151
|
Fisher WG, Yang PC, Medikonduri RK, Jafri MS. NFAT and NFkappaB activation in T lymphocytes: a model of differential activation of gene expression. Ann Biomed Eng 2006; 34:1712-28. [PMID: 17031595 PMCID: PMC1764593 DOI: 10.1007/s10439-006-9179-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 08/15/2006] [Indexed: 12/22/2022]
Abstract
Mathematical models for the regulation of the Ca(2+)-dependent transcription factors NFAT and NFkappaB that are involved in the activation of the immune and inflammatory responses in T lymphocytes have been developed. These pathways are important targets for drugs, which act as powerful immunosuppressants by suppressing activation of NFAT and NFkappaB in T cells. The models simulate activation and deactivation over physiological concentrations of Ca(2+), diacyl glycerol (DAG), and PKCtheta using single and periodic step increases. The model suggests the following: (1) the activation NFAT does not occur at low frequencies as NFAT requires calcineurin activated by Ca(2+) to remain dephosphorylated and in the nucleus; (2) NFkappaB is activated at lower Ca(2+) oscillation frequencies than NFAT as IkappaB is degraded in response to elevations in Ca(2+) allowing free NFkappaB to translocate into the nucleus; and (3) the degradation of IkappaB is essential for efficient translocation of NFkappaB to the nucleus. Through sensitivity analysis, the model also suggests that the largest controlling factor for NFAT activation is the dissociation/reassociation rate of the NFAT:calcineurin complex and the translocation rate of the complex into the nucleus and for NFkappaB is the degradation/resynthesis rate of IkappaB and the import rate of IkappaB into the nucleus.
Collapse
Affiliation(s)
- Wayne G. Fisher
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Mathematical Sciences, The University of Texas at Dallas, Dallas, TX 75083 USA
| | - Pei-Chi Yang
- Department of Bioinformatics and Computational Biology, George Mason University, 10900 University Blvd. MSN 5B3, Manassas, VA 20110 USA
| | - Ram K. Medikonduri
- Department of Mathematical Sciences, The University of Texas at Dallas, Dallas, TX 75083 USA
| | - M. Saleet Jafri
- Department of Bioinformatics and Computational Biology, George Mason University, 10900 University Blvd. MSN 5B3, Manassas, VA 20110 USA
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 20201 USA
| |
Collapse
|
152
|
Brengauz-Breitmann M, Friedman E, Savion S, Torchinsky A, Fein A, Toder V. Involvement of NF-κB in the response of embryonic cells to Methotrexate. Reprod Toxicol 2006; 22:469-78. [PMID: 16483740 DOI: 10.1016/j.reprotox.2005.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2005] [Revised: 11/28/2005] [Accepted: 12/22/2005] [Indexed: 10/25/2022]
Abstract
The involvement of NF-kappaB in the regulation of the apoptotic process was demonstrated previously, however, its exact role has not been established yet. In order to unravel mechanisms underlying teratogen-induced cell death, we tried in our present study to assess the involvement of the p65 subunit of NF-kappaB in the response of mouse embryonic fibroblasts (MEFs) to the anti-cancer drug methotrexate (MTX), using p65 knockout MEFs (p65(-/-)). Indeed, this cell line was found to be more susceptible to the exposure to MTX, demonstrated by more profound changes in cell survival, cell cycle, proliferation and the percentage of apoptotic or necrotic cells, as compared to wild type (WT) MEFs. Also, a different pattern of intracellular localization of p65 in WT cells as well as IkappaBalpha and Bax in both cell lines was detected in response to MTX. Altogether, our results implicate the p65 subunit of NF-kappaB to play an important role in the response of embryonic cells to MTX.
Collapse
Affiliation(s)
- Masha Brengauz-Breitmann
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
153
|
Aguilera C, Fernández-Majada V, Inglés-Esteve J, Rodilla V, Bigas A, Espinosa L. Efficient nuclear export of p65-IκBα complexes requires 14-3-3 proteins. J Cell Sci 2006; 119:3695-704. [PMID: 16931600 DOI: 10.1242/jcs.03086] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IκB are responsible for maintaining p65 in the cytoplasm under non-stimulating conditions and promoting the active export of p65 from the nucleus following NFκB activation to terminate the signal. We now show that 14-3-3 proteins regulate the NFκB signaling pathway by physically interacting with p65 and IκBα proteins. We identify two functional 14-3-3 binding domains in the p65 protein involving residues 38-44 and 278-283, and map the interaction region of IκBα in residues 60-65. Mutation of these 14-3-3 binding domains in p65 or IκBα results in a predominantly nuclear distribution of both proteins. TNFα treatment promotes recruitment of 14-3-3 and IκBα to NFκB-dependent promoters and enhances the binding of 14-3-3 to p65. Disrupting 14-3-3 activity by transfection with a dominant-negative 14-3-3 leads to the accumulation of nuclear p65-IκBα complexes and the constitutive association of p65 with the chromatin. In this situation, NFκB-dependent genes become unresponsive to TNFα stimulation. Together our results indicate that 14-3-3 proteins facilitate the nuclear export of IκBα-p65 complexes and are required for the appropriate regulation of NFκB signaling.
Collapse
Affiliation(s)
- Cristina Aguilera
- Centre Oncologia Molecular, IDIBELL-Institut de Recerca Oncologica, Gran Via km 2.7, Hospitalet, Barcelona 08907, Spain
| | | | | | | | | | | |
Collapse
|
154
|
Pegman PM, Smith SM, D'Souza BN, Loughran ST, Maier S, Kempkes B, Cahill PA, Simmons MJ, Gélinas C, Walls D. Epstein-Barr virus nuclear antigen 2 trans-activates the cellular antiapoptotic bfl-1 gene by a CBF1/RBPJ kappa-dependent pathway. J Virol 2006; 80:8133-8144. [PMID: 16873269 PMCID: PMC1563820 DOI: 10.1128/jvi.00278-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 05/18/2006] [Indexed: 11/20/2022] Open
Abstract
The human herpesvirus Epstein-Barr virus (EBV) establishes latency and promotes the long-term survival of its host B cell by targeting the molecular machinery controlling cell fate decisions. The cellular antiapoptotic bfl-1 gene confers protection from apoptosis under conditions of growth factor deprivation when expressed ectopically in an EBV-negative Burkitt's lymphoma-derived cell line (B. D'Souza, M. Rowe, and D. Walls, J. Virol. 74:6652-6658, 2000), and the EBV latent membrane protein 1 (LMP1) and its cellular functional homologue CD40 can both drive bfl-1 via an NF-kappaB-dependent enhancer element in the bfl-1 promoter (B. N. D'Souza, L. C. Edelstein, P. M. Pegman, S. M. Smith, S. T. Loughran, A. Clarke, A. Mehl, M. Rowe, C. Gélinas, and D. Walls, J. Virol. 78:1800-1816, 2004). Here we show that the EBV nuclear antigen 2 (EBNA2) also upregulates bfl-1. EBNA2 trans-activation of bfl-1 requires CBF1 (or RBP-J kappa), a nuclear component of the Notch signaling pathway, and there is an essential role for a core consensus CBF1-binding site on the bfl-1 promoter. trans-activation is dependent on the EBNA2-CBF1 interaction, is modulated by other EBV gene products known to interact with the CBF1 corepressor complex, and does not involve activation of NF-kappaB. bfl-1 expression is induced and maintained at high levels by the EBV growth program in a lymphoblastoid cell line, and withdrawal of either EBNA2 or LMP1 does not lead to a reduction in bfl-1 mRNA levels in this context, whereas the simultaneous loss of both EBV proteins results in a major decrease in bfl-1 expression. These findings are relevant to our understanding of EBV persistence, its role in malignant disease, and the B-cell developmental process.
Collapse
Affiliation(s)
- Pamela M Pegman
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Choi SH, Park KJ, Ahn BY, Jung G, Lai MMC, Hwang SB. Hepatitis C virus nonstructural 5B protein regulates tumor necrosis factor alpha signaling through effects on cellular IkappaB kinase. Mol Cell Biol 2006; 26:3048-59. [PMID: 16581780 PMCID: PMC1446972 DOI: 10.1128/mcb.26.8.3048-3059.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hepatitis C virus (HCV) NS5B protein is a membrane-associated phosphoprotein that possesses an RNA-dependent RNA polymerase activity. We recently reported that NS5A protein interacts with TRAF2 and modulates tumor necrosis factor alpha (TNF-alpha)-induced NF-kappaB and Jun N-terminal protein kinase (JNK). Since NS5A and NS5B are the essential components of the HCV replication complex, we examined whether NS5B could modulate TNF-alpha-induced NF-kappaB and JNK activation. In this study, we have demonstrated that TNF-alpha-induced NF-kappaB activation is inhibited by NS5B protein in HEK293 and hepatic cells. Furthermore, NS5B protein inhibited both TRAF2- and IKK-induced NF-kappaB activation. Using coimmunoprecipitation assays, we show that NS5B interacts with IKKalpha. Most importantly, NS5B protein in HCV subgenomic replicon cells interacted with endogenous IKKalpha, and then TNF-alpha-mediated IKKalpha kinase activation was significantly decreased by NS5B. Using in vitro kinase assay, we have further found that NS5B protein synergistically activated TNF-alpha-mediated JNK activity in HEK293 and hepatic cells. These data suggest that NS5B protein modulates TNF-alpha signaling pathways and may contribute to HCV pathogenesis.
Collapse
Affiliation(s)
- Soo-Ho Choi
- Ilsong Institute of Life Science, Hallym University, 1 Ockcheon-dong, Chuncheon 200-702, South Korea
| | | | | | | | | | | |
Collapse
|
156
|
Ganesh L, Yoshimoto T, Moorthy NC, Akahata W, Boehm M, Nabel EG, Nabel GJ. Protein methyltransferase 2 inhibits NF-kappaB function and promotes apoptosis. Mol Cell Biol 2006; 26:3864-74. [PMID: 16648481 PMCID: PMC1488990 DOI: 10.1128/mcb.26.10.3864-3874.2006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 12/18/2005] [Accepted: 02/18/2006] [Indexed: 11/20/2022] Open
Abstract
The protein arginine methyltransferases (PRMTs) include a family of proteins with related putative methyltransferase domains that modify chromatin and regulate cellular transcription. Although some family members, PRMT1 and PRMT4, have been implicated in transcriptional modulation or intracellular signaling, the roles of other PRMTs in diverse cellular processes have not been fully established. Here, we report that PRMT2 inhibits NF-kappaB-dependent transcription and promotes apoptosis. PRMT2 exerted this effect by blocking nuclear export of IkappaB-alpha through a leptomycin-sensitive pathway, increasing nuclear IkappaB-alpha and decreasing NF-kappaB DNA binding. The highly conserved S-adenosylmethionine-binding domain of PRMT2 mediated this effect. PRMT2 also rendered cells susceptible to apoptosis by cytokines or cytotoxic drugs, likely due to its effects on NF-kappaB. Mouse embryo fibroblasts from PRMT2 genetic knockouts showed elevated NF-kappaB activity and decreased susceptibility to apoptosis compared to wild-type or complemented cells. Taken together, these data suggest that PRMT2 inhibits cell activation and promotes programmed cell death through this NF-kappaB-dependent mechanism.
Collapse
Affiliation(s)
- Lakshmanan Ganesh
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, 40 Convent Dr., Bethesda, Maryland 20892-3005, USA
| | | | | | | | | | | | | |
Collapse
|
157
|
Oda K, Kitano H. A comprehensive map of the toll-like receptor signaling network. Mol Syst Biol 2006; 2:2006.0015. [PMID: 16738560 PMCID: PMC1681489 DOI: 10.1038/msb4100057] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 02/23/2006] [Indexed: 12/18/2022] Open
Abstract
Recognition of pathogen-associated molecular signatures is critically important in proper activation of the immune system. The toll-like receptor (TLR) signaling network is responsible for innate immune response. In mammalians, there are 11 TLRs that recognize a variety of ligands from pathogens to trigger immunological responses. In this paper, we present a comprehensive map of TLRs and interleukin 1 receptor signaling networks based on papers published so far. The map illustrates the possible existence of a main network subsystem that has a bow-tie structure in which myeloid differentiation primary response gene 88 (MyD88) is a nonredundant core element, two collateral subsystems with small GTPase and phosphatidylinositol signaling, and MyD88-independent pathway. There is extensive crosstalk between the main bow-tie network and subsystems, as well as feedback and feedforward controls. One obvious feature of this network is the fragility against removal of the nonredundant core element, which is MyD88, and involvement of collateral subsystems for generating different reactions and gene expressions for different stimuli.
Collapse
Affiliation(s)
- Kanae Oda
- The Systems Biology Institute, Tokyo, Japan
- Department of Fundamental Science and Technology, Keio University, Tokyo, Japan
| | - Hiroaki Kitano
- The Systems Biology Institute, Tokyo, Japan
- Department of Fundamental Science and Technology, Keio University, Tokyo, Japan
- Sony Computer Science Laboratories Inc., Tokyo, Japan
- The Systems Biology Institute, Suite 6A, M31 6-31-15 Jingumae, Shibuya, Tokyo 150-0001, Japan. Tel.: +81 3 5468 1661; Fax: +81 3 5468 1664; E-mail:
| |
Collapse
|
158
|
Totzke G, Essmann F, Pohlmann S, Lindenblatt C, Jänicke RU, Schulze-Osthoff K. A novel member of the IkappaB family, human IkappaB-zeta, inhibits transactivation of p65 and its DNA binding. J Biol Chem 2006; 281:12645-54. [PMID: 16513645 DOI: 10.1074/jbc.m511956200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel member of the IkappaB family, human IkappaB-zeta, was identified by a differential screening approach of apoptosis-sensitive and -resistant tumor cells. The protein consists of 6 ankyrin repeats at its COOH terminus and shares about 30% identity with other IkappaB members. IkappaB-zeta associates with both the p65 and p50 subunit of NF-kappaB and inhibits the transcriptional activity as well as the DNA binding of the transcription factor. Interestingly, IkappaB-zeta is localized in the nucleus where it aggregates in matrix-associated deacetylase bodies, indicating that IkappaB-zeta regulates nuclear NF-kappaB activity rather than its nuclear translocation from the cytoplasm. IkappaB-zeta expression itself was regulated by NF-kappaB, suggesting that its activity is controlled in a negative feedback loop. Unlike classical IkappaB proteins, IkappaB-zeta was not degraded upon cell stimulation. Treatment with tumor necrosis factor-alpha, interleukin-1beta, and lipopolysaccharide induced a strong induction of IkappaB-zeta transcripts. Expression of IkappaB-zeta was detected in different tissues including lung, liver, and in leukocytes but not in the brain. Suppression of endogenous IkappaB-zeta by RNA interference rendered cells more resistant to apoptosis, whereas overexpression of IkappaB-zeta was sufficient to induce cell death. Our results, therefore, suggest that IkappaB-zeta functions as an additional regulator of NF-kappaB activity and, hence, provides another control level for the activation of NF-kappaB-dependent target genes.
Collapse
Affiliation(s)
- Gudrun Totzke
- Institute of Molecular Medicine, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
159
|
Griffin BD, Moynagh PN. Persistent interleukin-1beta signaling causes long term activation of NFkappaB in a promoter-specific manner in human glial cells. J Biol Chem 2006; 281:10316-26. [PMID: 16455661 DOI: 10.1074/jbc.m509973200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor-kappaB (NFkappaB) is an inducible transcription factor that plays a key role in regulating the expression of a wide range of immune and inflammatory response genes. The activity of NFkappaB is controlled at multiple levels, including cytoplasmic retention with inhibitor of kappaB (IkappaB) proteins in the basal state. Persistent activation of the transcription factor is seen in numerous chronic inflammatory disease states, and we have previously demonstrated sustained activation of NFkappaB in human glial cells upon stimulation with interleukin (IL)-1beta. In these cells, NFkappaB retains DNA binding activity for up to 72 h despite the presence of resynthesized IkappaBalpha and in the absence of IkappaBbeta. Here we characterized the apparent inability of newly synthesized IkappaBalpha to terminate activation of NFkappaB in glial cells. We showed unexpectedly that newly synthesized IkappaBalpha can enter the nucleus, interact with the NFkappaB subunit p65, and export it to the cytoplasm. However, in vitro analysis of enzyme activity demonstrates that IL-1beta causes the long term activation of the IkappaB kinase complex leading to chronic phosphorylation of the newly synthesized IkappaBalpha signal response domain and persistent activation of NFkappaB. Such sustained activation of NFkappaB is dependent on the continuous presence and activity of IL-1beta. Interestingly, the sustained nature of NFkappaB activity is promoter type-specific. Chromatin immunoprecipitation studies revealed that p65 is detected at the promoters of both intercellular adhesion molecule-1 and IL-8 1 h following IL-1beta stimulation but is only found at the latter at 24 h. The functional significance of this finding is indicated by the transient induction of intercellular adhesion molecule-1 mRNA, but more sustained induction of IL-8 expression, by IL-1beta. These studies thus demonstrated that persistent IL-1 signaling causes sustained activation of NFkappaB in a promoter-specific manner in human glial cells, leading to prolonged induction of selective pro-inflammatory genes. This is likely to make a key contribution to chronic inflammatory conditions of the brain.
Collapse
Affiliation(s)
- Bryan D Griffin
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
160
|
Marcilhac A, Raynaud F, Clerc I, Benyamin Y. Detection and localization of calpain 3-like protease in a neuronal cell line: Possible regulation of apoptotic cell death through degradation of nuclear IκBα. Int J Biochem Cell Biol 2006; 38:2128-40. [PMID: 16938483 DOI: 10.1016/j.biocel.2006.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 06/06/2006] [Accepted: 06/09/2006] [Indexed: 02/02/2023]
Abstract
Calpains are a family of calcium-dependent cysteine proteases involved in major cellular processes including cell death. Their intracellular localization is essential to the understanding of their biological functions. In a previous confocal microscopy study, we observed the presence of a calpain 3-like protein in the mammalian brain. We thus first identified and confirmed the presence of a calpain 3-like protease in a neuronal cell model (NGF-differentiated PC12 cells). The goal of this study was to determine, for the first time in non-muscular cells, the relation between the subcellular localization, activation and function of this protease. We thus investigated its ability to regulate nuclear IkappaBalpha and therefore NF-kappaB activation after cell death stimulation. The IkappaBalpha/NF-kappaB signalling pathway indeed influences the neurodegenerative process by directly affecting gene expression in neurons. In the present study, we found that calpain 3 is present in the cytoplasm and nucleus of neuron-like PC12 cells and could be activated through autolysis in the nuclei of cells undergoing apoptosis after ionomycin treatment. Moreover, in these conditions, we demonstrated formation of the IkappaBalpha/calpain 3 complex and an increase in calpain-dependent IkappaBalpha cleavage products in cell nuclei. Stimulation of calpain-dependent cell death in neuron activated nuclear calpain 3-like protease and IkappaBalpha proteolysis resulted in the regulation of NF-kappaB activation. These data suggest a new mechanism by which calpain 3 activation is able to regulate the IkappaBalpha/NF-kappaB pathway and thus neurodegenerative processes.
Collapse
Affiliation(s)
- A Marcilhac
- EPHE-UMR 5539, University of Montpellier II, CC107, Place Eugene Bataillon, 34000 Montpellier, France.
| | | | | | | |
Collapse
|
161
|
Taylor C, Jobin C. Ubiquitin protein modification and signal transduction: implications for inflammatory bowel diseases. Inflamm Bowel Dis 2005; 11:1097-107. [PMID: 16306773 DOI: 10.1097/01.mib.0000187577.26043.e5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A dysregulated immune response to luminal antigen(s) is associated with the development of inflammatory bowel diseases (IBDs). A complex network of inflammatory and immune mediators released by immune and nonimmune cells participate in the physiopathology of IBD. At the molecular level, events leading to the improper use of the signaling grid are likely responsible for the dysregulated activation of various transcription factors and subsequent induction of inflammatory genes. The posttranslational modification of signaling proteins by the ubiquitin system is a critical event in activation or repression of transcription factors. Two important transcriptional pathways in which ubiquitin is central are the nuclear factor-kappaB and hypoxia inducible factor-1 (HIF-1) pathways, both of which are important components of intestinal homeostasis. In this review, we discuss the role of ubiquitin modification in relation to nuclear factor-kappaB and HIF-1 signaling and consider its impact on intestinal inflammation. A greater understanding of posttranslational ubiquitin modification may lead to the identification of new therapeutic opportunities for the treatment of IBD.
Collapse
Affiliation(s)
- Cormac Taylor
- The Conway Institute, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
162
|
Shin HM, Minter LM, Cho OH, Gottipati S, Fauq AH, Golde TE, Sonenshein GE, Osborne BA. Notch1 augments NF-kappaB activity by facilitating its nuclear retention. EMBO J 2005; 25:129-38. [PMID: 16319921 PMCID: PMC1356346 DOI: 10.1038/sj.emboj.7600902] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 11/15/2005] [Indexed: 12/12/2022] Open
Abstract
Notch1 specifically upregulates expression of the cytokine interferon-gamma in peripheral T cells through activation of NF-kappaB. However, how Notch mediates NF-kappaB activation remains unclear. Here, we examined the temporal relationship between Notch signaling and NF-kappaB induction during T-cell activation. NF-kappaB activation occurs within minutes of T-cell receptor (TCR) engagement and this activation is sustained for at least 48 h following TCR signaling. We used gamma-secretase inhibitor (GSI) to prevent the cleavage and subsequent activation of Notch family members. We demonstrate that GSI blocked the later, sustained NF-kappaB activation, but did not affect the initial activation of NF-kappaB. Using biochemical approaches, as well as confocal microscopy, we show that the intracellular domain of Notch1 (N1IC) directly interacts with NF-kappaB and competes with IkappaBalpha, leading to retention of NF-kappaB in the nucleus. Additionally, we show that N1IC can directly regulate IFN-gamma expression through complexes formed on the IFN-gamma promoter. Taken together, these data suggest that there are two 'waves' of NF-kappaB activation: an initial, Notch-independent phase, and a later, sustained activation of NF-kappaB, which is Notch dependent.
Collapse
Affiliation(s)
- Hyun Mu Shin
- Molecular and Cellular Biology Program, University of Massachusetts/Amherst, Amherst, MA, USA
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts/Amherst, Amherst, MA, USA
| | - Ok Hyun Cho
- Department of Veterinary and Animal Sciences, University of Massachusetts/Amherst, Amherst, MA, USA
| | - Sridevi Gottipati
- Molecular and Cellular Biology Program, University of Massachusetts/Amherst, Amherst, MA, USA
| | - Abdul H Fauq
- Department of Neuroscience, Mayo Clinic, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Todd E Golde
- Department of Neuroscience, Mayo Clinic, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Gail E Sonenshein
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Barbara A Osborne
- Molecular and Cellular Biology Program, University of Massachusetts/Amherst, Amherst, MA, USA
- Department of Veterinary and Animal Sciences, University of Massachusetts/Amherst, Amherst, MA, USA
- Department of Veterinary and Animal Sciences, 311 Paige Laboratory, University of Massachusetts/Amherst, 161 Holdsworth Way, Amherst, MA 01003, USA. Tel.: +1 413 545 4882; Fax: +1 413 545 1446; E-mail:
| |
Collapse
|
163
|
Vodanovic-Jankovic S, Hari P, Jacobs P, Komorowski R, Drobyski WR. NF-kappaB as a target for the prevention of graft-versus-host disease: comparative efficacy of bortezomib and PS-1145. Blood 2005; 107:827-34. [PMID: 16174760 PMCID: PMC1895627 DOI: 10.1182/blood-2005-05-1820] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
NF-kappaB is a transcription factor that controls the expression of a number of genes important for mediating immune and inflammatory responses. In this study, we examined whether bortezomib and PS-1145, each of which inhibits NF-kappaB, could protect mice from lethal graft-versus-host disease (GVHD), which is characterized by immune activation and proinflammatory cytokine production. When administered within the first 2 days after transplantation, bortezomib and PS-1145 both protected mice from fatal GVHD, did not compromise donor engraftment, and effected marked reduction in the levels of serum cytokines that are normally increased during GVHD. Extending the course of bortezomib administration or delaying the initiation of this agent for as few as 3 days after bone marrow transplantation (BMT), however, significantly exacerbated GVHD-dependent mortality because of severe pathological damage in the colon. In contrast, prolonged administration of PS-1145, which, unlike bortezomib, is a selective inhibitor of NF-kappaB, caused no early toxicity and resulted in more complete protection than that observed with an abbreviated PS-1145 treatment schedule. These results confirm a critical role for NF-kappaB in the pathophysiology of GVHD and indicate that targeted inhibition of NF-kappaB may have a superior therapeutic index and may constitute a viable therapeutic approach to reduce GVHD severity.
Collapse
Affiliation(s)
- Sanja Vodanovic-Jankovic
- Bone Marrow Transplant Program and the Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | |
Collapse
|
164
|
Courtney JM, Blackburn J, Sharpe PT. The Ectodysplasin and NFkappaB signalling pathways in odontogenesis. Arch Oral Biol 2005; 50:159-63. [PMID: 15721144 DOI: 10.1016/j.archoralbio.2004.11.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 11/16/2004] [Indexed: 01/01/2023]
Abstract
Hypohidrotic ectodermal dysplasia (HED) is a congenital disorder affecting organs of ectodermal origin including teeth, hair and sweat glands. Defects in Ectodysplasin (tabby), Edar (downless) and Edar associated death domain (Edaradd) (crinkled) cause HED in both humans and mice. Ectodysplasin is a tumour necrosis factor (TNF) superfamily member whose downstream signalling is transduced by the inhibitor of kappaB kinase (IKK) complex and inhibitors of kappaB (IkappaB) to activate the transcription factor NFkappaB. NFkappaB signalling is involved in a wide range of cellular processes and at each stage the different family members must be tightly regulated for each function. Recent data have demonstrated the importance of this signalling pathway in odontogenesis, particularly in the formation of cusps. Here we review recent advances in our understanding of Ectodysplasin/NFkappaB signalling in tooth development and in particular the central role of the IKK complex.
Collapse
Affiliation(s)
- Jo-Maree Courtney
- Craniofacial Development, Kings College London, Floor 28 Guy's Tower, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | | | | |
Collapse
|
165
|
Park SG, Ryu HM, Lim SO, Kim YI, Hwang SB, Jung G. Interferon-gamma inhibits hepatitis B virus-induced NF-kappaB activation through nuclear localization of NF-kappaB-inducing kinase. Gastroenterology 2005; 128:2042-53. [PMID: 15940636 DOI: 10.1053/j.gastro.2005.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Nuclear factor-kappaB (NF-kappaB) signaling pathway is an important regulating pathway in liver diseases, including hepatocellular carcinoma. In our study, immunohistochemical analysis showed that NF-kappaB-inducing kinase (NIK), an upstream kinase of IkappaB kinases, nuclear localization occurs only in liver tissues obtained from hepatitis B surface antigen (HBsAg)(+) patients but not in tissues from HBsAg(-) patients. The aim of the present study was to identify the inducer of NIK nuclear localization and determine whether the NIK nuclear localization affects the hepatitis B virus (HBV)-mediated NF-kappaB activation. METHODS The experiments were performed on HepG2.2.15 cells and on HepG2 cells transfected with pHBV1.2x, a plasmid encoding all HBV messages, using NF-kappaB-dependent luciferase reporter gene assay, electrophoretic mobility shift assay, immunoblot analysis, and fluorescent microscopy analysis. RESULTS HBV induced NIK-dependent NF-kappaB activation. However, interferon (IFN)-gamma induced NIK nuclear localization and inhibited NF-kappaB activation in HepG2.2.15 cells and in HepG2 cells transfected with pHBV1.2x. When NIK nuclear localization was inhibited by deletion of nuclear localization signal on NIK, IFN-gamma did not induce the NIK nuclear localization and did not inhibit NF-kappaB activation. CONCLUSIONS IFN-gamma selectively inhibits HBV-mediated NF-kappaB activation. This inhibition is accomplished by NIK nuclear localization, which is a novel mechanism of NF-kappaB inhibition.
Collapse
Affiliation(s)
- Sung Gyoo Park
- School of Biological Sciences, Seoul National University, Korea
| | | | | | | | | | | |
Collapse
|
166
|
Hertlein E, Wang J, Ladner KJ, Bakkar N, Guttridge DC. RelA/p65 regulation of IkappaBbeta. Mol Cell Biol 2005; 25:4956-68. [PMID: 15923614 PMCID: PMC1140602 DOI: 10.1128/mcb.25.12.4956-4968.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 01/19/2005] [Accepted: 03/17/2005] [Indexed: 01/01/2023] Open
Abstract
IkappaB inhibitor proteins are the primary regulators of NF-kappaB. In contrast to the defined regulatory interplay between NF-kappaB and IkappaBalpha, much less is known regarding the regulation of IkappaBbeta by NF-kappaB. Here, we describe in detail the regulation of IkappaBbeta by RelA/p65. Using p65(-/-) fibroblasts, we show that IkappaBbeta is profoundly reduced in these cells, but not in other NF-kappaB subunit knockouts. This regulation prevails during embryonic and postnatal development in a tissue-specific manner. Significantly, in both p65(-/-) cells and tissues, IkappaBalpha is also reduced, but not nearly to the same extent as IkappaBbeta, thus highlighting the degree to which IkappaBbeta is dependent on p65. This dependence is based on the ability of p65 to stabilize IkappaBbeta protein from the 26S proteasome, a process mediated in large part through the p65 carboxyl terminus. Furthermore, IkappaBbeta was found to exist in both a basally phosphorylated and a hyperphosphorylated form. While the hyperphosphorylated form is less abundant, it is also more stable and less dependent on p65 and its carboxyl domain. Finally, we show that in p65(-/-) fibroblasts, expression of a proteolysis-resistant form of IkappaBbeta, but not IkappaBalpha, causes a severe growth defect associated with apoptosis. Based on these findings, we propose that tight control of IkappaBbeta protein by p65 is necessary for the maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- Erin Hertlein
- Human Cancer Genetics Program, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
167
|
Interactions of NF-kappaB with chromatin: the art of being at the right place at the right time. Nat Immunol 2005; 6:439-45. [PMID: 15843800 DOI: 10.1038/ni1196] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transcription factors of the NF-kappaB family are essential regulators of the inflammatory and immune responses. The main 'switch' in NF-kappaB activation is cytoplasmic and leads to the release of NF-kappaB proteins from IkappaB molecules, specific inhibitors that prevent their nuclear accumulation. However, it is becoming increasingly apparent that in addition to this required activation step, both recruitment of NF-kappaB to target genes and NF-kappaB-induced transcriptional events after recruitment are actively controlled. Regulated recruitment of NF-kappaB to chromatin generates kinetic complexity in NF-kappaB-dependent gene induction and 'wires' NF-kappaB-regulated gene activity to simultaneously activated pathways and transcription factors.
Collapse
|
168
|
Yu YY, Li Q, Zhu ZG. NF-κB as a molecular target in adjuvant therapy of gastrointestinal carcinomas. Eur J Surg Oncol 2005; 31:386-92. [PMID: 15837045 DOI: 10.1016/j.ejso.2004.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 10/11/2004] [Accepted: 10/21/2004] [Indexed: 12/13/2022] Open
Abstract
AIM To describe the role of nuclear factor-kappa B (NF-kappaB) in cancer treatment. METHODS We searched the Pubmed database (until Oct, 2004) with the keywords of gastrointestinal carcinoma, NF-kappaB, inhibitor, cancer treatment molecular target and chemoresistance. We reviewed the literature in the role of NF-kappaB activation in chemoresistance, tumour growth suppression and enhancement of apoptosis in gastrointestinal carcinomas. CONCLUSIONS Several possible strategies for inhibiting NF-kappaB activation are identified. The importance of targeting NF-kappaB as a potential therapeutic approach in clinical medicine was discussed.
Collapse
Affiliation(s)
- Y Y Yu
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Second Medical University, Shanghai 200025, China.
| | | | | |
Collapse
|
169
|
Ganguli A, Persson L, Palmer IR, Evans I, Yang L, Smallwood R, Black R, Qwarnstrom EE. Distinct NF-κB Regulation by Shear Stress Through Ras-Dependent IκBα Oscillations. Circ Res 2005; 96:626-34. [PMID: 15731464 DOI: 10.1161/01.res.0000160435.83210.95] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
NF-kappaB, a transcription factor central to inflammatory regulation during development of atherosclerosis, is activated by soluble mediators and through biomechanical inputs such as flow-mediated shear- stress. To investigate the molecular mechanisms underlying shear stress mediated signal transduction in vascular cells we have developed a system that applies flow-mediated shear stress in a controlled manner, while inserted in a confocal microscope. In combination with GFP-based methods, this allows continuous monitoring of flow induced signal transduction in live cells and in real time. Flow-mediated shear stress, induced using the system, caused a successive increase in NF-kappaB-regulated gene activation. Experiments assessing the mechanisms underlying the NF-kappaB induced activity showed time and flow rate dependent effects on the inhibitor, IkappaBalpha, involving nuclear translocation characterized by a biphasic or cyclic pattern. The effect was observed in both endothelial- and smooth muscle cells, demonstrated to impact noncomplexed IkappaBalpha, and to involve mechanisms distinct from those mediating cytokine signals. In contrast, effects on the NF-kappaB subunit relA were similar to those observed during cytokine stimulation. Further experiments showed the flow induced inter-compartmental transport of IkappaBalpha to be regulated through the Ras GTP-ase, demonstrating a pronounced reduction in the effects following blocking of Ras activity. These studies show that flow-mediated shear stress, regulated by the Ras GTP-ase, uses distinct mechanisms of NF-kappaB control at the molecular level. The oscillatory pattern, reflecting inter-compartmental translocation of IkappaBetaalpha, is likely to have fundamental impact on pathway regulation and on development of shear stress-induced distinct vascular cell phenotypes.
Collapse
Affiliation(s)
- Arunima Ganguli
- Academic Unit of Cell Biology, School of Medicine and Biomedical Sciences, University of Sheffield, UK
| | | | | | | | | | | | | | | |
Collapse
|
170
|
O'Connor S, Shumway S, Miyamoto S. Inhibition of IκBα Nuclear Export as an Approach to Abrogate Nuclear Factor-κB–Dependent Cancer Cell Survival. Mol Cancer Res 2005. [DOI: 10.1158/1541-7786.42.3.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Deregulation of the transcription factor nuclear factor-κB (NF-κB) leading to its constitutive activation is frequently observed in human cancer. Because altered NF-κB activities often promote the survival of malignant cells, its inhibition is regarded as a promising anticancer strategy. Because activation of the latent cytoplasmic NF-κB complex can be induced by a wide variety of different stimuli, its deregulation may occur by an equally large number of distinct mechanisms. This diversity raises a conundrum in conceptualizing general approaches to attenuate NF-κB activity in cancer. Here, we provide evidence that inhibition of IκBα nuclear export is a viable target to generally abrogate constitutive NF-κB activity in different cancer cell types. We show that inhibition of IκBα nuclear export has an important course of events in cancer cells harboring constitutive NF-κB activity—an initial increase in the pool of stable nuclear NF-κB/IκBα complexes that leads to a reduction of constitutive NF-κB activity and subsequent induction of apoptosis. Importantly, similar effects on multiple different cancer cell types indicate that inhibition of nuclear export of IκBα leads to broad inhibition of constitutive NF-κB activation regardless of various deregulated, upstream events involved.
Collapse
Affiliation(s)
- Shelby O'Connor
- Program in Cellular and Molecular Biology, Department of Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stuart Shumway
- Program in Cellular and Molecular Biology, Department of Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Shigeki Miyamoto
- Program in Cellular and Molecular Biology, Department of Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
171
|
Cheng H, Cenciarelli C, Nelkin G, Tsan R, Fan D, Cheng-Mayer C, Fidler IJ. Molecular mechanism of hTid-1, the human homolog of Drosophila tumor suppressor l(2)Tid, in the regulation of NF-kappaB activity and suppression of tumor growth. Mol Cell Biol 2005; 25:44-59. [PMID: 15601829 PMCID: PMC538758 DOI: 10.1128/mcb.25.1.44-59.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 05/03/2004] [Accepted: 09/30/2004] [Indexed: 11/20/2022] Open
Abstract
hTid-1, a human homolog of the Drosophila tumor suppressor l(2)Tid and a novel DnaJ protein, regulates the activity of nuclear factor kappaB (NF-kappaB), but its mechanism is not established. We report here that hTid-1 strongly associated with the cytoplasmic protein complex of NF-kappaB-IkappaB through direct interaction with IkappaBalpha/beta and the IKKalpha/beta subunits of the IkappaB kinase complex. These interactions resulted in suppression of the IKK activity in a J-domain-dependent fashion and led to the cytoplasmic retention and enhanced stability of IkappaB. Overexpression of hTid-1 by using recombinant baculovirus or adenovirus led to inhibition of cell proliferation and induction of apoptosis of human osteosarcoma cells regardless of the p53 expression status. Adherent cultured cells transduced with Ad.hTid-1 detached from the dish surface. Morphological changes consistent with apoptosis and cell death were evident 48 h after Ad.EGFP-hTid-1 transduction. In contrast, cells transduced with Ad.EGFP or Ad.EGFP-hTd-1DeltaN100, a mutant that has the N-terminal J domain deletion and that lost suppressive activity on IKK, continued to proliferate. Similar data were obtained with A375 human melanoma cells. Ad.EGFP or Ad.EGFP-hTd-1DeltaN100 ex vivo-transduced A375 cells injected subcutaneously into nude mice produced growing tumors, whereas Ad.EGFP-hTid-1-transduced cells did not. Collectively, the data suggest that hTid-1 represses the activity of NF-kappaB through physical and functional interactions with the IKK complex and IkappaB and, in doing so, it modulates cell growth and death.
Collapse
Affiliation(s)
- Hua Cheng
- Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
172
|
Sands WA, Martin AF, Strong EW, Palmer TM. Specific inhibition of nuclear factor-kappaB-dependent inflammatory responses by cell type-specific mechanisms upon A2A adenosine receptor gene transfer. Mol Pharmacol 2004; 66:1147-59. [PMID: 15286208 DOI: 10.1124/mol.104.001107] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine is a potent inhibitor of inflammatory processes, and the A(2A) adenosine receptor (A(2A)AR) plays a key nonredundant role as a suppresser of inflammatory responses in vivo. In this study, we demonstrate that increasing A(2A)AR gene expression suppressed multiple inflammatory responses in both human umbilical vein endothelial cells (HUVECs) and rat C6 glioma cells in vitro. In particular, the induction of the adhesion molecule E-selectin by either tumor necrosis factor alpha (TNFalpha) or Escherichia coli lipopolysaccharide (LPS) was reduced by more than 70% in HUVECs, whereas inducible nitric-oxide synthase (iNOS) induction was abolished in C6 cells after exposure to interferon-gamma in combination with LPS and TNFalpha, suggesting that the receptor inhibited a common step in the induction of each of these pro-inflammatory genes. Consistent with this hypothesis, A(2A)AR expression inhibited the activation of NF-kappaB, a key transcription factor whose proper function was essential for optimal iNOS and E-selectin induction. However, although NF-kappaB binding to target DNA was severely compromised in both cell types, the mechanisms by which this occurred were distinct. In C6 cells, A(2A)AR expression blocked IkappaBalpha degradation by inhibiting stimulus-induced phosphorylation, whereas in HUVECs, A(2A)AR expression inhibited NF-kappaB translocation to the nucleus independently of any effect on IkappaBalpha degradation. Together, these observations suggest that A(2A)AR-mediated inhibition NF-kappaB activation is a critical aspect of its anti-inflammatory signaling properties and that the molecular basis of this inhibition varies in a cell type-specific manner.
Collapse
Affiliation(s)
- William A Sands
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | | | | | | |
Collapse
|
173
|
Joseph T, Look D, Ferkol T. NF-kappaB activation and sustained IL-8 gene expression in primary cultures of cystic fibrosis airway epithelial cells stimulated with Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2004; 288:L471-9. [PMID: 15516493 DOI: 10.1152/ajplung.00066.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The progression of lung disease in cystic fibrosis (CF) is characterized by an exuberant inflammatory response mounted by the respiratory epithelium that is further exacerbated by bacterial infection. Recent studies have demonstrated upregulation of nuclear factor-kappaB (NF-kappaB) in response to infection in genetically modified cell culture models, which is associated with expression of interleukin (IL)-8. Using human airway epithelial cells grown in primary culture, we examined in vitro activation of NF-kappaB in cells isolated from five CF (DeltaF508/DeltaF508) and three non-CF (NCF) patients in response to Pseudomonas aeruginosa. Immunofluorescence, gel-shift, and immunoblot assays demonstrated a rapid translocation of NF-kappaB subunits (p50 and p65) to the nucleus in both CF and NCF cell cultures. However, nuclear extracts from CF cells both before and following P. aeruginosa stimulation revealed elevated NF-kappaB activation compared with NCF cells. Additionally, elevated nuclear levels of the NF-kappaB inhibitor IkappaBalpha were detected in nuclei of CF cells after P. aeruginosa stimulation, but this increase was transient. There was no difference in IL-8 mRNA levels between CF and NCF cells early after stimulation, whereas expression was higher and sustained in CF cells at later times. Our results also demonstrated increased baseline translocation of NF-kappaB to nuclei of primary CF epithelial cell cultures, but intranuclear IkappaBalpha may initially block its effects following P. aeruginosa stimulation. Thus, IL-8 mRNA expression was prolonged after P. aeruginosa stimulation in CF epithelial cells, and this sustained IL-8 expression may contribute to the excessive inflammatory response in CF.
Collapse
Affiliation(s)
- Theresa Joseph
- Department of Pediatrics, Washington University School of Medcine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
174
|
Abstract
I kappa B (IkappaB) was initially identified as a factor that inhibits DNA binding and nuclear translocation of the transcription factor nuclear factor kappa B (NF-kappaB). Recently, however, IkappaB family members have demonstrated direct nuclear roles in regulating NF-kappaB-dependent transcription. Some IkappaB proteins, including IkappaBalpha and IkappaBbeta, can regulate transcription by modulating the concentration of active NF-kappaB complexes within the nucleus. Others, such as IkappaBzeta and Bcl-3, can directly activate transcription by forming transcriptional complexes at gene promoters. Thus, IkappaB proteins play important nuclear roles in regulating NF-kappaB-dependent transcription after stimulation with various extracellular signals.
Collapse
Affiliation(s)
- Paul W Bates
- Department of Pharmacology, University of Wisconsin-Madison Medical School, 301 Service Memorial Institute, 1300 University Avenue, Madison, WI 53706, USA
| | | |
Collapse
|
175
|
Yamashita T, Hamaguchi K, Kusuda Y, Kimura A, Sakata T, Yoshimatsu H. IKBL promoter polymorphism is strongly associated with resistance to type 1 diabetes in Japanese. ACTA ACUST UNITED AC 2004; 63:223-30. [PMID: 14989711 DOI: 10.1111/j.0001-2815.2004.00164.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Type 1 diabetes is a multifactorial disease in which the genes of the major histocompatibility complex (MHC) play a key role. Recently, non-human leukocyte antigen (non-HLA) genes in the class III region of this complex have been presumed to be associated with type 1 diabetes by linkage analyses. We investigated the possibility of the inhibitor of kappaB-like (IKBL, also known as 'NFKBIL1') gene as one of these candidates. We carried out a case-control study of 124 patients with type 1 diabetes and 330 healthy control subjects. The haplotypes of the IKBL promoter, i.e., PA (-263A, -63T), PB (-263A, -63A), PC (-263G, -63T), were assigned by the single-nucleotide polymorphisms at positions -263 and -63 from the transcription start site. The frequency of the wild-type haplotype, PA, was elevated, while that of the variant-type haplotype, PC, was lower in patients than controls. In two-locus analyses with HLA-DRB1 alleles, the PA haplotype showed linkage disequilibrium with the DRB1*0405 allele and the PC haplotype with the DRB1*1502 allele. A notable observation was that the PC haplotype was significantly associated with protection in the DRB1*1502-negative population. Our study indicates the first evidence of a possible independent association between type 1 diabetes and polymorphisms in the promoter of the IKBL gene.
Collapse
Affiliation(s)
- T Yamashita
- Department of Anatomy, Biology and Medicine (Internal Medicine I), Oita Medical University School of Medicine, Oita, Japan.
| | | | | | | | | | | |
Collapse
|
176
|
Quivy V, Van Lint C. Regulation at multiple levels of NF-κB-mediated transactivation by protein acetylation. Biochem Pharmacol 2004; 68:1221-9. [PMID: 15313420 DOI: 10.1016/j.bcp.2004.05.039] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 05/26/2004] [Indexed: 01/06/2023]
Abstract
Evidence has accumulated that deacetylation and acetylation events are implicated in the regulation of NF-kappaB transcriptional activity. Several groups have reported potentiation of NF-kappaB-mediated gene induction [by specific inducers (such as TNFalpha)], following deacetylase inhibition by trichostatin A or sodium butyrate. This potentiation reflects a complex acetylation-dependent regulation of NF-kappaB-dependent transactivation. This acetylation-dependent regulation occurs at multiple levels. First, acetylation of histones regulates the NF-kappaB-dependent gene accessibility. Second, unidentified acetylation events modulate temporally the IKK activity and subsequently the duration of NF-kappaB presence and DNA-binding in the nucleus. Third, direct acetylation of the NF-kappaB subunits p65 and p50 regulates different NF-kappaB functions, including transcriptional activation, DNA-binding affinity and IkappaBalpha assembly. Finally, acetyltransferases and deacetylases interact directly with several proteins involved in the NF-kappaB signaling pathway, including NF-kappaB itself, IkappaBalpha, IKKalpha and IKKgamma. These interactions probably allow acetylation of NF-kappaB itself, of other transcription factors and of histones associated with NF-kappaB-regulated genes. The present review discusses these recent data obtained on the role of protein acetylation in the regulation of the NF-kappaB cascade.
Collapse
Affiliation(s)
- Vincent Quivy
- Institut de Biologie et de Médecine Moléculaires, Service de Chimie Biologique, Laboratoire de Virologie Moléculaire, Université Libre de Bruxelles, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | |
Collapse
|
177
|
Birbach A, Bailey ST, Ghosh S, Schmid JA. Cytosolic, nuclear and nucleolar localization signals determine subcellular distribution and activity of the NF-kappaB inducing kinase NIK. J Cell Sci 2004; 117:3615-24. [PMID: 15252129 DOI: 10.1242/jcs.01224] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been shown previously that the transcription factor NF-kappaB and its inhibitor IkappaBalpha shuttle constitutively between cytosol and nucleus. Moreover, we have recently demonstrated nucleocytoplasmic shuttling of the NF-kappaB-inducing kinase NIK, a component of the NF-kappaB pathway, which is essential for lymph node development and B-cell function. Here we show that nuclear NIK also occurs in nucleoli and that this localization is mediated by a stretch of basic amino acids in the N-terminal part of the protein (R(143)-K-K-R-K-K-K(149)). This motif is necessary and sufficient for nucleolar localization of NIK, as judged by nuclear localization of mutant versions of the full-length protein and the fact that coupling of these seven amino acids to GFP also leads to accumulation in nucleoli. Using fluorescence loss in photobleaching (FLIP) and fluorescence recovery after photobleaching (FRAP) approaches, we demonstrate a dynamic distribution between nucleoli and nucleoplasm and a high mobility of NIK in both compartments. Together with the nuclear export signal in the C-terminal portion of NIK that we have also characterized in detail, the nuclear/nucleolar targeting signals of NIK mediate dynamic circulation of the protein between the cytoplasmic, nucleoplasmic and nucleolar compartments. We demonstrate that nuclear NIK is capable of activating NF-kappaB and that this effect is diminished by nucleolar localization. Thus, subcellular distribution of NIK to different compartments might be a means of regulating the function of this kinase.
Collapse
Affiliation(s)
- Andreas Birbach
- Department of Vascular Biology and Thrombosis Research, University of Vienna Medical School and Competence Center Bio-Molecular Therapeutics, Schwarzspanierstr. 17, 1090 Vienna, Austria
| | | | | | | |
Collapse
|
178
|
Saccani S, Marazzi I, Beg AA, Natoli G. Degradation of promoter-bound p65/RelA is essential for the prompt termination of the nuclear factor kappaB response. ACTA ACUST UNITED AC 2004; 200:107-13. [PMID: 15226358 PMCID: PMC2213320 DOI: 10.1084/jem.20040196] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Transcription factors of the nuclear factor (NF)-κB/Rel family translocate into the nucleus upon degradation of the IκBs. Postinduction repression of NF-κB activity depends on NF-κB–regulated resynthesis of IκBα, which dissociates NF-κB from DNA and exports it to the cytosol. We found that after activation, p65/RelA is degraded by the proteasome in the nucleus and in a DNA binding–dependent manner. If proteasome activity is blocked, NF-κB is not promptly removed from some target genes in spite of IκBα resynthesis and sustained transcription occurs. These results indicate that proteasomal degradation of p65/RelA does not merely regulate its stability and abundance, but also actively promotes transcriptional termination.
Collapse
Affiliation(s)
- Simona Saccani
- Institute for Research in Biomedicine, Via Vela 6, 6500 Bellinzona, Switzerland
| | | | | | | |
Collapse
|
179
|
Kim KM, Zhang Y, Kim BY, Jeong SJ, Lee SA, Kim GD, Dritschilo A, Jung M. The p65 subunit of nuclear factor-κB is a molecular target for radiation sensitization of human squamous carcinoma cells. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.693.3.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The transcription factor nuclear factor-κB (NF-κB) is activated in response to various stimuli including ionizing radiation. Disruption of NF-κB activation by mutant forms of the NF-κB inhibitor IκB-α or by proteasome inhibitors enhances both sensitivity to radiation and radiation-induced apoptosis. Human squamous carcinoma SCC-35 cells stably expressing a fragment (residues 1 to 84) of human p65 have been shown to exhibit down-regulation of both endogenous p65 mRNA and its protein. The mutant protein also inhibited radiation-induced NF-κB activation by preventing the proteolysis of IκB-α. This resulted in enhancement of cellular radiosensitivity and radiation-induced apoptosis. The NH2-terminal region of p65 is thus a potential molecular target for disruption of NF-κB activation and sensitization of tumors to radiotherapy.
Collapse
Affiliation(s)
- Kyoung M. Kim
- Department of Radiation Medicine, Division of Radiation Research, Georgetown University, Washington, District of Columbia
| | - Yin Zhang
- Department of Radiation Medicine, Division of Radiation Research, Georgetown University, Washington, District of Columbia
| | - Bo-Yeon Kim
- Department of Radiation Medicine, Division of Radiation Research, Georgetown University, Washington, District of Columbia
| | - Sook J. Jeong
- Department of Radiation Medicine, Division of Radiation Research, Georgetown University, Washington, District of Columbia
| | - Sung A. Lee
- Department of Radiation Medicine, Division of Radiation Research, Georgetown University, Washington, District of Columbia
| | - Gun-Do Kim
- Department of Radiation Medicine, Division of Radiation Research, Georgetown University, Washington, District of Columbia
| | - Anatoly Dritschilo
- Department of Radiation Medicine, Division of Radiation Research, Georgetown University, Washington, District of Columbia
| | - Mira Jung
- Department of Radiation Medicine, Division of Radiation Research, Georgetown University, Washington, District of Columbia
| |
Collapse
|
180
|
Affiliation(s)
- Lin-Feng Chen
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94141, USA
| | | |
Collapse
|
181
|
Pommier Y, Sordet O, Antony S, Hayward RL, Kohn KW. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene 2004; 23:2934-49. [PMID: 15077155 DOI: 10.1038/sj.onc.1207515] [Citation(s) in RCA: 417] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Intrinsic (innate) and acquired (adaptive) resistance to chemotherapy critically limits the outcome of cancer treatments. For many years, it was assumed that the interaction of a drug with its molecular target would yield a lethal lesion, and that determinants of intrinsic drug resistance should therefore be sought either at the target level (quantitative changes or/and mutations) or upstream of this interaction, in drug metabolism or drug transport mechanisms. It is now apparent that independent of the factors above, cellular responses to a molecular lesion can determine the outcome of therapy. This review will focus on programmed cell death (apoptosis) and on survival pathways (Bcl-2, Apaf-1, AKT, NF-kappaB) involved in multidrug resistance. We will present our molecular interaction mapping conventions to summarize the AKT and IkappaB/NF-kappaB networks. They complement the p53, Chk2 and c-Abl maps published recently. We will also introduce the 'permissive apoptosis-resistance' model for the selection of multidrug-resistant cells.
Collapse
Affiliation(s)
- Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, DHHS, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
182
|
Abstract
Ubiquitination is an increasingly common post-translation modification that controls both the expression and activity of numerous proteins in the eukaryotic cell. One frequent target of the ubiquitin (Ub) modification machinery is transcription factors. Although ubiquitination generally modulates their function by inducing proteasome-dependent degradation, past and recent studies indicate that ubiquitination also regulates nuclear-cytoplasmic trafficking of transcriptional regulators. Ubiquitination is known to modulate transcription factor localization by destroying sequestering proteins and by directly promoting nuclear import and export of modified substrates. This review discusses old and new paradigms relating Ub modification and the control of transcription factor shuttling in and out of the nucleus.
Collapse
Affiliation(s)
- Natalia Shcherbik
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 N. Broad Street, Philadelphia, Pennsylvania 19140, USA
| | | |
Collapse
|
183
|
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) or Apo2L is a ligand of the TNF family interacting with five different receptors of the TNF receptor superfamily, including two death receptors. It has attracted wide interest as a potential anticancer therapy because some recombinant soluble forms of TRAIL induce cell death predominantly in transformed cells. The nuclear factor-kappaB (NFkappaB)?Rel family of proteins are composed of a group of dimeric transcription factors that have an outstanding role in the regulation of inflammation and immunity. Control of transcription by NFkappaB proteins can be of relevance to the function of TRAIL in three ways. First, induction of antiapoptotic NFkappaB dependent genes critically determines cellular susceptibility toward apoptosis induction by TRAIL-R1, TRAIL-R2, and other death receptors. Each of the multiple of known NFkappaB inducers therefore has the potential to interfere with TRAIL-induced cell death. Second, TRAIL and some of its receptors are inducible by NFkappaB, disclosing the possibility of autoamplifying TRAIL signaling loops. Third, the TRAIL death receptors can activate the NFkappaB pathway. This chapter summarizes basic knowledge regarding the understanding of the NFkappaB pathway and focuses on its multiple roles in TRAIL signaling.
Collapse
Affiliation(s)
- Harald Wajant
- Department of Molecular Internal Medicine Medical Polyclinic, University of Würzburg, D-97070 Würzburg, Germany
| |
Collapse
|
184
|
Gil J, Bermejo M, Alcamí J. HIV and apoptosis: a complex interaction between cell death and virus survival. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2004; 36:117-49. [PMID: 15171610 DOI: 10.1007/978-3-540-74264-7_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- J Gil
- Wolfson Institute for Biomedical Research, University College, London, UK
| | | | | |
Collapse
|
185
|
Adam E, Quivy V, Bex F, Chariot A, Collette Y, Vanhulle C, Schoonbroodt S, Goffin V, Nguyên TLA, Gloire G, Carrard G, Friguet B, De Launoit Y, Burny A, Bours V, Piette J, Van Lint C. Potentiation of tumor necrosis factor-induced NF-kappa B activation by deacetylase inhibitors is associated with a delayed cytoplasmic reappearance of I kappa B alpha. Mol Cell Biol 2003; 23:6200-9. [PMID: 12917341 PMCID: PMC180966 DOI: 10.1128/mcb.23.17.6200-6209.2003] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2002] [Revised: 01/22/2003] [Accepted: 05/31/2003] [Indexed: 02/06/2023] Open
Abstract
Previous studies have implicated acetylases and deacetylases in regulating the transcriptional activity of NF-kappa B. Here, we show that inhibitors of deacetylases such as trichostatin A (TSA) and sodium butyrate (NaBut) potentiated TNF-induced expression of several natural NF-kappa B-driven promoters. This transcriptional synergism observed between TNF and TSA (or NaBut) required intact kappa B sites in all promoters tested and was biologically relevant as demonstrated by RNase protection on two instances of endogenous NF-kappa B-regulated gene transcription. Importantly, TSA prolonged both TNF-induced DNA-binding activity and the presence of NF-kappa B in the nucleus. We showed that the p65 subunit of NF-kappa B was acetylated in vivo. However, this acetylation was weak, suggesting that other mechanisms could be implicated in the potentiated binding and transactivation activities of NF-kappa B after TNF plus TSA versus TNF treatment. Western blot and immunofluorescence confocal microscopy experiments revealed a delay in the cytoplasmic reappearance of the I kappa B alpha inhibitor that correlated temporally with the prolonged intranuclear binding and presence of NF-kappa B. This delay was due neither to a defect in I kappa B alpha mRNA production nor to a nuclear retention of I kappa B alpha but was rather due to a persistent proteasome-mediated degradation of I kappa B alpha. A prolongation of I kappa B kinase activity could explain, at least partially, the delayed I kappa B alpha cytoplasmic reappearance observed in presence of TNF plus TSA.
Collapse
Affiliation(s)
- Emmanuelle Adam
- Institut de Biologie et de Médecine Moléculaires, Service de Chimie Biologique, Laboratoire de Virologie Moléculaire, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Kishore N, Sommers C, Mathialagan S, Guzova J, Yao M, Hauser S, Huynh K, Bonar S, Mielke C, Albee L, Weier R, Graneto M, Hanau C, Perry T, Tripp CS. A selective IKK-2 inhibitor blocks NF-kappa B-dependent gene expression in interleukin-1 beta-stimulated synovial fibroblasts. J Biol Chem 2003; 278:32861-71. [PMID: 12813046 DOI: 10.1074/jbc.m211439200] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
NF-kappa B-induced gene expression contributes significantly to the pathogenesis of inflammatory diseases such as arthritis. I kappa B kinase (IKK) is the converging point for the activation of NF-kappa B by a broad spectrum of inflammatory agonists and is thus a novel target for therapeutic intervention. We describe a small molecule, selective inhibitor of IKK-2, SC-514, which does not inhibit other IKK isoforms or other serine-threonine and tyrosine kinases. SC-514 inhibits the native IKK complex or recombinant human IKK-1/IKK-2 heterodimer and IKK-2 homodimer similarly. IKK-2 inhibition by SC-514 is selective, reversible, and competitive with ATP. SC-514 inhibits transcription of NF-kappa B-dependent genes in IL-1 beta-induced rheumatoid arthritis-derived synovial fibroblasts in a dose-dependent manner. When the mechanism of NF-kappa B activation was evaluated in the presence of this inhibitor, several interesting observations were found. First, SC-514 did not inhibit the phosphorylation and activation of the IKK complex. Second, there was a delay but not a complete blockade in I kappa B alpha phosphorylation and degradation; likewise there was a slightly slowed, decreased import of p65 into the nucleus and a faster export of p65 from the nucleus. Finally, both I kappa B alpha and p65 were comparable substrates for IKK-2, with similar Km and Kcat values, and SC-514 inhibited the phosphorylation of either substrate similarly. Thus, the effect of SC-514 on cytokine gene expression may be a combination of inhibiting I kappa B alpha phosphorylation/degradation, affecting NF-kappa B nuclear import/export as well as the phosphorylation and transactivation of p65.
Collapse
Affiliation(s)
- Nandini Kishore
- Department of Arthritis and Inflammation Pharmacology, Pharmacia Corp., St. Louis, Missouri 63167, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Liu F, Morris S, Epps J, Carroll R. Demonstration of an activation regulated NF-kappaB/I-kappaBalpha complex in human platelets. Thromb Res 2003; 106:199-203. [PMID: 12297126 DOI: 10.1016/s0049-3848(02)00130-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In eukaryotic cells, the ubiquity of the signaling system of transcription factor nuclear factor-kappa B (NF-kappaB)/I-kappa B (I-kappaB) is undisputed. Numerous studies have reported that the NF-kappaB/I-kappaB complex plays a pivotal role in regulating gene expression controlling cell differentiation, cell proliferation, inflammation, oncogenesis, and apoptosis. Here we show that NF-kappaB/I-kappaB families exist in human platelets, natural anuclear corpuscles derived from megakaryocytes. Moreover, the I-kappaB kinase (IKK) is present and may phosphorylate I-kappaB during platelet activation. Coupled with intracellular calcium flux, this leads to I-kappaB dissociation from the NF-kappaB/I-kappaB complex and proteolysis. The NF-kappaB/I-kappaB proteins may have function independent of gene regulation in platelets.
Collapse
Affiliation(s)
- Fengqi Liu
- Department of Anesthesiology, Graduate School of Medicine, University of Tennessee Medical Center, 1924 Alcoa Highway, Knoxville, TN 37920, USA
| | | | | | | |
Collapse
|
188
|
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common causes of morbidity and mortality in the intensive care unit. ALI/ARDS occurs as a result of systemic inflammation, usually triggered by a microorganism. Activation of leukocytes and release of proinflammatory mediators from multiple cellular sources result in both local and distant tissue injury. Tumor necrosis factor-alpha and interleukin-1 beta are the best characterized of the proinflammatory cytokines contributing to ALI/ARDS and subsequent fibrosis. The ultimate clinical course of ALI/ARDS often is determined by the ability of the injured lung to repopulate the alveolar epithelium with functional cells. Death may occur when fibrosis predominates the healing response, as it results in worsening lung compliance and oxygenation. The rodent bleomycin model of lung fibrosis allows the use of molecular tools to dissect the cellular and subcellular processes leading to fibrosis. The elements of this response may provide therapeutic targets for the prevention of this devastating complication of ALI/ARDS.
Collapse
|
189
|
Nys M, Deby-Dupont G, Habraken Y, Legrand-Poels S, Kohnen S, Ledoux D, Canivet JL, Damas P, Lamy M. Bronchoalveolar lavage fluids of ventilated patients with acute lung injury activate NF-κB in alveolar epithelial cell line: role of reactive oxygen/nitrogen species and cytokines. Nitric Oxide 2003; 9:33-43. [PMID: 14559430 DOI: 10.1016/j.niox.2003.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In human alveolar epithelial cell line, we investigated the binding activity of NF-kappaB induced by the bronchoalveolar lavage fluids (BALs) from ventilated patients with acute lung injury (ALI), in correlation with the concentrations of inflammatory cytokines, RNOS, and the severity of the ALI. In BALs obtained in 67 patients (16 bronchopneumonia, 14 infected ARDS, 20 ARDS, and 17 ALI patients without bronchopneumonia and no ARDS), we measured endotoxin, IL-1beta, IL-8, and nitrated proteins (NTP), the activity of myeloperoxidase, and the capacity to activate the NF-kappaB in alveolar A549 cells by electrophoretic mobility shift and supershift assays. The neutrophil counts and mean IL-1beta, IL-8, myeloperoxidase, and NTP values were increased in bronchopneumonia and infected ARDS groups compared to ARDS and ALI without bronchopneumonia and no ARDS groups (P<0.001). The number of neutrophils was correlated to those of IL-1beta, IL-8, myeloperoxidase, NTP, and endotoxin in all groups (P<0.0001). NF-kappaB activity was induced in alveolar like cells by BALs in all groups, was higher in bronchopneumonia and infected ARDS groups (P<0.02), and was correlated to IL-1beta (P=0.0002), IL-8 (P=0.02), NTP (P=0.014), myeloperoxidase (P=0.016), and neutrophil counts (P=0.003). BALs of bronchopneumonia and infected ARDS patients had increased inflammatory mediators (compared to ARDS and ALI without bronchopneumonia and no ARDS patients) that correlated to neutrophil counts and to the NF-kappaB-binding activity. These mediators and NF-kappaB activation may induce an amplification of inflammatory phenomena. By in vitro studies, we confirmed that NO-derived species (10(-6) to 10(-5)M peroxynitrite and 10(-5)M nitrites) and myeloperoxidase (at concentration equivalent to that found in BALs) can participate in the NF-kappaB activation.
Collapse
Affiliation(s)
- M Nys
- Department of Anesthesia and Intensive Care Medicine, University of Liège, B4000 Sart Tilman, Liège, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Abstract
Nasopharyngeal carcinoma, Kaposi's sarcoma, and B-cell lymphomas are human malignancies associated with gammaherpesvirus infections. Members of this virus family are characterized by their ability to establish latent infections in lymphocytes. The latent viral genome expresses very few gene products. The infected cells are therefore poorly recognized by the host immune system, allowing the virus to persist for long periods of time. We sought to identify the cell-specific factors that allow these viruses to redirect their life cycle from productive replication to latency. We find that the cellular transcription factor NF-kappaB can regulate this process. Epithelial cells and fibroblasts support active (lytic) gammaherpesvirus replication and have low NF-kappaB activity. However, overexpression of NF-kappaB in these cells inhibits the replication of the gammaherpesvirus murine herpesvirus 68 (MHV68). In addition, overexpression of NF-kappaB inhibits the activation of lytic promoters from MHV68 and human gammaherpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV). In lymphocytes latently infected with KSHV or EBV, the level of NF-kappaB activity is high, and treatment of these cells with an NF-kappaB inhibitor leads to lytic protein synthesis consistent with virus reactivation. These results suggest that high levels of NF-kappaB can inhibit gammaherpesvirus lytic replication and may therefore contribute to the establishment and maintenance of viral latency in lymphocytes. They also suggest that NF-kappaB may be a novel target for the disruption of virus latency and therefore the treatment of gammaherpesvirus-related malignancies.
Collapse
Affiliation(s)
- Helen J Brown
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
191
|
Malek S, Huang DB, Huxford T, Ghosh S, Ghosh G. X-ray crystal structure of an IkappaBbeta x NF-kappaB p65 homodimer complex. J Biol Chem 2003; 278:23094-100. [PMID: 12686541 DOI: 10.1074/jbc.m301022200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We report the crystal structure of a murine IkappaBbeta x NF-kappaB p65 homodimer complex. Crystallographic models were determined for two triclinic crystalline systems and refined against data at 2.5 and 2.1 A. The overall complex structure is similar to that of the IkappaBalpha.NF-kappaB p50/p65 heterodimer complex. One NF-kappaB p65 subunit nuclear localization signal clearly contacts IkappaBbeta, whereas a homologous segment from the second subunit of the homodimer is mostly solvent-exposed. The unique 47-amino acid insertion between ankyrin repeats three and four of IkappaBbeta is mostly disordered in the structure. Primary sequence analysis and differences in the mode of binding at the IkappaBbeta sixth ankyrin repeat and NF-kappaB p65 homodimer suggest a model for nuclear IkappaBbeta.NF-kappaB.DNA ternary complex formation. These unique structural features of IkappaBbeta may contribute to its ability to mediate persistent NF-kappaB activation.
Collapse
Affiliation(s)
- Shiva Malek
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0359, USA
| | | | | | | | | |
Collapse
|
192
|
Wang W, McLeod HL, Cassidy J. Disulfiram-mediated inhibition of NF-kappaB activity enhances cytotoxicity of 5-fluorouracil in human colorectal cancer cell lines. Int J Cancer 2003; 104:504-11. [PMID: 12584750 DOI: 10.1002/ijc.10972] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
5-Fluorouracil (5-FU) is the major chemotherapeutic component for colorectal cancer (CRC) and other types of solid tumours. Resistance of cancer cells to 5-FU is considered the major obstacle for successful chemotherapy. NF-kappaB is a transcription factor. Cancer cells with high NF-kappaB nuclear activity demonstrate robust chemo- and radio-resistance. We demonstrated that nuclear NF-kappaB activity in CRC cell lines, DLD-1 and RKO(WT), was significantly induced by 5-FU in a concentration- and time-dependent manner. 5-FU induced IkappaBalpha degradation and promoted both NF-kappaB nuclear translocation and its DNA binding activity. 5-FU treatment did not influence the activities of AP-1, AP-2, Oct-1, SP-1, CRE-B and TFIID. Disulfiram (DS), a clinically used anti-alcoholism drug, strongly inhibited constitutive and 5-FU-induced NF-kappaB activity in a dose-dependent manner. DS inhibited both NF-kappaB nuclear translocation and DNA binding activity but had no effect on 5-FU-induced IkappaBalpha degradation. Used in combination, DS significantly enhanced the apoptotic effect of 5-FU on DLD-1 and RKO(WT) cell lines and synergistically potentiated the cytotoxicity of 5-FU to both cell lines. DS also effectively abolished 5-FU chemoresistance in a 5-FU resistant cell line H630(5-FU) in vitro. As DS has extensive preclinical and clinical experience, translating its anticancer usage from in vitro study to clinical trials is relatively straightforward.
Collapse
Affiliation(s)
- Weiguang Wang
- Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom.
| | | | | |
Collapse
|
193
|
Jacobs AT, Ignarro LJ. Nuclear factor-kappa B and mitogen-activated protein kinases mediate nitric oxide-enhanced transcriptional expression of interferon-beta. J Biol Chem 2003; 278:8018-27. [PMID: 12500976 DOI: 10.1074/jbc.m211642200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mitogen-activated protein (MAP) kinase and nuclear factor-kappaB (NF-kappaB) activation are critical for initiating the transcriptional expression of cytokines, cell adhesion molecules, and other factors in the macrophage immune response. Nitric oxide (NO), an endogenous free radical, is a product of macrophages that mediates inflammatory and cytotoxic processes in the immune system. Here we report the effects of NO on MAP kinase signaling and NF-kappaB activation in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and correlate these effects to the induction target genes, including interferon-beta (IFN-beta) and IkappaB-alpha. LPS alone induced a rapid phosphorylation of the stress-activated MAP kinases: c-Jun N-terminal kinase (JNK) and p38. Simultaneous treatment with LPS and the NO donor, diethylamine NONOate (DEA/NO), enhanced and prolonged JNK and p38 phosphorylation. Similarly, DEA/NO prolonged the LPS-induced degradation of the NF-kappaB inhibitory subunit, IkappaB-alpha, despite an increase in IkappaB-alpha mRNA levels. Whereas DEA/NO alone was sufficient to induce JNK and p38 phosphorylation, it was not sufficient to cause IkappaB-alpha degradation. The enhancement of IkappaB-alpha degradation by DEA/NO correlated with an increase in the nuclear levels of the p50 and p65 subunits and DNA-binding activity determined by electrophoretic mobility shift assay. DEA/NO and an additional NO donor, MAHMA/NO, are further demonstrated to enhance the transcriptional expression of the IFN-beta gene. The results suggest a role for NO in enhancing and propagating inflammatory conditions and the immune response.
Collapse
Affiliation(s)
- Aaron T Jacobs
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California 90095, USA
| | | |
Collapse
|
194
|
Antonsson A, Hughes K, Edin S, Grundström T. Regulation of c-Rel nuclear localization by binding of Ca2+/calmodulin. Mol Cell Biol 2003; 23:1418-27. [PMID: 12556500 PMCID: PMC141150 DOI: 10.1128/mcb.23.4.1418-1427.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NF-kappa B/Rel family of transcription factors participates in the control of a wide array of genes, including genes involved in embryonic development and regulation of immune, inflammation, and stress responses. In most cells, inhibitory I kappa B proteins sequester NF-kappa B/Rel in the cytoplasm. Cellular stimulation results in the degradation of I kappa B and modification of NF-kappa B/Rel proteins, allowing NF-kappa B/Rel to translocate to the nucleus and act on its target genes. Calmodulin (CaM) is a highly conserved, ubiquitously expressed Ca(2+) binding protein that serves as a key mediator of intracellular Ca(2+) signals. Here we report that two members of the NF-kappa B/Rel family, c-Rel and RelA, interact directly with Ca(2+)-loaded CaM. The interaction with CaM is greatly enhanced by cell stimulation, and this enhancement is blocked by addition of I kappa B. c-Rel and RelA interact with CaM through a similar sequence near the nuclear localization signal. Compared to the wild-type protein, CaM binding-deficient mutants of c-Rel exhibit increases in both nuclear accumulation and transcriptional activity on the interleukin 2 and granulocyte macrophage colony-stimulating factor promoters in the presence of a Ca(2+) signal. Conversely, for RelA neither nuclear accumulation nor transcriptional activity on these promoters is increased by mutation of the sequence interacting with CaM. Our results suggest that CaM binds c-Rel and RelA after their release from I kappa B and can inhibit nuclear import of c-Rel while letting RelA translocate to the nucleus and act on its target genes. CaM can therefore differentially regulate the activation of NF-kappa B/Rel proteins following stimulation.
Collapse
Affiliation(s)
- Asa Antonsson
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
195
|
Kiernan R, Brès V, Ng RWM, Coudart MP, El Messaoudi S, Sardet C, Jin DY, Emiliani S, Benkirane M. Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. J Biol Chem 2003; 278:2758-66. [PMID: 12419806 DOI: 10.1074/jbc.m209572200] [Citation(s) in RCA: 419] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NF-kappaB represents a family of eukaryotic transcription factors participating in the regulation of various cellular genes involved in the immediate early processes of immune, acute-phase, and inflammatory responses. Cellular localization and consequently the transcriptional activity of NF-kappaB is tightly regulated by its partner IkappaBalpha. Here, we show that the p65 subunit of NF-kappaB is acetylated by both p300 and PCAF on lysines 122 and 123. Both HDAC2 and HDAC3 interact with p65, although only HDAC3 was able to deacetylate p65. Acetylation of p65 reduces its ability to bind kappaBeta-DNA. Finally, acetylation of p65 facilitated its removal from DNA and consequently its IkappaBetaalpha-mediated export from the nucleus. We propose that acetylation of p65 plays a key role in IkappaBetaalpha-mediated attenuation of NF-kappaBeta transcriptional activity which is an important process that restores the latent state in post-induced cells.
Collapse
Affiliation(s)
- Rosemary Kiernan
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, Montpellier 34296, France
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Dargemont C. Export nucléaire des protéines et homéostasie cellulaire. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/200218121237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
197
|
Tapalaga D, Tiegs G, Angermüller S. NFkappaB and caspase-3 activity in apoptotic hepatocytes of galactosamine-sensitized mice treated with TNFalpha. J Histochem Cytochem 2002; 50:1599-609. [PMID: 12486082 DOI: 10.1177/002215540205001204] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tumor necrosis factor-alpha (TNFalpha) induces apoptosis in hepatocytes only under transcriptional arrest induced by galactosamine (GalN). In this study we demonstrated the shuttle of the transcription factor NFkappaB (nuclear factor-kappa B) in the liver tissue of mice within 30 min-4.5 hr hours after GalN/TNFalpha treatment. NFkappaB translocation from cytoplasm to the nucleus is initiated by its separation from the inhibitory IkappaB proteins which include IkappaBalpha, IkappaBbeta, and IkappaB. Thirty minutes after GalN/TNFalpha administration, NFkappaBp65 in hepatocellular nuclei becomes increasingly detectable and reaches its highest level after 2.5 hr. Then export back into cytoplasm begins but, surprisingly, approximately 30% of NFkappaB remains in the nuclear fraction and appears as an immunoprecipitate in the nuclei of apoptotic hepatocytes. Non-apoptotic hepatocytes do not show any reaction product in the nuclei 4.5 hr after treatment. Correspondingly, the amount of dissociated IkappaBbeta decreases in the cytoplasm up to 2.5 hr and increases again afterwards, although it does not reach the level of the control samples. No evidence of IkappaBbeta in the nuclei was found either immunocytochemically or biochemically. Caspase-3 activity, which is responsible for apoptosis, increases significantly after 3.5 hr. At that time, apoptotic hepatocytes can occasionally be observed and, 4.5 hr after GalN/TNFalpha treatment, constitute approximately 30% of the hepatocytes.
Collapse
Affiliation(s)
- Dan Tapalaga
- Department of Anatomy and Cell Biology II, University of Heidelberg, Germany
| | | | | |
Collapse
|
198
|
Le Rouzic E, Mousnier A, Rustum C, Stutz F, Hallberg E, Dargemont C, Benichou S. Docking of HIV-1 Vpr to the nuclear envelope is mediated by the interaction with the nucleoporin hCG1. J Biol Chem 2002; 277:45091-8. [PMID: 12228227 DOI: 10.1074/jbc.m207439200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HIV-1 genome contains several genes coding for auxiliary proteins, including the small Vpr protein. Vpr affects the integrity of the nuclear envelope and participates in the nuclear translocation of the preintegration complex containing the viral DNA. Here, we show by photobleaching experiments performed on living cells expressing a Vpr-green fluorescent protein fusion that the protein shuttles between the nucleus and the cytoplasm, but a significant fraction is concentrated at the nuclear envelope, supporting the hypothesis that Vpr interacts with components of the nuclear pore complex. An interaction between HIV-1 Vpr and the human nucleoporin CG1 (hCG1) was revealed in the yeast two-hybrid system, and then confirmed both in vitro and in transfected cells. This interaction does not involve the FG repeat domain of hCG1 but rather the N-terminal region of the protein. Using a nuclear import assay based on digitonin-permeabilized cells, we demonstrate that hCG1 participates in the docking of Vpr at the nuclear envelope. This association of Vpr with a component of the nuclear pore complex may contribute to the disruption of the nuclear envelope and to the nuclear import of the viral DNA.
Collapse
Affiliation(s)
- Erwann Le Rouzic
- Institut Cochin, Department of Infectious Diseases, CNRS UMR8104, INSERM U567, Université Paris 5, Paris, France
| | | | | | | | | | | | | |
Collapse
|
199
|
Acute Alcohol Inhibits the Induction of Nuclear Regulatory Factor ??B Activation Through CD14/Toll-Like Receptor 4, Interleukin-1, and Tumor Necrosis Factor Receptors: A Common Mechanism Independent of Inhibitory ??B?? Degradation? Alcohol Clin Exp Res 2002. [DOI: 10.1097/00000374-200211000-00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
200
|
Mandrekar P, Dolganiuc A, Bellerose G, Kodys K, Romics L, Nizamani R, Szabo G. Acute Alcohol Inhibits the Induction of Nuclear Regulatory Factor kappaB Activation Through CD14/Toll-Like Receptor 4, Interleukin-1, and Tumor Necrosis Factor Receptors: A Common Mechanism Independent of Inhibitory kappaBalpha Degradation? Alcohol Clin Exp Res 2002. [DOI: 10.1111/j.1530-0277.2002.tb02462.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|