201
|
Rezaei Z, Mobasheri L, Sadri F. Molecular Insights into COVID-19 Pathophysiology, Immune Pathogenesis, Detection, and Treatment. DNA Cell Biol 2021; 40:858-868. [PMID: 33989051 DOI: 10.1089/dna.2021.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In late December 2019, a new kind of Coronavirus called severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) was officially identified in Wuhan, China. In March 2020, SARS-CoV-2 was declared a pandemic by the World Health Organization (WHO), and it has infected millions of people worldwide. SARS-CoV-2 is a highly contagious Coronavirus, which has led to an outbreak of acute respiratory tract infection called "Coronavirus disease 2019" (COVID-19), resulting in mild to severe respiratory infections in humans. The design of appropriate therapeutic approaches is dependent on the understanding of molecular and cellular pathways of Coronavirus infections. In this study, we summarized the characteristic features of SARS-CoV-2. In addition, we considered the recent information regarding COVID-19 molecular immune pathogenesis, diagnosis, and potential treatment, which may provide novel perspectives and therapeutic goals in combating SARS-CoV-2.
Collapse
Affiliation(s)
- Zohreh Rezaei
- Department of Biology, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran.,Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Leila Mobasheri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Medical Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| |
Collapse
|
202
|
Bandala C, Cortes-Altamirano JL, Reyes-Long S, Lara-Padilla E, Ilizaliturri-Flores I, Alfaro-Rodríguez A. Putative mechanism of neurological damage in COVID-19 infection. Acta Neurobiol Exp (Wars) 2021; 81:69-79. [PMID: 33949163 DOI: 10.21307/ane-2021-008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/28/2021] [Indexed: 11/11/2022]
Abstract
The recent pandemic of the coronavirus infectious disease 2019 (COVID-19) has affected around 192 countries, and projections have shown that around 40% to 70% of world population could be infected in the next months. COVID-19 is caused by the virus SARS- CoV-2, it enters the cells through the ACE2 receptor (angiotensin converting enzyme 2). It is well known that SARS-CoV-2 could develop mild, moderate, and severe respiratory symptoms that could lead to death. The virus receptor is expressed in different organs such as the lungs, kidney, intestine, and brain, among others. In the lung could cause pneumonia and severe acute respiratory syndrome (SARS). The brain can be directly affected by cellular damage due to viral invasion, which can lead to an inflammatory response, by the decrease in the enzymatic activity of ACE2 that regulates neuroprotective, neuro-immunomodulatory and neutralizing functions of oxidative stress. Another severe damage is hypoxemia in patients that do not receive adequate respiratory support. The neurological symptoms that the patient presents, will depend on factors that condition the expression of ACE2 in the brain such as age and sex, as well as the mechanism of neuronal invasion, the immune response and the general state of the patient. Clinical and histopathological studies have described neurological alterations in human patients with COVID-19. These conditions could have a possible contribution to the morbidity and mortality caused by this disease and may even represent the onset of neurodegenerative activity in recovered patients. The recent pandemic of the coronavirus infectious disease 2019 (COVID-19) has affected around 192 countries, and projections have shown that around 40% to 70% of world population could be infected in the next months. COVID-19 is caused by the virus SARS- CoV-2, it enters the cells through the ACE2 receptor (angiotensin converting enzyme 2). It is well known that SARS-CoV-2 could develop mild, moderate, and severe respiratory symptoms that could lead to death. The virus receptor is expressed in different organs such as the lungs, kidney, intestine, and brain, among others. In the lung could cause pneumonia and severe acute respiratory syndrome (SARS). The brain can be directly affected by cellular damage due to viral invasion, which can lead to an inflammatory response, by the decrease in the enzymatic activity of ACE2 that regulates neuroprotective, neuro-immunomodulatory and neutralizing functions of oxidative stress. Another severe damage is hypoxemia in patients that do not receive adequate respiratory support. The neurological symptoms that the patient presents, will depend on factors that condition the expression of ACE2 in the brain such as age and sex, as well as the mechanism of neuronal invasion, the immune response and the general state of the patient. Clinical and histopathological studies have described neurological alterations in human patients with COVID-19. These conditions could have a possible contribution to the morbidity and mortality caused by this disease and may even represent the onset of neurodegenerative activity in recovered patients.
Collapse
Affiliation(s)
- Cindy Bandala
- División de Neurociencias , Instituto Nacional de Rehabilitación , México ; Escuela Superior de Medicina , Instituto Politécnico Nacional , México
| | - José Luis Cortes-Altamirano
- División de Neurociencias , Instituto Nacional de Rehabilitación , México ; Universidad Estatal del Valle de Ecatepec , México
| | - Samuel Reyes-Long
- División de Neurociencias , Instituto Nacional de Rehabilitación , México ; Escuela Superior de Medicina , Instituto Politécnico Nacional , México
| | | | | | | |
Collapse
|
203
|
Harmful Effects of COVID-19 on Major Human Body Organs: A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The world experienced the outbreak of a new pandemic disease in 2019, known as coronavirus (CoV) disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome-CoV-2 (SARS-CoV-2). The respiratory system is the organ system most commonly affected by COVID-19; however, several other organ systems have been reported to be affected. The SARS-CoV-2 RNA found in infected stub samples can cause lung contagion by binding to the angiotensin-converting enzyme-2 (ACE-2) receptor of the alveolar epithelial cells. The gut microbiota (GM) promote immunity, indicating that the alignment of the microbiota and corresponding metabolic processes in COVID-19 can help to identify novel biomarkers and new therapeutic targets for this disease. The cause of kidney damage in COVID-19 patients is possibly multifactorial, involving a complex mechanism that involves complement dysregulation and thrombotic microangiopathy, as well as the occurrence of a “cytokine storm” syndrome, which are immune responses that are abandoned and dysfunctional with unfavorable prognosis in severe COVID-19 cases. Furthermore, COVID-19 involves a continuous proliferation and activation of macrophages and lymphocytes. SARS-CoV-2 can also bind to the ACE-2 receptor expressed in the cerebral capillary endothelial cells that can invade the blood-brain wall, to penetrate the brain parenchyma. However, in the ongoing pandemic, there has been a surge in studies on a wide range of topics, including causes of respiratory failure, asymptomatic patients, intensive care patients, and survivors. This review briefly describes the damaging effects of COVID-19 on vital human organs and the inhibitory function of the ACE-2 receptor on the GM, which causes gut dysbiosis, and thus, this review discusses topics that have an opportunity for further investigation.
Collapse
|
204
|
El-Nakeep S. To vaccinate or not to vaccinate; that is the question! (New insights on COVID-19 Vaccination). Curr Mol Med 2021; 22:567-571. [PMID: 33982651 DOI: 10.2174/1566524021666210512012315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
AIM This is a mini-review of the literature; to discuss the obstacles and benefits of vaccination in the era of current pandemic, either the COVID-19 vaccines, which are on their way to be released or the influenza vaccines. There is much debate concerning their effectiveness on ameliorating the severity of the COVID-19 pandemic. METHODOLOGY Searching the literature till November 2020 in the PubMed database. RESULTS Pathophysiology behind the COVID-19 vaccination obstacles is discussed in detail with future hopes. Influenza vaccination during the debate of the pandemic is also discussed with the most recent guidelines. CONCLUSIONS During the COVID-19 pandemic, influenza vaccination is mandatory for all individuals provided no contraindications. Three SARS-CoV-2 vaccines are being released , while FDA approval for monoclonal antibodies for the treatment of at-risk outpatients to lower hospitalization rates is ongoing.
Collapse
|
205
|
Wardhani SO, Fajar JK, Nurarifah N, Hermanto DH, Fatonah S, Djajalaksana S, Fatoni AZ, Arsana PM, Wulandari L, Soegiarto G, Dhama K, Harapan H. The predictors of high titer of anti-SARS-CoV-2 antibody of convalescent plasma donors. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2021; 11:100763. [PMID: 33997476 PMCID: PMC8108475 DOI: 10.1016/j.cegh.2021.100763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/10/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022] Open
Abstract
Background Recent evidence suggested that the higher titers of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody from convalescent plasma donors contributed to the clinical improvement in coronavirus disease 2019 (COVID-19) patients. However, the titers of anti-SARS-CoV-2 antibodies varied in each individual, and the precise factors that might govern such variation have not been elucidated. Objectives To assess the factors associated with high titers of anti-SARS-CoV-2 antibody among COVID-19 convalescent plasma (CCP) donors. Methods A cross-sectional study was conducted in Saiful Anwar General Hospital, Malang, Indonesia. Information of interest including demographic characteristics, clinical symptoms, comorbidities, laboratory findings, and the titers of anti-SARS-CoV-2 antibody among COVID-19 CCP donors were collected. The correlation was assessed using multiple logistic regression. Results A total of 50 COVID-19 CCP donors with the titers of anti-SARS-CoV-2 antibody of more than 1:320 and 33 donors with the titers of less than 1:320 were analyzed. Our analysis revealed that CCP donors with history of cough, fever, dyspnea, and pneumonia significantly had higher titers of anti-SARS-CoV-2 antibody compared to asymptomatic donors. Moreover, CCP donors with elevated levels of eosinophils and immature granulocytes and low levels of albumins had higher levels of anti-SARS-CoV-2 antibody. The titer of antibody was not affected by comorbidities of donors. Conclusions CPP donors who had experience of symptomatic COVID-19 with high eosinophils level, high immature granulocytes and low albumin level have higher titers of anti-SARS-COV-2 antibody than those who experienced asymptomatic COVID-19. Our current findings may be used as the additional baseline criteria for selecting the donors of CCP for the management of COVID-19.
Collapse
Affiliation(s)
- Shinta Oktya Wardhani
- Division of Hematology and Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, 65145, Indonesia
| | - Jonny Karunia Fajar
- Brawijaya Internal Medicine Research Center, Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, 65145, Indonesia
| | - Nina Nurarifah
- Division of Hematology and Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, 65145, Indonesia
| | - Djoko Heri Hermanto
- Division of Hematology and Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, 65145, Indonesia
| | - Siti Fatonah
- Department Clinical Pathology, Faculty of Medicine, Universitas Brawijaya, Malang, 65145, Indonesia
| | - Susanthy Djajalaksana
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, 65145, Indonesia
| | - Arie Zainul Fatoni
- Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia
| | - Putu Moda Arsana
- Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, 65145, Indonesia
| | - Laksmi Wulandari
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60286, Indonesia
| | - Gatot Soegiarto
- Division of Allergy & Immunology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60286, Indonesia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.,Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.,Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| |
Collapse
|
206
|
Wehbe Z, Hammoud SH, Yassine HM, Fardoun M, El-Yazbi AF, Eid AH. Molecular and Biological Mechanisms Underlying Gender Differences in COVID-19 Severity and Mortality. Front Immunol 2021; 12:659339. [PMID: 34025658 PMCID: PMC8138433 DOI: 10.3389/fimmu.2021.659339] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Globally, over two million people have perished due to the recent pandemic caused by SARS-CoV-2. The available epidemiological global data for SARS-CoV-2 portrays a higher rate of severity and mortality in males. Analyzing gender differences in the host mechanisms involved in SARS-CoV-2 infection and progression may offer insight into the more detrimental disease prognosis and clinical outcome in males. Therefore, we outline sexual dimorphisms which exist in particular host factors and elaborate on how they may contribute to the pronounced severity in male COVID-19 patients. This includes disparities detected in comorbidities, the ACE2 receptor, renin-angiotensin system (RAS), signaling molecules involved in SARS-CoV-2 replication, proteases which prime viral S protein, the immune response, and behavioral considerations. Moreover, we discuss sexual disparities associated with other viruses and a possible gender-dependent response to SARS-CoV-2 vaccines. By specifically highlighting these immune-endocrine processes as well as behavioral factors that differentially exist between the genders, we aim to offer a better understanding in the variations of SARS-CoV-2 pathogenicity.
Collapse
Affiliation(s)
- Zena Wehbe
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Safaa Hisham Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | | | - Manal Fardoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qatar University Health, Qatar University, Doha, Qatar
| |
Collapse
|
207
|
Ahmadian E, Hosseiniyan Khatibi SM, Razi Soofiyani S, Abediazar S, Shoja MM, Ardalan M, Zununi Vahed S. Covid-19 and kidney injury: Pathophysiology and molecular mechanisms. Rev Med Virol 2021; 31:e2176. [PMID: 33022818 PMCID: PMC7646060 DOI: 10.1002/rmv.2176] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022]
Abstract
The novel coronavirus (SARS-CoV-2) has turned into a life-threatening pandemic disease (Covid-19). About 5% of patients with Covid-19 have severe symptoms including septic shock, acute respiratory distress syndrome, and the failure of several organs, while most of them have mild symptoms. Frequently, the kidneys are involved through direct or indirect mechanisms. Kidney involvement mainly manifests itself as proteinuria and acute kidney injury (AKI). The SARS-CoV-2-induced kidney damage is expected to be multifactorial; directly it can infect the kidney podocytes and proximal tubular cells and based on an angiotensin-converting enzyme 2 (ACE2) pathway it can lead to acute tubular necrosis, protein leakage in Bowman's capsule, collapsing glomerulopathy and mitochondrial impairment. The SARS-CoV-2-driven dysregulation of the immune responses including cytokine storm, macrophage activation syndrome, and lymphopenia can be other causes of the AKI. Organ interactions, endothelial dysfunction, hypercoagulability, rhabdomyolysis, and sepsis are other potential mechanisms of AKI. Moreover, lower oxygen delivery to kidney may cause an ischaemic injury. Understanding the fundamental molecular pathways and pathophysiology of kidney injury and AKI in Covid-19 is necessary to develop management strategies and design effective therapies.
Collapse
Affiliation(s)
- Elham Ahmadian
- Kidney Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Saiedeh Razi Soofiyani
- Clinical Research Development UnitSina Educational, Research and Treatment CenterTabriz University of Medical SciencesTabrizIran
| | - Sima Abediazar
- Kidney Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammadali M. Shoja
- Department of SurgeryUniversity of Illinois at Chicago‐Metropolitan Group Hospitals (UIC‐MGH)ChicagoIllinoisUSA
| | | | | |
Collapse
|
208
|
Suh JS, Kim HS, Kim TJ. Development of a SARS-CoV-2-derived receptor-binding domain-based ACE2 biosensor. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 334:129663. [PMID: 33612970 PMCID: PMC7885701 DOI: 10.1016/j.snb.2021.129663] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 05/05/2023]
Abstract
The global outbreak of coronavirus disease and rapid spread of the causative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represent a significant threat to human health. A key mechanism of human SARS-CoV-2 infection is initiated by the combination of human angiotensin-converting enzyme 2 (hACE2) and the receptor-binding domain (RBD) of the SARS-CoV-2-derived spike glycoprotein. Despite the importance of these protein interactions, there are still insufficient detection methods to observe their activity at the cellular level. Herein, we developed a novel fluorescence resonance energy transfer (FRET)-based hACE2 biosensor to monitor the interaction between hACE2 and SARS-CoV-2 RBD. This biosensor facilitated the visualization of hACE2-RBD activity with high spatiotemporal resolutions at the single-cell level. Further studies revealed that the FRET-based hACE2 biosensors were sensitive to both exogenous and endogenous hACE2 expression, suggesting that they might be safely applied to the early stage of SARS-CoV-2 infection without direct virus use. Therefore, our novel biosensor could potentially help develop drugs that target SARS-CoV-2 by inhibiting hACE2-RBD interaction.
Collapse
Key Words
- ACE2
- Biosensor
- CQ, chloroquine
- FRET
- HCQ, hydroxychloroquine
- Live-cell imaging
- NA, numerical aperture
- RBD, receptor-binding domain
- RBM, receptor-binding motif
- ROI, region of interest
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SEM, standard error of the mean
- bg, background
- hACE2, human angiotensin-converting enzyme 2
Collapse
Affiliation(s)
- Jung-Soo Suh
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Heon-Su Kim
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea
- Department of Biological Sciences, Pusan National University, Pusan 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Pusan 46241, Republic of Korea
| |
Collapse
|
209
|
Pan Y, Gao F, Zhao S, Han J, Chen F. Role of the SphK-S1P-S1PRs pathway in invasion of the nervous system by SARS-CoV-2 infection. Clin Exp Pharmacol Physiol 2021; 48:637-650. [PMID: 33565127 PMCID: PMC8014301 DOI: 10.1111/1440-1681.13483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 01/08/2023]
Abstract
Global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing. Before an effective vaccine is available, the development of potential treatments for resultant coronavirus disease 2019 (COVID-19) is crucial. One of the disease hallmarks is hyper-inflammatory responses, which usually leads to a severe lung disease. Patients with COVID-19 also frequently suffer from neurological symptoms such as acute diffuse encephalomyelitis, brain injury and psychiatric complications. The metabolic pathway of sphingosine-1-phosphate (S1P) is a dynamic regulator of various cell types and disease processes, including the nervous system. It has been demonstrated that S1P and its metabolic enzymes, regulating neuroinflammation and neurogenesis, exhibit important functions during viral infection. S1P receptor 1 (S1PR1) analogues including AAL-R and RP-002 inhibit pathophysiological responses at the early stage of H1N1 virus infection and then play a protective role. Fingolimod (FTY720) is an S1P receptor modulator and is being tested for treating COVID-19. Our review provides an overview of SARS-CoV-2 infection and critical role of the SphK-S1P-SIPR pathway in invasion of SARS-CoV-2 infection, particularly in the central nervous system (CNS). This may help design therapeutic strategies based on the S1P-mediated signal transduction, and the adjuvant therapeutic effects of S1P analogues to limit or prevent the interaction between the host and SARS-CoV-2, block the spread of the SARS-CoV-2, and consequently treat related complications in the CNS.
Collapse
Affiliation(s)
- Yuehai Pan
- Department of Hand and Foot SurgeryThe Affiliated Hospital of Qingdao UniversityShangdongChina
| | - Fei Gao
- Department of Hand and Foot SurgeryThe Affiliated Hospital of Qingdao UniversityShangdongChina
| | - Shuai Zhao
- Department of AnesthesiologyBonn UniversityBonnGermany
| | - Jinming Han
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Fan Chen
- Department of NeurosurgeryThe Affiliated Hospital of Qingdao UniversityShangdongChina
| |
Collapse
|
210
|
Sonnweber T, Sahanic S, Pizzini A, Luger A, Schwabl C, Sonnweber B, Kurz K, Koppelstätter S, Haschka D, Petzer V, Boehm A, Aichner M, Tymoszuk P, Lener D, Theurl M, Lorsbach-Köhler A, Tancevski A, Schapfl A, Schaber M, Hilbe R, Nairz M, Puchner B, Hüttenberger D, Tschurtschenthaler C, Aßhoff M, Peer A, Hartig F, Bellmann R, Joannidis M, Gollmann-Tepeköylü C, Holfeld J, Feuchtner G, Egger A, Hoermann G, Schroll A, Fritsche G, Wildner S, Bellmann-Weiler R, Kirchmair R, Helbok R, Prosch H, Rieder D, Trajanoski Z, Kronenberg F, Wöll E, Weiss G, Widmann G, Löffler-Ragg J, Tancevski I. Cardiopulmonary recovery after COVID-19: an observational prospective multicentre trial. Eur Respir J 2021; 57:13993003.03481-2020. [PMID: 33303539 PMCID: PMC7736754 DOI: 10.1183/13993003.03481-2020] [Citation(s) in RCA: 289] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND After the 2002/2003 severe acute respiratory syndrome outbreak, 30% of survivors exhibited persisting structural pulmonary abnormalities. The long-term pulmonary sequelae of coronavirus disease 2019 (COVID-19) are yet unknown, and comprehensive clinical follow-up data are lacking. METHODS In this prospective, multicentre, observational study, we systematically evaluated the cardiopulmonary damage in subjects recovering from COVID-19 at 60 and 100 days after confirmed diagnosis. We conducted a detailed questionnaire, clinical examination, laboratory testing, lung function analysis, echocardiography and thoracic low-dose computed tomography (CT). RESULTS Data from 145 COVID-19 patients were evaluated, and 41% of all subjects exhibited persistent symptoms 100 days after COVID-19 onset, with dyspnoea being most frequent (36%). Accordingly, patients still displayed an impaired lung function, with a reduced diffusing capacity in 21% of the cohort being the most prominent finding. Cardiac impairment, including a reduced left ventricular function or signs of pulmonary hypertension, was only present in a minority of subjects. CT scans unveiled persisting lung pathologies in 63% of patients, mainly consisting of bilateral ground-glass opacities and/or reticulation in the lower lung lobes, without radiological signs of pulmonary fibrosis. Sequential follow-up evaluations at 60 and 100 days after COVID-19 onset demonstrated a vast improvement of symptoms and CT abnormalities over time. CONCLUSION A relevant percentage of post-COVID-19 patients presented with persisting symptoms and lung function impairment along with radiological pulmonary abnormalities >100 days after the diagnosis of COVID-19. However, our results indicate a significant improvement in symptoms and cardiopulmonary status over time.
Collapse
Affiliation(s)
- Thomas Sonnweber
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria.,Contributed equally as first authors
| | - Sabina Sahanic
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria.,Contributed equally as first authors
| | - Alex Pizzini
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Luger
- Dept of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Schwabl
- Dept of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Katharina Kurz
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Sabine Koppelstätter
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - David Haschka
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Petzer
- Dept of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Boehm
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Magdalena Aichner
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Lener
- Dept of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Theurl
- Dept of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Amra Tancevski
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Schapfl
- Dept of Internal Medicine, St Vinzenz Hospital, Zams, Austria
| | - Marc Schaber
- Dept of Internal Medicine, St Vinzenz Hospital, Zams, Austria
| | - Richard Hilbe
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Nairz
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Bernhard Puchner
- The Karl Landsteiner Institute, Reha Zentrum Münster, Münster, Austria
| | - Doris Hüttenberger
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Malte Aßhoff
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Peer
- Division of Intensive Care and Emergency Medicine, Dept of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Frank Hartig
- Division of Intensive Care and Emergency Medicine, Dept of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Romuald Bellmann
- Division of Intensive Care and Emergency Medicine, Dept of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Dept of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Johannes Holfeld
- Dept of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Gudrun Feuchtner
- Dept of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Egger
- Central Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Innsbruck, Innsbruck, Austria
| | - Gregor Hoermann
- Central Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Innsbruck, Innsbruck, Austria.,Dept of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,MLL Munich Leukemia Laboratory, Munich, Germany
| | - Andrea Schroll
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Gernot Fritsche
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Sophie Wildner
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Rosa Bellmann-Weiler
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Kirchmair
- Dept of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria.,The Karl Landsteiner Institute, Reha Zentrum Münster, Münster, Austria
| | - Raimund Helbok
- Dept of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Prosch
- Dept of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Dietmar Rieder
- Institute for Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Institute for Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ewald Wöll
- Dept of Internal Medicine, St Vinzenz Hospital, Zams, Austria
| | - Günter Weiss
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerlig Widmann
- Dept of Radiology, Medical University of Innsbruck, Innsbruck, Austria.,Contributed equally to this article as lead authors and supervised the work
| | - Judith Löffler-Ragg
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria.,Contributed equally to this article as lead authors and supervised the work
| | - Ivan Tancevski
- Dept of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria.,Contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
211
|
Scott TM, Jensen S, Pickett BE. A signaling pathway-driven bioinformatics pipeline for predicting therapeutics against emerging infectious diseases. F1000Res 2021; 10:330. [PMID: 34868553 PMCID: PMC8607308 DOI: 10.12688/f1000research.52412.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 11/03/2023] Open
Abstract
Background: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiological agent of coronavirus disease-2019 (COVID-19), is a novel Betacoronavirus that was first reported in Wuhan, China in December of 2019. The virus has since caused a worldwide pandemic that highlights the need to quickly identify potential prophylactic or therapeutic treatments that can reduce the signs, symptoms, and/or spread of disease when dealing with a novel infectious agent. To combat this problem, we constructed a computational pipeline that uniquely combines existing tools to predict drugs and biologics that could be repurposed to combat an emerging pathogen. Methods: Our workflow analyzes RNA-sequencing data to determine differentially expressed genes, enriched Gene Ontology (GO) terms, and dysregulated pathways in infected cells, which can then be used to identify US Food and Drug Administration (FDA)-approved drugs that target human proteins within these pathways. We used this pipeline to perform a meta-analysis of RNA-seq data from cells infected with three Betacoronavirus species including severe acute respiratory syndrome coronavirus (SARS-CoV; SARS), Middle East respiratory syndrome coronavirus (MERS-CoV; MERS), and SARS-CoV-2, as well as respiratory syncytial virus and influenza A virus to identify therapeutics that could be used to treat COVID-19. Results: This analysis identified twelve existing drugs, most of which already have FDA-approval, that are predicted to counter the effects of SARS-CoV-2 infection. These results were cross-referenced with interventional clinical trials and other studies in the literature to identify drugs on our list that had previously been identified or used as treatments for COIVD-19 including canakinumab, anakinra, tocilizumab, sarilumab, and baricitinib. Conclusions: While the results reported here are specific to Betacoronaviruses, such as SARS-CoV-2, our bioinformatics pipeline can be used to quickly identify candidate therapeutics for future emerging infectious diseases.
Collapse
Affiliation(s)
- Tiana M. Scott
- Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, 84602, USA
| | - Sam Jensen
- Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, 84602, USA
| | - Brett E. Pickett
- Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, 84602, USA
| |
Collapse
|
212
|
Scott TM, Jensen S, Pickett BE. A signaling pathway-driven bioinformatics pipeline for predicting therapeutics against emerging infectious diseases. F1000Res 2021; 10:330. [PMID: 34868553 PMCID: PMC8607308 DOI: 10.12688/f1000research.52412.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiological agent of coronavirus disease-2019 (COVID-19), is a novel Betacoronavirus that was first reported in Wuhan, China in December of 2019. The virus has since caused a worldwide pandemic that highlights the need to quickly identify potential prophylactic or therapeutic treatments that can reduce the signs, symptoms, and/or spread of disease when dealing with a novel infectious agent. To combat this problem, we constructed a computational pipeline that uniquely combines existing tools to predict drugs and biologics that could be repurposed to combat an emerging pathogen. Methods: Our workflow analyzes RNA-sequencing data to determine differentially expressed genes, enriched Gene Ontology (GO) terms, and dysregulated pathways in infected cells, which can then be used to identify US Food and Drug Administration (FDA)-approved drugs that target human proteins within these pathways. We used this pipeline to perform a meta-analysis of RNA-seq data from cells infected with three Betacoronavirus species including severe acute respiratory syndrome coronavirus (SARS-CoV; SARS), Middle East respiratory syndrome coronavirus (MERS-CoV; MERS), and SARS-CoV-2, as well as respiratory syncytial virus and influenza A virus to identify therapeutics that could be used to treat COVID-19. Results: This analysis identified twelve existing drugs, most of which already have FDA-approval, that are predicted to counter the effects of SARS-CoV-2 infection. These results were cross-referenced with interventional clinical trials and other studies in the literature to identify drugs on our list that had previously been identified or used as treatments for COIVD-19 including canakinumab, anakinra, tocilizumab, sarilumab, and baricitinib. Conclusions: While the results reported here are specific to Betacoronaviruses, such as SARS-CoV-2, our bioinformatics pipeline can be used to quickly identify candidate therapeutics for future emerging infectious diseases.
Collapse
Affiliation(s)
- Tiana M. Scott
- Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, 84602, USA
| | - Sam Jensen
- Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, 84602, USA
| | - Brett E. Pickett
- Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, 84602, USA
| |
Collapse
|
213
|
Poznyak AV, Bezsonov EE, Eid AH, Popkova TV, Nedosugova LV, Starodubova AV, Orekhov AN. ACE2 Is an Adjacent Element of Atherosclerosis and COVID-19 Pathogenesis. Int J Mol Sci 2021; 22:ijms22094691. [PMID: 33946649 PMCID: PMC8124184 DOI: 10.3390/ijms22094691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/17/2021] [Accepted: 04/27/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is a highly contagious new infection caused by the single-stranded RNA Sars-CoV-2 virus. For the first time, this infection was recorded in December 2019 in the Chinese province of Wuhan. The virus presumably crossed the interspecies barrier and passed to humans from a bat. Initially, the disease was considered exclusively in the context of damage to the respiratory system, but it quickly became clear that the disease also entails serious consequences from various systems, including the cardiovascular system. Among these consequences are myocarditis, myocardial damage, subsequent heart failure, myocardial infarction, and Takotsubo syndrome. On the other hand, clinical data indicate that the presence of chronic diseases in a patient aggravates the course and outcome of coronavirus infection. In this context, the relationship between COVID-19 and atherosclerosis, a condition preceding cardiovascular disease and other disorders of the heart and blood vessels, is particularly interesting. The renin-angiotensin system is essential for the pathogenesis of both coronavirus disease and atherosclerosis. In particular, it has been shown that ACE2, an angiotensin-converting enzyme 2, plays a key role in Sars-CoV-2 infection due to its receptor activity. It is noteworthy that this enzyme is important for the normal functioning of the cardiovascular system. Disruptions in its production and functioning can lead to various disorders, including atherosclerosis.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Ludmila V. Nedosugova
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation 8/2 Trubenskaya Street, 119991 Moscow, Russia;
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| |
Collapse
|
214
|
Lainšček D, Fink T, Forstnerič V, Hafner-Bratkovič I, Orehek S, Strmšek Ž, Manček-Keber M, Pečan P, Esih H, Malenšek Š, Aupič J, Dekleva P, Plaper T, Vidmar S, Kadunc L, Benčina M, Omersa N, Anderluh G, Pojer F, Lau K, Hacker D, Correia BE, Peterhoff D, Wagner R, Bergant V, Herrmann A, Pichlmair A, Jerala R. A Nanoscaffolded Spike-RBD Vaccine Provides Protection against SARS-CoV-2 with Minimal Anti-Scaffold Response. Vaccines (Basel) 2021; 9:vaccines9050431. [PMID: 33925446 PMCID: PMC8146944 DOI: 10.3390/vaccines9050431] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
The response of the adaptive immune system is augmented by multimeric presentation of a specific antigen, resembling viral particles. Several vaccines have been designed based on natural or designed protein scaffolds, which exhibited a potent adaptive immune response to antigens; however, antibodies are also generated against the scaffold, which may impair subsequent vaccination. In order to compare polypeptide scaffolds of different size and oligomerization state with respect to their efficiency, including anti-scaffold immunity, we compared several strategies of presentation of the RBD domain of the SARS-CoV-2 spike protein, an antigen aiming to generate neutralizing antibodies. A comparison of several genetic fusions of RBD to different nanoscaffolding domains (foldon, ferritin, lumazine synthase, and β-annulus peptide) delivered as DNA plasmids demonstrated a strongly augmented immune response, with high titers of neutralizing antibodies and a robust T-cell response in mice. Antibody titers and virus neutralization were most potently enhanced by fusion to the small β-annulus peptide scaffold, which itself triggered a minimal response in contrast to larger scaffolds. The β-annulus fused RBD protein increased residence in lymph nodes and triggered the most potent viral neutralization in immunization by a recombinant protein. Results of the study support the use of a nanoscaffolding platform using the β-annulus peptide for vaccine design.
Collapse
Affiliation(s)
- Duško Lainšček
- EN-FIST, Centre of Excellence, 1000 Ljubljana, Slovenia; (D.L.); (I.H.-B.); (M.M.-K.); (M.B.)
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.F.); (V.F.); (S.O.); (Ž.S.); (P.P.); (H.E.); (Š.M.); (J.A.); (P.D.); (T.P.); (S.V.); (L.K.)
| | - Tina Fink
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.F.); (V.F.); (S.O.); (Ž.S.); (P.P.); (H.E.); (Š.M.); (J.A.); (P.D.); (T.P.); (S.V.); (L.K.)
| | - Vida Forstnerič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.F.); (V.F.); (S.O.); (Ž.S.); (P.P.); (H.E.); (Š.M.); (J.A.); (P.D.); (T.P.); (S.V.); (L.K.)
| | - Iva Hafner-Bratkovič
- EN-FIST, Centre of Excellence, 1000 Ljubljana, Slovenia; (D.L.); (I.H.-B.); (M.M.-K.); (M.B.)
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.F.); (V.F.); (S.O.); (Ž.S.); (P.P.); (H.E.); (Š.M.); (J.A.); (P.D.); (T.P.); (S.V.); (L.K.)
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.F.); (V.F.); (S.O.); (Ž.S.); (P.P.); (H.E.); (Š.M.); (J.A.); (P.D.); (T.P.); (S.V.); (L.K.)
- Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Žiga Strmšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.F.); (V.F.); (S.O.); (Ž.S.); (P.P.); (H.E.); (Š.M.); (J.A.); (P.D.); (T.P.); (S.V.); (L.K.)
- Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mateja Manček-Keber
- EN-FIST, Centre of Excellence, 1000 Ljubljana, Slovenia; (D.L.); (I.H.-B.); (M.M.-K.); (M.B.)
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.F.); (V.F.); (S.O.); (Ž.S.); (P.P.); (H.E.); (Š.M.); (J.A.); (P.D.); (T.P.); (S.V.); (L.K.)
| | - Peter Pečan
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.F.); (V.F.); (S.O.); (Ž.S.); (P.P.); (H.E.); (Š.M.); (J.A.); (P.D.); (T.P.); (S.V.); (L.K.)
- Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Hana Esih
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.F.); (V.F.); (S.O.); (Ž.S.); (P.P.); (H.E.); (Š.M.); (J.A.); (P.D.); (T.P.); (S.V.); (L.K.)
- Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Špela Malenšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.F.); (V.F.); (S.O.); (Ž.S.); (P.P.); (H.E.); (Š.M.); (J.A.); (P.D.); (T.P.); (S.V.); (L.K.)
- Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jana Aupič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.F.); (V.F.); (S.O.); (Ž.S.); (P.P.); (H.E.); (Š.M.); (J.A.); (P.D.); (T.P.); (S.V.); (L.K.)
| | - Petra Dekleva
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.F.); (V.F.); (S.O.); (Ž.S.); (P.P.); (H.E.); (Š.M.); (J.A.); (P.D.); (T.P.); (S.V.); (L.K.)
- Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tjaša Plaper
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.F.); (V.F.); (S.O.); (Ž.S.); (P.P.); (H.E.); (Š.M.); (J.A.); (P.D.); (T.P.); (S.V.); (L.K.)
- Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sara Vidmar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.F.); (V.F.); (S.O.); (Ž.S.); (P.P.); (H.E.); (Š.M.); (J.A.); (P.D.); (T.P.); (S.V.); (L.K.)
- Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Lucija Kadunc
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.F.); (V.F.); (S.O.); (Ž.S.); (P.P.); (H.E.); (Š.M.); (J.A.); (P.D.); (T.P.); (S.V.); (L.K.)
| | - Mojca Benčina
- EN-FIST, Centre of Excellence, 1000 Ljubljana, Slovenia; (D.L.); (I.H.-B.); (M.M.-K.); (M.B.)
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.F.); (V.F.); (S.O.); (Ž.S.); (P.P.); (H.E.); (Š.M.); (J.A.); (P.D.); (T.P.); (S.V.); (L.K.)
| | - Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (N.O.); (G.A.)
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (N.O.); (G.A.)
| | - Florence Pojer
- Protein Production and Structure Core Facility PTPSP- EPFL SV PTECH PTPSP, 1015 Lausanne, Switzerland; (F.P.); (K.L.); (D.H.); (B.E.C.)
| | - Kelvin Lau
- Protein Production and Structure Core Facility PTPSP- EPFL SV PTECH PTPSP, 1015 Lausanne, Switzerland; (F.P.); (K.L.); (D.H.); (B.E.C.)
| | - David Hacker
- Protein Production and Structure Core Facility PTPSP- EPFL SV PTECH PTPSP, 1015 Lausanne, Switzerland; (F.P.); (K.L.); (D.H.); (B.E.C.)
| | - Bruno E. Correia
- Protein Production and Structure Core Facility PTPSP- EPFL SV PTECH PTPSP, 1015 Lausanne, Switzerland; (F.P.); (K.L.); (D.H.); (B.E.C.)
| | - David Peterhoff
- Molecular Microbiology (Virology), Institute of Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; (D.P.); (R.W.)
| | - Ralf Wagner
- Molecular Microbiology (Virology), Institute of Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; (D.P.); (R.W.)
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Valter Bergant
- Immunopathology of Virus Infections Laboratory, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (V.B.); (A.H.); (A.P.)
| | - Alexander Herrmann
- Immunopathology of Virus Infections Laboratory, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (V.B.); (A.H.); (A.P.)
| | - Andreas Pichlmair
- Immunopathology of Virus Infections Laboratory, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (V.B.); (A.H.); (A.P.)
- German Center for Infection Research (DZIF), Munich Partner Site, 38124 Braunschweig, Germany
| | - Roman Jerala
- EN-FIST, Centre of Excellence, 1000 Ljubljana, Slovenia; (D.L.); (I.H.-B.); (M.M.-K.); (M.B.)
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.F.); (V.F.); (S.O.); (Ž.S.); (P.P.); (H.E.); (Š.M.); (J.A.); (P.D.); (T.P.); (S.V.); (L.K.)
- Correspondence:
| |
Collapse
|
215
|
Tanni SE, Fabro AT, de Albuquerque A, Ferreira EVM, Verrastro CGY, Sawamura MVY, Ribeiro SM, Baldi BG. Pulmonary fibrosis secondary to COVID-19: a narrative review. Expert Rev Respir Med 2021; 15:791-803. [PMID: 33902377 DOI: 10.1080/17476348.2021.1916472] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Introduction: Coronavirus disease 2019 (COVID-19) is still increasing worldwide, and as a result, the number of patients with pulmonary fibrosis secondary to COVID-19 will expand over time. Risk factors, histopathological characterization, pathophysiology, prevalence, and management of post-COVID-19 pulmonary fibrosis are poorly understood, and few studies have addressed these issues.Areas covered:This article reviews the current evidence regarding post-COVID-19 pulmonary fibrosis, with an emphasis on the potential risk factors, histopathology, pathophysiology, functional and tomographic features, and potential therapeutic modalities. A search on the issue was performed in the MEDLINE, Embase, and SciELO databases and the Cochrane library between 1 December 2019, and 25 January 2021. Studies were reviewed and relevant topics were incorporated into this narrative review. Expert opinion: Pulmonary sequelae may occur secondary to COVID-19, which needs to be included as a potential etiology in the current differential diagnosis of pulmonary fibrosis. Therefore, serial clinical, tomographic, and functional screening for pulmonary fibrosis is recommended after COVID-19, mainly in patients with pulmonary involvement in the acute phase of the disease. Further studies are necessary to determine the risk factors, markers, pathophysiology, and appropriate management of post-COVID-19 pulmonary fibrosis.
Collapse
Affiliation(s)
- Suzana Erico Tanni
- Division of Internal Medicine of Botucatu Medical School, São Paulo State University-UNESP, Botucatu, Brazil
| | - Alexandre Todorovic Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - André de Albuquerque
- Divisão De Pneumologia, Instituto Do Coração (Incor), Hospital Das Clínicas HCFMUSP, Faculdade De Medicina, Universidade De São Paulo, São Paulo, SP, Brazil
| | | | | | - Márcio Valente Yamada Sawamura
- Instituto De Radiologia, Hospital Das Clínicas HCFMUSP, Faculdade De Medicina, Universidade De São Paulo, São Paulo, SP, Brazil
| | - Sergio Marrone Ribeiro
- Department of Radiology, Botucatu Medical School, São Paulo State University-UNESP, Botucatu, Brazil
| | - Bruno Guedes Baldi
- Divisão De Pneumologia, Instituto Do Coração (Incor), Hospital Das Clínicas HCFMUSP, Faculdade De Medicina, Universidade De São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
216
|
Safarzadeh M, Sadeghi S, Azizi M, Rastegari-Pouyani M, Pouriran R, Haji Molla Hoseini M. Chitin and chitosan as tools to combat COVID-19: A triple approach. Int J Biol Macromol 2021; 183:235-244. [PMID: 33930442 PMCID: PMC8078037 DOI: 10.1016/j.ijbiomac.2021.04.157] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 12/18/2022]
Abstract
The progressive and fatal outbreak of the newly emerged coronavirus, SARS-CoV-2, necessitates rigorous collaboration of all health care systems and researchers from all around the world to bring such a devastating pandemic under control. As there is so far no officially approved drug or ideal vaccine for this disease, investigations on this infectious disease are actively pursued. Chitin and chitosan have shown promising results against viral infections. In this review, we first delve into the problematic consequences of viral pandemics followed by an introduction on SARS-CoV-2 taxonomical classification. Then, we elaborate on the immunology of COVID-19. Common antiviral therapies and their related limitations are described and finally, the potential applicability of chitin and chitosan to fight this overwhelming viral pandemic is addressed.
Collapse
Affiliation(s)
- Mehrnoush Safarzadeh
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Rastegari-Pouyani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
217
|
Li P, Wu W, Zhang T, Wang Z, Li J, Zhu M, Liang Y, You W, Li K, Ding R, Huang B, Wu L, Duan W, Han Y, Li X, Tang X, Wang X, Shen H, Wang Q, Yan H, Xia X, Ji Y, Chen H. Implications of cardiac markers in risk-stratification and management for COVID-19 patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:158. [PMID: 33902676 PMCID: PMC8074282 DOI: 10.1186/s13054-021-03555-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/30/2021] [Indexed: 01/08/2023]
Abstract
Background COVID-19 has resulted in high mortality worldwide. Information regarding cardiac markers for precise risk-stratification is limited. We aim to discover sensitive and reliable early-warning biomarkers for optimizing management and improving the prognosis of COVID-19 patients. Methods A total of 2954 consecutive COVID-19 patients who were receiving treatment from the Wuhan Huoshenshan Hospital in China from February 4 to April 10 were included in this retrospective cohort. Serum levels of cardiac markers were collected after admission. Coronary artery disease diagnosis and survival status were recorded. Single-cell RNA-sequencing and bulk RNA-sequencing from different cohorts of non-COVID-19 were performed to analyze SARS-CoV-2 receptor expression. Results Among 2954 COVID-19 patients in the analysis, the median age was 60 years (50–68 years), 1461 (49.5%) were female, and 1515 (51.3%) were severe/critical. Compared to mild/moderate (1439, 48.7%) patients, severe/critical patients showed significantly higher levels of cardiac markers within the first week after admission. In severe/critical COVID-19 patients, those with abnormal serum levels of BNP (42 [24.6%] vs 7 [1.1%]), hs-TNI (38 [48.1%] vs 6 [1.0%]), α- HBDH (55 [10.4%] vs 2 [0.2%]), CK-MB (45 [36.3%] vs 12 [0.9%]), and LDH (56 [12.5%] vs 1 [0.1%]) had a significantly higher mortality rate compared to patients with normal levels. The same trend was observed in the ICU admission rate. Severe/critical COVID-19 patients with pre-existing coronary artery disease (165/1,155 [10.9%]) had more cases of BNP (52 [46.5%] vs 119 [16.5%]), hs-TNI (24 [26.7%] vs 9.6 [%], α- HBDH (86 [55.5%] vs 443 [34.4%]), CK-MB (27 [17.4%] vs 97 [7.5%]), and LDH (65 [41.9%] vs 382 [29.7%]), when compared with those without coronary artery disease. There was enhanced SARS-CoV-2 receptor expression in coronary artery disease compared with healthy controls. From regression analysis, patients with five elevated cardiac markers were at a higher risk of death (hazards ratio 3.4 [95% CI 2.4–4.8]). Conclusions COVID-19 patients with pre-existing coronary artery disease represented a higher abnormal percentage of cardiac markers, accompanied by high mortality and ICU admission rate. BNP together with hs-TNI, α- HBDH, CK-MB and LDH act as a prognostic biomarker in COVID-19 patients with or without pre-existing coronary artery disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03555-z.
Collapse
Affiliation(s)
- Pengping Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Ziyu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Jie Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Mengyan Zhu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Yuan Liang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Wenhua You
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Kening Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Rong Ding
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Bin Huang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Lingxiang Wu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Weiwei Duan
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Yi Han
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuesong Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qianghu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hong Yan
- Laboratory Medicine Center, the Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| | - Xinyi Xia
- COVID-19 Research Center, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China. .,Department of Laboratory Medicine & Blood Transfusion, Wuhan Huoshenshan Hospital, Wuhan, China. .,Joint Expert Group for COVID-19, Wuhan Huoshenshan Hospital, Wuhan, China.
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China. .,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China. .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| | - Hongshan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China. .,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China. .,Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
218
|
Han Z, Zhang Y, Wang P, Tang Q, Zhang K. Is acupuncture effective in the treatment of COVID-19 related symptoms? Based on bioinformatics/network topology strategy. Brief Bioinform 2021; 22:6235963. [PMID: 33866350 PMCID: PMC8083275 DOI: 10.1093/bib/bbab110] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Acupuncture is an important part of Chinese medicine that has been widely used in the treatment of inflammatory diseases. During the coronavirus disease 2019 (COVID-19) epidemic, acupuncture has been used as a complementary treatment for COVID-19 in China. However, the underlying mechanism of acupuncture treatment of COVID-19 remains unclear. Based on bioinformatics/topology, this paper systematically revealed the multi-target mechanisms of acupuncture therapy for COVID-19 through text mining, bioinformatics, network topology, etc. Two active compounds produced after acupuncture and 180 protein targets were identified. A total of 522 Gene Ontology terms related to acupuncture for COVID-19 were identified, and 61 pathways were screened based on the Kyoto Encyclopedia of Genes and Genomes. Our findings suggested that acupuncture treatment of COVID-19 was associated with suppression of inflammatory stress, improving immunity and regulating nervous system function, including activation of neuroactive ligand–receptor interaction, calcium signaling pathway, cancer pathway, viral carcinogenesis, Staphylococcus aureus infection, etc. The study also found that acupuncture may have additional benefits for COVID-19 patients with cancer, cardiovascular disease and obesity. Our study revealed for the first time the multiple synergistic mechanisms of acupuncture on COVID-19. Acupuncture may play an active role in the treatment of COVID-19 and deserves further promotion and application. These results may help to solve this pressing problem currently facing the world.
Collapse
Affiliation(s)
- Zhenzhen Han
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Zhang
- Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qilin Tang
- Hebei University of Chinese Medicine, Hebei, China
| | - Kai Zhang
- Tianjin Gong An Hospital, Tianjin, China
| |
Collapse
|
219
|
Shehata GA, Lord KC, Grudzinski MC, Elsayed M, Abdelnaby R, Elshabrawy HA. Neurological Complications of COVID-19: Underlying Mechanisms and Management. Int J Mol Sci 2021; 22:4081. [PMID: 33920904 PMCID: PMC8071289 DOI: 10.3390/ijms22084081] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 is a severe respiratory disease caused by the newly identified human coronavirus (HCoV) Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The virus was discovered in December 2019, and in March 2020, the disease was declared a global pandemic by the World Health Organization (WHO) due to a high number of cases. Although SARS-CoV-2 primarily affects the respiratory system, several studies have reported neurological complications in COVID-19 patients. Headache, dizziness, loss of taste and smell, encephalitis, encephalopathy, and cerebrovascular diseases are the most common neurological complications that are associated with COVID-19. In addition, seizures, neuromuscular junctions' disorders, and Guillain-Barré syndrome were reported as complications of COVID-19, as well as neurodegenerative and demyelinating disorders. However, the management of these conditions remains a challenge. In this review, we discuss the prevalence, pathogenesis, and mechanisms of these neurological sequelae that are secondary to SARS-CoV-2 infection. We aim to update neurologists and healthcare workers on the possible neurological complications associated with COVID-19 and the management of these disease conditions.
Collapse
Affiliation(s)
- Ghaydaa A. Shehata
- Department of Neurology and Psychiatry, Assiut University Hospitals, Assiut 71511, Egypt;
| | - Kevin C. Lord
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA;
| | | | - Mohamed Elsayed
- Department of Psychiatry and Psychotherapy III, University of Ulm, Leimgrubenweg 12-14, 89075 Ulm, Germany;
| | - Ramy Abdelnaby
- Department of Neurology, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| |
Collapse
|
220
|
Vallée A, Lecarpentier Y, Vallée JN. Interplay of Opposing Effects of the WNT/β-Catenin Pathway and PPARγ and Implications for SARS-CoV2 Treatment. Front Immunol 2021; 12:666693. [PMID: 33927728 PMCID: PMC8076593 DOI: 10.3389/fimmu.2021.666693] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
The Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has quickly reached pandemic proportions. Cytokine profiles observed in COVID-19 patients have revealed increased levels of IL-1β, IL-2, IL-6, and TNF-α and increased NF-κB pathway activity. Recent evidence has shown that the upregulation of the WNT/β-catenin pathway is associated with inflammation, resulting in a cytokine storm in ARDS (acute respire distress syndrome) and especially in COVID-19 patients. Several studies have shown that the WNT/β-catenin pathway interacts with PPARγ in an opposing interplay in numerous diseases. Furthermore, recent studies have highlighted the interesting role of PPARγ agonists as modulators of inflammatory and immunomodulatory drugs through the targeting of the cytokine storm in COVID-19 patients. SARS-CoV2 infection presents a decrease in the angiotensin-converting enzyme 2 (ACE2) associated with the upregulation of the WNT/β-catenin pathway. SARS-Cov2 may invade human organs besides the lungs through the expression of ACE2. Evidence has highlighted the fact that PPARγ agonists can increase ACE2 expression, suggesting a possible role for PPARγ agonists in the treatment of COVID-19. This review therefore focuses on the opposing interplay between the canonical WNT/β-catenin pathway and PPARγ in SARS-CoV2 infection and the potential beneficial role of PPARγ agonists in this context.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation, Foch Hospital, Suresnes, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Jean-Noël Vallée
- University Hospital Center (CHU) Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France.,Laboratory of Mathematics and Applications (LMA), Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France
| |
Collapse
|
221
|
Flook M, Jackson C, Vasileiou E, Simpson CR, Muckian MD, Agrawal U, McCowan C, Jia Y, Murray JLK, Ritchie LD, Robertson C, Stock SJ, Wang X, Woolhouse MEJ, Sheikh A, Stagg HR. Informing the public health response to COVID-19: a systematic review of risk factors for disease, severity, and mortality. BMC Infect Dis 2021; 21:342. [PMID: 33845766 PMCID: PMC8040367 DOI: 10.1186/s12879-021-05992-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2) has challenged public health agencies globally. In order to effectively target government responses, it is critical to identify the individuals most at risk of coronavirus disease-19 (COVID-19), developing severe clinical signs, and mortality. We undertook a systematic review of the literature to present the current status of scientific knowledge in these areas and describe the need for unified global approaches, moving forwards, as well as lessons learnt for future pandemics. METHODS Medline, Embase and Global Health were searched to the end of April 2020, as well as the Web of Science. Search terms were specific to the SARS-CoV-2 virus and COVID-19. Comparative studies of risk factors from any setting, population group and in any language were included. Titles, abstracts and full texts were screened by two reviewers and extracted in duplicate into a standardised form. Data were extracted on risk factors for COVID-19 disease, severe disease, or death and were narratively and descriptively synthesised. RESULTS One thousand two hundred and thirty-eight papers were identified post-deduplication. Thirty-three met our inclusion criteria, of which 26 were from China. Six assessed the risk of contracting the disease, 20 the risk of having severe disease and ten the risk of dying. Age, gender and co-morbidities were commonly assessed as risk factors. The weight of evidence showed increasing age to be associated with severe disease and mortality, and general comorbidities with mortality. Only seven studies presented multivariable analyses and power was generally limited. A wide range of definitions were used for disease severity. CONCLUSIONS The volume of literature generated in the short time since the appearance of SARS-CoV-2 has been considerable. Many studies have sought to document the risk factors for COVID-19 disease, disease severity and mortality; age was the only risk factor based on robust studies and with a consistent body of evidence. Mechanistic studies are required to understand why age is such an important risk factor. At the start of pandemics, large, standardised, studies that use multivariable analyses are urgently needed so that the populations most at risk can be rapidly protected. REGISTRATION This review was registered on PROSPERO as CRD42020177714 .
Collapse
Affiliation(s)
- M Flook
- Usher Institute, University of Edinburgh, 30 West Richmond Street, Edinburgh, EH8 9DX, UK
| | - C Jackson
- Medical Research Council Clinical Trials Unit, University College London, London, UK
| | - E Vasileiou
- Usher Institute, University of Edinburgh, 30 West Richmond Street, Edinburgh, EH8 9DX, UK
| | - C R Simpson
- Usher Institute, University of Edinburgh, 30 West Richmond Street, Edinburgh, EH8 9DX, UK
- School of Health, Wellington Faculty of Health, Victoria University of Wellington, Wellington, New Zealand
| | - M D Muckian
- Usher Institute, University of Edinburgh, 30 West Richmond Street, Edinburgh, EH8 9DX, UK
| | - U Agrawal
- School of Medicine, University of St. Andrews, St. Andrews, UK
| | - C McCowan
- School of Medicine, University of St. Andrews, St. Andrews, UK
| | - Y Jia
- Freelance consultant, Beijing, People's Republic of China
| | - J L K Murray
- National Health Service Fife, Kirkcaldy, UK
- Public Health Scotland, Glasgow, UK
| | - L D Ritchie
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - C Robertson
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
| | - S J Stock
- Usher Institute, University of Edinburgh, 30 West Richmond Street, Edinburgh, EH8 9DX, UK
| | - X Wang
- Usher Institute, University of Edinburgh, 30 West Richmond Street, Edinburgh, EH8 9DX, UK
| | - M E J Woolhouse
- Usher Institute, University of Edinburgh, 30 West Richmond Street, Edinburgh, EH8 9DX, UK
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - A Sheikh
- Usher Institute, University of Edinburgh, 30 West Richmond Street, Edinburgh, EH8 9DX, UK
| | - H R Stagg
- Usher Institute, University of Edinburgh, 30 West Richmond Street, Edinburgh, EH8 9DX, UK.
| |
Collapse
|
222
|
Pacheco-Herrero M, Soto-Rojas LO, Harrington CR, Flores-Martinez YM, Villegas-Rojas MM, León-Aguilar AM, Martínez-Gómez PA, Campa-Córdoba BB, Apátiga-Pérez R, Corniel-Taveras CN, Dominguez-García JDJ, Blanco-Alvarez VM, Luna-Muñoz J. Elucidating the Neuropathologic Mechanisms of SARS-CoV-2 Infection. Front Neurol 2021; 12:660087. [PMID: 33912129 PMCID: PMC8072392 DOI: 10.3389/fneur.2021.660087] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/09/2021] [Indexed: 01/08/2023] Open
Abstract
The current pandemic caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a public health emergency. To date, March 1, 2021, coronavirus disease 2019 (COVID-19) has caused about 114 million accumulated cases and 2.53 million deaths worldwide. Previous pieces of evidence suggest that SARS-CoV-2 may affect the central nervous system (CNS) and cause neurological symptoms in COVID-19 patients. It is also known that angiotensin-converting enzyme-2 (ACE2), the primary receptor for SARS-CoV-2 infection, is expressed in different brain areas and cell types. Thus, it is hypothesized that infection by this virus could generate or exacerbate neuropathological alterations. However, the molecular mechanisms that link COVID-19 disease and nerve damage are unclear. In this review, we describe the routes of SARS-CoV-2 invasion into the central nervous system. We also analyze the neuropathologic mechanisms underlying this viral infection, and their potential relationship with the neurological manifestations described in patients with COVID-19, and the appearance or exacerbation of some neurodegenerative diseases.
Collapse
Affiliation(s)
- Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros, Dominican Republic
| | - Luis O. Soto-Rojas
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Charles R. Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Yazmin M. Flores-Martinez
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Marcos M. Villegas-Rojas
- Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional (UPIBI- IPN), Mexico City, Mexico
| | - Alfredo M. León-Aguilar
- Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional (UPIBI- IPN), Mexico City, Mexico
| | - Paola A. Martínez-Gómez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - B. Berenice Campa-Córdoba
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, Mexico
| | - Ricardo Apátiga-Pérez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, Mexico
| | - Carolin N. Corniel-Taveras
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros, Dominican Republic
| | - Jesabelle de J. Dominguez-García
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros, Dominican Republic
| | | | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, Mexico
- Banco Estado de Cerebros-UNPHU, Universidad Nacional Pedro Henriquez Ureña, Santo Domingo, Dominican Republic
| |
Collapse
|
223
|
Wu HY, Pan CT, Cheng CF, Lin CY, Chang SN, Chen YC, Wang CY, Chen YF, Chen CY, Ma MHM, Hwang JJ. Combined intravenous immunoglobulin and baricitinib treatment for severe COVID-19 with rhabdomyolysis: A case report. J Formos Med Assoc 2021; 120:1777-1781. [PMID: 33838985 PMCID: PMC7988442 DOI: 10.1016/j.jfma.2021.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/20/2023] Open
Abstract
Since December 2019, the outbreak of coronavirus disease 2019 (COVID-19) has spread rapidly around the world. The severity of COVID-19 ranges from asymptomatic carriers to severe acute respiratory distress syndrome (ARDS). Accumulating evidence has shown that COVID-19 may be associated with multiple organ complications including cardiac injury, viral myositis and neurological deficits. Numerous laboratory biomarkers including lymphocytes, platelets, lactate dehydrogenase and creatine kinase (CK) have been associated with the prognostic outcomes of patients with COVID-19. However, dynamic correlations between levels of biomarkers and clinical course have not been studied. Herein, we report a 74-year-old female patient with severe COVID-19 which progressed to ARDS requiring intubation and mechanical ventilation. The laboratory findings showed lymphopenia, hypogammaglobulinemia, and elevated inflammatory biomarkers and CK. She received intensive therapy with hydroxychloroquine, lopinavir/ritonavir, and azithromycin with limited effects. Immunomodulatory treatments with high dose intravenous immunoglobulin and baricitinib were prescribed with satisfactory biochemical, radiographic and clinical recovery. We found an interesting correlation between serum CK elevation and inflammatory biomarkers, which reflected clinical improvement. This case demonstrates that inflammatory biomarkers, cytokines, and CK level correlated with disease severity and treatment response, and combined use of intravenous immunoglobulin and baricitinib is a potential treatment in patients with severe COVID-19.
Collapse
Affiliation(s)
- Hao-Yu Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Ting Pan
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan.
| | - Chiao-Feng Cheng
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Chi-Ying Lin
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Sheng-Nan Chang
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Yi-Chung Chen
- Department of Emergency Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Chih-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Fu Chen
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Chung-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Matthew Huei-Ming Ma
- Department of Emergency Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Juey-Jen Hwang
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan.
| |
Collapse
|
224
|
COVID-19: imbalance of multiple systems during infection and importance of therapeutic choice and dosing of cardiac and anti-coagulant therapies. Mol Biol Rep 2021; 48:2917-2928. [PMID: 33837899 PMCID: PMC8035598 DOI: 10.1007/s11033-021-06333-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/01/2021] [Indexed: 12/26/2022]
Abstract
The renin-angiotensin-aldosterone system and its metabolites play an important role in homeostasis of body, especially the cardiovascular system. In this study, we discuss the imbalance of multiple systems during the infection and the importance of therapeutic choice, dosing, and laboratory monitoring of cardiac and anti-coagulant therapies in COVID-19 patients. The crosstalk between angiotensin, kinin-kallikrein system, as well as inflammatory and coagulation systems plays an essential role in COVID-19. Cardiac complications and coagulopathies imply the crosstalks between the mentioned systems. We believe that the blockage of bradykinin can be a good option in the management of COVID-19 and CVD in patients and that supportive treatment of respiratory and cardiologic complications is needed in COVID-19 patients. Ninety-one percent of COVID-19 patients who were admitted to hospital with a prolonged aPTT were positive for lupus anticoagulant, which increases the risk of thrombosis and prolonged aPTT. Therefore, the question that is posed at this juncture is whether it is safe to use the prophylactic dose of heparin particularly in those with elevated D-dimer levels. It should be noted that timing is of high importance in anti-coagulant therapy; therefore, we should consider the level of D-dimer, fibrinogen, drug-drug interactions, and risk factors during thromboprophylaxis administration. Fibrinogen is an independent predictor of resistance to heparin and should be considered before thromboprophylaxis. Alteplase and Futhan might be a good choice to assess the condition of heparin resistance. Finally, the treatment option, dosing, and laboratory monitoring of anticoagulant therapy are critical decisions in COVID-19 patients.
Collapse
|
225
|
Implications of SARS-Cov-2 infection on eNOS and iNOS activity: Consequences for the respiratory and vascular systems. Nitric Oxide 2021; 111-112:64-71. [PMID: 33831567 PMCID: PMC8021449 DOI: 10.1016/j.niox.2021.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
Symptoms of COVID-19 range from asymptomatic/mild symptoms to severe illness and death, consequence of an excessive inflammatory process triggered by SARS-CoV-2 infection. The diffuse inflammation leads to endothelium dysfunction in pulmonary blood vessels, uncoupling eNOS activity, lowering NO production, causing pulmonary physiological alterations and coagulopathy. On the other hand, iNOS activity is increased, which may be advantageous for host defense, once NO plays antiviral effects. However, overproduction of NO may be deleterious, generating a pro-inflammatory effect. In this review, we discussed the role of endogenous NO as a protective or deleterious agent of the respiratory and vascular systems, the most affected in COVID-19 patients, focusing on eNOS and iNOS roles. We also reviewed the currently available NO therapies and pointed out possible alternative treatments targeting NO metabolism, which could help mitigate health crises in the present and future CoV's spillovers.
Collapse
|
226
|
Demers-Mathieu V, Do DM, Mathijssen GB, Sela DA, Seppo A, Järvinen KM, Medo E. Difference in levels of SARS-CoV-2 S1 and S2 subunits- and nucleocapsid protein-reactive SIgM/IgM, IgG and SIgA/IgA antibodies in human milk. J Perinatol 2021; 41:850-859. [PMID: 32873904 PMCID: PMC7461757 DOI: 10.1038/s41372-020-00805-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/03/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study evaluated the presence and the levels of antibodies reactive to SARS-CoV-2 S1 and S2 subunits (S1 + S2), and nucleocapsid protein. STUDY DESIGN The levels of SARS-CoV-2 S1 + S2- and nucleocapsid-reactive SIgM/IgM, IgG and SIgA/IgA were measured in human milk samples from 41 women during the COVID-19 pandemic (2020-HM) and from 16 women 2 years prior to the outbreak (2018-HM). RESULTS SARS-CoV-2 S1 + S2-reactive SIgA/IgA, SIgM/IgM and IgG were detected in 97.6%, 68.3% and 58.5% in human milk whereas nucleocapsid-reactive antibodies were detected in 56.4%, 87.2% and 46.2%, respectively. S1 + S2-reactive IgG was higher in milk from women that had symptoms of viral respiratory infection(s) during the last year than in milk from women without symptom. S1 + S2- and nucleocapsid-reactive IgG were higher in the 2020-HM group compared to the 2018-HM group. CONCLUSIONS The presence of SARS-CoV-2-reactive antibodies in human milk could provide passive immunity to breastfed infants and protect them against COVID-19 diseases.
Collapse
Affiliation(s)
- Veronique Demers-Mathieu
- Department of Neonatal Immunology and Microbiology, Medolac Laboratories A Public Benefit Corporation, Boulder City, NV, USA.
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Dung M Do
- Department of Neonatal Immunology and Microbiology, Medolac Laboratories A Public Benefit Corporation, Boulder City, NV, USA
| | - Gabrielle B Mathijssen
- Department of Neonatal Immunology and Microbiology, Medolac Laboratories A Public Benefit Corporation, Boulder City, NV, USA
| | - David A Sela
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | - Antti Seppo
- Department of Pediatrics, Pediatric Allergy/Immunology, University of Rochester, Medical Center, Rochester, NY, USA
| | - Kirsi M Järvinen
- Department of Pediatrics, Pediatric Allergy/Immunology, University of Rochester, Medical Center, Rochester, NY, USA
| | - Elena Medo
- Department of Neonatal Immunology and Microbiology, Medolac Laboratories A Public Benefit Corporation, Boulder City, NV, USA
| |
Collapse
|
227
|
A literature review of 2019 novel coronavirus (SARS-CoV2) infection in neonates and children. Pediatr Res 2021; 89:1101-1108. [PMID: 32679582 DOI: 10.1038/s41390-020-1065-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023]
Abstract
At the time of writing, there are already millions of documented infections worldwide by the novel coronavirus 2019 (2019-nCoV or severe acute respiratory syndrome coronavirus 2 (SARS-CoV2)), with hundreds of thousands of deaths. The great majority of fatal events have been recorded in adults older than 70 years; of them, a large proportion had comorbidities. Since data regarding the epidemiologic and clinical characteristics in neonates and children developing coronavirus disease 2019 (COVID-19) are scarce and originate mainly from one country (China), we reviewed all the current literature from 1 December 2019 to 7 May 2020 to provide useful information about SARS-CoV2 viral biology, epidemiology, diagnosis, clinical features, treatment, prevention, and hospital organization for clinicians dealing with this selected population. IMPACT: Children usually develop a mild form of COVID-19, rarely requiring high-intensity medical treatment in pediatric intensive care unit. Vertical transmission is unlikely, but not completely excluded. Children with confirmed or suspected COVID-19 must be isolated and healthcare workers should wear appropriate protective equipment. Some clinical features (higher incidence of fever, vomiting and diarrhea, and a longer incubation period) are more common in children than in adults, as well as some radiologic aspects (more patchy shadow opacities on CT scan images than ground-glass opacities). Supportive and symptomatic treatments (oxygen therapy and antibiotics for preventing/treating bacterial coinfections) are recommended in these patients.
Collapse
|
228
|
Kamiya K, Komine M, Ohtsuki M. Biologics for Psoriasis during the COVID-19 Pandemic. J Clin Med 2021; 10:jcm10071390. [PMID: 33808455 PMCID: PMC8036429 DOI: 10.3390/jcm10071390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/13/2021] [Accepted: 03/28/2021] [Indexed: 12/11/2022] Open
Abstract
Psoriasis is a chronic, immune-mediated inflammatory disease that predominantly affects the skin and joints. The recent therapeutic development for psoriasis has been remarkable and biologics have dramatically changed the treatment of psoriasis. In moderate-to-severe cases, systemic therapies are required to control their symptoms and biologics can provide greater efficacy when compared with other types of therapies. The coronavirus disease (COVID-19) pandemic has had a great impact on the lives of many people and has worsened substantially worldwide. During the ongoing COVID-19 pandemic, it still remains unclear whether biologics suppress the immune system and increase the risk of COVID-19. In this review, we have summarized the experience with biologics used for treating psoriasis during the COVID-19 pandemic. Biologics seem to be beneficial to COVID-19 infection. Shared decision-making that is based on updated information is highlighted in the time of COVID-19.
Collapse
|
229
|
Domingo JL, Marquès M. The effects of some essential and toxic metals/metalloids in COVID-19: A review. Food Chem Toxicol 2021; 152:112161. [PMID: 33794307 PMCID: PMC8006493 DOI: 10.1016/j.fct.2021.112161] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022]
Abstract
Thousands of studies have been conducted in order to understand in depth the characteristics of the novel coronavirus SARS-CoV-2, its infectivity and ways of transmission, and very especially everything related to the clinical and severity of the COVID-19, as well as the potential treatments. In this sense, the role that essential and toxic metals/metalloids have in the development and course of this disease is being studied. Metals/metalloids such as arsenic, cadmium, lead, mercury or vanadium, are elements with known toxic effects in mammals, while trace elements such as cobalt, copper, iron, manganese, selenium and zinc are considered essential. Given the importance of metals/metalloids in nutrition and human health, the present review was aimed at assessing the relationship between various essential and toxic metals/metalloids and the health outcomes related with the COVID-19. We are in the position to conclude that particular attention must be paid to the load/levels of essential trace elements in COVID-19 patients, mainly zinc and selenium. On the other hand, the exposure to air pollutants in general, and toxic metal/metalloids in particular, should be avoided as much as possible to reduce the possibilities of viral infections, including SARS-CoV-2.
Collapse
Affiliation(s)
- Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorens 21, 43201, Reus, Catalonia, Spain.
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorens 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
230
|
Jurado Hernández JL, Álvarez Orozco IF. COVID-19 in Children: Respiratory Involvement and Some Differences With the Adults. Front Pediatr 2021; 9:622240. [PMID: 33855003 PMCID: PMC8039144 DOI: 10.3389/fped.2021.622240] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) represents a health problem with multidimensional impacts and heterogeneous respiratory involvement in children, probably due to the interaction between different and complex mechanisms that could explain its variable degrees of severity. Although the majority of reports reveal that children develop less severe cases, the number of patients is increasing with more morbidity. Most serious respiratory manifestations are acute respiratory distress syndrome (ARDS) and pneumonia. By understanding the key aspects that can be used to differentiate between pediatric and adult respiratory compromise by COVID-19, we can improve our knowledge, and thus decrease the negative impact of the disease in the pediatric population. In this mini review, we summarize some of the mechanisms and findings that distinguish between adult and pediatric COVID-19 and respiratory involvement, taking into account some issues related to the physiopathology, diagnosis, clinical and paraclinical presentation, severity, treatment, and control of the disease.
Collapse
|
231
|
Bermano G, Méplan C, Mercer DK, Hesketh JE. Selenium and viral infection: are there lessons for COVID-19? Br J Nutr 2021; 125:618-627. [PMID: 32758306 PMCID: PMC7503044 DOI: 10.1017/s0007114520003128] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Abstract
Se is a micronutrient essential for human health. Sub-optimal Se status is common, occurring in a significant proportion of the population across the world including parts of Europe and China. Human and animal studies have shown that Se status is a key determinant of the host response to viral infections. In this review, we address the question whether Se intake is a factor in determining the severity of response to coronavirus disease 2019 (COVID-19). Emphasis is placed on epidemiological and animal studies which suggest that Se affects host response to RNA viruses and on the molecular mechanisms by which Se and selenoproteins modulate the inter-linked redox homeostasis, stress response and inflammatory response. Together these studies indicate that Se status is an important factor in determining the host response to viral infections. Therefore, we conclude that Se status is likely to influence human response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and that Se status is one (of several) risk factors which may impact on the outcome of SARS-CoV-2 infection, particularly in populations where Se intake is sub-optimal or low. We suggest the use of appropriate markers to assess the Se status of COVID-19 patients and possible supplementation may be beneficial in limiting the severity of symptoms, especially in countries where Se status is regarded as sub-optimal.
Collapse
Affiliation(s)
- Giovanna Bermano
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, AberdeenAB10 7GJ, UK
| | - Catherine Méplan
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| | - Derry K. Mercer
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, AberdeenAB10 7GJ, UK
| | - John E. Hesketh
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, AberdeenAB10 7GJ, UK
| |
Collapse
|
232
|
Martens RJH, van Adrichem AJ, Mattheij NJA, Brouwer CG, van Twist DJL, Broerse JJCR, Magro-Checa C, van Dongen CMP, Mostard RLM, Ramiro S, Landewé RBM, Leers MPG. Hemocytometric characteristics of COVID-19 patients with and without cytokine storm syndrome on the sysmex XN-10 hematology analyzer. Clin Chem Lab Med 2021; 59:783-793. [PMID: 33554540 DOI: 10.1515/cclm-2020-1529] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES COVID-19 is an ongoing global pandemic. There is an urgent need for identification and understanding of clinical and laboratory parameters related to progression towards a severe and fatal form of this illness, often preceded by a so-called cytokine-storm syndrome (CSS). Therefore, we explored the hemocytometric characteristics of COVID-19 patients in relation to the deteriorating clinical condition CSS, using the Sysmex XN-10 hematology analyzer. METHODS From March 1st till May 16th, 2020, all patients admitted to our hospital with respiratory complaints and suspected for COVID-19 were included (n=1,140 of whom n=533 COVID-19 positive). The hemocytometric parameters of immunocompetent cells in peripheral blood (neutrophils [NE], lymphocytes [LY] and monocytes [MO]) obtained upon admission to the emergency department (ED) of COVID-19 positive patients were compared with those of the COVID-19 negative ones. Moreover, patients with CSS (n=169) were compared with COVID-19 positive patients without CSS, as well as with COVID-19 negative ones. RESULTS In addition to a significant reduction in leukocytes, thrombocytes and absolute neutrophils, it appeared that lymphocytes-forward scatter (LY-FSC), and reactive lymphocytes (RE-LYMPHO)/leukocytes were higher in COVID-19-positive than negative patients. At the moment of presentation, COVID-19 positive patients with CSS had different neutrophils-side fluorescence (NE-SFL), neutrophils-forward scatter (NE-FSC), LY-FSC, RE-LYMPHO/lymphocytes, antibody-synthesizing (AS)-LYMPHOs, high fluorescence lymphocytes (HFLC), MO-SSC, MO-SFL, and Reactive (RE)-MONOs. Finally, absolute eosinophils, basophils, lymphocytes, monocytes and MO-FSC were lower in patients with CSS. CONCLUSIONS Hemocytometric parameters indicative of changes in immunocompetent peripheral blood cells and measured at admission to the ED were associated with COVID-19 with and without CSS.
Collapse
Affiliation(s)
- Remy J H Martens
- Department of Clinical Chemistry and Hematology, Zuyderland Medical Center, Heerlen & Sittard, The Netherlands
| | - Arjan J van Adrichem
- Department of Clinical Chemistry and Hematology, Zuyderland Medical Center, Heerlen & Sittard, The Netherlands
| | - Nadine J A Mattheij
- Department of Clinical Chemistry and Hematology, Zuyderland Medical Center, Heerlen & Sittard, The Netherlands
| | - Calvin G Brouwer
- Department of Internal Medicine, Zuyderland Medical Center, Heerlen & Sittard, The Netherlands
| | - Daan J L van Twist
- Department of Internal Medicine, Zuyderland Medical Center, Heerlen & Sittard, The Netherlands
| | - Jasper J C R Broerse
- Department of Pulmonology, Zuyderland Medical Center, Heerlen & Sittard, The Netherlands
| | - César Magro-Checa
- Department of Rheumatology, Zuyderland Medical Center, Heerlen & Sittard, The Netherlands
| | | | - Rémy L M Mostard
- Department of Pulmonology, Zuyderland Medical Center, Heerlen & Sittard, The Netherlands
| | - Sofia Ramiro
- Department of Rheumatology, Zuyderland Medical Center, Heerlen & Sittard, The Netherlands
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert B M Landewé
- Department of Rheumatology, Zuyderland Medical Center, Heerlen & Sittard, The Netherlands
- Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Math P G Leers
- Department of Clinical Chemistry and Hematology, Zuyderland Medical Center, Heerlen & Sittard, The Netherlands
| |
Collapse
|
233
|
Sinkovits G, Mező B, Réti M, Müller V, Iványi Z, Gál J, Gopcsa L, Reményi P, Szathmáry B, Lakatos B, Szlávik J, Bobek I, Prohászka ZZ, Förhécz Z, Csuka D, Hurler L, Kajdácsi E, Cervenak L, Kiszel P, Masszi T, Vályi-Nagy I, Prohászka Z. Complement Overactivation and Consumption Predicts In-Hospital Mortality in SARS-CoV-2 Infection. Front Immunol 2021; 12:663187. [PMID: 33841446 PMCID: PMC8027327 DOI: 10.3389/fimmu.2021.663187] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/05/2021] [Indexed: 12/30/2022] Open
Abstract
Objectives Uncontrolled thromboinflammation plays an important role in the pathogenesis of coronavirus disease (COVID-19) caused by SARS-CoV-2 virus. Complement was implicated as key contributor to this process, therefore we hypothesized that markers of the complement profile, indicative for the activation state of the system, may be related to the severity and mortality of COVID-19. Methods In this prospective cohort study samples of 102 hospitalized and 26 outpatients with PCR-confirmed COVID-19 were analyzed. Primary outcome was in-hospital, COVID-19 related mortality, and secondary outcome was COVID-19 severity as assessed by the WHO ordinal scale. Complement activity of alternative and classical pathways, its factors, regulators, and activation products were measured by hemolytic titration, turbidimetry, or enzyme-immunoassays. Clinical covariates and markers of inflammation were extracted from hospital records. Results Increased complement activation was characteristic for hospitalized COVID-19 patients. Complement activation was significantly associated with markers of inflammation, such as interleukin-6, C-reactive protein, and ferritin. Twenty-five patients died during hospital stay due to COVID-19 related illness. Patients with uncontrolled complement activation leading to consumption of C3 and decrease of complement activity were more likely to die, than those who had complement activation without consumption. Cox models identified anaphylatoxin C3a, and C3 overactivation and consumption (ratio of C3a/C3) as predictors of in-hospital mortality [HR of 3.63 (1.55–8.45, 95% CI) and 6.1 (2.1–17.8), respectively]. Conclusion Increased complement activation is associated with advanced disease severity of COVID-19. Patients with SARS-CoV-2 infection are more likely to die when the disease is accompanied by overactivation and consumption of C3. These results may provide observational evidence and further support to studies on complement inhibitory drugs for the treatment of COVID-19.
Collapse
Affiliation(s)
- György Sinkovits
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Blanka Mező
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Marienn Réti
- Department of Haematology and Stem Cell Transplantation, Central Hospital of Southern Pest National Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Zsolt Iványi
- Department of Anaesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - János Gál
- Department of Anaesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - László Gopcsa
- Department of Haematology and Stem Cell Transplantation, Central Hospital of Southern Pest National Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Péter Reményi
- Department of Haematology and Stem Cell Transplantation, Central Hospital of Southern Pest National Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Beáta Szathmáry
- Department of Infectology, Central Hospital of Southern Pest National Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Botond Lakatos
- Department of Infectology, Central Hospital of Southern Pest National Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - János Szlávik
- Department of Infectology, Central Hospital of Southern Pest National Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Ilona Bobek
- Department of Anaesthesiology and Intensive Therapy, Central Hospital of Southern Pest National Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Zita Z Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Zsolt Förhécz
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Dorottya Csuka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Lisa Hurler
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Erika Kajdácsi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - László Cervenak
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Petra Kiszel
- Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Tamás Masszi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - István Vályi-Nagy
- Department of Infectology, Central Hospital of Southern Pest National Institute of Haematology and Infectious Diseases, Budapest, Hungary.,Department of Anaesthesiology and Intensive Therapy, Central Hospital of Southern Pest National Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| |
Collapse
|
234
|
Mazzocco G, Niemiec I, Myronov A, Skoczylas P, Kaczmarczyk J, Sanecka-Duin A, Gruba K, Król P, Drwal M, Szczepanik M, Pyrc K, Stȩpniak P. AI Aided Design of Epitope-Based Vaccine for the Induction of Cellular Immune Responses Against SARS-CoV-2. Front Genet 2021; 12:602196. [PMID: 33841493 PMCID: PMC8027494 DOI: 10.3389/fgene.2021.602196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
The heavy burden imposed by the COVID-19 pandemic on our society triggered the race toward the development of therapies or preventive strategies. Among these, antibodies and vaccines are particularly attractive because of their high specificity, low probability of drug-drug interaction, and potentially long-standing protective effects. While the threat at hand justifies the pace of research, the implementation of therapeutic strategies cannot be exempted from safety considerations. There are several potential adverse events reported after the vaccination or antibody therapy, but two are of utmost importance: antibody-dependent enhancement (ADE) and cytokine storm syndrome (CSS). On the other hand, the depletion or exhaustion of T-cells has been reported to be associated with worse prognosis in COVID-19 patients. This observation suggests a potential role of vaccines eliciting cellular immunity, which might simultaneously limit the risk of ADE and CSS. Such risk was proposed to be associated with FcR-induced activation of proinflammatory macrophages (M1) by Fu et al. (2020) and Iwasaki and Yang (2020). All aspects of the newly developed vaccine (including the route of administration, delivery system, and adjuvant selection) may affect its effectiveness and safety. In this work we use a novel in silico approach (based on AI and bioinformatics methods) developed to support the design of epitope-based vaccines. We evaluated the capabilities of our method for predicting the immunogenicity of epitopes. Next, the results of our approach were compared with other vaccine-design strategies reported in the literature. The risk of immuno-toxicity was also assessed. The analysis of epitope conservation among other Coronaviridae was carried out in order to facilitate the selection of peptides shared across different SARS-CoV-2 strains and which might be conserved in emerging zootic coronavirus strains. Finally, the potential applicability of the selected epitopes for the development of a vaccine eliciting cellular immunity for COVID-19 was discussed, highlighting the benefits and challenges of such an approach.
Collapse
Affiliation(s)
| | | | - Alexander Myronov
- Ardigen, Krakow, Poland
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | | | | | | | - Katarzyna Gruba
- Ardigen, Krakow, Poland
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | | | | | - Marian Szczepanik
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | |
Collapse
|
235
|
ACE2 as therapeutic agent. Clin Sci (Lond) 2021; 134:2581-2595. [PMID: 33063820 DOI: 10.1042/cs20200570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
The angiotensin-converting enzyme 2 (ACE2) has emerged as a critical regulator of the renin-angiotensin system (RAS), which plays important roles in cardiovascular homeostasis by regulating vascular tone, fluid and electrolyte balance. ACE2 functions as a carboxymonopeptidase hydrolyzing the cleavage of a single C-terminal residue from Angiotensin-II (Ang-II), the key peptide hormone of RAS, to form Angiotensin-(1-7) (Ang-(1-7)), which binds to the G-protein-coupled Mas receptor and activates signaling pathways that counteract the pathways activated by Ang-II. ACE2 is expressed in a variety of tissues and overwhelming evidence substantiates the beneficial effects of enhancing ACE2/Ang-(1-7)/Mas axis under many pathological conditions in these tissues in experimental models. This review will provide a succinct overview on current strategies to enhance ACE2 as therapeutic agent, and discuss limitations and future challenges. ACE2 also has other functions, such as acting as a co-factor for amino acid transport and being exploited by the severe acute respiratory syndrome coronaviruses (SARS-CoVs) as cellular entry receptor, the implications of these functions in development of ACE2-based therapeutics will also be discussed.
Collapse
|
236
|
Macela A, Kubelkova K. Why Does SARS-CoV-2 Infection Induce Autoantibody Production? Pathogens 2021; 10:380. [PMID: 33809954 PMCID: PMC8004127 DOI: 10.3390/pathogens10030380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
SARS-CoV-2 infection induces the production of autoantibodies, which is significantly associated with complications during hospitalization and a more severe prognosis in COVID-19 patients. Such a response of the patient's immune system may reflect (1) the dysregulation of the immune response or (2) it may be an attempt to regulate itself in situations where the non-infectious self poses a greater threat than the infectious non-self. Of significance may be the primary virus-host cell interaction where the surface-bound ACE2 ectoenzyme plays a critical role. Here, we present a brief analysis of recent findings concerning the immune recognition of SARS-CoV-2, which, we believe, favors the second possibility as the underlying reason for the production of autoantibodies during COVID-19.
Collapse
Affiliation(s)
| | - Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic;
| |
Collapse
|
237
|
Vetrici MA, Mokmeli S, Bohm AR, Monici M, Sigman SA. Evaluation of Adjunctive Photobiomodulation (PBMT) for COVID-19 Pneumonia via Clinical Status and Pulmonary Severity Indices in a Preliminary Trial. J Inflamm Res 2021; 14:965-979. [PMID: 33776469 PMCID: PMC7989376 DOI: 10.2147/jir.s301625] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Evidence-based and effective treatments for COVID-19 are limited, and a new wave of infections and deaths calls for novel, easily implemented treatment strategies. Photobiomodulation therapy (PBMT) is a well-known adjunctive treatment for pain management, wound healing, lymphedema, and cellulitis. PBMT uses light to start a cascade of photochemical reactions that lead to local and systemic anti-inflammatory effects at multiple levels and that stimulate healing. Numerous empirical studies of PBMT for patients with pulmonary disease such as pneumonia, COPD and asthma suggest that PBMT is a safe and effective adjunctive treatment. Recent systematic reviews suggest that PBMT may be applied to target lung tissue in COVID-19 patients. In this preliminary study, we evaluated the effect of adjunctive PBMT on COVID-19 pneumonia and patient clinical status. PATIENTS AND METHODS We present a small-scale clinical trial with 10 patients randomized to standard medical care or standard medical care plus adjunctive PBMT. The PBMT group received four daily sessions of near-infrared light treatment targeting the lung tissue via a Multiwave Locked System (MLS) laser. Patient outcomes were measured via blood work, chest x-rays, pulse oximetry and validated scoring tools for pneumonia. RESULTS PBMT patients showed improvement on pulmonary indices such as SMART-COP, BCRSS, RALE, and CAP (Community-Acquired Pneumonia questionnaire). PBMT-treated patients showed rapid recovery, did not require ICU admission or mechanical ventilation, and reported no long-term sequelae at 5 months after treatment. In the control group, 60% of patients were admitted to the ICU for mechanical ventilation. The control group had an overall mortality of 40%. At a 5-month follow-up, 40% of the control group experienced long-term sequelae. CONCLUSION PBMT is a safe and effective potential treatment for COVID-19 pneumonia and improves clinical status in COVID-19 pneumonia.
Collapse
Affiliation(s)
- Mariana A Vetrici
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Soheila Mokmeli
- Training Institute, Canadian Optic and Laser Center, Victoria, BC, Canada
| | - Andrew R Bohm
- Department of Orthopedics, Lenox Hill Hospital, New York, NY, USA
| | - Monica Monici
- ASA Campus J.L., ASA Res. Division – Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Scott A Sigman
- Department of Orthopedics, Lowell General Hospital, Lowell, MA, 01863, USA
| |
Collapse
|
238
|
Yang Y, Cui X, Wei H, Guo C, Zhang Y. Potential Anti-Coronavirus Agents and the Pharmacologic Mechanisms. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1213-1223. [PMID: 33762818 PMCID: PMC7982566 DOI: 10.2147/dddt.s293216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/06/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) is an emerging pathogen, which is similar to previous SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) occurrences. However, we only get few understandings about the pathogenesis of SARS-CoV-2, which need to further be studied. The discovery of an agent that has a treatment efficacy against SARS-CoV-2 is very urgent. In this review, we briefly discuss the virology of this pathogen and focus on the available understanding of the pathogenesis and treatments of this pathogen including the uses of nucleoside analogues, protease inhibitors, interferons, and other small-molecule drugs, on the basis previous comprehensions of SARS and MERS. These reviewed concepts may be beneficial in providing new insights and potential treatments for COVID-19.
Collapse
Affiliation(s)
- Yang Yang
- Department of Infectious Diseases, Beijing You an Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, 100069, People's Republic of China
| | - Xiao Cui
- Department of Infectious Diseases, Beijing You an Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, 100069, People's Republic of China
| | - Huaying Wei
- Department of Infectious Diseases, Beijing You an Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, 100069, People's Republic of China
| | - Caiping Guo
- Department of Infectious Diseases, Beijing You an Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, 100069, People's Republic of China
| | - Yulin Zhang
- Department of Respiratory and Infectious Diseases, Beijing You an Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, 100069, People's Republic of China
| |
Collapse
|
239
|
Tarighi P, Eftekhari S, Chizari M, Sabernavaei M, Jafari D, Mirzabeigi P. A review of potential suggested drugs for coronavirus disease (COVID-19) treatment. Eur J Pharmacol 2021; 895:173890. [PMID: 33482181 PMCID: PMC7816644 DOI: 10.1016/j.ejphar.2021.173890] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/11/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
The latest pandemic, coronavirus disease-2019 (COVID-19), is associated with high prevalence and easy transmission, which is expanding globally with no conventional treatment or vaccine. The new virus revealed 79% and 50% genomic similarities with severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), respectively. Accordingly, since the disease resists testing and adopting new therapeutics, repositioning pre-existing drugs may present a fast and attractive strategy with known safety, characteristics, and dosage used. However, they are not specific and targeted. Therefore, several drugs have been investigated for their efficacy and safety in the treatment of COVID-19; most of them are undergoing clinical trials. This article summarizes clinical investigations of potential therapeutic drugs used as COVID-19 therapy. Subsequently, it prepares a pattern of results and therapeutic targets to help further experiment designs. We have investigated drugs as classified in the following three groups; 1) The drugs which computationally showed effectiveness (in silico) but needed further lab confirmations; 2) Emetine, Teicoplanin, and Nelfinavir have shown effectiveness in vitro; 3) The drugs currently under clinical trial.
Collapse
Affiliation(s)
- Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Samane Eftekhari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Milad Chizari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahsa Sabernavaei
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| | - Davod Jafari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Parastoo Mirzabeigi
- Department of Clinical Pharmacy, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
240
|
Wang S, Ye J, Kang Z, Peng H, Mackey V, Sun L. The COVID-19 pandemic and the potential treatment of the novel coronavirus SARS-CoV-2. Am J Transl Res 2021; 13:871-881. [PMID: 33841627 PMCID: PMC8014381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/04/2020] [Indexed: 06/12/2023]
Abstract
Coronavirus SARS-CoV-2 is a novel coronavirus and the seventh that can infect human beings and result in severe and acute respiratory syndrome and deaths. Currently, the world is undergoing a global health emergency due to the SARS-CoV-2 pandemic. As of May 18, SARS-CoV-2 has spread to over two hundred countries and infected more than 4.8 million people, resulting in over 300,000 deaths since the first case of a novel pneumonia (COVID-19) patient was discovered in Wuhan, China at the end of December 2019. Currently, there are no effective and/or approved targeting drugs for it though various supportive therapy drugs such as small molecule drugs, vaccines, antibodies and even Chinese herb medicines have been used in the treatment of the first-line patients. However, certain drugs such as remdesivir and S416 are under clinical investigation and may become therapeutic drugs. In this article, we review and discuss SARS-CoV-2, its person-to-person transmission, genomics and proteomics, and the potential for drug development.
Collapse
Affiliation(s)
- Shilei Wang
- Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd.Guangdong, China
| | - Jinlei Ye
- Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd.Guangdong, China
| | - Zhichao Kang
- Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd.Guangdong, China
| | - Hongmei Peng
- Scientific Research and Education Department, The First Peoples Hospital of Changde CityChangde 415000, Hunan, China
| | - Vienna Mackey
- Department of Medicine, School of Medicine, Tulane University Health Sciences CenterNew Orleans, USA
| | - Lichun Sun
- Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd.Guangdong, China
- Department of Medicine, School of Medicine, Tulane University Health Sciences CenterNew Orleans, USA
- Sino-US Innovative Bio-Medical Center and Hunan Beautide PharmaceuticalsXiangtan, Hunan, China
| |
Collapse
|
241
|
Hess CB, Nasti TH, Dhere VR, Kleber TJ, Switchenko JM, Buchwald ZS, Stokes WA, Weinberg BD, Rouphael N, Steinberg JP, Godette KD, Murphy DJ, Ahmed R, Curran WJ, Khan MK. Immunomodulatory Low-Dose Whole-Lung Radiation for Patients with Coronavirus Disease 2019-Related Pneumonia. Int J Radiat Oncol Biol Phys 2021; 109:867-879. [PMID: 33340603 PMCID: PMC7832642 DOI: 10.1016/j.ijrobp.2020.12.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Phase 1 clinical trials have established low-dose, whole-lung radiation therapy (LD-RT) as safe for patients with coronavirus disease 2019 (COVID-19)-related pneumonia. By focally dampening cytokine hyperactivation, LD-RT may improve disease outcomes through immunomodulation. METHODS AND MATERIALS Patients with COVID-19-related pneumonia were treated with 1.5 Gy whole-lung LD-RT, followed for 28 days or until hospital discharge, and compared with age- and comorbidity-matched controls meeting identical disease severity criteria. Eligible patients were hospitalized, severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) positive, had radiographic consolidations, and required supplemental oxygen but had not rapidly declined on admission or before drug therapy or LD-RT. Efficacy endpoints were time to clinical recovery, radiographic improvement, and biomarker response. RESULTS Ten patients received whole-lung LD-RT between April 24 and May 24, 2020 and were compared with 10 control patients blindly matched by age and comorbidity. Six controls received COVID-19 drug therapies. Median time to clinical recovery was 12 days in the control cohort compared with 3 days in the LD-RT cohort (hazard ratio 2.9, P = .05). Median time to hospital discharge (20 vs 12 days, P = .19) and intubation rates (40% vs 10%, P = .12) in the control and LD-RT cohorts were compared. Median time from admission to recovery was 10 versus 13 days (P = .13). Hospital duration average was 19 versus 22.6 days (P = .53). Average hospital days on supplemental oxygen of any duration was 13.1 versus 14.7 days (P = .69). Average days with a documented fever was 1 versus 4.3 days (P = .12). Twenty-eight-day overall survival was 90% for both cohorts. The LD-RT cohort trended toward superior rates of improved radiographs (P = .12) and delirium (P < .01). Statistically significant reductions were observed in numerous hematologic, cardiac, hepatic, and inflammatory markers. CONCLUSIONS A prospective cohort of predominantly elderly hospitalized patients with COVID-19-related pneumonia were recovered to room air quicker than age- and comorbidity-matched controls, with trending or significant improvements in delirium, radiographs, and biomarkers, and no significant acute toxicity. Low-dose, whole-lung radiation for patients with COVID-19-related pneumonia appears safe and may be an effective immunomodulatory treatment. Larger prospective randomized trials are needed to define the efficacy of LD-RT for COVID-19.
Collapse
Affiliation(s)
- Clayton B Hess
- Department of Radiation Oncology, Emory University, Atlanta, Georgia; Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Tahseen H Nasti
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia
| | - Vishal R Dhere
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Troy J Kleber
- Emory University School of Medicine, Atlanta, Georgia
| | - Jeffrey M Switchenko
- Winship Cancer Institute, Emory University, Atlanta, Georgia; Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia
| | - Zachary S Buchwald
- Department of Radiation Oncology, Emory University, Atlanta, Georgia; Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - William A Stokes
- Department of Radiation Oncology, Emory University, Atlanta, Georgia; Winship Cancer Institute, Emory University, Atlanta, Georgia
| | | | - Nadine Rouphael
- Department of Infectious Disease, Emory University, Atlanta, Georgia
| | - James P Steinberg
- Department of Infectious Disease, Emory University, Atlanta, Georgia
| | - Karen D Godette
- Department of Radiation Oncology, Emory University, Atlanta, Georgia; Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - David J Murphy
- Department of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, Georgia
| | - Rafi Ahmed
- Winship Cancer Institute, Emory University, Atlanta, Georgia; Department of Infectious Disease, Emory University, Atlanta, Georgia
| | - Walter J Curran
- Department of Radiation Oncology, Emory University, Atlanta, Georgia; Department of Infectious Disease, Emory University, Atlanta, Georgia
| | - Mohammad K Khan
- Emory University School of Medicine, Atlanta, Georgia; Department of Infectious Disease, Emory University, Atlanta, Georgia.
| |
Collapse
|
242
|
Goerlich E, Minhas AS, Mukherjee M, Sheikh FH, Gilotra NA, Sharma G, Michos ED, Hays AG. Multimodality Imaging for Cardiac Evaluation in Patients with COVID-19. Curr Cardiol Rep 2021; 23:44. [PMID: 33721125 PMCID: PMC7957471 DOI: 10.1007/s11886-021-01483-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW A growing number of cardiovascular manifestations resulting from the novel SARS-CoV-2 coronavirus (COVID-19) have been described since the beginning of this global pandemic. Acute myocardial injury is common in this population and is associated with higher rates of morbidity and mortality. The focus of this review centers on the recent applications of multimodality imaging in the diagnosis and management of COVID-19-related cardiovascular conditions. RECENT FINDINGS In addition to standard cardiac imaging techniques such as transthoracic echocardiography, other modalities including computed tomography and cardiac magnetic resonance imaging have emerged as useful adjuncts in select patients with COVID-19 infection, particularly those with suspected ischemic and nonischemic myocardial injury. Data have also emerged suggesting lasting COVID-19 subclinical cardiac effects, which may have long-term prognostic implications. With the spectrum of COVID-19 cardiovascular manifestations observed thus far, it is important for clinicians to recognize the role, strengths, and limitations of multimodality imaging techniques in this patient population.
Collapse
Affiliation(s)
- Erin Goerlich
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Carnegie 568, Baltimore, MD 21287 USA
| | - Anum S. Minhas
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Carnegie 568, Baltimore, MD 21287 USA
| | - Monica Mukherjee
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Carnegie 568, Baltimore, MD 21287 USA
| | - Farooq H. Sheikh
- Division of Cardiology, Department of Medicine, Medstar Washington Hospital Center, Washington, DC USA
| | - Nisha A. Gilotra
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Carnegie 568, Baltimore, MD 21287 USA
| | - Garima Sharma
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Carnegie 568, Baltimore, MD 21287 USA
| | - Erin D. Michos
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Carnegie 568, Baltimore, MD 21287 USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Allison G. Hays
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Carnegie 568, Baltimore, MD 21287 USA
| |
Collapse
|
243
|
Hasan A, Al-Ozairi E, Al-Baqsumi Z, Ahmad R, Al-Mulla F. Cellular and Humoral Immune Responses in Covid-19 and Immunotherapeutic Approaches. Immunotargets Ther 2021; 10:63-85. [PMID: 33728277 PMCID: PMC7955763 DOI: 10.2147/itt.s280706] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (Covid-19), caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can range in severity from asymptomatic to severe/critical disease. SARS-CoV-2 uses angiotensin-converting enzyme 2 to infect cells leading to a strong inflammatory response, which is most profound in patients who progress to severe Covid-19. Recent studies have begun to unravel some of the differences in the innate and adaptive immune response to SARS-CoV-2 in patients with different degrees of disease severity. These studies have attributed the severe form of Covid-19 to a dysfunctional innate immune response, such as a delayed and/or deficient type I interferon response, coupled with an exaggerated and/or a dysfunctional adaptive immunity. Differences in T-cell (including CD4+ T-cells, CD8+ T-cells, T follicular helper cells, γδ-T-cells, and regulatory T-cells) and B-cell (transitional cells, double-negative 2 cells, antibody-secreting cells) responses have been identified in patients with severe disease compared to mild cases. Moreover, differences in the kinetic/titer of neutralizing antibody responses have been described in severe disease, which may be confounded by antibody-dependent enhancement. Importantly, the presence of preexisting autoantibodies against type I interferon has been described as a major cause of severe/critical disease. Additionally, priorVaccine and multiple vaccine exposure, trained innate immunity, cross-reactive immunity, and serological immune imprinting may all contribute towards disease severity and outcome. Several therapeutic and preventative approaches have been under intense investigations; these include vaccines (three of which have passed Phase 3 clinical trials), therapeutic antibodies, and immunosuppressants.
Collapse
Affiliation(s)
- Amal Hasan
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Ebaa Al-Ozairi
- Clinical Research Unit, Medical Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
- Department of Medicine, Faculty of Medicine, Jabriya, Kuwait City, Kuwait
| | - Zahraa Al-Baqsumi
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Functional Genomics, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| |
Collapse
|
244
|
Magar R, Yadav P, Barati Farimani A. Potential neutralizing antibodies discovered for novel corona virus using machine learning. Sci Rep 2021; 11:5261. [PMID: 33664393 PMCID: PMC7970853 DOI: 10.1038/s41598-021-84637-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
The fast and untraceable virus mutations take lives of thousands of people before the immune system can produce the inhibitory antibody. The recent outbreak of COVID-19 infected and killed thousands of people in the world. Rapid methods in finding peptides or antibody sequences that can inhibit the viral epitopes of SARS-CoV-2 will save the life of thousands. To predict neutralizing antibodies for SARS-CoV-2 in a high-throughput manner, in this paper, we use different machine learning (ML) model to predict the possible inhibitory synthetic antibodies for SARS-CoV-2. We collected 1933 virus-antibody sequences and their clinical patient neutralization response and trained an ML model to predict the antibody response. Using graph featurization with variety of ML methods, like XGBoost, Random Forest, Multilayered Perceptron, Support Vector Machine and Logistic Regression, we screened thousands of hypothetical antibody sequences and found nine stable antibodies that potentially inhibit SARS-CoV-2. We combined bioinformatics, structural biology, and Molecular Dynamics (MD) simulations to verify the stability of the candidate antibodies that can inhibit SARS-CoV-2.
Collapse
Affiliation(s)
- Rishikesh Magar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Prakarsh Yadav
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Amir Barati Farimani
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
245
|
Magar R, Yadav P, Barati Farimani A. Potential neutralizing antibodies discovered for novel corona virus using machine learning. Sci Rep 2021; 11:5261. [PMID: 33664393 DOI: 10.1101/2020.03.14.992156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/17/2021] [Indexed: 05/22/2023] Open
Abstract
The fast and untraceable virus mutations take lives of thousands of people before the immune system can produce the inhibitory antibody. The recent outbreak of COVID-19 infected and killed thousands of people in the world. Rapid methods in finding peptides or antibody sequences that can inhibit the viral epitopes of SARS-CoV-2 will save the life of thousands. To predict neutralizing antibodies for SARS-CoV-2 in a high-throughput manner, in this paper, we use different machine learning (ML) model to predict the possible inhibitory synthetic antibodies for SARS-CoV-2. We collected 1933 virus-antibody sequences and their clinical patient neutralization response and trained an ML model to predict the antibody response. Using graph featurization with variety of ML methods, like XGBoost, Random Forest, Multilayered Perceptron, Support Vector Machine and Logistic Regression, we screened thousands of hypothetical antibody sequences and found nine stable antibodies that potentially inhibit SARS-CoV-2. We combined bioinformatics, structural biology, and Molecular Dynamics (MD) simulations to verify the stability of the candidate antibodies that can inhibit SARS-CoV-2.
Collapse
Affiliation(s)
- Rishikesh Magar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Prakarsh Yadav
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Amir Barati Farimani
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
246
|
Tajbakhsh A, Gheibi Hayat SM, Taghizadeh H, Akbari A, Inabadi M, Savardashtaki A, Johnston TP, Sahebkar A. COVID-19 and cardiac injury: clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up. Expert Rev Anti Infect Ther 2021; 19:345-357. [PMID: 32921216 DOI: 10.1080/14787210.2020.1822737] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/09/2020] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) has the characteristics of high transmission, diverse clinical manifestations, and a long incubation period. In addition to infecting the respiratory system, COVID-19 also has adverse effects on the cardiovascular system. COVID-19 causes acute myocardial injuries, as well as chronic damage to the cardiovascular system. AREAS COVERED The present review is aimed at providing current information on COVID-19 and the cardiovascular system. PubMed, Scopus, Science direct, and Google Scholar were searched. EXPERT OPINION It is suggested that heart injury caused by COVID-19 infection might be an important cause of severe clinical phenotypes or adverse events in affected patients. Myocardial damage is closely related to the severity of the disease and even the prognosis in patients with COVID-19. In addition to disorders that are caused by COVID-19 on the cardiovascular system, more protection should be employed for patients with preexisting cardiovascular disease (CVD). Hence, it is very important that once relevant symptoms appear, patients with COVID-19 be rapidly treated to reduce mortality. Thus, early measurements of cardiac damage via biomarkers following hospitalization for COVID-19 infections in a patient with preexisting CVD are recommended, together with careful monitoring of any myocardial injury that might be caused by the infection.Abbreviations: ICU: An intensive care unit; 2019-nCoV: 2019 novel coronavirus; ACEI: ACE inhibitor; ACS: Acute coronary syndrome; ARDS: Acute respiratory distress syndrome; AT1R: Ang II type 1 receptor; ATP: Adenosine triphosphate; ACC: American College of Cardiology; ACE: Angiotensin converting enzyme; Ang II: Angiotensin II; ARB: Angiotensin II receptor blocker; AV block: Atrioventricular block; CAD: Coronary artery disease; CVD: Cardiovascular disease; CT: Computerized tomography; CHF: Congestive heart failure; CHD: Coronary heart disease; CK-MB: Creatine kinase isoenzyme-MB; CRP: C-reactive protein; cTnI: Cardiac troponin I; EAT: Epicardial adipose tissue; ECMO: Extracorporeal membrane oxygenation; FDA: Food and Drug Administration; G-CSF: Granulocyte colony-stimulating factor; HFrEF: HF with a reduced ejection fraction; synhACE2: Human isoform of ACE2; IL: Interleukin; IABP: Intra-aortic balloon counterpulsation; IP10: Interferon γ-induced protein 10 kDa; LPC: Lysophosphatidylcholine; Mas: Mitochondrial assembly receptor; MCP1: Monocyte chemoattractant protein-1; MERS: Middle East respiratory syndrome; MIP1a: macrophage inflammatory protein 1a: MOF: Multiple organ failure; MI: Myocardial infarction; MRI: Magnetic resonance imaging; MYO: Myohe-moglobin; NT-proBNP: N-terminal pro-brain natriuretic peptide; PCPS: Percutaneous cardiopulmonary assistance; rhACE2: Recombinant human ACE2; SARS: Severe acute respiratory syndrome; Th: T helper; RAS: Renin-angiotensin system; TNF-α: Tumor necrosis factor-α; WHO: World Health Organization.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hajar Taghizadeh
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Akbari
- Department of Anesthesiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Inabadi
- Department of Biology, Islamic Azad University, Jahrom Branch, Jahrom, Iran
| | - Amir Savardashtaki
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies' Shiraz University of Medical Sciences, Shiraz, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
247
|
Li D, Ding X, Xie M, Tian D, Xia L. COVID-19-associated liver injury: from bedside to bench. J Gastroenterol 2021; 56:218-230. [PMID: 33527211 PMCID: PMC7849620 DOI: 10.1007/s00535-021-01760-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a global challenge since December 2019. Although most patients with COVID-19 exhibit mild clinical manifestations, in approximately 5% of these patients, the disease eventually progresses to severe lung injury or even multiorgan dysfunction. This situation represents various challenges to hepatology. In the context of liver injury in patients with COVID-19, several key problems need to be solved. For instance, it is important to determine whether SARS-CoV-2 can directly invade liver, especially when ACE2 appears to be negligibly expressed on hepatocytes. In addition, the mechanisms underlying liver dysfunction in COVID-19 patients are not fully understood, which are likely multifactorial and related to hyperinflammation, dysregulated immune responses, abnormal coagulation and drugs. Here, we systematically describe the potential pathogenesis of COVID-19-associated liver injury and propose several hypotheses about its etiopathogenesis.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiangming Ding
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou, 450000, Henan Province, China
| | - Meng Xie
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
248
|
Thng ZX, De Smet MD, Lee CS, Gupta V, Smith JR, McCluskey PJ, Thorne JE, Kempen JH, Zierhut M, Nguyen QD, Pavesio C, Agrawal R. COVID-19 and immunosuppression: a review of current clinical experiences and implications for ophthalmology patients taking immunosuppressive drugs. Br J Ophthalmol 2021; 105:306-310. [PMID: 32532764 PMCID: PMC7316101 DOI: 10.1136/bjophthalmol-2020-316586] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/04/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019 in Wuhan city, Hubei province, China. This is the third and largest coronavirus outbreak since the new millennium after SARS in 2002 and Middle East respiratory syndrome (MERS) in 2012. Over 3 million people have been infected and the COVID-19 has caused more than 217 000 deaths. A concern exists regarding the vulnerability of patients who have been treated with immunosuppressive drugs prior or during this pandemic. Would they be more susceptible to infection by the SARS-CoV-2 and how would their clinical course be altered by their immunosuppressed state? This is a question the wider medical fraternity-including ophthalmologists, rheumatologists, gastroenterologist and transplant physicians among others-must answer. The evidence from the SARS and MERS outbreak offer some degree of confidence that immunosuppression is largely safe in the current COVID-19 pandemic. Preliminary clinical experiences based on case reports, small series and observational studies show the morbidity and mortality rates in immunosuppressed patients may not differ largely from the general population. Overwhelmingly, current best practice guidelines worldwide recommended the continuation of immunosuppression treatment in patients who require them except for perhaps high-dose corticosteroid therapy and in patients with associated risk factors for severe COVID-19 disease.
Collapse
Affiliation(s)
- Zheng Xian Thng
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| | | | - Cecilia S Lee
- Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Vishali Gupta
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Advanced Eye Centre, Chandigarh, India
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Peter J McCluskey
- Department of Medical Retina and Uveitis, Sydney Eye Hospital, Sydney, New South Wales, Australia
- Save Sight Institute, Sydney, New South Wales, Australia
| | - Jennifer E Thorne
- Divsion of Ocular Immunology, Johns Hopkins Wilmer Eye Institute, Baltimore, Maryland, USA
| | - John H Kempen
- Department of Ophthalmology, Massachusetts Eye and Ear and Harvard Medical School, Boston, Massachusetts, USA
- MyungSung Christian Medical Center (MCM) Eye Unit, MCM General Hospital and Myung Sung Medical College, Addis Ababa, Ethiopia
| | | | - Quan Dong Nguyen
- Byers Eye Institute, Stanford University, Palo Alto, California, USA
| | - Carlos Pavesio
- Department of Medical Retina and Uveitis, Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| | - Rupesh Agrawal
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
- Department of Medical Retina and Uveitis, Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| |
Collapse
|
249
|
Fleming N, Sacks LJ, Pham CT, Neoh SL, Ekinci EI. An overview of COVID-19 in people with diabetes: Pathophysiology and considerations in the inpatient setting. Diabet Med 2021; 38:e14509. [PMID: 33377213 PMCID: PMC7883197 DOI: 10.1111/dme.14509] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/02/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The coronavirus disease (COVID-19) pandemic has continued to have a devastating impact on health worldwide. There has been a rapid evolution of evidence, establishing an increased risk of morbidity and mortality associated with diabetes and concurrent COVID-19. The objective of this review is to explore the current evidence for inpatient assessment and management of diabetes during the COVID-19 pandemic and highlight areas requiring further exploration. METHODS A literature search of databases was conducted to November 2020 using variations on keywords SARS-CoV-2, COVID-19, SARS, MERS and diabetes. Information relating to the impact of diabetes on severity of COVID-19 infection, the impact of COVID-19 infection on diabetes management and diabetes-related complications was integrated to create a narrative review. DISCUSSION People with diabetes and COVID-19 are at an increased risk of morbidity and mortality. It is important that people with both known and previously unrecognised diabetes and COVID-19 be promptly identified and assessed during acute illness, with close monitoring for clinical deterioration or complications. People with diabetes may require titration or alteration of their glycaemic management due to the potential for worse outcomes with hyperglycaemia and COVID-19 infection. Comprehensive discharge planning is vital to optimise ongoing glycaemic management. CONCLUSION Further understanding of the risk of adverse outcomes and optimisation of glycaemic management for people with diabetes during COVID-19 is required to improve outcomes. Increased glucose and ketone monitoring, substitution of insulin for some oral anti-hyperglycaemic medications and careful monitoring for complications of diabetes such as diabetic ketoacidosis should be considered.
Collapse
Affiliation(s)
- Nicola Fleming
- Department of SurgeryAustin HealthHeidelbergVic.Australia
| | - Lori J. Sacks
- Department of Medicine Austin Health, Melbourne Medical School, The University of MelbourneAustin HealthHeidelbergVic.Australia
| | - Cecilia T. Pham
- Department of Medicine Austin Health, Melbourne Medical School, The University of MelbourneAustin HealthHeidelbergVic.Australia
| | - Sandra L. Neoh
- Department of Medicine Austin Health, Melbourne Medical School, The University of MelbourneAustin HealthHeidelbergVic.Australia
- Department of EndocrinologyAustin HealthHeidelbergVic.Australia
| | - Elif I. Ekinci
- Department of Medicine Austin Health, Melbourne Medical School, The University of MelbourneAustin HealthHeidelbergVic.Australia
- Department of EndocrinologyAustin HealthHeidelbergVic.Australia
| |
Collapse
|
250
|
Ke Y, Cui J, Wong Y. Ecological Study on Differences in COVID-19 Fatality among Wuhan, Rest of Hubei, and Rest of China. J Epidemiol Glob Health 2021; 11:42-45. [PMID: 33009735 PMCID: PMC7958285 DOI: 10.2991/jegh.k.200902.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/22/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND China's vigorous anti-COVID-19 campaign has been going on for three months since January 20, which has contained the spread of the virus across China. OBJECTIVES Epidemiological investigations found that COVID-19 fatality rates in Wuhan, rest parts of Hubei province except Wuhan (Rest of Hubei) and rest parts of Mainland China except Hubei province (Rest of China) were different. An ecological study was conducted to analyze the reasons and provide the world with China's anti-COVID-19 epidemic experiences. METHODS Infected cases from Mainland China were divided into three populations: Wuhan, Rest of Hubei and Rest of China. Methods were based on The Novel Coronavirus Infected Pneumonia Diagnosis and Treatment Standards. Total confirmed cases, daily severe cases, total deaths from February 12 to April 20 were collected for statistical analysis. RESULTS 50,333 total confirmed cases in Wuhan made up the most substantial part by comparison with 17,795 in Rest of Hubei and 14,630 in Rest of China, respectively. In the early stage of the COVID-19 epidemic, daily severe cases in Wuhan accounted for the majority, and as the epidemic controlled, severe cases in all three populations decreased. Total deaths in Wuhan constituted the most significant proportion, with the highest 3869 in contrast to 643 in Rest of Hubei and 120 in Rest of China. The fatality rates in Wuhan ranged from 2.82% to 7.69%, much higher than 1.80-3.61% in Rest of Hubei, and 0.49-0.88% in Rest of China. Pearson chi-square test for fatality rates in the three populations demonstrated significant differences (p < 0.01). CONCLUSION The ecological comparison study among the three populations have proved that social distancing, quarantine, lockdown, cutting off sources of infection and transmission routes, early detection, early isolation, early treatment are all vital to control the epidemic by reducing COVID-19 confirmed cases, severe cases and the fatality rate.
Collapse
Affiliation(s)
- Youfu Ke
- Clinical Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China,Corresponding author.
| | - Jianli Cui
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - Yunkeung Wong
- Hong Kong Institute of Vocational Education, Hong Kong, 999077, China
| |
Collapse
|