| | - Mitsuo Shimada
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima 770-8503, Japan
| | - Munehide Matsuhisa
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Aomori 036-8562, Japan
| | | | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Center for Therapeutic Innovation in Diabetes, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yoshio Fujitani
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Center for Therapeutic Innovation in Diabetes, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| |
Collapse
|
176
|
Zhou J, Sun J. A Revolution in Reprogramming: Small Molecules. Curr Mol Med 2019; 19:77-90. [DOI: 10.2174/1566524019666190325113945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/07/2018] [Accepted: 02/18/2019] [Indexed: 02/08/2023]
Abstract
Transplantation of reprogrammed cells from accessible sources and in vivo
reprogramming are potential therapies for regenerative medicine. During the last
decade, genetic approaches, which mostly involved transcription factors and
microRNAs, have been shown to affect cell fates. However, their potential
carcinogenicity and other unexpected effects limit their translation into clinical
applications. Recently, with the power of modern biology-oriented design and synthetic
chemistry, as well as high-throughput screening technology, small molecules have been
shown to enhance reprogramming efficiency, replace genetic factors, and help elucidate
the molecular mechanisms underlying cellular plasticity and degenerative diseases. As a
non-viral and non-integrating approach, small molecules not only show revolutionary
capacities in generating desired exogenous cell types but also have potential as drugs
that can restore tissues through repairing or reprogramming endogenous cells. Here, we
focus on the recent progress made to use small molecules in cell reprogramming along
with some related mechanisms to elucidate these issues.
Collapse
Affiliation(s)
- Jin Zhou
- Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jie Sun
- Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| |
Collapse
|
177
|
Nishikawa Y, Kodama Y, Shiokawa M, Matsumori T, Marui S, Kuriyama K, Kuwada T, Sogabe Y, Kakiuchi N, Tomono T, Mima A, Morita T, Ueda T, Tsuda M, Yamauchi Y, Sakuma Y, Ota Y, Maruno T, Uza N, Uesugi M, Kageyama R, Chiba T, Seno H. Hes1 plays an essential role in Kras-driven pancreatic tumorigenesis. Oncogene 2019; 38:4283-4296. [PMID: 30705405 DOI: 10.1038/s41388-019-0718-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/25/2018] [Accepted: 01/04/2019] [Indexed: 11/08/2022]
Abstract
Most pancreatic ductal adenocarcinoma (PDAC) develops from pancreatic epithelial cells bearing activating mutant KRAS genes through precancerous lesions, i.e. acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN). During pancreatic tumorigenesis, Hes1 expression starts with the transition from acinar cells to ADM, and continues during PanIN and PDAC formation, but the role of Hes1 in pancreatic tumorigenesis is not fully elucidated. Here we show that Hes1 plays an essential role in the initiation and progression of KRAS-driven pancreatic tumorigenesis. In vitro, activation of MAPK signaling due to EGF or mutant KRAS activation induced sustained Hes1 expression in pancreatic acinar cells. In vivo, acinar cell-specific activation of mutant KRAS by Elastase1-CreERT2;KrasG12D induced ADM/PanIN formation with Hes1 expression in mice, and genetic ablation of Hes1 in these mice dramatically suppressed PanIN formation. Gene expression analysis and lineage tracing revealed that Hes1 regulates acinar-to-ductal reprogramming-related genes and, in a Hes1-deficient state, mutant Kras-induced ADM could not progress into PanIN, but re-differentiated into acinar cells. In the Elastase1-CreERT2;KrasG12D;Trp53R172H mouse PDAC model, genetic ablation of Hes1 completely blocked PDAC formation by keeping PanIN lesions in low-grade conditions, in addition to reducing the occurrence of PanIN. Together, these findings indicate that mutant KRAS-induced Hes1 plays an essential role in PDAC initiation and progression by regulating acinar-to-ductal reprogramming-related genes.
Collapse
Affiliation(s)
- Yoshihiro Nishikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuzo Kodama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- Department of Gastroenterology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomoaki Matsumori
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Saiko Marui
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Katsutoshi Kuriyama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takeshi Kuwada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuko Sogabe
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Nobuyuki Kakiuchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Teruko Tomono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Atsushi Mima
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshihiro Morita
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsuki Ueda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuki Yamauchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yojiro Sakuma
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuji Ota
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Motonari Uesugi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Ryoichiro Kageyama
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Uji, Kyoto, 611-0011, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Kansai Electric Power Hospital, 2-1-7 Fukushima, Fukushima-ku, Osaka, 553-0003, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
178
|
Abstract
Type 1 diabetes is a disease characterized by the destruction of insulin-secreting β-cells in the pancreas. Individuals are treated for this disease with lifelong insulin replacement. However, one attractive treatment possibility is to reprogram an individual’s endogenous cells to acquire the ability to secrete insulin, essentially replacing destroyed β-cells. Herein, we review the literature on the topic of reprogramming endodermal cells to produce insulin.
Collapse
Affiliation(s)
- Wendy M McKimpson
- Department of Medicine (Endocrinology), Columbia University, New York, New York
| | - Domenico Accili
- Department of Medicine (Endocrinology), Columbia University, New York, New York
| |
Collapse
|
179
|
Sakata N, Yoshimatsu G, Kodama S. Development and Characteristics of Pancreatic Epsilon Cells. Int J Mol Sci 2019; 20:ijms20081867. [PMID: 31014006 PMCID: PMC6514973 DOI: 10.3390/ijms20081867] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/19/2022] Open
Abstract
Pancreatic endocrine cells expressing the ghrelin gene and producing the ghrelin hormone were first identified in 2002. These cells, named ε cells, were recognized as the fifth type of endocrine cells. Differentiation of ε cells is induced by various transcription factors, including Nk2 homeobox 2, paired box proteins Pax-4 and Pax6, and the aristaless-related homeobox. Ghrelin is generally considered to be a "hunger hormone" that stimulates the appetite and is produced mainly by the stomach. Although the population of ε cells is small in adults, they play important roles in regulating other endocrine cells, especially β cells, by releasing ghrelin. However, the roles of ghrelin in β cells are complex. Ghrelin contributes to increased blood glucose levels by suppressing insulin release from β cells and is also involved in the growth and proliferation of β cells and the prevention of β cell apoptosis. Despite increasing evidence and clarification of the mechanisms of ε cells over the last 20 years, many questions remain to be answered. In this review, we present the current evidence for the participation of ε cells in differentiation and clarify their characteristics by focusing on the roles of ghrelin.
Collapse
Affiliation(s)
- Naoaki Sakata
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka 814-0180, Japan.
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka 814-0180, Japan.
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka 814-0180, Japan.
| |
Collapse
|
180
|
Yu XX, Qiu WL, Yang L, Zhang Y, He MY, Li LC, Xu CR. Defining multistep cell fate decision pathways during pancreatic development at single-cell resolution. EMBO J 2019; 38:e100164. [PMID: 30737258 PMCID: PMC6463266 DOI: 10.15252/embj.2018100164] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
The generation of terminally differentiated cell lineages during organogenesis requires multiple, coordinated cell fate choice steps. However, this process has not been clearly delineated, especially in complex solid organs such as the pancreas. Here, we performed single-cell RNA-sequencing in pancreatic cells sorted from multiple genetically modified reporter mouse strains at embryonic stages E9.5-E17.5. We deciphered the developmental trajectories and regulatory strategies of the exocrine and endocrine pancreatic lineages as well as intermediate progenitor populations along the developmental pathways. Notably, we discovered previously undefined programs representing the earliest events in islet α- and β-cell lineage allocation as well as the developmental pathway of the "first wave" of α-cell generation. Furthermore, we demonstrated that repressing ERK pathway activity is essential for inducing both α- and β-lineage differentiation. This study provides key insights into the regulatory mechanisms underlying cell fate choice and stepwise cell fate commitment and can be used as a resource to guide the induction of functional islet lineage cells from stem cells in vitro.
Collapse
Affiliation(s)
- Xin-Xin Yu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wei-Lin Qiu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Peking University, Beijing, China
| | - Liu Yang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Mao-Yang He
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Peking University, Beijing, China
| | - Lin-Chen Li
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
181
|
Zhang J, An H, Ni K, Chen B, Li H, Li Y, Sheng G, Zhou C, Xie M, Chen S, Zhou T, Yang G, Chen X, Wu G, Jin S, Li M. Glutathione prevents chronic oscillating glucose intake-induced β-cell dedifferentiation and failure. Cell Death Dis 2019; 10:321. [PMID: 30975975 PMCID: PMC6459929 DOI: 10.1038/s41419-019-1552-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/18/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
Abstract
Modern lifestyles have altered diet and metabolic homeostasis, with increased sugar intake, glycemic index, and prediabetes. A strong positive correlation between sugar consumption and diabetic incidence is revealed, but the underlying mechanisms remain obscure. Here we show that oral intake of long-term oscillating glucose (LOsG) (4 times/day) for 38 days, which produces physiological glycemic variability in rats, can lead to β-cells gaining metabolic memory in reactive oxygen species (ROS) stress. This stress leads to suppression of forkhead box O1 (FoxO1) signaling and subsequent upregulation of thioredoxin interacting protein, inhibition of insulin and SOD-2 expression, re-expression of Neurog3, and β-cell dedifferentiation and functional failure. LOsG-treated animals develop prediabetes exhibiting hypoinsulinemia and glucose intolerance. Dynamic and timely administration of antioxidant glutathione prevents LOsG/ROS-induced β-cell failure and prediabetes. We propose that ROS stress is the initial step in LOsG-inducing prediabetes. Manipulating glutathione-related pathways may offer novel options for preventing the occurrence and development of diabetes.
Collapse
Affiliation(s)
- Jitai Zhang
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Hui An
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Kaidi Ni
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Bin Chen
- Department of Medical Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hui Li
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China.,Department of Medical Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanqin Li
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Guilian Sheng
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Chuanzan Zhou
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Mengzhen Xie
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Saijing Chen
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Tong Zhou
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China.,Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gaoxiong Yang
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Xiufang Chen
- Department of Biochemistry, School of Basic Medical Science, Whenzhou Medical University, Wenzhou, China
| | - Gaojun Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Ming Li
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
182
|
Nakajima C, Kamimoto K, Miyajima K, Matsumoto M, Okazaki Y, Kobayashi-Hattori K, Shimizu M, Yamane T, Oishi Y, Iwatsuki K. A Method for Identifying Mouse Pancreatic Ducts. Tissue Eng Part C Methods 2019; 24:480-485. [PMID: 29993334 PMCID: PMC6088256 DOI: 10.1089/ten.tec.2018.0127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proper identification of pancreatic ducts is a major challenge for researchers performing partial duct ligation (PDL), because pancreatic ducts, which are covered with acinar cells, are translucent and thin. Although damage to pancreatic ducts may activate quiescent ductal stem cells, which may allow further investigation into ductal stem cells for therapeutic use, there is a lack of effective techniques to visualize pancreatic ducts. In this study, we report a new method for identifying pancreatic ducts. First, we aimed to visualize pancreatic ducts using black, waterproof fountain pen ink. We injected the ink into pancreatic ducts through the bile duct. The flow of ink was observed in pancreatic ducts, revealing their precise architecture. Next, to visualize pancreatic ducts in live animals, we injected fluorescein-labeled bile acid, cholyl-lysyl-fluorescein into the mouse tail vein. The fluorescent probe clearly marked not only the bile duct but also pancreatic ducts when observed with a fluorescent microscope. To confirm whether the pancreatic duct labeling was successful, we performed PDL on Neurogenin3 (Ngn3)-GFP transgenic mice. As a result, acinar tissue is lost. PDL tail pancreas becomes translucent almost completely devoid of acinar cells. Furthermore, strong activation of Ngn3 expression was observed in the ligated part of the adult mouse pancreas at 7 days after PDL.
Collapse
Affiliation(s)
- Chiemi Nakajima
- 1 Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Kenji Kamimoto
- 2 Department of Developmental Biology, Washington University School of Medicine in St. Louis , St. Louis, Missouri
| | - Katsuhiro Miyajima
- 1 Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Masahito Matsumoto
- 3 Department of Advanced Diabetic Therapeutics and Metabolic Endocrinology, Juntendo University , Tokyo, Japan
| | - Yasushi Okazaki
- 3 Department of Advanced Diabetic Therapeutics and Metabolic Endocrinology, Juntendo University , Tokyo, Japan .,4 Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Center, Juntendo University , Tokyo, Japan
| | - Kazuo Kobayashi-Hattori
- 5 Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Makoto Shimizu
- 5 Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Takumi Yamane
- 1 Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Yuichi Oishi
- 1 Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Ken Iwatsuki
- 1 Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| |
Collapse
|
183
|
YAP inhibition enhances the differentiation of functional stem cell-derived insulin-producing β cells. Nat Commun 2019; 10:1464. [PMID: 30931946 PMCID: PMC6443737 DOI: 10.1038/s41467-019-09404-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 03/07/2019] [Indexed: 01/27/2023] Open
Abstract
Stem cell-derived insulin-producing beta cells (SC-β) offer an inexhaustible supply of functional β cells for cell replacement therapies and disease modeling for diabetes. While successful directed differentiation protocols for this cell type have been described, the mechanisms controlling its differentiation and function are not fully understood. Here we report that the Hippo pathway controls the proliferation and specification of pancreatic progenitors into the endocrine lineage. Downregulation of YAP, an effector of the pathway, enhances endocrine progenitor differentiation and the generation of SC-β cells with improved insulin secretion. A chemical inhibitor of YAP acts as an inducer of endocrine differentiation and reduces the presence of proliferative progenitor cells. Conversely, sustained activation of YAP results in impaired differentiation, blunted glucose-stimulated insulin secretion, and increased proliferation of SC-β cells. Together these results support a role for YAP in controlling the self-renewal and differentiation balance of pancreatic progenitors and limiting endocrine differentiation in vitro. Pluripotent stem cells can be directed into insulin-producing beta cells in vitro. Here, the authors show that downregulation of YAP, an effector of the Hippo pathway, enhances endocrine progenitor differentiation and the generation of beta-cells with improved insulin secretion.
Collapse
|
184
|
Pancreatic duct-like cell line derived from pig embryonic stem cells: expression of uroplakin genes in pig pancreatic tissue. In Vitro Cell Dev Biol Anim 2019; 55:285-301. [PMID: 30868438 DOI: 10.1007/s11626-019-00336-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/12/2019] [Indexed: 02/04/2023]
Abstract
The isolation of a cell line, PICM-31D, with phenotypic characteristics like pancreatic duct cells is described. The PICM-31D cell line was derived from the previously described pig embryonic stem cell-derived exocrine pancreatic cell line, PICM-31. The PICM-31D cell line was morphologically distinct from the parental cells in growing as a monolayer rather than self-assembling into multicellular acinar-like structures. The PICM-31D cells were propagated for over a year at split ratios of 1:3 to 1:10 at each passage without change in phenotype or growth rate. Electron microscopy showed the cells to be a polarized epithelium of cuboidal cells joined by tight junction-like adhesions at their apical/lateral aspect. The cells contained numerous mucus-like secretory vesicles under their apical cell membrane. Proteomic analysis of the PICM-31D's cellular proteins detected MUC1 and MUC4, consistent with mucus vesicle morphology. Gene expression analysis showed the cells expressed pancreatic ductal cell-related transcription factors such as GATA4, GATA6, HES1, HNF1A, HNF1B, ONECUT1 (HNF6), PDX1, and SOX9, but little or no pancreas progenitor cell markers such as PTF1A, NKX6-1, SOX2, or NGN3. Pancreas ductal cell-associated genes including CA2, CFTR, MUC1, MUC5B, MUC13, SHH, TFF1, KRT8, and KRT19 were expressed by the PICM-31D cells, but the exocrine pancreas marker genes, CPA1 and PLA2G1B, were not expressed by the cells. However, the exocrine marker, AMY2A, was still expressed by the cells. Surprisingly, uroplakin proteins were prominent in the PICM-31D cell proteome, particularly UPK1A. Annexin A1 and A2 proteins were also relatively abundant in the cells. The expression of the uroplakin and annexin genes was detected in the cells, although only UPK1B, UPK3B, ANXA2, and ANXA4 were detected in fetal pig pancreatic duct tissue. In conclusion, the PICM-31D cell line models the mucus-secreting ductal cells of the fetal pig pancreas.
Collapse
|
185
|
Nyeng P, Heilmann S, Löf-Öhlin ZM, Pettersson NF, Hermann FM, Reynolds AB, Semb H. p120ctn-Mediated Organ Patterning Precedes and Determines Pancreatic Progenitor Fate. Dev Cell 2019; 49:31-47.e9. [PMID: 30853440 DOI: 10.1016/j.devcel.2019.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 12/13/2018] [Accepted: 02/04/2019] [Indexed: 11/28/2022]
Abstract
The mechanism of how organ shape emerges and specifies cell fate is not understood. Pancreatic duct and endocrine lineages arise in a spatially distinct domain from the acinar lineage. Whether these lineages are pre-determined or settle once these niches have been established remains unknown. Here, we reconcile these two apparently opposing models, demonstrating that pancreatic progenitors re-localize to establish the niche that will determine their ultimate fate. We identify a p120ctn-regulated mechanism for coordination of organ architecture and cellular fate mediated by differential E-cadherin based cell sorting. Reduced p120ctn expression is necessary and sufficient to re-localize a subset of progenitors to the peripheral tip domain, where they acquire an acinar fate. The same mechanism is used re-iteratively during endocrine specification, where it balances the choice between the alpha and beta cell fates. In conclusion, organ patterning is regulated by p120ctn-mediated cellular positioning, which precedes and determines pancreatic progenitor fate.
Collapse
Affiliation(s)
- Pia Nyeng
- Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Silja Heilmann
- Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Zarah M Löf-Öhlin
- Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), University of Copenhagen, 2200 Copenhagen N, Denmark
| | | | - Florian Malte Hermann
- Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Albert B Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Henrik Semb
- Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), University of Copenhagen, 2200 Copenhagen N, Denmark; Institute of Translational Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
186
|
Wang YJ, Traum D, Schug J, Gao L, Liu C, Atkinson MA, Powers AC, Feldman MD, Naji A, Chang KM, Kaestner KH. Multiplexed In Situ Imaging Mass Cytometry Analysis of the Human Endocrine Pancreas and Immune System in Type 1 Diabetes. Cell Metab 2019; 29:769-783.e4. [PMID: 30713110 PMCID: PMC6436557 DOI: 10.1016/j.cmet.2019.01.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/15/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
The interaction between the immune system and endocrine cells in the pancreas is crucial for the initiation and progression of type 1 diabetes (T1D). Imaging mass cytometry (IMC) enables multiplexed assessment of the abundance and localization of more than 30 proteins on the same tissue section at 1-μm resolution. Herein, we have developed a panel of 33 antibodies that allows for the quantification of key cell types including pancreatic exocrine cells, islet cells, immune cells, and stromal components. We employed this panel to analyze 12 pancreata obtained from donors with clinically diagnosed T1D and 6 pancreata from non-diabetic controls. In the pancreata from donors with T1D, we simultaneously visualized significant alterations in islet architecture, endocrine cell composition, and immune cell presentation. Indeed, we demonstrate the utility of IMC to investigate complex events on the cellular level that will provide new insights on the pathophysiology of T1D.
Collapse
Affiliation(s)
- Yue J Wang
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Traum
- Medical Research, Corporal Michael J. Crescenz Veterans Affairs Medical Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Schug
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Long Gao
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chengyang Liu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark A Atkinson
- Departments of Pathology and Pediatrics, University of Florida Diabetes Institute, Gainesville, FL 32610, USA
| | - Alvin C Powers
- Department of Medicine, Department of Molecular Physiology and Biophysics, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center VA, Tennessee Valley Healthcare, Nashville, TN, USA
| | - Michael D Feldman
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyong-Mi Chang
- Medical Research, Corporal Michael J. Crescenz Veterans Affairs Medical Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
187
|
Abstract
Diabetes mellitus is a multifactorial disease affecting increasing numbers of patients worldwide. Progression to insulin-dependent diabetes mellitus is characterized by the loss or dysfunction of pancreatic β-cells, but the pathomechanisms underlying β-cell failure in type 1 diabetes mellitus and type 2 diabetes mellitus are still poorly defined. Regeneration of β-cell mass from residual islet cells or replacement by β-like cells derived from stem cells holds great promise to stop or reverse disease progression. However, the development of new treatment options is hampered by our limited understanding of human pancreas organogenesis due to the restricted access to primary tissues. Therefore, the challenge is to translate results obtained from preclinical model systems to humans, which requires comparative modelling of β-cell biology in health and disease. Here, we discuss diverse modelling systems across different species that provide spatial and temporal resolution of cellular and molecular mechanisms to understand the evolutionary conserved genotype-phenotype relationship and translate them to humans. In addition, we summarize the latest knowledge on organoids, stem cell differentiation platforms, primary micro-islets and pseudo-islets, bioengineering and microfluidic systems for studying human pancreas development and homeostasis ex vivo. These new modelling systems and platforms have opened novel avenues for exploring the developmental trajectory, physiology, biology and pathology of the human pancreas.
Collapse
Affiliation(s)
- Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Technical University of Munich, Medical Faculty, Munich, Germany.
| |
Collapse
|
188
|
Pancreatic acinar differentiation is guided by differential laminin deposition. Sci Rep 2019; 9:2711. [PMID: 30804366 PMCID: PMC6389953 DOI: 10.1038/s41598-019-39077-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/12/2018] [Indexed: 01/03/2023] Open
Abstract
Endothelial cells play multiple roles during pancreas organogenesis. First, they are required to instruct endoderm-derived pancreatic progenitor cells to initiate branching morphogenesis. Later, blood vessels promote β-cell differentiation but also limit acinar development. In this work, we show how endothelial cells might signal to pancreatic progenitors and spatially regulate acinar differentiation. Using an ex vivo culture system of undifferentiated E12.5 pancreata, we demonstrate that embryonic endothelial progenitor cells and their conditioned medium prevent the expression of two members of the pro-acinar transcriptional PTF1L-complex. This effect is not mediated by SPARC, a protein abundantly released in the medium conditioned by endothelial progenitors. On the contrary, heterotrimeric laminin-α1β1γ1, also produced by endothelial progenitor cells, can repress acinar differentiation when used on its own on pancreatic explants. Lastly, we found that laminin-α1 is predominantly found in vivo around the pancreatic trunk cells, as compared to the tip cells, at E14.5. In conclusion, we propose that expression or deposition of laminin-α1β1γ1 around the trunk cells, where blood vessels are predominantly localized, prevent acinar differentiation of these cells. On the contrary, transient decreased expression or deposition of laminin-α1β1γ1 around the tip cells would allow PTF1L-complex formation and acinar differentiation.
Collapse
|
189
|
Zhong F, Jiang Y. Endogenous Pancreatic β Cell Regeneration: A Potential Strategy for the Recovery of β Cell Deficiency in Diabetes. Front Endocrinol (Lausanne) 2019; 10:101. [PMID: 30842756 PMCID: PMC6391341 DOI: 10.3389/fendo.2019.00101] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
Endogenous pancreatic β cell regeneration is a potential strategy for β cell expansion or neogenesis to treat diabetes. Regeneration can occur through stimulation of existing β cell replication or conversion of other pancreatic cells into β cells. Recently, various strategies and approaches for stimulation of endogenous β cell regeneration have been evaluated, but they were not suitable for clinical application. In this paper, we comprehensively review these strategies, and further discuss various factors involved in regulation of β cell regeneration under physiological or pathological conditions, such as mediators, transcription factors, signaling pathways, and potential pharmaceutical drugs. Furthermore, we discuss possible reasons for the failure of regenerative medicines in clinical trials, and possible strategies for improving β cell regeneration. As β cell heterogeneity and plasticity determines their function and environmental adaptability, we focus on β cell subtype markers and discuss the importance of research evaluating the characteristics of new β cells. In addition, based on the autoimmunologic features of type 1 diabetes, NOD/Lt-SCID-IL2rg null (NSG) mice grafted with human immune cells and β cells are recommended for use in evaluation of antidiabetic regenerative medicines. This review will further understand current advances in endogenous β cell regeneration, and provide potential new strategies for the treatment of diabetes focused on cell therapy.
Collapse
Affiliation(s)
- Fan Zhong
- Department of Gastroenterology, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Jiang
- Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
190
|
Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn LJ, Rosenthal B, Gürtler M, Estanboulieh RR, Shvartsman D, Gifford DK, Trapnell C, Melton D. A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell 2019; 176:790-804.e13. [PMID: 30661759 PMCID: PMC6705176 DOI: 10.1016/j.cell.2018.12.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/20/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022]
Abstract
The pancreatic islets of Langerhans regulate glucose homeostasis. The loss of insulin-producing β cells within islets results in diabetes, and islet transplantation from cadaveric donors can cure the disease. In vitro production of whole islets, not just β cells, will benefit from a better understanding of endocrine differentiation and islet morphogenesis. We used single-cell mRNA sequencing to obtain a detailed description of pancreatic islet development. Contrary to the prevailing dogma, we find islet morphology and endocrine differentiation to be directly related. As endocrine progenitors differentiate, they migrate in cohesion and form bud-like islet precursors, or "peninsulas" (literally "almost islands"). α cells, the first to develop, constitute the peninsular outer layer, and β cells form later, beneath them. This spatiotemporal collinearity leads to the typical core-mantle architecture of the mature, spherical islet. Finally, we induce peninsula-like structures in differentiating human embryonic stem cells, laying the ground for the generation of entire islets in vitro.
Collapse
Affiliation(s)
- Nadav Sharon
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Raghav Chawla
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Division of Hematology/Oncology, Seattle Children's Hospital, Seattle, WA 98105, USA; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jonas Mueller
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02412, USA
| | - Jordan Vanderhooft
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | - Benjamin Rosenthal
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Mads Gürtler
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | - Dmitry Shvartsman
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - David K Gifford
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02412, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Molecular & Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.
| | - Doug Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
191
|
Nteeba J, Kubota K, Wang W, Zhu H, Vivian JL, Dai G, Soares MJ. Pancreatic prolactin receptor signaling regulates maternal glucose homeostasis. J Endocrinol 2019; 241:JOE-18-0518.R2. [PMID: 30798322 PMCID: PMC7189340 DOI: 10.1530/joe-18-0518] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/22/2019] [Indexed: 12/17/2022]
Abstract
Prolactin (PRL) signaling has been implicated in the regulation of glucose homeostatic adaptations to pregnancy. In this report, the PRL receptor (Prlr) gene was conditionally disrupted in the pancreas, creating an animal model which proved useful for investigating the biology and pathology of gestational diabetes including its impacts on fetal and placental development. In mice, pancreatic PRLR signaling was demonstrated to be required for pregnancy-associated changes in maternal β cell mass and function. Disruption of the Prlr gene in the pancreas resulted in fewer insulin producing cells, which failed to expand appropriately during pregnancy resulting in reduced blood insulin levels and maternal glucose intolerance. This inability to sustain normal blood glucose balance during pregnancy worsened with age and a successive pregnancy. The etiology of the insulin insufficiency was attributed to deficits in regulatory pathways controlling β cell development. Additionally, the disturbance in maternal blood glucose homeostasis, was associated with fetal overgrowth and dysregulation of inflammation and prolactin-associated transcripts in the placenta. Overall, these results indicate that the PRLR, acting within the pancreas, mediates maternal pancreatic adaptations to pregnancy and therefore its dysfunction may increase a woman's chances of becoming glucose intolerant during pregnancy.
Collapse
Affiliation(s)
- Jackson Nteeba
- Department of Pathology and Laboratory Medicine, Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kaiyu Kubota
- Department of Pathology and Laboratory Medicine, Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wenfang Wang
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hao Zhu
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jay L Vivian
- Department of Pathology and Laboratory Medicine, Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Guoli Dai
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Michael J Soares
- Department of Pathology and Laboratory Medicine, Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Center for Perinatal Research, Children’s Research Institute, Children’s Mercy, Kansas City, Missouri, USA
| |
Collapse
|
192
|
Liu J, Banerjee A, Herring CA, Attalla J, Hu R, Xu Y, Shao Q, Simmons AJ, Dadi PK, Wang S, Jacobson DA, Liu B, Hodges E, Lau KS, Gu G. Neurog3-Independent Methylation Is the Earliest Detectable Mark Distinguishing Pancreatic Progenitor Identity. Dev Cell 2019; 48:49-63.e7. [PMID: 30620902 PMCID: PMC6327977 DOI: 10.1016/j.devcel.2018.11.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/26/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022]
Abstract
In the developing pancreas, transient Neurog3-expressing progenitors give rise to four major islet cell types: α, β, δ, and γ; when and how the Neurog3+ cells choose cell fate is unknown. Using single-cell RNA-seq, trajectory analysis, and combinatorial lineage tracing, we showed here that the Neurog3+ cells co-expressing Myt1 (i.e., Myt1+Neurog3+) were biased toward β cell fate, while those not simultaneously expressing Myt1 (Myt1-Neurog3+) favored α fate. Myt1 manipulation only marginally affected α versus β cell specification, suggesting Myt1 as a marker but not determinant for islet-cell-type specification. The Myt1+Neurog3+ cells displayed higher Dnmt1 expression and enhancer methylation at Arx, an α-fate-promoting gene. Inhibiting Dnmts in pancreatic progenitors promoted α cell specification, while Dnmt1 overexpression or Arx enhancer hypermethylation favored β cell production. Moreover, the pancreatic progenitors contained distinct Arx enhancer methylation states without transcriptionally definable sub-populations, a phenotype independent of Neurog3 activity. These data suggest that Neurog3-independent methylation on fate-determining gene enhancers specifies distinct endocrine-cell programs.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Amrita Banerjee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles A Herring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jonathan Attalla
- Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Genetic Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ruiying Hu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yanwen Xu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qiujia Shao
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Alan J Simmons
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Bindong Liu
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Emily Hodges
- Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Genetic Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
193
|
Brokhman I, Xu J, Coles BL, Razavi R, Engert S, Lickert H, Babona-Pilipos R, Morshead CM, Sibley E, Chen C, van der Kooy D. Dual embryonic origin of the mammalian enteric nervous system. Dev Biol 2019; 445:256-270. [DOI: 10.1016/j.ydbio.2018.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 02/05/2023]
|
194
|
Harnessing CXCL12 signaling to protect and preserve functional β-cell mass and for cell replacement in type 1 diabetes. Pharmacol Ther 2019; 193:63-74. [DOI: 10.1016/j.pharmthera.2018.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
195
|
Bastidas-Ponce A, Tritschler S, Dony L, Scheibner K, Tarquis-Medina M, Salinno C, Schirge S, Burtscher I, Böttcher A, Theis F, Lickert H, Bakhti M. Massive single-cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis. Development 2019; 146:dev.173849. [DOI: 10.1242/dev.173849] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/21/2019] [Indexed: 12/21/2022]
Abstract
Deciphering mechanisms of endocrine cell induction, specification and lineage allocation in vivo will provide valuable insights into how the islets of Langerhans are generated. Currently, it is ill defined how endocrine progenitors segregate into different endocrine subtypes during development. Here, we generated a novel Neurogenin3 (Ngn3)-Venus fusion (NVF) reporter mouse line, that closely mirrors the transient endogenous Ngn3 protein expression. To define an in vivo roadmap of endocrinogenesis, we performed single-cell RNA-sequencing of 36,351 pancreatic epithelial and NVF+ cells during secondary transition. This allowed to time-resolve and distinguish Ngn3low endocrine progenitors, Ngn3high endocrine precursors, Fev+ endocrine lineage and hormone+ endocrine subtypes and delineate molecular programs during the stepwise lineage restriction steps. Strikingly, we identified 58 novel signature genes that show the same transient expression dynamics as Ngn3 in the 7,260 profiled Ngn3-expressing cells. The differential expression of these genes in endocrine precursors associated with their cell-fate allocation towards distinct endocrine cell types. Thus, the generation of an accurately regulated NVF reporter allowed us to temporally resolve endocrine lineage development to provide a fine-grained single-cell molecular profile of endocrinogenesis in vivo.
Collapse
Affiliation(s)
- Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Technical University of Munich, School of Medicine, Munich, Germany
| | - Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Technical University of Munich, School of Life Sciences Weihenstephan, Freising, Germany
| | - Leander Dony
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Technical University of Munich, School of Medicine, Munich, Germany
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Technical University of Munich, School of Medicine, Munich, Germany
| | - Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Technical University of Munich, School of Medicine, Munich, Germany
| | - Silvia Schirge
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Fabian Theis
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Technical University of Munich, Department of Mathematics, Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Technical University of Munich, School of Medicine, Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| |
Collapse
|
196
|
Courty E, Besseiche A, Do TTH, Liboz A, Aguid FM, Quilichini E, Buscato M, Gourdy P, Gautier JF, Riveline JP, Haumaitre C, Buyse M, Fève B, Guillemain G, Blondeau B. Adaptive β-Cell Neogenesis in the Adult Mouse in Response to Glucocorticoid-Induced Insulin Resistance. Diabetes 2019; 68:95-108. [PMID: 30327384 DOI: 10.2337/db17-1314] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 10/11/2018] [Indexed: 11/13/2022]
Abstract
Both type 1 and type 2 diabetes are characterized by deficient insulin secretion and decreased β-cell mass. Thus, regenerative strategies to increase β-cell mass need to be developed. To characterize mechanisms of β-cell plasticity, we studied a model of severe insulin resistance in the adult mouse and defined how β-cells adapt. Chronic corticosterone (CORT) treatment was given to adult mice and led to rapid insulin resistance and adaptive increased insulin secretion. Adaptive and massive increase of β-cell mass was observed during treatment up to 8 weeks. β-Cell mass increase was partially reversible upon treatment cessation and reinduced upon subsequent treatment. β-Cell neogenesis was suggested by an increased number of islets, mainly close to ducts, and increased Sox9 and Ngn3 mRNA levels in islets, but lineage-tracing experiments revealed that neoformed β-cells did not derive from Sox9- or Ngn3-expressing cells. CORT treatment after β-cell depletion partially restored β-cells. Finally, β-cell neogenesis was shown to be indirectly stimulated by CORT because serum from CORT-treated mice increased β-cell differentiation in in vitro cultures of pancreatic buds. Altogether, the results present a novel model of β-cell neogenesis in the adult mouse and identify the presence of neogenic factors in the serum of CORT-treated mice.
Collapse
Affiliation(s)
- Emilie Courty
- Sorbonne Université, INSERM, Saint-Antoine Research Center, Paris, France
- Hospitalo-Universitary Institute, ICAN, Paris, France
| | - Adrien Besseiche
- Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Paris, France
| | - Thi Thu Huong Do
- Sorbonne Université, INSERM, Saint-Antoine Research Center, Paris, France
- Hospitalo-Universitary Institute, ICAN, Paris, France
| | - Alexandrine Liboz
- Sorbonne Université, INSERM, Saint-Antoine Research Center, Paris, France
- Hospitalo-Universitary Institute, ICAN, Paris, France
| | | | - Evans Quilichini
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Paris, France
| | - Melissa Buscato
- Institute of Metabolic and Cardiovascular Diseases, UMR1048, INSERM, UPS, Université de Toulouse, Toulouse, France
| | - Pierre Gourdy
- Institute of Metabolic and Cardiovascular Diseases, UMR1048, INSERM, UPS, Université de Toulouse, Toulouse, France
- Service de Diabétologie, CHU de Toulouse, Toulouse, France
| | - Jean-François Gautier
- Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Paris, France
- Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Department of Diabetes and Endocrinology, University Paris-Diderot 7, Sorbonne Paris Cité, Paris, France
| | - Jean-Pierre Riveline
- Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Paris, France
- Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Department of Diabetes and Endocrinology, University Paris-Diderot 7, Sorbonne Paris Cité, Paris, France
| | - Cécile Haumaitre
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Paris, France
| | - Marion Buyse
- Sorbonne Université, INSERM, Saint-Antoine Research Center, Paris, France
- Hospitalo-Universitary Institute, ICAN, Paris, France
- Université Paris-Sud, EA 4123, Chatenay-Malabry, France
- Department of Pharmacy, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bruno Fève
- Sorbonne Université, INSERM, Saint-Antoine Research Center, Paris, France
- Hospitalo-Universitary Institute, ICAN, Paris, France
- Department of Endocrinology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Ghislaine Guillemain
- Sorbonne Université, INSERM, Saint-Antoine Research Center, Paris, France
- Hospitalo-Universitary Institute, ICAN, Paris, France
| | - Bertrand Blondeau
- Sorbonne Université, INSERM, Saint-Antoine Research Center, Paris, France
- Hospitalo-Universitary Institute, ICAN, Paris, France
| |
Collapse
|
197
|
Cantley J, Davenport A, Vetterli L, Nemes NJ, Whitworth PT, Boslem E, Thai LM, Mellett N, Meikle PJ, Hoehn KL, James DE, Biden TJ. Disruption of beta cell acetyl-CoA carboxylase-1 in mice impairs insulin secretion and beta cell mass. Diabetologia 2019; 62:99-111. [PMID: 30334081 PMCID: PMC6290731 DOI: 10.1007/s00125-018-4743-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/22/2018] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS Pancreatic beta cells secrete insulin to maintain glucose homeostasis, and beta cell failure is a hallmark of type 2 diabetes. Glucose triggers insulin secretion in beta cells via oxidative mitochondrial pathways. However, it also feeds mitochondrial anaplerotic pathways, driving citrate export and cytosolic malonyl-CoA production by the acetyl-CoA carboxylase 1 (ACC1) enzyme. This pathway has been proposed as an alternative glucose-sensing mechanism, supported mainly by in vitro data. Here, we sought to address the role of the beta cell ACC1-coupled pathway in insulin secretion and glucose homeostasis in vivo. METHODS Acaca, encoding ACC1 (the principal ACC isoform in islets), was deleted in beta cells of mice using the Cre/loxP system. Acaca floxed mice were crossed with Ins2cre mice (βACC1KO; life-long beta cell gene deletion) or Pdx1creER mice (tmx-βACC1KO; inducible gene deletion in adult beta cells). Beta cell function was assessed using in vivo metabolic physiology and ex vivo islet experiments. Beta cell mass was analysed using histological techniques. RESULTS βACC1KO and tmx-βACC1KO mice were glucose intolerant and had defective insulin secretion in vivo. Isolated islet studies identified impaired insulin secretion from beta cells, independent of changes in the abundance of neutral lipids previously implicated as amplification signals. Pancreatic morphometry unexpectedly revealed reduced beta cell size in βACC1KO mice but not in tmx-βACC1KO mice, with decreased levels of proteins involved in the mechanistic target of rapamycin kinase (mTOR)-dependent protein translation pathway underpinning this effect. CONCLUSIONS/INTERPRETATION Our study demonstrates that the beta cell ACC1-coupled pathway is critical for insulin secretion in vivo and ex vivo and that it is indispensable for glucose homeostasis. We further reveal a role for ACC1 in controlling beta cell growth prior to adulthood.
Collapse
Affiliation(s)
- James Cantley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| | - Aimee Davenport
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Laurène Vetterli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Nandor J Nemes
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - P Tess Whitworth
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Ebru Boslem
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Le May Thai
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Natalie Mellett
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Peter J Meikle
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - David E James
- The Charles Perkins Centre, School of Molecular Biosciences, School of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Trevor J Biden
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| |
Collapse
|
198
|
Solis MA, Moreno Velásquez I, Correa R, Huang LLH. Stem cells as a potential therapy for diabetes mellitus: a call-to-action in Latin America. Diabetol Metab Syndr 2019; 11:20. [PMID: 30820250 PMCID: PMC6380040 DOI: 10.1186/s13098-019-0415-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
Latin America is a fast-growing region that currently faces unique challenges in the treatment of all forms of diabetes mellitus. The burden of this disease will be even greater in the coming years due, in part, to the large proportion of young adults living in urban areas and engaging in unhealthy lifestyles. Unfortunately, the national health systems in Latin-American countries are unprepared and urgently need to reorganize their health care services to achieve diabetic therapeutic goals. Stem cell research is attracting increasing attention as a promising and fast-growing field in Latin America. As future healthcare systems will include the development of regenerative medicine through stem cell research, Latin America is urged to issue a call-to-action on stem cell research. Increased efforts are required in studies focused on stem cells for the treatment of diabetes. In this review, we aim to inform physicians, researchers, patients and funding sources about the advances in stem cell research for possible future applications in diabetes mellitus. Emerging studies are demonstrating the potential of stem cells for β cell differentiation and pancreatic regeneration. The major economic burden implicated in patients with diabetes complications suggests that stem cell research may relieve diabetic complications. Closer attention should be paid to stem cell research in the future as an alternative treatment for diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Ricardo Correa
- Department of Medicine, Warren Alpert School of Medicine, Brown University, Rhode Island, USA
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ USA
| | - Lynn L. H. Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Research Center of Excellence in Regenerative Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
199
|
van Gurp L, Muraro MJ, Dielen T, Seneby L, Dharmadhikari G, Gradwohl G, van Oudenaarden A, de Koning EJP. A transcriptomic roadmap to alpha- and beta cell differentiation in the embryonic pancreas. Development 2019; 146:dev.173716. [DOI: 10.1242/dev.173716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/24/2019] [Indexed: 12/13/2022]
Abstract
During pancreatic development, endocrine cells appear from the pancreatic epithelium when Neurog3 positive cells delaminate and differentiate into alpha, beta, gamma and delta cells. The mechanisms involved in this process are still incompletely understood. We characterized the temporal, lineage-specific developmental programs during pancreatic development by sequencing the transcriptome of thousands of individual pancreatic cells from embryonic day E12.5 to E18.5 in mice, and identified all known cell types that are present in the embryonic pancreas, but focused specifically on alpha and beta cell differentiation by enrichment of a MIP-GFP reporter. We characterized transcriptomic heterogeneity in the tip domain based on proliferation, and characterized two endocrine precursor clusters marked by expression of Neurog3 and Fev. Pseudotime analysis revealed specific branches for developing alpha- and beta cells, which allowed identification of specific gene regulation patterns. These include some known and many previously unreported genes that appear to define pancreatic cell fate transitions. This resource allows dynamic profiling of embryonic pancreas development at single cell resolution and reveals novel gene signatures during pancreatic differentiation into alpha and beta cells.
Collapse
Affiliation(s)
- Léon van Gurp
- Hubrecht Institute\KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
| | - Mauro J. Muraro
- Hubrecht Institute\KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
- Single Cell Discoveries, Utrecht, the Netherlands
| | - Tim Dielen
- Hubrecht Institute\KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
| | - Lina Seneby
- Hubrecht Institute\KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
| | - Gitanjali Dharmadhikari
- Hubrecht Institute\KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
| | - Gerard Gradwohl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Alexander van Oudenaarden
- Hubrecht Institute\KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
- Single Cell Discoveries, Utrecht, the Netherlands
- Oncode Institute, the Netherlands
| | - Eelco J. P. de Koning
- Hubrecht Institute\KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
200
|
Rajaei B, Massumi M, Wheeler M. Glucose-Responsiveness of Pancreatic β-Like (GRP β-L) Cells Generated from Human Pluripotent Stem Cells. CURRENT PROTOCOLS IN HUMAN GENETICS 2019; 100:e71. [PMID: 30335214 DOI: 10.1002/cphg.71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The International Diabetic Federation estimated that 415 million adults currently have diabetes and 318 million adults had impaired glucose tolerance, putting them at high risk of developing diabetes in the future. In Type 1 Diabetes (T1D), the β cells are lost because of autoimmune reactions. Although islet transplantation has been a promising therapy for T1D, it is greatly limited by pancreatic donors. Here, we describe a protocol to generate glucose- responsive pancreatic β-like (GRPβ-L) cells from human-induced pluripotent stem (iPS) cells. We recapitulate in vivo pancreas development by in vitro induction of differentiating human (iPS) cells with stage-specific signaling molecules and proteins. Inhibition of Tyrosine Kinase receptor AXL, TGF-β, and Notch signaling pathways in the final stage of the five-stage protocol could efficiently generate GRPβ-L from the endocrine progenitor. Differentiation of human iPS cells through the protocol could result in functional GRPβ-L cells, which could be used in pharmaceutical and β cell biology studies. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Bahareh Rajaei
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Massumi
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System , Toronto, Ontario, Canada
| | - Michael Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|