201
|
Falini B, Nicoletti I, Martelli MF, Mecucci C. Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood 2006; 109:874-85. [PMID: 17008539 DOI: 10.1182/blood-2006-07-012252] [Citation(s) in RCA: 404] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The nucleophosmin (NPM1) gene encodes for a multifunctional nucleocytoplasmic shuttling protein that is localized mainly in the nucleolus. NPM1 mutations occur in 50% to 60% of adult acute myeloid leukemia with normal karyotype (AML-NK) and generate NPM mutants that localize aberrantly in the leukemic-cell cytoplasm, hence the term NPM-cytoplasmic positive (NPMc+ AML). Cytoplasmic NPM accumulation is caused by the concerted action of 2 alterations at mutant C-terminus, that is, changes of tryptophan(s) 288 and 290 (or only 290) and creation of an additional nuclear export signal (NES) motif. NPMc+ AML shows increased frequency in adults and females, wide morphologic spectrum, multilineage involvement, high frequency of FLT3-ITD, CD34 negativity, and a distinct gene-expression profile. Analysis of mutated NPM has important clinical and pathologic applications. Immunohistochemical detection of cytoplasmic NPM predicts NPM1 mutations and helps rationalize cytogenetic/molecular studies in AML. NPM1 mutations in absence of FLT3-ITD identify a prognostically favorable subgroup in the heterogeneous AML-NK category. Due to their frequency and stability, NPM1 mutations may become a new tool for monitoring minimal residual disease in AML-NK. Future studies should focus on clarifying how NPM mutants promote leukemia, integrating NPMc+ AML in the upcoming World Health Organization leukemia classification, and eventually developing specific antileukemic drugs.
Collapse
|
202
|
Davis JR, Kakar M, Lim CS. Controlling protein compartmentalization to overcome disease. Pharm Res 2006; 24:17-27. [PMID: 16969692 DOI: 10.1007/s11095-006-9133-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 07/20/2006] [Indexed: 01/08/2023]
Abstract
Over the past decade, considerable progress has been made to improve our understanding of the intracellular transport of proteins. Mechanisms of nuclear import and export involving classical receptors have been studied. Signal sequences required for directing a protein molecule to a specific cellular compartment have been defined. Knowledge of subcellular trafficking of proteins has also increased our understanding of diseases caused due to mislocalization of proteins. A specific protein on deviating from its native cellular compartment may result in disease due to loss of its normal functioning and aberrant activity in the "wrong" compartment. Mislocalization of proteins results in diseases that range from metabolic disorders to cancer. In this review we discuss some of the diseases caused due to mislocalization. We further focus on application of nucleocytoplasmic transport to drug delivery. Various rationales to treat diseases by exploiting intracellular transport machinery have been proposed. Although the pathways for intracellular movement of proteins have been defined, these have not been adequately utilized for management of diseases involving mislocalized proteins. This review stresses the need for designing drug delivery systems utilizing these mechanisms as this area is least exploited but offers great potential.
Collapse
Affiliation(s)
- James R Davis
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | |
Collapse
|
203
|
Tsuchiya A, Tashiro E, Yoshida M, Imoto M. Involvement of protein phosphatase 2A nuclear accumulation and subsequent inactivation of activator protein-1 in leptomycin B-inhibited cyclin D1 expression. Oncogene 2006; 26:1522-32. [PMID: 16964287 DOI: 10.1038/sj.onc.1209962] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Leptomycin B (LMB) is a Streptomyces metabolite that causes the specific inhibition of the nuclear export of proteins containing a nuclear export signal (NES). LMB was reported to inhibit cell cycle progression in fission yeast and mammalian cells, however, the mechanism underlying LMB-induced cell cycle arrest is still obscure. In this study, we found that in serum-starved NIH3T3 cells, LMB inhibited serum-induced cyclin D1 expression at the level of transcription. However, this inhibition was reversed by inhibitors of protein phosphatase 2A (PP2A). Furthermore, we found that PP2A accumulated in the nucleus upon treatment with LMB. The finding prompted us to identify the functional NES in PP2A catalytic subunit alpha. These results indicated that LMB inhibited the chromosomal region maintenance 1 (CRM1)-dependent nuclear export of PP2A, resulting in sustained dephosphorylation in the nucleus. Although phosphorylation of c-Jun at Ser-63 is required for activator protein 1 (AP-1)-dependent expression of cyclin D1, it decreased in LMB-treated cells compared to untreated cells. Moreover, the inhibitors of PP2A restored the levels of c-Jun phosphorylated at Ser-63. We propose that inhibition of cyclin D1 expression by LMB is mediated by the LMB-induced nuclear accumulation of PP2A, leading to sustained dephosphorylation of c-Jun at Ser-63, which leads to inactivation of the transcription of the AP-1-responsive cyclin D1 gene.
Collapse
Affiliation(s)
- A Tsuchiya
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | | | | | | |
Collapse
|
204
|
Heilman DW, Teodoro JG, Green MR. Apoptin nucleocytoplasmic shuttling is required for cell type-specific localization, apoptosis, and recruitment of the anaphase-promoting complex/cyclosome to PML bodies. J Virol 2006; 80:7535-45. [PMID: 16840333 PMCID: PMC1563728 DOI: 10.1128/jvi.02741-05] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chicken anemia virus protein Apoptin selectively induces apoptosis in transformed cells while leaving normal cells intact. This selectivity is thought to be largely due to cell type-specific localization: Apoptin is cytoplasmic in primary cells and nuclear in transformed cells. The basis of Apoptin cell type-specific localization and activity remains to be determined. Here we show that Apoptin is a nucleocytoplasmic shuttling protein whose localization is mediated by an N-terminal nuclear export signal (NES) and a C-terminal nuclear localization signal (NLS). Both signals are required for cell type-specific localization, since Apoptin fragments containing either the NES or the NLS fail to differentially localize in transformed and primary cells. Significantly, cell type-specific localization can be conferred in trans by coexpression of the two separate fragments, which interact through an Apoptin multimerization domain. We have previously shown that Apoptin interacts with the APC1 subunit of the anaphase-promoting complex/cyclosome (APC/C), resulting in G(2)/M cell cycle arrest and apoptosis in transformed cells. We found that the nucleocytoplasmic shuttling activity is critical for efficient APC1 association and induction of apoptosis in transformed cells. Interestingly, both Apoptin multimerization and APC1 interaction are mediated by domains that overlap with the NES and NLS sequences, respectively. Apoptin expression in transformed cells induces the formation of PML nuclear bodies and recruits APC/C to these subnuclear structures. Our results reveal a mechanism for the selective killing of transformed cells by Apoptin.
Collapse
Affiliation(s)
- Destin W Heilman
- Howard Hughes Medical Institute, and Program in Gene Function and Expression, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | | | |
Collapse
|
205
|
Condemine W, Takahashi Y, Zhu J, Puvion-Dutilleul F, Guegan S, Janin A, de Thé H. Characterization of endogenous human promyelocytic leukemia isoforms. Cancer Res 2006; 66:6192-8. [PMID: 16778193 DOI: 10.1158/0008-5472.can-05-3792] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Promyelocytic leukemia (PML) has been implicated in a variety of functions, including control of TP53 function and modulation of cellular senescence. Sumolated PML is the organizer of mature PML bodies, recruiting a variety of proteins onto these nuclear domains. The PML gene is predicted to encode a variety of protein isoforms. Overexpression of only one of them, PML-IV, promotes senescence in human diploid fibroblasts, whereas PML-III was proposed to specifically interact with the centrosome. We show that all PML isoform proteins are expressed in cell lines or primary cells. Unexpectedly, we found that PML-III, PML-IV, and PML-V are quantitatively minor isoforms compared with PML-I/II and could not confirm the centrosomal targeting of PML-III. Stable expression of each isoform, in a pml-null background, yields distinct subcellular localization patterns, suggesting that, like in other RBCC/TRIM proteins, the COOH-terminal domains of PML are involved in interactions with specific cellular components. Only the isoform-specific sequences of PML-I and PML-V are highly conserved between man and mouse. That PML-I contains all conserved exons and is more abundantly expressed than PML-IV suggests that it is a critical contributor to PML function(s).
Collapse
Affiliation(s)
- Wilfried Condemine
- Centre National de la Recherche Scientifique UMR7151, Equipe Labellisée par La Ligne Contre le Cancer, Paris Cedex, France
| | | | | | | | | | | | | |
Collapse
|
206
|
Bernad R, Engelsma D, Sanderson H, Pickersgill H, Fornerod M. Nup214-Nup88 nucleoporin subcomplex is required for CRM1-mediated 60 S preribosomal nuclear export. J Biol Chem 2006; 281:19378-86. [PMID: 16675447 DOI: 10.1074/jbc.m512585200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear pore complex (NPC) conducts macromolecular transport to and from the nucleus and provides a kinetic/hydrophobic barrier composed of phenylalanine-glycine (FG) repeats. Nuclear transport is achieved through permeation of this barrier by transport receptors. The transport receptor CRM1 facilitates export of a large variety of cargoes. Export of the preribosomal 60 S subunit follows this pathway through the adaptor protein NMD3. Using RNA interference, we depleted two FG-containing cytoplasmically oriented NPC complexes, Nup214-Nup88 and Nup358, and investigated CRM1-mediated export. A dramatic defect in NMD3-mediated export of preribosomes was found in Nup214-Nup88-depleted cells, whereas only minor export defects were evident in other CRM1 cargoes or upon depletion of Nup358. We show that the large C-terminal FG domain of Nup214 is not accessible to freely diffusing molecules from the nucleus, indicating that it does not conduct 60 S preribosomes through the NPC. Consistently, derivatives of Nup214 lacking the FG-repeat domain rescued the 60 S export defect. We show that the coiled-coil region of Nup214 is sufficient for 60 S nuclear export, coinciding with recruitment of Nup88 to the NPC. Our data indicate that Nup214 plays independent roles in NPC function by participating in the kinetic/hydrophobic barrier through its FG-rich domain and by enabling NPC gating through association with Nup88.
Collapse
Affiliation(s)
- Rafael Bernad
- Department of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
207
|
Verger A, Quinlan KGR, Crofts LA, Spanò S, Corda D, Kable EPW, Braet F, Crossley M. Mechanisms directing the nuclear localization of the CtBP family proteins. Mol Cell Biol 2006; 26:4882-94. [PMID: 16782877 PMCID: PMC1489157 DOI: 10.1128/mcb.02402-05] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 01/19/2006] [Accepted: 04/05/2006] [Indexed: 11/20/2022] Open
Abstract
The C-terminal binding protein (CtBP) family includes four proteins (CtBP1 [CtBP1-L], CtBP3/BARS [CtBP1-S], CtBP2, and RIBEYE) which are implicated both in transcriptional repression and in intracellular trafficking. However, the precise mechanisms by which different CtBP proteins are targeted to different subcellular regions remains unknown. Here, we report that the nuclear import of the various CtBP proteins and splice isoforms is differentially regulated. We show that CtBP2 contains a unique nuclear localization signal (NLS) located within its N-terminal region, which contributes to its nuclear accumulation. Using heterokaryon assays, we show that CtBP2 is capable of shuttling between the nucleus and cytoplasm of the cell. Moreover, CtBP2 can heterodimerize with CtBP1-L and CtBP1-S and direct them to the nucleus. This effect strongly depends on the CtBP2 NLS. PXDLS motif-containing transcription factors, such as BKLF, that bind CtBP proteins can also direct them to the nucleus. We also report the identification of a splice isoform of CtBP2, CtBP2-S, that lacks the N-terminal NLS and localizes to the cytoplasm. Finally, we show that mutation of the CtBP NADH binding site impairs the ability of the proteins to dimerize and to associate with BKLF. This reduces the nuclear accumulation of CtBP1. Our results suggest a model in which the nuclear localization of CtBP proteins is influenced by the CtBP2 NLS, by binding to PXDLS motif partner proteins, and through the effect of NADH on CtBP dimerization.
Collapse
Affiliation(s)
- Alexis Verger
- School of Molecular and Microbial Biosciences, Biochemistry Building G08, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Papp LV, Lu J, Striebel F, Kennedy D, Holmgren A, Khanna KK. The redox state of SECIS binding protein 2 controls its localization and selenocysteine incorporation function. Mol Cell Biol 2006; 26:4895-910. [PMID: 16782878 PMCID: PMC1489162 DOI: 10.1128/mcb.02284-05] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 12/21/2005] [Accepted: 04/15/2006] [Indexed: 11/20/2022] Open
Abstract
Selenoproteins are central controllers of cellular redox homeostasis. Incorporation of selenocysteine (Sec) into selenoproteins employs a unique mechanism to decode the UGA stop codon. The process requires the Sec insertion sequence (SECIS) element, tRNASec, and protein factors including the SECIS binding protein 2 (SBP2). Here, we report the characterization of motifs within SBP2 that regulate its subcellular localization and function. We show that SBP2 shuttles between the nucleus and the cytoplasm via intrinsic, functional nuclear localization signal and nuclear export signal motifs and that its nuclear export is dependent on the CRM1 pathway. Oxidative stress induces nuclear accumulation of SBP2 via oxidation of cysteine residues within a redox-sensitive cysteine-rich domain. These modifications are efficiently reversed in vitro by human thioredoxin and glutaredoxin, suggesting that these antioxidant systems might regulate redox status of SBP2 in vivo. Depletion of SBP2 in cell lines using small interfering RNA results in a decrease in Sec incorporation, providing direct evidence for its requirement for selenoprotein synthesis. Furthermore, Sec incorporation is reduced substantially after treatment of cells with agents that cause oxidative stress, suggesting that nuclear sequestration of SBP2 under such conditions may represent a mechanism to regulate the expression of selenoproteins.
Collapse
Affiliation(s)
- Laura V Papp
- Queensland Institute of Medical Research, 300 Herston Road, Herston, Queensland 4029, Australia
| | | | | | | | | | | |
Collapse
|
209
|
Yim H, Hwang IS, Choi JS, Chun KH, Jin YH, Ham YM, Lee KY, Lee SK. Cleavage of Cdc6 by caspase-3 promotes ATM/ATR kinase-mediated apoptosis of HeLa cells. ACTA ACUST UNITED AC 2006; 174:77-88. [PMID: 16801388 PMCID: PMC2064166 DOI: 10.1083/jcb.200509141] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We show that caspase-3 cleaves Cdc6 at D290/S and D442/G sites, producing p32-tCdc6 (truncated Cdc6) and p49-tCdc6, respectively, during etoposide- or tumor necrosis factor (TNF)-α–induced apoptosis. The expression of these tCdc6 proteins, p32- and p49-tCdc6, promotes etoposide-induced apoptosis. The expression of tCdc6 perturbs the loading of Mcm2 but not Orc2 onto chromatin and activates ataxia telangiectasia mutated (ATM) and ATM and Rad-3 related (ATR) kinase activities with kinetics similar to that of the phosphorylation of Chk1/2. The activation kinetics are consistent with elevated cellular levels of p53 and mitochondrial levels of Bax. The tCdc6-induced effects are all suppressed to control levels by expressing a Cdc6 mutant that cannot be cleaved by caspase-3 (Cdc6-UM). Cdc6-UM expression attenuates the TNF-α–induced activation of ATM and caspase-3 activities. When ATM or ATR is down-expressed by using the small interfering RNA technique, the TNF-α– or tCdc6-induced activation of caspase-3 activities is suppressed in the cells. These results suggest that tCdc6 proteins act as dominant-negative inhibitors of replication initiation and that they disrupt chromatin structure and/or induce DNA damage, leading to the activation of ATM/ATR kinase activation and p53–Bax-mediated apoptosis.
Collapse
Affiliation(s)
- Hyungshin Yim
- Division of Pharmaceutical Biosciences, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Niu Y, Roy F, Saltel F, Andrieu-Soler C, Dong W, Chantegrel AL, Accardi R, Thépot A, Foiselle N, Tommasino M, Jurdic P, Sylla BS. A nuclear export signal and phosphorylation regulate Dok1 subcellular localization and functions. Mol Cell Biol 2006; 26:4288-301. [PMID: 16705178 PMCID: PMC1489083 DOI: 10.1128/mcb.01817-05] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dok1 is believed to be a mainly cytoplasmic adaptor protein which down-regulates mitogen-activated protein kinase activation, inhibits cell proliferation and transformation, and promotes cell spreading and cell migration. Here we show that Dok1 shuttles between the nucleus and cytoplasm. Treatment of cells with leptomycin B (LMB), a specific inhibitor of the nuclear export signal (NES)-dependent receptor CRM1, causes nuclear accumulation of Dok1. We have identified a functional NES (348LLKAKLTDPKED359) that plays a major role in the cytoplasmic localization of Dok1. Src-induced tyrosine phosphorylation prevented the LMB-mediated nuclear accumulation of Dok1. Dok1 cytoplasmic localization is also dependent on IKKbeta. Serum starvation or maintaining cells in suspension favor Dok1 nuclear localization, while serum stimulation, exposure to growth factor, or cell adhesion to a substrate induce cytoplasmic localization. Functionally, nuclear NES-mutant Dok1 had impaired ability to inhibit cell proliferation and to promote cell spreading and cell motility. Taken together, our results provide the first evidence that Dok1 transits through the nucleus and is actively exported into the cytoplasm by the CRM1 nuclear export system. Nuclear export modulated by external stimuli and phosphorylation may be a mechanism by which Dok1 is maintained in the cytoplasm and membrane, thus regulating its signaling functions.
Collapse
Affiliation(s)
- Yamei Niu
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 cours Albert-Thomas, 69008 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Krieghoff E, Behrens J, Mayr B. Nucleo-cytoplasmic distribution of beta-catenin is regulated by retention. J Cell Sci 2006; 119:1453-63. [PMID: 16554443 DOI: 10.1242/jcs.02864] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
beta-catenin is the central signalling molecule of the canonical Wnt pathway, where it activates target genes in a complex with LEF/TCF transcription factors in the nucleus. The regulation of beta-catenin activity is thought to occur mainly on the level of protein degradation, but it has been suggested that beta-catenin nuclear localization and hence its transcriptional activity may additionally be regulated via nuclear import by TCF4 and BCL9 and via nuclear export by APC and axin. Using live-cell microscopy and fluorescence recovery after photobleaching (FRAP), we have directly analysed the impact of these factors on the subcellular localization of beta-catenin, its nucleo-cytoplasmic shuttling and its mobility within the nucleus and the cytoplasm. We show that TCF4 and BCL9/Pygopus recruit beta-catenin to the nucleus, and APC, axin and axin2 enrich beta-catenin in the cytoplasm. Importantly, however, none of these factors accelerates the nucleo-cytoplasmic shuttling of beta-catenin, i.e. increases the rate of beta-catenin nuclear import or export. Moreover, the cytoplasmic enrichment of beta-catenin by APC and axin is not abolished by inhibition of CRM-1-dependent nuclear export. TCF4, APC, axin and axin2 move more slowly than beta-catenin in their respective compartment, and concomitantly decrease beta-catenin mobility. Together, these data indicate that beta-catenin interaction partners mainly regulate beta-catenin subcellular localization by retaining it in the compartment in which they are localized, rather than by active transport into or out of the nucleus.
Collapse
Affiliation(s)
- Eva Krieghoff
- Nikolaus-Fiebiger-Center for Molecular Medicine, University of Erlangen-Nürnberg, Glückstr. 6, 91054 Erlangen, Germany
| | | | | |
Collapse
|
212
|
Hibino Y, Usui T, Morita Y, Hirose N, Okazaki M, Sugano N, Hiraga K. Molecular properties and intracellular localization of rat liver nuclear scaffold protein P130. ACTA ACUST UNITED AC 2006; 1759:195-207. [PMID: 16814881 DOI: 10.1016/j.bbaexp.2006.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 04/12/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
We examined the molecular basis of rat P130, a nuclear scaffold protein, and its functions. P130 comprising 845 amino acid residues possesses several functional domains and yields an electrophoretically distinctive isoform, P123, by altering its phosphorylation status in association with translocation across the nuclear membrane and from the digitonin-extractable fraction of the nucleus to the nuclear scaffold. The functional domains, NLS, NES, and zinc-finger bearing DNA-binding domains, ZF1 and ZF2, aid these translocations. P130 binds RNA through two RNA-binding domains (RB1 and RB2) similar to those of hnRNPs I and L. Microsome- and polysome-localized P130 and P123 were found in rat liver and Ac2F hepatoma cells. This localization required prior entry of P130 to the nucleus, but did not require RB1 and RB2. Thus, P130 initially purified from rat liver nuclear scaffold has the potential to play a variety of roles in biological events not only in the nuclear scaffold but also in various subcellular compartments. P130 (AB205483) is identical to matrin 3 (M63485 and BC062231), although the primary structure of rat matrin 3 has been revised, since it was first published.
Collapse
Affiliation(s)
- Yasuhide Hibino
- The Department of Biochemistry, School of Medicine, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, 2630 Sugitani Toyama, Toyama 930-0194, Japan.
| | | | | | | | | | | | | |
Collapse
|
213
|
Rodriguez JA, Lens SMA, Span SW, Vader G, Medema RH, Kruyt FAE, Giaccone G. Subcellular localization and nucleocytoplasmic transport of the chromosomal passenger proteins before nuclear envelope breakdown. Oncogene 2006; 25:4867-79. [PMID: 16547492 DOI: 10.1038/sj.onc.1209499] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
As mitosis progresses, the chromosomal passenger proteins (CPPs) Survivin, Aurora B, INCENP and Borealin dynamically colocalize to mitotic structures. Chromosomal passenger proteins are already expressed during G2, whereas the nuclear envelope is only disassembled at the end of prophase. However, the mechanisms that modulate their nucleocytoplasmic localization before nuclear envelope breakdown (NEB) are poorly characterized. Using epitope-tagged proteins, we show that Aurora B, like Survivin, undergoes CRM1-mediated nucleocytoplasmic shuttling, although both proteins lack identifiable 'classical' nuclear transport signals. On the other hand, INCENP resides more stably in the nucleus and contains multiple nuclear localization signals. Finally, Borealin was detected in the nucleolus and the cytoplasm, but its cytoplasmic localization is not directly regulated by CRM1. Coexpression experiments indicate that the nuclear localization of Aurora B, but not of Survivin, is modulated by INCENP and that Survivin prevents the nucleolar accumulation of Borealin. Our data reveal that, in contrast to their closely related localization during mitosis, the nucleocytoplasmic localization of the CPPs before NEB is largely unrelated. Furthermore, the specific effect of INCENP and Survivin on the localization of Aurora B and Borealin, respectively, suggests that different complexes of CPPs may exist not only during mitosis, as recently reported, but also before NEB.
Collapse
Affiliation(s)
- J A Rodriguez
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
214
|
Léveillé F, Ferrer M, Medhurst AL, Laghmani EH, Rooimans MA, Bier P, Steltenpool J, Titus TA, Postlethwait JH, Hoatlin ME, Joenje H, de Winter JP. The nuclear accumulation of the Fanconi anemia protein FANCE depends on FANCC. DNA Repair (Amst) 2006; 5:556-65. [PMID: 16513431 DOI: 10.1016/j.dnarep.2006.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 01/10/2006] [Accepted: 01/13/2006] [Indexed: 01/18/2023]
Abstract
The Fanconi anemia (FA) protein FANCE is an essential component of the nuclear FA core complex, which is required for monoubiquitination of the downstream target FANCD2, an important step in the FA pathway of DNA cross-link repair. FANCE is predominantly localized in the nucleus and acts as a molecular bridge between the FA core complex and FANCD2, through direct binding of both FANCC and FANCD2. At present, it is poorly understood how the nuclear accumulation of FANCE is regulated and therefore we investigated the nuclear localization of this FA protein. We found that FANCE has a strong tendency to localize in the nucleus, since the addition of a nuclear export signal does not interfere with the nuclear localization of FANCE. We also demonstrate that the nuclear accumulation of FANCE does not rely solely on its nuclear localization signal motifs, but also on FANCC. The other FA proteins are not involved in the nuclear accumulation of FANCE, indicating a tight relationship between FANCC and FANCE, as suggested from their direct interaction. Finally, we show that the region of FANCE interacting with FANCC appears to be different from the region involved in binding FANCD2. This strengthens the idea that FANCE recruits FANCD2 to the core complex, without interfering with the binding of FANCC.
Collapse
Affiliation(s)
- France Léveillé
- Department of Clinical Genetics and Human Genetics, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Rastogi S, Joshi B, Fusaro G, Chellappan S. Camptothecin induces nuclear export of prohibitin preferentially in transformed cells through a CRM-1-dependent mechanism. J Biol Chem 2006; 281:2951-9. [PMID: 16319068 DOI: 10.1074/jbc.m508669200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prohibitin is a growth-suppressive protein that has multiple functions in the nucleus and the mitochondria. Our earlier studies had shown that prohibitin represses the activity of E2F transcription factors while enhancing p53-mediated transcription. At the same time, prohibitin has been implicated in mediating the proper folding of mitochondrial proteins. We had found that treatment of cells with camptothecin, a topoisomerase 1 inhibitor, led to the export of prohibitin and p53 from the nucleus to the mitochondria. Here we show that the camptothecin-induced export of prohibitin occurs preferentially in transformed cell lines, but not in untransformed or primary cells. Cells that did not display the translocation of prohibitin were refractive to the apoptotic effects of camptothecin. The translocation was mediated by a putative nuclear export signal at the C-terminal region of prohibitin; fusion of the nuclear export signal (NES) of prohibitin to green fluorescence protein led to its export from the nucleus. Leptomycin B could inhibit the nuclear export of prohibitin showing that it was a CRM-1-dependent event driven by Ran GTPase. Confirming this, prohibitin was found to physically interact with CRM-1, and this interaction was significantly higher in transformed cells. Delivery of a peptide corresponding to the NES of prohibitin prevented the export of prohibitin to cytoplasm and protected cells from apoptosis. These results suggest that the regulated translocation of prohibitin from the nucleus to the mitochondria facilitates its pleiotropic functions and might contribute to its anti-proliferative and tumor suppressive properties.
Collapse
Affiliation(s)
- Shipra Rastogi
- Drug Discovery Program, Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
216
|
Shiio Y, Rose DW, Aur R, Donohoe S, Aebersold R, Eisenman RN. Identification and characterization of SAP25, a novel component of the mSin3 corepressor complex. Mol Cell Biol 2006; 26:1386-97. [PMID: 16449650 PMCID: PMC1367179 DOI: 10.1128/mcb.26.4.1386-1397.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 07/25/2005] [Accepted: 11/25/2005] [Indexed: 12/29/2022] Open
Abstract
The transcriptional corepressor mSin3 is associated with histone deacetylases (HDACs) and is utilized by many DNA-binding transcriptional repressors. We have cloned and characterized a novel mSin3A-binding protein, SAP25. SAP25 binds to the PAH1 domain of mSin3A, associates with the mSin3A-HDAC complex in vivo, and represses transcription when tethered to DNA. SAP25 is required for mSin3A-mediated, but not N-CoR-mediated, repression. SAP25 is a nucleocytoplasmic shuttling protein, actively exported from the nucleus by a CRM1-dependent mechanism. A fraction of SAP25 is located in promyelocytic leukemia protein (PML) nuclear bodies, and PML induces a striking nuclear accumulation of SAP25. An isotope-coded affinity tag quantitative proteomic analysis of the SAP25 complex revealed that SAP25 is associated with several components of the mSin3 complex, nuclear export machinery, and regulators of transcription and cell cycle. These results suggest that SAP25 is a novel core component of the mSin3 corepressor complex whose subcellular location is regulated by PML.
Collapse
Affiliation(s)
- Yuzuru Shiio
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA
| | | | | | | | | | | |
Collapse
|
217
|
Eulálio A, Nunes-Correia I, Carvalho AL, Faro C, Citovsky V, Salas J, Salas ML, Simões S, de Lima MCP. Nuclear export of African swine fever virus p37 protein occurs through two distinct pathways and is mediated by three independent signals. J Virol 2006; 80:1393-404. [PMID: 16415017 PMCID: PMC1346947 DOI: 10.1128/jvi.80.3.1393-1404.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 11/16/2005] [Indexed: 11/20/2022] Open
Abstract
Nucleocytoplasmic shuttling activity of the African swine fever virus p37 protein, a major structural protein of this highly complex virus, has been recently reported. The systematic characterization of the nuclear export ability of this protein constituted the major purpose of the present study. We report that both the N- and C-terminal regions of p37 protein are actively exported from the nucleus to the cytoplasm of yeast and mammalian cells. Moreover, experiments using leptomycin B and small interfering RNAs targeting the CRM1 receptor have demonstrated that the export of p37 protein is mediated by both the CRM1-dependent and CRM1-independent nuclear export pathways. Two signals responsible for the CRM1-mediated nuclear export of p37 protein were identified at the N terminus of the protein, and an additional signal was identified at the C-terminal region, which mediates the CRM1-independent nuclear export. Interestingly, site-directed mutagenesis revealed that hydrophobic amino acids are critical to the function of these three nuclear export signals. Overall, our results demonstrate that two distinct pathways contribute to the strong nuclear export of full-length p37 protein, which is mediated by three independent nuclear export signals. The existence of overlapping nuclear export mechanisms, together with our observation that p37 protein is localized in the nucleus at early stages of infection and exclusively in the cytoplasm at later stages, suggests that the nuclear transport ability of this protein may be critical to the African swine fever virus replication cycle.
Collapse
Affiliation(s)
- Ana Eulálio
- Department of Biochemistry, Faculty of Sciences and Technology, University of Coimbra, Apartado 3126, 3001-401 Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Dalton GD, Dewey WL. Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function. Neuropeptides 2006; 40:23-34. [PMID: 16442618 DOI: 10.1016/j.npep.2005.10.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 10/11/2005] [Indexed: 11/30/2022]
Abstract
Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous system and the rest of the body.
Collapse
Affiliation(s)
- George D Dalton
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980524, Richmond, VA 23298, USA.
| | | |
Collapse
|
219
|
Hendriksen J, Fagotto F, van der Velde H, van Schie M, Noordermeer J, Fornerod M. RanBP3 enhances nuclear export of active (beta)-catenin independently of CRM1. J Cell Biol 2005; 171:785-97. [PMID: 16314428 PMCID: PMC2171279 DOI: 10.1083/jcb.200502141] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 10/31/2005] [Indexed: 01/12/2023] Open
Abstract
beta-Catenin is the nuclear effector of the Wnt signaling cascade. The mechanism by which nuclear activity of beta-catenin is regulated is not well defined. Therefore, we used the nuclear marker RanGTP to screen for novel nuclear beta-catenin binding proteins. We identified a cofactor of chromosome region maintenance 1 (CRM1)-mediated nuclear export, Ran binding protein 3 (RanBP3), as a novel beta-catenin-interacting protein that binds directly to beta-catenin in a RanGTP-stimulated manner. RanBP3 inhibits beta-catenin-mediated transcriptional activation in both Wnt1- and beta-catenin-stimulated human cells. In Xenopus laevis embryos, RanBP3 interferes with beta-catenin-induced dorsoventral axis formation. Furthermore, RanBP3 depletion stimulates the Wnt pathway in both human cells and Drosophila melanogaster embryos. In human cells, this is accompanied by an increase of dephosphorylated beta-catenin in the nucleus. Conversely, overexpression of RanBP3 leads to a shift of active beta-catenin toward the cytoplasm. Modulation of beta-catenin activity and localization by RanBP3 is independent of adenomatous polyposis coli protein and CRM1. We conclude that RanBP3 is a direct export enhancer for beta-catenin, independent of its role as a CRM1-associated nuclear export cofactor.
Collapse
Affiliation(s)
- Jolita Hendriksen
- Department of Tumor Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
220
|
Hahn MA, Marsh DJ. Identification of a functional bipartite nuclear localization signal in the tumor suppressor parafibromin. Oncogene 2005; 24:6241-8. [PMID: 16116486 DOI: 10.1038/sj.onc.1208778] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Parafibromin is a putative tumor suppressor encoded by HRPT2, mutations in which have been implicated in the familial tumor syndrome hyperparathyroidism jaw tumor syndrome (HPT-JT), and sporadic parathyroid carcinoma. Recently, parafibromin has been shown to be an accessory factor for RNA polymerase II as part of the human Paf 1 complex, suggesting, as has been shown for its yeast homologue (Cdc 73), that it may have a role as an important regulator of transcription. Parafibromin has also been shown to interact with a histone methyltransferase complex that methylates histone H3 and to inhibit proliferation when overexpressed in mammalian cell lines. Despite these findings, the cellular localization of parafibromin has been controversial, with reports of both nuclear and nucleocytoplasmic localization. We have expressed wild-type and mutant parafibromin tagged with enhanced green fluorescent protein and have identified a functional bipartite nuclear localization signal (NLS) at residues 125-139 (nucleotides 373-417), KRAADEVLAEAKKPR, that is evolutionarily conserved and critical for the nuclear localization of parafibromin. We have also shown that the C-terminal arm of this bipartite NLS plays the primary role in nuclear localization. In support of these findings, specific HRPT2 mutations identified in HPT-JT or sporadic parathyroid carcinoma predicted to truncate parafibromin upstream of or within this NLS disrupt nuclear localization.
Collapse
Affiliation(s)
- Michael A Hahn
- Department of Molecular Medicine, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, NSW 2065, Australia
| | | |
Collapse
|
221
|
Barnes JD, Arhel NJ, Lee SS, Sharp A, Al-Okail M, Packham G, Hague A, Paraskeva C, Williams AC. Nuclear BAG-1 expression inhibits apoptosis in colorectal adenoma-derived epithelial cells. Apoptosis 2005; 10:301-11. [PMID: 15843891 DOI: 10.1007/s10495-005-0804-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BAG-1 is an anti-apoptotic protein that is frequently deregulated in a variety of malignancies including colorectal cancer. There are three isoforms: BAG-1L is located in the nucleus, BAG-1M and BAG-1S are located both in the nucleus and the cytoplasm. In colon cancer, the expression of nuclear BAG-1 is associated with poorer prognosis and is potentially a useful predictive factor for distant metastasis. However, the function of BAG-1 in colonic epithelial cells has not been studied. Having previously shown a predominant nuclear localisation of BAG-1 in adenoma-derived cell lines, we wanted to determine the function of nuclear BAG-1 in these non-tumourigenic cells, to identify whether nuclear BAG-1 was implicated in tumour progression in the colon. In the current report we established that nuclear BAG-1 inhibits apoptosis in a colorectal adenoma-derived cell line. We demonstrate that apoptosis induced by gamma-radiation or the vitamin D analogue EB1089 in the non-tumourigenic human colorectal adenoma-derived S/RG/C2 cell line, was preceded by a decrease in nuclear and an increase in cytoplasmic BAG-1 expression. This change in subcellular localisation of BAG-1 was due to the redistribution of the BAG-1M isoform. In addition, we have shown that the maintenance of high nuclear BAG-1 through enforced expression of the nuclear localised BAG-1L isoform enhanced cellular survival after gamma-radiation or exposure to EB1089. Furthermore the expression of cytoplasmic BAG-1S isoform fused with a nuclear localisation signal protected against gamma-radiation induced apoptosis. This demonstrates that nuclear localisation of the BAG-1 protein confers a survival advantage in colorectal adenoma-derived cells and that nuclear BAG-1 could potentially be an important survival factor in colorectal carcinogenesis.
Collapse
Affiliation(s)
- J D Barnes
- Cancer Research UK Colorectal Tumour Biology Research Group, Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Muñoz-Fontela C, Collado M, Rodriguez E, García MA, Alvarez-Barrientos A, Arroyo J, Nombela C, Rivas C. Identification of a nuclear export signal in the KSHV latent protein LANA2 mediating its export from the nucleus. Exp Cell Res 2005; 311:96-105. [PMID: 16214130 DOI: 10.1016/j.yexcr.2005.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 08/25/2005] [Accepted: 08/25/2005] [Indexed: 11/28/2022]
Abstract
LANA2 is a latent protein detected in Kaposi's sarcoma-associated herpesvirus (KSHV)-infected B cells that inhibits p53-dependent transcriptional transactivation and apoptosis and PKR-dependent apoptosis, suggesting an important role in the transforming activity of the virus. It has been reported that LANA2 localizes into the nucleus of both KSHV-infected B cells and transiently transfected HeLa cells. In this study, we show that LANA2 is a nucleocytoplasmic shuttling protein that requires a Rev-type nuclear export signal located in the C-terminus to direct the protein to the cytoplasm, through an association with the export receptor CRM1. In addition, a functional protein kinase B (PKB)/Akt phosphorylation motif partially overlapping with the nuclear export signal was identified. Nuclear exclusion of LANA2 was negatively regulated by the phosphorylation of threonine 564 by Akt. The ability of LANA2 to shuttle between nucleus and cytoplasm has implications for the function of this viral protein.
Collapse
Affiliation(s)
- C Muñoz-Fontela
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramon y Cajal sn, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Llorian M, Beullens M, Lesage B, Nicolaescu E, Beke L, Landuyt W, Ortiz JM, Bollen M. Nucleocytoplasmic Shuttling of the Splicing Factor SIPP1. J Biol Chem 2005; 280:38862-9. [PMID: 16162498 DOI: 10.1074/jbc.m509185200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SIPP1 (splicing factor that interacts with PQBP1 and PP1) is a widely expressed protein of 70 kDa that has been implicated in pre-mRNA splicing. It interacts with protein Ser/Thr phosphatase-1 (PP1) and with the polyglutamine-tract-binding protein 1 (PQBP1), which contributes to the pathogenesis of X-linked mental retardation and neurodegenerative diseases caused by polyglutamine tract expansions. We show here that SIPP1 is a nucleocytoplasmic shuttling protein. Under basal circumstances SIPP1 was largely nuclear, but it accumulated in the cytoplasm following UV- or X-radiation. Nuclear import was mediated by two nuclear localization signals. In addition, SIPP1 could be piggy-back transported to the nucleus with its ligand PQBP1. In the nucleus SIPP1 and PQBP1 formed inclusion bodies similar to those detected in polyglutamine diseases. SIPP1 did not function as a nuclear targeting subunit of PP1 but re-localized nuclear PP1 to storage sites for splicing factors. The C-terminal residues of SIPP1, which do not conform to a classic nuclear export signal, were required for its nuclear export via the CMR-1 pathway. Finally, SIPP1 activated pre-mRNA splicing in intact cells, and the extent of splicing activation correlated with the nuclear concentration of SIPP1. We conclude that SIPP1 is a positive regulator of pre-mRNA splicing that is regulated by nucleocytoplasmic shuttling. These findings also have potential implications for a better understanding of the pathogenesis of X-linked mental retardation and polyglutamine-linked neurodegenerative disorders.
Collapse
Affiliation(s)
- Miriam Llorian
- Afdelingen Biochemie, Faculteit Geneeskunde, KULeuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Blachon S, Bellanger S, Demeret C, Thierry F. Nucleo-cytoplasmic shuttling of high risk human Papillomavirus E2 proteins induces apoptosis. J Biol Chem 2005; 280:36088-98. [PMID: 16135518 DOI: 10.1074/jbc.m505138200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human Papillomavirus (HPV) E2 proteins are the major viral regulators of transcription and replication during the viral life cycle. In addition to these conserved functions, we show that E2 proteins from high risk HPV types 16 and 18, which are associated with cervical cancer, can induce apoptosis. In contrast, E2 proteins from low risk HPV types 6 and 11, which are associated with benign lesions, do not cause cell death. We show that the ability to induce apoptosis is linked to the intracellular localization of the respective E2 proteins rather than to inherent properties of the proteins. Although low risk HPV E2 proteins remain strictly nuclear, high risk HPV E2 proteins are present in both the nucleus and the cytoplasm of expressing cells due to exportin-1 receptor (CRM1)-dependent nucleo-cytoplasmic shuttling. Induction of apoptosis is caused by accumulation of E2 in the cytoplasm and involves caspase 8 activation. We speculate that disruption of the E2 gene during viral genome integration in cervical carcinoma provides a means to avoid E2-induced apoptosis and allow initiation of carcinogenesis.
Collapse
MESH Headings
- Adenoviridae/genetics
- Amino Acid Sequence
- Apoptosis
- Blotting, Western
- Caspase 8
- Caspases/metabolism
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- Enzyme Activation
- Female
- Flow Cytometry
- Gene Deletion
- Genome, Viral
- Green Fluorescent Proteins/metabolism
- HeLa Cells
- Humans
- Karyopherins/chemistry
- Karyopherins/metabolism
- Karyopherins/physiology
- Microscopy, Fluorescence
- Microscopy, Video
- Molecular Sequence Data
- Mutation
- Oncogene Proteins, Viral/chemistry
- Oncogene Proteins, Viral/metabolism
- Open Reading Frames
- Papillomaviridae/metabolism
- Phenotype
- Protein Structure, Tertiary
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/physiology
- Risk
- Uterine Cervical Neoplasms/virology
- Viral Proteins/chemistry
- Viral Proteins/metabolism
- Exportin 1 Protein
Collapse
Affiliation(s)
- Stéphanie Blachon
- Unité Expression Génétique et Maladies, CNRS FRE 2850, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris cedex 15, France
| | | | | | | |
Collapse
|
225
|
Hantschel O, Wiesner S, Güttler T, Mackereth CD, Rix LLR, Mikes Z, Dehne J, Görlich D, Sattler M, Superti-Furga G. Structural basis for the cytoskeletal association of Bcr-Abl/c-Abl. Mol Cell 2005; 19:461-73. [PMID: 16109371 DOI: 10.1016/j.molcel.2005.06.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 06/02/2005] [Accepted: 06/22/2005] [Indexed: 01/21/2023]
Abstract
The Bcr-Abl tyrosine kinase causes different forms of leukemia in humans. Depending on its position within the cell, Bcr-Abl differentially affects cellular growth. However, no structural and molecular details for the anticipated localization determinants are available. We present the NMR structure of the F-actin binding domain (FABD) of Bcr-Abl and its cellular counterpart c-Abl. The FABD forms a compact left-handed four-helix bundle in solution. We show that the nuclear export signal (NES) previously reported in this region is part of the hydrophobic core and nonfunctional in the intact protein. In contrast, we could identify the critical residues of helix alphaIII that are responsible for F-actin binding and cytoskeletal association. We propose that these interactions represent a major determinant for both Bcr-Abl and c-Abl localization.
Collapse
Affiliation(s)
- Oliver Hantschel
- Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 19/3, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Barnfield PC, Zhang X, Thanabalasingham V, Yoshida M, Hui CC. Negative regulation of Gli1 and Gli2 activator function by Suppressor of fused through multiple mechanisms. Differentiation 2005; 73:397-405. [PMID: 16316410 DOI: 10.1111/j.1432-0436.2005.00042.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
During animal development, the Hedgehog (Hh) signal transduction pathway plays critical roles in cell fate determination and tissue patterning. In humans, aberrant Hh signaling has been linked to several genetic disorders and cancers. Binding of Hh to its receptor initiates a signaling cascade, which ultimately results in the activation of the Gli/Ci transcription factors. Suppressor of fused (Su(fu)) is a Gli/Ci-interacting protein, which acts as a negative regulator of Hh signaling in Drosophila and vertebrates. Su(fu) is also implicated as a tumor suppressor as its mutations have been found in medulloblastoma and prostate cancer. Su(fu) is thought to act by preventing the nuclear accumulation of Gli/Ci, however, mechanistic insight into its mode of action has remained elusive. We demonstrate here that Su(fu) prevents the nuclear accumulation of Gli1 and Gli2 through multiple mechanisms. While Su(fu) itself is not subject to CRM1-dependent regulation, Su(fu) sequesters Gli1 in the cytoplasm mostly through a mechanism that depends on the activity of the nuclear export protein CRM1. In contrast, CRM1-mediated export is not required for Su(fu) to sequester Gli2. Furthermore, we show that the N-terminus of Su(fu) is sufficient for Gli inactivation in the absence of cytoplasmic sequestration. Together, these observations reveal that Su(fu) regulates the activity of Gli1 and Gli2 through distinct cytoplasmic and nuclear mechanisms.
Collapse
Affiliation(s)
- Paul C Barnfield
- Hospital for Sick Children, Program in Developmental Biology, 101 College Street, TMDT, Rm. 13-314, Toronto, ON, Canada M5G 1L7
| | | | | | | | | |
Collapse
|
227
|
Nakagawa M, Hosokawa Y, Yonezumi M, Izumiyama K, Suzuki R, Tsuzuki S, Asaka M, Seto M. MALT1 contains nuclear export signals and regulates cytoplasmic localization of BCL10. Blood 2005; 106:4210-6. [PMID: 16123224 DOI: 10.1182/blood-2004-12-4785] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MALT1, BCL10 (B-cell lymphoma 10), and API2 (apoptosis inhibitor 2)-MALT1 are key molecules in mucosa-associated lymphoid tissue (MALT) lymphomagenesis. We previously reported that MALT1 and API2-MALT1 were localized only in cytoplasm, where we suggested that both molecules were likely to be active. In the study presented here, we further examined the localization-determining region by generating various mutants and were able to demonstrate that there were nuclear export signal (NES)-containing domains in the MALT1 C-terminal region. The use of leptomycin B, an NES-specific inhibitor, demonstrated that both MALT1 and API2-MALT1 were predominantly retained in the nuclei, indicating that these molecules were shuttling between nucleus and cytoplasm in an NES-dependent manner. It was also found that MALT1 was involved in the nuclear export of BCL10, which is originally localized in both nucleus and cytoplasm. These results correlate well with the nuclear BCL10 expression pattern in both t(1;14) and t(11;18) MALT lymphomas. The nucleocytoplasmic shuttling of MALT1 and BCL10 complex may indicate that these molecules are involved not only in the nuclear factor kappaB (NF-kappaB) pathway but also in other biologic functions in lymphocytes.
Collapse
Affiliation(s)
- Masao Nakagawa
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | |
Collapse
|
228
|
Bi X, Jones T, Abbasi F, Lee H, Stultz B, Hursh DA, Mortin MA. Drosophila caliban, a nuclear export mediator, can function as a tumor suppressor in human lung cancer cells. Oncogene 2005; 24:8229-39. [PMID: 16103875 DOI: 10.1038/sj.onc.1208962] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously showed that the Drosophila DNA binding homeodomain of Prospero included a 28 amino-acid sequence (HDA) that functions as a nuclear export signal. We describe here the identification of a protein we named Caliban, which can directly interact with the HDA. Caliban is homologous to human Sdccag1, which has been implicated in colon and lung cancer. Here we show that Caliban and Sdccag1 are mediators of nuclear export in fly and human cells, as interference RNA abrogates export of EYFP-HDA in normal fly and human lung cells. Caliban functions as a bipartite mediator nuclear export as the carboxy terminus binds HDA and the amino terminus itself functions as an NES, which directly binds the NES receptor Exportin. Finally, while non-cancerous lung cells have functional Sdccag1, five human lung carcinoma cell lines do not, even though Exportin still functions in these cells. Expression of fly Caliban in these human lung cancer cells restores EYFP-HDA nuclear export, reduces a cell's ability to form colonies on soft agar and reduces cell invasiveness. We suggest that Sdccag1 inactivation contributes to the transformed state of human lung cancer cells and that Caliban should be considered a candidate for use in lung cancer gene therapy.
Collapse
Affiliation(s)
- Xiaolin Bi
- Laboratory of Biochemistry, NCI, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
229
|
Han S, Nakamura C, Obataya I, Nakamura N, Miyake J. Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness. Biochem Biophys Res Commun 2005; 332:633-9. [PMID: 15925564 DOI: 10.1016/j.bbrc.2005.04.059] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Accepted: 04/04/2005] [Indexed: 11/20/2022]
Abstract
We have previously demonstrated a new cell manipulation technology by using an atomic force microscope (AFM) and ultrathin needles, named nanoneedles. The nanoneedle is an AFM tip etched by a focused ion beam (FIB) and is sharpened from 200 to 800 nm in diameter. In this study, we have evaluated the proper diameter of a needle required for insertion into human cells over a long period without causing cell death, and achieved highly efficient gene expression method for human cells using a nanoneedle and an AFM.
Collapse
Affiliation(s)
- SungWoong Han
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, 3-11-46 Nakoji, Amagasaki, Hyogo 661-0974, Japan
| | | | | | | | | |
Collapse
|
230
|
Timani KA, Liao Q, Ye L, Zeng Y, Liu J, Zheng Y, Ye L, Yang X, Lingbao K, Gao J, Zhu Y. Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS coronavirus. Virus Res 2005; 114:23-34. [PMID: 15992957 PMCID: PMC7114095 DOI: 10.1016/j.virusres.2005.05.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2005] [Revised: 05/10/2005] [Accepted: 05/17/2005] [Indexed: 01/17/2023]
Abstract
A novel coronavirus (CoV) has recently been identified as the aetiological agent of severe acute respiratory syndrome (SARS). Nucleocapsid (N) proteins of the Coronaviridae family have no discernable homology, but they share a common nucleolar-cytoplasmic distribution pattern. There are three putative nuclear localization signal (NLS) motifs present in the N. To determine the role of these putative NLSs in the intracellular localization of the SARS–CoV N, we performed a confocal microscopy analysis using rabbit anti-N antisera. In this report, we show that the wild type N was distributed mainly in the cytoplasm. The N-terminal of the N, which contains the NLS1 (aa38–44), was localized to the nucleus. The C-terminus of the N, which contains both NLS2 (aa257–265) and NLS3 (aa369–390) was localized to the cytoplasm and the nucleolus. Results derived from analysis of various deletion mutations show that the region containing amino acids 226–289 is able to mediate nucleolar localization. The deletion of two hydrophobic regions that flanked the NLS3 recovered its activity and localized to the nucleus. Furthermore, deletion of leucine rich region (220-LALLLLDRLNRL) resulted in the accumulation of N to the cytoplasm and nucleolus, and when fusing this peptide to EGFP localization was cytoplasmic, suggesting that the N may act as a shuttle protein. Differences in nuclear/nucleolar localization properties of N from other members of coronavirus family suggest a unique function for N, which may play an important role in the pathogenesis of SARS.
Collapse
Affiliation(s)
- Khalid Amine Timani
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Kino T, Tiulpakov A, Ichijo T, Chheng L, Kozasa T, Chrousos GP. G protein beta interacts with the glucocorticoid receptor and suppresses its transcriptional activity in the nucleus. J Cell Biol 2005; 169:885-96. [PMID: 15955845 PMCID: PMC2171637 DOI: 10.1083/jcb.200409150] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 04/27/2005] [Indexed: 11/22/2022] Open
Abstract
Extracellular stimuli that activate cell surface receptors modulate glucocorticoid actions via as yet unclear mechanisms. Here, we report that the guanine nucleotide-binding protein (G protein)-coupled receptor-activated WD-repeat Gbeta interacts with the glucocorticoid receptor (GR), comigrates with it into the nucleus and suppresses GR-induced transactivation of the glucocorticoid-responsive genes. Association of Ggamma with Gbeta is necessary for this action of Gbeta. Both endogenous and enhanced green fluorescent protein (EGFP)-fused Gbeta2 and Ggamma2 proteins were detected in the nucleus at baseline, whereas a fraction of EGFP-Gbeta2 and DsRed2-GR comigrated to the nucleus or the plasma membrane, depending on the exposure of cells to dexamethasone or somatostatin, respectively. Gbeta2 was associated with GR/glucocorticoid response elements (GREs) in vivo and suppressed activation function-2-directed transcriptional activity of the GR. We conclude that the Gbetagamma complex interacts with the GR and suppresses its transcriptional activity by associating with the transcriptional complex formed on GR-responsive promoters.
Collapse
Affiliation(s)
- Tomoshige Kino
- Reproductive Biology and Medicine Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
232
|
Choi EA, Hope TJ. Mutational analysis of bovine leukemia virus Rex: identification of a dominant-negative inhibitor. J Virol 2005; 79:7172-81. [PMID: 15890956 PMCID: PMC1112096 DOI: 10.1128/jvi.79.11.7172-7181.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rex proteins of the delta-retroviruses act to facilitate the export of intron-containing viral RNAs. The Rex of bovine leukemia virus (BLV) is poorly characterized. To gain a better understanding of BLV Rex, we generated a reporter assay to measure BLV Rex function and used it to screen a series of point and deletion mutations. Using this approach, we were able to identify the nuclear export signal of BLV Rex. Further, we identified a dominant-negative form of BLV Rex. Protein localization analysis revealed that wild-type BLV Rex had a punctate nuclear localization and was associated with nuclear pores. In contrast, the dominant-negative BLV Rex mutation had a diffuse nuclear localization and no nuclear pore association. Overexpression of the dominant-negative BLV Rex altered the localization of the wild-type protein. This dominant-negative derivative of BLV Rex could be a useful tool to test the concept of intracellular immunization against viral infection in a large animal model.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Amino Acid Sequence
- Animals
- Base Sequence
- Cattle
- Cell Line
- DNA, Viral/genetics
- Gene Products, rex/antagonists & inhibitors
- Gene Products, rex/genetics
- Gene Products, rex/physiology
- Genes, Reporter
- Genes, Viral
- HeLa Cells
- Humans
- Leukemia Virus, Bovine/genetics
- Leukemia Virus, Bovine/pathogenicity
- Leukemia Virus, Bovine/physiology
- Molecular Sequence Data
- Mutation
- Point Mutation
- Sequence Deletion
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Eun-A Choi
- Department of Microbiology and Immunology, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| | | |
Collapse
|
233
|
Thompson ME, Robinson-Benion CL, Holt JT. An Amino-terminal Motif Functions as a Second Nuclear Export Sequence in BRCA1. J Biol Chem 2005; 280:21854-7. [PMID: 15811849 DOI: 10.1074/jbc.m502676200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mutations in the breast cancer susceptibility gene 1 (BRCA1) account for a substantial percentage of familial breast and ovarian cancers. Although BRCA1 is thought to function within the nucleus, it has also been located in the cytoplasm. In addition, BRCA1 accumulates in the nucleus of cells treated with leptomycin B, an inhibitor of chromosome region maintenance 1-mediated nuclear export, indicative of its active nuclear export via this pathway. The nuclear export signal in BRCA1 has been described as consisting of amino acid residues 81-99. However, a number of other tumor suppressors have multiple nuclear export sequences, and we sought to determine whether BRCA1 did also. Here, we report that BRCA1 contains a second nuclear export sequence that comprises amino acid residues 22-30. By use of the human immunodeficiency virus-1 Rev complementation assay, this sequence was shown to confer export capability to an export-defective Rev fusion protein. The level of export activity was comparable with that of residues 81-99 comprising the previously reported nuclear export sequence in BRCA1. Mutation of leucine 28 to an alanine reduced nuclear export by approximately 75%. In MCF-7 cells stably transfected with a BRCA1 cDNA containing mutations in this novel sequence or the previously reported export sequence, BRCA1 accumulated in the nucleus. These data imply that BRCA1 contains at least two leucine-dependent nuclear export sequences.
Collapse
Affiliation(s)
- Marilyn E Thompson
- Department of Biochemistry, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, TN 37208, USA.
| | | | | |
Collapse
|
234
|
Ferrer M, Rodríguez JA, Spierings EA, de Winter JP, Giaccone G, Kruyt FAE. Identification of multiple nuclear export sequences in Fanconi anemia group A protein that contribute to CRM1-dependent nuclear export. Hum Mol Genet 2005; 14:1271-81. [PMID: 15790592 DOI: 10.1093/hmg/ddi138] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Fanconi anemia (FA) pathway plays an important role in maintaining genomic stability, and defects in this pathway cause cancer susceptibility. The FA proteins have been found to function primarily in a nuclear complex, although a cytoplasmic localization and function for several FA proteins has also been reported. In this study, we investigated the possibility that FANCA, FANCC and FANCG are subjected to active export out of the nucleus. After treatment with leptomycin B, a specific inhibitor of CRM1-mediated nuclear export, the accumulation of epitope-tagged FANCA in the nucleus increased, whereas FANCC was affected to a lesser extent and FANCG showed no response. CRM1-mediated export of FANCA was further confirmed using CRM1 cotransfection, which led to a dramatic relocalization of FANCA to the cytoplasm. Five functional leucine-rich nuclear export sequences (NESs) distributed throughout the FANCA sequence were identified and characterized using an in vivo export assay. Simultaneous inactivation of three of these NESs resulted in a discrete but reproducible increase of FANCA nuclear accumulation. However, these NES mutations did not affect the ability of FANCA to complement the mitomycin C or cisplatin sensitivity of FA-A lymphoblasts. Surprisingly, mutations in the other two NESs resulted in an almost complete relocation of the protein to cytoplasm, suggesting that these motifs overlap with domains that are crucial for nuclear import. Taken together, these findings indicate that FANCA can be actively exported out of the nucleus by CRM1, revealing a new mechanism to regulate the function of the FA protein complex.
Collapse
Affiliation(s)
- Miriam Ferrer
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
235
|
Sigoillot FD, Kotsis DH, Serre V, Sigoillot SM, Evans DR, Guy HI. Nuclear localization and mitogen-activated protein kinase phosphorylation of the multifunctional protein CAD. J Biol Chem 2005; 280:25611-20. [PMID: 15890648 DOI: 10.1074/jbc.m504581200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CAD is a multifunctional protein that initiates and regulates mammalian de novo pyrimidine biosynthesis. The activation of the pathway required for cell proliferation is a consequence of the phosphorylation of CAD Thr-456 by mitogen-activated protein (MAP) kinase. Although most of the CAD in the cell was cytosolic, cell fractionation and fluorescence microscopy showed that Thr(P)-456 CAD was primarily localized within the nucleus in association with insoluble nuclear substructures, including the nuclear matrix. CAD in resting cells was cytosolic and unphosphorylated. Upon epidermal growth factor stimulation, CAD moved to the nucleus, and Thr-456 was found to be phosphorylated. Mutation of the CAD Thr-456 and inhibitor studies showed that nuclear import is not mediated by MAP kinase phosphorylation. Two fluorescent CAD constructs, NLS-CAD and NES-CAD, were prepared that incorporated strong nuclear import and export signals, respectively. NLS-CAD was exclusively nuclear and extensively phosphorylated. In contrast, NES-CAD was confined to the cytoplasm, and Thr-456 remained unphosphorylated. Although alternative explanations can be envisioned, it is likely that phosphorylation occurs within the nucleus where much of the activated MAP kinase is localized. Trapping CAD in the nucleus had a minimal effect on pyrimidine metabolism. In contrast, when CAD was excluded from the nucleus, the rate of pyrimidine biosynthesis, the nucleotide pools, and the growth rate were reduced by 21, 36, and 60%, respectively. Thus, the nuclear import of CAD appears to promote optimal cell growth. UMP synthase, the bifunctional protein that catalyzes the last two steps in the pathway, was also found in both the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Frederic D Sigoillot
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
236
|
|
237
|
Kramer-Hämmerle S, Ceccherini-Silberstein F, Bickel C, Wolff H, Vincendeau M, Werner T, Erfle V, Brack-Werner R. Identification of a novel Rev-interacting cellular protein. BMC Cell Biol 2005; 6:20. [PMID: 15847701 PMCID: PMC1097722 DOI: 10.1186/1471-2121-6-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 04/24/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human cell types respond differently to infection by human immunodeficiency virus (HIV). Defining specific interactions between host cells and viral proteins is essential in understanding how viruses exploit cellular functions and the innate strategies underlying cellular control of HIV replication. The HIV Rev protein is a post-transcriptional inducer of HIV gene expression and an important target for interaction with cellular proteins. Identification of Rev-modulating cellular factors may eventually contribute to the design of novel antiviral therapies. RESULTS Yeast-two hybrid screening of a T-cell cDNA library with Rev as bait led to isolation of a novel human cDNA product (16.4.1). 16.4.1-containing fusion proteins showed predominant cytoplasmic localization, which was dependent on CRM1-mediated export from the nucleus. Nuclear export activity of 16.4.1 was mapped to a 60 amino acid region and a novel transport signal identified. Interaction of 16.4.1 with Rev in human cells was shown in a mammalian two-hybrid assay and by colocalization of Rev and 16.4.1 in nucleoli, indicating that Rev can recruit 16.4.1 to the nucleus/nucleoli. Rev-dependent reporter expression was inhibited by overexpressing 16.4.1 and stimulated by siRNAs targeted to 16.4.1 sequences, demonstrating that 16.4.1 expression influences the transactivation function of Rev. CONCLUSION These results suggest that 16.4.1 may act as a modulator of Rev activity. The experimental strategies outlined in this study are applicable to the identification and biological characterization of further novel Rev-interacting cellular factors.
Collapse
Affiliation(s)
- Susanne Kramer-Hämmerle
- Institute of Molecular Virology, GSF-National Research Center for Environment and Health, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Francesca Ceccherini-Silberstein
- Institute of Molecular Virology, GSF-National Research Center for Environment and Health, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome 00133, Italy
| | - Christian Bickel
- Institute of Molecular Virology, GSF-National Research Center for Environment and Health, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Horst Wolff
- Institute of Molecular Virology, GSF-National Research Center for Environment and Health, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Michelle Vincendeau
- Institute of Molecular Virology, GSF-National Research Center for Environment and Health, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Thomas Werner
- Genomatix Software GmbH, Landsbergerstr. 6, D-80339 München, Germany
| | - Volker Erfle
- Institute of Molecular Virology, GSF-National Research Center for Environment and Health, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Ruth Brack-Werner
- Institute of Molecular Virology, GSF-National Research Center for Environment and Health, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| |
Collapse
|
238
|
Knauer SK, Carra G, Stauber RH. Nuclear export is evolutionarily conserved in CVC paired-like homeobox proteins and influences protein stability, transcriptional activation, and extracellular secretion. Mol Cell Biol 2005; 25:2573-82. [PMID: 15767664 PMCID: PMC1061648 DOI: 10.1128/mcb.25.7.2573-2582.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 12/09/2004] [Accepted: 12/15/2004] [Indexed: 11/20/2022] Open
Abstract
Homeodomain transcription factors control a variety of essential cell fate decisions during development. To understand the developmental regulation by these transcription factors, we describe here the molecular analysis of paired-like CVC homeodomain protein (PLC-HDP) trafficking. Complementary experimental approaches demonstrated that PLC-HDP family members are exported by the Crm1 pathway and contain an evolutionary conserved leucine-rich nuclear export signal. Importantly, inactivation of the nuclear export signal enhanced protein stability, resulting in increased transactivation of transfected reporters and decreased extracellular secretion. In addition, PLC-HDPs harbor a conserved active nuclear import signal that could also function as a protein transduction domain. In our study, we characterized PLC-HDPs as mobile nucleocytoplasmic shuttle proteins with the potential for unconventional secretion and intercellular transfer. Nucleocytoplasmic transport may thus represent a conserved control mechanism to fine-tune the transcriptional activity of PLC-HDPs prerequisite for regulating and maintaining the complex expression pattern during development.
Collapse
Affiliation(s)
- Shirley K Knauer
- Georg-Speyer-Haus, Institute for Biomedical Research, Paul-Ehrlich-Str. 42-44, D-60596 Frankfurt, Germany
| | | | | |
Collapse
|
239
|
Kim AJ, Lee CS, Schlessinger D. Bex3 associates with replicating mitochondria and is involved in possible growth control of F9 teratocarcinoma cells. Gene 2005; 343:79-89. [PMID: 15563833 DOI: 10.1016/j.gene.2004.08.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 07/28/2004] [Accepted: 08/12/2004] [Indexed: 01/06/2023]
Abstract
Bex3 expression and possible function in growth control were studied. It was expressed in a limited number of organs, including gonads and hippocampal regions of the brain. Visualized by deconvolution microscopy as a GFP-fusion protein in F9 teratocarcinoma cells, Bex3 localized, along with concentrations of actin, at perinuclear mitochondria that were undergoing active DNA replication. Bex3 association with mitochondria required a nuclear export signal (NES) and the C-terminal four amino acids (CaaX box), and siRNA reduction of Bex3 levels led to slow or negligible growth rates of the F9 cells. Thus, Bex3 may be required in target tissues for mitochondrial function at a distinct phase of the cellular growth cycle.
Collapse
Affiliation(s)
- Ae-Jung Kim
- Laboratory of Genetics, NIA/IRP, National Institute on Aging, Suite 3000, 333 Cassell Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
240
|
Soboleva TA, Jans DA, Johnson-Saliba M, Baker RT. Nuclear-cytoplasmic shuttling of the oncogenic mouse UNP/USP4 deubiquitylating enzyme. J Biol Chem 2005; 280:745-52. [PMID: 15494318 DOI: 10.1074/jbc.m401394200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oncogenic deubiquitylating enzyme (DUB) Unp/Usp4, which binds to the retinoblastoma family of tumor suppressor proteins, was originally described as a nuclear protein. However, more recent studies have shown it to be cytoplasmic. In addition, analysis of its subcellular localization has been complicated by the existence of the paralog Usp15. In this study, we resolved this controversy by investigating the localization of exogenously expressed Usp4 (using red fluorescent protein-Usp4) and of endogenous Usp4 (using highly specific antibodies that can distinguish Usp4 from Usp15). We found that by inhibiting nuclear export with leptomycin B, both exogenous and endogenous Usp4 accumulate in the nucleus. Further, using a Rev-green fluorescent protein-based export assay, we confirmed the existence of a nuclear export signal ((133)VEVYLLELKL(142)) in Usp4. In addition, a functional nuclear import signal ((766)QPQKKKK(772)) was also identified, which was specifically recognized by importin alpha/beta. Finally, we show that the equilibrium of Usp4 subcellular localization varies between different cell types. Usp4 is thus the first DUB reported to have nucleocytoplasmic shuttling properties. The implications of this shuttling for its function as a DUB are discussed.
Collapse
Affiliation(s)
- Tatiana A Soboleva
- Molecular Genetics Group, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | | | |
Collapse
|
241
|
Koroleva OA, Tomlinson ML, Leader D, Shaw P, Doonan JH. High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:162-74. [PMID: 15610358 DOI: 10.1111/j.1365-313x.2004.02281.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We describe a streamlined and systematic method for cloning green fluorescent protein (GFP)-open reading frame (ORF) fusions and assessing their subcellular localization in Arabidopsis thaliana cells. The sequencing of the Arabidopsis genome has made it feasible to undertake genome-based approaches to determine the function of each protein and define its subcellular localization. This is an essential step towards full functional analysis. The approach described here allows the economical handling of hundreds of expressed plant proteins in a timely fashion. We have integrated recombinational cloning of full-length trimmed ORF clones (available from the SSP consortium) with high-efficiency transient transformation of Arabidopsis cell cultures by a hypervirulent strain of Agrobacterium. To demonstrate its utility, we have used a selection of trimmed ORFs, representing a variety of key cellular processes and have defined the localization patterns of 155 fusion proteins. These patterns have been classified into five main categories, including cytoplasmic, nuclear, nucleolar, organellar and endomembrane compartments. Several genes annotated in GenBank as unknown have been ascribed a protein localization pattern. We also demonstrate the application of flow cytometry to estimate the transformation efficiency and cell cycle phase of the GFP-positive cells. This approach can be extended to functional studies, including the precise cellular localization and the prediction of the role of unknown proteins, the confirmation of bioinformatic predictions and proteomic experiments, such as the determination of protein interactions in vivo, and therefore has numerous applications in the post-genomic analysis of protein function.
Collapse
|
242
|
Quélo I, Gauthier C, St-Arnaud R. Casein kinase II phosphorylation regulates alphaNAC subcellular localization and transcriptional coactivating activity. Gene Expr 2005; 12:151-63. [PMID: 16128000 PMCID: PMC6009118 DOI: 10.3727/000000005783992070] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The subcellular localization of the alphaNAC coactivator is regulated, but the signaling pathways controlling its nucleocytoplasmic shuttling and coactivation function are not completely characterized. We report here that casein kinase II (CK2) phosphorylated alphaNAC on several phosphoacceptor sites, especially in an amino-terminal cluster. Deletion or mutation of the clustered CK2 sites induced nuclear accumulation of alphaNAC in cells. alphaNAC also localized to the nucleus when endogenous CK2 activity was inhibited by quercetin or 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). These observations suggested that phosphorylation by CK2 might play a signaling role in the nuclear export of alphaNAC. Interestingly, inhibition of the chromosome region maintenance 1 (CRM1) exportin by leptomycin B (LMB) led to accumulation of alphaNAC in the nucleus. We conclude that CK2 phosphorylation of the N-terminal cluster corresponds to the signal for alphaNAC's nuclear export via a CRM1-dependent pathway. Finally, the nuclear accumulation of the protein resulting from the lack of CK2 phosphorylation mediated a slight but significant increase of the alphaNAC coactivating function on AP-1 transcriptional activity. Thus, alphaNAC's exit from the nucleus and capacity to potentiate transcription appear dependent on its phosphorylation status.
Collapse
Affiliation(s)
- Isabelle Quélo
- *Genetics Unit, Shriners Hospital for Children, Montreal (Quebec) Canada H3G 1A6
| | - Claude Gauthier
- *Genetics Unit, Shriners Hospital for Children, Montreal (Quebec) Canada H3G 1A6
| | - René St-Arnaud
- *Genetics Unit, Shriners Hospital for Children, Montreal (Quebec) Canada H3G 1A6
- †Departments of Medicine, Surgery and Human Genetics, McGill University, Montreal (Quebec), Canada H3A 2T5
| |
Collapse
|
243
|
Wiedłocha A, Nilsen T, Wesche J, Sørensen V, Małecki J, Marcinkowska E, Olsnes S. Phosphorylation-regulated nucleocytoplasmic trafficking of internalized fibroblast growth factor-1. Mol Biol Cell 2004; 16:794-810. [PMID: 15574884 PMCID: PMC545912 DOI: 10.1091/mbc.e04-05-0389] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Fibroblast growth factor-1 (FGF-1), which stimulates cell growth, differentiation, and migration, is capable of crossing cellular membranes to reach the cytosol and the nucleus in cells containing specific FGF receptors. The cell entry process can be monitored by phosphorylation of the translocated FGF-1. We present evidence that phosphorylation of FGF-1 occurs in the nucleus by protein kinase C (PKC)delta. The phosphorylated FGF-1 is subsequently exported to the cytosol. A mutant growth factor where serine at the phosphorylation site is exchanged with glutamic acid, to mimic phosphorylated FGF-1, is constitutively transported to the cytosol, whereas a mutant containing alanine at this site remains in the nucleus. The export can be blocked by leptomycin B, indicating active and receptor-mediated nuclear export of FGF-1. Thapsigargin, but not leptomycin B, prevents the appearance of active PKCdelta in the nucleus, and FGF-1 is in this case phosphorylated in the cytosol. Leptomycin B increases the amount of phosphorylated FGF-1 in the cells by preventing dephosphorylation of the growth factor, which seems to occur more rapidly in the cytoplasm than in the nucleus. The nucleocytoplasmic trafficking of the phosphorylated growth factor is likely to play a role in the activity of internalized FGF-1.
Collapse
Affiliation(s)
- Antoni Wiedłocha
- Institute for Cancer Research, The Norwegian Radium Hospital, 0310 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
244
|
Kurooka H, Yokota Y. Nucleo-cytoplasmic shuttling of Id2, a negative regulator of basic helix-loop-helix transcription factors. J Biol Chem 2004; 280:4313-20. [PMID: 15563451 DOI: 10.1074/jbc.m412614200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Id proteins function as negative regulators for basic helix-loop-helix transcriptional factors that play important roles in cell fate determination. They preferentially associate with ubiquitously expressed E proteins of the basic helix-loop-helix family and prevent them from binding to DNA and activating transcription. Although their small size suggests that Id proteins enter and exit the nucleus by passive diffusion, several studies have indicated that other pathways may regulate their subcellular localization. In this study, we obtained evidence that Id2 has the ability to shuttle between the nucleus and the cytoplasm. When passive diffusion was prevented by fusion with green fluorescent protein (GFP), Id2 was predominantly localized in the cytoplasm. Using GFP fusion constructs, we demonstrated that the C-terminal region is required for cytoplasmic localization. Nuclear accumulation of GFP-Id2 in cells treated with the nuclear export inhibitor leptomycin B suggests that the nuclear export receptor chromosome region maintenance protein 1 mediates the cytoplasmic localization of Id2. Id2 contains two putative leucine-rich nuclear export signals, and the nuclear export signal in the C-terminal region is essential for nuclear export. On the other hand, the helix-loop-helix domain is important for nuclear localization. Finally, experiments using reporter assays revealed an inverse correlation between nuclear export and transcriptional repression via the E-box sequence. Based on all these findings, we propose that nucleo-cytoplasmic shuttling is a novel mechanism for the regulation of Id2 function.
Collapse
Affiliation(s)
- Hisanori Kurooka
- Department of Molecular Genetics, School of Medicine, University of Fukui, 23-3, Shimoaizuki, Matsuoka, Fukui 910-1193, Japan
| | | |
Collapse
|
245
|
Chen X, Dai JC, Orellana SA, Greenfield EM. Endogenous protein kinase inhibitor gamma terminates immediate-early gene expression induced by cAMP-dependent protein kinase (PKA) signaling: termination depends on PKA inactivation rather than PKA export from the nucleus. J Biol Chem 2004; 280:2700-7. [PMID: 15557275 DOI: 10.1074/jbc.m412558200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of many genes induced by cAMP-dependent protein kinase (PKA) signaling is rapidly terminated. Although many mechanisms contribute to regulation of PKA signaling, members of the endogenous protein kinase inhibitor (PKI) family may be particularly important for terminating nuclear PKA activity and gene expression. Here we used both siRNA and antisense knockdown strategies to examine PKA signaling activated by parathyroid hormone or the beta-adrenergic agonist, isoproterenol. We found that endogenous PKIgamma is required for efficient termination of nuclear PKA activity, transcription factor phosphorylation, and immediate-early genes. Moreover, PKIgamma is required for export of PKA catalytic subunits from the nucleus back to the cytoplasm following activation of PKA signaling because this is also inhibited by PKIgamma knockdown. Leptomycin B blocks PKA nuclear export but has little or no effect on nuclear PKA activity or immediate-early gene expression. Thus, inactivation of PKA activity in the nucleus is sufficient to terminate signaling, and nuclear export is not required. These results were the first in any cell type showing that endogenous levels of PKI regulate PKA signaling.
Collapse
Affiliation(s)
- Xin Chen
- Orthopaedics, Pediatrics, Physiology and Biophysics, and Pathology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106-5000, USA
| | | | | | | |
Collapse
|
246
|
Tremper-Wells B, Vallano ML. Nuclear calpain regulates Ca2+-dependent signaling via proteolysis of nuclear Ca2+/calmodulin-dependent protein kinase type IV in cultured neurons. J Biol Chem 2004; 280:2165-75. [PMID: 15537635 DOI: 10.1074/jbc.m410591200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidence indicates that calpains can reside in or translocate to the cell nucleus, but their functions in this compartment remain poorly understood. Dissociated cultures of cerebellar granule cells (GCs) demonstrate improved long-term survival when their growth medium is supplemented with depolarizing agents that stimulate Ca(2+) influx and activate calmodulin-dependent signaling cascades, notably 20 mm KCl. We previously observed Ca(2+)-dependent down-regulation of Ca(2+)/calmodulin-dependent protein kinase (CaMK) type IV, which was attenuated by calpain inhibitors, in GCs supplemented with 20 mm KCl (Tremper-Wells, B., Mathur, A., Beaman-Hall, C. M., and Vallano, M. L. (2002) J. Neurochem. 81, 314-324). CaMKIV is highly enriched in the nucleus and thought to be critical for improved survival. Here, we demonstrate by immunolocalization/confocal microscopy and subcellular fractionation that the regulatory and catalytic subunits of m-calpain are enriched in GC nuclei, including GCs grown in medium containing 5 mm KCl. Calpain-mediated proteolysis of CaMKIV is selective, as several other nuclear and non-nuclear calpain substrates were not degraded under chronic depolarizing culture conditions. Depolarization and Ca(2+)-dependent down-regulation of CaMKIV were associated with significant alterations in other components of the Ca(2+)-CaMKIV signaling cascade: the ratio of phosphorylated to total cAMP response element-binding protein (a downstream CaMKIV substrate) was reduced by approximately 10-fold, and the amount of CaMK kinase (an upstream activator of CaMKIV) protein and mRNA was significantly reduced. We hypothesize that calpain-mediated CaMKIV proteolysis is an autoregulatory feedback response to sustained activation of a Ca(2+)-CaMKIV signaling pathway, resulting from growth of cultures in medium containing 25 mm KCl. This study establishes nuclear m-calpain as a regulator of CaMKIV and associated signaling molecules under conditions of sustained Ca(2+) influx.
Collapse
Affiliation(s)
- Barbara Tremper-Wells
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
247
|
Morris RL, English CN, Lou JE, Dufort FJ, Nordberg J, Terasaki M, Hinkle B. Redistribution of the kinesin-II subunit KAP from cilia to nuclei during the mitotic and ciliogenic cycles in sea urchin embryos. Dev Biol 2004; 274:56-69. [PMID: 15355788 DOI: 10.1016/j.ydbio.2004.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 06/17/2004] [Accepted: 06/18/2004] [Indexed: 11/25/2022]
Abstract
KAP is the non-motor subunit of the heteromeric plus-end directed microtubule (MT) motor protein kinesin-II essential for normal cilia formation. Studies in Chlamydomonas have demonstrated that kinesin-II drives the anterograde intraflagellar transport (IFT) of protein complexes along ciliary axonemes. We used a green fluorescent protein (GFP) chimera of KAP, KAP-GFP, to monitor movements of this kinesin-II subunit in cells of sea urchin blastulae where cilia are retracted and rebuilt with each mitosis. As expected if involved in IFT, KAP-GFP localized to apical cytoplasm, basal bodies, and cilia and became concentrated on basal bodies of newly forming cilia. Surprisingly, after ciliary retraction early in mitosis, KAP-GFP moved into nuclei before nuclear envelope breakdown, was again present in nuclei after nuclear envelope reformation, and only decreased in nuclei as ciliogenesis reinitiated. Nuclear transport of KAP-GFP could be due to a putative nuclear localization signal and nuclear export signals identified in the sea urchin KAP primary sequence. Our observation of a protein involved in IFT being imported into the nucleus after ciliary retraction and again after nuclear envelope reformation suggests KAP115 may serve as a signal to the nucleus to reinitiate cilia formation during sea urchin development.
Collapse
Affiliation(s)
- Robert L Morris
- Department of Biology, Wheaton College, Norton, MA 02766, USA.
| | | | | | | | | | | | | |
Collapse
|
248
|
Lin XF, Zhao BX, Chen HZ, Ye XF, Yang CY, Zhou HY, Zhang MQ, Lin SC, Wu Q. RXRalpha acts as a carrier for TR3 nuclear export in a 9-cis retinoic acid-dependent manner in gastric cancer cells. J Cell Sci 2004; 117:5609-21. [PMID: 15494375 DOI: 10.1242/jcs.01474] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Retinoid X receptor (RXR) plays a crucial role in the cross talk between retinoid receptors and other hormone receptors including the orphan receptor TR3, forming different heterodimers that transduce diverse steroid/thyroid hormone signaling. Here we show that RXRalpha exhibits nucleocytoplasmic shuttling in MGC80-3 gastric cancer cells and that RXRalpha shuttling is energy-dependent through a nuclear pore complex (NPC)-mediated pathway for its import and an intact DNA binding domain-mediated pathway for its export. In the presence of its ligand 9-cis retinoic acid, RXRalpha was almost exclusively located in the cytoplasm. More importantly, we also show that RXRalpha acts as a carrier to assist translocation of TR3, which plays an important role in apoptosis. Both RXRalpha and TR3 colocalized in the nucleus; however, upon stimulation by 9-cis retinoic acid they cotranslocated to the cytoplasm and then localized in the mitochondria. TR3 export depends on RXRalpha, as in living cells GFP-TR3 alone did not result in export from the nucleus even in the presence of 9-cis retinoic acid, whereas GFP-TR3 cotransfected with RXRalpha was exported out of the nucleus in response to 9-cis retinoic acid. Moreover, specific reduction of RXRalpha levels caused by anti-sense RXRalpha abolished TR3 nuclear export. In contrast, specific knockdown of TR3 by antisense-TR3 or TR3-siRNA did not affect RXRalpha shuttling. These results indicate that RXRalpha is responsible for TR3 nucleocytoplasmic translocation, which is facilitated by the RXRalpha ligand 9-cis retinoic acid. In addition, mitochondrial TR3, but not RXRalpha, was critical for apoptosis, as TR3 mutants that were distributed in the mitochondria induced apoptosis in the presence or absence of 9-cis retinoic acid. These data reveal a novel aspect of RXRalpha function, in which it acts as a carrier for nucleocytoplasmic translocation of orphan receptors.
Collapse
Affiliation(s)
- Xiao-Feng Lin
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361005, China
| | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Menon RP, Gibson TJ, Pastore A. The C Terminus of Fragile X Mental Retardation Protein Interacts with the Multi-domain Ran-binding Protein in the Microtubule-organising Centre. J Mol Biol 2004; 343:43-53. [PMID: 15381419 DOI: 10.1016/j.jmb.2004.08.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 08/09/2004] [Accepted: 08/10/2004] [Indexed: 01/16/2023]
Abstract
Absence of the fragile X mental retardation protein (FMRP) causes fragile X syndrome, the most common form of hereditary mental retardation. FMRP is a mainly cytoplasmic protein thought to be involved in repression of translation, through a complex network of protein-protein and protein-RNA interactions. Most of the currently known protein partners of FMRP recognise the conserved N terminus of the protein. No interaction has yet been mapped to the highly charged, poorly conserved C terminus, so far thought to be involved in RNA recognition through an RGG motif. In the present study, we show that a two-hybrid bait containing residues 419-632 of human FMRP fishes out a protein that spans the sequence of the Ran-binding protein in the microtubule-organising centre (RanBPM/RanBP9). Specific interaction of RanBPM with FMRP was confirmed by in vivo and in vitro assays. In brain tissue sections, RanBPM is highly expressed in the neurons of cerebral cortex and the cerebellar purkinje cells, in a pattern similar to that described for FMRP. Sequence analysis shows that RanBPM is a multi-domain protein. The interaction with FMRP was mapped in a newly identified CRA motif present in the RanBPM C terminus. Our results suggest that the functional role of RanBPM binding is modulation of the RNA-binding properties of FMRP.
Collapse
Affiliation(s)
- Rajesh P Menon
- National Institute for Medical Research, London NW7 1AA, UK.
| | | | | |
Collapse
|
250
|
Kropotov AV, Grudinkin PS, Pleskach NM, Gavrilov BA, Tomilin NV, Zhivotovsky B. Downregulation of peroxiredoxin V stimulates formation of etoposide-induced double-strand DNA breaks. FEBS Lett 2004; 572:75-9. [PMID: 15304327 DOI: 10.1016/j.febslet.2004.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 07/08/2004] [Accepted: 07/08/2004] [Indexed: 01/17/2023]
Abstract
Antioxidant protein Peroxiredoxin V (PrxV) is located in mitochondria and peroxisomes but is also present in the nucleus. Here, we show that nuclear PrxV associates with coilin-containing bodies suggesting possible interaction of this protein with transcription complexes. We also studied etoposide-induced phosphorylation of histone H2AX (gamma-H2AX) in human cells in which PrxV activity was downregulated (knockdown, KD-clones) or compromised by overexpression of redox-negative (RD) protein. In KD clones, but not in RD-clones, formation of etoposide-induced gamma-H2AX was increased, indicating that PrxV inhibits conversion of topoisomerase II cleavage complexes into double-strand DNA breaks but this inhibition is not caused by its antioxidant activity.
Collapse
Affiliation(s)
- Andrei V Kropotov
- Institute of Cytology, Russian Academy of Sciences, Tikchoretskii Av.4, 194064 St. Petersburg, Russia
| | | | | | | | | | | |
Collapse
|