201
|
Christofi FL, Wunderlich J, Yu JG, Wang YZ, Xue J, Guzman J, Javed N, Cooke H. Mechanically evoked reflex electrogenic chloride secretion in rat distal colon is triggered by endogenous nucleotides acting at P2Y1, P2Y2, and P2Y4 receptors. J Comp Neurol 2004; 469:16-36. [PMID: 14689471 DOI: 10.1002/cne.10961] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mechanical activation of the mucosal lining of the colon by brush stroking elicits an intestinal neural reflex and an increase in short circuit current (Isc) indicative of electrogenic chloride ion transport. We tested whether endogenous nucleotides are physiologic regulators of mucosal reflexes that control ion transport. The brush stroking-evoked Isc response in mucosa and submucosa preparations (M-SMP) of rat colon was reduced by the P2Y1 receptor (R) antagonist 2'deoxy-N6-methyl adenosine 3',5'-diphosphate diammonium salt (MRS 2179) and further blocked by tetrodotoxin (TTX). M-SMP Isc responses to serosal application of the P2Y1 R agonist 2-methylthioadenosine-diphosphate (2MeSADP) or the P2Y2/P2Y4 R agonist 5'uridine-triphosphate (UTP) were reduced but not abolished by TTX. The potency profile of nucleotides for increasing Isc was 5'adenosine-triphosphate (ATP; effective concentration at half maximal response [EC50] 0.65 x 10(4) M) congruent with UTP (EC50 1.0 x 10(-4) M) congruent with 2MeSADP (EC50 = 1.60 x 10(-4) M). Mucosal touch and distention-induced Ca2+ transients in submucous neurons were reduced by apyrase and prevented by blocking the P2Y1 R with MRS 2179 and TTX; denervation of the mucosa. It did not occur by touching a ganglion directly. 2MeSADP Ca2+ responses occurred in subsets of neurons with or without substance P (SP) responses. The potency profile of nucleotides on the neural Ca2+ response was 2MeSADP (5 x 10(-7) M) > UTP (6 x 10(-6) M) > ATP (9 x 10(-5) M). The expression of P2Y R immunoreactivity (ir) in nerve cell bodies was in the order of P2Y1 R > P2Y4 R >> P2Y2 R. P2Y1R ir occurred in the cell somas of more than 90% of neuronal nitric oxide synthase, vasoactive intestinal peptide (VIP), calretinin, or neuropeptide Y (NPY)-ir neurons, 78% of somatostatin neurons, but not in calbindin or SP neurons. P2Y2 R ir was expressed in a minority of SP, VIP, NPY, vesicular acetylcholine transporter, and calcitonin gene-related peptide-ir varicose fibers (5-20%) and those surrounding calbindin (5-20%) neurons. P2Y4 ir occurred mainly in the cell somas of 93% of NPY neurons. Reverse transcriptase polymerase chain reaction of the submucosa demonstrated mRNA for P2Y1R, P2Y2, P2Y4, P2Y6, and P2Y12 Rs. Expression of P2Y1, P2Y2, and P2Y4 protein was confirmed by western blots. In conclusion, endogenous nucleotides acting at P2YRs transduce mechanically evoked reflex chloride ion transport in rat distal colon. Nucleotides evoke reflexes by acting primarily at postsynaptic P2Y1 Rs and P2Y4 R on VIP+/NPY+ secretomotor neurons, at P2Y2 Rs on no more than 2% of VIP+ secretomotor neurons, and 2Y2 Rs mainly of extrinsic varicose fibers surrounding putative intrinsic primary afferent and secretomotor neurons. During mucosal mechanical reflexes, it is postulated that P2Y1 R, P2Y2 R, and P2Y4 R are activated by endogenous ATP, UTP, and 5'uridine-diphosphate.
Collapse
Affiliation(s)
- Fievos L Christofi
- Department of Anesthesiology, College of Medicine and Public Health, Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Duarte-Araújo M, Nascimento C, Alexandrina Timóteo M, Magalhães-Cardoso T, Correia-de-Sá P. Dual effects of adenosine on acetylcholine release from myenteric motoneurons are mediated by junctional facilitatory A(2A) and extrajunctional inhibitory A(1) receptors. Br J Pharmacol 2004; 141:925-34. [PMID: 14993098 PMCID: PMC1574269 DOI: 10.1038/sj.bjp.0705697] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 11/30/2003] [Accepted: 01/13/2004] [Indexed: 11/08/2022] Open
Abstract
1. The coexistence of both inhibitory A(1) and facilitatory A(2) adenosine receptors in the rat myenteric plexus prompted the question of how adenosine activates each receptor subtype to regulate cholinergic neurotransmission. 2. Exogenously applied adenosine (0.3-300 microm) decreased electrically evoked [(3)H]acetylcholine ([(3)H]ACh) release. Blocking A(1) receptors with 1,3-dipropyl-8-cyclopentylxanthine (10 nm) transformed the inhibitory action of adenosine into a facilitatory effect. Adenosine-induced inhibition was mimicked by the A(1) receptor agonist R-N(6)-phenylisopropyladenosine (0.3 microm), but the A(2A) agonist CGS 21680C (0.003 microm) produced a contrasting facilitatory effect. 3. Increasing endogenous adenosine levels, by the addition of (1) the adenosine precursor AMP (30-100 microm), (2) the adenosine kinase inhibitor 5'-iodotubercidin (10 microm) or (3) inhibitors of adenosine uptake (dipyridamole, 0.5 microm) and of deamination (erythro-9(2-hydroxy-3-nonyl)adenine, 50 microm), enhanced electrically evoked [(3)H]ACh release (5 Hz for 40 s). Release facilitation was prevented by adenosine deaminase (ADA, 0.5 U ml(-1)) and by the A(2A) receptor antagonist ZM 241385 (50 nm); these compounds decreased [(3)H]ACh release by 31+/-6% (n=7) and 37+/-10% (n=6), respectively. 4. Although inhibition of ecto-5'-nucleotidase by alpha,beta-methylene ADP (200 microm) or by concanavalin A (0.1 mg ml(-1)) attenuated endogenous adenosine formation from AMP, analysed by HPLC, the corresponding reduction in [(3)H]ACh release only became evident when stimulation of the myenteric plexus was prolonged to over 250 s. 5. In summary, we found that endogenously generated adenosine plays a predominantly tonic facilitatory effect mediated by prejunctional A(2A) receptors. Extracellular deamination and cellular uptake may restrict endogenous adenosine actions to the neuro-effector region near the release/production sites.
Collapse
Affiliation(s)
- Margarida Duarte-Araújo
- Laboratório de Farmacologia/UMIB, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, L. Prof. Abel Salazar, 2, 4099-003 Porto, Portugal
| | - Carlos Nascimento
- Laboratório de Farmacologia/UMIB, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, L. Prof. Abel Salazar, 2, 4099-003 Porto, Portugal
| | - M Alexandrina Timóteo
- Laboratório de Farmacologia/UMIB, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, L. Prof. Abel Salazar, 2, 4099-003 Porto, Portugal
| | - Teresa Magalhães-Cardoso
- Laboratório de Farmacologia/UMIB, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, L. Prof. Abel Salazar, 2, 4099-003 Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia/UMIB, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, L. Prof. Abel Salazar, 2, 4099-003 Porto, Portugal
| |
Collapse
|
203
|
Kamm K, Hoppe S, Breves G, Schröder B, Schemann M. Effects of the probiotic yeast Saccharomyces boulardii on the neurochemistry of myenteric neurones in pig jejunum. Neurogastroenterol Motil 2004; 16:53-60. [PMID: 14764205 DOI: 10.1046/j.1365-2982.2003.00458.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We studied the effects of food supplementation with Saccharomyces boulardii (S. boulardii; synonym S. cerevisiae HANSEN CBS 5926; 1 g per day for 9 days) on the presence and co-localization patterns of neuronal markers in myenteric neurones of the pig jejunum. The pan neuronal marker Hu revealed no change in the number of neuronal cell bodies per ganglion (37 +/- 7 in control vs 34 +/- 9 in the S. boulardii group). Ranked by size the following cell populations were identified: choline acetyltransferase (ChAT), calbindin-28k (CALB), substance P (SP), neurofilament 160 kD (NF-160), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), calcitonin gene-related peptide (CGRP), calretinin (CALRET). We found a significant decrease in the number of CALB myenteric neurones in animals which received S. boulardii supplemented diet. None of the other neuronal markers revealed any difference between controls and S. boulardii treated animals. The study reports transmitter-localization patterns in the myenteric plexus of the pig jejunum and provides evidence that changes in the neurochemistry of enteric neurones occur with S. boulardii supplemented diet. Although only CALB expression was altered and the functional significance of this finding remains unknown, our study identified a possible new effector level of probiotics in the gut.
Collapse
Affiliation(s)
- K Kamm
- Department of Physiology, School of Veterinary Medicine, Bischofsholer Damm, Hannover, Germany
| | | | | | | | | |
Collapse
|
204
|
Ji SW, Park H, Chung JP, Lee SI, Lee YH. Effects of Tegaserod on Ileal Peristalsis of Guinea Pig In Vitro. J Pharmacol Sci 2004; 94:144-52. [PMID: 14978352 DOI: 10.1254/jphs.94.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The mechanisms of prokinetic action of tegaserod in the gastrointestinal tract has not been studied in detail. The aim of this study was to investigate the effect of tegaserod on peristaltic reflexes and propagating peristaltic waves in guinea pig ileum. A partitioned organ bath divided into three chambers was used to investigate the effect of tegaserod on peristaltic reflexes. A sensory stimulus was applied to the intermediate chamber, and changes in the circular muscle tension were monitored in a peripheral chamber. Another peristaltic bath was used to investigate the effect of tegaserod on peristaltic waves induced by intraluminal perfusion. Guinea pig ileum exhibited contractions in the circular muscle both orally and anally in response to mucosal stroking. Tegaserod (10(-8) - 10(-6) M) did not influence the maximal amplitude and the area under the curve of contraction both orally and anally to a mucosal stimulus. Intraluminal perfusion of fluid containing tegaserod (10(-8) - 10(-6) M) significantly increased the number of peristaltic waves in a concentration-dependent manner (P<0.05). Also, tegaserod (10(-8) - 10(-6) M) significantly increased the area under the curve of peristaltic waves (P<0.05). It is concluded that tegaserod has prokinetic action on guinea pig ileum by increasing the number of the circular muscle contractions during peristalsis.
Collapse
Affiliation(s)
- Sang Won Ji
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
205
|
Patierno S, Raybould HE, Sternini C. Abdominal surgery induces μ opioid receptor endocytosis in enteric neurons of the guinea-pig ileum. Neuroscience 2004; 123:101-9. [PMID: 14667445 DOI: 10.1016/j.neuroscience.2003.08.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Immunohistochemistry and confocal microscopy were used to investigate mu opioid receptor (muOR) internalization in enteric neurons of the guinea-pig ileum following abdominal surgery. The following surgical procedures were performed under halothane or isofluorane anesthesia: a) midline abdominal skin incision, b) laparotomy or c) laparotomy with intestinal manipulation. Gastrointestinal transit was evaluated by using a non-absorbable marker and measuring fecal pellet output. In neurons from normal and control (anesthesia alone) animals, muOR was predominantly at the cell surface. muOR endocytosis following skin incision was not significantly different from controls (21.2+/-3.5% vs. 13.7+/-2.1%, mean+/-S.E.M.), whereas it was significantly increased by laparotomy (46.5+/-6.1%; P<0.01 vs. controls) or laparotomy plus intestinal manipulation (40.5+/-6.1%; P<0.01 vs. controls) 30 min following surgery compared with controls. muOR endocytosis remained elevated at 4 h (38.6+/-1.2%; P<0.01 vs. controls), whereas it was similar to controls at 6 and 12 h (17.5+/-5.8% and 11.2+/-3.0%). muOR endocytosis occurred in cholinergic and nitrergic neurons. Gastrointestinal transit was significantly delayed by laparotomy or laparotomy plus intestinal manipulation (12.8+/-1.2 and 13.8+/-0.6 h vs. 7.0+/-0.5 in controls; P<0.01), but was not significantly changed by skin incision (8.2+/-0.6 h). The findings of the present study support the concept that the noxious stimulation caused by abdominal surgery induces release of endogenous opioids thus resulting in muOR endocytosis in neurochemically distinct enteric neurons. muOR internalization can serve as indirect evidence of opioid release and as a means to visualize neuronal pathways activated by opioids.
Collapse
Affiliation(s)
- S Patierno
- CURE Digestive Diseases Research Center, Building 115, Room 224, Veterans Administration Greater Los Angeles Healthcare System, Digestive Diseases Division, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA.
| | | | | |
Collapse
|
206
|
Olsson C, Costa M, Brookes SJH. Neurochemical characterization of extrinsic innervation of the guinea pig rectum. J Comp Neurol 2004; 470:357-71. [PMID: 14961562 DOI: 10.1002/cne.20000] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The presence of markers for parasympathetic, sympathetic, and glutamatergic or peptidergic sensory innervation was investigated by using in vitro tracing with biotinamide, combined with immunohistochemistry, to characterise quantitatively extrinsic axons to myenteric ganglia of the guinea pig rectum. Of biotinamide-filled varicose axons, 3.6 +/- 1.3% were immunoreactive for tyrosine hydroxylase (TH) and 16.0 +/- 4.8% for vesicular acetylcholine transporter (VAChT). TH and vesicular monoamine transporter (VMAT1) showed high coexistence (83-100%), indicating that varicosities lacking TH immunoreactivity also lacked VMAT1. VAChT was detectable in 77% of choline acetyltransferase (ChAT)-immunoreactive varicosities. Calcitonin gene-related peptide (CGRP) was detected in 5.3 +/- 1.6% of biotinamide-labeled varicosities, the vesicular glutamate transporter (VGluT) 1 in 2.8 +/- 0.8%, and VGluT2 in 11.3 +/- 4.2% of varicosities of extrinsic origin. Varicosities from the same axon showed consistent immunoreactivity. A novel type of nerve ending was identified, with branching, flattened lamellar endings, similar to the intraganglionic laminar endings (IGLEs) of the proximal gut. Rectal IGLEs were frequently immunoreactive for VGluT1 and VGluT2. Thus most varicose axons of extrinsic origin, which innervate rectal myenteric ganglia, lack detectable levels of immunoreactivity for TH, VMAT1, VAChT, ChAT, VGluT1/2, or CGRP, under conditions in which these markers are readily detectable in other axons. Although some unlabeled varicosities may belong to afferent axons that lack detectable CGRP or VGluT1/2 in the periphery, this suggests that a large proportion of axons do not release any of the major autonomic or sensory transmitters. We speculate that this may vary under particular circumstances, for example, inflammation or obstruction of the gut.
Collapse
Affiliation(s)
- Catharina Olsson
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide 5001, South Australia
| | | | | |
Collapse
|
207
|
Johnson PJ, Bornstein JC. Neurokinin-1 and -3 receptor blockade inhibits slow excitatory synaptic transmission in myenteric neurons and reveals slow inhibitory input. Neuroscience 2004; 126:137-47. [PMID: 15145080 DOI: 10.1016/j.neuroscience.2004.03.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2004] [Indexed: 11/24/2022]
Abstract
Recent studies have shown that tachykinins mediate slow synaptic transmission to myenteric AH (afterhyperpolarising) neurons via neurokinin-3 receptors (NK(3)R). This study investigated a similar role for neurokinin-1 receptors (NK(1)R) and compared the effect of selective receptor antagonists on non-cholinergic slow excitatory post-synaptic potentials (EPSPs) recorded in myenteric AH neurons of the guinea-pig ileum. Slow EPSPs evoked by electrical stimulation of circumferentially oriented presynaptic nerves were mimicked by application of senktide, an NK(3)R agonist. [Sar(9),Met(O(2))(11)]-substance P, an NK(1)R agonist, depolarised a smaller number of neurons. SR142801, a selective NK(3)R antagonist (100 nM), inhibited slow EPSPs and responses to senktide, but had no effect on depolarisations evoked by forskolin, an activator of adenylate cyclase. SR140333, a selective NK(1)R antagonist, inhibited slow EPSPs in a subset of neurons and blocked responses to [Sar(9),Met(O(2))(11)]-substance P, but not to senktide or forskolin. Slow EPSPs that were predominantly mediated by NK(1)R had significantly shorter latencies than those due to activation of NK(3)R. After blockade of slow EPSPs, slow hyperpolarizing responses to presynaptic nerve stimulation were revealed in one-third of neurons. These events, which were associated with a decrease in input resistance and blocked by tetrodotoxin, were equated with slow inhibitory postsynaptic potentials. They were abolished by the 5-hydroxytryptamine(1A) receptor antagonist 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyl]-piperazine (NAN-190), but unaffected by phentolamine, an alpha-adrenoceptor antagonist. In conclusion, these results provide the first direct evidence that NK(1)R mediate some slow excitatory synaptic input to myenteric AH neurons, and suggest that NK(1)R and NK(3)R activate distinct signal transduction pathways. These results also demonstrate that slow inhibitory synaptic transmission, which may be mediated by 5-hydroxytryptamine, is more prevalent in the myenteric plexus than previously indicated.
Collapse
Affiliation(s)
- P J Johnson
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | |
Collapse
|
208
|
Stanton MP, Hengel PT, Southwell BR, Chow CW, Keck J, Hutson JM, Bornstein JC. Cholinergic transmission to colonic circular muscle of children with slow-transit constipation is unimpaired, but transmission via NK2 receptors is lacking. Neurogastroenterol Motil 2003; 15:669-78. [PMID: 14651603 DOI: 10.1046/j.1350-1925.2003.00443.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tachykinins (TKs) colocalize with acetylcholine in excitatory motor neurones supplying human colonic circular muscle (CCM). Some children with slow-transit constipation (STC) have reduced TK-immunoreactivity in nerve terminals in CCM suggesting a deficit in neuromuscular transmission. This study aimed to test this possibility. Seromuscular biopsies of transverse colon were obtained laparoscopically from STC children (37, 17 with low density of TK-immunoreactivity). Specimens of transverse (17) and sigmoid colon (20) were obtained from adults undergoing colonic resection for cancer. CCM contractions were measured isotonically and responses to carbachol, neurokinin A (NKA) and electrical field stimulation (EFS) recorded. Carbachol and NKA-evoked contractions in adult and STC colon. Hyoscine (2 micromol L-1) significantly depressed responses to EFS in all preparations. Blockade of NK2 receptors (SR 48968, 2 micromol L-1) significantly depressed EFS-evoked contractions of adult transverse CCM, but had no effect on STC preparations. Thus, neuromuscular transmission in both adults and STC children is predominantly cholinergic and this component is unimpaired in the latter, indicating that reduced TK-immunoreactivity is not a marker for depressed cholinergic responses. Although pharmacologically responsive TK receptors are present in STC colon, we did not detect neuromuscular transmission mediated by release of TKs in these preparations.
Collapse
Affiliation(s)
- M P Stanton
- Murdoch Children's Research Institute and Department of General Surgery, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
209
|
Pimont S, Bruley Des Varannes S, Le Neel JC, Aubert P, Galmiche JP, Neunlist M. Neurochemical coding of myenteric neurones in the human gastric fundus. Neurogastroenterol Motil 2003; 15:655-62. [PMID: 14651601 DOI: 10.1046/j.1350-1925.2003.00442.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The major functions of the stomach are under the control of the enteric nervous system (ENS), but the neuronal circuits involved in this control are largely unknown in humans. Enteric neurones can be characterized by their neuromediator or marker content, i.e. by neurochemical coding. The purpose of this study was to characterize the presence and co-localization of neurotransmitters in myenteric neurones of the human gastric fundus. Choline acetyltransferase (ChAT), neurone-specific enolase (NSE), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), substance P (SP) were detected by immunohistochemical methods in whole mounts of gastric fundus myenteric plexus (seven patients). Antibodies against ChAT and NOS labelled the majority of myenteric neurones identified by NSE (57.2 +/- 5.6% and 40.8 +/- 4.5%, respectively; mean +/- SD). The proportions of VIP- and SP-immunoreactive neurones were significantly smaller, constituting 19.6 +/- 6.9% and 16.0 +/- 3.7%, respectively. Co-localization studies revealed five major populations representing over 75% of the myenteric neurones: ChAT/-, 30.1 +/- 6.1%; NOS/-, 24.2 +/- 4.4%; ChAT/SP/-, 8.3 +/- 3.1%; NOS/VIP/-, 7.2 +/- 6.0%; ChAT/VIP/-, 4.9 +/- 2.6. Some similarities are apparent in the neurochemical coding of myenteric neurones in the stomach and intestine of humans, and between the stomach of humans and animals, but striking differences exist. The precise functional role of the neurochemically identified classes of neurones remains to be determined.
Collapse
Affiliation(s)
- S Pimont
- INSERM U 539, Place Alexis Ricordeau, Nantes, France CIC-INSERM, Place Alexis Ricordeau, Nantes, France.
| | | | | | | | | | | |
Collapse
|
210
|
Grider JR. Interleukin-1 beta selectively increases substance P release and augments the ascending phase of the peristaltic reflex. Neurogastroenterol Motil 2003; 15:607-15. [PMID: 14651596 DOI: 10.1046/j.1350-1925.2003.00445.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Exposure of muscle strips to interleukin (IL)-1beta stimulates substance P (SP) expression, suggesting a link between IL-1beta and the increase in SP expression during intestinal inflammation. The present study examined whether the SP expression induced by IL-1beta is reflected by enhanced SP release and SP-mediated reflex activity. Exposure of innervated longitudinal colonic muscle strips to IL-1beta for 8 h increased SP synthesis in, and greater SP release from excitatory motor neurones in response to KCl or electrical field stimulation (EFS), and enhanced longitudinal muscle contraction in response to EFS. IL-1 Ra and IL-1beta antibody blocked IL-1beta-induced increase in SP release and muscle contraction. Neither vasoactive intestinal peptide (VIP) nor somatostatin release was increased. The increase in SP release was reflected in enhanced circular muscle contraction in response to stretch. VIP-mediated descending relaxation of circular muscle was not affected. The selective increase in ascending contraction induced by exposure to IL-1beta was blocked by IL-1 Ra or IL-1beta antibody. We conclude that the selective increase in SP expression induced by IL-1beta in excitatory motor neurones is reflected by enhanced SP release and longitudinal muscle contraction in response to EFS, and enhanced SP release and circular muscle contraction during the ascending phase of the peristaltic reflex.
Collapse
Affiliation(s)
- J R Grider
- Departments of Physiology and Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA.
| |
Collapse
|
211
|
Ren J, Bian X, DeVries M, Schnegelsberg B, Cockayne DA, Ford APDW, Galligan JJ. P2X2 subunits contribute to fast synaptic excitation in myenteric neurons of the mouse small intestine. J Physiol 2003; 552:809-21. [PMID: 12937291 PMCID: PMC2343442 DOI: 10.1113/jphysiol.2003.047944] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
P2X receptors are ATP-gated cation channels composed of one or more of seven different subunits. ATP acts at P2X receptors to contribute to fast excitatory postsynaptic potentials (fEPSPs) in myenteric neurons but the subunit composition of enteric P2X receptors is unknown. These studies used tissues from P2X2 wild-type (P2X2+/+) and P2X2 gene knockout (P2X2-/-) mice to investigate the role of this subunit in enteric neurotransmission. Intracellular electrophysiological methods were used to record synaptic and drug-induced responses from ileal myenteric neurons in vitro. Drug-induced longitudinal muscle contractions and peristaltic contractions of ileal segments were also studied in vitro. Gastrointestinal transit was measured as the progression in 30 min of a liquid radioactive marker administered by gavage to fasted mice. RT-PCR analysis of mRNA from intestinal tissues and data from immunohistochemical studies verified P2X2 gene deletion. The fEPSPs recorded from S neurons in tissues from P2X2+/+ mice were reduced by mecamylamine (nicotinic cholinergic receptor antagonist) and PPADS (P2X receptor antagonist). The fEPSPs recorded from S neurons from P2X2-/- mice were unaffected by PPADS but were blocked by mecamylamine. ATP depolarized S and AH neurons from P2X2+/+ mice. ATP depolarized AH but not S neurons from P2X2-/- mice. alpha,beta-Methylene ATP (alpha,beta-mATP)(an agonist at P2X3 subunit-containing receptors) did not depolarize S neurons but it did depolarize AH neurons in P2X2+/+ and P2X2-/- mice. Peristalsis was inhibited in ileal segments from P2X2-/- mice but longitudinal muscle contractions caused by nicotine and bethanechol were similar in segments from P2X2+/+ and P2X2-/- mice. Gastrointestinal transit was similar in P2X2+/+ and P2X2-/- mice. It is concluded that P2X2 homomeric receptors contribute to fEPSPs in neural pathways underlying peristalsis studied in vitro.
Collapse
Affiliation(s)
- Jianhua Ren
- Department of Pharmacology and Toxicology and the Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
212
|
Abstract
ATP is a neurotransmitter in the central and peripheral nervous systems and is also involved in peripheral inflammation and transmission of the sensation of pain. Recently, the regulated release of ATP from non-neuronal sources has been shown to play a role in the activation of sensory nerve terminals. Within the enteric nervous system, which is present in the wall of the gastrointestinal tract, ATP plays three major roles. ATP acts as an inhibitory transmitter from the enteric motor neurons to the smooth muscle via P2Y receptors. ATP is released as an excitatory neurotransmitter between enteric interneurons and from the interneurons to the motor neurons via P2Y and P2X receptors. Finally, ATP may act as a sensory mediator, from epithelial sources to the intrinsic sensory nerve terminals. Thus, ATP participates in the transduction of sensory stimuli from the gut lumen and in the subsequent initiation and propagation of enteric reflexes.
Collapse
Affiliation(s)
- Paul P Bertrand
- Department of Physiology, University of Melbourne Parkville, Victoria, Australia.
| |
Collapse
|
213
|
Meedeniya ACB, Schloithe AC, Toouli J, Saccone GTP. Characterization of the intrinsic and extrinsic innervation of the gall bladder epithelium in the Australian Brush-tailed possum (Trichosurus vulpecula). Neurogastroenterol Motil 2003; 15:383-92. [PMID: 12846726 DOI: 10.1046/j.1365-2982.2003.00417.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intrinsic neurones of the gall bladder modulate its function. Nitric oxide synthase (NOS) and vasoactive intestinal polypeptide (VIP) are present in gall bladder neurones and nitric oxide and VIP modulate its epithelial functions. As an extensive extrinsic innervation of the gall bladder is also present, the source of the epithelial innervation is unclear. In this study the source of the gall bladder epithelial innervation is defined. Immunoreactivity for VIP, NOS, substance P (SP), calcitonin gene related peptide (CGRP) and tyrosine hydroxylase (TH) in organotypic cultured and freshly fixed gall bladder were compared. Retrograde tracing in vitro from the epithelium was used to identify putative intrinsic secretomotor neurones, which were then characterized by immunohistochemistry. Abundant spinal afferent and sympathetic innervation of the gall bladder epithelium was demonstrated by CGRP/SP and TH immunohistochemistry, respectively. The intrinsic secretomotor innervation of the epithelium is derived exclusively from neurones of the subepithelial plexus. A majority of these neurones were immunoreactive for NOS. Some of the NOS-immunoreactive neurones of the subepithelial plexus also contained VIP and/or SP. Gall bladder subepithelial plexus neurones, containing NOS and/or VIP/SP, innervate the epithelium, as do extrinsic neurones.
Collapse
Affiliation(s)
- A C B Meedeniya
- Department of General and Digestive Surgery, Centre for Neuroscience, Flinders University, Flinders Medical Centre, Australia
| | | | | | | |
Collapse
|
214
|
Furness JB, Alex G, Clark MJ, Lal VV. Morphologies and projections of defined classes of neurons in the submucosa of the guinea-pig small intestine. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 272:475-83. [PMID: 12740940 DOI: 10.1002/ar.a.10064] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Four types of neurons have previously been identified by neurochemical markers in the submucosal ganglia of the guinea-pig small intestine, and functional roles have been ascribed to each type. However, morphological differences among the classes have not been determined, and there is only partial information about their projections within the submucosa. In the present work, we used intracellular microelectrodes to fill neurons of each type with biocytin, which was then converted to a permanent dye, so that the shapes of the neurons could be determined and their projections within the submucosa could be followed. Cell bodies of noncholinergic secretomotor/ vasodilator neurons had Dogiel type I morphology. These neurons, which are vasoactive intestinal peptide immunoreactive, had single axons that ran through many ganglia without providing terminals around other neurons. Cholinergic secretomotor neurons with neuropeptide Y immunoreactivity had Stach type IV morphology, and cholinergic secretomotor/vasodilator neurons had stellate cell bodies. The axons of these two types ran short distances in the plexus and did not innervate other submucosal neurons. Neurons of the fourth type, intrinsic primary afferent neurons, had cell bodies with Dogiel type II morphology and their processes supplied networks of varicose processes around other nerve cells. It is concluded that each functionally defined type of submucosal neuron has a characteristic morphology and that intrinsic primary afferent neurons synapse with secretomotor neurons to form monosynaptic secretomotor reflex circuits.
Collapse
Affiliation(s)
- John B Furness
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| | | | | | | |
Collapse
|
215
|
Bisschops R, Vanden Berghe P, Bellon E, Janssens J, Tack J. Electrical stimulation reveals complex neuronal input and activation patterns in single myenteric guinea pig ganglia. Am J Physiol Gastrointest Liver Physiol 2003; 284:G1084-92. [PMID: 12736152 DOI: 10.1152/ajpgi.00383.2002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The myenteric plexus plays a key role in the control of gastrointestinal motility. We used confocal calcium imaging to study responses to electrical train stimulation (ETS) of interganglionic fiber tracts in entire myenteric ganglia of the guinea pig small intestine. ETS induced calcium transients in a subset of neurons: 52.2% responded to oral ETS, 65.4% to aboral ETS, and 71.7% to simultaneous oral and aboral ETS. A total of 41.3% of the neurons displayed convergence of oral and aboral ETS-induced responses. Responses could be reversibly blocked with TTX (10(-)6 M), demonstrating involvement of neuronal conduction, and by removal of extracellular calcium. omega-Conotoxin (5 x 10(-7) M) blocked the majority of responses and reduced the amplitude of residual responses by 45%, indicating the involvement of N-type calcium channels. Staining for calbindin and calretinin did not reveal different response patterns in these immunohistochemically identified neurons. We conclude that, at least for ETS close to a ganglion, confocal calcium imaging reveals complex oral and aboral input to individual myenteric neurons rather than a polarization in spread of activity.
Collapse
Affiliation(s)
- R Bisschops
- Center for Gastroenterological Research and Medical Image Computing (Radiology - ESAT/PSI), Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
216
|
Grider JR. Reciprocal activity of longitudinal and circular muscle during intestinal peristaltic reflex. Am J Physiol Gastrointest Liver Physiol 2003; 284:G768-75. [PMID: 12684209 DOI: 10.1152/ajpgi.00384.1998] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A two-compartment, flat-sheet preparation of rat colon was devised, which enabled exclusive measurement of longitudinal muscle activity during the ascending and descending phases of the peristaltic reflex. A previous study using longitudinal muscle strips revealed the operation of an integrated neuronal circuit consisting of somatostatin, opioid, and VIP/pituitary adenylate cyclase-activating peptide (PACAP)/nitric oxide synthase (NOS) interneurons coupled to cholinergic/tachykinin motor neurons innervating longitudinal muscle strips that could lead to descending contraction and ascending relaxation of this muscle layer. Previous studies in peristaltic preparations have also shown that an increase in somatostatin release during the descending phase causes a decrease in Met-enkephalin release and suppression of the inhibitory effect of Met-enkephalin on VIP/PACAP/NOS motor neurons innervating circular muscle and a distinct set of VIP/PACAP/NOS interneurons. The present study showed that in contrast to circular muscle, longitudinal muscle contracted during the descending phase and relaxed during the ascending phase. Somatostatin antiserum inhibited descending contraction and augmented ascending relaxation of longitudinal muscle, whereas naloxone had the opposite effect. VIP and PACAP antagonists inhibited descending contraction of longitudinal muscle and augmented ascending relaxation. Atropine and tachykinin antagonists inhibited descending contraction of longitudinal muscle. As shown in earlier studies, the same antagonists and antisera produced opposite effects on circular muscle. We conclude that longitudinal muscle contracts and relaxes in reverse fashion to circular muscle during the peristaltic reflex. Longitudinal muscle activity is regulated by excitatory VIP/PACAP/NOS interneurons coupled to cholinergic/tachykinin motor neurons innervating longitudinal muscle.
Collapse
Affiliation(s)
- J R Grider
- Departments of Physiology and Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| |
Collapse
|
217
|
Anlauf M, Schäfer MKH, Eiden L, Weihe E. Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. J Comp Neurol 2003; 459:90-111. [PMID: 12629668 DOI: 10.1002/cne.10599] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this investigation was to identify the proportional neurochemical codes of enteric neurons and to determine the specific terminal fields of chemically defined nerve fibers in all parts of the human gastrointestinal (GI) tract. For this purpose, antibodies against the vesicular monoamine transporters (VMAT1/2), the vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), serotonin (5-HT), vasoactive intestinal peptide (VIP), and protein gene product 9.5 (PGP 9.5) were used. For in situ hybridization (35)S-labeled VMAT1, VMAT2, and VAChT riboprobes were used. In all regions of the human GI tract, 50-70% of the neurons were cholinergic, as judged by staining for VAChT. The human gut unlike the rodent gut exhibits a cholinergic innervation, which is characterized by an extensive overlap with VIPergic innervation. Neurons containing VMAT2 constituted 14-20% of all intrinsic neurons in the upper GI tract, and there was an equal number of TH-positive neurons. In contrast, DBH was absent from intrinsic neurons. Cholinergic and monoaminergic phenotypes proved to be completely distinct phenotypes. In conclusion, the chemical coding of human enteric neurons reveals some similarities with that of other mammalian species, but also significant differences. VIP is a cholinergic cotransmitter in the intrinsic innervation of the human gut. The substantial overlap between VMAT2 and TH in enteric neurons indicates that the intrinsic catecholaminergic innervation is a stable component of the human GI tract throughout life. The absence of DBH from intrinsic catecholaminergic neurons indicates that these neurons have a dopaminergic phenotype.
Collapse
Affiliation(s)
- Martin Anlauf
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University, Marburg, 35037 Marburg, Germany
| | | | | | | |
Collapse
|
218
|
Nurgali K, Furness JB, Stebbing MJ. Analysis of purinergic and cholinergic fast synaptic transmission to identified myenteric neurons. Neuroscience 2003; 116:335-47. [PMID: 12559090 DOI: 10.1016/s0306-4522(02)00749-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Types and projections of neurons that received cholinergic, purinergic and other fast excitatory synaptic inputs in myenteric ganglia of the guinea-pig distal colon were identified using combined electrophysiological recording, application of selective antagonists, marker dye filling via the recording microelectrode, and immunohistochemical characterisation. Fast synaptic inputs were recorded from all major subtypes of uniaxonal neurons including Dogiel type I neurons, filamentous interneurons, circular muscle motor neurons and longitudinal muscle motor neurons. Fast excitatory postsynaptic potentials were completely blocked by the nicotinic receptor antagonists hexamethonium or mecamylamine in 62% of neurons tested and were partially inhibited in the remaining neurons. The P2 purine receptor antagonist, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid, reduced the amplitudes of fast excitatory postsynaptic potentials in 20% of myenteric neurons. The 5-hydroxytryptamine(3) receptor antagonist granisetron reduced the amplitude of fast excitatory postsynaptic potentials in only one of 15 neurons tested. In five of five neurons tested, the combination of a nicotinic antagonist, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid, granisetron and 6-cyano-7-nitroquinoxaline-2,3-dione did not completely block the fast excitatory postsynaptic potentials. Immunohistochemical studies of the neurons that had been identified electrophysiologically and morphologically imply that P2X(2) receptors may mediate fast transmission in some neurons, and that other P2X receptor subtypes may also be involved in fast synaptic transmission to myenteric neurons of the guinea-pig distal colon. Neurons with nicotinic and pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid-sensitive fast excitatory postsynaptic potentials were present in both ascending and descending pathways in the distal colon. Thus, neither cholinergic nor mixed cholinergic/purinergic synaptic responses are confined to a particular class of neuron. The results indicate that acetylcholine and ATP are the major fast excitatory neurotransmitters in guinea-pig distal colon myenteric ganglia.
Collapse
Affiliation(s)
- K Nurgali
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Vic 3010, Australia
| | | | | |
Collapse
|
219
|
Ho A, Lievore A, Patierno S, Kohlmeier SE, Tonini M, Sternini C. Neurochemically distinct classes of myenteric neurons express the mu-opioid receptor in the guinea pig ileum. J Comp Neurol 2003; 458:404-11. [PMID: 12619074 DOI: 10.1002/cne.10606] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mu-opioid receptor (muOR), which mediates many of the opioid effects in the nervous system, is expressed by enteric neurons. The aims of this study were to determine whether 1) different classes of myenteric neurons in the guinea pig ileum contain muOR immunoreactivity by using double- and triple-labeling immunofluorescence and confocal microscopy, 2) muOR immunoreactivity is localized to enteric neurons immunoreactive for the endogenous opioid enkephalin, and 3) muOR immunoreactivity is localized to interstitial cells of Cajal visualized by c-kit. In the myenteric plexus, 50% of muOR-immunoreactive neurons contained choline acetyltransferase (ChAT) immunoreactivity, whereas about 43% of ChAT-immunoreactive neurons were muOR immunoreactive. Approximately 46% of muOR myenteric neurons were immunoreactive for vasoactive intestinal polypeptide (VIP), and about 31% were immunoreactive for nitric oxide synthase (NOS). MuOR immunoreactivity was found in about 68% of VIP-containing neurons and 60% of NOS-immunoreactive neurons. Triple labeling showed that about 32% of muOR neurons contained VIP and ChAT immunoreactivities. The endogenous opioid enkephalin (ENK) was observed in about 30% of muOR neurons; conversely, 48% of ENK neurons contained muOR immunoreactivity. MuOR was not detected in neurons containing calbindin, nor in interstitial cells of Cajal. MuOR-immunoreactive fibers formed a dense network around interstitial cells of Cajal in the deep muscular plexus. This study demonstrates that muOR is expressed by neurochemically distinct classes of myenteric neurons that are likely to differ functionally, is colocalized with the endogenous opioid ENK, and is not expressed by interstitial cells of Cajal.
Collapse
Affiliation(s)
- Anthony Ho
- Division of Digestive Diseases, CURE Digestive Diseases Research Center, Los Angeles, CA 90073, USA
| | | | | | | | | | | |
Collapse
|
220
|
Sayegh AI, Ritter RC. Morphology and distribution of nitric oxide synthase-, neurokinin-1 receptor-, calretinin-, calbindin-, and neurofilament-M-immunoreactive neurons in the myenteric and submucosal plexuses of the rat small intestine. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 271:209-16. [PMID: 12552637 DOI: 10.1002/ar.a.10024] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Characterization of the enteric neurons is vital for understanding their physiological role. We have used single and dual label fluorescence and peroxidase-based immunohistochemistry in myenteric and submucosal whole mounts from the rat small intestine to evaluate the morphology and distribution of enteric neurons immunoreactive for the following phenotypic antigens: neuronal nitric oxide synthase (NOS), neurokinin-1 receptor (NK-1R), calretinin (Calr), calbindin (Cal), and neurofilament-M (NF-M). NOS-immunoreactive neurons had Dogiel type I morphology, were abundant in the myenteric plexus compared to the submucosal plexus, and never coexpressed NK-1R immunoreactivity. NK-1R- and Calr-immunoreactive neurons had Dogiel type II morphology and were distributed comparably in both plexuses. NK-1R and Calr-immunoreactivity were coexpressed in many of the same neurons. Calbindin-immunoreactive neurons exhibited four distinct morphologies: small and large Dogiel type II neurons, Dogiel type I neurons, and small elongated neurons. These neurons were significantly fewer in number in the myenteric plexus compared to the submucosal plexus. Neurofilament-M-immunoreactive neurons had three morphologies, Dogiel type II neurons, small Dogiel type II neurons, and a less common subpopulation of small, elongated, multipolar neurons. These neurons were also fewer in number in the myenteric plexus compared to the submucosal plexus. The distribution of these phenotypic markers may assist future work that elucidates the functional activities of these enteric neurons such as control of intestinal motility and adaptation to the entry of gastric contents.
Collapse
Affiliation(s)
- Ayman I Sayegh
- Gastroenterology and Imaging Laboratories, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama, USA.
| | | |
Collapse
|
221
|
Abstract
Cholecystokinin (CCK) is a peptide hormone released from the I-cells of the upper small intestine. CCK evokes a variety of physiological responses, such as stimulation of pancreatic secretion, reduction of food intake and inhibition of gastric emptying. Previously, we reported that CCK activates enteric neurons in the rat. However the specific subpopulations of enteric neurons activated by CCK have not been identified. In the work reported here, we utilized immunohistochemical detection of nuclear Fos, a marker for neuronal activation, and selected phenotypic markers to identify some of the neuronal subpopulations activated by CCK. The phenotypic markers that we examined were: nitric oxide synthase (NOS), neurokinin-1 receptor (NK-1R), calbindin (Cal), Calretinin (Calr), and neurofilament-M (NF-M). We found that in the myenteric plexus of the rat duodenum and jejunum, CCK activated NOS immunoreactive neurons. In the submucosal plexus of duodenum and jejunum, CCK activated Cal, Calr and NF-M immunoreactive neurons. CCK failed to activate NK-1R immunoreactive neurons in either plexus. Our results indicate that CCK activates distinct enteric neurons in the rat upper small intestine. Furthermore the fact that NOS immunoreactive neurons were activated suggests that CCK modulates the activity of inhibitory motor neurons in the myenteric plexus. Expression of Fos immunoreactivity in Calr and Cal immunoreactive neurons is consistent with a role for CCK in modulation of intrinsic sensory and/or secretomotor neuronal activity in the submucosal plexus.
Collapse
Affiliation(s)
- Ayman I Sayegh
- Gastroenterology Laboratory, Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, 36088, Tuskegee, AL, USA.
| | | |
Collapse
|
222
|
Schicho R, Schemann M, Pabst MA, Holzer P, Lippe ITH. Capsaicin-sensitive extrinsic afferents are involved in acid-induced activation of distinct myenteric neurons in the rat stomach. Neurogastroenterol Motil 2003; 15:33-44. [PMID: 12588467 DOI: 10.1046/j.1365-2982.2003.00384.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Challenge of the rat gastric mucosa with 0.5 mol L(-1) HCl activates nitrergic neurons in the myenteric plexus as visualized by c-Fos immunohistochemistry. In the present study, we characterized the activated neurons more extensively by their chemical coding and investigated whether a neural pathway that involves capsaicin-sensitive extrinsic afferents and/or cholinergic neurons transmitting via nicotinic receptors contributes to the activation of myenteric neurons. In multiple labelling experiments, c-Fos was examined for co-localization with nitric oxide synthase (NOS), vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), enkephalin (ENK), gastrin-releasing peptide (GRP), substance P (SP), calbindin D-28k (CALB) and neurofilament 145 (NF 145). All c-Fos-positive neurons were immunoreactive for NOS, VIP, NPY and NF 145, but not for SP, ENK, GRP and CALB. Nerve fibres co-expressing NOS, VIP and NPY were predominantly found in the external muscle layer and in the muscularis mucosae but rarely in the mucosa. Pre-treatment with capsaicin or hexamethonium or a combination of both pre-treatments reduced HCl-induced c-Fos expression by 54, 66 and 63%, respectively. Acid challenge of the stomach, therefore, leads to activation of presumably inhibitory motor neurons responsible for muscle relaxation. Activation of these neurons is partly mediated by capsaicin-sensitive afferents and involves ganglionic transmission via nicotinic receptors.
Collapse
Affiliation(s)
- R Schicho
- Department of Experimental and Clinical Pharmacology, University of Graz, Austria.
| | | | | | | | | |
Collapse
|
223
|
Spencer NJ, Hennig GW, Smith TK. Stretch-activated neuronal pathways to longitudinal and circular muscle in guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 2003; 284:G231-41. [PMID: 12388186 DOI: 10.1152/ajpgi.00291.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The role of the longitudinal muscle (LM) layer during the peristaltic reflex in the small and large intestine is unclear. In this study, we have made double and quadruple simultaneous intracellular recordings from LM and circular muscle (CM) cells of guinea pig distal colon to correlate the electrical activities in the two different muscle layers during circumferential stretch. Simultaneous recordings from LM and CM cells (<200 microm apart) at the oral region of the colon showed that excitatory junction potentials (EJPs) discharged synchronously in both muscle layers for periods of up to 6 h. Similarly, at the anal region of the colon, inhibitory junction potentials (IJPs) discharged synchronously in the two muscle layers. Quadruple recordings from LM and CM orally at the same time as from the LM and CM anally revealed that IJPs occurred synchronously in the LM and CM anally at the same time as EJPs in LM and CM located 20 mm orally. Oral EJPs and anal IJPs were linearly related in amplitude between the two muscle layers. Spatiotemporal maps generated from simultaneous video imaging of the movements of the colon, combined with intracellular recordings, revealed that some LM contractions orally could be correlated in time with IJPs in CM cells anally. N(omega)-nitro-L-arginine (L-NA; 100 microM) abolished the IJP in LM, whereas a prominent L-NA-resistant "fast" IJP was always observed in CM. In summary, in stretched preparations, synchronized EJPs in both LM and CM orally are generated by synchronized firing of many ascending interneurons, which simultaneously activate excitatory motor neurons to both muscle layers. Similarly, synchronized IJPs in both LM and CM anally are generated by synchronized firing of many descending interneurons, which simultaneously activate inhibitory motor neurons to both muscle layers. This synchronized motor activity ensures that both muscles around the entire circumference are excited orally at the same time as inhibited anally, thus producing net aboral propulsion.
Collapse
Affiliation(s)
- Nick J Spencer
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | |
Collapse
|
224
|
Nurgali K, Stebbing MJ, Furness JB. Correlation of electrophysiological and morphological characteristics of enteric neurons in the mouse colon. J Comp Neurol 2003; 468:112-24. [PMID: 14648694 DOI: 10.1002/cne.10948] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report on the first correlative study of the electrophysiological properties, shapes, and projections of enteric neurons in the mouse. Neurons in the myenteric plexus of the mouse colon were impaled with microelectrodes containing biocytin, their passive and active electrophysiological properties determined, and their responses to activation of synaptic inputs investigated. Biocytin, injected into the neurons from which recordings were made, was converted to an optically dense product and used to determine the shapes of neurons. By electrophysiological properties, almost all neurons belonged to one of two classes, AH neurons or S neurons. AH neurons had a biphasic repolarization of the action potential, and slow afterhyperpolarizing potentials usually followed the action potentials. S neurons had monophasic repolarizations, no slow afterhyperpolarization, and fast excitatory postsynaptic potentials in response to fibre tract stimulation. By shape, neurons were divided into Dogiel type II (28/136 neurons) and uniaxonal neurons. Dogiel type II neurons had large, smooth-surfaced cell bodies and several long processes that supplied branches within myenteric ganglia. All Dogiel type II neurons had AH electrophysiology; conversely, most AH neurons had Dogiel type II morphology. The majority of uniaxonal neurons had lamellar dendrites, i.e., Dogiel type I morphology. They projected to the circular muscle (circular muscle motor neurons), to the longitudinal muscle (longitudinal muscle motor neurons), and to other myenteric ganglia (interneurons) and in some cases could not be traced to target cells. All S neurons were uniaxonal. A small proportion of uniaxonal neurons (3/70) had AH electrophysiology. Fast excitatory synaptic potentials were only recorded from uniaxonal neurons and were in most cases blocked by nicotinic receptor antagonists. A small component of fast excitatory transmission in some neurons was antagonized by the purine receptor antagonist PPADS. Slow excitatory postsynaptic potentials were observed in both AH and S neurons. Slow inhibitory postsynaptic potentials were recorded from S neurons. We conclude that the major classes of neurons are Dogiel type II neurons with AH electrophysiological properties and Dogiel type I neurons with S electrophysiological properties. The S/Dogiel type I neurons include circular muscle motor neurons, longitudinal muscle motor neurons, and interneurons.
Collapse
Affiliation(s)
- Kulmira Nurgali
- Department of Anatomy and Cell Biology and Centre for Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
225
|
Anavi-Goffer S, Coutts AA. Cellular distribution of vanilloid VR1 receptor immunoreactivity in the guinea-pig myenteric plexus. Eur J Pharmacol 2003; 458:61-71. [PMID: 12498908 DOI: 10.1016/s0014-2999(02)02653-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent investigations suggest that vanilloid receptor-1 (VR1) immunoreactivity occurs in the intestine. We have determined and quantified this immunoreactivity in the myenteric plexus with respect to cholinergic and neurofilament protein-positive neurones. Guinea-pig and rat preparations were dual-labelled with specific antibodies raised in rabbit or goat against vanilloid receptor-1 and against other neurochemical markers. In the rat ileum, both vanilloid receptor antibodies were co-distributed, whereas in the guinea-pig ileum and colon, tertiary fibres were also detected with the goat antibody. In the guinea-pig, all vanilloid receptor-1-immunoreactive cell bodies were choline acetyltransferase-immunopositive (100%) and showed some immunoreactivity to neurofilament proteins (NFP-200 kDa (79%) or triplet (10.8%)) or calretinin. Immunoreactive fibres in the secondary plexus co-localised with calcitonin gene-related peptide (CGRP) and with substance P, calretinin and synapsin I in the tertiary plexus. Subpopulations of cholinergic neurones including sensory, interneuronal and secretory neurones express vanilloid receptor-1. Co-localisation with substance P and calretinin in fibres suggests that vanilloid receptor-1 may be expressed by excitatory motor neurones. The association of vanilloid receptors with calcitonin gene-related peptide and synaptic protein in fibres implies a role for vanilloid receptors in neurotransmitter/neuropeptide release. Although it is likely that at least some of the vanilloid receptor-bearing fibres originate in immunopositive myenteric soma, the origin of all these fibres cannot be identified in the present study.
Collapse
Affiliation(s)
- Sharon Anavi-Goffer
- Department of Biomedical Science, Institute of Medical Sciences, University of Aberdeen, Scotland AB25 2ZD, Aberdeen, UK
| | | |
Collapse
|
226
|
De Biasi M. Nicotinic mechanisms in the autonomic control of organ systems. JOURNAL OF NEUROBIOLOGY 2002; 53:568-79. [PMID: 12436421 DOI: 10.1002/neu.10145] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Most visceral organs are under the control of the autonomic nervous system (ANS). Information on the state and function of these organs is constantly relayed to the central nervous system (CNS) by sensory afferent fibers. The CNS integrates the sensory inputs and sends neural commands back to the organ through the ANS. The autonomic ganglia are the final site for the integration of the message traveling from the CNS. Nicotinic acetylcholine receptors (nAChRs) are the main mediators of fast synaptic transmission in ganglia, and therefore, are key molecules for the processing of neural information in the ANS. This review focuses on the role of nAChRs in the control of organ systems such as heart, gut, and bladder. The autonomic control of these organ systems is discussed in the light of the results obtained from the analysis of mice carrying mutations targeted to nAChR subunits expressed in the ANS.
Collapse
Affiliation(s)
- Mariella De Biasi
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
227
|
Spencer NJ, Hennig GW, Smith TK. A rhythmic motor pattern activated by circumferential stretch in guinea-pig distal colon. J Physiol 2002; 545:629-48. [PMID: 12456839 PMCID: PMC2290691 DOI: 10.1113/jphysiol.2002.028647] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Simultaneous intracellular recordings were made from pairs of circular muscle (CM) cells, at the oral and anal ends of a segment of guinea-pig distal colon, to investigate the neuronal mechanisms underlying faecal pellet propulsion. When a minimum degree of circumferential stretch was applied to sheet preparations of colon, recordings from CM cells revealed either no ongoing junction potentials, or alternatively, small potentials usually < 5 mV in amplitude. Maintained circumferential stretch applied to these preparations evoked an ongoing discharge of excitatory junction potentials (EJPs) at the oral recording site (range: 1-25 mV), which lasted for up to 6 h. The onset of each large oral EJP was time-locked with the onset of an inhibitory junction potential (IJP) at an anal recording electrode, located 2 cm from the oral recording. Similar results were obtained in isolated intact tube preparations of colon, when recordings were made immediately oral and anal of an artificial faecal pellet. The amplitudes of many large (> 5 mV) oral EJPs were linearly related to the amplitudes of anal IJPs occurring 20 mm apart. In the absence of an L-type Ca(2+) channel blocker, action potentials occurred on each large oral EJP. Synchronized discharges of stretch-activated EJPs and IJPs were preserved following pretreatment with capsaicin (10 microM), were unaffected by nifedipine (1 microM) and did not require the mucosa or submucous plexus. EJPs and IJPs were abolished by hexamethonium (300 microM) or tetrodotoxin (1 microM), but persisted in the presence of pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS; 10 microM) or an NK(3) tachykinin receptor antagonist (Neurokinin A 4-10; 100 nM to 5 microM). In summary, maintained circumferential stretch of the distal colon activates a population of intrinsic mechanosensory neurons that generate repetitive firing of ascending excitatory and descending inhibitory pathways to CM. These mechanosensory neurons, which may be interneurons, are stretch sensitive, rather than muscle tension sensitive, since they are resistant to muscular paralysis. We suggest the synchrony in onset of oral EJPs and anal IJPs over large regions of colon is due to synchronous synaptic activation of ascending and descending interneurons.
Collapse
Affiliation(s)
- Nick J Spencer
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | |
Collapse
|
228
|
Abstract
There are many cell surface receptors expressed by neurones in the enteric nervous system (ENS). These receptors respond to synaptically released neurotransmitters, circulating hormones and locally released substances. Cell surface receptors are also targets for many therapeutically used drugs. This review will focus on ligand-gated ion channels, i.e. receptors in which the ligand binding site and the ion channel are parts of a single multimeric receptor. Ligand-gated ion channels expressed by enteric nerves are: nicotinic acetylcholine receptors (nAChRs), P2X receptors, 5-hydroxytryptamine3 (5-HT3) receptors, gamma-aminobutyric acid (GABAA) receptors, N-methyl-d-aspartate (NMDA) receptors,alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and glycine receptors. P2X, 5-HT3 and nAChRs participate in fast synaptic transmission in S-type neurones in the ENS. Fast synaptic transmission occurs in some AH-type neurones, and AH neurones express all the ligand-gated ion channels listed above. Ligand-gated ion channels may be localized at extra-synaptic sites in some AH neurones and these extra-synaptic receptors may be useful targets for drugs that can be used to treat disorders of gastrointestinal function.
Collapse
Affiliation(s)
- J J Galligan
- Department of Pharmacology and Toxicology and the Neuroscience Program, Michigan State University, East Lansing 48824, USA.
| |
Collapse
|
229
|
Brehmer A, Schrödl F, Neuhuber W. Correlated morphological and chemical phenotyping in myenteric type V neurons of porcine ileum. J Comp Neurol 2002; 453:1-9. [PMID: 12357427 DOI: 10.1002/cne.10358] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The study was aimed at the immunohistochemical characterization of myenteric Stach type V neurons of the pig ileum that were not included in the widely used Dogiel classification. So far, this conspicuous population has been defined morphologically on the basis of silver-impregnated specimens only. By using neurofilament immunohistochemistry, type V neurons that occur singly or in aggregates could be identified unequivocally and could be distinguished from other smoothly contoured myenteric neurons, i.e., type II and type IV. Double-labeling immunohistochemistry revealed a number of potentially neuroactive substances or their synthesizing enzymes to be present in type V neurons. Choline acetyltransferase immunoreactivity (-ir) was found in all type V neurons, whereas neuronal nitric oxide synthase was detected in none. Leu-enkephalin-ir was found within 92.3%, somatostatin (SOM)-ir within 91.1%, calcitonin gene-related peptide (CGRP)-ir within 80.6% and met-enkephalin-ir within 74.7% of type V neurons. Triple-labeling immunohistochemistry was applied to address the question of a specific chemical coding for myenteric type V neurons. In contrast to other combinations of neuroactive substances/enzymes that were found in both type V and other, nontype V neurons, SOM/CGRP-ir was the only combination observed exclusively within type V neurons. Both substances were colocalized in 79.3% of type V neurons. This colocalization discriminates four-fifths of the type V neurons chemically from both type II neurons (CGRP positive, SOM negative) and type IV neurons (CGRP negative, SOM positive), which both share, at first glance, a similar morphology with type V neurons. These results further support the concept of a close correlation between morphologically defined neuronal type and chemical coding and, it is likely, also function in the enteric nervous system of larger mammals.
Collapse
Affiliation(s)
- Axel Brehmer
- Department of Anatomy I, University of Erlangen-Nuremberg, D-91054 Erlangen, Germany.
| | | | | |
Collapse
|
230
|
Li M, Johnson CP, Adams MB, Sarna SK. Cholinergic and nitrergic regulation of in vivo giant migrating contractions in rat colon. Am J Physiol Gastrointest Liver Physiol 2002; 283:G544-52. [PMID: 12181166 DOI: 10.1152/ajpgi.00114.2001] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of this study was to characterize in vivo rat colonic motor activity in normal and inflamed states and determine its neural regulation. Circular muscle contractions were recorded by surgically implanted strain-gauge transducers. The rat colon exhibited predominantly giant migrating contractions (GMCs) whose frequency decreased distally. Only a small percentage of these GMCs propagated in the distal direction; the rest occurred randomly. Phasic contractions were present, but their amplitude was very small compared with that of GMCs. Inflammation induced by oral administration of dextran sodium sulfate suppressed the frequency of GMCs in the proximal and middle but not in the distal colon. Frequency of GMCs was suppressed by intraperitoneally administered atropine and 4-diphenylacetoxy-N-methyl-piperidine methiodide and was enhanced by N(w)-nitro-L-arginine methyl ester. Serotonin, tachykinin, and calcitonin gene-related peptide receptor or receptor subtype antagonists as well as guanethidine and suramin had no significant effect on the frequency of GMCs. Verapamil transiently suppressed the GMCs. In conclusion, unlike the canine and human colons, the rat colon exhibits frequent GMCs and their frequency is suppressed in inflammation. In vivo GMCs are stimulated by neural release of acetylcholine that acts on M3 receptors. Constitutive release of nitric oxide may partially suppress their frequency.
Collapse
Affiliation(s)
- Mona Li
- Departments of Surgery and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
231
|
Pham T, Guerrini S, Wong H, Reeve J, Sternini C. Distribution of galanin receptor 1 immunoreactivity in the rat stomach and small intestine. J Comp Neurol 2002; 450:292-302. [PMID: 12209857 DOI: 10.1002/cne.10311] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Galanin affects gastrointestinal functions by activating different G protein-coupled receptors. Here, we identified the sites of expression of the galanin receptor 1 (GAL-R1) subtype in the rat stomach and small intestine by using immunohistochemistry with an antibody raised to the third intracellular loop of rat GAL-R1 (GAL-R1(Y225-238)) and confocal microscopy. Antibody specificity was confirmed by (1) the detection of a band at approximately 70 kDa in Western blot of membranes from GAL-R1 transfected cells, (2) the cell surface staining of GAL-R1 transfected cells, which was not detected in control cells, and (3) the abolition of Western signal and tissue immunostaining by preadsorbing the antibody with the peptide used for immunization. GAL-R1 immunoreactivity was localized to the cell surface of enterochromaffin-like cells, and of myenteric and submucous neurons, and to fibers distributed to the plexuses, interconnecting strands, muscle layers, vasculature, and mucosa. A dense network of GAL-R1 immunoreactivity was observed in the deep muscular plexus in very close association with interstitial cells of Cajal visualized by c-kit immunostaining. In the ileum, 81.6% of GAL-R1 myenteric neurons and 70.7% of GAL-R1 submucosal neurons were substance P immunoreactive. Vasoactive intestinal polypeptide immunoreactivity was found in 48.3% of GAL-R1 submucosal neurons, but not in GAL-R1 myenteric neurons. These findings support the hypothesis that GAL-R1 mediates galanin actions on gastrointestinal motility and secretion by modulating the release of other neurotransmitters and contributes to galanin-induced inhibition of gastric acid secretion by means of the suppression of endogenous histamine release.
Collapse
MESH Headings
- Animals
- Antibody Specificity/immunology
- Cells, Cultured
- Enteric Nervous System/cytology
- Enteric Nervous System/metabolism
- Enterochromaffin Cells/cytology
- Enterochromaffin Cells/metabolism
- Female
- Galanin/metabolism
- Gastric Mucosa/metabolism
- Humans
- Immunohistochemistry
- Intestine, Small/cytology
- Intestine, Small/innervation
- Intestine, Small/metabolism
- Male
- Motor Neurons/cytology
- Motor Neurons/metabolism
- Mucous Membrane/cytology
- Mucous Membrane/innervation
- Mucous Membrane/metabolism
- Muscle, Smooth/cytology
- Muscle, Smooth/innervation
- Muscle, Smooth/metabolism
- Neurons/cytology
- Neurons/metabolism
- Rabbits
- Rats
- Rats, Sprague-Dawley
- Receptors, Galanin
- Receptors, Neuropeptide/immunology
- Receptors, Neuropeptide/metabolism
- Stomach/cytology
- Stomach/innervation
- Substance P/metabolism
- Vasoactive Intestinal Peptide/metabolism
Collapse
Affiliation(s)
- Thomas Pham
- CURE Digestive Diseases Research Center, Division of Digestive Diseases, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
232
|
The projections of early enteric neurons are influenced by the direction of neural crest cell migration. J Neurosci 2002. [PMID: 12122062 DOI: 10.1523/jneurosci.22-14-06005.2002] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The enteric nervous system arises from the neural crest. In embryonic mice, vagal neural crest cells enter the developing foregut at approximately embryonic day 9.5 (E9.5) and then migrate rostrocaudally to colonize the entire gastrointestinal tract by E14.5. This study showed that a subpopulation of vagal crest-derived cells, very close to the migratory wavefront, starts to differentiate into neurons early, as shown by the expression of neuron-specific proteins and the absence of Sox10. Many of the early differentiating neurons transiently exhibited tyrosine hydroxylase (TH) immunoreactivity. The TH cells were demonstrated to be the progenitors of nitric oxide synthase (NOS) neurons. Immunohistochemistry, lesions, and DiI tracing were used to examine the projections of developing enteric neurons. The axons of first neurons in the gut (the TH-NOS neurons) projected in the same direction (caudally), and traversed the same pathways through the mesenchyme, as the migrating, undifferentiated, vagal crest-derived cells. To examine if the direction of migration and direction of axon projection are linked, coculture experiments were set up in which vagal crest-derived cells migrated either rostrocaudally (as they do in vivo), or caudorostrally (which they do not normally do), to colonize explants of embryonic aneural hindgut. The direction in which neurons projected was correlated with the direction of cell migration, but migration direction appears to be not the only mechanism influencing axon projection. Peristaltic reflexes involve both orally (rostrally) projecting neurons and anally (caudally) projecting neurons. Because few rostrally projecting neurons could be detected before birth, the full circuitry for peristaltic reflexes appears to develop after birth.
Collapse
|
233
|
Ivancheva C, Radomirov R. Control of non-adrenergic non-cholinergic reflex motor responses in circular muscle of guinea-pig small intestine by Met-enkephalin. AUTONOMIC & AUTACOID PHARMACOLOGY 2002; 22:199-207. [PMID: 12656945 DOI: 10.1046/j.1474-8673.2002.00260.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1 A triple organ bath method allowing the synchronous recording of the motor activity of the circular muscle layer belonging to the oral and anal segments of guinea-pig small intestine adjacent to an electrically stimulated middle segment was developed to study the ascending and descending reflex motor responses. 2 Electrical field stimulation (0.8 ms, 40 V, 5 Hz, 10 s) applied to the middle part of the segments elicited tetrodotoxin (1 microm)-sensitive ascending and descending contractile responses of the nonstimulated parts, oral and anal, respectively. The ascending contraction was more pronounced as compared with the descending contraction. 3 In the presence of phentolamine (5 microm), propranolol (5 microm) and atropine (3 microm) a significant decrease in the amplitude of the ascending contraction was seen and a descending relaxation, instead of a contraction was observed. 4 Met-enkephalin applied at a single concentration (0.1 microm) or cumulatively (0.001-1 microm) inhibited both non-adrenergic non-cholinergic (NANC) descending relaxation and ascending contraction with similar efficacy but different potency, IC50 being 5.9 +/- 0.3 and 39.0 +/- 4 nm, respectively. Naloxone (0.5 microm) prevented the effects of Met-enkephalin. 5 L-NNA (0.5 mm), an inhibitor of nitric oxide synthesis, increased the ascending contraction and strongly reduced but not abolished the descending relaxation. l-Arginine (0.5 mm) restored the motor responses to the initial level in l-NNA-pretreated preparations, d-Arginine (0.5 nm) had no effects. 6 Met-enkephalin (0.1 microm) depressed the l-NNA-dependent increase of the ascending contraction and failed to change the l-NNA-resistant part of the descending relaxation. 7 Met-enkephalin did not alter spontaneous NANC mechanical activity. SNP (1 or 10 microm), an exogenous donor of nitric oxide, caused a concentration-dependent relaxation. The effects of SNP persisted in Met-enkephalin (0.1 microm)-pretreated preparations. 8 NANC reflex ascending contraction and descending relaxation were synchronously induced by a local nerve stimulation indicating a functional coactivation of NANC orally projected excitatory and anally directed inhibitory pathways. Acting prejunctionally, Met-enkephalin provided a negative controlling mechanism inhibiting both ascending and descending, mainly nitric oxide mediated, reflex responses. A higher sensitivity of the descending relaxation to Met-enkephalin was observed suggesting an essential role of opioid(s) in reducing the efficacy of descending motor activity.
Collapse
Affiliation(s)
- Chr Ivancheva
- Institute of Physiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl.23, 1113 Sofia, Bulgaria
| | | |
Collapse
|
234
|
Coutts AA, Irving AJ, Mackie K, Pertwee RG, Anavi-Goffer S. Localisation of cannabinoid CB(1) receptor immunoreactivity in the guinea pig and rat myenteric plexus. J Comp Neurol 2002; 448:410-22. [PMID: 12115703 DOI: 10.1002/cne.10270] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Activation of cannabinoid CB(1) receptors inhibits gastrointestinal motility, propulsion, and transit, whereas selective antagonism of these receptors has the opposite effects, suggesting the presence of endocannabinoid tone. Supporting evidence for presynaptic CB(1) receptors on myenteric neurons has been found in vitro. In this study, selective CB(1) receptor antibodies and neuronal markers were used to identify and characterise myenteric neurons expressing cannabinoid receptors. Whole mounts of rat and guinea pig myenteric preparations were dually labelled with antibodies against the CB(1) receptor and choline acetyltransferase, neurofilament proteins, calbindin, calretinin, synapsin I, microtubule-associated protein-2, calcitonin gene-related peptide, or substance P. The pattern of CB(1) receptor labelling and the neurochemical classification of CB(1) receptor-positive cells were markedly influenced by the species and fixation procedure. Virtually all choline acetyltransferase-immunoreactive myenteric neurons expressed CB(1) receptors in ganglia from both species. Subpopulations of neurons identified with calbindin, calretinin, and microtubule-associated protein-2 did not express CB(1) receptors. A few calcitonin gene-related peptide- and substance P-positive somata coexpressed CB(1) receptor immunoreactivity but showed little colocalisation on individual fibres. There was a close association between CB(1) receptor immunoreactivity and fibres labelled for synaptic protein, suggesting a role in the modulation of transmitter release. Functional responses to cannabinoids in the presence of hexamethonium suggest further that CB(1) receptors occur on excitatory motoneurons. In conclusion, CB(1) receptors are expressed on a variety of cholinergic sensory, interneuronal, and motor neurons in myenteric ganglia.
Collapse
Affiliation(s)
- Angela A Coutts
- Department of Biomedical Sciences, University of Aberdeen, Aberdeen, Scotland AB25 2ZD, United Kingdom.
| | | | | | | | | |
Collapse
|
235
|
Glatzle J, Sternini C, Robin C, Zittel TT, Wong H, Reeve JR, Raybould HE. Expression of 5-HT3 receptors in the rat gastrointestinal tract. Gastroenterology 2002; 123:217-26. [PMID: 12105850 DOI: 10.1053/gast.2002.34245] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Functional effects mediated via the 5-hydroxytryptamine3 receptor (5-HT3R) can be elicited from both extrinsic and intrinsic neurons innervating the gastrointestinal (GI) tract. Clinically, 5-HT3 antagonists are important in the treatment of emesis and have been used for the treatment of symptoms in functional bowel disease. The aim of the present study was to elucidate the cellular sites of 5-HT3R expression in the rat GI tract using immunohistochemistry. METHODS Immunohistochemistry was performed in fixed cryostat sections and whole mounts of stomach and intestine of fasted rats, using an affinity-purified antibody directed to a 19-amino acid sequence of the cytoplasmic loop of the 5-HT3R. RESULTS 5-HT3R immunoreactivity was localized to numerous neurons of the myenteric and submucosal plexus, concentrated primarily near the neuronal plasma membrane, and to fibers in the circular and longitudinal muscles, submucosa, and mucosa. 5-HT3R immunoreactivity was also expressed by interstitial cells of Cajal and a few endocrine cells. Numerous 5-HT3R-positive myenteric neurons were cholinergic, and few neurons coexpressed VIP or SP immunoreactivity. Fibers immunoreactive for 5-HT3R in the duodenal but not ileal mucosa were markedly reduced by subdiaphragmatic vagotomy or chemical denervation of vagal afferents. CONCLUSIONS These findings indicate that 5-HT3Rs are expressed by distinct cells in the GI tract, including functionally distinct classes of neurons, interstitial cells of Cajal, and endocrine cells. The effects of serotonin mediated by 5-HT3Rs involve the activation of neuronal and nonneuronal pathways.
Collapse
Affiliation(s)
- Jörg Glatzle
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
236
|
Alex G, Clerc N, Kunze WAA, Furness JB. Responses of myenteric S neurones to low frequency stimulation of their synaptic inputs. Neuroscience 2002; 110:361-73. [PMID: 11958877 DOI: 10.1016/s0306-4522(01)00583-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous experiments have shown that prolonged low frequency stimulation of presynaptic inputs causes excitation of AH neurones that considerably outlasts the period of stimulation in the guinea-pig small intestine. The present experiments compare the responses of S neurones (which are motor neurones and interneurones) with responses of AH neurones (intrinsic primary afferent neurones) to low frequency stimulation of synaptic inputs. Neurones in the myenteric plexus of isolated segments of guinea-pig small intestine were recorded from with intracellular microelectrodes. During their impalement, the neurones were filled with a marker dye and they were later processed to reveal their shapes and immunohistochemical properties. One group of neurones, inhibitory motor neurones to the circular muscle, was depolarised by stimulation of synaptic inputs at 1 Hz for 100 s to 4 min. With 4-min trains of stimuli, peak depolarisation was 21+/-2 mV (mean+/-S.E.M.), which was reached at about 110 s. Depolarisation was accompanied by increased excitability; before stimulation, a test intracellular pulse (500 ms) triggered 3 action potentials, at the peak of excitability this reached 16 action potentials. Depolarisation began to decline immediately at the end of stimulation. This contrasts with responses of AH neurones, in which depolarisation persisted after the end of the stimulus (peak depolarisation at 300 s). The excitation and depolarisation of inhibitory motor neurones was blocked by the neurokinin 1 tachykinin receptor antagonist, SR140333 (100 nM), but excitation of AH neurones was not affected. Small or no responses to 1 Hz stimulation were recorded from descending filamentous interneurones, longitudinal muscle motor neurones and excitatory circular muscle motor neurones. In conclusion, this study indicates that sustained slow postsynaptic excitation only occurs in AH neurones, and that one type of S neurones, inhibitory motor neurones to the circular muscle, responds substantially, but not beyond the period of stimulation, to activation of synaptic inputs at 1 Hz. This slow excitatory postsynaptic potential evoked by low frequency stimulation is mediated by tachykinins.
Collapse
Affiliation(s)
- G Alex
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Vic., Australia
| | | | | | | |
Collapse
|
237
|
Monro RL, Bertrand PP, Bornstein JC. ATP and 5-HT are the principal neurotransmitters in the descending excitatory reflex pathway of the guinea-pig ileum. Neurogastroenterol Motil 2002; 14:255-64. [PMID: 12061910 DOI: 10.1046/j.1365-2982.2002.00325.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurotransmission underlying descending excitatory reflexes evoked by distension was studied in opened segments of guinea-pig ileum and compared with peristalsis in intact segments. The opened segments were distended by inflating a balloon against the serosa at the oral end and changes in muscle length recorded from the anal end. Distension elicited contractions in both circular (CM) and longitudinal (LM) muscle layers. Granisetron, a 5-HT(3) receptor antagonist (10 nmol L-1 to 1 micromol L-1) reduced CM contractions (24% control), without affecting the LM. The P2 receptor antagonist, pyridoxal phosphate-6-azopheyl-2',4'-disulphonic acid (PPADS; 10 micromol L-1), reduced CM contractions to 31% and LM contractions to 39%. Hexamethonium (500 micromol L-1) enhanced LM contractions, but had no effect on CM contractions. Granisetron (1 micromol L-1) had no significant effect on the threshold for peristaltic contractions in a modified Trendelenburg preparation, but decreased the decay time of these contractions by 37%. PPADS (10 micromol L-1) had no significant effect in this preparation. Thus, the descending excitatory pathways to CM and LM can be distinguished pharmacologically; the former depend on 5-HT(3) and P2 ATP receptors, the latter are independent of 5-HT(3) receptors. Nicotinic receptors may have little part in either pathway. These properties differ from conventional peristaltic reflexes, which are effectively abolished by nicotinic blockade.
Collapse
Affiliation(s)
- R L Monro
- Department of Physiology, University of Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
238
|
Rojas A, Torres M, Rojas JI, Feregrino A, Heimer-de la Cotera EP. Calcium-dependent smooth muscle excitatory effect elicited by the venom of the hydrocoral Millepora complanata. Toxicon 2002; 40:777-85. [PMID: 12175615 DOI: 10.1016/s0041-0101(01)00281-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present paper, we describe the results obtained from a preliminary pharmacological and biochemical study of the fire coral Millepora complanata, a regular component of coral reefs in the Mexican Caribbean. The protein-containing crude extract obtained from M. complanata (tested from 0.001 to 1000 microg protein/ml) caused a concentration-dependent stimulation of spontaneous contractions of the guinea pig ileum. The extract (EC(50)=11.55+/-2.36 microg/ml) was approximately 12-fold less potent than ionomycin (EC(50)=0.876+/-0.25 microg/ml) and its maximum induced contraction (1mg protein/ml) was equivalent to 68% of the response to 60mM KCl. FPLC size exclusion chromatography of the M. complanta extract afforded 12 primary fractions, of which only FV (containing proteins with molecular weights ranging from 17 to 44 kDa) and FVIII (consisting of peptides with molecular weights lesser than 1.8k Da) elicited an excitatory effect when tested at the EC(50) of the original extract. After incubation in Ca(2+)-free medium, the ileal response to FV and FVIII was significantly reduced. Blockage of L-type Ca(2+) channels with nifedipine (1 microM) inhibited FV and FVIII-evoked contractions. Cd(2+) (10 microM), an unspecific blocker of voltage-activated calcium channels, also antagonized FV and FVIII-induced effects, whereas the Na(+) channel blocker tetrodotoxin (10nM) did not significantly affect FV and FVIII responses. These results suggest that the contractions induced by the bioactive fractions obtained from the crude extract of M. complanata are caused mainly by a direct action on smooth muscle cells, via an increase in Ca(2+) permeability that occurs, at least partly, through L-type voltage-dependent Ca(2+) channels found in the cell membrane of smooth muscle.
Collapse
Affiliation(s)
- Alejandra Rojas
- Department of Natural Products Research, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Centro de las Campanas, Col. Centro. C.P. Querétaro 76010, Qro, Mexico.
| | | | | | | | | |
Collapse
|
239
|
Abstract
This review, which is presented in two parts, summarizes and synthesizes current views on the genetic, molecular, and cell biological underpinnings of the early embryonic phases of enteric nervous system (ENS) formation and its defects. In the first part, we describe the critical features of two principal abnormalities of ENS development: Hirschsprung's disease (HSCR) and intestinal neuronal dysplasia type B (INDB) in humans, and the similar abnormalities in animals. These represent the extremes of the diagnostic spectrum: HSCR has agreed and unequivocal diagnostic criteria, whereas the diagnosis and even existence of INDB as a clinical entity is highly controversial. The difficulties in diagnosis and treatment of both these conditions are discussed. We then review the genes now known which, when mutated or deleted, may cause defects of ENS development. Many of these genetic abnormalities in animal models give a phenotype similar or identical to HSCR, and were discovered by studies of humans and of mouse mutants with similar defects. The most important of these genes are those coding for molecules in the GDNF intercellular signaling system, and those coding for molecules in the ET-3 signaling system. However, a range of other genes for different signaling systems and for transcription factors also disturb ENS formation when they are deleted or mutated. In addition, a large proportion of HSCR cases have not been ascribed to the currently known genes, suggesting that additional genes for ENS development await discovery.
Collapse
Affiliation(s)
- Donald Newgreen
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, 3052, Victoria, Australia
| | | |
Collapse
|
240
|
Pfannkuche H, Reiche D, Hoppe S, Schemann M. Cholinergic and noncholinergic innervation of the smooth muscle layers in the bovine abomasum. THE ANATOMICAL RECORD 2002; 267:70-7. [PMID: 11984794 DOI: 10.1002/ar.10087] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The intrinsic innervation of muscle layers in the mammalian gastrointestinal tract has been mainly studied in nonruminants. The aim of this study was to identify intrinsic motor neurones in the bovine abomasum that innervate the circular and longitudinal muscles. Circular (CMN) and longitudinal muscle motor neurones (LMN) were selectively labeled by application of the retrograde tracer 1,1'-didodecyl-3,3,3',3'-tetramethyl indocarbocyanine perchlorate (DiI) onto the muscle layers. The transmitter phenotype was determined by immunohistochemical detection of choline acetyltransferase (ChAT), nitric oxide synthase (NOS), and neurone-specific enolase (NSE). On average, the myenteric ganglia contained 61 +/- 19 NSE-positive cell bodies, of which 89% were ChAT-positive and 10% were NOS-positive. Only 0.7% of NSE-positive neurones (41 of 5,777) contained both ChAT and NOS. Application of DiI onto the circular and longitudinal muscles revealed on average 60 +/- 27 (n = 4) and 68 +/- 36 (n = 4), respectively, labeled cell bodies in the myenteric plexus. For the circular and longitudinal muscles the proportions of ascending to descending neurones were 76 : 24% and 54 : 46%, respectively. While most ascending CMN were ChAT-positive (96%), 51% of the descending CMN were ChAT-negative. All ascending and 95% of descending LMN were ChAT-positive. It was concluded that cholinergic excitatory innervation is predominant in both muscle layers of the abomasum. Whereas the circular muscle receives cholinergic excitatory and nitrergic inhibitory innervation, the longitudinal muscle is only innervated by cholinergic pathways. This innervation pattern is different from that in gastric muscle layers in monogastric animals.
Collapse
Affiliation(s)
- Helga Pfannkuche
- Veterinär-Physiologisches Institut, Veterinärmedizinische Fakultät, Universität Leipzig, Leipzig, Germany.
| | | | | | | |
Collapse
|
241
|
Olsson C. Distribution and effects of PACAP, VIP, nitric oxide and GABA in the gut of the African clawed frog Xenopus laevis. J Exp Biol 2002; 205:1123-34. [PMID: 11919271 DOI: 10.1242/jeb.205.8.1123] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The distribution and possible effects on gastrointestinal motility of pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal polypeptide (VIP), nitric oxide and γ-amino-butyric acid(GABA) were investigated in the African clawed frog (Xenopus laevis)using immunohistochemistry and in vitro strip preparations. PACAP-and VIP-immunoreactive nerve fibres were common in the myenteric plexus as well as in the longitudinal and circular muscle layers all along the gastrointestinal tract. Double labelling demonstrated a close correlation between PACAP and VIP immunoreactivities, indicating that the two neurotransmitters are colocalised within the enteric nervous system. Occasionally, PACAP- and VIP-positive nerve cell bodies were seen in the myenteric or submucous plexa. In addition, VIP immunoreactivity coexisted with helospectin immunoreactivity. Nitric oxide synthase (NOS)-immunoreactive nerve cells were found in the myenteric plexus at an average density for the whole gastrointestinal tract of 4584±540 cells cm-2. The NOS-immunoreactive nerve cells were usually multipolar with an average size of 11.3±3.7 × 23.2±6.6 μm. Some NOS-immunoreactive nerve fibres were VIP-immunoreactive but not all VIP-positive fibres showed NOS immunoreactivity. GABA immunoreactivity was found in nerve fibres and nerve cells in the myenteric plexus of all regions of the gut. Few GABA-immunoreactive nerve fibres were VIP-immunoreactive. PACAP 27, VIP,sodium nitroprusside (a nitric oxide donor; NaNP) and GABA caused similar responses on spontaneously contracting circular preparations of the cardiac stomach of X. laevis. The mean force developed was decreased, mainly by a reduction in resting tension, while the amplitude of contractions was not necessarily affected. The NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) increased the mean force developed, indicating a nitrergic tone in the preparations. In contrast, PACAP 27, VIP, NaNP, GABA and L-NAME had no significant effect on longitudinal strip preparations from the duodenum. These results indicate that PACAP, VIP, nitric oxide and GABA, which are known to be important inhibitory neurotransmitters in other vertebrates, are widely spread in the enteric nervous system of Xenopus laevis and may be involved in the inhibitory control of gastric motility. Although no effect of PACAP,VIP, nitric oxide or GABA on the longitudinal strips of the duodenum was seen in this study, this does not rule out the possibility that they might play an important role in controlling intestinal motility as well.
Collapse
Affiliation(s)
- Catharina Olsson
- Department of Zoophysiology, Göteborg University, Box 463, S-405 30 Göteborg, Sweden.
| |
Collapse
|
242
|
Lin Z, Gao N, Hu HZ, Liu S, Gao C, Kim G, Ren J, Xia Y, Peck OC, Wood JD. Immunoreactivity of Hu proteins facilitates identification of myenteric neurones in guinea-pig small intestine. Neurogastroenterol Motil 2002; 14:197-204. [PMID: 11975720 DOI: 10.1046/j.1365-2982.2002.00317.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hu proteins, together with neurone-specific enolase (NSE), protein gene product 9.5 (PGP-9.5), microtubule-associated protein-2 (MAP-2) and tubulin beta III isoform, were evaluated immunohistochemically as neuronal markers in whole-mount preparations and cultures obtained from the myenteric plexus of guinea-pig small intestine. Anti-Hu immunostaining marked the ganglion cell somas and nuclei without staining of the neuronal processes in the whole-mounts and cultures. The ganglion cell bodies were not obscured by staining of multiple neuronal fibres and this facilitated accurate counting of the neurones. MAP2 immunostaining also provided clear images of individual neurones in both whole mounts and cultures. Immunoreactivity for NSE, PGP-9.5 and tubulin beta III isoform provided sharp images of the ganglion cells in culture, but not in whole-mount preparations. Strong staining of the neuronal processes in the whole-mount preparations obscured the profiles of the ganglion cell bodies to such an extent that accurate counting of the total neuronal population was compromised. Anti-Hu immunostaining was judged to be an acceptable method for obtaining reliable estimates of total numbers of myenteric neurones in relation to other specific histochemical properties such as histamine binding.
Collapse
Affiliation(s)
- Z Lin
- Department of Physiology and Cell Biology, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Thornton PDJ, Bornstein JC. Slow excitatory synaptic potentials evoked by distension in myenteric descending interneurones of guinea-pig ileum. J Physiol 2002; 539:589-602. [PMID: 11882690 PMCID: PMC2290151 DOI: 10.1113/jphysiol.2001.013399] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The functional significance of the slow excitatory synaptic potentials (EPSPs) in myenteric neurones is unknown. We investigated this using intracellular recording from myenteric neurones in guinea-pig ileum, in vitro. In all, 121 neurones responded with fast EPSPs to distension of the intestine oral to the recording site. In 28 of these neurones, distension also evoked depolarizations similar to the slow EPSPs evoked by electrical stimulation in the same neurones. Intracellular injection of biocytin and immunohistochemistry revealed that neurones responding to distension with slow EPSPs were descending interneurones, which were immunoreactive for nitric oxide synthase (NOS). Other neurones, including inhibitory motor neurones and interneurones lacking NOS, did not respond to distension with slow EPSPs, but many had slow EPSPs evoked electrically. Slow EPSPs evoked electrically or by distension in NOS-immunoreactive descending interneurones were resistant to blockade of NK(1) or NK(3) tachykinin receptors (SR 140333, 100 nM; SR 142801, 100 nM, respectively) and group I metabotropic glutamate receptors (PHCCC, 10-30 microM), when the antagonists were applied in the recording chamber of a two-chambered organ bath. However, slow EPSPs evoked electrically in inhibitory motor neurones were substantially depressed by SR 140333 (100 nM). Blockade of synaptic transmission in the stimulation chamber of the organ bath abolished slow EPSPs evoked by distension, indicating that they arose from activity in interneurones, and not from anally directed, intrinsic sensory neurones. Thus, distension evokes slow EPSPs in a subset of myenteric neurones, which may be important for intestinal motility.
Collapse
Affiliation(s)
- P D J Thornton
- Department of Physiology, University of Melbourne, Parkville, VIC 3010, Australia.
| | | |
Collapse
|
244
|
Venkova K, Sutkowski-Markmann DM, Greenwood-Van Meerveld B. Peripheral activity of a new NK1 receptor antagonist TAK-637 in the gastrointestinal tract. J Pharmacol Exp Ther 2002; 300:1046-52. [PMID: 11861814 DOI: 10.1124/jpet.300.3.1046] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathways controlling gastrointestinal function involve the activation of neurokinin NK1 receptors by substance P (SP) under normal and pathological conditions. Our aim was to pharmacologically characterize the effect of a nonpeptide NK1 receptor antagonist TAK-637 [(aR,9R)-7-[3,5-bis(trifluoromethyl)benzyl]-8,9,10,11-tetrahydro-9-methyl-5-(4-methylphenyl)-7H-[1,4]diazocino[2,1-g] [1,7]naphthyridine-6,13-dione] and determine key mechanisms of TAK-637 action in the gastrointestinal tract. Experiments were performed using intestinal preparations isolated from the guinea pig. The selective agonists of NK1 receptors, [Sar9,Met(O2)11]-SP and GR 73632 [H2N-(CH2)4-CO-Phe-Phe-Pro-NMe-Leu-Met-NH2], induced contractions in colonic longitudinal muscle pretreated with atropine. TAK-637 (1-100 nM) caused a rightward shift of the concentration-response curves showing nanomolar affinity against [Sar9,Met(O2)11]-SP (Kb = 4.7 nM) and GR 73632 (K(b) = 1.8 nM). This antagonist effect remained unchanged by tetrodotoxin. Furthermore, neither the contractions of colonic circular muscle induced by selective activation of NK2 receptors by GR 64349 (Lys-Asp-Ser-Phe-Val-Gly-R-gamma-lactam-Leu-Met-NH2) nor the responses of taenia coli induced by the selective NK3 receptor agonist senktide were affected by TAK-637 (100 nM). Studies of electrically induced neurogenic contractions showed that TAK-637 had no effect on cholinergic responses to single-pulse (0.5 ms) stimulation or stimulation with increasing frequency (1-16 Hz, 0.5 ms, 5-s train duration). In contrast, TAK-637 significantly reduced nonadrenergic, noncholinergic contractions of colonic longitudinal muscle evoked at frequencies of 8 to 16 Hz and prevented the development of capsaicin-induced contractions in isolated segments of terminal ileum. Our results indicate that TAK-637 is a selective antagonist of smooth muscle NK(1) receptors that activate intestinal muscle contraction. Additionally TAK-637 inhibits neuronal NK1 receptors involved in the "local" motor response to stimulation of capsaicin-sensitive primary afferents.
Collapse
Affiliation(s)
- Kalina Venkova
- Oklahoma Foundation for Digestive Research Basic Science Laboratories, Veterans Affairs Medical Center, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
245
|
Anavi-Goffer S, McKay NG, Ashford MLJ, Coutts AA. Vanilloid receptor type 1-immunoreactivity is expressed by intrinsic afferent neurones in the guinea-pig myenteric plexus. Neurosci Lett 2002; 319:53-7. [PMID: 11814652 DOI: 10.1016/s0304-3940(01)02480-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The enteric sensory nervous system consists of extrinsic and intrinsic components. The cellular distribution of vanilloid receptor type 1 (VR1) and its relation to the intrinsic sensory neurones were studied in myenteric plexus-longitudinal muscle preparations of rat ileum and guinea-pig ileum and colon. VR1-immunoreactivity was localized on fine fibres and expressed by ganglionic cells. In the guinea-pig myenteric plexus, a proportion of VR1-immunoreactive cells co-localized with calbindin, a marker for intrinsic afferent neurones. Reverse transcription-polymerase chain reaction with rat VR1-specific primers detected VR1 mRNA in rat but not in guinea-pig preparations. We conclude that VR1 is expressed on fibres and by myenteric neurones. In the guinea-pig, VR1 is expressed by intrinsic afferent neurones but its mRNA may differ from the rat sequence in the region of the primers.
Collapse
Affiliation(s)
- Sharon Anavi-Goffer
- Department of Biomedical Science, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | | | | |
Collapse
|
246
|
Shahbazian A, Heinemann A, Schmidhammer H, Beubler E, Holzer-Petsche U, Holzer P. Involvement of mu- and kappa-, but not delta-, opioid receptors in the peristaltic motor depression caused by endogenous and exogenous opioids in the guinea-pig intestine. Br J Pharmacol 2002; 135:741-50. [PMID: 11834622 PMCID: PMC1573189 DOI: 10.1038/sj.bjp.0704527] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Opiates inhibit gastrointestinal propulsion, but it is not clear which opioid receptor types are involved in this action. For this reason, the effect of opioid receptor - selective agonists and antagonists on intestinal peristalsis was studied. Peristalsis in isolated segments of the guinea-pig small intestine was triggered by a rise of the intraluminal pressure and recorded via the intraluminal pressure changes associated with the peristaltic waves. Mu-opioid receptor agonists (DAMGO, morphine), kappa-opioid receptor agonists (ICI-204,448 and BRL-52,537) and a delta-opioid receptor agonist (SNC-80) inhibited peristalsis in a concentration-related manner as deduced from a rise of the peristaltic pressure threshold (PPT) and a diminution of peristaltic effectiveness. Experiments with the delta-opioid receptor antagonists naltrindole (30 nM) and HS-378 (1 microM), the kappa-opioid receptor antagonist nor-binaltorphimine (30 nM) and the mu-opioid receptor antagonist cyprodime (10 microM) revealed that the antiperistaltic effect of ICI-204,448 and BRL-52,537 was mediated by kappa-opioid receptors and that of morphine and DAMGO by mu-opioid receptors. In contrast, the peristaltic motor inhibition caused by SNC-80 was unrelated to delta-opioid receptor activation. Cyprodime and nor-binaltorphimine, but not naltrindole and HS-378, were per se able to stimulate intestinal peristalsis as deduced from a decrease in PPT. The results show that the neural circuits controlling peristalsis in the guinea-pig small intestine are inhibited by endogenous and exogenous opioids acting via mu- and kappa-, but not delta-, opioid receptors.
Collapse
MESH Headings
- Animals
- Dose-Response Relationship, Drug
- Female
- Guinea Pigs
- Ileum/drug effects
- Ileum/physiology
- Jejunum/drug effects
- Jejunum/physiology
- Male
- Narcotic Antagonists/pharmacology
- Narcotics/pharmacology
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Opioid Peptides/pharmacology
- Opioid Peptides/physiology
- Peristalsis/drug effects
- Peristalsis/physiology
- Receptors, Opioid/agonists
- Receptors, Opioid/physiology
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/physiology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/physiology
Collapse
Affiliation(s)
- Anaid Shahbazian
- Department of Experimental and Clinical Pharmacology, University of Graz, A-8010 Graz, Austria.
| | | | | | | | | | | |
Collapse
|
247
|
Konomi H, Meedeniya ACB, Simula ME, Toouli J, Saccone GTP. Characterization of circular muscle motor neurons of the duodenum and distal colon in the Australian brush-tailed possum. J Comp Neurol 2002; 443:15-26. [PMID: 11793344 DOI: 10.1002/cne.10094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The motor innervation of the duodenum and distal colon remains uncharacterized within the same species. Our aim was to compare the projections and neurochemical properties of duodenal and distal colon circular muscle motor neurons. Circular muscle motor neurons were retrogradely traced by using a neural tracer in vitro, processed for choline acetyltransferase (ChAT) and nitric oxide synthase (NOS) immunoreactivity and then visualized by using indirect immunofluorescence. A mean of 372 +/- 64 and 156 +/- 23 neurons (mean +/- SEM) were tracer-labeled within the duodenum and colon, respectively. The ChAT+/NOS- neurons comprised 57.6 +/- 6.6% and 39.6 +/- 4.4% of all labeled cells in the duodenum and colon, respectively, and projected mainly in the oral direction. Of all labeled cells, the ChAT-/NOS+ neurons comprised 8.5 +/- 2.3% in the duodenum and 46.6 +/- 5.0% in the distal colon and projected mainly in the anal direction. Of the remainder, 20.6 +/- 5.0% and 8.2 +/- 2.4% were ChAT+/NOS+ and 13.2 +/- 0.9% and 5.6 +/- 1.4% were ChAT-/NOS- in the duodenum and distal colon, respectively. Within both regions, the distribution of the ChAT+/NOS- and ChAT-/NOS+ neurons are consistent with the ascending excitatory and descending inhibitory reflexes. The proportion of ChAT-/NOS+ neurons is greater within the colon in comparison with the duodenum. A considerable proportion of duodenal motor neurons were ChAT+/NOS+ and ChAT-/NOS-. These two classes may underlie nonperistaltic motor patterns, which predominate within the duodenum. These findings demonstrate regional differences in the innervation of intestinal circular muscle.
Collapse
Affiliation(s)
- Hiroyuki Konomi
- Department of General and Digestive Surgery and the Centre for Neuroscience, Flinders University of South Australia, Adelaide, South Australia 5001, Australia
| | | | | | | | | |
Collapse
|
248
|
Rugiero F, Gola M, Kunze WAA, Reynaud JC, Furness JB, Clerc N. Analysis of whole-cell currents by patch clamp of guinea-pig myenteric neurones in intact ganglia. J Physiol 2002; 538:447-63. [PMID: 11790812 PMCID: PMC2290078 DOI: 10.1113/jphysiol.2001.013051] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Whole-cell patch-clamp recordings taken from guinea-pig duodenal myenteric neurones within intact ganglia were used to determine the properties of S and AH neurones. Major currents that determine the states of AH neurones were identified and quantified. S neurones had resting potentials of -47 +/- 6 mV and input resistances (R(in)) of 713 +/- 49 MOmega at voltages ranging from -90 to -40 mV. At more negative levels, activation of a time-independent, caesium-sensitive, inward-rectifier current (I(Kir)) decreased R(in) to 103 +/- 10 MOmega. AH neurones had resting potentials of -57 +/- 4 mV and R(in) was 502 +/- 27 MOmega. R(in) fell to 194 +/- 16 MOmega upon hyperpolarization. This decrease was attributable mainly to the activation of a cationic h current, I(h), and to I(Kir). Resting potential and R(in) exhibited a low sensitivity to changes in [K(+)](o) in both AH and S neurones. This indicates that both cells have a low background K(+) permeability. The cationic current, I(h), contributed about 20 % to the resting conductance of AH neurones. It had a half-activation voltage of -72 +/- 2 mV, and a voltage sensitivity of 8.2 +/- 0.7 mV per e-fold change. I(h) has relatively fast, voltage-dependent kinetics, with on and off time constants in the range of 50-350 ms. AH neurones had a previously undescribed, low threshold, slowly inactivating, sodium-dependent current that was poorly sensitive to TTX. In AH neurones, the post-action-potential slow hyperpolarizing current, I(AHP), displayed large variation from cell to cell. I(AHP) appeared to be highly Ca(2+) sensitive, since its activation with either membrane depolarization or caffeine (1 mM) was not prevented by perfusing the cell with 10 mM BAPTA. We determined the identity of the Ca(2+) channels linked to I(AHP). Action potentials of AH neurones that were elongated by TEA (10 mM) were similarly shortened and I(AHP) was suppressed with each of the three omega-conotoxins GVIA, MVIIA and MVIIC (0.3-0.5 microM), but not with omega-agatoxin IVA (0.2 microM). There was no additivity between the effects of the three conotoxins, which indicates the presence of N- but not of P/Q-type Ca(2+) channels. A residual Ca(2+) current, resistant to all toxins, but blocked by 0.5 mM Cd(2+), could not generate I(AHP). This patch-clamp study, performed on intact ganglia, demonstrates that the AH neurones of the guinea-pig duodenum are under the control of four major currents, I(AHP), I(h), an N-type Ca(2+) current and a slowly inactivating Na(+) current.
Collapse
Affiliation(s)
- François Rugiero
- Laboratoire 'Intégration des Informations Sensorielles' (ITIS), CNRS, Bâtiment LNB, No. 31, Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
249
|
Hu HZ, Gao N, Lin Z, Gao C, Liu S, Ren J, Xia Y, Wood JD. Chemical coding and electrophysiology of enteric neurons expressing neurofilament 145 in guinea pig gastrointestinal tract. J Comp Neurol 2001. [DOI: 10.1002/cne.1424] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
250
|
Abstract
Several lines of evidence indicate a role for glutamate in the regulation of gut motility and secretion; however, the receptor subtypes that mediate the effects of this amino acid are still incompletely understood. There has, however, been recent progress in pharmacological characterization of enteric glutamate receptor subtypes. In the past two years, investigators have demonstrated that in addition to ionotropic glutamate receptors, the enteric nervous system contains functional group I metabotropic glutamate receptors that appear to participate in enteric reflexes. This opens up an entirely new arena in which to study the roles of glutamate in gut function and presents potential new target sites for drug development.
Collapse
Affiliation(s)
- A L Kirchgessner
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| |
Collapse
|