2251
|
Abstract
Antigen-specific activation of T lymphocytes requires the interaction of their clonally distributed T-cell receptors with plasma membrane ligands composed of foreign peptide antigens bound to major histocompatibility complex molecules. For proliferation and differentiation to ensue, a variety of other adhesive and accessory proteins must also interact with their counter-receptors on the antigen-presenting cell to facilitate and complement the T-cell receptor-antigen recognition event. Recent studies have revealed that these various proteins show an unexpected degree of spatial organization in the zone of cell-cell contact. This region of membrane approximation is now referred to as the "immunological synapse" because of its functional analogy to the site of intercellular information transfer between neurons. Here, we review the evidence for signaling-dependent control of the dynamic changes in protein distribution that gives rise to the synapse and try to relate the emerging spatio-temporal information on synapse formation to T-cell biology.
Collapse
Affiliation(s)
- J Delon
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
2252
|
Kam L, Boxer SG. Formation of Supported Lipid Bilayer Composition Arrays by Controlled Mixing and Surface Capture. J Am Chem Soc 2000. [DOI: 10.1021/ja0034038] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2253
|
Gao GF, Jakobsen BK. Molecular interactions of coreceptor CD8 and MHC class I: the molecular basis for functional coordination with the T-cell receptor. IMMUNOLOGY TODAY 2000; 21:630-6. [PMID: 11114424 DOI: 10.1016/s0167-5699(00)01750-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, substantial progress has been made towards understanding the molecular basis for CD8 binding to class I MHC and the coreceptor's role in cytotoxic T-cell activation. Here, we review the structural, mechanistic and functional studies that point to a model of coordination of T-cell receptor and CD8 signaling that might provide the key to cytotoxic T-cell activation.
Collapse
MESH Headings
- Animals
- CD8 Antigens/chemistry
- CD8 Antigens/metabolism
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/metabolism
- Humans
- Lymphocyte Activation/immunology
- Mice
- Models, Immunological
- Models, Molecular
- Polymorphism, Genetic
- Protein Binding
- Protein Conformation
- Protein Isoforms/chemistry
- Protein Isoforms/metabolism
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Solubility
- Structure-Activity Relationship
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- G F Gao
- Dept. of Molecular and Cellular Biology, 7 Divinity Avenue, Cambridge, Harvard University, Massachusetts, MA 02138, USA.
| | | |
Collapse
|
2254
|
Prakken B, Wauben M, Genini D, Samodal R, Barnett J, Mendivil A, Leoni L, Albani S. Artificial antigen-presenting cells as a tool to exploit the immune 'synapse'. Nat Med 2000; 6:1406-10. [PMID: 11100129 DOI: 10.1038/82231] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent progress in molecular medicine has provided important tools to identify antigen-specific T cells. In most cases, the approach is based on oligomeric combinations of recombinant major histocompatibility complex-peptide complexes fixed to various rigid supports available for binding by the T-cell receptor. These tools have greatly increased our insight into mechanisms of immune responses mediated by CD8+ T cells. Examples of the diverse fields of application for this technology include immunization, viral infections and oral tolerance induction.
Collapse
Affiliation(s)
- B Prakken
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0663, USA
| | | | | | | | | | | | | | | |
Collapse
|
2255
|
Borroto A, Gil D, Delgado P, Vicente-Manzanares M, Alcover A, Sánchez-Madrid F, Alarcón B. Rho regulates T cell receptor ITAM-induced lymphocyte spreading in an integrin-independent manner. Eur J Immunol 2000; 30:3403-10. [PMID: 11093158 DOI: 10.1002/1521-4141(2000012)30:12<3403::aid-immu3403>3.0.co;2-h] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T cell receptor (TCR) engagement increases integrin-mediated adhesion to APC, resulting in the stabilization of the T cell : APC interaction and the close apposition of the two cell membranes. Here we show that engagement of either the TCR or CD3 chimeras with immobilized antibodies causes the rapid spreading of T cells in an integrin-independent fashion. This effect concurs with the polymerization of the actin cytoskeleton and is dependent on the integrity of the immunoreceptor tyrosine-based activation motifs of the CD3 subunits. Expression of a dominant negative mutant of RhoA, as well as the Rho-specific inhibitor C3 toxin, abolished TCR-induced spreading. In contrast, constitutively active or dominant negative forms of Rac and Cdc42 did not affect cell spreading. We conclude that signals emanating from the TCR can directly induce T cell spreading, independently of integrins, and via a Rho-dependent reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- A Borroto
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
2256
|
Ebert PJ, Baker JF, Punt JA. Immature CD4+CD8+ thymocytes do not polarize lipid rafts in response to TCR-mediated signals. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5435-42. [PMID: 11067895 DOI: 10.4049/jimmunol.165.10.5435] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TCR-mediated stimulation induces activation and proliferation of mature T cells. When accompanied by signals through the costimulatory receptor CD28, TCR signals also result in the recruitment of cholesterol- and glycosphingolipid-rich membrane microdomains (lipid rafts), which are known to contain several molecules important for T cell signaling. Interestingly, immature CD4(+)CD8(+) thymocytes respond to TCR/CD28 costimulation not by proliferating, but by dying. In this study, we report that, although CD4(+)CD8(+) thymocytes polarize their actin cytoskeleton, they fail to recruit lipid rafts to the site of TCR/CD28 costimulation. We show that coupling of lipid raft mobilization to cytoskeletal reorganization can be mediated by phosphoinositide 3-kinase, and discuss the relevance of these findings to the interpretation of TCR signals by immature vs mature T cells.
Collapse
Affiliation(s)
- P J Ebert
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | | | | |
Collapse
|
2257
|
García-Peydró M, Paradela A, Albar JP, Castro JA. Antagonism of direct alloreactivity of an HLA-B27-specific CTL clone by altered peptide ligands of its natural epitope. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5680-5. [PMID: 11067925 DOI: 10.4049/jimmunol.165.10.5680] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Antagonism of allospecific CTL by altered MHC ligands is a potential approach to specific immunomodulation of allogeneic T cell responses in acute graft rejection and graft-vs-host disease. In this study we have analyzed the capacity of peptide analogs of a natural HLA-B27-allospecific CTL epitope to antagonize direct alloreactivity. Alanine scanning demonstrated that positions 4, 5, and 7 of the peptide epitope were critical for allorecognition. A number of relatively conservative substitutions at each of these positions were then tested for their effect on allorecognition and antagonism. All substitutions at position 5 abrogated cytotoxicity. In contrast, a few changes at positions 4 and 7 were tolerated, indicating a limited flexibility of the allospecific CTL in recognition of peptide epitope variants. Most of the substitutions impairing cytotoxicity actually induced antagonism. However, whereas epitope variants with changes at positions 4 and 7 behaved as weak or intermediate antagonists, some of the variants with changes at position 5 antagonized CTL alloreactivity almost completely. The results in this study demonstrate for the first time that antagonism of direct class I-mediated alloreactivity can be achieved by variants of a natural allospecific peptide epitope.
Collapse
Affiliation(s)
- M García-Peydró
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Cientificas), Universidad Autónoma de Madrid, Facultad de Ciencias, Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
2258
|
Panus JF, McHeyzer-Williams LJ, McHeyzer-Williams MG. Antigen-specific T helper cell function: differential cytokine expression in primary and memory responses. J Exp Med 2000; 192:1301-16. [PMID: 11067879 PMCID: PMC2193351 DOI: 10.1084/jem.192.9.1301] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2000] [Accepted: 09/11/2000] [Indexed: 11/27/2022] Open
Abstract
Distinguishing between the development of functional potential in antigen-specific T helper (Th) cells and the delivery of these specialized functions in vivo has been difficult to resolve. Here, we quantify the frequency of cytokine-producing cells within the primary and memory B10.BR Th cell response to pigeon cytochrome c (PCC). In vitro analysis of acquired functional potential indicated no Th1/Th2 cytokine polarity at the peak of the primary response with surprisingly little evidence for the selective preservation of interleukin (IL)-2, tumor necrosis factor (TNF)-alpha, IL-4, and interferon (IFN)-gamma potentials into the memory compartment. However, the expression of these functional potentials appears tightly regulated in vivo. The staggered appearance of primary response cytokines directly ex vivo contrasts markedly with their rapid coordinate expression in the memory response. Frequencies of IL-2-, TNF-alpha-, IFN-gamma-, and IL-10-expressing memory responders increased over their primary response counterparts, but were still markedly lower than revealed in vitro. IL-4-, IFN-gamma-, and IL-10-expressing Th cells remained at low but stable frequencies over the first 6 d of the memory response. Analysis of T cell receptor beta chain sequences of IL-4- and TNF-alpha-expressing PCC-specific Th cells provides evidence for early functional commitment among clonal progeny. These data indicate that the development of functional potential is a consequence of initial antigen experience, but delivery of specialized functions is differentially regulated in primary and memory immune responses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens/immunology
- Antigens, CD/immunology
- Base Sequence
- Clone Cells/immunology
- Columbidae
- Cytochrome c Group/immunology
- Cytokines/biosynthesis
- Cytokines/genetics
- Cytokines/immunology
- Gene Expression Regulation
- Immunologic Memory/immunology
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interleukins/biosynthesis
- Interleukins/genetics
- Interleukins/immunology
- Mice
- Mice, Inbred Strains
- Molecular Sequence Data
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- J F Panus
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
2259
|
Goldstein JS, Chen T, Gubina E, Pastor RW, Kozlowski S. ICAM-1 enhances MHC-peptide activation of CD8(+) T cells without an organized immunological synapse. Eur J Immunol 2000; 30:3266-70. [PMID: 11093142 DOI: 10.1002/1521-4141(200011)30:11<3266::aid-immu3266>3.0.co;2-f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In addition to the TCR-ligand interaction, other receptor-ligand pairs, such as LFA-1 and ICAM-1, play a major role in the activation of T cells. Recent studies of T cell activation suggest a coordinated movement of LFA-1 and ICAM-1 in forming a defined zone in the immunological synapse. It is unclear from these studies whether the organized molecular geometry of the immunological synapse is necessary for ICAM-1 enhancement of T cell activation. In this report, we demonstrate that ICAM-1 can enhance the activation of CD8(+) T cells by MHC-peptide in the absence of an organized immunologic synapse. Therefore, although the molecular organization of the immunologic synapse may amplify stimuli, it is not an absolute requirement for either CD8(+) T cell activation or the ICAM-1 enhancement of TCR activation.
Collapse
Affiliation(s)
- J S Goldstein
- Division of Monoclonal Ab, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
2260
|
Bikah G, Pogue-Caley RR, McHeyzer-Williams LJ, McHeyzer-Williams MG. Regulating T helper cell immunity through antigen responsiveness and calcium entry. Nat Immunol 2000; 1:402-12. [PMID: 11062500 DOI: 10.1038/80841] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We evaluated changes in the signaling potentials and proliferative capacity of single antigen-specific T helper (TH) cells during a primary immune response to a protein antigen. At the peak of cellular expansion in vivo all antigen-specific TH cells exhibited a profound block in CD3- and CD4-mediated mobilization of intracellular calcium together with a more global block in T cell receptor-independent capacitative calcium entry (CCE). The proliferative response of these antigen-specific TH cells to anti-CD3, anti-CD28 and IL-2 was also severely blunted. Cross-linking CD69 on a substantial fraction of CD69+ antigen-specific TH cells relieved this block in CCE and restored proliferative capacity in vitro. The CCE rescue operated through a CD69-coupled G protein and required calcium-bound calmodulin and calcineurin. These data reveal critical changes in the responsiveness of antigen-specific TH cells and provide evidence of new mechanisms for the regulation of antigen-specific TH cell development in vivo.
Collapse
Affiliation(s)
- G Bikah
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
2261
|
Noble A. Review article: molecular signals and genetic reprogramming in peripheral T-cell differentiation. Immunology 2000; 101:289-99. [PMID: 11106931 PMCID: PMC2327098 DOI: 10.1046/j.1365-2567.2000.00133.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Rearrangement of gene segments occurs in T lymphocytes during thymic development as the T-cell receptor (TCR) is first expressed, allowing T cells to become central regulators of antigen specificity in the acquired immune system. However, further development of T cells occurs after population of peripheral lymphoid tissues, which can result in T-cell expansion and differentiation into effectors of various immune function, or progression to memory T cells, anergic cells or death by apoptosis. This review focuses on more recent developments concerning the choices that peripheral T cells make between first encountering antigen through TCR recognition and death. These decisions are associated with a process of genetic reprogramming that alters the behaviour of cells so that immune responses are appropriately regulated.
Collapse
Affiliation(s)
- A Noble
- Department of Immunology, Guy's, King's & St Thomas' School of Medicine, London, UK
| |
Collapse
|
2262
|
Altman A, Isakov N, Baier G. Protein kinase Ctheta: a new essential superstar on the T-cell stage. IMMUNOLOGY TODAY 2000; 21:567-73. [PMID: 11094261 DOI: 10.1016/s0167-5699(00)01749-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies have identified protein kinase Cθ (PKCtheta), a member of the Ca(2+)-independent PKC family, as an essential component of the T-cell synapse that cooperates with calcineurin to activate the interleukin-2 (IL-2) gene. Several selective functions of PKCtheta involved in the activation and survival of T cells are reviewed herein. Among these, the nuclear factor-kappaB (NF-kappaB) signaling cascade appears to be the most critical target of PKCtheta in the T-cell receptor/CD28 costimulatory pathway that leads to T-cell activation.
Collapse
Affiliation(s)
- A Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
2263
|
Abstract
Despite the increasing knowledge on the pathways involved in TCR signal transduction and T cell activation, the molecular mechanism of TCR triggering by ligand, MHC-peptide complexes, is still elusive and controversial. The present paper addresses the controversy on the early events of TCR engagement and triggering. Mathematical modelling techniques are applied to experimental data to infer plausible molecular mechanisms of TCR triggering and down-regulation. A similar approach has been followed by Bachmann et al. (Eur. J. Immunol. 1998, 28: 2571 - 2579), who concluded that the TCR triggering requires the formation of MHC-TCR dimers or trimers. We report here the failure to generalize this conclusion to the data reported by Valitutti et al. (Nature 1995, 375: 148 - 151). We show that there are several kinetic features in these experimental curves of TCR down-regulation that cannot be explained by the simple model proposed by Bachmann et al. unless some phenomenological extensions are considered. These extensions are: (1) a ligand independent turnover of the TCR; (2) a transient accumulation of triggered TCR; (3) a high order of TCR triggering kinetics; and (4) two pools of membrane TCR in dynamic equilibrium.
Collapse
Affiliation(s)
- J Sousa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | | |
Collapse
|
2264
|
MESH Headings
- CD4 Antigens/physiology
- CD4-Positive T-Lymphocytes/virology
- Cell Adhesion Molecules
- Cell Membrane/physiology
- Dendritic Cells/virology
- Down-Regulation
- Gene Expression Regulation, Viral
- Gene Products, env/physiology
- Gene Products, nef/chemistry
- Gene Products, nef/physiology
- HIV Infections/pathology
- HIV-1/genetics
- HIV-1/physiology
- HLA Antigens/genetics
- Humans
- Lectins/physiology
- Lectins, C-Type
- Membrane Fusion
- Models, Biological
- Models, Molecular
- Protein Conformation
- Receptors, CCR5/physiology
- Receptors, CXCR4/physiology
- Receptors, Cell Surface/physiology
- Receptors, HIV/physiology
- Virus Assembly
- Virus Replication
- Virus Shedding
- nef Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- R W Doms
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
2265
|
Groves JT, Boxer SG, McConnell HM. Lateral Reorganization of Fluid Lipid Membranes in Response to the Electric Field Produced by a Buried Charge. J Phys Chem B 2000. [DOI: 10.1021/jp002320a] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jay T. Groves
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| | - Harden M. McConnell
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| |
Collapse
|
2266
|
Ostrov DA, Shi W, Schwartz JC, Almo SC, Nathenson SG. Structure of murine CTLA-4 and its role in modulating T cell responsiveness. Science 2000; 290:816-9. [PMID: 11052947 DOI: 10.1126/science.290.5492.816] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The effective regulation of T cell responses is dependent on opposing signals transmitted through two related cell-surface receptors, CD28 and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). Dimerization of CTLA-4 is required for the formation of high-avidity complexes with B7 ligands and for transmission of signals that attenuate T cell activation. We determined the crystal structure of the extracellular portion of CTLA-4 to 2.0 angstrom resolution. CTLA-4 belongs to the immunoglobulin superfamily and displays a strand topology similar to Valpha domains, with an unusual mode of dimerization that places the B7 binding sites distal to the dimerization interface. This organization allows each CTLA-4 dimer to bind two bivalent B7 molecules and suggests that a periodic arrangement of these components within the immunological synapse may contribute to the regulation of T cell responsiveness.
Collapse
MESH Headings
- Abatacept
- Amino Acid Sequence
- Animals
- Antigen-Presenting Cells/immunology
- Antigens, CD
- Antigens, Differentiation/chemistry
- Antigens, Differentiation/immunology
- Antigens, Differentiation/metabolism
- B7-1 Antigen/chemistry
- B7-1 Antigen/metabolism
- CD28 Antigens/immunology
- CD28 Antigens/metabolism
- CTLA-4 Antigen
- Crystallography, X-Ray
- Dimerization
- Hydrogen Bonding
- Immunoconjugates
- Ligands
- Lymphocyte Activation
- Mice
- Models, Molecular
- Molecular Sequence Data
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- D A Ostrov
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
2267
|
Kubota H, Reid LM. Clonogenic hepatoblasts, common precursors for hepatocytic and biliary lineages, are lacking classical major histocompatibility complex class I antigen. Proc Natl Acad Sci U S A 2000; 97:12132-7. [PMID: 11050242 PMCID: PMC17306 DOI: 10.1073/pnas.97.22.12132] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2000] [Accepted: 08/31/2000] [Indexed: 01/15/2023] Open
Abstract
An in vitro colony-forming assay and flow cytometry were used to identify rat hepatoblasts as being classical MHC class I, RT1A(l-), OX18(low) intercellular adhesion molecule 1 (ICAM-1)(+). Inducible differentiation toward biliary lineage was observed in most colonies derived from single RT1A(l-) progenitors, proving their bipotentiality. These findings demonstrate the antigenic profile of clonogenic hepatoblasts and proof of their bipotency. Furthermore, whereas colony formation of adult hepatocytes required epidermal growth factor, clonal growth of hepatoblasts was potentiated without epidermal growth factor. The adult hepatic colonies consisted of RT1A(l+)OX18(+)ICAM-1(++) cells. These results indicate that hepatoblasts possess unique characteristics as compared with adult hepatocytes harboring significant proliferative activity. The phenotypic identity of hepatoblasts and the clonal culture system have relevance for identifying hepatic stem cells from adults, for studying liver development, and for cell therapy based on hepatic progenitors.
Collapse
Affiliation(s)
- H Kubota
- Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7038, USA.
| | | |
Collapse
|
2268
|
Kabarowski JH, Feramisco JD, Le LQ, Gu JL, Luoh SW, Simon MI, Witte ON. Direct genetic demonstration of G alpha 13 coupling to the orphan G protein-coupled receptor G2A leading to RhoA-dependent actin rearrangement. Proc Natl Acad Sci U S A 2000; 97:12109-14. [PMID: 11050239 PMCID: PMC17302 DOI: 10.1073/pnas.97.22.12109] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2000] [Indexed: 11/18/2022] Open
Abstract
G2A is an orphan G protein-coupled receptor (GPCR), expressed predominantly in T and B cells and homologous to a small group of GPCRs of unknown function expressed in lymphoid tissues. G2A is transcriptionally induced in response to diverse stimuli, and its ectopic expression suppresses transformation of B lymphoid precursors by BCR-ABL. G2A induces morphological transformation of NIH 3T3 fibroblasts. Microinjection of constructs encoding G2A into Swiss 3T3 fibroblasts induces actin reorganization into stress fibers that depends on RhoA, but not CDC42 or RAC. G2A elicits RhoA-dependent transcriptional activation of serum response factor. Direct evaluation of RhoA activity demonstrates elevated levels of RhoA-GTP in G2A-expressing cells. Microinjection of embryonic fibroblasts derived from various G alpha knockout mice establishes a requirement for G alpha 13 but not G alpha 12 or G alpha q/11 in G2A-induced actin rearrangement. In conclusion, G2A represents a family of GPCRs expressed in lymphocytes that may link diverse stimuli to cytoskeletal reorganization and transcriptional activation through a pathway involving G alpha 13 and RhoA.
Collapse
Affiliation(s)
- J H Kabarowski
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095-1662, USA
| | | | | | | | | | | | | |
Collapse
|
2269
|
Lieberman N, Mandelboim O. The role of NK cells in innate immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 479:137-45. [PMID: 10897416 DOI: 10.1007/0-306-46831-x_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- N Lieberman
- Lautenberg Center for General and Tumor Immunology, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
2270
|
Harder T, Kuhn M. Selective accumulation of raft-associated membrane protein LAT in T cell receptor signaling assemblies. J Cell Biol 2000; 151:199-208. [PMID: 11038169 PMCID: PMC2192654 DOI: 10.1083/jcb.151.2.199] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of T cell antigen receptor (TCR) induces tyrosine phosphorylations that mediate the assembly of signaling protein complexes. Moreover, cholesterol-sphingolipid raft membrane domains have been implicated to play a role in TCR signal transduction. Here, we studied the assembly of TCR with signal transduction proteins and raft markers in plasma membrane subdomains of Jurkat T leukemic cells. We employed a novel method to immunoisolate plasma membrane subfragments that were highly concentrated in activated TCR-CD3 complexes and associated signaling proteins. We found that the raft transmembrane protein linker for activation of T cells (LAT), but not a palmitoylation-deficient non-raft LAT mutant, strongly accumulated in TCR-enriched immunoisolates in a tyrosine phosphorylation-dependent manner. In contrast, other raft-associated molecules, including protein tyrosine kinases Lck and Fyn, GM1, and cholesterol, were not highly concentrated in TCR-enriched plasma membrane immunoisolates. Many downstream signaling proteins coisolated with the TCR/LAT-enriched plasma membrane fragments, suggesting that LAT/TCR assemblies form a structural scaffold for TCR signal transduction proteins. Our results indicate that TCR signaling assemblies in plasma membrane subdomains, rather than generally concentrating raft-associated membrane proteins and lipids, form by a selective protein-mediated anchoring of the raft membrane protein LAT in vicinity of TCR.
Collapse
Affiliation(s)
- T Harder
- Basel Institute for Immunology, CH-4005, Basel, Switzerland
| | | |
Collapse
|
2271
|
Affiliation(s)
- M L Dustin
- Center for Immunology and Department of Pathology and Immunology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
2272
|
Meyer AL, Trollmo C, Crawford F, Marrack P, Steere AC, Huber BT, Kappler J, Hafler DA. Direct enumeration of Borrelia-reactive CD4 T cells ex vivo by using MHC class II tetramers. Proc Natl Acad Sci U S A 2000; 97:11433-8. [PMID: 11005833 PMCID: PMC17217 DOI: 10.1073/pnas.190335897] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2000] [Indexed: 11/18/2022] Open
Abstract
We characterized antigen-specific CD4(+) T cells in six patients with treatment-resistant Lyme arthritis, using an HLA-DRB1*0401 major histocompatibility complex (MHC) class II tetramer covalently loaded with OspA(164-175), an immunodominant epitope of Borrelia burgdorferi. Direct analysis of OspA-tetramer binding CD4(+) cells in patients expressing the HLA-DRB1*0401 allele revealed frequencies of between <0.005 and 0.1% in peripheral blood (n = 6), and between <0.005 and 3.1% in synovial fluid (n = 3). OspA-tetramer(+)CD4(+) cells were directly cloned at 1 cell per well and expanded by mitogen and IL-2 on allogeneic feeder cells. As measured by [(3)H]thymidine incorporation, 95% of 168 T cell clones from synovial fluid binding the OspA-tetramer were antigen-reactive. Clones generated from peripheral blood revealed a different pattern of responsiveness when compared with clones generated from synovial fluid, as measured by proliferation, IFN-gamma, and IL-13 secretion. These clones, selected on the basis of their peptide binding, also responded to whole protein, but with a different cytokine profile. Our studies demonstrate that MHC class II tetramers can be used in humans to directly identify, isolate, and characterize antigen-reactive T cells from an inflammatory compartment.
Collapse
Affiliation(s)
- A L Meyer
- Tufts University School of Medicine, Department of Pathology, Boston, MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
2273
|
Teyton L, Apostolopoulos V, Cantu C, Celia H, Mallet-Désigné V, Stefanko R, Stramann T, Wallace M. Function and dysfunction of T cell receptor: structural studies. Immunol Res 2000; 21:325-30. [PMID: 10852133 DOI: 10.1385/ir:21:2-3:325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The engagement of the T cell receptor (TCR) to its ligand, the major histocompatibility complex (MHC)-peptide complex, leads to T cell activation. The molecular mechanisms leading to this activation are still unknown. Dimerization or substantial conformational changes following TCR ligation have not been observed by classical biochemical methods or by X-ray crystallography of the TCR/MHC complex. However, most of these experiments have used reductionist approaches in which only MHC and TCR molecules were taken into account. In fact, the TCR is only one of many molecules forming the TCR complex (TCRC), and the interplay among the components of this larger complex have not been studied in depth. The reconstitution of a complete TCRC using recombinant molecules is our goal and will be the first step to new structural and functional studies.
Collapse
Affiliation(s)
- L Teyton
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
2274
|
Chung CD, Patel VP, Moran M, Lewis LA, Miceli MC. Galectin-1 induces partial TCR zeta-chain phosphorylation and antagonizes processive TCR signal transduction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3722-9. [PMID: 11034377 DOI: 10.4049/jimmunol.165.7.3722] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Galectin-1 is an endogenous lectin with known T cell immunoregulatory activity, though the molecular basis by which galectin-1 influences Ag specific T cell responses has not been elucidated. Here, we characterize the ability of galectin-1 to modulate TCR signals and responses by T cells with well defined hierarchies of threshold requirements for signaling distinct functional responses. We demonstrate that galectin-1 antagonizes TCR responses known to require costimulation and processive protein tyrosine phosphorylation, such as IL-2 production, but is permissive for TCR responses that only require partial TCR signals, such as IFN-gamma production, CD69 up-regulation, and apoptosis. Galectin-1 binding alone or together with Ag stimulation induces partial phosphorylation of TCR-zeta and the generation of inhibitory pp21zeta. Galectin-1 antagonizes Ag induced signals and TCR/costimulator dependent lipid raft clustering at the TCR contact site. We propose that galectin-1 functions as a T cell "counterstimulator" to limit required protein segregation and lipid raft reorganization at the TCR contact site and, thus, processive and sustained TCR signal transduction. These findings support the concept that TCR antagonism can arise from the generation of an inhibitory pp21zeta-based TCR signaling complex. Moreover, they demonstrate that TCR antagonism can result from T cell interactions with a ligand other than peptide/MHC.
Collapse
Affiliation(s)
- C D Chung
- Department of Biological Chemistry, University of California School of Medicine, Los Angeles 90095, USA
| | | | | | | | | |
Collapse
|
2275
|
Abstract
In a previous study we reported that oligomerized T cell epitopes "superactivated" CD4+ T cells. These oligomers, consisting of 12-16 copies of a peptide epitope derived from the hemagglutinin protein of influenza virus (HA306-318), induced a specific T cell response in amounts as little as 5 pg/ml. We now show that the improved antigenicity of these multimerized epitopes can also be utilized to induce "high zone tolerance". Tolerization, similar to activation, occurred at about 3 logs lower concentration of oligomer than of peptide. HA306-318-specific T cell cultures became nonresponsive to stimulation with peptide after incubation with 0.5-5 microg/ml HA306-318 12-mer. The nonresponsiveness was accompanied by a drastic down-regulation of the TCR and by T cell elimination by apoptotic cell death. In contrast, stimulation with peptide even at 50 microg/ml led to temporary induction of anergy. Consequently, induction of tolerance with the oligomer was permanent and no recovery of the cultures was seen in recall experiments 12-14 days after high zone exposure to the 12-mer.
Collapse
Affiliation(s)
- K Falk
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
2276
|
Krawczyk C, Bachmaier K, Sasaki T, Jones RG, Snapper SB, Bouchard D, Kozieradzki I, Ohashi PS, Alt FW, Penninger JM. Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells. Immunity 2000; 13:463-73. [PMID: 11070165 DOI: 10.1016/s1074-7613(00)00046-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stimulation of T cells via the antigen and costimulatory receptors leads to the organization of a supramolecular activation cluster called the immune synapse. We report that loss of the molecular adaptor Cbl-b in T cells frees antigen receptor-triggered receptor clustering, lipid raft aggregation, and sustained tyrosine phosphorylation from the requirement for CD28 costimulation. Introduction of the cbl-b mutation into a vav1-/- background relieved the functional defects of vav1-/- T cells and caused spontaneous autoimmunity. Wiscott Aldrich Syndrome protein (WASP) was found to be essential for deregulated proliferation and membrane receptor reorganization of cbl-b mutant T cells. Antigen receptor-triggered Ca2+ mobilization, cytokine production, and receptor clustering can be genetically uncoupled in cbl-b mutant T cells. Thus, Cbl-b functions as a negative regulator of receptor clustering and raft aggregation in T cells.
Collapse
Affiliation(s)
- C Krawczyk
- Amgen Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2277
|
Abstract
Signal transduction is initiated by complex protein-protein interactions between ligands, receptors and kinases, to name only a few. It is now becoming clear that lipid micro-environments on the cell surface -- known as lipid rafts -- also take part in this process. Lipid rafts containing a given set of proteins can change their size and composition in response to intra- or extracellular stimuli. This favours specific protein-protein interactions, resulting in the activation of signalling cascades.
Collapse
Affiliation(s)
- K Simons
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 110, D-01307 Dresden, Germany.
| | | |
Collapse
|
2278
|
|
2279
|
Abstract
The activity of integrins on leukocytes is tightly controlled, and their adhesion capacity shifts rapidly when cells emigrate from the blood to the tissues. The leukocyte-specific beta2 integrin LFA-1 (alphaLbeta2) is the most important integrin expressed by leukocytes that regulate lymphocyte migration and the initiation of an immune response through binding to ICAM-1,-2 or-3. The binding activity of LFA-1 is rapidly altered by intracellular stimuli that activate LFA-1. Although alterations in the affinity of LFA-1, which leads to enhanced ICAM-1 binding, have been proposed, evidence is emerging that dynamic reorganisation of LFA-1 into microclusters is the major mechanism that regulates its binding capacity.
Collapse
Affiliation(s)
- Y van Kooyk
- Department of Tumor Immunology, University Medical Center Nijmegen, St Radboud, P. Van Leydenlaan 25, 6525 EX, the, Nijmegen, Netherlands.
| | | |
Collapse
|
2280
|
Tissot AC, Ciatto C, Mittl PR, Grütter MG, Plückthun A. Viral escape at the molecular level explained by quantitative T-cell receptor/peptide/MHC interactions and the crystal structure of a peptide/MHC complex. J Mol Biol 2000; 302:873-85. [PMID: 10993729 DOI: 10.1006/jmbi.2000.4501] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Viral escape, first characterized for the lymphocytic choriomeningitis virus (LCMV) in a mouse transgenic for the P14 T cell-receptor (TCR), can be due to mutations in T-cell epitopes. We have measured the affinity between the H-2D(b) containing the wild-type and two of its "viral escape" epitopes, as well as other altered peptide ligands (APL), by using BIACORE analysis, and solved the crystal structure of H-2D(b) in complex with the wild-type peptide at 2.75 A resolution. We show that viral escape is due to a 50 to 100-fold reduction in the level of affinity between the P14 TCR and the binary complexes of the MHC molecule with the different peptides. Structurally, one of the mutations alters a TCR contact residue, while the effect of the other on the binding of the TCR must be indirect through structural rearrangements. The former is a null ligand, while the latter still leads to some central tolerance. This work defines the structural and energetic threshold for viral escape.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/isolation & purification
- Crystallography, X-Ray
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/isolation & purification
- Glycoproteins/chemistry
- Glycoproteins/genetics
- Glycoproteins/immunology
- Glycoproteins/isolation & purification
- H-2 Antigens/chemistry
- H-2 Antigens/immunology
- H-2 Antigens/isolation & purification
- Histocompatibility Antigen H-2D
- Immune Tolerance/immunology
- Ligands
- Lymphocytic choriomeningitis virus/genetics
- Lymphocytic choriomeningitis virus/immunology
- Lymphocytic choriomeningitis virus/physiology
- Mice
- Mice, Transgenic
- Models, Molecular
- Molecular Sequence Data
- Mutation/genetics
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/isolation & purification
- Protein Structure, Secondary
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/isolation & purification
- Solvents
- Surface Plasmon Resonance
- Thermodynamics
- Viral Proteins
Collapse
Affiliation(s)
- A C Tissot
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland
| | | | | | | | | |
Collapse
|
2281
|
Huang J, Tilly D, Altman A, Sugie K, Grey HM. T-cell receptor antagonists induce Vav phosphorylation by selective activation of Fyn kinase. Proc Natl Acad Sci U S A 2000; 97:10923-9. [PMID: 11005864 PMCID: PMC27125 DOI: 10.1073/pnas.97.20.10923] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2000] [Indexed: 11/18/2022] Open
Abstract
T cell receptor (TCR) antagonists inhibit antigen-induced T cell activation and by themselves fail to induce phenotypic changes associated with T cell activation. However, we have recently shown that TCR antagonists are inducers of antigen-presenting cell (APC)-T cell conjugates. The signaling pathway associated with this cytoskeleton-dependent event appears to involve tyrosine phosphorylation and activation of Vav. In this study, we investigated the role played by the protein tyrosine kinases Fyn, Lck, and ZAP-70 in antagonist-induced signaling pathway. Antagonist stimulation increased tyrosine phosphorylation and kinase activity of Fyn severalfold, whereas little or no increase in Lck and ZAP-70 activity was observed. Second, TCR stimulation of Lck(-), Fyn(hi) Jurkat cells induced strong tyrosine phosphorylation of Vav. In contrast, minimal increase in tyrosine phosphorylation of Vav was observed in Lck(hi), Fyn(lo) Jurkat cells. Finally, study of T cells from a Fyn-deficient TCR transgenic mouse also showed that Fyn was required for tyrosine phosphorylation and activation of Vav induced by both antagonist and agonist peptides. The deficiency in Vav phosphorylation in Fyn-deficient T cells was associated with a defect in the formation of APC-T cell conjugates when T cells were stimulated with either agonist or antagonist peptide. We conclude from these results that Vav is a selective substrate for Fyn, especially under conditions of low-affinity TCR-mediated signaling, and that this signaling pathway involving Fyn, Vav, and Rac-1 is required for the cytoskeletal reorganization that leads to T cell-APC conjugates and the formation of the immunologic synapse.
Collapse
Affiliation(s)
- J Huang
- La Jolla Institute for Allergy and Immunology, Division of Immunochemistry, and Division of Cell Biology, 10355 Science Center Drive, San Diego, CA 92121, USA.
| | | | | | | | | |
Collapse
|
2282
|
Hanada T, Lin L, Tibaldi EV, Reinherz EL, Chishti AH. GAKIN, a novel kinesin-like protein associates with the human homologue of the Drosophila discs large tumor suppressor in T lymphocytes. J Biol Chem 2000; 275:28774-84. [PMID: 10859302 DOI: 10.1074/jbc.m000715200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Reorganization of the cortical cytoskeleton is a hallmark of T lymphocyte activation. Upon binding to antigen presenting cells, the T cells rapidly undergo cytoskeletal re-organization thus forming a cap at the cell-cell contact site leading to receptor clustering, protein segregation, and cellular polarization. Previously, we reported cloning of the human lymphocyte homologue of the Drosophila Discs Large tumor suppressor protein (hDlg). Here we show that a novel protein termed GAKIN binds to the guanylate kinase-like domain of hDlg. Affinity protein purification, peptide sequencing, and cloning of GAKIN cDNA from Jurkat J77 lymphocytes identified GAKIN as a novel member of the kinesin superfamily of motor proteins. GAKIN mRNA is ubiquitously expressed, and the predicted amino acid sequence shares significant sequence similarity with the Drosophila kinesin-73 motor protein. GAKIN sequence contains a motor domain at the NH(2) terminus, a central stalk domain, and a putative microtubule-interacting sequence called the CAP-Gly domain at the COOH terminus. Among the MAGUK superfamily of proteins examined, GAKIN binds to the guanylate kinase-like domain of PSD-95 but not of p55. The hDlg and GAKIN are localized mainly in the cytoplasm of resting T lymphocytes, however, upon CD2 receptor cross-linking the hDlg can translocate to the lymphocyte cap. We propose that the GAKIN-hDlg interaction lays the foundation for a general paradigm of coupling MAGUKs to the microtubule-based cytoskeleton, and that this interaction may be functionally important for the intracellular trafficking of MAGUKs and associated protein complexes in vivo.
Collapse
Affiliation(s)
- T Hanada
- Section of Hematology-Oncology Research, Departments of Medicine, Anatomy, and Cellular Biology, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135, USA
| | | | | | | | | |
Collapse
|
2283
|
Baldari CT, Telford JL, Acuto O. EMBO WORKSHOP REPORT: lymphocyte antigen receptor and coreceptor signaling Siena, Italy, November 6-10, 1999. EMBO J 2000; 19:4857-65. [PMID: 10990449 PMCID: PMC314226 DOI: 10.1093/emboj/19.18.4857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- C T Baldari
- Department of Evolutionary Biology, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | | | | |
Collapse
|
2284
|
Gunzer M, Schäfer A, Borgmann S, Grabbe S, Zänker KS, Bröcker EB, Kämpgen E, Friedl P. Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity 2000; 13:323-32. [PMID: 11021530 DOI: 10.1016/s1074-7613(00)00032-7] [Citation(s) in RCA: 346] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cognate interactions of naive T cells with antigen-presenting dendritic cells require physical cell-cell contacts leading to signal induction and T cell activation. Using a three-dimensional collagen matrix videomicroscopy model for ovalbumin peptide-specific activation of murine and oxidative mitogenesis of human T cells, we show that T cells maintain vigorous migration upon cognate interactions to DC (dendritic cell), continuously crawl across the DC surface, and rapidly detach (median within 6-12 min). These dynamic and short-lived encounters favor sequential contacts with the same or other DC and trigger calcium influx, upregulation of activation markers, T blast formation, and proliferation. We conclude that a tissue environment supports the accumulation of sequential signals, implicating a numeric or "digital" control mechanism for an ongoing primary immune response.
Collapse
Affiliation(s)
- M Gunzer
- Department of Dermatology, University of Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
2285
|
Cochran JR, Stern LJ. A diverse set of oligomeric class II MHC-peptide complexes for probing T-cell receptor interactions. CHEMISTRY & BIOLOGY 2000; 7:683-96. [PMID: 10980449 DOI: 10.1016/s1074-5521(00)00019-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND T-cells are activated by engagement of their clonotypic cell surface receptors with peptide complexes of major histocompatibility complex (MHC) proteins, in a poorly understood process that involves receptor clustering on the membrane surface. Few tools are available to study the molecular mechanisms responsible for initiation of activation processes in T-cells. RESULTS A topologically diverse set of oligomers of the human MHC protein HLA-DR1, varying in size from dimers to tetramers, was produced by varying the location of an introduced cysteine residue and the number and spacing of sulfhydryl-reactive groups carried on novel and commercially available cross-linking reagents. Fluorescent probes incorporated into the cross-linking reagents facilitated measurement of oligomer binding to the T-cell surface. Oligomeric MHC-peptide complexes, including a variety of MHC dimers, trimers and tetramers, bound to T-cells and initiated T-cell activation processes in an antigen-specific manner. CONCLUSION T-cell receptor dimerization on the cell surface is sufficient to initiate intracellular signaling processes, as a variety of MHC-peptide dimers differing in intramolecular spacing and orientation were each able to trigger early T-cell activation events. The relative binding affinities within a homologous series of MHC-peptide oligomers suggest that T-cell receptors may rearrange in the plane of the membrane concurrent with oligomer binding.
Collapse
Affiliation(s)
- J R Cochran
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
2286
|
Haanen JB, van Oijen MG, Tirion F, Oomen LC, Kruisbeek AM, Vyth-Dreese FA, Schumacher TN. In situ detection of virus- and tumor-specific T-cell immunity. Nat Med 2000; 6:1056-60. [PMID: 10973329 DOI: 10.1038/79573] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- J B Haanen
- Department of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
2287
|
McMurray DN, Jolly CA, Chapkin RS. Effects of dietary n-3 fatty acids on T cell activation and T cell receptor-mediated signaling in a murine model. J Infect Dis 2000; 182 Suppl 1:S103-7. [PMID: 10944491 DOI: 10.1086/315909] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A short-term feeding paradigm in mice, with diets enriched with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), was used to study the modulation of T cell activation via the T cell receptor (TcR) and the downstream pathways of intracellular signaling. Diets enriched in EPA and DHA suppressed antigen-specific delayed hypersensitivity reactions and mitogen-induced proliferation of T cells. Cocultures of accessory cells and T cells from mice given different diets revealed that purified fatty acid ethyl esters acted directly on the T cell, rather than through the accessory cell. The loss of proliferative capacity was accompanied by reductions in interleukin (IL)-2 secretion and IL-2 receptor alpha chain mRNA transcription, suggesting that dietary EPA and DHA act, in part, by interrupting the autocrine IL-2 activation pathway. Dietary EPA and DHA blunted the production of intracellular second messengers, including diacylglycerol and ceramide, following mitogen stimulation in vitro. Dietary effects appear to vary with the agonist employed (i.e., anti-CD3 [TcR], anti-CD28, exogenous IL-2, or phorbol myristate acetate and ionomycin).
Collapse
Affiliation(s)
- D N McMurray
- Department of Medical Microbiology and Immunology, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA.
| | | | | |
Collapse
|
2288
|
Wülfing C, Bauch A, Crabtree GR, Davis MM. The vav exchange factor is an essential regulator in actin-dependent receptor translocation to the lymphocyte-antigen-presenting cell interface. Proc Natl Acad Sci U S A 2000; 97:10150-5. [PMID: 10963677 PMCID: PMC27768 DOI: 10.1073/pnas.97.18.10150] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2000] [Indexed: 11/18/2022] Open
Abstract
During the interaction of a T cell with an antigen-presenting cell (APC), several receptor ligand pairs, including the T cell receptor (TCR)/major histocompatibility complex (MHC), accumulate at the T cell/APC interface in defined geometrical patterns. This accumulation depends on a movement of the T cell cortical actin cytoskeleton toward the interface. Here we study the involvement of the guanine nucleotide exchange factor vav in this process. We crossed 129 vav(-/-) mice with B10/BR 5C.C7 TCR transgenic mice and used peptide-loaded APCs to stimulate T cells from the offspring. We found that the accumulation of TCR/MHC at the T cell/APC interface and the T cell actin cytoskeleton rearrangement were clearly defective in these vav(+/-) mice. A comparable defect in superantigen-mediated T cell activation of T cells from non-TCR transgenic 129 mice was also observed, although in this case it was more apparent in vav(-/-) mice. These data indicate that vav is an essential regulator of cytoskeletal rearrangements during T cell activation.
Collapse
Affiliation(s)
- C Wülfing
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
2289
|
Johnson KG, Bromley SK, Dustin ML, Thomas ML. A supramolecular basis for CD45 tyrosine phosphatase regulation in sustained T cell activation. Proc Natl Acad Sci U S A 2000; 97:10138-43. [PMID: 10963676 PMCID: PMC27752 DOI: 10.1073/pnas.97.18.10138] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2000] [Accepted: 06/28/2000] [Indexed: 11/18/2022] Open
Abstract
Transmembrane protein tyrosine phosphatases, such as CD45, can act as both positive and negative regulators of cellular signaling. CD45 positively modulates T cell receptor (TCR) signaling by constitutively priming p56lck through the dephosphorylation of the C-terminal negative regulatory phosphotyrosine site. However, CD45 can also exert negative effects on cellular processes, including events triggered by integrin-mediated adhesion. To better understand these opposing actions of tyrosine phosphatases, the subcellular compartmentalization of CD45 was imaged by using laser scanning confocal microscopy during functional TCR signaling of live T lymphocytes. On antigen engagement, CD45 was first excluded from the central region of the interface between the T cell and the antigen-presenting surface where CD45 would inhibit integrin activation. Subsequently, CD45 was recruited back to the center of the contact to an area adjacent to the site of sustained TCR engagement. Thus, CD45 is well positioned within a supramolecular assembly in the vicinity of the engaged TCR, where CD45 would be able to maintain src-kinase activity for the duration of TCR engagement.
Collapse
Affiliation(s)
- K G Johnson
- Howard Hughes Medical Institute and Department of Pathology and Immunology, Washington University School of Medicine, St Louis MO 63110, USA
| | | | | | | |
Collapse
|
2290
|
Krummel M, Wülfing C, Sumen C, Davis MM. Thirty-six views of T-cell recognition. Philos Trans R Soc Lond B Biol Sci 2000; 355:1071-6. [PMID: 11186308 PMCID: PMC1692810 DOI: 10.1098/rstb.2000.0644] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While much is known about the signalling pathways within lymphocytes that are triggered during activation, much less is known about how the various cell surface molecules on T cells initiate these events. To address this, we have focused on the primary interaction that drives T-cell activation, namely the binding of a particular T-cell receptor (TCR) to peptide-MHC ligands, and find a close correlation between biological activity and off-rate; that is, the most stimulatory TCR ligands have the slowest dissociation rates. In general, TCRs from multiple histocompatibility complex (MHC) class-II-restricted T cells have half-lives of 1-11s at 25 degrees C, a much narrower range than found with antibodies and suggesting a strong selection for an optimum dissociation rate. TCR ligands with even faster dissociation rates tend to be antagonists. To observe the effects of these different ligands in their physiological setting, we made gene fusions of various molecules with green fluorescent protein (GFP), transfected them into the relevant lymphocytes, and observed their movements during T-cell recognition using multicolour video microscopy. We find that clustering of CD3zeta-GFP and CD4-GFP on the Tcell occurs concomitantly or slightly before the first rise in calcium by the T cell, and that various GFP-labelled molecules on the B-cell side cluster shortly thereafter (ICAM-1, class II MHC, CD48), apparently driven byT-cell molecules. Most of this movement towards the interface is mediated by signals through the co-stimulatory receptors, CD28 and LFA-1, and involves myosin motors and the cortical actin cytoskeleton. Thus, we have proposed that the principal mechanism by which co-stimulation enhances T-cell responsiveness is by increasing the local density of T-cell activation molecules, their ligands and their attendant signalling apparatus. In collaboration with Michael Dustin and colleagues, we have also found that the formation and stability of the TCR-peptide-MHC cluster at the centre of the interaction cap between T and B cells is highly dependent on the dissociation rate of the TCR and its ligand. Thus, we are able to link this kinetic parameter to the formation of a cell surface structure that is linked to and probably causal with respect to T-cell activation.
Collapse
Affiliation(s)
- M Krummel
- The Department of Microbiology and Immunology, and The Howard Hughes Medical Institute, Stanford University School of Medicine, CA 94305, USA
| | | | | | | |
Collapse
|
2291
|
Krummel MF, Sjaastad MD, Wülfing C, Davis MM. Differential clustering of CD4 and CD3zeta during T cell recognition. Science 2000; 289:1349-52. [PMID: 10958781 DOI: 10.1126/science.289.5483.1349] [Citation(s) in RCA: 320] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Whereas T helper cells recognize peptide-major histocompatibility complex (MHC) class II complexes through their T cell receptors (TCRs), CD4 binds to an antigen-independent region of the MHC. Using green fluorescent protein-tagged chimeras and three-dimensional video microscopy, we show that CD4 and TCR-associated CD3zeta cluster in the interface coincident with increases in intracellular calcium. Signaling-, costimulation-, and cytoskeleton-dependent processes then stabilize CD3zeta in a single cluster at the center of the interface, while CD4 moves to the periphery. Thus, the CD4 coreceptor may serve primarily to "boost" recognition of ligand by the TCR and may not be required once activation has been initiated.
Collapse
Affiliation(s)
- M F Krummel
- Department of Microbiology and Immunology, Stanford University School of Medicine, and the Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
2292
|
Abstract
Integrins and Rho family GTPases function coordinately to mediate adhesion-dependent events in cells. Recently, it has also become apparent that integrins regulate Rho GTPases and vice versa. Integrins and GTPases might therefore be organized into complex signaling cascades that regulate cell behavior.
Collapse
Affiliation(s)
- M A Schwartz
- Dept of Vascular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
2293
|
Larsson M, Messmer D, Somersan S, Fonteneau JF, Donahoe SM, Lee M, Dunbar PR, Cerundolo V, Julkunen I, Nixon DF, Bhardwaj N. Requirement of mature dendritic cells for efficient activation of influenza A-specific memory CD8+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1182-90. [PMID: 10903715 DOI: 10.4049/jimmunol.165.3.1182] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is critical to identify the developmental stage of dendritic cells (DCs) that is most efficient at inducing CD8+ T cell responses. Immature DCs can be generated from monocytes with GM-CSF and IL-4, while maturation is accomplished by the addition of stimuli such as monocyte-conditioned medium, CD40 ligand, and LPS. We evaluated the ability of human monocytes and immature and mature DCs to induce CD8+ effector responses to influenza virus Ags from resting memory cells. We studied replicating virus, nonreplicating virus, and the HLA-A*0201-restricted influenza matrix protein peptide. Sensitive and quantitative assays were used to measure influenza A-specific immune responses, including MHC class I tetramer binding assays, enzyme-linked immunospot assays for IFN-gamma production, and generation of cytotoxic T cells. Mature DCs were demonstrated to be superior to immature DC in eliciting IFN-gamma production from CD8+ effector cells. Furthermore, only mature DCs, not immature DCs, could expand and differentiate CTL precursors into cytotoxic effector cells over 7 days. An exception to this was immature DCs infected with live influenza virus, because of the virus's known maturation effect. Finally, mature DCs pulsed with matrix peptide induced CTLs from highly purified CD8+ T cells without requiring CD4+ T cell help. These differences between DC stages were independent of Ag concentrations or the number of immature DCs. In contrast to DCs, monocytes were markedly inferior or completely ineffective stimulators of T cell immunity. Our data with several qualitatively different assays of the memory CD8+ T cell response suggest that mature cells should be considered as immunotherapeutic adjuvants for Ag delivery.
Collapse
Affiliation(s)
- M Larsson
- Laboratory of Cellular Physiology and Immunology and Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2294
|
Anderson HA, Hiltbold EM, Roche PA. Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat Immunol 2000; 1:156-62. [PMID: 11248809 DOI: 10.1038/77842] [Citation(s) in RCA: 275] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The plasma membranes of eukaryotic cells are not uniform and possess distinct cholesterol- and sphingolipid-rich raft microdomains that are enriched in proteins known to be essential for cellular function. Lipid raft microdomains are important for T cell receptor (TCR)-mediated activation of T cells. However, the importance of lipid rafts on antigen presenting cells (APCs) and their role in major histocompatibility (MHC) class II-restricted antigen presentation has not been examined. MHC class II molecules were found to be constitutively present in plasma membrane lipid rafts in B cells. Disruption of these microdomains dramatically inhibited antigen presentation at limiting concentrations of antigen. The inhibitory effect of raft disruption on antigen presentation could be overcome by loading the APCs with exceptionally high doses of antigen, showing that raft association concentrates MHC class II molecules into microdomains that allow efficient antigen presentation at low ligand densities.
Collapse
Affiliation(s)
- H A Anderson
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
2295
|
Wright GJ, Puklavec MJ, Willis AC, Hoek RM, Sedgwick JD, Brown MH, Barclay AN. Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 2000; 13:233-42. [PMID: 10981966 DOI: 10.1016/s1074-7613(00)00023-6] [Citation(s) in RCA: 334] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The OX2 membrane glycoprotein (CD200) is expressed on a broad range of tissues including lymphoid cells, neurons, and endothelium. We report the characterization of an OX2 receptor (OX2R) that is a novel protein restricted to cells of the myeloid lineage. OX2 and its receptor are both cell surface glycoproteins containing two immunoglobulin-like domains and interact with a dissociation constant of 2.5 microM and koff 0.8 s(-1), typical of many leukocyte protein membrane interactions. Pervanandate treatment of macrophages showed that OX2R could be phosphorylated on tyrosine residues. Blockade of the OX2-OX2R interaction with an OX2R mAb exacerbated the disease model experimental allergic encephalomyelitis. These data, together with data from an OX2-deficient mouse (R. M. Hoek et al., submitted), suggest that myeloid function can be controlled in a tissue-specific manner by the OX2-OX2R interaction.
Collapse
Affiliation(s)
- G J Wright
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
2296
|
Qadri A, Radu CG, Thatte J, Cianga P, Ober BT, Ober RJ, Ward ES. A role for the region encompassing the c" strand of a TCR V alpha domain in T cell activation events. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:820-9. [PMID: 10878356 DOI: 10.4049/jimmunol.165.2.820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The distinct strand topology of TCR V alpha domains results in a flatter surface in the region encompassing the c" strand than the corresponding region in Ig V domains. In the current study a possible role for this region in T cell activation has been investigated by inserting a potential glycosylation site at V alpha residue 82. This residue is in proximity to the c" strand and distal to the putative interaction site for cognate peptide:MHC ligand. An additional N-linked carbohydrate at this position would create a protrusion on the V alpha domain surface, and this may interfere with TCR aggregation and/or recruitment of signaling molecules. The modified TCR has been expressed in transfected T cells, and the phenotype following stimulation has been compared with that of cells expressing the wild-type TCR. The mutation has significant effects on activation-induced cell death and TCR internalization, but, unexpectedly, does not affect IL-2 secretion. Furthermore, analyses with tetrameric, peptide:MHC class II complexes suggest that the mutation decreases the ability of the TCR to aggregate into a configuration compatible with avid binding by these multivalent ligands.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/analysis
- Apoptosis/genetics
- Apoptosis/immunology
- Cell Line
- Down-Regulation/genetics
- Down-Regulation/immunology
- Immunoblotting
- Interleukin-2/metabolism
- Lymphocyte Activation/genetics
- Mice
- Myelin Basic Protein/genetics
- Myelin Basic Protein/immunology
- Myelin Basic Protein/pharmacology
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/pharmacology
- Phosphotyrosine/immunology
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Recombinant Proteins/immunology
- Recombinant Proteins/pharmacology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transfection/immunology
Collapse
Affiliation(s)
- A Qadri
- Center for Immunology and Cancer Immunobiology Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | | | | | | | | | | | | |
Collapse
|
2297
|
Sin JI, Kim J, Dang K, Lee D, Pachuk C, Satishchandran C, Weiner DB, Patchuk C. LFA-3 plasmid DNA enhances Ag-specific humoral- and cellular-mediated protective immunity against herpes simplex virus-2 in vivo: involvement of CD4+ T cells in protection. Cell Immunol 2000; 203:19-28. [PMID: 10915558 DOI: 10.1006/cimm.2000.1667] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Adhesion molecules are important for cell trafficking and delivery of secondary signals for stimulation of T cells and antigen-presenting cells (APCs) in a variety of immune and inflammatory responses. Adhesion molecules lymphocyte function-associated antigen (LFA)-1 and CD2 on T cells recognize intercellular adhesion molecule (ICAM)-1 and LFA-3 on APCs, respectively. Recent studies have suggested that these molecules might play a regulatory role in antigen-specific immune responses. To investigate specific roles of adhesion molecules in immune induction we coimmunized LFA-3 and ICAM-1 cDNAs with a gD plasmid vaccine and then analyzed immune modulatory effects and protection against lethal herpes simplex virus (HSV)-2 challenge. We observed that gD-specific IgG production was enhanced by LFA-3 coinjection. However, little change in IgG production was observed by ICAM-1 coinjection. Furthermore, both Th1 and Th2 IgG isotype production was driven by LFA-3. LFA-3 also enhanced Th cell proliferative responses and production of interleukin (IL)-2, interferon-gamma, IL-4, and IL-10 from splenocytes. In contrast, ICAM-1 showed slightly increasing effects on T-cell proliferation responses and cytokine production. beta-Chemokine production (RANTES, MIP-1alpha, and MCP-1) was also influenced by LFA-3 or ICAM-1. When animals were challenged with a lethal dose of HSV-2, LFA-3-coimmunized animals exhibited an enhanced survival rate, as compared to animals given ICAM-1 or gD DNA vaccine alone. This enhanced protection appears to be mediated by CD4+ T cells, as determined by in vitro and in vivo T-cell subset deletion. These studies demonstrate that adhesion molecule LFA-3 can play an important role in generating protective antigen-specific immunity in the HSV model system through increased induction of CD4+ Th1 T-cell subset.
Collapse
Affiliation(s)
- J I Sin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 505 Stellar-Chance Lab, 422 Curie Drive, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
2298
|
Abstract
The early studies and hypotheses of Geoffrey Burnstock catalyzed intensive characterization of roles for nucleotides and P2 nucleotide receptors in neurotransmission and neuromodulation. These latter analyses have focused on the mechanisms of nucleotide release and action in the microenvironments of nerve endings and synapses. However, studies of various white blood cells, such as monocytes, neutrophils, and lymphocytes, suggest that locally released nucleotides also modulate intercellular signaling at so-called 'immunological synapses'. This communication describes recent findings and speculations regarding nucleotide release and signaling in several key phases of the immune and inflammatory responses.
Collapse
Affiliation(s)
- G R Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
2299
|
Bromley SK, Peterson DA, Gunn MD, Dustin ML. Cutting edge: hierarchy of chemokine receptor and TCR signals regulating T cell migration and proliferation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:15-9. [PMID: 10861029 DOI: 10.4049/jimmunol.165.1.15] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chemokines play an important role in establishing the distribution of lymphocyte subpopulations in primary and secondary lymphoid tissues and in the recruitment of leukocytes to sites of inflammation. However, the potential of chemokines to down-regulate immune responses has not been demonstrated. We now show that certain chemokine gradients have the potential to suppress T cell activation by preventing formation of the immunological synapse, the specialized cell-cell junction that forms before a T cell can be fully activated. Our data reveals an immunosuppressive potential of chemokines engaging the CXCR3 and CCR7 receptors, but not the CXCR4, CCR2, CCR4, or CCR5 receptors. These results suggest a novel mechanism for T cell ignorance of agonist MHC-peptide complexes based on dominant chemokine gradients.
Collapse
Affiliation(s)
- S K Bromley
- Center for Immunology and the Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
2300
|
Hovius R, Vallotton P, Wohland T, Vogel H. Fluorescence techniques: shedding light on ligand-receptor interactions. Trends Pharmacol Sci 2000; 21:266-73. [PMID: 10871895 DOI: 10.1016/s0165-6147(00)01503-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ability of organisms, or individual cells, to react to external chemical signals, which are detected and transduced by cell-surface receptors, is crucial for their survival. These receptors are the targets of the majority of clinically used medicines. Combinatorial genetics can provide almost unlimited numbers of mutant receptor proteins and combinatorial chemistry can produce large libraries of potential therapeutic compounds that act on these membrane receptors. What is missing for the fundamental understanding of receptor function and for the discovery of new medicines are efficient procedures to screen both ligand-receptor interactions and the subsequent functional consequences. Ultrasensitive fluorescence spectroscopic approaches, in combination with efficient labelling protocols, offer enormous possibilities for highly parallel functional bioanalytics at the micro- and nanometer level.
Collapse
Affiliation(s)
- R Hovius
- Laboratory of Physical Chemistry of Polymers and Membranes, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|