151
|
Lee H, Niida H, Sung S, Lee J. Haplotype-resolved de novo assembly revealed unique characteristics of alternative lengthening of telomeres in mouse embryonic stem cells. Nucleic Acids Res 2024; 52:12456-12474. [PMID: 39351882 PMCID: PMC11551733 DOI: 10.1093/nar/gkae842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
Telomeres protect chromosome ends from DNA damage responses, and their dysfunction triggers genomic alterations like chromosome fusion and rearrangement, which can lead to cellular death. Certain cells, including specific cancer cells, adopt alternative lengthening of telomere (ALT) to counteract dysfunctional telomeres and proliferate indefinitely. While telomere instability and ALT activity are likely major sources of genomic alteration, the patterns and consequences of such changes at the nucleotide level in ALT cells remain unexplored. Here we generated haplotype-resolved genome assemblies for type I ALT mouse embryonic stem cells, facilitated by highly accurate or ultra-long reads and Hi-C reads. High-quality genome revealed ALT-specific complex chromosome end structures and various genomic alterations including over 1000 structural variants (SVs). The unique sequence (mTALT) used as a template for type I ALT telomeres showed traces of being recruited into the genome, with mTALT being replicated with remarkably high accuracy. Subtelomeric regions exhibited distinct characteristics: resistance to the accumulation of SVs and small variants. We genotyped SVs at allele resolution, identifying genes (Rgs6, Dpf3 and Tacc2) crucial for maintaining ALT telomere stability. Our genome assembly-based approach elucidated the unique characteristics of ALT genome, offering insights into the genome evolution of cells surviving telomere-derived crisis.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Hiroyuki Niida
- Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu city, Shizuoka 431-3192, Japan
| | - Sanghyun Sung
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
152
|
Jepsen WM, Fazenbaker A, Ramsey K, Bonfitto A, Naymik M, Turner B, Sloan J, Tiwari N, Bernes SM, Neilson DE, Sanchez-Castillo M, Huentelman MJ, Narayanan V. Duchenne Muscular Dystrophy in Two Half-Brothers Due to Inherited 306 Kb Inverted Insertion of 10p15.1 into Intron 44 of the Dp427m Transcript of the DMD Gene. Int J Mol Sci 2024; 25:11922. [PMID: 39595988 PMCID: PMC11593467 DOI: 10.3390/ijms252211922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare genetic disorder caused by the absence of a fully functional dystrophin protein in myocytes. In skeletal muscle, the lack of dystrophin ultimately results in muscle wasting and the replacement of myocytes with fatty or fibrous tissues. In the heart, cardiomyocytes eventually fail and cause fatal cardiomyopathy. We present a case of a male patient and his younger brother with a maternally inherited inverted insertion of approximately 306 kb of chromosome 10 in the deep intronic region between exons 44 and 45 of the DMD gene, leading to Duchenne muscular dystrophy. Chromosomal microarray, comprehensive muscular dystrophy genetic testing, and whole exome sequencing were negative. Targeted transcriptome RNA sequencing at an external lab showed no aberrant splicing. Research whole genome sequencing identified the copy number gain and insertion. Subsequent reanalysis of the RNA sequencing data showed possible aberrant splicing involving DMD exons 44-45, and research RNA sequencing revealed a fusion between the DMD gene on the minus strand of chromosome X and the PFKFB3 gene on the plus strand of chromosome 10. We demonstrate that whole genome sequencing can be valuable for identifying intronic events in the DMD gene previously undetected or not reported by traditional clinical testing.
Collapse
Affiliation(s)
- Wayne M. Jepsen
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (W.M.J.)
| | | | - Keri Ramsey
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (W.M.J.)
| | - Anna Bonfitto
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (W.M.J.)
| | - Marcus Naymik
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (W.M.J.)
| | - Bryce Turner
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (W.M.J.)
| | - Jennifer Sloan
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (W.M.J.)
| | | | | | | | - Meredith Sanchez-Castillo
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (W.M.J.)
| | - Matt J. Huentelman
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (W.M.J.)
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (W.M.J.)
| |
Collapse
|
153
|
Zhou H, Liu Q, Zhang D, Li Q, Cao D, Cheng N, Wan X, Zhang Y, Feng F, Xiang Y, Yang J. Efficacy and safety of an oral combination therapy of niraparib and etoposide in platinum resistant/refractory ovarian cancer: a single arm, prospective, phase II study. Int J Gynecol Cancer 2024; 34:1761-1767. [PMID: 39074931 DOI: 10.1136/ijgc-2024-005386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
OBJECTIVE Non-platinum chemotherapy is used in platinum resistant/refractory ovarian cancer patients but offers limited efficacy, especially in those who develop platinum resistance after ≤2 lines of platinum based chemotherapy. This phase II study aimed to evaluate the efficacy and safety of oral niraparib plus etoposide in platinum resistant/refractory ovarian cancer. METHODS Platinum resistant/refractory ovarian cancer patients after ≤2 lines of platinum based chemotherapy, histologically confirmed as non-mucinous epithelial ovarian cancer, regardless of biomarker status, were eligible. Patients received niraparib with a starting dose of 200 mg/100 mg alternate once a day, and oral etoposide of 50 mg once a day, on days 1-20 of 30 days per cycle for a maximum of 6-8 cycles, followed by niraparib until disease progression or intolerable toxicity. The primary endpoint was investigator assessed progression free survival. RESULTS 29 patients were enrolled from 22 May 2020 to 3 February 2023; 26 patients were included in the efficacy analysis set as per protocol. Median progression free survival was 4.2 months (95% confidence interval (CI) 3.9 to 4.4). Overall response rate was 26.9% (95% CI 8.7 to 45.2). Disease control rate was 57.7% (95% CI 37.3 to 78.0). Overall response rate in patients with a BRCA mutation and homologous recombination deficiency was 50% and 41.7%, respectively. Median progression free survival in patients with primary platinum resistance was 4.5 months (95% CI 3.6 to 5.3). 29 patients were included in the safety analysis set, and 8 (28%) patients experienced treatment related adverse events of grade ≥3. There was no treatment related discontinuation. CONCLUSIONS Niraparib combined with etoposide showed evidence of antitumor activity in platinum resistant/refractory ovarian cancer after ≤2 lines of platinum based chemotherapy, particularly in patients with a BRCA mutation, homologous recombination deficiency, or primary platinum resistance. This once-a-day oral combination was a convenient option. TRIAL REGISTRATION NUMBER NCT04217798.
Collapse
Affiliation(s)
- Huimei Zhou
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Qian Liu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Depu Zhang
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Qingshui Li
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Dongyan Cao
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Ninghai Cheng
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Xirun Wan
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Ying Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Fengzhi Feng
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Yang Xiang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Jiaxin Yang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| |
Collapse
|
154
|
Li A, Warren SJ, Umphress BA, Alomari AK. Histopathologic, genomic, transcriptomic, and functional characteristics of eight melanocytic tumors with BRAF fusions showing stronger MAPK pathway activation compared to BRAF V600E tumors. J Cutan Pathol 2024; 51:899-910. [PMID: 39171578 DOI: 10.1111/cup.14704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Activating BRAF gene alterations are central to melanocytic tumor pathogenesis. A small, emerging subset of melanocytic tumors driven by BRAF fusions has distinct therapeutic implications and has been described to have Spitzoid morphology patterns. However, such morphological patterns do not encompass all cases, and little is known about the functional molecular events. MATERIALS AND METHODS We conducted a retrospective search through our molecular archives to identify melanocytic tumors with BRAF fusions. We reviewed clinical, histopathological, and genomic features. We further explored transcriptomic and protein-level findings. RESULTS Histopathologic patterns varied, with many cases without a distinctive pattern. We identified novel and diverse BRAF gene fusion partners. Differential transcriptomic analysis between low-risk BRAF fusion tumors and reference BRAF V600E tumors showed no differentially expressed genes. However, quantitatively stronger MAPK pathway activation of BRAF fusion tumors over BRAF V600E tumors was demonstrated by statistically significant stronger staining of p-ERK immunohistochemistry. Gene-specific RNA analysis shows comparable BRAF transcript levels between the two groups. DISCUSSION AND CONCLUSION The quantitatively stronger activation of the MAPK pathway of BRAF fusion tumors, instead of qualitatively different transcriptomes, may account for the morphology difference from conventional BRAF V600E tumors. BRAF fusions likely act through dysregulated protein function rather than RNA upregulation related to the characteristics of the fusion partners.
Collapse
Affiliation(s)
- Aofei Li
- IU Health Pathology Laboratory, Indiana University, Indianapolis, Indiana, USA
| | - Simon J Warren
- IU Health Pathology Laboratory, Indiana University, Indianapolis, Indiana, USA
| | - Brandon A Umphress
- IU Health Pathology Laboratory, Indiana University, Indianapolis, Indiana, USA
| | - Ahmed K Alomari
- IU Health Pathology Laboratory, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
155
|
Xue R, Li X, Yang L, Yang M, Zhang B, Zhang X, Li L, Duan X, Yan R, He X, Cui F, Wang L, Wang X, Wu M, Zhang C, Zhao J. Evaluation and integration of cell-free DNA signatures for detection of lung cancer. Cancer Lett 2024; 604:217216. [PMID: 39233043 DOI: 10.1016/j.canlet.2024.217216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Cell-free DNA (cfDNA) analysis has shown potential in detecting early-stage lung cancer based on non-genetic features. To distinguish patients with lung cancer from healthy individuals, peripheral blood were collected from 926 lung cancer patients and 611 healthy individuals followed by cfDNA extraction. Low-pass whole genome sequencing and targeted methylation sequencing were conducted and various features of cfDNA were evaluated. With our customized algorithm using the most optimal features, the ensemble stacked model was constructed, called ESim-seq (Early Screening tech with Integrated Model). In the independent validation cohort, the ESim-seq model achieved an area under the curve (AUC) of 0.948 (95 % CI: 0.915-0.981), with a sensitivity of 79.3 % (95 % CI: 71.5-87.0 %) across all stages at a specificity of 96.0 % (95 % CI: 90.6-100.0 %). Specifically, the sensitivity of the ESim-seq model was 76.5 % (95 % CI: 67.3-85.8 %) in stage I patients, 100 % (95 % CI: 100.0-100.0 %) in stage II patients, 100 % (95 % CI: 100.0-100.0 %) in stage III patients and 87.5 % (95 % CI: 64.6%-100.0 %) in stage IV patients in the independent validation cohort. Besides, we constructed LCSC model (Lung Cancer Subtype multiple Classification), which was able to accurately distinguish patients with small cell lung cancer from those with non-small cell lung cancer, achieving an AUC of 0.961 (95 % CI: 0.949-0.957). The present study has established a framework for assessing cfDNA features and demonstrated the benefits of integrating multiple features for early detection of lung cancer.
Collapse
Affiliation(s)
- Ruyue Xue
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaomin Li
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lu Yang
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meijia Yang
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bei Zhang
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Xu Zhang
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoran Duan
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Yan
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianying He
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangfang Cui
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linlin Wang
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoqiang Wang
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Mengsi Wu
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Chao Zhang
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Jie Zhao
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
156
|
Hung KL, Jones MG, Wong ITL, Curtis EJ, Lange JT, He BJ, Luebeck J, Schmargon R, Scanu E, Brückner L, Yan X, Li R, Gnanasekar A, Chamorro González R, Belk JA, Liu Z, Melillo B, Bafna V, Dörr JR, Werner B, Huang W, Cravatt BF, Henssen AG, Mischel PS, Chang HY. Coordinated inheritance of extrachromosomal DNAs in cancer cells. Nature 2024; 635:201-209. [PMID: 39506152 PMCID: PMC11541006 DOI: 10.1038/s41586-024-07861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/19/2024] [Indexed: 11/08/2024]
Abstract
The chromosomal theory of inheritance dictates that genes on the same chromosome segregate together while genes on different chromosomes assort independently1. Extrachromosomal DNAs (ecDNAs) are common in cancer and drive oncogene amplification, dysregulated gene expression and intratumoural heterogeneity through random segregation during cell division2,3. Distinct ecDNA sequences, termed ecDNA species, can co-exist to facilitate intermolecular cooperation in cancer cells4. How multiple ecDNA species within a tumour cell are assorted and maintained across somatic cell generations is unclear. Here we show that cooperative ecDNA species are coordinately inherited through mitotic co-segregation. Imaging and single-cell analyses show that multiple ecDNAs encoding distinct oncogenes co-occur and are correlated in copy number in human cancer cells. ecDNA species are coordinately segregated asymmetrically during mitosis, resulting in daughter cells with simultaneous copy-number gains in multiple ecDNA species before any selection. Intermolecular proximity and active transcription at the start of mitosis facilitate the coordinated segregation of ecDNA species, and transcription inhibition reduces co-segregation. Computational modelling reveals the quantitative principles of ecDNA co-segregation and co-selection, predicting their observed distributions in cancer cells. Coordinated inheritance of ecDNAs enables co-amplification of specialized ecDNAs containing only enhancer elements and guides therapeutic strategies to jointly deplete cooperating ecDNA oncogenes. Coordinated inheritance of ecDNAs confers stability to oncogene cooperation and novel gene regulatory circuits, allowing winning combinations of epigenetic states to be transmitted across cell generations.
Collapse
Affiliation(s)
- King L Hung
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Matthew G Jones
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Ivy Tsz-Lo Wong
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Ellis J Curtis
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Joshua T Lange
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Britney Jiayu He
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Jens Luebeck
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
| | - Rachel Schmargon
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elisa Scanu
- Department of Mathematics, Queen Mary University of London, London, UK
| | - Lotte Brückner
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany
| | - Xiaowei Yan
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Aditi Gnanasekar
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Rocío Chamorro González
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julia A Belk
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Zhonglin Liu
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
| | - Jan R Dörr
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Benjamin Werner
- Evolutionary Dynamics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Weini Huang
- Department of Mathematics, Queen Mary University of London, London, UK
- Group of Theoretical Biology, The State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Benjamin F Cravatt
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
- Vividion Therapeutics, San Diego, CA, USA
| | - Anton G Henssen
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin and German Cancer Research Center DKFZ, Heidelberg, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Paul S Mischel
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
157
|
Lee H, Jeong SH, Baek YW, Lee H, Sa JK, Lee JY, Lee YS, Nam YJ, Kim J, Kim J, Choi JY, Park SA, Kim JH, Park YH, Lim J, Kim YH, Park EK, Kim C, Lee JH. Deciphering the toxicity of polyhexamethylene guanidine phosphate in lung carcinogenesis: Mutational profiles and molecular mechanisms. CHEMOSPHERE 2024; 368:143785. [PMID: 39577803 DOI: 10.1016/j.chemosphere.2024.143785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/24/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Polyhexamethylene guanidine (PHMG) is widely utilized in personal hygiene products due to its bactericidal, non-volatile, and hydrophilic properties. However, the long-term toxic effects and underlying mechanisms associated with respiratory exposure to the commonly used form, PHMG phosphate (PHMG-p), are still insufficiently understood. This study aims to elucidate the types of pulmonary lesions and the incidence of lung cancer associated with varying concentrations of PHMG-p and observation periods, along with the molecular mechanisms underlying this relationship. To assess these effects, CT scans and pathological analyses were conducted for up to 54 weeks following initial exposure to PHMG-p. Furthermore, to investigate the underlying causes of pulmonary toxicity, TGF-beta-activated kinase 1 was identified as a PHMG-p-binding protein, and its associated signaling pathways, including necroptosis, apoptosis, and MKK7, were explored. Somatic mutational signature, and gene ontology (GO) analyses were performed to investigate the genetic characteristics of PHMG-p-induced lung carcinogenesis. PHMG-p exposure led to somatic mutations in lung cancer-related genes, including TP53, SOS1, KMT2D, MDM2, ERBB2, SETD2, MET, ARID1A, RBM10, and CDKN2A as well as in genes such as RAB31, WASHC1, DDX11, ECD, STAB2, MUC2, and MUC5AC. The mutated genes were primarily associated with impaired DNA repair mechanisms. GO analysis highlighted the activation of pathways related to cell cycle checkpoints, necroptosis, MAPK, and idiopathic pulmonary fibrosis, while also revealing the suppression of signaling pathways associated with natural killer cells, GADD45, LXR/RXR activation, and IL-15 production. Gain-of-function experiments confirmed the oncogenic roles of PLAU and HMGA2, as well as the tumor-suppressive functions of TBX4 and GPX3. These findings suggest that PHMG-p activates necroptosis and MAPK signaling, increases the frequency of somatic mutations, and inhibits apoptosis, thus fostering an environment conducive to carcinogenesis. This underscores the importance of understanding the potential health risks associated with PHMG-p exposure and provides insights for future research and regulatory considerations regarding the safety of personal hygiene products.
Collapse
Affiliation(s)
- Hong Lee
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi, 15355, Republic of Korea.
| | - Sang Hoon Jeong
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi, 15355, Republic of Korea.
| | - Yong-Wook Baek
- Humidifier Disinfectant Health Center, National Institute of Environmental Research, Incheon, 22689, Republic of Korea.
| | - Hyejin Lee
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi, 15355, Republic of Korea.
| | - Jason K Sa
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Ji Yoon Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Yu-Seon Lee
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi, 15355, Republic of Korea.
| | - Yoon Jeong Nam
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi, 15355, Republic of Korea.
| | - Jaeyoung Kim
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi, 15355, Republic of Korea.
| | - Jonghoon Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06531, Republic of Korea.
| | - Jin Young Choi
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi, 15355, Republic of Korea.
| | - Su A Park
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi, 15355, Republic of Korea.
| | - Je Hyeong Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi, 15355, Republic of Korea.
| | - Yoon Hee Park
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi, 15355, Republic of Korea.
| | - Jungyun Lim
- Humidifier Disinfectant Health Center, National Institute of Environmental Research, Incheon, 22689, Republic of Korea.
| | - Young-Hee Kim
- Humidifier Disinfectant Health Center, National Institute of Environmental Research, Incheon, 22689, Republic of Korea.
| | - Eun-Kee Park
- Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University, Busan, 49267, Republic of Korea.
| | - Cherry Kim
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi, 15355, Republic of Korea.
| | - Ju-Han Lee
- Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi, 15355, Republic of Korea.
| |
Collapse
|
158
|
Olivier E, Zhang S, Yan Z, Bouhassira EE. Stem cell factor and erythropoietin-independent production of cultured reticulocytes. Haematologica 2024; 109:3705-3720. [PMID: 38618684 PMCID: PMC11532706 DOI: 10.3324/haematol.2023.284427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/05/2024] [Indexed: 04/16/2024] Open
Abstract
Cultured reticulocytes can supplement transfusion needs and offer promise for drug delivery and immune tolerization. They can be produced from induced pluripotent stem cells (iPSC), but the 45-day culture time and cytokine costs make largescale production prohibitive. To overcome these limitations, we have generated iPSC that express constitutive stem cell factor (SCF) receptor and jak2 adaptor alleles. We show that iPSC lines carrying these alleles can differentiate into self-renewing erythroblasts that can proliferate for up to 70 cell-doubling in a cost-effective, chemically-defined, albumin- and cytokine-free medium. These kitjak2 self-renewing erythroblasts retain the ability to enucleate at a high rate up to senescence. Kitjak2-derived cultured reticulocytes should be safe for transfusion because they can be irradiated to eliminate residual nucleated cells. The kitjak2 cells express blood group 0 and test negative for RhD and other clinically significant red blood cell antigens and have sufficient proliferation capacity to meet global red blood cell needs.
Collapse
Affiliation(s)
- Emmanuel Olivier
- Department of Cell Biology, Albert Einstein College of Medicine Bronx, New York, 10461
| | - Shouping Zhang
- Department of Cell Biology, Albert Einstein College of Medicine Bronx, New York, 10461
| | - Zi Yan
- Department of Cell Biology, Albert Einstein College of Medicine Bronx, New York, 10461
| | - Eric E Bouhassira
- Department of Cell Biology, Albert Einstein College of Medicine Bronx, New York.
| |
Collapse
|
159
|
Tang J, Weiser NE, Wang G, Chowdhry S, Curtis EJ, Zhao Y, Wong ITL, Marinov GK, Li R, Hanoian P, Tse E, Mojica SG, Hansen R, Plum J, Steffy A, Milutinovic S, Meyer ST, Luebeck J, Wang Y, Zhang S, Altemose N, Curtis C, Greenleaf WJ, Bafna V, Benkovic SJ, Pinkerton AB, Kasibhatla S, Hassig CA, Mischel PS, Chang HY. Enhancing transcription-replication conflict targets ecDNA-positive cancers. Nature 2024; 635:210-218. [PMID: 39506153 PMCID: PMC11540844 DOI: 10.1038/s41586-024-07802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/09/2024] [Indexed: 11/08/2024]
Abstract
Extrachromosomal DNA (ecDNA) presents a major challenge for cancer patients. ecDNA renders tumours treatment resistant by facilitating massive oncogene transcription and rapid genome evolution, contributing to poor patient survival1-7. At present, there are no ecDNA-specific treatments. Here we show that enhancing transcription-replication conflict enables targeted elimination of ecDNA-containing cancers. Stepwise analyses of ecDNA transcription reveal pervasive RNA transcription and associated single-stranded DNA, leading to excessive transcription-replication conflicts and replication stress compared with chromosomal loci. Nucleotide incorporation on ecDNA is markedly slower, and replication stress is significantly higher in ecDNA-containing tumours regardless of cancer type or oncogene cargo. pRPA2-S33, a mediator of DNA damage repair that binds single-stranded DNA, shows elevated localization on ecDNA in a transcription-dependent manner, along with increased DNA double strand breaks, and activation of the S-phase checkpoint kinase, CHK1. Genetic or pharmacological CHK1 inhibition causes extensive and preferential tumour cell death in ecDNA-containing tumours. We advance a highly selective, potent and bioavailable oral CHK1 inhibitor, BBI-2779, that preferentially kills ecDNA-containing tumour cells. In a gastric cancer model containing FGFR2 amplified on ecDNA, BBI-2779 suppresses tumour growth and prevents ecDNA-mediated acquired resistance to the pan-FGFR inhibitor infigratinib, resulting in potent and sustained tumour regression in mice. Transcription-replication conflict emerges as a target for ecDNA-directed therapy, exploiting a synthetic lethality of excess to treat cancer.
Collapse
Affiliation(s)
- Jun Tang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Natasha E Weiser
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Guiping Wang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ellis J Curtis
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
| | - Yanding Zhao
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ivy Tsz-Lo Wong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Georgi K Marinov
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Philip Hanoian
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | | | | | | - Jens Luebeck
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Yanbo Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Shu Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Nicolas Altemose
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Curtis
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Stephen J Benkovic
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | | | | | | | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
160
|
Werner B, Powell E, Duggan J, Cortesi M, Lee YC, Arora V, Athavale R, Dean M, Warton K, Ford CE. Cell-free DNA from ascites identifies clinically relevant variants and tumour evolution in patients with advanced ovarian cancer. Mol Oncol 2024; 18:2668-2683. [PMID: 39115191 PMCID: PMC11547227 DOI: 10.1002/1878-0261.13710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 11/09/2024] Open
Abstract
The emergence of targeted therapies has transformed ovarian cancer treatment. However, biomarker profiling for precision medicine is limited by access to quality, tumour-enriched tissue samples. The use of cell-free DNA (cfDNA) in ascites presents a potential solution to this challenge. In this study, next-generation sequencing was performed on ascites-derived cfDNA samples (26 samples from 15 human participants with ovarian cancer), with matched DNA from ascites-derived tumour cells (n = 5) and archived formalin-fixed paraffin-embedded (FFPE) tissue (n = 5). Similar tumour purity and variant detection were achieved with cfDNA compared to FFPE and ascites cell DNA. Analysis of large-scale genomic alterations, loss of heterozygosity and tumour mutation burden identified six cases of high genomic instability (including four with pathogenic BRCA1 and BRCA2 mutations). Copy number profiles and subclone prevalence changed between sequential ascites samples, particularly in a case where deletions and chromothripsis in Chr17p13.1 and Chr8q resulted in changes in clinically relevant TP53 and MYC variants over time. Ascites cfDNA identified clinically actionable information, concordant to tissue biopsies, enabling opportunistic molecular profiling. This advocates for analysis of ascites cfDNA in lieu of accessing tumour tissue via biopsy.
Collapse
Affiliation(s)
- Bonnita Werner
- Gynaecological Cancer Research Group, School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
| | - Elyse Powell
- Gynaecological Cancer Research Group, School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
| | - Jennifer Duggan
- Gynaecological Oncology DepartmentRoyal Hospital for WomenSydneyAustralia
| | - Marilisa Cortesi
- Gynaecological Cancer Research Group, School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
- Laboratory of Cellular and Molecular Engineering, Department of Electrical, Electronic and Information EngineeringAlma Mater Studiorum‐University of BolognaItaly
| | - Yeh Chen Lee
- Gynaecological Oncology DepartmentRoyal Hospital for WomenSydneyAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
| | - Vivek Arora
- School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
- Prince of Wales Private HospitalSydneyAustralia
| | - Ramanand Athavale
- Gynaecological Oncology DepartmentRoyal Hospital for WomenSydneyAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMDUSA
| | - Kristina Warton
- Gynaecological Cancer Research Group, School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
| | - Caroline E. Ford
- Gynaecological Cancer Research Group, School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
| |
Collapse
|
161
|
To B, Broeker C, Jhan JR, Garcia-Lerena J, Vusich J, Rempel R, Rennhack JP, Hollern D, Jackson L, Judah D, Swiatnicki M, Bylett E, Kubiak R, Honeysett J, Nevins J, Andrechek E. Insight into mammary gland development and tumor progression in an E2F5 conditional knockout mouse model. Oncogene 2024; 43:3402-3415. [PMID: 39341991 PMCID: PMC11554565 DOI: 10.1038/s41388-024-03172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Development of breast cancer is linked to altered regulation of mammary gland developmental processes. A better understanding of normal mammary gland development can thus reveal possible mechanisms of how normal cells are re-programmed to become malignant. E2Fs 1-4 are part of the E2F transcription factor family with varied roles in mammary development, but little is known about the role of E2F5. A combination of scRNAseq and predictive signature tools demonstrated the presence of E2F5 in the mammary gland and showed changes in predicted activity during the various phases of mammary gland development. Testing the hypothesis that E2F5 regulates mammary function, we generated a mammary-specific E2F5 knockout mouse model, resulting in modest mammary gland development changes. However, after a prolonged latency the E2F5 conditional knockout mice developed highly metastatic mammary tumors. Whole genome sequencing revealed significant intertumor heterogeneity. RNAseq and protein analysis identified altered levels of Cyclin D1, with similarities to MMTV-Neu tumors, suggesting that E2F5 conditional knockout mammary glands and tumors may be dependent on Cyclin D1. Transplantation of the tumors revealed metastases to lymph nodes that were enriched through serial transplantation in immune competent recipients. Based on these findings, we propose that loss of E2F5 leads to altered regulation of Cyclin D1, which facilitates the development of metastatic mammary tumors after long latency. More importantly, this study demonstrates that conditional loss of E2F5 in the mammary gland leads to tumor formation, revealing its role as a transcription factor regulating a network of genes that normally result in a tumor suppressor function.
Collapse
Affiliation(s)
- Briana To
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Carson Broeker
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Jing-Ru Jhan
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - John Vusich
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | | | | | - Lauren Jackson
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - David Judah
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Matt Swiatnicki
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Evan Bylett
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Rachel Kubiak
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Jordan Honeysett
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - Eran Andrechek
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
162
|
Kim H, Kim S, Wade T, Yeo E, Lipsa A, Golebiewska A, Johnson KC, An S, Ko J, Nam Y, Lee HY, Kang S, Chung H, Niclou SP, Moon HE, Paek SH, Bafna V, Luebeck J, Verhaak RGW. Mapping extrachromosomal DNA amplifications during cancer progression. Nat Genet 2024; 56:2447-2454. [PMID: 39402156 PMCID: PMC11549044 DOI: 10.1038/s41588-024-01949-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/13/2024] [Indexed: 11/10/2024]
Abstract
To understand the role of extrachromosomal DNA (ecDNA) amplifications in cancer progression, we detected and classified focal amplifications in 8,060 newly diagnosed primary cancers, untreated metastases and heavily pretreated tumors. The ecDNAs were detected at significantly higher frequency in untreated metastatic and pretreated tumors compared to newly diagnosed cancers. Tumors from chemotherapy-pretreated patients showed significantly higher ecDNA frequency compared to untreated cancers. In particular, tubulin inhibition associated with ecDNA increases, suggesting a role for ecDNA in treatment response. In longitudinally matched tumor samples, ecDNAs were more likely to be retained compared to chromosomal amplifications. EcDNAs shared between time points, and ecDNAs in advanced cancers were more likely to harbor localized hypermutation events compared to private ecDNAs and ecDNAs in newly diagnosed tumors. Relatively high variant allele fractions of ecDNA localized hypermutations implicated early ecDNA mutagenesis. Our findings nominate ecDNAs to provide tumors with competitive advantages during cancer progression and metastasis.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea.
- Department of Biohealth Regulatory Science, School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea.
- Epigenome Dynamics Control Research Center, Sungkyunkwan University, Suwon-si, South Korea.
| | - Soyeon Kim
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Taylor Wade
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Eunchae Yeo
- Department of Biohealth Regulatory Science, School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Anuja Lipsa
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Kevin C Johnson
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Sepil An
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Junyong Ko
- Department of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon-si, South Korea
| | - Yoonjoo Nam
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Hwa Yeon Lee
- School of Biological Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Seunghyun Kang
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Heesuk Chung
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Belvaux, Luxembourg
| | - Hyo-Eun Moon
- Department of Neurosurgery, Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon-si, South Korea
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California at San Diego, La Jolla, CA, USA
| | - Jens Luebeck
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
| | - Roel G W Verhaak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Amsterdam University Medical Centers/VUmc, Amsterdam, the Netherlands.
| |
Collapse
|
163
|
Chen Y, Su Y, Cao X, Siavelis I, Leo IR, Zeng J, Tsagkozis P, Hesla AC, Papakonstantinou A, Liu X, Huang WK, Zhao B, Haglund C, Ehnman M, Johansson H, Lin Y, Lehtiö J, Zhang Y, Larsson O, Li X, de Flon FH. Molecular Profiling Defines Three Subtypes of Synovial Sarcoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404510. [PMID: 39257029 DOI: 10.1002/advs.202404510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/11/2024] [Indexed: 09/12/2024]
Abstract
Synovial Sarcomas (SS) are characterized by the presence of the SS18::SSX fusion gene, which protein product induce chromatin changes through remodeling of the BAF complex. To elucidate the genomic events that drive phenotypic diversity in SS, we performed RNA and targeted DNA sequencing on 91 tumors from 55 patients. Our results were verified by proteomic analysis, public gene expression cohorts and single-cell RNA sequencing. Transcriptome profiling identified three distinct SS subtypes resembling the known histological subtypes: SS subtype I and was characterized by hyperproliferation, evasion of immune detection and a poor prognosis. SS subtype II and was dominated by a vascular-stromal component and had a significantly better outcome. SS Subtype III was characterized by biphasic differentiation, increased genomic complexity and immune suppression mediated by checkpoint inhibition, and poor prognosis despite good responses to neoadjuvant therapy. Chromosomal abnormalities were an independent significant risk factor for metastasis. KRT8 was identified as a key component for epithelial differentiation in biphasic tumors, potentially controlled by OVOL1 regulation. Our findings explain the histological grounds for SS classification and indicate that a significantly larger proportion of patients have high risk tumors (corresponding to SS subtype I) than previously believed.
Collapse
Affiliation(s)
- Yi Chen
- Division of Hematology and Oncology, Department of Medicine, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, 10032, USA
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, 10032, USA
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17165, Sweden
| | - Yanhong Su
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Xiaofang Cao
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17165, Sweden
| | - Ioannis Siavelis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17165, Sweden
| | - Isabelle Rose Leo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17165, Sweden
| | - Jianming Zeng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Panagiotis Tsagkozis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, 17176, Sweden
- Department of Clinical Orthopedics, Karolinska University Hospital, Stockholm, 17176, Sweden
| | - Asle C Hesla
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, 17176, Sweden
- Department of Clinical Orthopedics, Karolinska University Hospital, Stockholm, 17176, Sweden
| | - Andri Papakonstantinou
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Breast Cancer, Endocrine Tumors and Sarcomas, Karolinska University Hospital, Stockholm, 17176, Sweden
| | - Xiao Liu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wen-Kuan Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, 33305, Taiwan
| | - Binbin Zhao
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Cecilia Haglund
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Solna, 17176, Sweden
| | - Monika Ehnman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Henrik Johansson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17165, Sweden
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Janne Lehtiö
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17165, Sweden
| | - Yifan Zhang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Solna, 17176, Sweden
| | - Olle Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Solna, 17176, Sweden
| | - Xuexin Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, 110122, China
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Stockholm, 17165, Sweden
| | - Felix Haglund de Flon
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Solna, 17176, Sweden
| |
Collapse
|
164
|
Araujo HA, Pechuan-Jorge X, Zhou T, Do MT, Hu X, Rojas Alvarez FR, Salvatierra ME, Ibarguen HP, Lee R, Raghulan R, Shah H, Moreno Ayala MA, Chen K, Tovbis Shifrin N, Wu S, Solis Soto LM, Negrao MV, Gibbons DL, Hong DS, Roth JA, Heymach JV, Zhang J, Jiang J, Singh M, Smith JAM, Quintana E, Skoulidis F. Mechanisms of Response and Tolerance to Active RAS Inhibition in KRAS-Mutant Non-Small Cell Lung Cancer. Cancer Discov 2024; 14:2183-2208. [PMID: 38975897 DOI: 10.1158/2159-8290.cd-24-0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Resistance to inactive state-selective RASG12C inhibitors frequently entails accumulation of RASGTP, rendering effective inhibition of active RAS potentially desirable. Here, we evaluated the antitumor activity of the RAS(ON) multiselective tricomplex inhibitor RMC-7977 and dissected mechanisms of response and tolerance in KRASG12C-mutant non-small cell lung cancer (NSCLC). Broad-spectrum reversible RASGTP inhibition with or without concurrent covalent targeting of active RASG12C yielded superior and differentiated antitumor activity across diverse comutational KRASG12C-mutant NSCLC mouse models of primary or acquired RASG12C(ON) or RASG12C(OFF) inhibitor resistance. Interrogation of time-resolved single-cell transcriptional responses established an in vivo atlas of multimodal acute and chronic RAS pathway inhibition in the NSCLC ecosystem and uncovered a regenerative mucinous transcriptional program that supports long-term tumor cell persistence. In patients with advanced KRASG12C-mutant NSCLC, the presence of mucinous histologic features portended poor response to sotorasib or adagrasib. Our results have potential implications for personalized medicine and the development of rational RAS inhibitor-anchored therapeutic strategies. Significance: Our work reveals robust and durable antitumor activity of the preclinical RAS(ON) multiselective inhibitor RMC-7977 against difficult-to-treat subsets of KRASG12C-mutant NSCLC with primary or acquired RASG12C inhibitor resistance and identifies a conserved mucinous transcriptional state that supports RAS inhibitor tolerance. See related commentary by Marasco and Misale, p. 2018.
Collapse
Affiliation(s)
- Haniel A Araujo
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Teng Zhou
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Minh Truong Do
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xin Hu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frank R Rojas Alvarez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria E Salvatierra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heladio P Ibarguen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard Lee
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Kevin Chen
- Revolution Medicines, Redwood City, California
| | | | - Shuhong Wu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marcelo V Negrao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S Hong
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | - Ferdinandos Skoulidis
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
165
|
Tu X, Lu Z, Hei F, Zhang T, Wang X, Chen D, Fan F, Xu J, Zhang X, Guo K. Putative mechanisms of primary resistance to EGFR-targeted therapies: A retrospective study. Lung Cancer 2024; 197:107998. [PMID: 39490204 DOI: 10.1016/j.lungcan.2024.107998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/19/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUNDS Advanced lung adenocarcinoma (LUAD) patient with EGFR mutations often experience resistance to first-line epidermal growth factor tyrosine kinase inhibitors (EGFR-TKIs) therapy. Nonetheless, the mechanism and biomarkers of primary resistance remain unclear. Further exploration of independent prognostic factors will help clinicians identify patients who may not respond to EGFR-TKIs and select appropriate treatment strategies. METHODS A retrospective study involving 124 patients with stage IV LUAD harboring a common sensitizing EGFR mutation (exon 19 deletion or L858R mutation) who received EGFR-TKIs as first-line therapy was performed. All participants were tested by DNA-targeted sequencing in baseline samples, and there were 19 patients with progression-free survival (PFS) ≤ 3 months (cohort 1, C1, primary resistance), 22 patients with 3 < PFS < 8 months (cohort 2, C2, poor response) without known mutations associated with resistance, and 83 patients with PFS ≥ 8 months (cohort 3, C3, normal). RESULTS The most commonly mutated genes at baseline in patients prior to treatment within the entire study population. were TP53 (65 %), MYC (19 %), CDKN2A (12 %), MUC16 (12 %) and RBM10 (12 %). The baseline characteristics, except for the proportions of patients with EGFR L858R mutation and exon 19 deletion in C1 plus C2 compared to C3 (p = 0.036), were not significantly different among the cohorts. The frequencies of PIK3C2G, STK11, EPAS1, RARA and BTG2 variation were significantly higher in C1, the primary resistance group. Multivariate Cox analysis revealed that PIK3C2G (HR 15.70 95 % CI 3.24-76.05, p < 0.001), STK11 (HR 17.04, 95 % CI 3.68-78.92, p < 0.001), EPAS1 (HR 11.99, 95 % CI 2.57-56.03, p = 0.002), and BTG2 amplification (HR 9.53, 95 % CI 1.67-54.28, p = 0.011) were significantly associated with shorter PFS. CONCLUSIONS The genomic landscape varies significantly among patients with LUAD, which should be considered when making personalized treatment decisions. This information could provide insights into molecular changes and their effects on clinical treatment in diverse patients with LUAD harboring sensitizing EGFR mutations.
Collapse
Affiliation(s)
- Xueliang Tu
- Department of Clinical Laboratory, Yellow River Sanmenxia Affliated Hospital of Henan University of Science and Technology, Sanmenxia, PR China
| | - Zhongyu Lu
- State Key Laboratory of Neurology and Oncology Drug Development (Jiangsu Simcere Pharmaceutical Co., Ltd., Jiangsu Simcere Diagnostics Co.,Ltd.), PR China; Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, PR China
| | - Fengrong Hei
- Department of Oncology, Ulanqab Central Hospital, Inner Mongolia Autonomous Region, PR China
| | - Tong Zhang
- Department of Oncology, Jiayu Hospital, Zhongnan Hospital of Wuhan University (People's Hospital of Jiayu County), Xianning, PR China
| | - Xiaoxuan Wang
- State Key Laboratory of Neurology and Oncology Drug Development (Jiangsu Simcere Pharmaceutical Co., Ltd., Jiangsu Simcere Diagnostics Co.,Ltd.), PR China; Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, PR China
| | - Dongsheng Chen
- State Key Laboratory of Neurology and Oncology Drug Development (Jiangsu Simcere Pharmaceutical Co., Ltd., Jiangsu Simcere Diagnostics Co.,Ltd.), PR China; Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, PR China; Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, PR China
| | - Fengjuan Fan
- Department of Oncology, Pingyao County Hospital of Traditional Chinese Medicine, Shanxi, PR China
| | - Jing Xu
- Department of Oncology, Yellow River Sanmenxia Affliated Hospital of Henan University of Science and Technology, Sanmenxia, PR China
| | - Xing Zhang
- State Key Laboratory of Neurology and Oncology Drug Development (Jiangsu Simcere Pharmaceutical Co., Ltd., Jiangsu Simcere Diagnostics Co.,Ltd.), PR China; Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, PR China; Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, PR China.
| | - Kefeng Guo
- Department of Oncology, Yellow River Sanmenxia Affliated Hospital of Henan University of Science and Technology, Sanmenxia, PR China.
| |
Collapse
|
166
|
Mendoza RP, Ramineni M, Doytcheva K, Gabutan EC, Gupta R, Miller C, Choi D, Vemuri A, Briese R, Brannon L, Shahid A, Petras K, Ud Dean M, Fitzpatrick C, Segal J, Wang P, Lastra RR. Molecular and Clinicopathologic Characterization of HER2-overexpressed Squamous Cell Carcinoma of the Cervix. Int J Gynecol Pathol 2024:00004347-990000000-00206. [PMID: 39480104 DOI: 10.1097/pgp.0000000000001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
HER2 amplification in cervical cancer has been associated with worse clinical prognosis and a potential favorable response to HER2 inhibitors. Immunohistochemistry for the HER2 receptor is a universally accepted surrogate test for HER2 amplification, but no standardized scoring system currently exists for cervical carcinomas. In this study, we investigated HER2 overexpression in cervical squamous cell carcinoma and correlated it with HER2 amplification using fluorescence in situ hybridization (FISH) and molecular methods. Seventy-two cases of human papillomavirus-associated cervical cancer were retrospectively reviewed, and at least 2 representative tumor sections were stained for HER2. HER2 scoring was performed using the 2018 American Society of Clinical Oncology/College of American Pathologist breast cancer criteria, and cases with equivocal (2+) to positive (3+) expression were analyzed for HER2 amplification using FISH and next-generation sequencing. The average patient age was 50 yrs (range: 27-85 yr), with most patients being African American (73.6%) and diagnosed at FIGO stage I (65.3%). Nineteen (26.4%) had equivocal HER2 expression and 4 (5.5%) showed positive expression. Three of the 4 cases with positive expression had enough tumors for FISH, and all 3 were amplified. Three cases with equivocal expression showed HER2 polysomy on FISH, and none showed HER2 amplification. Late clinical stage, high tumor grade, and regional lymph node metastasis were significantly correlated with HER2 overexpression and HER2 amplification. Next-generation sequencing of the 3 HER2-amplified tumors showed amplification of various genes, including CD274, JAK2, BIRC3, and ERBB2, and a PIK3CA missense mutation. In summary, HER2 immunohistochemistry is a reliable predictive marker of HER2 amplification in cervical cancer.
Collapse
Affiliation(s)
- Rachelle P Mendoza
- Department of Pathology, University of Rochester Medical Center, Rochester
| | - Madhurya Ramineni
- Department of Pathology, University of Rochester Medical Center, Rochester
| | - Kristina Doytcheva
- Department of Pathology, University of Chicago Medical Center, Chicago, Illinois
| | - Elmer C Gabutan
- Department of Pathology, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | - Raavi Gupta
- Department of Pathology, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | - Cole Miller
- Department of Pathology, University of Rochester Medical Center, Rochester
| | - Donghyuk Choi
- Department of Pathology, University of Rochester Medical Center, Rochester
| | - Anusha Vemuri
- Department of Pathology, University of Chicago Medical Center, Chicago, Illinois
| | - Renee Briese
- Department of Pathology, University of Chicago Medical Center, Chicago, Illinois
| | - Lisa Brannon
- Department of Pathology, University of Chicago Medical Center, Chicago, Illinois
| | - Anum Shahid
- Department of Pathology, University of Chicago Medical Center, Chicago, Illinois
| | - Kristin Petras
- Department of Pathology, University of Chicago Medical Center, Chicago, Illinois
| | - Minhaz Ud Dean
- Department of Pathology, University of Chicago Medical Center, Chicago, Illinois
| | - Carrie Fitzpatrick
- Department of Pathology, University of Chicago Medical Center, Chicago, Illinois
| | - Jeremy Segal
- Department of Pathology, University of Chicago Medical Center, Chicago, Illinois
| | - Peng Wang
- Department of Pathology, University of Chicago Medical Center, Chicago, Illinois
| | - Ricardo R Lastra
- Department of Pathology, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
167
|
Farshadi EA, Wang W, Mohammad F, van der Oost E, Doukas M, van Eijck CHJ, van de Werken HJG, Katsikis PD. Tumor organoids improve mutation detection of pancreatic ductal adenocarcinoma. Sci Rep 2024; 14:25468. [PMID: 39462012 PMCID: PMC11513084 DOI: 10.1038/s41598-024-75888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents challenges in detecting somatic mutations due to its complex cellular composition. This study investigated the utility of patient-derived organoids (PDOs) to overcome these obstacles and enhance somatic mutation identification. Surgically resected PDAC tumors and their paired PDOs from 21 patients were examined. Whole-exome sequencing (WES) of tumor tissue, organoids, and peripheral blood mononuclear cells was performed to identify somatic mutations. Our findings demonstrate that PDOs retained about 80% of the somatic mutations from the original tumors, showing high concordance in mutation types. PDOs exhibited increased tumor purity and uncovered key driver mutations, aiding in identifying clinically relevant genomic alterations. Moreover, eight cycles of FOLFIRINOX treatment did not significantly alter the mutational landscape at the DNA level, indicating the stability of the mutational profile after therapeutic pressure in patients. In conclusion, PDOs are potentially important tools for exploring the somatic mutational landscape of PDAC. While they can reveal mutations that may be challenging to detect through traditional biopsy sequencing due to the inherently low tumor purity of PDAC, it is important to note that PDOs may not always fully recapitulate all mutations found in primary tumors. Despite this limitation, PDOs can still offer critical insights into the genomic complexities of PDAC, which is crucial for the development of personalized vaccines and therapies for this disease.
Collapse
Affiliation(s)
- Elham Aida Farshadi
- Department of Pulmonary Medicine, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Wenya Wang
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Farzana Mohammad
- Department of Pulmonary Medicine, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Elise van der Oost
- Department of Surgery, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands.
| | - Harmen J G van de Werken
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA, The Netherlands.
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA, The Netherlands.
| |
Collapse
|
168
|
Pugazenthi S, Patel B, English CW, Leidig WA, McGeehan KP, McCornack CR, Mok S, Anzaldua-Campos M, Nouri SH, Roberts K, Chatrath A, Khan B, Gadot R, Yano H, Klisch TJ, Harmanci AS, Patel AJ, Kim AH. Multiomic and clinical analysis of multiply recurrent meningiomas reveals risk factors, underlying biology, and insights into evolution. SCIENCE ADVANCES 2024; 10:eadn4419. [PMID: 39441930 PMCID: PMC11498213 DOI: 10.1126/sciadv.adn4419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
An important subset of meningiomas behaves aggressively and is characterized by multiple recurrences. We identify clinical, genetic, and epigenetic predictors of multiply recurrent meningiomas (MRMs) and evaluate the evolution of these meningiomas in patient-matched samples. On multivariable binomial logistic regression, MRMs were significantly associated with male sex (P = 0.012), subtotal resection (P = 0.001), higher number of meningiomas on presentation (P = 0.017), and histopathological sheeting (P = 0.002). Multiomic analysis of primary meningiomas revealed that MRMs have greater copy number losses (P = 0.0313) and increased DNA methylation (P = 0.0155). In meningioma cells with knockdown of EDNRB, a locus with greater promoter methylation and decreased gene expression in MRMs had increased proliferation (P < 0.0001). MRM recurrences were found to be similar to primaries but have a greater burden of copy number gains (P < 0.0001) and increased methylation (P = 0.0045). This clinical and multiomic investigation of MRMs harbors implications for the future development of biomarkers and therapeutic agents for these challenging tumors.
Collapse
Affiliation(s)
- Sangami Pugazenthi
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Bhuvic Patel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Collin W. English
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - William A. Leidig
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle P. McGeehan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin R. McCornack
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Shinghei Mok
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Markus Anzaldua-Campos
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Kaleigh Roberts
- Department of Neuropathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ajay Chatrath
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Basit Khan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Ron Gadot
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiemo J. Klisch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Akdes S. Harmanci
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Akash J. Patel
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
169
|
Citron F, Ho IL, Balestrieri C, Liu Z, Yen EY, Cecchetto L, Perelli L, Zhang L, Montanez LC, Blazanin N, Dyke CA, Shah R, Attanasio S, Srinivasan S, Chen KC, Chen Z, Scognamiglio I, Pham N, Khan H, Jiang S, Pan J, Vanderkruk B, Leung CS, Mattohti M, Rai K, Chu Y, Wang L, Gao S, Deem AK, Carugo A, Wang H, Yao W, Tonon G, Xiong Y, Lorenzi PL, Bonini C, Anna Zal M, Hoffman BG, Heffernan T, Giuliani V, Jeter CR, Lissanu Y, Genovese G, Pilato MD, Viale A, Draetta GF. WRAD core perturbation impairs DNA replication fidelity promoting immunoediting in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619543. [PMID: 39484624 PMCID: PMC11526913 DOI: 10.1101/2024.10.21.619543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
It is unclear how cells counteract the potentially harmful effects of uncoordinated DNA replication in the context of oncogenic stress. Here, we identify the WRAD (WDR5/RBBP5/ASH2L/DPY30) core as a modulator of DNA replication in pancreatic ductal adenocarcinoma (PDAC) models. Molecular analyses demonstrated that the WRAD core interacts with the replisome complex, with disruption of DPY30 resulting in DNA re-replication, DNA damage, and chromosomal instability (CIN) without affecting cancer cell proliferation. Consequently, in immunocompetent models, DPY30 loss induced T cell infiltration and immune-mediated clearance of highly proliferating cancer cells with complex karyotypes, thus improving anti-tumor efficacy upon anti-PD-1 treatment. In PDAC patients, DPY30 expression was associated with high tumor grade, worse prognosis, and limited response to immune checkpoint blockade. Together, our findings indicate that the WRAD core sustains genome stability and suggest that low intratumor DPY30 levels may identify PDAC patients who will benefit from immune checkpoint inhibitors.
Collapse
|
170
|
Schembri M, Formosa MM. Identification of osteoporosis genes using family studies. Front Endocrinol (Lausanne) 2024; 15:1455689. [PMID: 39502568 PMCID: PMC11534825 DOI: 10.3389/fendo.2024.1455689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/29/2024] [Indexed: 11/08/2024] Open
Abstract
Osteoporosis is a multifactorial bone disease characterised by reduced bone mass and increased fracture risk. Family studies have made significant contribution in unravelling the genetics of osteoporosis. Yet, most of the underlying molecular and biological mechanisms remain unknown prompting the need for further studies. This review outlines the proper phenotyping and advanced genetic techniques in the form of high-throughput DNA sequencing used to identify genetic factors underlying monogenic osteoporosis in a family-based setting. The steps related to variant filtering prioritisation and curation are also described. From an evolutionary perspective, deleterious risk variants with higher penetrance tend to be rare as a result of negative selection. High-throughput sequencing (HTS) can identify rare variants with large effect sizes which are likely to be missed by candidate gene analysis or genome-wide association studies (GWAS) wherein common variants with small to moderate effect sizes are identified. We also describe the importance of replicating implicated genes, and possibly variants, identified following HTS to confirm their causality. Replication of the gene in other families, singletons or independent cohorts confirms that the shortlisted genes and/or variants are indeed causal. Furthermore, novel genes and/or variants implicated in monogenic osteoporosis require a thorough validation by means of in vitro and in vivo assessment. Therefore, analyses of families can continue to elucidate the genetic architecture of osteoporosis, paving the way for improved diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Marichela Schembri
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Melissa M. Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| |
Collapse
|
171
|
Koya J, Tanigawa T, Mizuno K, Kim H, Ito Y, Yuasa M, Yamaguchi K, Kogure Y, Saito Y, Shingaki S, Tabata M, Murakami K, Chiba K, Okada A, Shiraishi Y, Marouf A, Liévin R, Chaubard S, Jaccard A, Hermine O, de Leval L, Tournilhac O, Damaj G, Gaulard P, Couronné L, Yasui T, Nakashima K, Miyoshi H, Ohshima K, Kataoka K. Modeling NK-cell lymphoma in mice reveals its cell-of-origin and microenvironmental changes and identifies therapeutic targets. Nat Commun 2024; 15:9106. [PMID: 39438472 PMCID: PMC11496546 DOI: 10.1038/s41467-024-53376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Extranodal NK/T-cell lymphoma (ENKTCL) is an Epstein-Barr virus (EBV)-related neoplasm preferentially involving the upper aerodigestive tract. Here we show that NK-cell-specific Trp53 disruption in mice leads to the development of NK-cell lymphomas after long latency, which involve not only the hematopoietic system but also the salivary glands. Before tumor onset, Trp53 knockout causes extensive gene expression changes, resulting in immature NK-cell expansion, exclusively in the salivary glands. Both human and murine NK-cell lymphomas express tissue-resident markers, suggesting tissue-resident NK cells as their cell-of-origin. Murine NK-cell lymphomas show recurrent Myc amplifications and upregulation of MYC target gene signatures. EBV-encoded latent membrane protein 1 expression accelerates NK-cell lymphomagenesis and causes diverse microenvironmental changes, particularly myeloid propagation, through interferon-γ signaling. In turn, myeloid cells support tumor cells via CXCL16-CXCR6 signaling and its inhibition is effective against NK-cell tumors in vivo. Remarkably, KLRG1-expressing cells expand in the tumor and are capable of repopulating tumors in secondary recipients. Furthermore, targeting KLRG1 alone or combined with MYC inhibition using an eIF4 inhibitor is effective against NK-cell tumors. Therefore, our observations provide insights into the pathogenesis and highlight potential therapeutic targets, including CXCL16, KLRG1, and MYC, in ENKTCL, which can help improve its diagnostic and therapeutic strategies.
Collapse
MESH Headings
- Animals
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mice
- Tumor Microenvironment/immunology
- Lymphoma, Extranodal NK-T-Cell/genetics
- Lymphoma, Extranodal NK-T-Cell/metabolism
- Lymphoma, Extranodal NK-T-Cell/virology
- Lymphoma, Extranodal NK-T-Cell/pathology
- Humans
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
- Mice, Knockout
- Disease Models, Animal
- Interferon-gamma/metabolism
- Receptors, CXCR6/metabolism
- Receptors, CXCR6/genetics
- Chemokine CXCL16/metabolism
- Chemokine CXCL16/genetics
- Herpesvirus 4, Human
- Gene Expression Regulation, Neoplastic
- Signal Transduction
- Salivary Glands/pathology
- Salivary Glands/metabolism
- Myeloid Cells/metabolism
- Cell Line, Tumor
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Junji Koya
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiko Tanigawa
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kota Mizuno
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Haryoon Kim
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Ito
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Mitsuhiro Yuasa
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Yamaguchi
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Kogure
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuki Saito
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Sumito Shingaki
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Mariko Tabata
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koichi Murakami
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Ai Okada
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Amira Marouf
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM UMR_S 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Raphaël Liévin
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM UMR_S 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Sammara Chaubard
- Hematology department, Limoges University Hospital, Limoges, France
| | - Arnaud Jaccard
- Hematology department, Limoges University Hospital, Limoges, France
| | - Olivier Hermine
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM UMR_S 1163, Imagine Institute, Université Paris Cité, Paris, France
- Hematology Department, Necker Children's Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Olivier Tournilhac
- Department of Hematology, Clermont-Ferrand University Hospital, Clermont Auvergne University, Clermont-Ferrand, France
| | - Gandhi Damaj
- Department of Hematology, Caen University Hospital, Normandy University, Caen, France
| | - Philippe Gaulard
- University Paris Est Créteil, INSERMU955, IMRB, Créteil, France
- Pathology Department, Henri Mondor University Hospital, Assistance Publique -Hôpitaux de Paris (APHP), Créteil, France
| | - Lucile Couronné
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM UMR_S 1163, Imagine Institute, Université Paris Cité, Paris, France
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique -Hôpitaux de Paris (APHP), Paris, France
| | - Teruhito Yasui
- Laboratory of Infectious Diseases and Immunity, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki City, Japan
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | - Koichi Ohshima
- Division of Pathology, Kurume University, Fukuoka, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan.
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
172
|
Kang Z, Li R, Liu C, Dong X, Hu Y, Xu L, Liu X, Xiang Y, Gao L, Si W, Wang L, Li Q, Zhang L, Wang H, Yang X, Liu J. m 6A-modified cenRNA stabilizes CENPA to ensure centromere integrity in cancer cells. Cell 2024; 187:6035-6054.e27. [PMID: 39305902 DOI: 10.1016/j.cell.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 08/20/2024] [Indexed: 10/20/2024]
Abstract
m6A modification is best known for its critical role in controlling multiple post-transcriptional processes of the mRNAs. Here, we discovered elevated levels of m6A modification on centromeric RNA (cenRNA) in cancerous cells compared with non-cancerous cells. We then identified CENPA, an H3 variant, as an m6A reader of cenRNA. CENPA is localized at centromeres and is essential in preserving centromere integrity and function during mitosis. The m6A-modified cenRNA stabilizes centromeric localization of CENPA in cancer cells during the S phase of the cell cycle. Mutations of CENPA at the Leu61 and the Arg63 or removal of cenRNA m6A modification lead to loss of centromere-bound CENPA during S phase. This in turn results in compromised centromere integrity and abnormal chromosome separation and hinders cancer cell proliferation and tumor growth. Our findings unveil an m6A reading mechanism by CENPA that epigenetically governs centromere integrity in cancer cells, providing potential targets for cancer therapy.
Collapse
Affiliation(s)
- Zihong Kang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China
| | - Ruimeng Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, 100084 Beijing, China
| | - Chang Liu
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Xiaozhe Dong
- College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Yuxuan Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 211198 Nanjing, China
| | - Lei Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008 Nanjing, China
| | - Xinyu Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China
| | - Yunfan Xiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China
| | - Liming Gao
- School of Science, China Pharmaceutical University, 211198 Nanjing, China
| | - Wenzhe Si
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Laboratory Medicine, Peking University Third Hospital, 100191 Beijing, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008 Nanjing, China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Liang Zhang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022 Hangzhou, China
| | - Huan Wang
- College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, 100084 Beijing, China.
| | - Jun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China.
| |
Collapse
|
173
|
Ma C, Shi X, Li X, Zhang YP, Peng MS. Comprehensive evaluation and guidance of structural variation detection tools in chicken whole genome sequence data. BMC Genomics 2024; 25:970. [PMID: 39415108 PMCID: PMC11481438 DOI: 10.1186/s12864-024-10875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Structural variations (SVs) are widespread across genome and have a great impact on evolution, disease, and phenotypic diversity. Despite the development of numerous bioinformatic tools, commonly referred to as SV callers, tailored for detecting SVs using whole genome sequence (WGS) data and employing diverse algorithms, their performance necessitates rigorous evaluation with real data and validated SVs. Moreover, a considerable proportion of these tools have been primarily designed and optimized using human genome data. Consequently, their applicability and performance in Avian species, characterized by smaller genomes and distinct genomic architectures, remain inadequately assessed. RESULTS We performed a comprehensive assessment of the performance of ten widely used SV callers using population-level real genomic data with the validated five common types of SVs. The performance of SV callers varies with the types and sizes of SVs. As compared with other tools, GRIDSS, Lumpy, Wham, and Manta present better detection accuracy. Pindel can detect more small SVs than others. CNVnator and CNVkit can detect more medium and large copy number variations. Given the poor consistency among different SV callers, the combination calling strategy is not recommended. All tools show poor ability in the detection of insertions (especially with size > 150 bp). At least 50× read depth is required to detect more than 80% of the SVs for most tools. CONCLUSIONS This study highlights the importance and necessity of using real sequencing data, rather than simulated data only, with validated SVs for SV caller evaluation. Some practical guidance and suggestions are provided for SV detection in future researches.
Collapse
Affiliation(s)
- Cheng Ma
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Uppsala, SE-75123, Sweden
| | - Xian Shi
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuzhen Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- College of Biological Big Data, Yunnan Agriculture University, Kunming, 650201, China
| | - Ya-Ping Zhang
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Min-Sheng Peng
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
174
|
Kondaboina S, Parrish O, Parada CA, Ferreira M. Whole Exome Sequencing of Intracranial Epidermoid Cysts Reveals Immune-Associated Mechanistic and Potential Targets. Cancers (Basel) 2024; 16:3487. [PMID: 39456581 PMCID: PMC11506683 DOI: 10.3390/cancers16203487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Intracranial Epidermoid Cysts (IECs) are rare intracranial tumors primarily treated through surgery. Cyst adherence complicates complete removal, leading to high rates of tumor progression after subtotal resection. The molecular drivers of IEC remain unknown. Consequently, advances in treatment have fallen short. Tumor genetic profiling has revealed potential targets for drug development, including FDA-approved options and reshaping treatment. The genetic landscape of IECs has not been explored. We applied Whole Exome Sequencing (WES) to IECs to gain insights into the mechanisms of oncogenesis and identify potential therapeutic targets. Methods: We performed WES on tumor tissue and matched blood samples, when available. Following GATK best practices, we conducted read processing, quality control, somatic variant calling, and copy-number inference. Data analyses and visualization were conducted in R. Results: Top altered genes are associated with the immune system and tumor microenvironment, suggesting a mechanism of immune evasion. Gene and pathway enrichment revealed a high mutation burden in genes associated with Extracellular Matrix (ECM) and PI3K-AKT-mTOR cascades. Recurrent and deleterious alterations in NOTCH2 and USP8 were identified in 50% and 30% of the cohort, respectively. Frequent amplifications in deubiquitinases and beta-defensins strengthened the involvement of immune mechanisms for oncogenic transformation. Conclusions: Top altered genes and recurrent mutations may play a role in shaping the microenvironment and modulating immune evasion in IECs. USP8 and NOTCH2 may serve as clinically relevant target for IECs. Finally, we present evidence that the crosstalk between the PI3K-Akt-mTOR and ECM signaling pathways may play a role in modulating the immune escape mechanism in IECs.
Collapse
Affiliation(s)
| | | | - Carolina Angelica Parada
- Department of Neurological Surgery, University of Washington Medical Center 1, Seattle, WA 98195, USA; (S.K.); (O.P.)
| | - Manuel Ferreira
- Department of Neurological Surgery, University of Washington Medical Center 1, Seattle, WA 98195, USA; (S.K.); (O.P.)
| |
Collapse
|
175
|
Zhu K, Jones MG, Luebeck J, Bu X, Yi H, Hung KL, Wong ITL, Zhang S, Mischel PS, Chang HY, Bafna V. CoRAL accurately resolves extrachromosomal DNA genome structures with long-read sequencing. Genome Res 2024; 34:1344-1354. [PMID: 38981681 PMCID: PMC11529860 DOI: 10.1101/gr.279131.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024]
Abstract
Extrachromosomal DNA (ecDNA) is a central mechanism for focal oncogene amplification in cancer, occurring in ∼15% of early-stage cancers and ∼30% of late-stage cancers. ecDNAs drive tumor formation, evolution, and drug resistance by dynamically modulating oncogene copy number and rewiring gene-regulatory networks. Elucidating the genomic architecture of ecDNA amplifications is critical for understanding tumor pathology and developing more effective therapies. Paired-end short-read (Illumina) sequencing and mapping have been utilized to represent ecDNA amplifications using a breakpoint graph, in which the inferred architecture of ecDNA is encoded as a cycle in the graph. Traversals of breakpoint graphs have been used to successfully predict ecDNA presence in cancer samples. However, short-read technologies are intrinsically limited in the identification of breakpoints, phasing together complex rearrangements and internal duplications, and deconvolution of cell-to-cell heterogeneity of ecDNA structures. Long-read technologies, such as from Oxford Nanopore Technologies, have the potential to improve inference as the longer reads are better at mapping structural variants and are more likely to span rearranged or duplicated regions. Here, we propose Complete Reconstruction of Amplifications with Long reads (CoRAL) for reconstructing ecDNA architectures using long-read data. CoRAL reconstructs likely cyclic architectures using quadratic programming that simultaneously optimizes parsimony of reconstruction, explained copy number, and consistency of long-read mapping. CoRAL substantially improves reconstructions in extensive simulations and 10 data sets from previously characterized cell lines compared with previous short- and long-read-based tools. As long-read usage becomes widespread, we anticipate that CoRAL will be a valuable tool for profiling the landscape and evolution of focal amplifications in tumors.
Collapse
Affiliation(s)
- Kaiyuan Zhu
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Matthew G Jones
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
| | - Jens Luebeck
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Xinxin Bu
- Bioinformatics Undergraduate Program, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Hyerim Yi
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - King L Hung
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
| | - Ivy Tsz-Lo Wong
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- Sarafan Chemistry, Engineering, and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, California 94305, USA
| | - Shu Zhang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- Sarafan Chemistry, Engineering, and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, California 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA;
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, USA;
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
176
|
Abdul Bari MP, Arun Dev S, Paremmal S, V B S, Ghosh Dasgupta M. Reference-based genome assembly and comparative genomics of Calamus Brandisii Becc. for unveiling sex-specific genes for early gender detection. Funct Integr Genomics 2024; 24:187. [PMID: 39387987 DOI: 10.1007/s10142-024-01468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Calamus brandisii Becc. is an endangered rattan species indigenous to the Western Ghats of India and used in the furniture and handicraft industries. However, its dioecious nature and longer flowering time pose challenges for conservation efforts. Developing markers for early gender detection in seedlings is crucial for maintaining viable populations for in-situ and ex-situ conservation. Currently, no sex chromosomes or gender-specific genes have been reported in the species. We report the first comprehensive comparative genomics study between the male and female genomes of C. brandisii to identify polymorphisms and potential genes for gender determination. Reference-based assembly was conducted and the male and female genomes were predicted to contain 43,810 and 50,493 protein-coding genes respectively. The haploid genome size was ∼691 Mb and ∼884 Mb for male and female genomes respectively. Comparative analysis revealed significant genetic variation between the two genomes including 619,776 SNPs, 73,659 InDels, 212,123 Structural variants (SVs) and 305 copy number variations (CNVs). A total of 5 male-specific and 11 female-specific genes linked to the sex determining region was predicted. The genomic variants identified between the two genomes could be used in development of markers for early gender identification in C. brandisii for restoration programs. The gender-specific genes identified in this study also provide new insights into the mechanisms of sex determination and differentiation in rattans.
Collapse
Grants
- BT/ PR 29212/ FCB/ 125/ 14/ 2018 Department of Biotechnology, Ministry of Science and Technology, India
- BT/ PR 29212/ FCB/ 125/ 14/ 2018 Department of Biotechnology, Ministry of Science and Technology, India
- BT/ PR 29212/ FCB/ 125/ 14/ 2018 Department of Biotechnology, Ministry of Science and Technology, India
- BT/ PR 29212/ FCB/ 125/ 14/ 2018 Department of Biotechnology, Ministry of Science and Technology, India
- BT/ PR 29212/ FCB/ 125/ 14/ 2018 Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Muneera Parveen Abdul Bari
- ICFRE-Institute of Forest Genetics and Tree Breeding, Forest Campus, R.S. Puram, Coimbatore, 641002, India
- Forest Research Institute Deemed to be University, Dehradun, Uttarakhand, India
| | - Suma Arun Dev
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi P. O, Thrissur, Kerala, 680653, India
| | - Sarath Paremmal
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi P. O, Thrissur, Kerala, 680653, India
- Forest Research Institute Deemed to be University, Dehradun, Uttarakhand, India
| | - Sreekumar V B
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi P. O, Thrissur, Kerala, 680653, India
| | - Modhumita Ghosh Dasgupta
- ICFRE-Institute of Forest Genetics and Tree Breeding, Forest Campus, R.S. Puram, Coimbatore, 641002, India.
| |
Collapse
|
177
|
Kou FR, Li J, Wang ZH, Xu T, Qian JJ, Zhang EL, Zhang LJ, Shen L, Wang XC. Analysis of actionable gene fusions in a large cohort of Chinese patients with colorectal cancer. Gastroenterol Rep (Oxf) 2024; 12:goae092. [PMID: 39391592 PMCID: PMC11464618 DOI: 10.1093/gastro/goae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/17/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Background The prevalence of gene fusion is extremely low in unselected patients with colorectal cancer (CRC). Published data on gene fusions are limited by relatively small sample sizes, with a primary focus on Western populations. This study aimed to analyse actionable gene fusions in a large consecutive Chinese CRC population. Methods This study included 5,534 consecutive CRC patients from the Genecast database. Genomic profiling was performed using a panel of 769 cancer-related genes. Data for 34 CRC patients with actionable gene fusions were also collected from cBioPortal and ChimerSeq. Results Among 5,534 CRC patients, 54 (0.98%) had actionable gene fusions, with NTRK1/2/3 being the most common fusion (0.38%), accounting for 38.9% (21/54) of those with fusions. Actionable gene fusion enrichment was higher in patients with microsatellite instability-high (MSI-H) (6.7% vs. 0.5%, P < 0.001), RAS/BRAF wildtype (2.0% vs. 0.2%, P < 0.001) and RNF43 mutation (7.7% vs. 0.4%, P < 0.001) than in patients with microsatellite stability/MSI-low, RAS/BRAF mutation and RNF43 wildtype, respectively. When these markers were combined, the fusion detection rate increased. Among patients with RAS/BRAF wildtype and MSI-H, fusions were detected in 20.3% of patients. The fusion detection rate further increased to 37.5% when RNF43 mutation was added. The fusion detection rate was also higher in colon cancer than in rectal cancer. No significant differences in clinical or molecular features were found in patients with actionable gene fusions between the Genecast, cBioPortal, and ChimerSeq databases. Conclusions Approximately 1% of the unselected Chinese CRC population carries actionable gene fusions, mostly involving NTRK. Actionable gene fusions are more prevalent in MSI-H, RAS/BRAF wildtype, or RNF43-mutated CRC, as well as in colon cancer. Mapping of these molecular markers can markedly increase the fusion detection rate, which can help clinicians select candidates for fusion testing and targeted therapy.
Collapse
Affiliation(s)
- Fu-Rong Kou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Comprehensive Clinical Trial Ward, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Jian Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Zheng-Hang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Ting Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Juan-Juan Qian
- Department of Medicine, Genecast Biotechnology Co., Ltd., Wuxi, Jiangsu, P. R. China
| | - En-Li Zhang
- Department of Medicine, Genecast Biotechnology Co., Ltd., Wuxi, Jiangsu, P. R. China
| | - Li-Jun Zhang
- Department of Medicine, Genecast Biotechnology Co., Ltd., Wuxi, Jiangsu, P. R. China
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Xi-Cheng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| |
Collapse
|
178
|
Cannizzaro IR, Treccani M, Taiani A, Ambrosini E, Busciglio S, Cesarini S, Luberto A, De Sensi E, Moschella B, Gismondi P, Azzoni C, Bottarelli L, Giordano G, Corradi D, Silini EM, Zanatta V, Cennamo F, Bertolini P, Caggiati P, Martorana D, Uliana V, Percesepe A, Barili V. Proof of Concept for Genome Profiling of the Neurofibroma/Sarcoma Sequence in Neurofibromatosis Type 1. Int J Mol Sci 2024; 25:10822. [PMID: 39409151 PMCID: PMC11476461 DOI: 10.3390/ijms251910822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/27/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder characterized by the predisposition to develop tumors such as malignant peripheral nerve sheath tumors (MPNSTs) which represents the primary cause of death for NF1-affected patients. Regardless of the high incidence and mortality, the molecular mechanisms underneath MPNST growth and metastatic progression remain poorly understood. In this proof-of-concept study, we performed somatic whole-exome sequencing (WES) to profile the genomic alterations in four samples from a patient with NF1-associated MPNST, consisting of a benign plexiform neurofibroma, a primary MPNST, and metastases from lung and skin tissues. By comparing genomic patterns, we identified a high level of variability across samples with distinctive genetic changes which allow for the definition of profiles of the early phase with respect to the late metastatic stages. Pathogenic and likely pathogenic variants were abundant in the primary tumor, whereas the metastatic samples exhibited a high level of copy-number variations (CNVs), highlighting a possible genomic instability in the late phases. The most known MPNST-related genes, such as TP53 and SUZ12, were identified in CNVs observed within the primary tumor. Pathway analysis of altered early genes in MPNST pointed to a potential role in cell motility, division and metabolism. Moreover, we employed survival analysis with the TCGA sarcoma genomic dataset on 262 affected patients, in order to corroborate the predictive significance of the identified early and metastatic MPNST driver genes. Specifically, the expression changes related to the mutated genes, such as in RBMX, PNPLA6 and AGAP2, were associated with reduced patient survival, distinguishing them as potential prognostic biomarkers. This study underlines the relevance of integrating genomic results with clinical information for early diagnosis and prognostic understanding of tumor aggressiveness.
Collapse
Affiliation(s)
- Ilenia Rita Cannizzaro
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Mirko Treccani
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43125 Parma, Italy
| | - Antonietta Taiani
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Enrico Ambrosini
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Sabrina Busciglio
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Sofia Cesarini
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Anita Luberto
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Erika De Sensi
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Barbara Moschella
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Pierpacifico Gismondi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Cinzia Azzoni
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Lorena Bottarelli
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giovanna Giordano
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Domenico Corradi
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Enrico Maria Silini
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Valentina Zanatta
- Cytogenetics, Molecular Genetics and Medical Genetics Unit, Toma Advanced Biomedical Assays, 21052 Busto Arsizio, Italy
| | - Federica Cennamo
- Pediatric Hematology Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Patrizia Bertolini
- Pediatric Hematology Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | | | - Davide Martorana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Vera Uliana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Antonio Percesepe
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Valeria Barili
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
179
|
Rao J, Song C, Hao Y, Chen Z, Feng S, Xu S, Wu X, Xuan Z, Fan Y, Li W, Li J, Ren Y, Li J, Cheng F, Gu Z. Leveraging Patient-Derived Organoids for Personalized Liver Cancer Treatment. Int J Biol Sci 2024; 20:5363-5374. [PMID: 39430248 PMCID: PMC11488587 DOI: 10.7150/ijbs.96317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Primary liver cancer (PLC) is a primary cause of cancer-related death worldwide, and novel treatments are needed due to the limited options available for treatment and tumor heterogeneity. 66 surgically removed PLC samples were cultured using the self-developed 2:2 method, and the final success rate for organoid culture was 40.9%. Organoid performance has been evaluated using comprehensive molecular measurements, such as whole-exome and RNA sequencing, as well as anticancer drug testing. Multiple organoids and their corresponding tumor tissues contained several of the same mutations, with all pairs sharing conventional TP53 mutations. Regarding copy number variations and gene expression, significant correlations were observed between the organoids and their corresponding parental tumor tissues. Comparisons at the molecular level provided us with an assessment of organoid-to-tumor concordance, which, in combination with drug sensitivity testing provided direct guidance for treatment selection. Finally, we were able to determine an appropriate pharmacological regimen for a patient with ICC, demonstrating the clinical practicality in tailoring patient-specific drug regimens. Our study provides an organoid culture technology that can cultivate models that retain most of the molecular characteristics of tumors and can be used for drug sensitivity testing, demonstrating the broad potential application of organoid technology in precision medicine for liver cancer treatment.
Collapse
Affiliation(s)
- Jianhua Rao
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chao Song
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Yangyang Hao
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Zaozao Chen
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
- Jiangsu Avatarget Co, Suzhou, China
- Institute of Medical Devices (Suzhou), Southeast University, Nanjing, China
| | - Sidu Feng
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | | | - Xiaoyue Wu
- Jiangsu Institute for Health and Sport (JIHS), Nanjing, China
| | - Zhengfeng Xuan
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ye Fan
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Wenzhu Li
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Junda Li
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yong Ren
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co, Nanjing, China
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Feng Cheng
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zhongze Gu
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
- Jiangsu Avatarget Co, Suzhou, China
- Jiangsu Institute for Health and Sport (JIHS), Nanjing, China
- Institute of Medical Devices (Suzhou), Southeast University, Nanjing, China
| |
Collapse
|
180
|
Otsuji K, Takahashi Y, Osako T, Kobayashi T, Takano T, Saeki S, Yang L, Baba S, Kumegawa K, Suzuki H, Noda T, Takeuchi K, Ohno S, Ueno T, Maruyama R. Serial single-cell RNA sequencing unveils drug resistance and metastatic traits in stage IV breast cancer. NPJ Precis Oncol 2024; 8:222. [PMID: 39363009 PMCID: PMC11450160 DOI: 10.1038/s41698-024-00723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Metastasis is a complex process that remains poorly understood at the molecular levels. We profiled single-cell transcriptomic, genomic, and epigenomic changes associated with cancer cell progression, chemotherapy resistance, and metastasis from a Stage IV breast cancer patient. Pretreatment- and posttreatment-specimens from the primary tumor and distant metastases were collected for single-cell RNA sequencing and subsequent cell clustering, copy number variation (CNV) estimation, transcriptomic factor estimation, and pseudotime analyses. CNV analysis revealed that a small population of pretreatment cancer cells resisted chemotherapy and expanded. New clones including Metastatic Precursor Cells (MPCs), emerged in the posttreatment primary tumors in CNV similar to metastatic cells. MPCs exhibited expression profiles indicative of epithelial-mesenchymal transition. Comparison of MPCs with metastatic cancer cells also revealed dynamic changes in transcription factors and calcitonin pathway gene expression. These findings demonstrate the utility of single-patient clinical sample analysis for understanding tumor drug resistance, regrowth, and metastasis.
Collapse
Affiliation(s)
- Kazutaka Otsuji
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoko Takahashi
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
- Breast Surgical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tomo Osako
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takayuki Kobayashi
- Breast Medical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Toshimi Takano
- Breast Medical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sumito Saeki
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Liying Yang
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoko Baba
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuo Noda
- Director's room, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shinji Ohno
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takayuki Ueno
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
- Breast Surgical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Reo Maruyama
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan.
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
181
|
Qiu X, Zhou T, Li S, Wu J, Tang J, Ma G, Yang S, Hu J, Wang K, Shen S, Wang H, Chen L. Spatial single-cell protein landscape reveals vimentin high macrophages as immune-suppressive in the microenvironment of hepatocellular carcinoma. NATURE CANCER 2024; 5:1557-1578. [PMID: 39327501 DOI: 10.1038/s43018-024-00824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/09/2024] [Indexed: 09/28/2024]
Abstract
Tumor microenvironment heterogeneity in hepatocellular carcinoma (HCC) on a spatial single-cell resolution is unclear. Here, we conducted co-detection by indexing to profile the spatial heterogeneity of 401 HCC samples with 36 biomarkers. By parsing the spatial tumor ecosystem of liver cancer, we identified spatial patterns with distinct prognosis and genomic and molecular features, and unveiled the progressive role of vimentin (VIM)high macrophages. Integration analysis with eight independent cohorts demonstrated that the spatial co-occurrence of VIMhigh macrophages and regulatory T cells promotes tumor progression and favors immunotherapy. Functional studies further demonstrated that VIMhigh macrophages enhance the immune-suppressive activity of regulatory T cells by mechanistically increasing the secretion of interleukin-1β. Our data provide deep insights into the heterogeneity of tumor microenvironment architecture and unveil the critical role of VIMhigh macrophages during HCC progression, which holds potential for personalized cancer prevention and drug discovery and reinforces the need to resolve spatial-informed features for cancer treatment.
Collapse
Affiliation(s)
- Xinyao Qiu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Tao Zhou
- National Center for Liver Cancer, Shanghai, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Shuai Li
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Jianmin Wu
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Jing Tang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guosheng Ma
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Shuai Yang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ji Hu
- National Center for Liver Cancer, Shanghai, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Kaiting Wang
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Siyun Shen
- National Center for Liver Cancer, Shanghai, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hongyang Wang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, China.
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, China.
| | - Lei Chen
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- National Center for Liver Cancer, Shanghai, China.
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, China.
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, China.
| |
Collapse
|
182
|
Mendoza RP, Symes E, Wang P, Miller C, Thompson SC, Antic T, Biernacka A. Cytomorphologic and molecular characterization of spindle cell carcinoid tumors of the lung. Cancer Cytopathol 2024; 132:656-665. [PMID: 39024046 DOI: 10.1002/cncy.22886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Spindle cell carcinoid tumor (SCCT) is a rare variant of lung carcinoid tumor consisting predominantly or exclusively of spindle cells. To the authors' knowledge, this is the first study to date investigating the molecular characteristics of SCCTs. METHODS Eighty-five carcinoid tumors initially diagnosed by fine-needle aspiration over a period of 10 years were reviewed. The final diagnostic classification was based on resection specimens. Six SCCTs were identified and characterized based on cytomorphology, and immunohistochemical and molecular features. RESULTS Most patients with SCCT were Caucasian (100.0%), women (83.3%), asymptomatic (66.7%), and nonsmokers (83.3%). The median age at diagnosis was 78.0 years (range, 58.2-80.3 years). A higher proportion of patients who had SCCT were diagnosed with distant metastasis. The smears were cellular and demonstrated clean backgrounds without necrosis or mitotic activity. SCCTs comprised of bipolar-to-elongated cells with finely granular chromatin, inconspicuous nucleoli, scant cytoplasm, and minimal atypia or pleomorphism. The tumor cells sometimes appeared boomerang-shaped and might mimic granulomas or blood vessels. SCCTs showed strong expression for pan-cytokeratin, synaptophysin, chromogranin, and CD56, with weak TTF-1 and a very low Ki-67 proliferation index. All SCCTs had low tumor mutational burden and were microsatellite-stable. One case showed multiple whole-gene losses in chromosome 11, whereas another harbored duplication in ARID1A. Two cases demonstrated gains in chromosomes 17, one of which also showed gains in chromosome 18. None had a single nucleotide mutation. CONCLUSIONS SCCT is a rare subset of lung carcinoid tumors. These tumors harbor unique cytologic, prognostic, and molecular features that may have significant diagnostic and clinical implications.
Collapse
Affiliation(s)
- Rachelle P Mendoza
- Department of Pathology, University of Rochester Medical Center, Rochester, New York, USA
| | - Emily Symes
- Department of Pathology, The University of Chicago Medicine, Chicago, Illinois, USA
| | - Peng Wang
- Department of Pathology, The University of Chicago Medicine, Chicago, Illinois, USA
| | - Cole Miller
- Department of Pathology, University of Rochester Medical Center, Rochester, New York, USA
| | - Stephanie C Thompson
- Department of Pathology, University of Rochester Medical Center, Rochester, New York, USA
| | - Tatjana Antic
- Department of Pathology, The University of Chicago Medicine, Chicago, Illinois, USA
| | - Anna Biernacka
- Department of Pathology, The University of Chicago Medicine, Chicago, Illinois, USA
| |
Collapse
|
183
|
Liao X, Schmidt AL, Zhang D, Li P, Wang X, Ko HM, Choi WT, Alpert L, Hao Y, Kovar-Peltz S, Polydorides AD, Wanjari P, Mastro J, Wang P. Clinicopathologic and Molecular Characterization of Inflammatory Bowel Disease-Associated Neuroendocrine Carcinomas and Mixed Neuroendocrine-Non-Neuroendocrine Neoplasms. Mod Pathol 2024; 37:100566. [PMID: 39025404 DOI: 10.1016/j.modpat.2024.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
The pathogenesis of neuroendocrine carcinomas (NECs) and mixed neuroendocrine-non-neuroendocrine neoplasms (MiNENs) in the gastrointestinal tract remains poorly understood. This study aims to characterize the clinicopathologic and molecular features of NEC/MiNEN in patients with inflammatory bowel disease (IBD). Eighteen surgically resected IBD-associated intestinal carcinomas with a minimum of 30% neuroendocrine component were collected from 6 academic centers and compared with a control group of 12 IBD-associated carcinomas lacking neuroendocrine differentiation. Both groups exhibited a male predominance and similar age distribution. The NEC/MiNEN group was more likely to have a higher percentage of Crohn disease (9/18 vs 1/12; P = .024), occur in the rectum (9/18 vs 3/12) and small intestine (4/18 vs 0/12) (P < .01), be diagnosed on resection without a preceding biopsy (6/18 vs 0/12; P = .057), and have unidentifiable precursor lesions (10/18 vs 1/12; P = .018) than the control group. Synchronous carcinoma, advanced tumor stage (pT3 and pT4), and lymph node metastasis occurred at similar rates; however, the NEC/MiNEN group had a higher incidence of angiovascular invasion (14/18 vs 4/12; P = .024), distant metastasis (8/18 vs 1/12; P = .049), mortality (8/18 vs 2/12; P = .058), and worse survival (Kaplan-Meier; P = .023) than the control group. All tested cases were mismatch repair proficient. A Ki-67 proliferation index ranged from 25% to 100%. Next-generation sequencing in 11 NEC/MiNEN cases revealed low tumor mutational burdens but complex genetic abnormalities commonly involving TP53 (9/11; 82%), FBXW7 (4/11; 36%), and APC (3/11; 27%) genes, with the other genetic alterations randomly occurring in 1 or 2 cases. The neuroendocrine component, which shared similar molecular alterations as the nonneuroendocrine component, was subcategorized into intermediate (G3a) and high grade (G3b); the higher grade correlated with more genetic alterations. In conclusion, IBD-associated NEC/MiNEN shows diverse histologic features, variable precursor lesions, intricate genetic abnormalities, and aggressive biologic behavior. The classification and grading of gastrointestinal NEC/MiNEN may be refined for better clinical management.
Collapse
Affiliation(s)
- Xiaoyan Liao
- Department of Pathology, University of Rochester Medical Center, Rochester, New York.
| | - Alicia L Schmidt
- Department of Pathology, University of Rochester Medical Center, Rochester, New York
| | - Dongwei Zhang
- Department of Pathology, Indiana University, Indianapolis, Indiana
| | - Peizi Li
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Xintong Wang
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Huaibin M Ko
- Department of Pathology, Columbia University, New York, New York
| | - Won-Tak Choi
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - Lindsay Alpert
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Yansheng Hao
- Department of Pathology, University of Rochester Medical Center, Rochester, New York
| | - Sierra Kovar-Peltz
- Department of Pathology, University of Rochester Medical Center, Rochester, New York
| | | | - Pankhuri Wanjari
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Julius Mastro
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Peng Wang
- Department of Pathology, University of Chicago, Chicago, Illinois
| |
Collapse
|
184
|
Sdeor E, Okada H, Saad R, Ben-Yishay T, Ben-David U. Aneuploidy as a driver of human cancer. Nat Genet 2024; 56:2014-2026. [PMID: 39358600 DOI: 10.1038/s41588-024-01916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024]
Abstract
Aneuploidy, an abnormal chromosome composition, is a major contributor to cancer development and progression and an important determinant of cancer therapeutic responses and clinical outcomes. Despite being recognized as a hallmark of human cancer, the exact role of aneuploidy as a 'driver' of cancer is still largely unknown. Identifying the specific genetic elements that underlie the recurrence of common aneuploidies remains a major challenge of cancer genetics. In this Review, we discuss recurrent aneuploidies and their function as drivers of tumor development. We then delve into the context-dependent identification and functional characterization of the driver genes underlying driver aneuploidies and examine emerging strategies to uncover these driver genes using cancer genomics data and cancer models. Lastly, we explore opportunities for targeting driver aneuploidies in cancer by leveraging the functional consequences of these common genetic alterations.
Collapse
Affiliation(s)
- Eran Sdeor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hajime Okada
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ron Saad
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Blavatnik School of Computer Science, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Ben-Yishay
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Blavatnik School of Computer Science, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
185
|
Zhang H, Liu B, Cheng J, Li Z, Jia M, Li M, Zhao L, Wang L, Xi Y. Characterization and integrated analysis of extrachromosomal DNA amplification in hematological malignancies. Neoplasia 2024; 56:101025. [PMID: 38996538 PMCID: PMC11301242 DOI: 10.1016/j.neo.2024.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
The study of extrachromosomal DNA (ecDNA), an element existing beyond classical chromosomes, contributes to creating a more comprehensive map of the cancer genome. In hematological malignancies, research on ecDNA has lacked comprehensive investigation into its frequency, structure, function, and mechanisms of formation. We re-analyzed WGS data from 208 hematological cancer samples across 11 types, focusing on ecDNA characteristics. Amplification of ecDNA was observed in 7 of these cancer types, with no instances found in normal blood cells. Patients with leukemia carrying ecDNA showed a low induction therapy remission rate (<30 %), a high relapse rate (75 %) among those who achieved complete remission, and a significantly lower survival rate compared to the general leukemia population, even those with complex chromosomal karyotypes. Among the 55 identified ecDNA amplicons, 268 genes were detected, of which 38 are known cancer-related genes exhibiting significantly increased copy numbers. By integrating RNA-Seq data, we discovered that the increased copy number, resulting in a higher amount of available DNA templates, indeed leads to the elevated expression of genes encoded on ecDNA. Additionally, through the integration of H3K4me3/H3K27ac chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin with sequencing, and high-throughput chromosome conformation capture data, we identified that ecDNA amplifications can also facilitate efficient, copy number-independent amplification of oncogenes. This process is linked to active histone modifications, improved chromatin accessibility, and enhancer hijacking, all of which are effects of ecDNA amplification. Mechanistically, chromothripsis and dysfunction of the DNA repair pathway can, to some extent, explain the origin of ecDNA.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bei Liu
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Juan Cheng
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zijian Li
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Mingfeng Jia
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ming Li
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Long Zhao
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lina Wang
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yaming Xi
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
186
|
Kroening G, Luo J, Evans MG, Adeyelu T, Ou SHI, Arter ZL, Wise-Draper TM, Sukari A, Azmi AS, Braxton DR, Elliott A, Bryant DA, Oberley MJ, Kim C, Shapiro GI, French CA, Nagasaka M. Multiomic Characterization and Molecular Profiling of Nuclear Protein in Testis Carcinoma. JCO Precis Oncol 2024; 8:e2400334. [PMID: 39447095 PMCID: PMC11520346 DOI: 10.1200/po.24.00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/14/2024] [Accepted: 08/06/2024] [Indexed: 10/26/2024] Open
Abstract
PURPOSE Nuclear protein in testis carcinoma (NC) is an underdiagnosed and aggressive squamous/poorly differentiated cancer characterized by rearrangement of the gene NUTM1 on chromosome 15q14. Co-occurring alternations have not been fully characterized. METHODS We analyzed the genomic and immune landscape of 54 cases of NC that underwent DNA- and RNA-based NGS sequencing (Caris). RESULTS While NC is driven by NUTM1 fusion oncoproteins, co-occurring DNA mutations in epigenetic or cell cycle pathways were observed in 26% of cases. There was no significant difference between the fusion partner of NUTM1 and co-occurring gene mutations. RNA sequencing analysis showed increased MYC pathway activity in NC compared with head and neck squamous cell carcinoma (HNSCC) and lung squamous cell carcinoma (LUSC), which is consistent with the known pathophysiology of NC. Characterization of the NC tumor microenvironment using RNA sequencing revealed significantly lower immune cell infiltration compared with HNSCC and LUSC. NC was 10× higher in patients with HNSCC and LUSC younger than 50 years than in those older than 70 years. CONCLUSION To our knowledge, this is the first series of NC profiled broadly at the DNA and RNA level. We observed fewer intratumoral immune cells by RNA sequencing, which may be associated with anecdotal data of lack of immunotherapy benefit in NC. High MYC pathway activity in NC supports ongoing trials targeting MYC suppression. The incidence of NC among patients younger than 50 years with LUSC/HNSCC supports testing for NC in these patients. The prognosis of NCs remains dismal, and future studies should focus on improving the response to immunotherapy and targeting MYC.
Collapse
Affiliation(s)
- Gianna Kroening
- University of California Irvine School of Medicine, Orange, CA
| | - Jia Luo
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | | | | | | | | | | | | | | | | | | | | | - Chul Kim
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Geoffrey I. Shapiro
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | - Misako Nagasaka
- University of California Irvine School of Medicine, Orange, CA
| |
Collapse
|
187
|
Hu S, Hu C, Xu J, Yu P, Yuan L, Li Z, Liang H, Zhang Y, Chen J, Wei Q, Zhang S, Yang L, Su D, Du Y, Xu Z, Bai F, Cheng X. The estrogen response in fibroblasts promotes ovarian metastases of gastric cancer. Nat Commun 2024; 15:8447. [PMID: 39349474 PMCID: PMC11443007 DOI: 10.1038/s41467-024-52615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
Younger premenopausal women are more prone to developing ovarian metastases (OM) of gastric cancer (GC) than metastases of other organs; however, the molecular mechanisms remain unclear. Here we perform single-cell RNA sequencing on 45 tumor samples from 18 GC patients with OM. Interestingly, fibroblasts in OM of GC express high levels of estrogen receptor (ER) and midkine (MDK), interacting with tumor cells through activating ER-MDK-LRP1 (low-density lipoprotein receptor-related protein 1) signaling axis. Functional experiments demonstrate that estrogen stimulation induces MDK secretion by ovarian fibroblasts, and binding of MDK to LRP1 increases GC cell migration and invasion. Furthermore, in vivo, estrogen stimulation remarkably augments ovarian engraftment and metastasis of LRP1+ GC cells. Collectively, our findings reveal that ER+ ovarian fibroblasts secrete MDK under estrogen influence, driving OM of GC via the MDK-LRP1 axis. Our study holds the potential to catalyze innovative therapeutic strategies aimed at intercepting and managing OM in GC.
Collapse
Affiliation(s)
- Simeng Hu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jingli Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Pengfei Yu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Yuan
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ziyu Li
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Haohong Liang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Yanqiang Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiahui Chen
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Qing Wei
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shengjie Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Litao Yang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Dan Su
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yian Du
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhiyuan Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China.
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China.
| |
Collapse
|
188
|
Li Z, Deng Z, Liu F, Li C, Yang K, Gong X, Feng S, Zeng Y, Zhou H, Fan F, Luo C, Liu Z, Zhang M. Clinical sequencing reveals diagnostic, therapeutic, and prognostic biomarkers for adult-type diffuse gliomas. Heliyon 2024; 10:e37712. [PMID: 39315202 PMCID: PMC11417559 DOI: 10.1016/j.heliyon.2024.e37712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Diffuse gliomas in adults are highly infiltrative and largely incurable. Whole exome sequencing (WES) has been demonstrated very useful in genetic analysis. Here WES was performed to characterize genomic landscape of adult-type diffuse gliomas to discover the diagnostic, therapeutic and prognostic biomarkers. Somatic and germline variants of 66 patients with adult-type diffuse gliomas were detected by WES based on the next-generation sequencing. TCGA and CGGA datasets were included to analyze the integrated diagnosis and prognosis. Among 66 patients, the diagnosis of 9 cases was changed, in which 8 cases of astrocytoma were corrected into IDH-wildtype glioblastoma (GBM), and 1 oligodendroglioma without 1p/19q co-deletion into astrocytoma. The distribution of mutations including ATRX/TP53 differed in three cohorts. The genetic mutations in GBM mainly concentrated on the cell cycle, PI3K and RTK pathways. The mutational landscape of astrocytoma was more similar to that of GBM, with the highest frequency in germline variants. Patients with IDH-mutant astrocytoma harboring SNVs of PIK3CA and PIK3R1 showed a significantly worse overall survival (OS) than wild-type patients. AEBP1 amplification was associated with shorter OS in GBM. Our study suggests that clinical sequencing can recapitulate previous findings, which may provide a powerful approach to discover diagnostic, therapeutic and prognostic markers for precision medicine in adult-type diffuse gliomas.
Collapse
Affiliation(s)
- Zhenyan Li
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Zhenghao Deng
- Department of Pathology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Chuntao Li
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Kui Yang
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Xuan Gong
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Hongshu Zhou
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Fan Fan
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Chengke Luo
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| |
Collapse
|
189
|
Lee JY, Lee JW, Chung MS, Choi JG, Sim SH, Kim HJ, Kim JE, Lee KE, Park YH, Kang MJ, Ahn MS, Chae YS, Park JH, Kim JH, Kim GM, Byun JH, Park KU, Kim JW, Jung SP, Lee JH, An JS, Jang B, Yoon D, Kim J, Hong J, Koo H, Cho KR, Kim CY, Sa JK, Park KH. Age- and ethnic-driven molecular and clinical disparity of East Asian breast cancers. BMC Med 2024; 22:422. [PMID: 39334392 PMCID: PMC11438198 DOI: 10.1186/s12916-024-03638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is a complex disease with profound genomic aberrations. However, the underlying molecular disparity influenced by age and ethnicity remains elusive. METHODS In this study, we aimed to investigate the molecular properties of 843 primary and metastatic BC patients enrolled in the K-MASTER program. By categorizing patients into two distinct age subgroups, we explored their unique molecular properties. Additionally, we leveraged large-scale genomic data from the TCGA and MSK-IMPACT studies to examine the ethnic-driven molecular and clinical disparities. RESULTS We observed a high prevalence of PI3KCA mutations in K-MASTER HER2 + tumors, particularly in older patients. Moreover, we identified increased mutation rates in DNA damage response molecules, including ARID1A, MSH6, and MLH1. The K-MASTER patients were mainly comprised of triple-negative breast cancer (TNBC) and HER2-positive tumors, while the TCGA and MSK-IMPACT cohorts exhibited a predominance of hormone receptor-positive (HR +) subtype tumors. Importantly, GATA3 mutations were less frequently observed in East Asian patients, which correlated with poor clinical outcomes. In addition to characterizing the molecular disparities, we developed a gradient-boosting multivariable model to identify a new molecular signature that could predict the therapeutic response to platinum-based chemotherapy. CONCLUSIONS Our findings collectively provide unprecedented insights into the significance of age and ethnicity on the molecular and clinical characteristics of BC patients.
Collapse
Affiliation(s)
- Ji Yoon Lee
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji Won Lee
- Department of Internal Medicine, Division of Medical Oncology, Korea University Anam Hospital, Seoul, Korea
| | - Min Sung Chung
- Department of Surgery, College of Medicine, Hanyang University, Seoul, 04763, Korea
| | - Jong Gwon Choi
- Department of Oncology-Hematology, Konyang University Hospital, Daejeon, Korea
| | - Sung Hoon Sim
- Center for Breast Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Hyo Jeong Kim
- Department of Internal Medicine, Division of Hematology-Oncology, School of Medicine, Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Jeong Eun Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyoung Eun Lee
- Department of Hematology and Oncology, Ewha Womans University Hospital, Seoul, 07985, Republic of Korea
| | - Yeon Hee Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Myoung Joo Kang
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Mi Sun Ahn
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Korea
| | - Yee Soo Chae
- Department of Hematology and Oncology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Ji Hyun Park
- Department of Hematology-Oncology, Division of Internal Medicine, KonKuk University Medical Center, Seoul, Republic of Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Seoul National University Bundang Hospital, 166 Gumi-Ro, Bundang-Gu, Seongnam, 463-707, Korea
| | - Gun Min Kim
- Department of Internal Medicine, Division of Medical Oncology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, Korea
| | - Jae Ho Byun
- Department of Internal Medicine, Division of Oncology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Keon Uk Park
- Department of Internal Medicine, Division of Hematology-Oncology, Keimyung University Dongsan Hospital, Keimyung University College of Medicine, Daegu, Republic of Korea
| | - Ju Won Kim
- Department of Internal Medicine, Division of Medical Oncology, Korea University Anam Hospital, Seoul, Korea
| | - Seung Pil Jung
- Department of Surgery, Department of Breast Surgery, Division of Breast and Endocrine, Korea University Anam Hospital, Seoul, Korea
| | - Jung Hyun Lee
- Department of Pathology, Korea University Anam Hospital, Seoul, Korea
| | - Jung Seok An
- Department of Pathology, Korea University Anam Hospital, Seoul, Korea
| | - Byunghyun Jang
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dayoung Yoon
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Jiwon Kim
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jisoo Hong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Harim Koo
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, South Korea
| | - Kyu Ran Cho
- Department of Radiology, Korea University Anam Hospital, Seoul, Korea
| | - Cheol Yong Kim
- Department of Radiology, Korea University Anam Hospital, Seoul, Korea
| | - Jason K Sa
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Kyong Hwa Park
- Department of Internal Medicine, Division of Medical Oncology, Korea University Anam Hospital, Seoul, Korea.
| |
Collapse
|
190
|
Seo ES, Lee JW, Lim J, Shin S, Cho HW, Ju HY, Yoo KH, Sung KW, Park WY. Germline functional variants contribute to somatic mutation and outcomes in neuroblastoma. Nat Commun 2024; 15:8360. [PMID: 39333105 PMCID: PMC11437149 DOI: 10.1038/s41467-024-52128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/27/2024] [Indexed: 09/29/2024] Open
Abstract
Germline genetic context may play a significant role in the development and evolution of cancer, particularly in childhood cancers such as neuroblastoma. This study investigates the role of putatively functional germline variants in neuroblastoma, even if they do not directly increase disease risk. Our whole-exome sequencing analysis of 125 patients with neuroblastoma reveals a positive correlation between germline variant burden and somatic mutations. Moreover, patients with higher germline variant burden exhibit worse outcomes. Similar findings are observed in the independent neuroblastoma cohort where a higher germline variant burden correlates with a higher somatic mutational burden and a worse overall survival outcome. However, contrasting results emerge in adult-onset cancer, emphasizing the importance of germline genetics in neuroblastoma. The enrichment of putatively functional germline variants in cancer predisposition genes is borderline significant when compared to healthy populations (P = 0.077; Odds Ratio, 1.45; 95% confidence intervals, 0.94-2.21) and significantly more pronounced against adult-onset cancers (P = 0.016; Odds Ratio, 2.13; 95% confidence intervals, 1.10-3.91). Additionally, the presence of these variants proves to have prognostic significance in neuroblastoma (log-rank P < 0.001), and combining germline with clinical risk factors notably improves survival predictions.
Collapse
Affiliation(s)
- Eun Seop Seo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Digital Health, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, South Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jinyeong Lim
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Sunghwan Shin
- Department of Laboratory Medicine, Inje University Ilsan Paik Hospital, Goyang, South Korea
| | - Hee Won Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hee Young Ju
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Woong-Yang Park
- Department of Digital Health, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, South Korea.
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea.
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea.
| |
Collapse
|
191
|
Tau S, Chamberlin MD, Yang H, Marotti JD, Roberts AM, Carmichael MM, Cressey L, Dragnev C, Demidenko E, Hampsch RA, Soucy SM, Kolling F, Samkoe KS, Alvarez JV, Kettenbach AN, Miller TW. Endocrine persistence in ER+ breast cancer is accompanied by metabolic vulnerability in oxidative phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615177. [PMID: 39386444 PMCID: PMC11463551 DOI: 10.1101/2024.09.26.615177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Despite adjuvant treatment with endocrine therapies, estrogen receptor-positive (ER+) breast cancers recur in a significant proportion of patients. Recurrences are attributable to clinically undetectable endocrine-tolerant persister cancer cells that retain tumor-forming potential. Therefore, strategies targeting such persister cells may prevent recurrent disease. Using CRISPR-Cas9 genome-wide knockout screening in ER+ breast cancer cells, we identified a survival mechanism involving metabolic reprogramming with reliance upon mitochondrial respiration in endocrine-tolerant persister cells. Quantitative proteomic profiling showed reduced levels of glycolytic proteins in persisters. Metabolic tracing of glucose revealed an energy-depleted state in persisters where oxidative phosphorylation was required to generate ATP. A phase II clinical trial was conducted to evaluate changes in mitochondrial markers in primary ER+/HER2-breast tumors induced by neoadjuvant endocrine therapy ( NCT04568616 ). In an analysis of tumor specimens from 32 patients, tumors exhibiting residual cell proliferation after aromatase inhibitor-induced estrogen deprivation with letrozole showed increased mitochondrial content. Genetic profiling and barcode lineage tracing showed that endocrine-tolerant persistence occurred stochastically without genetic predisposition. Mice bearing cell line- and patient-derived xenografts were used to measure the anti-tumor effects of mitochondrial complex I inhibition in the context of endocrine therapy. Pharmacological inhibition of complex I suppressed the tumor-forming potential of persisters and synergized with the anti-estrogen fulvestrant to induce regression of patient-derived xenografts. These findings indicate that mitochondrial metabolism is essential in endocrine-tolerant persister ER+ breast cancer cells and warrant the development of treatment strategies to leverage this vulnerability in the context of endocrine-sensitive disease. Statement of Significance Endocrine-tolerant persister cancer cells that survive endocrine therapy can cause recurrent disease. Persister cells exhibit increased energetic dependence upon mitochondria for survival and tumor re-growth potential.
Collapse
|
192
|
Yao L, Krasnick BA, Bi Y, Sethuraman S, Goedegebuure S, Weerasinghe A, Wetzel C, Gao Q, Oyedeji A, Mudd J, Wyczalkowski MA, Wendl M, Ding L, Fields RC. Treatment resistance to melanoma therapeutics on a single cell level. Sci Rep 2024; 14:21915. [PMID: 39300183 DOI: 10.1038/s41598-024-72255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Therapy targeting the BRAF-MEK cascade created a treatment revolution for patients with BRAF mutant advanced melanoma. Unfortunately, 80% patients treated will progress by 5 years follow-up. Thus, it is imperative we study mechanisms of melanoma progression and therapeutic resistance. We created a scRNA (single cell RNA) atlas of 128,230 cells from 18 tumors across the treatment spectrum, discovering melanoma cells clustered strongly by transcriptome profiles of patients of origins. Our cell-level investigation revealed gains of 1q and 7q as likely early clonal events in metastatic melanomas. By comparing patient tumors and their derivative cell lines, we observed that PD1 responsive tumor fraction disappears when cells are propagated in vitro. We further established three anti-BRAF-MEK treatment resistant cell lines using three BRAF mutant tumors. ALDOA and PGK1 were found to be highly expressed in treatment resistant cell populations and metformin was effective in targeting the resistant cells. Our study suggests that the investigation of patient tumors and their derivative lines is essential for understanding disease progression, treatment response and resistance.
Collapse
Affiliation(s)
- Lijun Yao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Bradley A Krasnick
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ye Bi
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Sunantha Sethuraman
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Simon Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Amila Weerasinghe
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Chris Wetzel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Qingsong Gao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Abimbola Oyedeji
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacqueline Mudd
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Michael Wendl
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Ryan C Fields
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
193
|
Feng Z, Wen H, Chen Y, Chen X, Bi R, Wu X, Li J, Ju X. Clinical characteristics and genomic profiling of outpatients with endometrial cancer at a Chinese tertiary cancer center. Discov Oncol 2024; 15:461. [PMID: 39294393 PMCID: PMC11411030 DOI: 10.1007/s12672-024-01344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024] Open
Abstract
OBJECTIVE Endometrial cancer is stepping into the era of precision therapy. Genomic test is recommended for newly diagnostic patients. However, outpatients displayed more complex characteristics. Here, we elucidated the clinical characteristics and genomic profiling of outpatients with endometrial cancer at our institution. METHODS Between 2018 and 2023, 68 endometrial cancer received genomic tests at outpatient department of Fudan University Shanghai Cancer Center. Data, including age, pathological histology, FIGO stage and treatment strategy were collected. Germline mutations, molecular subtypes and other somatic mutations were also summarized. RESULTS Overall, 72.1% (49/68) of patients receive genomic tests at primary diagnosis, while 27.9% (19/68) of patients received tests at recurrence. Nine patients had deleterious germline mutations, including BRCA1(2), MLH1(1), MSH2(2, including one with co-mutation of RAD50), MSH6(2), FANCA(1), MUTYH(1). Molecular subtypes were recognized among 62 patients, as POLE super-mutation(4, 6.5%), MSI-H(7, 11.3%), CN-Low(36, 58.1%) and CN-High(15, 24.2%). Ten patients received anti-PD1 monotherapy or in combination with chemotherapy or anti-angiogenic therapy, with the duration of disease control of 1 to 35 months. The ORR rate was 30%, and six patients had stable disease. The median (range) follow-up time was 18(2-160) months. 23(33.8%) relapses were recorded, and CN-High subtype displayed worst PFS compared with other subtypes (P < 0.01). 6 deaths were reported including 2(5.6%) of CN-Low and 4(26.7%) of CN-High. CONCLUSION Outpatients department gathered a considerable proportion of recurrent patients with complex genomic features. Patients with worse prognosis could be well studied, and anti-PD1 therapy was a promising salvage therapy in the real world.
Collapse
Affiliation(s)
- Zheng Feng
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, 270 Dong-an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hao Wen
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, 270 Dong-an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yaqiong Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Nursing, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaojun Chen
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, 270 Dong-an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rui Bi
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaohua Wu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, 270 Dong-an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Jin Li
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, 270 Dong-an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xingzhu Ju
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, 270 Dong-an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
194
|
Nishimura K, Takahara K, Komura K, Ishida M, Hirosuna K, Maenosono R, Ajiro M, Sakamoto M, Iwatsuki K, Nakajima Y, Tsujino T, Taniguchi K, Tanaka T, Inamoto T, Hirose Y, Ono F, Kondo Y, Yoshimi A, Azuma H. Mechanistic insights into lethal hyper progressive disease induced by PD-L1 inhibitor in metastatic urothelial carcinoma. NPJ Precis Oncol 2024; 8:206. [PMID: 39289546 PMCID: PMC11408499 DOI: 10.1038/s41698-024-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
Hyper progressive disease (HPD) is a paradoxical phenomenon characterized by accelerated tumor growth following treatment with immune checkpoint inhibitors. However, the pathogenic causality and its predictor remain unknown. We herein report a fatal case of HPD in a 50-year-old man with metastatic bladder cancer. He had achieved a complete response (CR) through chemoradiation therapy followed by twelve cycles of chemotherapy, maintaining CR for 24 months. Three weeks after initiating maintenance use of a PD-L1 inhibitor, avelumab, a massive amount of metastases developed, leading to the patient's demise. Omics analysis, utilizing metastatic tissues obtained from an immediate autopsy, implied the contribution of M2 macrophages, TGF-β signaling, and interleukin-8 to HPD pathogenesis.
Collapse
Affiliation(s)
- Kazuki Nishimura
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan
| | - Kiyoshi Takahara
- Department of Urology, Fujita-Health University School of Medicine, Toyoake City, Aichi, Japan
| | - Kazumasa Komura
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan.
- Division of Translational Research, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan.
| | - Mitsuaki Ishida
- Department of Pathology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Kensuke Hirosuna
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Ryoichi Maenosono
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan
| | - Masahiko Ajiro
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan
| | - Moritoshi Sakamoto
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan
| | - Kengo Iwatsuki
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Yuki Nakajima
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Takuya Tsujino
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Kohei Taniguchi
- Division of Translational Research, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Tomohito Tanaka
- Division of Translational Research, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Teruo Inamoto
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Yoshinobu Hirose
- Department of Pathology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Fumihito Ono
- Division of Translational Research, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Yoichi Kondo
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Akihide Yoshimi
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan.
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| |
Collapse
|
195
|
Iida N, Imai M, Okamoto W, Kato T, Esaki T, Kato K, Komatsu Y, Yuki S, Masuishi T, Nishina T, Ebi H, Taniguchi H, Nonomura N, Sunakawa Y, Shiozawa M, Yamazaki K, Boku S, Bando H, Shiraishi Y, Kobayashi M, Goto H, Sato A, Fujii S, Yoshino T, Nakamura Y. Novel ERBB2 Variant Potentially Associated with Resistance against Anti-HER2 Monoclonal Antibody-Based Therapy in ERBB2-Amplified Metastatic Colorectal Cancer. Clin Cancer Res 2024; 30:4167-4178. [PMID: 39163021 PMCID: PMC11393546 DOI: 10.1158/1078-0432.ccr-24-1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024]
Abstract
PURPOSE HER2-targeted therapies in ERBB2-amplified metastatic colorectal cancer (mCRC) are effective; however, a notable portion of patients do not respond to treatment, and secondary resistance occurs in most patients receiving these treatments. The purpose of this study was to investigate determinants of treatment efficacy and resistance in patients with ERBB2-amplified mCRC who received HER2-targeted therapy by analyzing multiomics data. EXPERIMENTAL DESIGN We investigated genomic data from a nationwide large cancer genomic screening project, the SCRUM-Japan project. We analyzed paired genome and transcriptome data of tissue and genomic data of ctDNA collected pre- and postprogression in patients enrolled in the related trial, TRIUMPH, in ERBB2-amplified mCRC. RESULTS In 155 patients with ERBB2-amplified solid tumors who received HER2-targeted therapy based on the SCRUM-Japan project, the objective response rate was 50%, 51%, and 35% in ERBB2 wild-type, variant of unknown significance, and pathogenic variant groups, respectively. In the paired genome and transcriptome data analyses in TRIUMPH, we identified the novel splicing-associated variant c.644-66_-2del in one of the 11 patients with paired whole-exome sequencing and whole-transcriptome sequencing data sets, which lacks the binding domain of pertuzumab, in progressed metastatic tumor as a variant with potential pathogenicity. The time-course ctDNA analysis detected c.644-66_-2del as an acquired variant. CONCLUSIONS This study highlighted the importance of ERBB2 genomic status when evaluating the efficacy of HER2-targeted therapies in ERBB2-amplified mCRC. The identification of a novel splicing-associated variant may provide insights into potential mechanisms of treatment resistance. Furthermore, we demonstrated the utility of ctDNA to follow the acquired genomic status of mCRC tumors.
Collapse
Affiliation(s)
- Naoko Iida
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan.
| | - Mitsuho Imai
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan.
| | - Wataru Okamoto
- Department of Clinical Oncology, Hiroshima University Hospital, Hiroshima, Japan.
| | - Takeshi Kato
- Department of Surgery, NHO Osaka National Hospital, Osaka, Japan.
| | - Taito Esaki
- Department of Gastrointestinal and Medical Oncology, NHO Kyushu Cancer Center, Fukuoka, Japan.
| | - Ken Kato
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.
| | - Yoshito Komatsu
- Department of Cancer Center, Hokkaido University Hospital, Sapporo, Japan.
| | - Satoshi Yuki
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Japan.
| | - Toshiki Masuishi
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan.
| | - Tomohiro Nishina
- Gastrointestinal Medical Oncology, NHO Shikoku Cancer Center, Matsuyama, Japan.
| | - Hiromichi Ebi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Japan.
| | - Hiroya Taniguchi
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan.
| | - Norio Nonomura
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Yu Sunakawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan.
| | - Manabu Shiozawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan.
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shunto-gun, Japan.
| | - Shogen Boku
- Cancer Treatment Center, Kansai Medical University Hospital, Hirakata, Japan.
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan.
| | - Maki Kobayashi
- Translational Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan.
| | - Hiroki Goto
- Translational Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan.
| | - Akihiro Sato
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan.
| | - Satoshi Fujii
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Tokyo, Japan.
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan.
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| | - Yoshiaki Nakamura
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan.
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| |
Collapse
|
196
|
Kolekar P, Balagopal V, Dong L, Liu Y, Foy S, Tran Q, Mulder H, Huskey ALW, Plyler E, Liang Z, Ma J, Nakitandwe J, Gu J, Namwanje M, Maciaszek J, Payne-Turner D, Mallampati S, Wang L, Easton J, Klco JM, Ma X. SJPedPanel: A Pan-Cancer Gene Panel for Childhood Malignancies to Enhance Cancer Monitoring and Early Detection. Clin Cancer Res 2024; 30:4100-4114. [PMID: 39047169 PMCID: PMC11393547 DOI: 10.1158/1078-0432.ccr-24-1063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE The purpose of the study was to design a pan-cancer gene panel for childhood malignancies and validate it using clinically characterized patient samples. EXPERIMENTAL DESIGN In addition to 5,275 coding exons, SJPedPanel also covers 297 introns for fusions/structural variations and 7,590 polymorphic sites for copy-number alterations. Capture uniformity and limit of detection are determined by targeted sequencing of cell lines using dilution experiment. We validate its coverage by in silico analysis of an established real-time clinical genomics (RTCG) cohort of 253 patients. We further validate its performance by targeted resequencing of 113 patient samples from the RTCG cohort. We demonstrate its power in analyzing low tumor burden specimens using morphologic remission and monitoring samples. RESULTS Among the 485 pathogenic variants reported in RTCG cohort, SJPedPanel covered 86% of variants, including 82% of 90 rearrangements responsible for fusion oncoproteins. In our targeted resequencing cohort, 91% of 389 pathogenic variants are detected. The gene panel enabled us to detect ∼95% of variants at allele fraction (AF) 0.5%, whereas the detection rate is ∼80% at AF 0.2%. The panel detected low-frequency driver alterations from morphologic leukemia remission samples and relapse-enriched alterations from monitoring samples, demonstrating its power for cancer monitoring and early detection. CONCLUSIONS SJPedPanel enables the cost-effective detection of clinically relevant genetic alterations including rearrangements responsible for subtype-defining fusions by targeted sequencing of ∼0.15% of human genome for childhood malignancies. It will enhance the analysis of specimens with low tumor burdens for cancer monitoring and early detection.
Collapse
Affiliation(s)
- Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Vidya Balagopal
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Li Dong
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Quang Tran
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Anna L W Huskey
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Emily Plyler
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zhikai Liang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jingqun Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Joy Nakitandwe
- Department of Pathology and Laboratory Medicine, Diagnostics Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jiali Gu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Maria Namwanje
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jamie Maciaszek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Debbie Payne-Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Saradhi Mallampati
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
197
|
Ambriz-Barrera F, Rojas-Jiménez E, Díaz-Velásquez CE, De-La-Cruz-Montoya AH, Martínez-Gregorio H, Ruiz-De-La-Cruz M, Huertas A, Montealegre AL, Castro-Rojas C, Acosta G, Vaca-Paniagua F, Perdomo S. Mutational spectrum of breast cancer by shallow whole-genome sequencing of cfDNA and tumor gene panel analysis. PLoS One 2024; 19:e0308176. [PMID: 39264897 PMCID: PMC11392417 DOI: 10.1371/journal.pone.0308176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/17/2024] [Indexed: 09/14/2024] Open
Abstract
Breast cancer (BC) has different molecular subgroups related to different risks and treatments. Tumor biopsies for BC detection are invasive and may not reflect tumor heterogeneity. Liquid biopsies have become relevant because they might overcome these limitations. We rationalize that liquid cfDNA biopsies through shallow whole genome sequencing (sWGS) could improve the detection of tumor alterations, complementing the genomic profiling. We evaluated the feasibility to detect somatic copy number alterations (SCNAs) in BC using shallow whole genome sequencing (sWGS) in cfDNA from archived samples from National Cancer Institute of Colombia patients. We sequenced tumor tissues from 38 BC patients with different molecular subtypes using a gene panel of 176 genes significantly mutated in cancer, and by liquid biopsies using sWGS on 20 paired samples to detect SCNAs and compare with the tumor samples. We identified an extensive intertumoral heterogeneity between the molecular subtypes of BC, with a mean tumor load of 602 mutations in the gene panel of tumor tissues. There was a 12.3% of concordance in deletions in the cfDNA-tumor pairs considering only the genes covered by the panel encompassing seven genes: BRCA1, CDK12, NF1, MAP2K4, NCOR1, TP53, and KEAP1 in three patients. This study shows the feasibility to complement the genomic analysis of tumor tissue biopsies to detect SCNA in BC using sWGS in cfDNA, providing a wider identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Fernando Ambriz-Barrera
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, México
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, México
| | - Ernesto Rojas-Jiménez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, México
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, México
| | - Clara Estela Díaz-Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, México
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, México
| | - Aldo Hugo De-La-Cruz-Montoya
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, México
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, México
| | - Héctor Martínez-Gregorio
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, México
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, México
| | - Miguel Ruiz-De-La-Cruz
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, México
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, México
| | - Antonio Huertas
- Terry Fox National Tumor Bank, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Ana Lorena Montealegre
- Nutrition, Genetics and Metabolism Research Group, Faculty of Medicine, Universidad El Bosque, Bogotá, Colombia
| | - Carlos Castro-Rojas
- Nutrition, Genetics and Metabolism Research Group, Faculty of Medicine, Universidad El Bosque, Bogotá, Colombia
| | - Gabriela Acosta
- Nutrition, Genetics and Metabolism Research Group, Faculty of Medicine, Universidad El Bosque, Bogotá, Colombia
| | - Felipe Vaca-Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, México
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, México
| | - Sandra Perdomo
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| |
Collapse
|
198
|
Choi WH, Cho Y, Cha JH, Lee DH, Jeong JG, Jung SH, Song JJ, Lee JH, Lee SY. Functional pathogenicity of ESRRB variant of uncertain significance contributes to hearing loss (DFNB35). Sci Rep 2024; 14:21215. [PMID: 39261511 PMCID: PMC11390957 DOI: 10.1038/s41598-024-70795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Advances in next-generation sequencing technologies have led to elucidation of sensorineural hearing loss genetics and associated clinical impacts. However, studies on the functional pathogenicity of variants of uncertain significance (VUS), despite their close association with clinical phenotypes, are lacking. Here we identified compound heterozygous variants in ESRRB transcription factor gene linked to DFNB35, specifically a novel splicing variant (NM_004452.4(ESRRB): c.397 + 2T>G) in trans with a missense variant (NM_004452.4(ESRRB): c.1144C>T p.(Arg382Cys)) whose pathogenicity remains unclear. The splicing variant (c.397 + 2T>G) caused exon 4 skipping, leading to premature stop codon formation and nonsense-mediated decay. The p.(Arg382Cys) variant was classified as a VUS due to its particularly higher allele frequency among East Asian population despite disease-causing in-silico predictions. However, functional assays showed that p.(Arg382Cys) variant disrupted key intramolecular interactions, leading to protein instability. This variant also reduced transcriptional activity and altered expression of downstream target genes essential for inner ear function, suggesting genetic contribution to disease phenotype. This study expanded the phenotypic and genotypic spectrum of ESRRB in DFNB35 and revealed molecular mechanisms underlying ESRRB-associated DFNB35. These findings suggest that variants with high allele frequencies can also possess functional pathogenicity, providing a breakthrough for cases where VUS, previously unexplored, could be reinterpreted by elucidating their functional roles and disease-causing characteristics.
Collapse
Affiliation(s)
- Won Hoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeijean Cho
- Seoul National University College of Medicine, Seoul, South Korea
| | - Ju Hyuen Cha
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dae Hee Lee
- CTCELLS, Inc., 21, Yuseong-Daero, 1205 Beon-Gil, Yuseong-Gu, Daejeon, Republic of Korea
| | - Jong Gwan Jeong
- CTCELLS, Inc., 21, Yuseong-Daero, 1205 Beon-Gil, Yuseong-Gu, Daejeon, Republic of Korea
| | - Sung Ho Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Jin Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea.
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
199
|
Rodrigues LM, Maistro S, Katayama MLH, Rocha VM, Lopez RVM, Lopes EFDT, Gonçalves FT, Fridman C, Serio PADMP, Barros LRC, Leite LAS, Segatelli V, Estevez-Diz MDP, Guindalini RSC, Ribeiro Junior U, Folgueira MAAK. Prevalence of germline variants in Brazilian pancreatic carcinoma patients. Sci Rep 2024; 14:21083. [PMID: 39256447 PMCID: PMC11387492 DOI: 10.1038/s41598-024-71884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
We evaluated the prevalence of pathogenic/likely pathogenic germline variants (PGV) in Brazilian pancreatic adenocarcinoma (PC) patients, that represent a multiethnic population, in a cross-sectional study. We included 192 PC patients unselected for family history of cancer. We evaluated a panel of 113 cancer genes, through genomic DNA sequencing and 46 ancestry-informative markers, through multiplex PCR. The median age was 61 years; 63.5% of the patients presented disease clinical stages III or IV; 8.3% reported personal history of cancer; 4.7% and 16.1% reported first-degree relatives with PC or breast and/or prostate cancer, respectively. Although the main ancestry was European, there was considerable genetic composition admixture. Twelve patients (6.25%) were PGV carriers in PC predisposition genes (ATM, BRCA1, BRCA2, CDKN2A, MSH2, PALB2) and another 25 (13.0%) were PGV carriers in genes with a limited association or not previously associated with PC (ACD, BLM, BRIP1, CHEK2, ERCC4, FANCA, FANCE, FANCM, GALNT12, MITF, MRE11, MUTYH, POLE, RAD51B, RAD51C, RECQL4, SDHA, TERF2IP). The most frequently affected genes were CHEK2, ATM and FANC. In tumor samples from PGV carriers in ACD, BRIP1, MRE11, POLE, SDHA, TERF2IP, which were examined through exome sequencing, the main single base substitutions (SBS) mutational signature was SBS1+5+18, probably associated with age, tobacco smoking and reactive oxygen species. SBS3 associated with homologous repair deficiency was also represented, but on a lower scale. There was no difference in the frequency of PGV carriers between: (a) patients with or without first-degree relatives with cancer; and (b) patients with admixed ancestry versus those with predominantly European ancestry. Furthermore, there was no difference in overall survival between PGV carriers and non-carriers. Therefore, genetic testing should be offered to all Brazilian pancreatic cancer patients, regardless of their ancestry. Genes with limited or previously unrecognized associations with pancreatic cancer should be further investigated to clarify their role in cancer risk.
Collapse
Affiliation(s)
- Lívia Munhoz Rodrigues
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Simone Maistro
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Maria Lucia Hirata Katayama
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Vinícius Marques Rocha
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Rossana Veronica Mendoza Lopez
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Edia Filomena di Tullio Lopes
- Registro Hospitalar de Cancer, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, São Paulo, SP, Brazil
| | - Fernanda Toledo Gonçalves
- Departamento de Medicina Legal, Bioetica, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | - Cintia Fridman
- Departamento de Medicina Legal, Bioetica, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | | | - Luciana Rodrigues Carvalho Barros
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Luiz Antonio Senna Leite
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | - Vanderlei Segatelli
- Departamento de Patologia Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | - Maria Del Pilar Estevez-Diz
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | | | - Ulysses Ribeiro Junior
- Division of Digestive Surgery, Department of Gastroenterology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo FMUSP, Sao Paulo, SP, Brazil
| | - Maria Aparecida Azevedo Koike Folgueira
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil.
| |
Collapse
|
200
|
Zerbib J, Ippolito MR, Eliezer Y, De Feudis G, Reuveni E, Savir Kadmon A, Martin S, Viganò S, Leor G, Berstler J, Muenzner J, Mülleder M, Campagnolo EM, Shulman ED, Chang T, Rubolino C, Laue K, Cohen-Sharir Y, Scorzoni S, Taglietti S, Ratti A, Stossel C, Golan T, Nicassio F, Ruppin E, Ralser M, Vazquez F, Ben-David U, Santaguida S. Human aneuploid cells depend on the RAF/MEK/ERK pathway for overcoming increased DNA damage. Nat Commun 2024; 15:7772. [PMID: 39251587 PMCID: PMC11385192 DOI: 10.1038/s41467-024-52176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Aneuploidy is a hallmark of human cancer, yet the molecular mechanisms to cope with aneuploidy-induced cellular stresses remain largely unknown. Here, we induce chromosome mis-segregation in non-transformed RPE1-hTERT cells and derive multiple stable clones with various degrees of aneuploidy. We perform a systematic genomic, transcriptomic and proteomic profiling of 6 isogenic clones, using whole-exome DNA, mRNA and miRNA sequencing, as well as proteomics. Concomitantly, we functionally interrogate their cellular vulnerabilities, using genome-wide CRISPR/Cas9 and large-scale drug screens. Aneuploid clones activate the DNA damage response and are more resistant to further DNA damage induction. Aneuploid cells also exhibit elevated RAF/MEK/ERK pathway activity and are more sensitive to clinically-relevant drugs targeting this pathway, and in particular to CRAF inhibition. Importantly, CRAF and MEK inhibition sensitize aneuploid cells to DNA damage-inducing chemotherapies and to PARP inhibitors. We validate these results in human cancer cell lines. Moreover, resistance of cancer patients to olaparib is associated with high levels of RAF/MEK/ERK signaling, specifically in highly-aneuploid tumors. Overall, our study provides a comprehensive resource for genetically-matched karyotypically-stable cells of various aneuploidy states, and reveals a therapeutically-relevant cellular dependency of aneuploid cells.
Collapse
Affiliation(s)
- Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marica Rosaria Ippolito
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Yonatan Eliezer
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Giuseppina De Feudis
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Eli Reuveni
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anouk Savir Kadmon
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sara Martin
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sonia Viganò
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Gil Leor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Julia Muenzner
- Charité Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Michael Mülleder
- Charité Universitätsmedizin Berlin, Core Facility High-Throughput Mass Spectrometry, Berlin, Germany
| | - Emma M Campagnolo
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eldad D Shulman
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiangen Chang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carmela Rubolino
- Center for Genomic Science of IIT@SEMM, Fondazione Instituto Italiano di Technologia, Milan, Italy
| | - Kathrin Laue
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Cohen-Sharir
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Simone Scorzoni
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Silvia Taglietti
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alice Ratti
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Chani Stossel
- Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Talia Golan
- Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Fondazione Instituto Italiano di Technologia, Milan, Italy
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Markus Ralser
- Charité Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Stefano Santaguida
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|