151
|
Guo YE, Li Y, Cai B, He Q, Chen G, Wang M, Wang K, Wan X, Yan Q. Phenotyping of immune and endometrial epithelial cells in endometrial carcinomas revealed by single-cell RNA sequencing. Aging (Albany NY) 2021; 13:6565-6591. [PMID: 33429363 PMCID: PMC7993685 DOI: 10.18632/aging.202288] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Tumors are complex ecosystems harboring multiple cell types which might play a critical role in tumor progression and treatment response. The endometrial epithelial cell identities and immune microenvironment of endometrial carcinoma (ECC) are poorly characterized. In this study, a cellular map of endometrial carcinoma was generated by profiling 30,780 cells isolated from tumor and paratumor tissues from five patients using single-cell RNA sequencing. 7 cell types in lymphocytes, 7 types in myeloid cells and 3 types in endometrial epithelial cells were identified. Distinct CD8+ T cell states and different monocyte-macrophage populations were discovered, among which exhausted CD8+ T cells and macrophages were preferentially enriched in tumor. Both CD8+ T cells and macrophages comport with continuous activation model. Gene expression patterns examination and gene ontology enrichment analysis of endometrial epithelial cells revealed 3 subtypes: stem-like cells, secretory glandular cells and ciliated cells. Overall, our study presents a view of endometrial carcinoma at single-cell resolution that reveals the characteristics of endometrial epithelial cells in the endometrium, and provides a cellular landscape of the tumor immune microenvironment.
Collapse
Affiliation(s)
- Yu-E Guo
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiran Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bailian Cai
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qizhi He
- Department of Pathology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guofang Chen
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mengfei Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qin Yan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
152
|
Walentek P. Xenopus epidermal and endodermal epithelia as models for mucociliary epithelial evolution, disease, and metaplasia. Genesis 2021; 59:e23406. [PMID: 33400364 DOI: 10.1002/dvg.23406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/08/2022]
Abstract
The Xenopus embryonic epidermis is a powerful model to study mucociliary biology, development, and disease. Particularly, the Xenopus system is being used to elucidate signaling pathways, transcription factor functions, and morphogenetic mechanisms regulating cell fate specification, differentiation and cell function. Thereby, Xenopus research has provided significant insights into potential underlying molecular mechanisms for ciliopathies and chronic airway diseases. Recent studies have also established the embryonic epidermis as a model for mucociliary epithelial remodeling, multiciliated cell trans-differentiation, cilia loss, and mucus secretion. Additionally, the tadpole foregut epithelium is lined by a mucociliary epithelium, which shows remarkable features resembling mammalian airway epithelia, including its endodermal origin and a variable cell type composition along the proximal-distal axis. This review aims to summarize the advantages of the Xenopus epidermis for mucociliary epithelial biology and disease modeling. Furthermore, the potential of the foregut epithelium as novel mucociliary model system is being highlighted. Additional perspectives are presented on how to expand the range of diseases that can be modeled in the frog system, including proton pump inhibitor-associated pneumonia as well as metaplasia in epithelial cells of the airway and the gastroesophageal region.
Collapse
Affiliation(s)
- Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
153
|
Qi J, Zhou Y, Hua J, Zhang L, Bian J, Liu B, Zhao Z, Jin S. The scRNA-seq Expression Profiling of the Receptor ACE2 and the Cellular Protease TMPRSS2 Reveals Human Organs Susceptible to SARS-CoV-2 Infection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E284. [PMID: 33401657 PMCID: PMC7794913 DOI: 10.3390/ijerph18010284] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 patients always develop multiple organ dysfunction syndromes other than lungs, suggesting the novel virus SARS-CoV-2 also invades other organs. Therefore, studying the viral susceptibility of other organs is important for a deeper understanding of viral pathogenesis. Angiotensin-converting enzyme II (ACE2) is the receptor protein of SARS-CoV-2, and TMPRSS2 promotes virus proliferation and transmission. We investigated the ACE2 and TMPRSS2 expression levels of cell types from 31 organs to evaluate the risk of viral infection using single-cell RNA sequencing (scRNA-seq) data. For the first time, we found that the gall bladder and fallopian tube are vulnerable to SARS-CoV-2 infection. Besides, the nose, heart, small intestine, large intestine, esophagus, brain, testis, and kidney are also identified to be high-risk organs with high expression levels of ACE2 and TMPRSS2. Moreover, the susceptible organs are grouped into three risk levels based on the ACE2 and TMPRSS2 expression. As a result, the respiratory system, digestive system, and urinary system are at the top-risk level for SARS-CoV-2 infection. This study provides evidence for SARS-CoV-2 infection in the human nervous system, digestive system, reproductive system, respiratory system, circulatory system, and urinary system using scRNA-seq data, which helps in the clinical diagnosis and treatment of patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuilin Jin
- School of Mathematics, Harbin Institute of Technology, Harbin 150001, China; (J.Q.); (Y.Z.); (J.H.); (L.Z.); (J.B.); (B.L.); (Z.Z.)
| |
Collapse
|
154
|
Cellular and functional heterogeneity of the airway epithelium. Mucosal Immunol 2021; 14:978-990. [PMID: 33608655 PMCID: PMC7893625 DOI: 10.1038/s41385-020-00370-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
The airway epithelium protects us from environmental insults, which we encounter with every breath. Not only does it passively filter large particles, it also senses potential danger and alerts other cells, including immune and nervous cells. Together, these tissues orchestrate the most appropriate response, balancing the need to eliminate the danger with the risk of damage to the host. Each cell subset within the airway epithelium plays its part, and when impaired, may contribute to the development of respiratory disease. Here we highlight recent advances regarding the cellular and functional heterogeneity along the airway epithelium and discuss how we can use this knowledge to design more effective, targeted therapeutics.
Collapse
|
155
|
Abstract
The community of cells lining our airways plays a collaborative role in the preservation of immune homeostasis in the lung and provides protection from the pathogens and pollutants in the air we breathe. In addition to its structural attributes that provide effective mucociliary clearance of the lower airspace, the airway epithelium is an immunologically active barrier surface that senses changes in the airway environment and interacts with resident and recruited immune cells. Single-cell RNA-sequencing is illuminating the cellular heterogeneity that exists in the airway wall and has identified novel cell populations with unique molecular signatures, trajectories of differentiation and diverse functions in health and disease. In this Review, we discuss how our view of the airway epithelial landscape has evolved with the advent of transcriptomic approaches to cellular phenotyping, with a focus on epithelial interactions with the local neuronal and immune systems.
Collapse
|
156
|
Carraro G, Mulay A, Yao C, Mizuno T, Konda B, Petrov M, Lafkas D, Arron JR, Hogaboam CM, Chen P, Jiang D, Noble PW, Randell SH, McQualter JL, Stripp BR. Single-Cell Reconstruction of Human Basal Cell Diversity in Normal and Idiopathic Pulmonary Fibrosis Lungs. Am J Respir Crit Care Med 2020; 202:1540-1550. [PMID: 32692579 PMCID: PMC7706153 DOI: 10.1164/rccm.201904-0792oc] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/21/2020] [Indexed: 01/02/2023] Open
Abstract
Rationale: Declining lung function in patients with interstitial lung disease is accompanied by epithelial remodeling and progressive scarring of the gas-exchange region. There is a need to better understand the contribution of basal cell hyperplasia and associated mucosecretory dysfunction to the development of idiopathic pulmonary fibrosis (IPF).Objectives: We sought to decipher the transcriptome of freshly isolated epithelial cells from normal and IPF lungs to discern disease-dependent changes within basal stem cells.Methods: Single-cell RNA sequencing was used to map epithelial cell types of the normal and IPF human airways. Organoid and air-liquid interface cultures were used to investigate functional properties of basal cell subtypes.Measurements and Main Results: We found that basal cells included multipotent and secretory primed subsets in control adult lung tissue. Secretory primed basal cells include an overlapping molecular signature with basal cells obtained from the distal lung tissue of IPF lungs. We confirmed that NOTCH2 maintains undifferentiated basal cells and restricts basal-to-ciliated differentiation, and we present evidence that NOTCH3 functions to restrain secretory differentiation.Conclusions: Basal cells are dynamically regulated in disease and are specifically biased toward the expansion of the secretory primed basal cell subset in IPF. Modulation of basal cell plasticity may represent a relevant target for therapeutic intervention in IPF.
Collapse
Affiliation(s)
- Gianni Carraro
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Apoorva Mulay
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Changfu Yao
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Takako Mizuno
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Bindu Konda
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Martin Petrov
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | | | | | - Cory M. Hogaboam
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Peter Chen
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Dianhua Jiang
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Paul W. Noble
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Scott H. Randell
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; and
| | - Jonathan L. McQualter
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Barry R. Stripp
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
157
|
The Airway Epithelium-A Central Player in Asthma Pathogenesis. Int J Mol Sci 2020; 21:ijms21238907. [PMID: 33255348 PMCID: PMC7727704 DOI: 10.3390/ijms21238907] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by variable airflow obstruction in response to a wide range of exogenous stimuli. The airway epithelium is the first line of defense and plays an important role in initiating host defense and controlling immune responses. Indeed, increasing evidence indicates a range of abnormalities in various aspects of epithelial barrier function in asthma. A central part of this impairment is a disruption of the airway epithelial layer, allowing inhaled substances to pass more easily into the submucosa where they may interact with immune cells. Furthermore, many of the identified susceptibility genes for asthma are expressed in the airway epithelium. This review focuses on the biology of the airway epithelium in health and its pathobiology in asthma. We will specifically discuss external triggers such as allergens, viruses and alarmins and the effect of type 2 inflammatory responses on airway epithelial function in asthma. We will also discuss epigenetic mechanisms responding to external stimuli on the level of transcriptional and posttranscriptional regulation of gene expression, as well the airway epithelium as a potential treatment target in asthma.
Collapse
|
158
|
Hao S, Ning K, Kuz CA, Vorhies K, Yan Z, Qiu J. Long-Term Modeling of SARS-CoV-2 Infection of In Vitro Cultured Polarized Human Airway Epithelium. mBio 2020; 11:e02852-20. [PMID: 33158999 PMCID: PMC7649230 DOI: 10.1128/mbio.02852-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/28/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates throughout human airways. The polarized human airway epithelium (HAE) cultured at an airway-liquid interface (HAE-ALI) is an in vitro model mimicking the in vivo human mucociliary airway epithelium and supports the replication of SARS-CoV-2. Prior studies characterized only short-period SARS-CoV-2 infection in HAE. In this study, continuously monitoring the SARS-CoV-2 infection in HAE-ALI cultures for a long period of up to 51 days revealed that SARS-CoV-2 infection was long lasting with recurrent replication peaks appearing between an interval of approximately 7 to 10 days, which was consistent in all the tested HAE-ALI cultures derived from 4 lung bronchi of independent donors. We also identified that SARS-CoV-2 does not infect HAE from the basolateral side, and the dominant SARS-CoV-2 permissive epithelial cells are ciliated cells and goblet cells, whereas virus replication in basal cells and club cells was not detected. Notably, virus infection immediately damaged the HAE, which is demonstrated by dispersed zonula occludens-1 (ZO-1) expression without clear tight junctions and partial loss of cilia. Importantly, we identified that SARS-CoV-2 productive infection of HAE requires a high viral load of >2.5 × 105 virions per cm2 of epithelium. Thus, our studies highlight the importance of a high viral load and that epithelial renewal initiates and maintains a recurrent infection of HAE with SARS-CoV-2.IMPORTANCE The pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to >35 million confirmed cases and >1 million fatalities worldwide. SARS-CoV-2 mainly replicates in human airway epithelia in COVID-19 patients. In this study, we used in vitro cultures of polarized human bronchial airway epithelium to model SARS-CoV-2 replication for a period of 21 to 51 days. We discovered that in vitro airway epithelial cultures endure a long-lasting SARS-CoV-2 propagation with recurrent peaks of progeny virus release at an interval of approximately 7 to 10 days. Our study also revealed that SARS-CoV-2 infection causes airway epithelia damage with disruption of tight junction function and loss of cilia. Importantly, SARS-CoV-2 exhibits a polarity of infection in airway epithelium only from the apical membrane; it infects ciliated and goblet cells but not basal and club cells. Furthermore, the productive infection of SARS-CoV-2 requires a high viral load of over 2.5 × 105 virions per cm2 of epithelium. Our study highlights that the proliferation of airway basal cells and regeneration of airway epithelium may contribute to the recurrent infections.
Collapse
Affiliation(s)
- Siyuan Hao
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kang Ning
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Cagla Aksu Kuz
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kai Vorhies
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
159
|
Canonical WNT pathway is activated in the airway epithelium in chronic obstructive pulmonary disease. EBioMedicine 2020; 61:103034. [PMID: 33045470 PMCID: PMC7559244 DOI: 10.1016/j.ebiom.2020.103034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a devastating lung disease, mainly due to cigarette smoking, which represents the third cause of mortality worldwide. The mechanisms driving its epithelial salient features remain largely elusive. We aimed to evaluate the activation and the role of the canonical, β-catenin-dependant WNT pathway in the airway epithelium from COPD patients. METHODS The WNT/β-catenin pathway was first assessed by WNT-targeted RNA sequencing of the air/liquid interface-reconstituted bronchial epithelium from COPD and control patients. Airway expression of total and active β-catenin was assessed in lung sections, as well as WNT components in laser-microdissected airway epithelium. Finally, we evaluated the role of WNT at the bronchial epithelial level by modulating the pathway in the reconstituted COPD epithelium. FINDINGS We show that the WNT/β-catenin pathway is upregulated in the COPD airway epithelium as compared with that of non-smokers and control smokers, in targeted RNA-sequencing of in vitro reconstituted airway epithelium, and in situ in lung tissue and laser-microdissected epithelium. Extrinsic activation of this pathway in COPD-derived airway epithelium inhibited epithelial differentiation, polarity and barrier function, and induced TGF-β-related epithelial-to-mesenchymal transition (EMT). Conversely, canonical WNT inhibition increased ciliated cell numbers, epithelial polarity and barrier function, whilst inhibiting EMT, thus reversing COPD features. INTERPRETATION In conclusion, the aberrant reactivation of the canonical WNT pathway in the adult airway epithelium recapitulates the diseased phenotype observed in COPD patients, suggesting that this pathway or its downstream effectors could represent a future therapeutic target. FUNDING This study was supported by the Fondation Mont-Godinne, the FNRS and the WELBIO.
Collapse
|
160
|
Diabasana Z, Perotin JM, Belgacemi R, Ancel J, Mulette P, Delepine G, Gosset P, Maskos U, Polette M, Deslée G, Dormoy V. Nicotinic Receptor Subunits Atlas in the Adult Human Lung. Int J Mol Sci 2020; 21:ijms21207446. [PMID: 33050277 PMCID: PMC7588933 DOI: 10.3390/ijms21207446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels responsible for rapid neural and neuromuscular signal transmission. Although it is well documented that 16 subunits are encoded by the human genome, their presence in airway epithelial cells (AECs) remains poorly understood, and contribution to pathology is mainly discussed in the context of cancer. We analysed nAChR subunit expression in the human lungs of smokers and non-smokers using transcriptomic data for whole-lung tissues, isolated large AECs, and isolated small AECs. We identified differential expressions of nAChRs in terms of detection and repartition in the three modalities. Smoking-associated alterations were also unveiled. Then, we identified an nAChR transcriptomic print at the single-cell level. Finally, we reported the localizations of detectable nAChRs in bronchi and large bronchioles. Thus, we compiled the first complete atlas of pulmonary nAChR subunits to open new avenues to further unravel the involvement of these receptors in lung homeostasis and respiratory diseases.
Collapse
Affiliation(s)
- Zania Diabasana
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
| | - Jeanne-Marie Perotin
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Randa Belgacemi
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
| | - Julien Ancel
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Pauline Mulette
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Gonzague Delepine
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Department of Thoracic Surgery, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Philippe Gosset
- CNRS UMR9017, Inserm U1019, University of Lille, Centre Hospitalier Régional Universitaire de Lille, Institut Pasteur, CIIL—Center for Infection and Immunity of Lille, 59000 Lille, France;
| | - Uwe Maskos
- Integrative Neurobiology of Cholinergic Systems, Institut Pasteur, CNRS UMR 3571, 75015 Paris, France;
| | - Myriam Polette
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Department of Biopathology, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Gaëtan Deslée
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Valérian Dormoy
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Correspondence: ; Tel.: +33-(0)3-10-73-62-28; Fax: +33-(0)3-26-06-58-61
| |
Collapse
|
161
|
Ortiz ME, Thurman A, Pezzulo AA, Leidinger MR, Klesney-Tait JA, Karp PH, Tan P, Wohlford-Lenane C, McCray PB, Meyerholz DK. Heterogeneous expression of the SARS-Coronavirus-2 receptor ACE2 in the human respiratory tract. EBioMedicine 2020; 60:102976. [PMID: 32971472 PMCID: PMC7505653 DOI: 10.1016/j.ebiom.2020.102976] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Zoonotically transmitted coronaviruses are responsible for three disease outbreaks since 2002, including the current COVID-19 pandemic, caused by SARS-CoV-2. Its efficient transmission and range of disease severity raise questions regarding the contributions of virus-receptor interactions. ACE2 is a host ectopeptidase and the receptor for SARS-CoV-2. Numerous reports describe ACE2 mRNA abundance and tissue distribution; however, mRNA abundance is not always representative of protein levels. Currently, there is limited data evaluating ACE2 protein and its correlation with other SARS-CoV-2 susceptibility factors. MATERIALS AND METHODS We systematically examined the human upper and lower respiratory tract using single-cell RNA sequencing and immunohistochemistry to determine receptor expression and evaluated its association with risk factors for severe COVID-19. FINDINGS Our results reveal that ACE2 protein is highest within regions of the sinonasal cavity and pulmonary alveoli, sites of presumptive viral transmission and severe disease development, respectively. In the lung parenchyma, ACE2 protein was found on the apical surface of a small subset of alveolar type II cells and colocalized with TMPRSS2, a cofactor for SARS-CoV2 entry. ACE2 protein was not increased by pulmonary risk factors for severe COVID-19. Additionally, ACE2 protein was not reduced in children, a demographic with a lower incidence of severe COVID-19. INTERPRETATION These results offer new insights into ACE2 protein localization in the human respiratory tract and its relationship with susceptibility factors to COVID-19.
Collapse
Affiliation(s)
- Miguel E Ortiz
- Departments of Pediatrics, University of Iowa College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Andrew Thurman
- Departments of Internal Medicine, University of Iowa College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Alejandro A Pezzulo
- Departments of Internal Medicine, University of Iowa College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mariah R Leidinger
- Departments of Pathology, University of Iowa College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Julia A Klesney-Tait
- Departments of Internal Medicine, University of Iowa College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Philip H Karp
- Departments of Internal Medicine, University of Iowa College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ping Tan
- Departments of Internal Medicine, University of Iowa College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Christine Wohlford-Lenane
- Departments of Pediatrics, University of Iowa College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Paul B McCray
- Departments of Pediatrics, University of Iowa College of Medicine, University of Iowa, Iowa City, IA, USA.
| | - David K Meyerholz
- Departments of Pathology, University of Iowa College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
162
|
Parekh KR, Nawroth J, Pai A, Busch SM, Senger CN, Ryan AL. Stem cells and lung regeneration. Am J Physiol Cell Physiol 2020; 319:C675-C693. [PMID: 32783658 PMCID: PMC7654650 DOI: 10.1152/ajpcell.00036.2020] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
The ability to replace defective cells in an airway with cells that can engraft, integrate, and restore a functional epithelium could potentially cure a number of lung diseases. Progress toward the development of strategies to regenerate the adult lung by either in vivo or ex vivo targeting of endogenous stem cells or pluripotent stem cell derivatives is limited by our fundamental lack of understanding of the mechanisms controlling human lung development, the precise identity and function of human lung stem and progenitor cell types, and the genetic and epigenetic control of human lung fate. In this review, we intend to discuss the known stem/progenitor cell populations, their relative differences between rodents and humans, their roles in chronic lung disease, and their therapeutic prospects. Additionally, we highlight the recent breakthroughs that have increased our understanding of these cell types. These advancements include novel lineage-traced animal models and single-cell RNA sequencing of human airway cells, which have provided critical information on the stem cell subtypes, transition states, identifying cell markers, and intricate pathways that commit a stem cell to differentiate or to maintain plasticity. As our capacity to model the human lung evolves, so will our understanding of lung regeneration and our ability to target endogenous stem cells as a therapeutic approach for lung disease.
Collapse
Affiliation(s)
- Kalpaj R Parekh
- Department Surgery, Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Janna Nawroth
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Albert Pai
- Department Surgery, Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Shana M Busch
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Christiana N Senger
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Amy L Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
163
|
Jakhmola S, Indari O, Chatterjee S, Jha HC. SARS-CoV-2, an Underestimated Pathogen of the Nervous System. SN COMPREHENSIVE CLINICAL MEDICINE 2020; 2:2137-2146. [PMID: 33015550 PMCID: PMC7520376 DOI: 10.1007/s42399-020-00522-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
Numerous clinical studies have reported neurological symptoms in COVID-19 patients since the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), apart from the atypical signs of pneumonia. Angiotensin-converting enzyme-2 (ACE-2), a potential receptor for SARS-CoV-2 entry, is expressed on various brain cells and cerebral parts, i.e., subfornical organ, paraventricular nucleus, nucleus of the tractus solitarius, and rostral ventrolateral medulla, as well as in non-cardiovascular areas such as the motor cortex and raphe. The resident CNS cells like astrocytes and microglia also express ACE-2, thus highlighting the vulnerability of the nervous system to SARS-CoV-2 infection. Additionally, transmembrane serine protease 2 (TMPRSS2) and furin facilitate virus entry into the host. Besides, the probable routes of virus entry into the nervous system include the hematogenic pathway, through the vagus, the olfactory nerve, or the enteric nervous system. However, the trajectory of SARS-CoV-2 to the brain needs investigation. Furthermore, a Th17-mediated cytokine storm is seen in COVID-19 cases with higher levels of IL-1β/2/7/8/9/10/17, GM-CSF, IFN-γ, TNF-α, CXCL-10, MCP1, and MIP1α/β. Some cytokines can cross the blood-brain barrier and activate the brain's immune cells to produce neural cytokines, leading to neuronal dysfunctions. Nonetheless, most of the neurological conditions developed due to viral infections may not have effective and registered treatments. Although, some antivirals may inhibit the virus-mediated pathogenesis and prove to be suitable in COVID-19 treatment. Therefore, clinicians' and researchers' collective expertise may unravel the potential of SARS-CoV-2 infection to prevent short-term and long-term CNS damage.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Infection Bio-engineering Group, Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Lab No. 302, School Building, Indore, Madhya Pradesh 453552 India
| | - Omkar Indari
- Infection Bio-engineering Group, Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Lab No. 302, School Building, Indore, Madhya Pradesh 453552 India
| | - Sayantani Chatterjee
- Infection Bio-engineering Group, Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Lab No. 302, School Building, Indore, Madhya Pradesh 453552 India
| | - Hem Chandra Jha
- Infection Bio-engineering Group, Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Lab No. 302, School Building, Indore, Madhya Pradesh 453552 India
| |
Collapse
|
164
|
Singh M, Bansal V, Feschotte C. A Single-Cell RNA Expression Map of Human Coronavirus Entry Factors. Cell Rep 2020; 32:108175. [PMID: 32946807 PMCID: PMC7470764 DOI: 10.1016/j.celrep.2020.108175] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/15/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
To predict the tropism of human coronaviruses, we profile 28 SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) using single-cell transcriptomics across various healthy human tissues. SCARFs include cellular factors both facilitating and restricting viral entry. Intestinal goblet cells, enterocytes, and kidney proximal tubule cells appear highly permissive to SARS-CoV-2, consistent with clinical data. Our analysis also predicts non-canonical entry paths for lung and brain infections. Spermatogonial cells and prostate endocrine cells also appear to be permissive to SARS-CoV-2 infection, suggesting male-specific vulnerabilities. Both pro- and anti-viral factors are highly expressed within the nasal epithelium, with potential age-dependent variation, predicting an important battleground for coronavirus infection. Our analysis also suggests that early embryonic and placental development are at moderate risk of infection. Lastly, SCARF expression appears broadly conserved across a subset of primate organs examined. Our study establishes a resource for investigations of coronavirus biology and pathology.
Collapse
Affiliation(s)
- Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Vikas Bansal
- Biomedical Data Science and Machine Learning Group, German Center for Neurodegenerative Diseases, Tübingen 72076, Germany; Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen 37075, Germany.
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
165
|
Choice of Differentiation Media Significantly Impacts Cell Lineage and Response to CFTR Modulators in Fully Differentiated Primary Cultures of Cystic Fibrosis Human Airway Epithelial Cells. Cells 2020; 9:cells9092137. [PMID: 32967385 PMCID: PMC7565948 DOI: 10.3390/cells9092137] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
In vitro cultures of primary human airway epithelial cells (hAECs) grown at air–liquid interface have become a valuable tool to study airway biology under normal and pathologic conditions, and for drug discovery in lung diseases such as cystic fibrosis (CF). An increasing number of different differentiation media, are now available, making comparison of data between studies difficult. Here, we investigated the impact of two common differentiation media on phenotypic, transcriptomic, and physiological features of CF and non-CF epithelia. Cellular architecture and density were strongly impacted by the choice of medium. RNA-sequencing revealed a shift in airway cell lineage; one medium promoting differentiation into club and goblet cells whilst the other enriched the growth of ionocytes and multiciliated cells. Pathway analysis identified differential expression of genes involved in ion and fluid transport. Physiological assays (intracellular/extracellular pH, Ussing chamber) specifically showed that ATP12A and CFTR function were altered, impacting pH and transepithelial ion transport in CF hAECs. Importantly, the two media differentially affected functional responses to CFTR modulators. We argue that the effect of growth conditions should be appropriately determined depending on the scientific question and that our study can act as a guide for choosing the optimal growth medium for specific applications.
Collapse
|
166
|
Barrantes FJ. Central Nervous System Targets and Routes for SARS-CoV-2: Current Views and New Hypotheses. ACS Chem Neurosci 2020; 11:2793-2803. [PMID: 32845609 PMCID: PMC7460807 DOI: 10.1021/acschemneuro.0c00434] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 01/08/2023] Open
Abstract
As the coronavirus disease 2019 (COVID-19) pandemic unfolds, neurological signs and symptoms reflect the involvement of targets beyond the primary lung effects. The etiological agent of COVID-19, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits neurotropism for central and peripheral nervous systems. Various infective mechanisms and paths can be exploited by the virus to reach the central nervous system, some of which bypass the blood-brain barrier; others alter its integrity. Numerous studies have established beyond doubt that the membrane-bound metalloprotease angiotensin-converting enzyme 2 (ACE2) performs the role of SARS-CoV-2 host-cell receptor. Histochemical studies and more recently transcriptomics of mRNA have dissected the cellular localization of the ACE2 enzyme in various tissues, including the central nervous system. Epithelial cells lining the nasal mucosae, the upper respiratory tract, and the oral cavity, bronchoalveolar cells type II in the pulmonary parenchyma, and intestinal enterocytes display ACE2 binding sites at their cell surfaces, making these epithelial mucosae the most likely viral entry points. Neuronal and glial cells and endothelial cells in the central nervous system also express ACE2. This short review analyzes the known entry points and routes followed by the SARS-CoV-2 to reach the central nervous system and postulates new hypothetical pathways stemming from the enterocytes lining the intestinal lumen.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Institute of Biomedical Research (BIOMED),
UCA-CONICET, Av. Alicia Moreau de
Justo 1600, C1107AFF Buenos Aires, Argentina
| |
Collapse
|
167
|
Hao S, Ning K, Kuz CA, Vorhies K, Yan Z, Qiu J. Long Period Modeling SARS-CoV-2 Infection of in Vitro Cultured Polarized Human Airway Epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32869024 DOI: 10.1101/2020.08.27.271130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates throughout human airways. The polarized human airway epithelium (HAE) cultured at an airway-liquid interface (HAE-ALI) is an in vitro model mimicking the in vivo human mucociliary airway epithelium and supports the replication of SARS-CoV-2. However, previous studies only characterized short-period SARS-CoV-2 infection in HAE. In this study, continuously monitoring the SARS-CoV-2 infection in HAE-ALI cultures for a long period of up to 51 days revealed that SARS-CoV-2 infection was long lasting with recurrent replication peaks appearing between an interval of approximately 7-10 days, which was consistent in all the tested HAE-ALI cultures derived from 4 lung bronchi of independent donors. We also identified that SARS-CoV-2 does not infect HAE from the basolateral side, and the dominant SARS-CoV-2 permissive epithelial cells are ciliated cells and goblet cells, whereas virus replication in basal cells and club cells was not detectable. Notably, virus infection immediately damaged the HAE, which is demonstrated by dispersed Zonula occludens-1 (ZO-1) expression without clear tight junctions and partial loss of cilia. Importantly, we identified that SARS-CoV-2 productive infection of HAE requires a high viral load of 2.5 × 10 5 virions per cm 2 of epithelium. Thus, our studies highlight the importance of a high viral load and that epithelial renewal initiates and maintains a recurrent infection of HAE with SARS-CoV-2.
Collapse
|
168
|
Lebeau G, Vagner D, Frumence É, Ah-Pine F, Guillot X, Nobécourt E, Raffray L, Gasque P. Deciphering SARS-CoV-2 Virologic and Immunologic Features. Int J Mol Sci 2020; 21:E5932. [PMID: 32824753 PMCID: PMC7460647 DOI: 10.3390/ijms21165932] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 and its associated pathology, COVID-19, have been of particular concerns these last months due to the worldwide burden they represent. The number of cases requiring intensive care being the critical point in this epidemic, a better understanding of the pathophysiology leading to these severe cases is urgently needed. Tissue lesions can be caused by the pathogen or can be driven by an overwhelmed immune response. Focusing on SARS-CoV-2, we and others have observed that this virus can trigger indeed an immune response that can be dysregulated in severe patients and leading to further injury to multiple organs. The purpose of the review is to bring to light the current knowledge about SARS-CoV-2 virologic and immunologic features. Thus, we address virus biology, life cycle, tropism for many organs and how ultimately it will affect several host biological and physiological functions, notably the immune response. Given that therapeutic avenues are now highly warranted, we also discuss the immunotherapies available to manage the infection and the clinical outcomes.
Collapse
Affiliation(s)
- Grégorie Lebeau
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Laboratoire de Biologie, Secteur Laboratoire d’immunologie Clinique et Expérimentale de la Zone de l’océan Indien (LICE-OI), Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France
| | - Damien Vagner
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Platform CYROI, 2 rue Maxime Rivière, 97491 Sainte Clotilde, La Réunion, France
| | - Étienne Frumence
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Laboratoire de Biologie, Secteur Laboratoire d’immunologie Clinique et Expérimentale de la Zone de l’océan Indien (LICE-OI), Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France
| | - Franck Ah-Pine
- Service d’anatomo-Pathologie, Centre Hospitalier Universitaire Sud Réunion, 97410 Saint Pierre, France;
| | - Xavier Guillot
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Service de Rhumatologie, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France
| | - Estelle Nobécourt
- Service d’endocrinologie Diabétologie, Centre Hospitalier Universitaire Sud Réunion, 97410 Saint Pierre, France;
- Université de Formation et de Recherche Santé, Université de la Réunion, 97400 Saint-Denis, France
| | - Loïc Raffray
- Service de Médecine Interne, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France;
| | - Philippe Gasque
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Laboratoire de Biologie, Secteur Laboratoire d’immunologie Clinique et Expérimentale de la Zone de l’océan Indien (LICE-OI), Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
169
|
Ortiz Bezara ME, Thurman A, Pezzulo AA, Leidinger MR, Klesney-Tait JA, Karp PH, Tan P, Wohlford-Lenane C, McCray PB, Meyerholz DK. Heterogeneous expression of the SARS-Coronavirus-2 receptor ACE2 in the human respiratory tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.04.22.056127. [PMID: 32577664 PMCID: PMC7302220 DOI: 10.1101/2020.04.22.056127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Zoonotically transmitted coronaviruses are responsible for three disease outbreaks since 2002, including the current COVID-19 pandemic, caused by SARS-CoV-2. Its efficient transmission and range of disease severity raise questions regarding the contributions of virus-receptor interactions. ACE2 is a host ectopeptidase and the receptor for SARS-CoV-2. Numerous reports describe ACE2 mRNA abundance and tissue distribution; however, mRNA abundance is not always representative of protein levels. Currently, there is limited data evaluating ACE2 protein and its correlation with other SARS-CoV-2 susceptibility factors. MATERIALS AND METHODS We systematically examined the human upper and lower respiratory tract using single-cell RNA sequencing and immunohistochemistry to determine receptor expression and evaluated its association with risk factors for severe COVID-19. FINDINGS Our results reveal that ACE2 protein is highest within regions of the sinonasal cavity and pulmonary alveoli, sites of presumptive viral transmission and severe disease development, respectively. In the lung parenchyma, ACE2 protein was found on the apical surface of a small subset of alveolar type II cells and colocalized with TMPRSS2, a cofactor for SARS-CoV2 entry. ACE2 protein was not increased by pulmonary risk factors for severe COVID-19. Additionally, ACE2 protein was not reduced in children, a demographic with a lower incidence of severe COVID-19. INTERPRETATION These results offer new insights into ACE2 protein localization in the human respiratory tract and its relationship with susceptibility factors to COVID-19.
Collapse
Affiliation(s)
- Miguel E. Ortiz Bezara
- Departments of Pediatrics, University of Iowa College of Medicine, University of Iowa, Iowa City, IA USA
| | - Andrew Thurman
- Internal Medicine, University of Iowa College of Medicine, University of Iowa, Iowa City, IA USA
| | - Alejandro A. Pezzulo
- Internal Medicine, University of Iowa College of Medicine, University of Iowa, Iowa City, IA USA
| | - Mariah R. Leidinger
- Pathology, University of Iowa College of Medicine, University of Iowa, Iowa City, IA USA
| | - Julia A. Klesney-Tait
- Internal Medicine, University of Iowa College of Medicine, University of Iowa, Iowa City, IA USA
| | - Philip H. Karp
- Internal Medicine, University of Iowa College of Medicine, University of Iowa, Iowa City, IA USA
| | - Ping Tan
- Internal Medicine, University of Iowa College of Medicine, University of Iowa, Iowa City, IA USA
| | - Christine Wohlford-Lenane
- Departments of Pediatrics, University of Iowa College of Medicine, University of Iowa, Iowa City, IA USA
| | - Paul B. McCray
- Departments of Pediatrics, University of Iowa College of Medicine, University of Iowa, Iowa City, IA USA
| | - David K. Meyerholz
- Pathology, University of Iowa College of Medicine, University of Iowa, Iowa City, IA USA
| |
Collapse
|
170
|
Ancel J, Belgacemi R, Perotin JM, Diabasana Z, Dury S, Dewolf M, Bonnomet A, Lalun N, Birembaut P, Polette M, Deslée G, Dormoy V. Sonic hedgehog signalling as a potential endobronchial biomarker in COPD. Respir Res 2020; 21:207. [PMID: 32767976 PMCID: PMC7412648 DOI: 10.1186/s12931-020-01478-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The hedgehog (HH) pathway has been associated with chronic obstructive pulmonary disease (COPD) in genome-wide association studies and recent studies suggest that HH signalling could be altered in COPD. We therefore used minimally invasive endobronchial procedures to assess activation of the HH pathway including the main transcription factor, Gli2, and the ligand, Sonic HH (Shh). METHODS Thirty non-COPD patients and 28 COPD patients were included. Bronchial brushings, bronchoalveolar lavage fluid (BALF) and bronchial biopsies were obtained from fiberoptic bronchoscopy. Characterization of cell populations and subcellular localization were evaluated by immunostaining. ELISA and RNAseq analysis were performed to identify Shh proteins in BAL and transcripts on lung tissues from non-COPD and COPD patients with validation in an external and independent cohort. RESULTS Compared to non-COPD patients, COPD patients exhibited a larger proportion of basal cells in bronchial brushings (26 ± 11% vs 13 ± 6%; p < 0.0001). Airway basal cells of COPD subjects presented less intense nuclear staining for Gli2 in bronchial brushings and biopsies (p < 0.05). Bronchial BALF from COPD patients contained lower Shh concentrations than non-COPD BALF (12.5 vs 40.9 pg/mL; p = 0.002); SHH transcripts were also reduced in COPD lungs in the validation cohort (p = 0.0001). CONCLUSION This study demonstrates the feasibility of assessing HH pathway activation in respiratory samples collected by bronchoscopy and identifies impaired bronchial epithelial HH signalling in COPD.
Collapse
Affiliation(s)
- Julien Ancel
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.,Department of Pulmonary Medicine, University Hospital of Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Randa Belgacemi
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France
| | - Jeanne-Marie Perotin
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.,Department of Pulmonary Medicine, University Hospital of Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Zania Diabasana
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France
| | - Sandra Dury
- Department of Pulmonary Medicine, University Hospital of Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Maxime Dewolf
- Department of Pulmonary Medicine, University Hospital of Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Arnaud Bonnomet
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.,Platform of Cellular and Tissular Imaging (PICT), 51097, Reims, France
| | - Nathalie Lalun
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France
| | - Philippe Birembaut
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.,University Hospital of Reims, Hôpital Maison Blanche, Laboratoire de Biopathologie, 51092, Reims, France
| | - Myriam Polette
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.,University Hospital of Reims, Hôpital Maison Blanche, Laboratoire de Biopathologie, 51092, Reims, France
| | - Gaëtan Deslée
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.,Department of Pulmonary Medicine, University Hospital of Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Valérian Dormoy
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.
| |
Collapse
|
171
|
Jackson ND, Everman JL, Chioccioli M, Feriani L, Goldfarbmuren KC, Sajuthi SP, Rios CL, Powell R, Armstrong M, Gomez J, Michel C, Eng C, Oh SS, Rodriguez-Santana J, Cicuta P, Reisdorph N, Burchard EG, Seibold MA. Single-Cell and Population Transcriptomics Reveal Pan-epithelial Remodeling in Type 2-High Asthma. Cell Rep 2020; 32:107872. [PMID: 32640237 PMCID: PMC8046336 DOI: 10.1016/j.celrep.2020.107872] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
The type 2 cytokine-high asthma endotype (T2H) is characterized by IL-13-driven mucus obstruction of the airways. To further investigate this incompletely understood pathobiology, we characterize IL-13 effects on human airway epithelial cell cultures using single-cell RNA sequencing, finding that IL-13 generates a distinctive transcriptional state for each cell type. Specifically, we discover a mucus secretory program induced by IL-13 in all cell types which converts both mucus and defense secretory cells into a metaplastic state with emergent mucin production and secretion, while leading to ER stress and cell death in ciliated cells. The IL-13-remodeled epithelium secretes a pathologic, mucin-imbalanced, and innate immunity-depleted proteome that arrests mucociliary motion. Signatures of IL-13-induced cellular remodeling are mirrored by transcriptional signatures characteristic of the nasal airway epithelium within T2H versus T2-low asthmatic children. Our results reveal the epithelium-wide scope of T2H asthma and present candidate therapeutic targets for restoring normal epithelial function.
Collapse
Affiliation(s)
- Nathan D Jackson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Jamie L Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | | | - Luigi Feriani
- Department of Physics, University of Cambridge, Cambridge, CB2 3AX, UK
| | | | - Satria P Sajuthi
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Cydney L Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Roger Powell
- Department of Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO 80045, USA
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO 80045, USA
| | - Joe Gomez
- Department of Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO 80045, USA
| | - Cole Michel
- Department of Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO 80045, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sam S Oh
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Pietro Cicuta
- Department of Physics, University of Cambridge, Cambridge, CB2 3AX, UK
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO 80045, USA
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA; Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado-AMC, Aurora, CO 80045, USA.
| |
Collapse
|
172
|
COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat Biotechnol 2020; 38:970-979. [DOI: 10.1038/s41587-020-0602-4] [Citation(s) in RCA: 616] [Impact Index Per Article: 123.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
|
173
|
Bilinska K, Jakubowska P, von Bartheld CS, Butowt R. Expression of the SARS-CoV-2 Entry Proteins, ACE2 and TMPRSS2, in Cells of the Olfactory Epithelium: Identification of Cell Types and Trends with Age. ACS Chem Neurosci 2020; 11:1555-1562. [PMID: 32379417 PMCID: PMC7241737 DOI: 10.1021/acschemneuro.0c00210] [Citation(s) in RCA: 305] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022] Open
Abstract
The COVID-19 pandemic revealed that there is a loss of smell in many patients, including in infected but otherwise asymptomatic individuals. The underlying mechanisms for the olfactory symptoms are unclear. Using a mouse model, we determined whether cells in the olfactory epithelium express the obligatory receptors for entry of the SARS-CoV-2 virus by using RNAseq, RT-PCR, in situ hybridization, Western blot, and immunocytochemistry. We show that the cell surface protein ACE2 and the protease TMPRSS2 are expressed in sustentacular cells of the olfactory epithelium but not, or much less, in most olfactory receptor neurons. These data suggest that sustentacular cells are involved in SARS-CoV-2 virus entry and impairment of the sense of smell in COVID-19 patients. We also show that expression of the entry proteins increases in animals of old age. This may explain, if true also in humans, why individuals of older age are more susceptible to the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Katarzyna Bilinska
- Department of Molecular Cell Genetics, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, uI. Curie Sklodowskiej 9, 85-94, Bydgoszcz, Poland
| | - Patrycja Jakubowska
- Department of Molecular Cell Genetics, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, uI. Curie Sklodowskiej 9, 85-94, Bydgoszcz, Poland
| | - Christopher S. von Bartheld
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Rafal Butowt
- Department of Molecular Cell Genetics, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, uI. Curie Sklodowskiej 9, 85-94, Bydgoszcz, Poland
| |
Collapse
|
174
|
Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, Cao Y, Yousif AS, Bals J, Hauser BM, Feldman J, Muus C, Wadsworth MH, Kazer SW, Hughes TK, Doran B, Gatter GJ, Vukovic M, Taliaferro F, Mead BE, Guo Z, Wang JP, Gras D, Plaisant M, Ansari M, Angelidis I, Adler H, Sucre JMS, Taylor CJ, Lin B, Waghray A, Mitsialis V, Dwyer DF, Buchheit KM, Boyce JA, Barrett NA, Laidlaw TM, Carroll SL, Colonna L, Tkachev V, Peterson CW, Yu A, Zheng HB, Gideon HP, Winchell CG, Lin PL, Bingle CD, Snapper SB, Kropski JA, Theis FJ, Schiller HB, Zaragosi LE, Barbry P, Leslie A, Kiem HP, Flynn JL, Fortune SM, Berger B, Finberg RW, Kean LS, Garber M, Schmidt AG, Lingwood D, Shalek AK, Ordovas-Montanes J. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell 2020; 181:1016-1035.e19. [PMID: 32413319 PMCID: PMC7252096 DOI: 10.1016/j.cell.2020.04.035] [Citation(s) in RCA: 1786] [Impact Index Per Article: 357.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
There is pressing urgency to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2), which causes the disease COVID-19. SARS-CoV-2 spike (S) protein binds angiotensin-converting enzyme 2 (ACE2), and in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2), promotes cellular entry. The cell subsets targeted by SARS-CoV-2 in host tissues and the factors that regulate ACE2 expression remain unknown. Here, we leverage human, non-human primate, and mouse single-cell RNA-sequencing (scRNA-seq) datasets across health and disease to uncover putative targets of SARS-CoV-2 among tissue-resident cell subsets. We identify ACE2 and TMPRSS2 co-expressing cells within lung type II pneumocytes, ileal absorptive enterocytes, and nasal goblet secretory cells. Strikingly, we discovered that ACE2 is a human interferon-stimulated gene (ISG) in vitro using airway epithelial cells and extend our findings to in vivo viral infections. Our data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection.
Collapse
Affiliation(s)
- Carly G K Ziegler
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA 02115, USA; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Samuel J Allon
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah K Nyquist
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ian M Mbano
- Africa Health Research Institute, Durban, South Africa; School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Vincent N Miao
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA 02115, USA; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Constantine N Tzouanas
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA 02115, USA; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yuming Cao
- University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ashraf S Yousif
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Julia Bals
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Blake M Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Muus
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Marc H Wadsworth
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Samuel W Kazer
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Travis K Hughes
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin Doran
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA
| | - G James Gatter
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marko Vukovic
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Faith Taliaferro
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA
| | - Benjamin E Mead
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhiru Guo
- University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jennifer P Wang
- University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Delphine Gras
- Aix-Marseille University, INSERM, INRA, C2VN, Marseille, France
| | - Magali Plaisant
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis, France
| | - Meshal Ansari
- Comprehensive Pneumology Center & Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany; German Center for Lung Research, Munich, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center & Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany; German Center for Lung Research, Munich, Germany
| | - Heiko Adler
- German Center for Lung Research, Munich, Germany; Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Munich, Germany
| | - Jennifer M S Sucre
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chase J Taylor
- Divison of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brian Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Avinash Waghray
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vanessa Mitsialis
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Daniel F Dwyer
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kathleen M Buchheit
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Joshua A Boyce
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Nora A Barrett
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tanya M Laidlaw
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | - Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Dana Farber Cancer Institute, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Christopher W Peterson
- Stem Cell & Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Alison Yu
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Division of Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA 98145, USA
| | - Hengqi Betty Zheng
- University of Washington, Seattle, WA 98195, USA; Division of Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA 98145, USA
| | - Hannah P Gideon
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Caylin G Winchell
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Philana Ling Lin
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Colin D Bingle
- Department of Infection, Immunity & Cardiovascular Disease, The Medical School and The Florey Institute for Host Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan A Kropski
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37240, USA; Department of Veterans Affairs Medical Center, Nashville, TN 37212, USA
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center & Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany; German Center for Lung Research, Munich, Germany
| | | | - Pascal Barbry
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis, France
| | - Alasdair Leslie
- Africa Health Research Institute, Durban, South Africa; School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Infection & Immunity, University College London, London, UK
| | - Hans-Peter Kiem
- Stem Cell & Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - JoAnne L Flynn
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sarah M Fortune
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Bonnie Berger
- Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert W Finberg
- University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Dana Farber Cancer Institute, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Manuel Garber
- University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Lingwood
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Alex K Shalek
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA 02115, USA; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Program in Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Jose Ordovas-Montanes
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
175
|
Singh M, Bansal V, Feschotte C. A Single-Cell RNA Expression Map of Human Coronavirus Entry Factors. SSRN 2020:3611279. [PMID: 32714119 PMCID: PMC7366802 DOI: 10.2139/ssrn.3611279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 05/27/2020] [Indexed: 02/06/2023]
Abstract
To predict the tropism of human coronaviruses, we profile 28 SCARFs using scRNA-seq data from a wide range of healthy human tissues. SCARFs include cellular factors both facilitating and restricting viral entry. Among adult organs, enterocytes and goblet cells of small intestine and colon, kidney proximal tubule cells, and gallbladder basal cells appear permissive to SARS-CoV-2, consistent with clinical data. Our analysis also suggests alternate entry paths for SARS-CoV-2 infection of the lung, CNS, and heart. We predict spermatogonial cells and prostate endocrine cells, but not ovarian cells, are highly permissive to SARS-CoV-2, suggesting male-specific vulnerabilities. Early embryonic and placental development show a moderate risk of infection. The nasal epithelium is characterized by high expression of both promoting and restricting factors and a potential age-dependent shift in SCARF expression. Lastly, SCARF expression appears broadly conserved across primate organs examined. Our study establishes an important resource for investigations of coronavirus pathology. Funding: M.S. is supported by a Presidential Postdoctoral Fellowship from Cornell University. V.B. is supported by a Career Development Fellowship at DZNE Tuebingen. Work on host-virus interactions in the Feschotte lab is funded by R35 GM122550 from the National Institutes of Health. Conflict of Interest: The authors declare that there is no conflict of interest.
Collapse
Affiliation(s)
- Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Vikas Bansal
- Biomedical Data Science and Machine Learning Group, DZNE, Tübingen, Germany
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
176
|
Dissecting the cellular specificity of smoking effects and reconstructing lineages in the human airway epithelium. Nat Commun 2020; 11:2485. [PMID: 32427931 PMCID: PMC7237663 DOI: 10.1038/s41467-020-16239-z] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoke first interacts with the lung through the cellularly diverse airway epithelium and goes on to drive development of most chronic lung diseases. Here, through single cell RNA-sequencing analysis of the tracheal epithelium from smokers and non-smokers, we generate a comprehensive atlas of epithelial cell types and states, connect these into lineages, and define cell-specific responses to smoking. Our analysis infers multi-state lineages that develop into surface mucus secretory and ciliated cells and then contrasts these to the unique specification of submucosal gland (SMG) cells. Accompanying knockout studies reveal that tuft-like cells are the likely progenitor of both pulmonary neuroendocrine cells and CFTR-rich ionocytes. Our smoking analysis finds that all cell types, including protected stem and SMG populations, are affected by smoking through both pan-epithelial smoking response networks and hundreds of cell-specific response genes, redefining the penetrance and cellular specificity of smoking effects on the human airway epithelium.
Collapse
|
177
|
Singh M, Bansal V, Feschotte C. A single-cell RNA expression map of human coronavirus entry factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.05.08.084806. [PMID: 32511375 PMCID: PMC7263504 DOI: 10.1101/2020.05.08.084806] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To predict the tropism of human coronaviruses, we profile 28 SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) using single-cell RNA-sequencing data from a wide range of healthy human tissues. SCARFs include cellular factors both facilitating and restricting viral entry. Among adult organs, enterocytes and goblet cells of the small intestine and colon, kidney proximal tubule cells, and gallbladder basal cells appear most permissive to SARS-CoV-2, consistent with clinical data. Our analysis also suggests alternate entry paths for SARS-CoV-2 infection of the lung, central nervous system, and heart. We predict spermatogonial cells and prostate endocrine cells, but not ovarian cells, to be highly permissive to SARS-CoV-2, suggesting male-specific vulnerabilities. Early stages of embryonic and placental development show a moderate risk of infection. The nasal epithelium looks like another battleground, characterized by high expression of both promoting and restricting factors and a potential age-dependent shift in SCARF expression. Lastly, SCARF expression appears broadly conserved across human, chimpanzee and macaque organs examined. Our study establishes an important resource for investigations of coronavirus biology and pathology.
Collapse
Affiliation(s)
- Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Vikas Bansal
- Biomedical Data Science and Machine Learning Group, DZNE, Tübingen, Germany
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
178
|
Butowt R, Bilinska K. SARS-CoV-2: Olfaction, Brain Infection, and the Urgent Need for Clinical Samples Allowing Earlier Virus Detection. ACS Chem Neurosci 2020; 11:1200-1203. [PMID: 32283006 PMCID: PMC7160911 DOI: 10.1021/acschemneuro.0c00172] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
The novel SARS-CoV-2 virus has very high infectivity, which allows it to spread rapidly around the world. Attempts at slowing the pandemic at this stage depend on the number and quality of diagnostic tests performed. We propose that the olfactory epithelium from the nasal cavity may be a more appropriate tissue for detection of SARS-CoV-2 virus at the earliest stages, prior to onset of symptoms or even in asymptomatic people, as compared to commonly used sputum or nasopharyngeal swabs. Here we emphasize that the nasal cavity olfactory epithelium is the likely site of enhanced binding of SARS-CoV-2. Multiple non-neuronal cell types present in the olfactory epithelium express two host receptors, ACE2 and TMPRSS2 proteases, that facilitate SARS-CoV-2 binding, replication, and accumulation. This may be the underlying mechanism for the recently reported cases of smell dysfunction in patients with COVID-19. Moreover, the possibility of subsequent brain infection should be considered which begins in olfactory neurons. In addition, we discuss the possibility that olfactory receptor neurons may initiate rapid immune responses at early stages of the disease. We emphasize the need to undertake research focused on additional aspects of SARS-CoV-2 actions in the nervous system, especially in the olfactory pathway.
Collapse
Affiliation(s)
- Rafal Butowt
- L. Rydygier Collegium Medicum,
Nicolaus Copernicus University, Ul.
CurieSklodowskiej 9, 85-94 Bydgoszcz, Poland
| | - Katarzyna Bilinska
- L. Rydygier Collegium Medicum,
Nicolaus Copernicus University, Ul.
CurieSklodowskiej 9, 85-94 Bydgoszcz, Poland
| |
Collapse
|
179
|
Sungnak W, Huang N, Bécavin C, Berg M, HCA Lung Biological Network. SARS-CoV-2 Entry Genes Are Most Highly Expressed in Nasal Goblet and Ciliated Cells within Human Airways. ARXIV 2020:arXiv:2003.06122v1. [PMID: 32550242 PMCID: PMC7280877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The SARS-CoV-2 coronavirus, the etiologic agent responsible for COVID-19 coronavirus disease, is a global threat. To better understand viral tropism, we assessed the RNA expression of the coronavirus receptor, ACE2, as well as the viral S protein priming protease TMPRSS2 thought to govern viral entry in single-cell RNA-sequencing (scRNA-seq) datasets from healthy individuals generated by the Human Cell Atlas consortium. We found that ACE2, as well as the protease TMPRSS2, are differentially expressed in respiratory and gut epithelial cells. In-depth analysis of epithelial cells in the respiratory tree reveals that nasal epithelial cells, specifically goblet/secretory cells and ciliated cells, display the highest ACE2 expression of all the epithelial cells analyzed. The skewed expression of viral receptors/entry-associated proteins towards the upper airway may be correlated with enhanced transmissivity. Finally, we showed that many of the top genes associated with ACE2 airway epithelial expression are innate immune-associated, antiviral genes, highly enriched in the nasal epithelial cells. This association with immune pathways might have clinical implications for the course of infection and viral pathology, and highlights the specific significance of nasal epithelia in viral infection. Our findings underscore the importance of the availability of the Human Cell Atlas as a reference dataset. In this instance, analysis of the compendium of data points to a particularly relevant role for nasal goblet and ciliated cells as early viral targets and potential reservoirs of SARS-CoV-2 infection. This, in turn, serves as a biological framework for dissecting viral transmission and developing clinical strategies for prevention and therapy.
Collapse
Affiliation(s)
- Waradon Sungnak
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge, CB10 1SA, UK
| | - Ni Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge, CB10 1SA, UK
| | | | - Marijn Berg
- Department of Pathology and Medical Biology, University
Medical Centre Groningen, University of Groningen, 9713 AV Groningen,
Netherlands
- Groningen Research Institute for Asthma and COPD,
University Medical Centre Groningen, University of Groningen, 9713 AV Groningen,
Netherlands
| | | |
Collapse
|
180
|
Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 2020; 14:185-192. [PMID: 32170560 PMCID: PMC7088738 DOI: 10.1007/s11684-020-0754-0] [Citation(s) in RCA: 1523] [Impact Index Per Article: 304.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 11/26/2022]
Abstract
It has been known that, the novel coronavirus, 2019-nCoV, which is considered similar to SARS-CoV, invades human cells via the receptor angiotensin converting enzyme II (ACE2). Moreover, lung cells that have ACE2 expression may be the main target cells during 2019-nCoV infection. However, some patients also exhibit non-respiratory symptoms, such as kidney failure, implying that 2019-nCoV could also invade other organs. To construct a risk map of different human organs, we analyzed the single-cell RNA sequencing (scRNA-seq) datasets derived from major human physiological systems, including the respiratory, cardiovascular, digestive, and urinary systems. Through scRNA-seq data analyses, we identified the organs at risk, such as lung, heart, esophagus, kidney, bladder, and ileum, and located specific cell types (i.e., type II alveolar cells (AT2), myocardial cells, proximal tubule cells of the kidney, ileum and esophagus epithelial cells, and bladder urothelial cells), which are vulnerable to 2019-nCoV infection. Based on the findings, we constructed a risk map indicating the vulnerability of different organs to 2019-nCoV infection. This study may provide potential clues for further investigation of the pathogenesis and route of 2019-nCoV infection.
Collapse
Affiliation(s)
- Xin Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ke Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawei Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peiyi Han
- Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Hao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zeguang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
181
|
Ubags ND, Baker J, Boots A, Costa R, El-Merhie N, Fabre A, Faiz A, Heijink IH, Hiemstra PS, Lehmann M, Meiners S, Rolandsson Enes S, Bartel S. ERS International Congress, Madrid, 2019: highlights from the Basic and Translational Science Assembly. ERJ Open Res 2020; 6:00350-2019. [PMID: 32154289 PMCID: PMC7049707 DOI: 10.1183/23120541.00350-2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/26/2020] [Indexed: 11/15/2022] Open
Abstract
In this review, the Basic and Translational Sciences Assembly of the European Respiratory Society (ERS) provides an overview of the 2019 ERS International Congress highlights. In particular, we discuss how the novel and very promising technology of single cell sequencing has led to the development of a comprehensive map of the human lung, the lung cell atlas, including the discovery of novel cell types and new insights into cellular trajectories in lung health and disease. Further, we summarise recent insights in the field of respiratory infections, which can aid in a better understanding of the molecular mechanisms underlying these infections in order to develop novel vaccines and improved treatment options. Novel concepts delineating the early origins of lung disease are focused on the effects of pre- and post-natal exposures on neonatal lung development and long-term lung health. Moreover, we discuss how these early life exposures can affect the lung microbiome and respiratory infections. In addition, the importance of metabolomics and mitochondrial function analysis to subphenotype chronic lung disease patients according to their metabolic program is described. Finally, basic and translational respiratory science is rapidly moving forward and this will be beneficial for an advanced molecular understanding of the mechanisms underlying a variety of lung diseases. In the long-term this will aid in the development of novel therapeutic targeting strategies in the field of respiratory medicine. Highlights of basic and translational science presented at #ERSCongress 2019 summarising latest research on the lung cell atlas, lung infections, early origins of lung disease and the importance of metabolic alterations in the lunghttp://bit.ly/2UbdBs4
Collapse
Affiliation(s)
- Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Lausanne, Switzerland
| | - Jonathan Baker
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Agnes Boots
- Dept of Pharmacology and Toxicology, Maastricht University, Maastricht, the Netherlands
| | - Rita Costa
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Natalia El-Merhie
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Member of the DZL and the Airway Research Center North (ARCN), Borstel, Germany
| | - Aurélie Fabre
- St Vincent's University Hospital, Dublin, Ireland.,University College Dublin School of Medicine, Dublin, Ireland
| | - Alen Faiz
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life Sciences, Sydney, Australia
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Depts of Pathology & Medical Biology and Pulmonology, Groningen, The Netherlands
| | - Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Mareike Lehmann
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the DZL, Munich, Germany
| | - Sara Rolandsson Enes
- University of Vermont, Dept of Medicine, Larner College of Medicine, Burlington, VT, USA.,Lund University, Dept of Experimental Medical Science, Lund, Sweden
| | - Sabine Bartel
- University of Groningen, University Medical Center Groningen, Depts of Pathology & Medical Biology and Pulmonology, Groningen, The Netherlands
| |
Collapse
|
182
|
Using single-cell RNA sequencing to unravel cell lineage relationships in the respiratory tract. Biochem Soc Trans 2020; 48:327-336. [DOI: 10.1042/bst20191010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/07/2023]
Abstract
The respiratory tract is lined by a pseudo-stratified epithelium from the nose to terminal bronchioles. This first line of defense of the lung against external stress includes five main cell types: basal, suprabasal, club, goblet and multiciliated cells, as well as rare cells such as ionocytes, neuroendocrine and tuft/brush cells. At homeostasis, this epithelium self-renews at low rate but is able of fast regeneration upon damage. Airway epithelial cell lineages during regeneration have been investigated in the mouse by genetic labeling, mainly after injuring the epithelium with noxious agents. From these approaches, basal cells have been identified as progenitors of club, goblet and multiciliated cells, but also of ionocytes and neuroendocrine cells. Single-cell RNA sequencing, coupled to lineage inference algorithms, has independently allowed the establishment of comprehensive pictures of cell lineage relationships in both mouse and human. In line with genetic tracing experiments in mouse trachea, studies using single-cell RNA sequencing (RNAseq) have shown that basal cells first differentiate into club cells, which in turn mature into goblet cells or differentiate into multiciliated cells. In the human airway epithelium, single-cell RNAseq has identified novel intermediate populations such as deuterosomal cells, ‘hybrid’ mucous-multiciliated cells and progenitors of rare cells. Novel differentiation dynamics, such as a transition from goblet to multiciliated cells have also been discovered. The future of cell lineage relationships in the respiratory tract now resides in the combination of genetic labeling approaches with single-cell RNAseq to establish, in a definitive manner, the hallmarks of cellular lineages in normal and pathological situations.
Collapse
|
183
|
Lee DDH, Petris A, Hynds RE, O'Callaghan C. Ciliated Epithelial Cell Differentiation at Air-Liquid Interface Using Commercially Available Culture Media. Methods Mol Biol 2020; 2109:275-291. [PMID: 31707647 PMCID: PMC7116769 DOI: 10.1007/7651_2019_269] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The human nasal epithelium contains basal stem/progenitor cells that produce differentiated multiciliated and mucosecretory progeny. Basal epithelial cells can be expanded in cell culture and instructed to differentiate at an air-liquid interface using transwell membranes and differentiation media. For basal cell expansion, we have used 3T3-J2 co-culture in epithelial culture medium containing EGF, insulin, and a RHO-associated protein kinase (ROCK) inhibitor, Y-27632 (3T3 + Y). Here we describe our protocols for ciliated differentiation of these cultures at air-liquid interface and compare four commercially available differentiation media, across nine donor cell cultures (six healthy, two patients with chronic obstructive pulmonary disease (COPD), and one with primary ciliary dyskinesia (PCD)). Bright-field and immunofluorescence imaging suggested broad similarity between differentiation protocols. Subtle differences were seen in transepithelial electrical resistance (TEER), ciliary beat frequency, mucus production, and the extent to which basal cells are retained in differentiated cultures. Overall, the specific differentiation medium used in our air-liquid interface culture protocol was not a major determinant of ciliation, and our data suggest that the differentiation potential of basal cells at the outset is a more critical factor in air-liquid interface culture outcome. Detailed information on the constituents of the differentiation media was only available from one of the four manufacturers, a factor that may have profound implications in the interpretation of some research studies.
Collapse
Affiliation(s)
- Dani Do Hyang Lee
- Respiratory, Critical Care & Anaesthesia, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alina Petris
- Respiratory, Critical Care & Anaesthesia, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Christopher O'Callaghan
- Respiratory, Critical Care & Anaesthesia, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
184
|
Belgacemi R, Luczka E, Ancel J, Diabasana Z, Perotin JM, Germain A, Lalun N, Birembaut P, Dubernard X, Mérol JC, Delepine G, Polette M, Deslée G, Dormoy V. Airway epithelial cell differentiation relies on deficient Hedgehog signalling in COPD. EBioMedicine 2020; 51:102572. [PMID: 31877414 PMCID: PMC6931110 DOI: 10.1016/j.ebiom.2019.11.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hedgehog (HH) pathway is constantly under scrutiny in the context of organ development. Lung morphogenesis requires HH signalling which participates thereafter to the pulmonary homeostasis by regulating epithelial cell quiescence and repair. Since epithelial remodelling is a hallmark of Chronic Obstructive Pulmonary Disease (COPD), we investigated whether the main molecular actors of HH pathway participate to airway epithelial cell differentiation and we analysed their alterations in COPD patients. METHODS Sonic HH (Shh) secretion was assessed by ELISA in airway epithelial cell (AEC) air-liquid interface culture supernatants. HH pathway activation was evaluated by RT-qPCR, western blot and immunostaining. Inhibition of HH signalling was achieved upon Shh chelation during epithelial cell differentiation. HH pathway core components localization was investigated in lung tissues from non-COPD and COPD patients. FINDINGS We demonstrate that progenitors of AEC produced Shh responsible for the activation of HH signalling during the process of differentiation. Preventing the ligand-induced HH activation led to the establishment of a remodelled epithelium with increased number of basal cells and reduced ciliogenesis. Gli2 activating transcription factor was demonstrated as a key-element in the regulation of AEC differentiation. More importantly, Gli2 and Smo were lost in AEC from COPD patients. INTERPRETATION Our data suggest that HH pathway is crucial for airway epithelial cell differentiation and highlight its role in COPD-associated epithelial remodelling.
Collapse
Affiliation(s)
- Randa Belgacemi
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France
| | - Emilie Luczka
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France
| | - Julien Ancel
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Maison Blanche, Service de pneumologie, Reims 51092, France
| | - Zania Diabasana
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France
| | - Jeanne-Marie Perotin
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Maison Blanche, Service de pneumologie, Reims 51092, France
| | - Adeline Germain
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France
| | - Nathalie Lalun
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France
| | - Philippe Birembaut
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Maison Blanche, Laboratoire de biopathologie, Reims 51092, France
| | - Xavier Dubernard
- CHU Reims, Hôpital Robert Debré, Service d'oto-rhino-laryngologie, Reims 51092, France
| | - Jean-Claude Mérol
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Robert Debré, Service d'oto-rhino-laryngologie, Reims 51092, France
| | - Gonzague Delepine
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Robert Debré, Service de chirurgie cardio-vasculaire et thoracique, Reims 51092, France
| | - Myriam Polette
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Maison Blanche, Laboratoire de biopathologie, Reims 51092, France
| | - Gaëtan Deslée
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France; CHU Reims, Hôpital Maison Blanche, Service de pneumologie, Reims 51092, France
| | - Valérian Dormoy
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims 51097, France.
| |
Collapse
|
185
|
Varma R, Soleas JP, Waddell TK, Karoubi G, McGuigan AP. Current strategies and opportunities to manufacture cells for modeling human lungs. Adv Drug Deliv Rev 2020; 161-162:90-109. [PMID: 32835746 PMCID: PMC7442933 DOI: 10.1016/j.addr.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Chronic lung diseases remain major healthcare burdens, for which the only curative treatment is lung transplantation. In vitro human models are promising platforms for identifying and testing novel compounds to potentially decrease this burden. Directed differentiation of pluripotent stem cells is an important strategy to generate lung cells to create such models. Current lung directed differentiation protocols are limited as they do not 1) recapitulate the diversity of respiratory epithelium, 2) generate consistent or sufficient cell numbers for drug discovery platforms, and 3) establish the histologic tissue-level organization critical for modeling lung function. In this review, we describe how lung development has formed the basis for directed differentiation protocols, and discuss the utility of available protocols for lung epithelial cell generation and drug development. We further highlight tissue engineering strategies for manipulating biophysical signals during directed differentiation such that future protocols can recapitulate both chemical and physical cues present during lung development.
Collapse
Affiliation(s)
- Ratna Varma
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - John P Soleas
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Thomas K Waddell
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Alison P McGuigan
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| |
Collapse
|