201
|
Costanzo F, Martínez Diez M, Santamaría Nuñez G, Díaz-Hernandéz JI, Genes Robles CM, Díez Pérez J, Compe E, Ricci R, Li TK, Coin F, Martínez Leal JF, Garrido-Martin EM, Egly JM. Promoters of ASCL1- and NEUROD1-dependent genes are specific targets of lurbinectedin in SCLC cells. EMBO Mol Med 2022; 14:e14841. [PMID: 35263037 PMCID: PMC8988166 DOI: 10.15252/emmm.202114841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/22/2023] Open
Abstract
Small‐Cell Lung Cancer (SCLC) is an aggressive neuroendocrine malignancy with a poor prognosis. Here, we focus on the neuroendocrine SCLC subtypes, SCLC‐A and SCLC‐N, whose transcription addiction was driven by ASCL1 and NEUROD1 transcription factors which target E‐box motifs to activate up to 40% of total genes, the promoters of which are maintained in a steadily open chromatin environment according to ATAC and H3K27Ac signatures. This leverage is used by the marine agent lurbinectedin, which preferentially targets the CpG islands located downstream of the transcription start site, thus arresting elongating RNAPII and promoting its degradation. This abrogates the expression of ASCL1 and NEUROD1 and of their dependent genes, such as BCL2, INSM1, MYC, and AURKA, which are responsible for relevant SCLC tumorigenic properties such as inhibition of apoptosis and cell survival, as well as for a part of its neuroendocrine features. In summary, we show how the transcription addiction of these cells becomes their Achilles’s heel, and how this is effectively exploited by lurbinectedin as a novel SCLC therapeutic endeavor.
Collapse
Affiliation(s)
- Federico Costanzo
- Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Equipe labellisée Ligue contre le Cancer, Strasbourg, France.,Cell Biology Department, Research and Development, Pharmamar SA, Colmenar Viejo, Spain
| | - Marta Martínez Diez
- Cell Biology Department, Research and Development, Pharmamar SA, Colmenar Viejo, Spain
| | - Gema Santamaría Nuñez
- Cell Biology Department, Research and Development, Pharmamar SA, Colmenar Viejo, Spain
| | | | - Carlos Mario Genes Robles
- Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Equipe labellisée Ligue contre le Cancer, Strasbourg, France
| | - Javier Díez Pérez
- Cell Biology Department, Research and Development, Pharmamar SA, Colmenar Viejo, Spain
| | - Emmanuel Compe
- Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Equipe labellisée Ligue contre le Cancer, Strasbourg, France.,Laboratoire de Biochimie et de Biologie Moléculaire, Nouvel Hôpital Civil, Strasbourg, France
| | - Romeo Ricci
- Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Equipe labellisée Ligue contre le Cancer, Strasbourg, France.,Laboratoire de Biochimie et de Biologie Moléculaire, Nouvel Hôpital Civil, Strasbourg, France
| | - Tsai-Kun Li
- College of Medicine, Center for Genomics and Precision Medicine, National Taiwan University, Taipei city, Taiwan
| | - Frédéric Coin
- Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Equipe labellisée Ligue contre le Cancer, Strasbourg, France.,Laboratoire de Biochimie et de Biologie Moléculaire, Nouvel Hôpital Civil, Strasbourg, France
| | | | | | - Jean Marc Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Equipe labellisée Ligue contre le Cancer, Strasbourg, France.,College of Medicine, Center for Genomics and Precision Medicine, National Taiwan University, Taipei city, Taiwan
| |
Collapse
|
202
|
Abstract
Small cell lung cancer (SCLC) is a rapidly growing, highly metastatic, and relatively immune-cold lung cancer subtype. Historically viewed in the laboratory and clinic as a single disease, new discoveries suggest that SCLC comprises multiple molecular subsets. Expression of MYC family members and lineage-related transcription factors ASCL1, NEUROD1, and POU2F3 (and, in some studies, YAP1) define unique molecular states that have been associated with distinct responses to a variety of therapies. However, SCLC tumors exhibit a high degree of intratumoral heterogeneity, with recent studies suggesting the existence of tumor cell plasticity and phenotypic switching between subtype states. While SCLC plasticity is correlated with, and likely drives, therapeutic resistance, the mechanisms underlying this plasticity are still largely unknown. Subtype states are also associated with immune-related gene expression, which likely impacts response to immune checkpoint blockade and may reveal novel targets for alternative immunotherapeutic approaches. In this review, we synthesize recent discoveries on the mechanisms of SCLC plasticity and how these processes may impinge on antitumor immunity.
Collapse
Affiliation(s)
- Kate D Sutherland
- Australian Cancer Research Foundation (ACRF) Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
203
|
Ding XL, Su YG, Yu L, Bai ZL, Bai XH, Chen XZ, Yang X, Zhao R, He JX, Wang YY. Clinical characteristics and patient outcomes of molecular subtypes of small cell lung cancer (SCLC). World J Surg Oncol 2022; 20:54. [PMID: 35220975 PMCID: PMC8883717 DOI: 10.1186/s12957-022-02528-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/14/2022] [Indexed: 12/22/2022] Open
Abstract
Abstract
Background
Recent studies have shown that according to the expression levels of achaete-scute homolog 1 (ASCL1), neurogenic differentiation factor 1 (NEUROD1), and POU class 2 homeobox 3 (POU2F3), small cell lung cancer (SCLC) can be divided into four subtypes: SCLC-A (ASCL1-dominant), SCLC-N (NEUROD1-dominant), SCLC-P (POU2F3-dominant), and SCLC-I (triple negative or SCLC-inflamed). However, there are limited data on the clinical characteristics and prognosis of molecular subtypes of SCLC.
Methods
Immunohistochemistry (IHC) was used to detect the expression levels of ASCL1, NEUROD1, and POU2F3 in 53 patient samples of resectable SCLC. The subtype was defined by the differential expression of the transcription factors for ASCL1, NEUROD1, and POU2F3 or the low expression of all three factors with an inflamed gene signature (SCLC-A, SCLC-N, SCLC-P, and SCLC-I, respectively). The clinicopathological characteristics, immunological features (programmed death ligand 1 [PD-L1] expression and CD8+ tumor infiltrating lymphocyte [TIL] density), and patient outcomes of the four subtypes of SCLC were analyzed.
Results
Positive ASCL1, NEUROD1, and POU2F3 staining was detected in 43 (79.2%), 27 (51.0%), and 17 (32.1%) SCLC specimens by IHC. According to the results of IHC analysis, SCLC was divided into four subtypes: SCLC-A (39.6%), SCLC-N (28.3%), SCLC-P (17.0%), and SCLC-I (15.1%). The 5-year overall survival (OS) rates of these four subtypes were 61.9%, 69.3%, 41.7%, and 85.7%, respectively (P=0.251). There were significant differences in smoking status among different subtypes of SCLC (P= 0.031). However, we did not confirm the correlation between subtypes of SCLC and other clinicopathological factors or immune profiles. Cox multivariate analysis showed that N stage (P=0.025), CD8+ TILs (P=0.024), Ki-67 level (P=0.040), and SCLC-P (P=0.023) were independent prognostic factors for resectable SCLC.
Conclusions
Our IHC-based study validated the proposed classification of SCLC using the expression patterns of key transcriptional regulatory factors. We found that SCLC-P was associated with smokers and was one of the poor prognostic factors of limited-stage SCLC. In addition, no correlation was found between PD-L1 expression or CD8+ TIL density and SCLC subtypes.
Collapse
|
204
|
Therapeutic targeting of BAP1/ASXL3 sub-complex in ASCL1-dependent small cell lung cancer. Oncogene 2022; 41:2152-2162. [PMID: 35194152 PMCID: PMC8993689 DOI: 10.1038/s41388-022-02240-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 01/22/2023]
Abstract
Small cell lung cancer (SCLC) is an aggressive disease, with patients diagnosed with either early-stage, limited stage, or extensive stage of SCLC tumor progression. Discovering and targeting the functional biomarkers for SCLC will be crucial in understanding the molecular basis underlying SCLC tumorigenesis to better assist in improving clinical treatment. Emerging studies have demonstrated that dysregulations in BAP1 histone H2A deubiquitinase complex are collectively associated with pathogenesis in human SCLC. Here, we investigated the function of the oncogenic BAP1/ASXL3/BRD4 epigenetic axis in SCLC by developing a next-generation BAP1 inhibitor, iBAP-II, and focusing on the epigenetic balance established between BAP1 and non-canonical PRC1 complexes in regulating SCLC-specific transcriptional programming. We further demonstrated that pharmacologic inhibition of BAP1’s catalytic activity disrupted BAP1/ASXL3/BRD4 epigenetic axis by inducing protein degradation of the ASXL3 scaffold protein, which bridges BRD4 and BAP1 at active enhancers. Furthermore, treatment of iBAP-II represses neuroendocrine lineage-specific ASCL1/MYCL/E2F signaling in SCLC cell lines, and dramatically inhibits SCLC cell viability and tumor growth in vivo. In summary, this study has provided mechanistic insight into the oncogenic function of BAP1 in SCLC and highlighted the potential of targeting BAP1’s activity as a novel SCLC therapy.
Collapse
|
205
|
Hong D, Knelson EH, Li Y, Durmaz YT, Gao W, Walton E, Vajdi A, Thai T, Sticco-Ivins M, Sabet AH, Jones KL, Schinzel AC, Bronson RT, Nguyen QD, Tolstorukov MY, Vivero M, Signoretti S, Barbie DA, Oser MG. Plasticity in the Absence of NOTCH Uncovers a RUNX2-Dependent Pathway in Small Cell Lung Cancer. Cancer Res 2022; 82:248-263. [PMID: 34810201 PMCID: PMC8770597 DOI: 10.1158/0008-5472.can-21-1991] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Neuroendocrine to nonneuroendocrine plasticity supports small cell lung cancer (SCLC) tumorigenesis and promotes immunogenicity. Approximately 20% to 25% of SCLCs harbor loss-of-function (LOF) NOTCH mutations. Previous studies demonstrated that NOTCH functions as a SCLC tumor suppressor, but can also drive nonneuroendocrine plasticity to support SCLC growth. Given the dual functionality of NOTCH, it is not understood why SCLCs select for LOF NOTCH mutations and how these mutations affect SCLC tumorigenesis. In a CRISPR-based genetically engineered mouse model of SCLC, genetic loss of Notch1 or Notch2 modestly accelerated SCLC tumorigenesis. Interestingly, Notch-mutant SCLCs still formed nonneuroendocrine subpopulations, and these Notch-independent, nonneuroendocrine subpopulations were driven by Runx2-mediated regulation of Rest. Notch2-mutant nonneuroendocrine cells highly express innate immune signaling genes including stimulator of interferon genes (STING) and were sensitive to STING agonists. This work identifies a Notch-independent mechanism to promote nonneuroendocrine plasticity and suggests that therapeutic approaches to activate STING could be selectively beneficial for SCLCs with NOTCH2 mutations. SIGNIFICANCE: A genetically engineered mouse model of NOTCH-mutant SCLC reveals that nonneuroendocrine plasticity persists in the absence of NOTCH, driven by a RUNX2-REST-dependent pathway and innate immune signaling.
Collapse
Affiliation(s)
- Deli Hong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Erik H Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yixiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yavuz T Durmaz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Wenhua Gao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Emily Walton
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amir Vajdi
- Department of Informatics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Tran Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Maura Sticco-Ivins
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amin H Sabet
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kristen L Jones
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anna C Schinzel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Rod T Bronson
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael Y Tolstorukov
- Department of Informatics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Marina Vivero
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
206
|
Ito T, Kudoh S, Fujino K, Sanada M, Tenjin Y, Saito H, Nakaishi-Fukuchi Y, Kameyama H, Ichimura T, Udaka N, Kudo N, Matsuo A, Sato Y. Pulmonary Neuroendocrine Cells and Small Cell Lung Carcinoma: Immunohistochemical Study Focusing on Mechanisms of Neuroendocrine Differentiation. Acta Histochem Cytochem 2022; 55:75-83. [PMID: 35821751 PMCID: PMC9253501 DOI: 10.1267/ahc.22-00031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 12/03/2022] Open
Abstract
Neuroendocrine (NE) differentiation has been histochemically detected in normal and cancer tissues and cells. Immunohistochemical analyses have provided a more detailed understanding of NE biology and pathology. Pulmonary NE cells are a rare lung epithelial type, and small cell carcinoma of the lung (SCLC) is a high-grade NE tumor. Pulmonary NE and SCLC cells share common mechanisms for NE differentiation. Neural or NE cell lineage-specific transcription factors, such as achaete-scute homologue 1 (Ascl1) and insulinoma-associated protein 1 (INSM1), are crucial for the development of pulmonary NE cells, and NE differentiation is influenced by the balance between Ascl1 and the suppressive neural transcription factor, hairy-enhancer of split 1, a representative target molecule of the Notch signaling pathway. In this review, we discuss the importance of Ascl1 and INSM1 in identifying pulmonary NE and SCLC cells and introduce Ascl1-related molecules detected by comparative RNA-sequence analyses. The molecular classification of SCLC based on the expression of lineage-specific transcription or co-transcription factors, including ASCL1, NEUROD1, POU2F3, and YAP1, was recently proposed. We attempted to characterize these 4 SCLC subtypes using integrated immunohistochemical studies, which will provide insights into the molecular characteristics of these subtypes and clarify the inter- and intratumor heterogeneities of SCLC.
Collapse
Affiliation(s)
- Takaaki Ito
- Department of Medical Technology, Faculty of Health Science Kumamoto Health Science University
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Kosuke Fujino
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Mune Sanada
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Yuki Tenjin
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Haruki Saito
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Yuko Nakaishi-Fukuchi
- Department of Medical Technology, Faculty of Health Science Kumamoto Health Science University
| | - Hiroki Kameyama
- Department of Medical Technology, Faculty of Health Science Kumamoto Health Science University
| | | | - Naoko Udaka
- Division of Surgical Pathology, Yokohama City University Hospital
| | - Noritaka Kudo
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Akira Matsuo
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Younosuke Sato
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| |
Collapse
|
207
|
Qu S, Fetsch P, Thomas A, Pommier Y, Schrump DS, Miettinen MM, Chen H. Molecular Subtypes of Primary SCLC Tumors and Their Associations With Neuroendocrine and Therapeutic Markers. J Thorac Oncol 2022; 17:141-153. [PMID: 34534680 PMCID: PMC8692365 DOI: 10.1016/j.jtho.2021.08.763] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION A new molecular subtype classification was recently proposed for SCLC. It is necessary to validate it in primary SCLC tumors by immunohistochemical (IHC) staining and define its clinical relevance. METHODS We used IHC to assess four subtype markers (ASCL1, NEUROD1, POU2F3, and YAP1) in 194 cores from 146 primary SCLC tumors. The profiles of tumor-associated CD3+ and CD8+ T-cells, MYC paralogs, SLFN11, and SYP were compared among different subtypes. Validation was performed using publicly available RNA sequencing data of SCLC. RESULTS ASCL1, NEUROD1, POU2F3, and YAP1 were the dominant molecular subtypes in 78.2%, 5.6%, 7%, and 2.8% of the tumors, respectively; 6.3% of the tumors were negative for all four subtype markers. Notably, three cases were uniquely positive for YAP1. Substantial intratumoral heterogeneity was observed, with 17.6% and 2.8% of the tumors being positive for two and three subtype markers, respectively. The non-ASCL1/NEUROD1 tumors had more CD8+ T-cells and manifested more frequently an "inflamed" immunophenotype. L-MYC and MYC were more often associated with ASCL1/NEUROD1 subtypes and non-ASCL1/NEUROD1 subtypes, respectively. SLFN11 expression was absent in 40% of the tumors, especially those negative for the four subtype markers. SYP was often expressed in the ASCL1 and NEUROD1 subtypes and was associated with less tumor-associated CD8+ T-cells and a "desert" immunophenotype. CONCLUSIONS We validated the new molecular subtype classification in primary SCLC tumors by IHC and identified several intriguing associations between subtypes and therapeutic markers. The new subtype classification may potentially assist treatment decisions in SCLC.
Collapse
Affiliation(s)
- Song Qu
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Patricia Fetsch
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David S Schrump
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Markku M Miettinen
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Haobin Chen
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
208
|
Metovic J, Napoli F, Osella-Abate S, Bertero L, Tampieri C, Orlando G, Bianchi M, Carli D, Fagioli F, Volante M, Papotti M. Overexpression of INSM1, NOTCH1, NEUROD1, and YAP1 genes is associated with adverse clinical outcome in pediatric neuroblastoma. Virchows Arch 2022; 481:925-933. [PMID: 36121500 PMCID: PMC9734219 DOI: 10.1007/s00428-022-03406-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/12/2022] [Accepted: 08/27/2022] [Indexed: 01/22/2023]
Abstract
Pediatric neuroblastoma is responsible for approximately 8-10% of pediatric tumors, and it is one of the leading causes of tumor-related deaths in children. Although significant progress has been made in the characterization of neuroblastoma in recent years, the mechanisms influencing the prognosis of neuroblastoma patients remain largely unknown. Our aim was to investigate if the major neuroendocrine-associated transcriptional drivers, including ASCL1, NEUROD1, DLL3, NOTCH1, INSM1, MYCL1, POU2F3 and YAP1 are correlated with specific clinical and pathological characteristics. We selected a retrospective series of 46 primary pediatric neuroblastoma, composed of 30 treatment-naïve and 16 post-chemotherapy cases. Gene expression levels were explored by means of quantitative real-time PCR. An increased expression of NOTCH1 (p = 0.005), NEUROD1 (p = 0.0059), and YAP1 (p = 0.0008) was found in stage IV tumors, while the highest levels of MYCL1 and ASCL1 were seen in stages IVS and III, respectively (p = 0.0182 and p = 0.0134). A higher level of NOTCH1 (p = 0.0079) and YAP1 (p = 0.0026) was found in cases with differentiating morphology, while high mitosis-karyorrhexis index cases demonstrated significantly lower levels of POU2F3 (p = 0.0277). High expression of NOTCH1 (p = 0.008), NEUROD1 (p = 0.026), INSM1 (p = 0.010), and YAP1 (p = 0.005) together with stage IV (p = 0.043) was associated with shorter disease-free survival. In summary, our data indicate that the assessment of gene expression levels of neuroendocrine-lineage transcription factors might help to identify neuroblastoma patients with the risk of relapse.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| | - Francesca Napoli
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| | | | - Luca Bertero
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Giulia Orlando
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| | - Maurizio Bianchi
- Pediatric Onco-hemathology Unit, "Città della Salute e della Scienza" Hospital, Turin, Italy
| | - Diana Carli
- Pediatric Onco-hemathology Unit, "Città della Salute e della Scienza" Hospital, Turin, Italy
| | - Franca Fagioli
- Department of Sciences of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Marco Volante
- Department of Oncology, University of Turin, Orbassano, Turin, Italy.
| | - Mauro Papotti
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| |
Collapse
|
209
|
Hu C, Dong J, Liu L, Liu J, Sun X, Teng F, Wang X, Ying J, Li J, Xing P, Yang L. ASCL1
and
DLL3
expressions and their clinicopathological implications in surgically resected pure small cell lung cancer: A study of 247 cases from the
National Cancer Center of China. Thorac Cancer 2021; 13:338-345. [PMID: 34931456 PMCID: PMC8807256 DOI: 10.1111/1759-7714.14249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Chunfang Hu
- Department of Pathology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jiyan Dong
- Department of Pathology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Li Liu
- Department of Pathology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jingbo Liu
- Department of Pathology The Fifth Affiliated Hospital of Qiqihar Medical College/Longnan Hospital Daqing China
| | - Xujie Sun
- Department of Pathology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Fei Teng
- Department of Medical Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Xin Wang
- Department of Pathology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jianming Ying
- Department of Pathology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Junling Li
- Department of Medical Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Puyuan Xing
- Department of Medical Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Lin Yang
- Department of Pathology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|
210
|
Plaja A, Moran T, Carcereny E, Saigi M, Hernández A, Cucurull M, Domènech M. Small-Cell Lung Cancer Long-Term Survivor Patients: How to Find a Needle in a Haystack? Int J Mol Sci 2021; 22:ijms222413508. [PMID: 34948300 PMCID: PMC8707503 DOI: 10.3390/ijms222413508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Small-cell lung cancer (SCLC) is an aggressive malignancy characterized by a rapid progression and a high resistance to treatments. Unlike other solid tumors, there has been a scarce improvement in emerging treatments and survival during the last years. A better understanding of SCLC biology has allowed for the establishment of a molecular classification based on four transcription factors, and certain therapeutic vulnerabilities have been proposed. The universal inactivation of TP53 and RB1, along with the absence of mutations in known targetable oncogenes, has hampered the development of targeted therapies. On the other hand, the immunosuppressive microenvironment makes the success of immune checkpoint inhibitors (ICIs), which have achieved a modest improvement in overall survival in patients with extensive disease, difficult. Currently, atezolizumab or durvalumab, in combination with platinum–etoposide chemotherapy, is the standard of care in first-line setting. However, the magnitude of the benefit is scarce and no predictive biomarkers of response have yet been established. In this review, we describe SCLC biology and molecular classification, examine the SCLC tumor microenvironment and the challenges of predictive biomarkers of response to new treatments, and, finally, assess clinical and molecular characteristics of long-term survivor patients in order to identify possible prognostic factors and treatment vulnerabilities.
Collapse
|
211
|
Ciampricotti M, Karakousi T, Richards AL, Quintanal-Villalonga À, Karatza A, Caeser R, Costa EA, Allaj V, Manoj P, Spainhower KB, Kombak FE, Sanchez-Rivera FJ, Jaspers JE, Zavitsanou AM, Maddalo D, Ventura A, Rideout WM, Akama-Garren EH, Jacks T, Donoghue MTA, Sen T, Oliver TG, Poirier JT, Papagiannakopoulos T, Rudin CM. Rlf-Mycl Gene Fusion Drives Tumorigenesis and Metastasis in a Mouse Model of Small Cell Lung Cancer. Cancer Discov 2021; 11:3214-3229. [PMID: 34344693 PMCID: PMC8810895 DOI: 10.1158/2159-8290.cd-21-0441] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022]
Abstract
Small cell lung cancer (SCLC) has limited therapeutic options and an exceptionally poor prognosis. Understanding the oncogenic drivers of SCLC may help define novel therapeutic targets. Recurrent genomic rearrangements have been identified in SCLC, most notably an in-frame gene fusion between RLF and MYCL found in up to 7% of the predominant ASCL1-expressing subtype. To explore the role of this fusion in oncogenesis and tumor progression, we used CRISPR/Cas9 somatic editing to generate a Rlf-Mycl-driven mouse model of SCLC. RLF-MYCL fusion accelerated transformation and proliferation of murine SCLC and increased metastatic dissemination and the diversity of metastatic sites. Tumors from the RLF-MYCL genetically engineered mouse model displayed gene expression similarities with human RLF-MYCL SCLC. Together, our studies support RLF-MYCL as the first demonstrated fusion oncogenic driver in SCLC and provide a new preclinical mouse model for the study of this subtype of SCLC. SIGNIFICANCE The biological and therapeutic implications of gene fusions in SCLC, an aggressive metastatic lung cancer, are unknown. Our study investigates the functional significance of the in-frame RLF-MYCL gene fusion by developing a Rlf-Mycl-driven genetically engineered mouse model and defining the impact on tumor growth and metastasis. This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Metamia Ciampricotti
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Triantafyllia Karakousi
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- These authors contributed equally
| | - Allison L Richards
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- These authors contributed equally
| | - Àlvaro Quintanal-Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Angeliki Karatza
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Rebecca Caeser
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily A Costa
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Viola Allaj
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Parvathy Manoj
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kyle B Spainhower
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Faruk E Kombak
- Precision Pathology Biobanking Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Francisco J Sanchez-Rivera
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Janneke E Jaspers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Danilo Maddalo
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Current address: Department of Translational Oncology, Genentech, South San Francisco, CA, USA
| | - Andrea Ventura
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William M Rideout
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elliot H Akama-Garren
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mark T A Donoghue
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Triparna Sen
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Trudy G Oliver
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Lead contact
| |
Collapse
|
212
|
Arnal-Estapé A, Foggetti G, Starrett JH, Nguyen DX, Politi K. Preclinical Models for the Study of Lung Cancer Pathogenesis and Therapy Development. Cold Spring Harb Perspect Med 2021; 11:a037820. [PMID: 34518338 PMCID: PMC8634791 DOI: 10.1101/cshperspect.a037820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Experimental preclinical models have been a cornerstone of lung cancer translational research. Work in these model systems has provided insights into the biology of lung cancer subtypes and their origins, contributed to our understanding of the mechanisms that underlie tumor progression, and revealed new therapeutic vulnerabilities. Initially patient-derived lung cancer cell lines were the main preclinical models available. The landscape is very different now with numerous preclinical models for research each with unique characteristics. These include genetically engineered mouse models (GEMMs), patient-derived xenografts (PDXs) and three-dimensional culture systems ("organoid" cultures). Here we review the development and applications of these models and describe their contributions to lung cancer research.
Collapse
Affiliation(s)
- Anna Arnal-Estapé
- Department of Pathology
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | - Don X Nguyen
- Department of Pathology
- Department of Internal Medicine (Section of Medical Oncology)
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Katerina Politi
- Department of Pathology
- Department of Internal Medicine (Section of Medical Oncology)
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
213
|
Metovic J, Castellano I, Marinelli E, Osella-Abate S, Sapino A, Cassoni P, Papotti M. INSM1 Expression in Breast Neoplasms with Neuroedocrine Features. Endocr Pathol 2021; 32:452-460. [PMID: 34008122 PMCID: PMC8608773 DOI: 10.1007/s12022-021-09682-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 11/29/2022]
Abstract
According to the 2019 WHO classification of breast tumors, neuroendocrine neoplasms (NENs) are classified into well-differentiated NE tumors (NET) and poorly differentiated NE carcinomas (NEC), while other breast cancers (BCs) of special and no special type with neuroendocrine (NE) features are not incorporated in this scheme anymore. We aimed to assess whether INSM1, a novel NE marker, could have a role in breast NEN subtyping. We selected 63 BCs operated from 2003 to 2018, classified as BCs with NE features, with available clinico-pathological data. Following 2019 WHO criteria, this cohort was reclassified into 37 NETs/NECs, the remaining 26 tumors representing solid-papillary (7), mucinous (7), and mixed type (12) carcinomas with NE differentiation. Chromogranin A (CGA) and synaptophysin (SYN) immunostains were reviewed, and INSM1 was tested by immunohistochemistry. Thirty CGA- and SYN-negative no special type BCs served as negative control. INSM1 was expressed in 52/63 cases of the whole cohort (82.54%). INSM1 positive and negative cases had no significantly different clinico-pathological characteristics. INSM1 expression was not significantly different between the newly reclassified NET/NEC group and other BCs with NE features. No immunoexpression was observed in control BCs. The sensitivity and specificity of INSM1 for the NE phenotype was 82.5% and 100%, respectively, compared to 61.9% and 100% for CGA, and 95.2 and 100% for SYN. In conclusion, INSM1 is as accurate as traditional NE biomarkers to identify NE differentiation in BC. In analogy to standard NE markers, INSM1 could not distinguish NET and NEC from the other BC histotypes with NE differentiation.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Oncology, Pathology Unit, University of Turin, Via Santena 7, 10126, Turin, Italy
| | - Isabella Castellano
- Department of Medical Sciences, Pathology Unit, University of Turin, Via Santena 7, 10126, Turin, Italy.
| | - Eleonora Marinelli
- Department of Oncology, Pathology Unit, University of Turin, Via Santena 7, 10126, Turin, Italy
| | - Simona Osella-Abate
- Department of Medical Sciences, Pathology Unit, University of Turin, Via Santena 7, 10126, Turin, Italy
| | - Anna Sapino
- Department of Medical Sciences, Pathology Unit, University of Turin, Via Santena 7, 10126, Turin, Italy
- Pathology Division, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, Italy
| | - Paola Cassoni
- Department of Medical Sciences, Pathology Unit, University of Turin, Via Santena 7, 10126, Turin, Italy
| | - Mauro Papotti
- Department of Oncology, Pathology Unit, University of Turin, Via Santena 7, 10126, Turin, Italy
| |
Collapse
|
214
|
NeuroD1 promotes tumor cell proliferation and tumorigenesis by directly activating the pentose phosphate pathway in colorectal carcinoma. Oncogene 2021; 40:6736-6747. [PMID: 34657129 DOI: 10.1038/s41388-021-02063-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 11/08/2022]
Abstract
Tumor metabolic reprogramming ensures that cancerous cells obtain sufficient building blocks, energy, and antioxidants to sustain rapid growth and for coping with oxidative stress. Neurogenic differentiation factor 1 (NeuroD1) is upregulated in various types of tumors; however, its involvement in tumor cell metabolic reprogramming remains unclear. In this study, we report that NeuroD1 is positively correlated with glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway (PPP), in colorectal cancer cells. In addition, the regulation of G6PD by NeuroD1 alters tumor cell metabolism by stimulating the PPP, leading to enhanced production of nucleotides and NADPH. These, in turn, promote DNA and lipid biosynthesis in tumor cells, while decreasing intracellular levels of reactive oxygen species. Mechanistically, we showed that NeuroD1 binds directly to the G6PD promoter to activate G6PD transcription. Consequently, tumor cell proliferation and colony formation are enhanced, leading to increased tumorigenic potential in vitro and in vivo. These findings reveal a novel function of NeuroD1 as a regulator of G6PD, whereby its oncogenic activity is linked to tumor cell metabolic reprogramming and regulation of the PPP. Furthermore, NeuroD1 represents a potential target for metabolism-based anti-tumor therapeutic strategies.
Collapse
|
215
|
Voigt E, Wallenburg M, Wollenzien H, Thompson E, Kumar K, Feiner J, McNally M, Friesen H, Mukherjee M, Afeworki Y, Kareta MS. Sox2 Is an Oncogenic Driver of Small-Cell Lung Cancer and Promotes the Classic Neuroendocrine Subtype. Mol Cancer Res 2021; 19:2015-2025. [PMID: 34593608 PMCID: PMC8642303 DOI: 10.1158/1541-7786.mcr-20-1006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/02/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022]
Abstract
Although many cancer prognoses have improved in the past 50 years due to advancements in treatments, there has been little improvement in therapies for small-cell lung cancer (SCLC). One promising avenue to improve treatment for SCLC is to understand its underlying genetic alterations that drive its formation, growth, and cellular heterogeneity. RB1 loss is one key driver of SCLC, and RB1 loss has been associated with an increase in pluripotency factors such as SOX2. SOX2 is highly expressed and amplified in SCLC and has been associated with SCLC growth. Using a genetically engineered mouse model, we have shown that Sox2 is required for efficient SCLC formation. Furthermore, genome-scale binding assays have indicated that SOX2 can regulate key SCLC pathways such as NEUROD1 and MYC. These data suggest that SOX2 can be associated with the switch of SCLC from an ASCL1 subtype to a NEUROD1 subtype. Understanding this genetic switch is key to understanding such processes as SCLC progression, cellular heterogeneity, and treatment resistance. IMPLICATIONS: Understanding the molecular mechanisms of SCLC initiation and development are key to opening new potential therapeutic options for this devastating disease.
Collapse
Affiliation(s)
- Ellen Voigt
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | - Madeline Wallenburg
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | - Hannah Wollenzien
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota
| | - Ethan Thompson
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | - Kirtana Kumar
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | | | - Moira McNally
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | - Hunter Friesen
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | - Malini Mukherjee
- Functional Genomics & Bioinformatics Core, Sanford Research, Sioux Falls, South Dakota
| | - Yohannes Afeworki
- Functional Genomics & Bioinformatics Core, Sanford Research, Sioux Falls, South Dakota
| | - Michael S Kareta
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota.
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota
- Functional Genomics & Bioinformatics Core, Sanford Research, Sioux Falls, South Dakota
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota
- Department of Chemistry Biochemistry, South Dakota State University, Brookings, South Dakota
| |
Collapse
|
216
|
Caeser R, Hulton C, Costa E, Durani V, Little M, Chen X, Tischfield SE, Asher M, Kombak FE, Chavan SS, Shah NS, Ciampricotti M, de Stanchina E, Poirier JT, Rudin CM, Sen T. MAPK pathway activation selectively inhibits ASCL1-driven small cell lung cancer. iScience 2021; 24:103224. [PMID: 34712921 PMCID: PMC8528729 DOI: 10.1016/j.isci.2021.103224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/02/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022] Open
Abstract
Activation of mitogenic signaling pathways is a common oncogenic driver of many solid tumors including lung cancer. Although activating mutations in the mitogen-activated protein kinase (MAPK) pathway are prevalent in non-small cell lung cancers, MAPK pathway activity, counterintuitively, is relatively suppressed in the more aggressively proliferative small cell lung cancer (SCLC). Here, we elucidate the role of the MAPK pathway and how it interacts with other signaling pathways in SCLC. We find that the most common SCLC subtype, SCLC-A associated with high expression of ASCL1, is selectively sensitive to MAPK activation in vitro and in vivo through induction of cell-cycle arrest and senescence. We show strong upregulation of ERK negative feedback regulators and STAT signaling upon MAPK activation in SCLC-A lines. These findings provide insight into the complexity of signaling networks in SCLC and suggest subtype-specific mitogenic vulnerabilities.
Collapse
Affiliation(s)
- Rebecca Caeser
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher Hulton
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emily Costa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Vidushi Durani
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Megan Little
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaoping Chen
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 11065, USA
| | - Sam E. Tischfield
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marina Asher
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Faruk Erdem Kombak
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shweta S. Chavan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nisargbhai S. Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Metamia Ciampricotti
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 11065, USA
| | - John T. Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Charles M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Triparna Sen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
217
|
Ito F, Sato T, Emoto K, Kaizuka N, Yagi K, Watanabe R, Hashiguchi MH, Ninomiya H, Ikematsu Y, Tanaka K, Domoto H, Shiomi T. Standard therapy-resistant small cell lung cancer showing dynamic transition of neuroendocrine fate during the cancer trajectory: A case report. Mol Clin Oncol 2021; 15:261. [PMID: 34790350 DOI: 10.3892/mco.2021.2423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/17/2021] [Indexed: 12/25/2022] Open
Abstract
While small cell lung cancer (SCLC) has been treated as a single disease historically, recent studies have suggested that SCLC can be classified into molecular subtypes based on the expression of lineage transcription factors such as achaete-scute homolog 1 (ASCL1), neurogenic differentiation factor 1 (NEUROD1), POU domain class 2 transcription factor 3 (POU2F3) and transcriptional coactivator YAP1 (YAP1). These transcription factor-based subtypes may be specifically targeted in therapy, and recent studies have suggested that the SCLC subtypes represent different stages of dynamic evolution of SCLC rather than independent diseases. Nevertheless, evidence of shift in neuroendocrine differentiation during SCLC evolution has been lacking in the clinical setting. In the present study, a 60-year-old male was diagnosed with extensive SCLC. The tumor responded not to the standard SCLC regimen of carboplatin, etoposide and atezolizumab, but to the non-SCLC regimen of carboplatin, nab-paclitaxel and pembrolizumab. The patient succumbed 5 months after the initial diagnosis and a pathological autopsy was performed. The tumor was originally negative for all four transcription factors, ASCL1, NEUROD1, POU2F3 and YAP1, in the biopsy specimens at diagnosis. Loss of synaptophysin expression and emergence of Myc proto-oncogene protein and YAP1 expression was recorded in the autopsy specimens, suggesting the transition to a decreased neuroendocrine fate during the disease trajectory. This case provides clinical evidence of dynamic transition of neuroendocrine fate during SCLC evolution. In light of SCLC heterogeneity and plasticity, development of precision medicine is required.
Collapse
Affiliation(s)
- Fumimaro Ito
- Department of Medicine, Keiyu Hospital, Yokohama, Kanagawa 220-8521, Japan.,Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takashi Sato
- Department of Medicine, Keiyu Hospital, Yokohama, Kanagawa 220-8521, Japan.,Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan.,Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Katsura Emoto
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Nobuki Kaizuka
- Department of Medicine, Keiyu Hospital, Yokohama, Kanagawa 220-8521, Japan.,Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Kazuma Yagi
- Department of Medicine, Keiyu Hospital, Yokohama, Kanagawa 220-8521, Japan
| | - Rinako Watanabe
- Department of Medicine, Keiyu Hospital, Yokohama, Kanagawa 220-8521, Japan
| | | | - Hironori Ninomiya
- Division of Pathology, Cancer Institute, Tokyo 135-0063, Japan.,Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yuki Ikematsu
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kentaro Tanaka
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hideharu Domoto
- Department of Pathology, Keiyu Hospital, Yokohama, Kanagawa 220-8521, Japan
| | - Tetsuya Shiomi
- Department of Medicine, Keiyu Hospital, Yokohama, Kanagawa 220-8521, Japan
| |
Collapse
|
218
|
Righi L, Volante M, Papotti M. Small-Cell Carcinoma of the Lung: What We Learned about It? Acta Cytol 2021; 66:257-268. [PMID: 34784591 DOI: 10.1159/000519688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Small-cell lung carcinoma (SCLC) is a high-grade aggressive disease that belongs to the neuroendocrine (NE) group of lung tumors that also includes typical carcinoid, atypical carcinoid, and large-cell NE carcinoma. SCLC has specific histological diagnostic criteria that are sometimes troublesome to be assessed in cytological samples that indeed represent the most frequent source of diagnostic material due to the typical advanced presentation at the onset of SCLC. However, cytological preparations could be in some instances more reliable than histology due to the better preservation of nuclear details. Cytological criteria for diagnosis of SCLC include high cellularity, small cell size, scant cytoplasm, coarsely granulated chromatin with "salt-and-pepper" appearance, inconspicuous or absent nucleoli, Azzopardi crush effect, and necrotic debris in the background. Despite being distinctive, these features could be incomplete to differentiate SCLC with other small-cell neoplasia. Therefore, immunocytochemical determination of diagnostic biomarkers is crucial to achieve a confident diagnosis. Furthermore, recent findings on molecular and transcriptomic studies of SCLC revealed the potential rise of new predictive and prognostic biomarkers that, whenever validated by immunocytochemistry, may potentially assist to tailor the best therapy, including immune checkpoint inhibition.
Collapse
Affiliation(s)
- Luisella Righi
- Pathology Unit, Department of Oncology, University of Torino at San Luigi Hospital, Orbassano (Torino), Italy
| | - Marco Volante
- Pathology Unit, Department of Oncology, University of Torino at San Luigi Hospital, Orbassano (Torino), Italy
| | - Mauro Papotti
- Pathology Unit, Department of Oncology, University of Torino at City of Health and Science, Torino, Italy,
| |
Collapse
|
219
|
Earley AM, Burbulla LF, Krainc D, Awatramani R. Identification of ASCL1 as a determinant for human iPSC-derived dopaminergic neurons. Sci Rep 2021; 11:22257. [PMID: 34782629 PMCID: PMC8593045 DOI: 10.1038/s41598-021-01366-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
During cellular specification, transcription factors orchestrate cellular decisions through gene regulation. By hijacking these transcriptional networks, human pluripotent stem cells (hPSCs) can be specialized into neurons with different molecular identities for the purposes of regenerative medicine and disease modeling. However, molecular fine tuning cell types to match their in vivo counterparts remains a challenge. Directing cell fates often result in blended or incomplete neuron identities. A better understanding of hPSC to neuron gene regulation is needed. Here, we used single cell RNA sequencing to resolve some of these graded molecular identities during human neurogenesis from hPSCs. Differentiation platforms were established to model neural induction from stem cells, and we characterized these differentiated cell types by 10x single cell RNA sequencing. Using single cell trajectory and co-expression analyses, we identified a co-regulated transcription factor module expressing achaete-scute family basic helix-loop-helix transcription factor 1 (ASCL1) and neuronal differentiation 1 (NEUROD1). We then tested the function of these transcription factors in neuron subtype differentiation by gene knockout in a novel human system that reports the expression of tyrosine hydroxylase (TH), the rate limiting enzyme in dopamine synthesis. ASCL1 was identified as a necessary transcription factor for regulating dopaminergic neurotransmitter selection.
Collapse
Affiliation(s)
- Aaron M Earley
- Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Lena F Burbulla
- Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dimitri Krainc
- Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Rajeshwar Awatramani
- Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
220
|
Tariq S, Kim SY, Monteiro de Oliveira Novaes J, Cheng H. Update 2021: Management of Small Cell Lung Cancer. Lung 2021; 199:579-587. [PMID: 34757446 DOI: 10.1007/s00408-021-00486-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/16/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Accounting for 14% of lung cancer, small cell lung cancer (SCLC) is a highly aggressive neuroendocrine malignancy with rapid proliferation, early spread, and poor survival. AIM AND METHODS We provide an overview of recent advances regarding SCLC pathogenesis, subtypes, and treatment development through literature review of key trials. RESULTS There are no validated biomarkers or approved targeted treatments for this overly heterogeneous disease, but recent analyses have identified some promising targets and four major subtypes which may carry unique therapeutic vulnerabilities in SCLC. Treatment wise, only a third of patients present with limited stage SCLC, which can be managed with a combined modality approach with curative intent (usually chemo-radiotherapy, but in some eligible patients, surgery followed by systemic treatment). For advanced or extensive stage SCLC, combined chemotherapy (platinum-etoposide) and immunotherapy (atezolizumab or durvalumab during and after chemotherapy) has become the new standard front-line treatment, with modest improvement in overall survival. In the second-line setting, for disease relapse ≤ 6 months, topotecan, lurbinectedin, and clinical trials are reasonable treatment options; for disease relapse > 6 months, original regimen, topotecan or lurbinectedin can be considered. Moreover, Trilaciclib, a CD4/CD6 inhibitor, was recently FDA-approved to decrease the incidence of chemotherapy-related myelosuppression in SCLC patients. CONCLUSIONS While modest improvements in survival have been made especially in the metastatic setting with chemo-immunotherapy, further research in understanding the biology of SCLC is warranted to develop biomarker-driven therapeutic strategies and combinational approaches for this aggressive disease.
Collapse
Affiliation(s)
- Sara Tariq
- Department of Medical Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - So Yeon Kim
- Department of Medical Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Haiying Cheng
- Department of Medical Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
221
|
Chan JM, Quintanal-Villalonga Á, Gao VR, Xie Y, Allaj V, Chaudhary O, Masilionis I, Egger J, Chow A, Walle T, Mattar M, Yarlagadda DVK, Wang JL, Uddin F, Offin M, Ciampricotti M, Qeriqi B, Bahr A, de Stanchina E, Bhanot UK, Lai WV, Bott MJ, Jones DR, Ruiz A, Baine MK, Li Y, Rekhtman N, Poirier JT, Nawy T, Sen T, Mazutis L, Hollmann TJ, Pe'er D, Rudin CM. Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. Cancer Cell 2021; 39:1479-1496.e18. [PMID: 34653364 PMCID: PMC8628860 DOI: 10.1016/j.ccell.2021.09.008] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/26/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive malignancy that includes subtypes defined by differential expression of ASCL1, NEUROD1, and POU2F3 (SCLC-A, -N, and -P, respectively). To define the heterogeneity of tumors and their associated microenvironments across subtypes, we sequenced 155,098 transcriptomes from 21 human biospecimens, including 54,523 SCLC transcriptomes. We observe greater tumor diversity in SCLC than lung adenocarcinoma, driven by canonical, intermediate, and admixed subtypes. We discover a PLCG2-high SCLC phenotype with stem-like, pro-metastatic features that recurs across subtypes and predicts worse overall survival. SCLC exhibits greater immune sequestration and less immune infiltration than lung adenocarcinoma, and SCLC-N shows less immune infiltrate and greater T cell dysfunction than SCLC-A. We identify a profibrotic, immunosuppressive monocyte/macrophage population in SCLC tumors that is particularly associated with the recurrent, PLCG2-high subpopulation.
Collapse
Affiliation(s)
- Joseph M Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - Álvaro Quintanal-Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vianne Ran Gao
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Yubin Xie
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Viola Allaj
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ojasvi Chaudhary
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - Ignas Masilionis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - Jacklynn Egger
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew Chow
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas Walle
- Department of Medical Oncology; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Clinical Cooperation Unit Virotherapy; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Marissa Mattar
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dig V K Yarlagadda
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - James L Wang
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Fathema Uddin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Offin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Metamia Ciampricotti
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Besnik Qeriqi
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amber Bahr
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Umesh K Bhanot
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - W Victoria Lai
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew J Bott
- Thoracic Service, Department of Surgery, Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David R Jones
- Thoracic Service, Department of Surgery, Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Arvin Ruiz
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marina K Baine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanyun Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10065, USA
| | - Tal Nawy
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - Triparna Sen
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Linas Mazutis
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Travis J Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe'er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
222
|
Yue D, Liu W, Gao L, Zhang L, Wang T, Xiao S, Fu Y, Li N, Lin R, Hu Y, Ding L, Zhang Z, Zhang B, Wang C. Integrated Multiomics Analyses Revealing Different Molecular Profiles Between Early- and Late-Stage Lung Adenocarcinoma. Front Oncol 2021; 11:746943. [PMID: 34745971 PMCID: PMC8567144 DOI: 10.3389/fonc.2021.746943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
The molecular differences in genetic and epigenetic profiling between early-stage (ES) and late-stage (LS) lung adenocarcinoma (LUAD), which might help to understand cancer progression and biomarker guided precision treatment, need further be investigated. In this study, we performed comprehensive analysis using multi-omics next-generation sequencing (NGS) on tissue samples from 7 ES (stage I) and 10 LS (stage III/IV) LUAD patients to study molecular characteristics between the two groups. Characterization of the genomic and transcriptomic profiles showed stage-specific somatic mutations, copy number variations (CNVs) and differentially expressed genes (DEGs). LS samples tend to have more TP53, ERBB2 and CHD4 mutations. Gene copy number loss occurs in immune-related gene pathways in the late stage of LUAD. ATAC-seq analysis showed that LS samples harbored more open chromatin peaks around promoter regions and transcription start sites (TSS) than ES samples. We then identified the known transcription factor (TF) binding motifs for the differentially abundant ATAC-seq peaks between the ES and LS samples and found distinct regulatory mechanisms related to each stage. Furthermore, integrative analysis of ATAC-seq with WGS and RNA-seq data showed that the degree of chromatin accessibility is related to copy number changes, and the open chromatin regions could directly regulate the expression of some DEGs. In conclusion, we performed a comprehensive multi-omics analysis of the early and late stages of LUAD and highlighted some important molecular differences in regulatory mechanisms during cancer progression. Those findings help to further understand mechanism and biomarker related targeted therapy.
Collapse
Affiliation(s)
- Dongsheng Yue
- Department of Lung Cancer, Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Weiran Liu
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Liuwei Gao
- Department of Enhanced Recovery After Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lianmin Zhang
- Department of Lung Cancer, Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Tao Wang
- Department of R&D, Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Shanshan Xiao
- Department of R&D, Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Yingxue Fu
- Department of R&D, Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Nan Li
- Department of R&D, Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Rui Lin
- Department of R&D, Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Yao Hu
- Department of R&D, Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Lieming Ding
- Department of Medical, Betta Pharmaceutical Co., Ltd, Hangzhou, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Bin Zhang
- Department of Lung Cancer, Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Changli Wang
- Department of Lung Cancer, Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
223
|
Cargill KR, Hasken WL, Gay CM, Byers LA. Alternative Energy: Breaking Down the Diverse Metabolic Features of Lung Cancers. Front Oncol 2021; 11:757323. [PMID: 34745994 PMCID: PMC8566922 DOI: 10.3389/fonc.2021.757323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer initiation, progression, and relapse. From the initial observation that cancer cells preferentially ferment glucose to lactate, termed the Warburg effect, to emerging evidence indicating that metabolic heterogeneity and mitochondrial metabolism are also important for tumor growth, the complex mechanisms driving cancer metabolism remain vastly unknown. These unique shifts in metabolism must be further investigated in order to identify unique therapeutic targets for individuals afflicted by this aggressive disease. Although novel therapies have been developed to target metabolic vulnerabilities in a variety of cancer models, only limited efficacy has been achieved. In particular, lung cancer metabolism has remained relatively understudied and underutilized for the advancement of therapeutic strategies, however recent evidence suggests that lung cancers have unique metabolic preferences of their own. This review aims to provide an overview of essential metabolic mechanisms and potential therapeutic agents in order to increase evidence of targeted metabolic inhibition for the treatment of lung cancer, where novel therapeutics are desperately needed.
Collapse
Affiliation(s)
| | | | | | - Lauren A. Byers
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
224
|
A Novel Strategy for the Diagnosis of Pulmonary High-Grade Neuroendocrine Tumor. Diagnostics (Basel) 2021; 11:diagnostics11111945. [PMID: 34829292 PMCID: PMC8625242 DOI: 10.3390/diagnostics11111945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023] Open
Abstract
Correctly diagnosing a histologic type of lung cancer is important for selecting the appropriate treatment because the aggressiveness, chemotherapy regimen, surgical approach, and prognosis vary significantly among histologic types. Pulmonary NETs, which are characterized by neuroendocrine morphologies, represent approximately 20% of all lung cancers. In particular, high-grade neuroendocrine tumors (small cell lung cancer and large cell neuroendocrine tumor) are highly proliferative cancers that have a poorer prognosis than other non-small cell lung cancers. The combination of hematoxylin and eosin staining, Ki-67, and immunostaining of classic neuroendocrine markers, such as chromogranin A, CD56, and synaptophysin, are normally used to diagnose high-grade neuroendocrine tumors; however, they are frequently heterogeneous. This article reviews the diagnostic methods of lung cancer diagnosis focused on immunostaining. In particular, we describe the usefulness of immunostaining by Stathmin-1, which is a cytosolic phosphoprotein and a key regulator of cell division due to its microtubule depolymerization in a phosphorylation-dependent manner, for the diagnosis of high-grade neuroendocrine tumors.
Collapse
|
225
|
Xu M, Zhang J, Su Y, Li X. [Advances in Molecular Typing of Small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:734-738. [PMID: 34696546 PMCID: PMC8560980 DOI: 10.3779/j.issn.1009-3419.2021.101.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
小细胞肺癌(small cell lung cancer, SCLC)是一种极具侵袭性和致命性的恶性肿瘤,具有病因复杂、分化程度低、恶性程度高、生长速度快、侵袭性强、转移早和获得性耐药等特点,导致患者的预后普遍较差。近年来,随着人们对SCLC发生发展分子机制研究的逐渐深入和多组学数据的深入挖掘,提出可以按照细胞内关键转录因子的差异表达进行分子分型,包括SCLC-A、SCLC-N、SCLC-P和SCLC-I等亚型。对SCLC进行分子分型研究并应用于临床,将有助于提高医生对SCLC患者的详细诊断和治疗方案的进一步优化,从而延长患者生存时间,提高患者生活质量。
Collapse
Affiliation(s)
- Mengyuan Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Junwen Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yanjun Su
- Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, Department of Lung Cancer,
Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Xichuan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
226
|
Cejas P, Xie Y, Font-Tello A, Lim K, Syamala S, Qiu X, Tewari AK, Shah N, Nguyen HM, Patel RA, Brown L, Coleman I, Hackeng WM, Brosens L, Dreijerink KMA, Ellis L, Alaiwi SA, Seo JH, Baca S, Beltran H, Khani F, Pomerantz M, Dall'Agnese A, Crowdis J, Van Allen EM, Bellmunt J, Morrisey C, Nelson PS, DeCaprio J, Farago A, Dyson N, Drapkin B, Liu XS, Freedman M, Haffner MC, Corey E, Brown M, Long HW. Subtype heterogeneity and epigenetic convergence in neuroendocrine prostate cancer. Nat Commun 2021; 12:5775. [PMID: 34599169 PMCID: PMC8486778 DOI: 10.1038/s41467-021-26042-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 09/07/2021] [Indexed: 12/30/2022] Open
Abstract
Neuroendocrine carcinomas (NEC) are tumors expressing markers of neuronal differentiation that can arise at different anatomic sites but have strong histological and clinical similarities. Here we report the chromatin landscapes of a range of human NECs and show convergence to the activation of a common epigenetic program. With a particular focus on treatment emergent neuroendocrine prostate cancer (NEPC), we analyze cell lines, patient-derived xenograft (PDX) models and human clinical samples to show the existence of two distinct NEPC subtypes based on the expression of the neuronal transcription factors ASCL1 and NEUROD1. While in cell lines and PDX models these subtypes are mutually exclusive, single-cell analysis of human clinical samples exhibits a more complex tumor structure with subtypes coexisting as separate sub-populations within the same tumor. These tumor sub-populations differ genetically and epigenetically contributing to intra- and inter-tumoral heterogeneity in human metastases. Overall, our results provide a deeper understanding of the shared clinicopathological characteristics shown by NECs. Furthermore, the intratumoral heterogeneity of human NEPCs suggests the requirement of simultaneous targeting of coexisting tumor populations as a therapeutic strategy. Neuroendocrine carcinomas (NECs) arise from different anatomic sites, but have similar histological and clinical features. Here, the authors show that the epigenetic landscape of a range of NECs converges towards a common epigenetic state, while distinct subtypes occur within neuroendocrine prostate cancer contributing to intratumor heterogeneity in clinical samples.
Collapse
Affiliation(s)
- Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA. .,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA. .,Translational Oncology Laboratory, Hospital La Paz Institute for Health Research (IdiPAZ) and CIBERONC, La Paz University Hospital, Madrid, Spain.
| | - Yingtian Xie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alba Font-Tello
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Klothilda Lim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sudeepa Syamala
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xintao Qiu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alok K Tewari
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neel Shah
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Holly M Nguyen
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Radhika A Patel
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Lisha Brown
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Ilsa Coleman
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lodewijk Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Leigh Ellis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Sarah Abou Alaiwi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Sylvan Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Francesca Khani
- Weill Cornell Medical Center, Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, New York, NY, USA
| | - Mark Pomerantz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | | | - Jett Crowdis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joaquim Bellmunt
- Beth Israel Deaconess Medical Center and PSMAR-IMIM Lab. Harvard Medical School, Boston, Massachusetts, USA
| | - Colm Morrisey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Peter S Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - James DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Anna Farago
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Nicholas Dyson
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Benjamin Drapkin
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research, Dallas, TX, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - X Shirley Liu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Matthew Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael C Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA. .,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA. .,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
227
|
Wu Q, Guo J, Liu Y, Zheng Q, Li X, Wu C, Fang D, Chen X, Ma L, Xu P, Xu X, Liao C, Wu M, Shen L, Song H. YAP drives fate conversion and chemoresistance of small cell lung cancer. SCIENCE ADVANCES 2021; 7:eabg1850. [PMID: 34597132 PMCID: PMC10938532 DOI: 10.1126/sciadv.abg1850] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Small cell lung cancer (SCLC) has a high degree of plasticity and is characterized by a remarkable response to chemotherapy followed by the development of resistance. Here, we use a mouse SCLC model to show that intratumoral heterogeneity of SCLC is progressively established during SCLC tumorigenesis. YAP/TAZ and Notch are required for the generation of non-neuroendocrine (Non-NE) SCLC tumor cells, but not for the initiation of SCLC. YAP signals through Notch-dependent and Notch-independent pathways to promote the fate conversion of SCLC from NE to Non-NE tumor cells by inducing Rest expression. In addition, YAP activation enhances the chemoresistance in NE SCLC tumor cells, while the inactivation of YAP in Non-NE SCLC tumor cells switches cell death induced by chemotherapy drugs from apoptosis to pyroptosis. Our study demonstrates that YAP plays critical roles in the establishment of intratumoral heterogeneity and highlights the potential of targeting YAP for chemoresistant SCLC.
Collapse
Affiliation(s)
- Qingzhe Wu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jingxin Guo
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuning Liu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qi Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xiaoling Li
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuanqiang Wu
- Department of Thoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Dong Fang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Liang Ma
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaofang Xu
- Department of Thoracic Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Cheng Liao
- Jiangsu Hengrui Medicine Co. Ltd., No. 1288, Haike Road, Pudong, Shanghai, China
| | - Ming Wu
- Department of Thoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hai Song
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Thoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
228
|
Hiddinga BI, Raskin J, Janssens A, Pauwels P, Van Meerbeeck JP. Recent developments in the treatment of small cell lung cancer. Eur Respir Rev 2021; 30:210079. [PMID: 34261744 PMCID: PMC9488550 DOI: 10.1183/16000617.0079-2021] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/27/2021] [Indexed: 12/19/2022] Open
Abstract
Small cell lung cancer (SCLC) comprises about 15% of all lung cancers. It is an aggressive disease, with early metastasis and a poor prognosis. Until recently, SCLC treatment remained relatively unchanged, with chemotherapy remaining the cornerstone of treatment. In this overview we will highlight the recent advances in the field of staging, surgery, radiotherapy and systemic treatment. Nevertheless, the prognosis remains dismal and there is a pressing need for new treatment options. We describe the progress that has been made in systemic treatment by repurposing existing drugs and the addition of targeted treatment. In recent years, immunotherapy entered the clinic with high expectations of its role in the treatment of SCLC. Unravelling of the genomic sequence revealed new possible targets that may act as biomarkers in future treatment of patients with SCLC. Hopefully, in the near future, we will be able to identify patients who may benefit from targeted therapy or immunotherapy to improve prognoses.
Collapse
Affiliation(s)
- Birgitta I Hiddinga
- Dept of Pulmonary Medicine and Tuberculosis, University Medical Centre Groningen, Groningen, The Netherlands
- Both authors contributed equally
| | - Jo Raskin
- Dept of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
- Both authors contributed equally
| | - Annelies Janssens
- Dept of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Patrick Pauwels
- University of Antwerp, Antwerp, Belgium
- Dept of Pathology, Antwerp University Hospital, Edegem, Belgium
- European Reference Network for rare and low prevalent lung diseases (ERN-LUNG), Frankfurt am Main, Germany
| | - Jan P Van Meerbeeck
- Dept of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
- University of Antwerp, Antwerp, Belgium
- European Reference Network for rare and low prevalent lung diseases (ERN-LUNG), Frankfurt am Main, Germany
| |
Collapse
|
229
|
ASCL1, NKX2-1, and PROX1 co-regulate subtype-specific genes in small-cell lung cancer. iScience 2021; 24:102953. [PMID: 34466783 PMCID: PMC8384902 DOI: 10.1016/j.isci.2021.102953] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/05/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022] Open
Abstract
Lineage-defining transcription factors (LTFs) play key roles in small-cell lung cancer (SCLC) pathophysiology. Delineating the LTF-regulated genes operative in SCLC could provide a road map to identify SCLC dependencies. We integrated chromatin landscape and transcriptome analyses of patient-derived SCLC preclinical models to identify super-enhancers (SEs) and their associated genes in the ASCL1-, NEUROD1-, and POU2F3-high SCLC subtypes. We find SE signatures predict LTF-based classification of SCLC, and the SE-associated genes are enriched with those defined as common essential genes in DepMap. In addition, in ASCL1-high SCLC, we show ASCL1 complexes with NKX2-1 and PROX1 to co-regulate genes functioning in NOTCH signaling, catecholamine biosynthesis, and cell-cycle processes. Depletion of ASCL1 demonstrates it is a key dependency factor in preclinical SCLC models and directly regulates multiple DepMap-defined essential genes. We provide LTF/SE-based subtype-specific gene sets for SCLC for further therapeutic investigation. Super-enhancers support lineage-defining transcription factor SCLC classification SCLC super-enhancer-associated genes represent essential and lineage-identity genes ASCL1, NKX2-1, and PROX1 proteins interact in a complex in SCLC-A ASCL1, NKX2-1, and PROX1 regulate Notch-signaling, NE-specific, and cell-cycle genes
Collapse
|
230
|
Hao Z, Sekkath Veedu J. Current Strategies for Extensive Stage Small Cell Lung Cancer Beyond First-line Therapy. Clin Lung Cancer 2021; 23:14-20. [PMID: 34656433 DOI: 10.1016/j.cllc.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Extensive stage small cell lung cancer carries extremely poor prognosis and adding immune checkpoint inhibitor to platinum etoposide combination in first line only improved outcomes modestly. Once disease recurs, treatment response is only transient in nature. Various strategies that are being explored include dual checkpoint blockade, BiTE and CAR-T cell approaches. Immune checkpoint inhibitors are being combined with PARP inhibitors. Other approaches currently being investigated include liposomal irinotecan and combining known active agents for SCLC in relapsed setting such as newly approved lurbinectedin with doxorubicin, paclitaxel, irinotecan or topotecan with ATR inhibitor (Berzosertib). Temozolomide has also been tested in combination with a Parp inhibitor. New antibody or small molecule drug conjugates are being actively investigated, so is a biomarker based approach. Better understanding of small cell lung cancer disease biology via high through-put genomic, proteomic and methylation profiling offer glimpse of hope in our efforts to contain this deadly disease. A table of representative molecular targets under investigation is provided in the end.
Collapse
Affiliation(s)
- Zhonglin Hao
- Division of Medical Oncology, Department of Medicine, Markey Cancer Center, College of Medicine, University of Kentucky, Lexington KY.
| | - Janeesh Sekkath Veedu
- Division of Medical Oncology, Department of Medicine, Markey Cancer Center, College of Medicine, University of Kentucky, Lexington KY
| |
Collapse
|
231
|
Zhao Z, Szczepanski AP, Tsuboyama N, Abdala-Valencia H, Goo YA, Singer BD, Bartom ET, Yue F, Wang L. PAX9 Determines Epigenetic State Transition and Cell Fate in Cancer. Cancer Res 2021; 81:4696-4708. [PMID: 34341073 PMCID: PMC8448979 DOI: 10.1158/0008-5472.can-21-1114] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/01/2021] [Accepted: 07/28/2021] [Indexed: 01/07/2023]
Abstract
Abnormalities in genetic and epigenetic modifications can lead to drastic changes in gene expression profiles that are associated with various cancer types. Small cell lung cancer (SCLC) is an aggressive and deadly form of lung cancer with limited effective therapies currently available. By utilizing a genome-wide CRISPR-Cas9 dropout screen in SCLC cells, we identified paired box protein 9 (PAX9) as an essential factor that is overexpressed in human malignant SCLC tumor samples and is transcriptionally driven by the BAP1/ASXL3/BRD4 epigenetic axis. Genome-wide studies revealed that PAX9 occupies distal enhancer elements and represses gene expression by restricting enhancer activity. In multiple SCLC cell lines, genetic depletion of PAX9 led to significant induction of a primed-active enhancer transition, resulting in increased expression of a large number of neural differentiation and tumor-suppressive genes. Mechanistically, PAX9 interacted and cofunctioned with the nucleosome remodeling and deacetylase (NuRD) complex at enhancers to repress nearby gene expression, which was reversed by pharmacologic HDAC inhibition. Overall, this study provides mechanistic insight into the oncogenic function of the PAX9/NuRD complex epigenetic axis in human SCLC and suggests that reactivation of primed enhancers may have potential therapeutic efficacy in treating SCLC expressing high levels of PAX9. SIGNIFICANCE: A genome-wide screen in small cell lung cancer reveals PAX9/NuRD-mediated epigenetic enhancer silencing and tumor progression, supporting the development of novel personalized therapeutic approaches targeting the PAX9-regulated network.
Collapse
Affiliation(s)
- Zibo Zhao
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Aileen P. Szczepanski
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Natsumi Tsuboyama
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Young Ah Goo
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Proteomics Center of Excellence, Northwestern University, Evanston, Illinois
| | - Benjamin D. Singer
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Elizabeth T. Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Corresponding Author: Lu Wang, Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611. E-mail:
| |
Collapse
|
232
|
Llabata P, Torres-Diz M, Gomez A, Tomas-Daza L, Romero OA, Grego-Bessa J, Llinas-Arias P, Valencia A, Esteller M, Javierre BM, Zhang X, Sanchez-Cespedes M. MAX mutant small-cell lung cancers exhibit impaired activities of MGA-dependent noncanonical polycomb repressive complex. Proc Natl Acad Sci U S A 2021; 118:e2024824118. [PMID: 34493659 PMCID: PMC8449313 DOI: 10.1073/pnas.2024824118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022] Open
Abstract
The MYC axis is disrupted in cancer, predominantly through activation of the MYC family oncogenes but also through inactivation of the MYC partner MAX or of the MAX partner MGA. MGA and MAX are also members of the polycomb repressive complex, ncPRC1.6. Here, we use genetically modified MAX-deficient small-cell lung cancer (SCLC) cells and carry out genome-wide and proteomics analyses to study the tumor suppressor function of MAX. We find that MAX mutant SCLCs have ASCL1 or NEUROD1 or combined ASCL1/NEUROD1 characteristics and lack MYC transcriptional activity. MAX restitution triggers prodifferentiation expression profiles that shift when MAX and oncogenic MYC are coexpressed. Although ncPRC1.6 can be formed, the lack of MAX restricts global MGA occupancy, selectively driving its recruitment toward E2F6-binding motifs. Conversely, MAX restitution enhances MGA occupancy to repress genes involved in different functions, including stem cell and DNA repair/replication. Collectively, these findings reveal that MAX mutant SCLCs have either ASCL1 or NEUROD1 or combined characteristics and are MYC independent and exhibit deficient ncPRC1.6-mediated gene repression.
Collapse
Affiliation(s)
- Paula Llabata
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain
| | - Manuel Torres-Diz
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 Barcelona, Spain
| | - Antonio Gomez
- Rheumatology Research Group, Vall d'Hebron Research Institute, 08035 Barcelona, Spain
| | - Laureano Tomas-Daza
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain
| | - Octavio A Romero
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain
| | - Joaquim Grego-Bessa
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 Barcelona, Spain
| | - Pere Llinas-Arias
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain
| | - Alfonso Valencia
- Computational Biology Life Sciences Group, Barcelona Supercomputing Centre, 08034 Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer, 28029 Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain
| | - Biola M Javierre
- Rheumatology Research Group, Vall d'Hebron Research Institute, 08035 Barcelona, Spain
| | - Xiaoyang Zhang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | | |
Collapse
|
233
|
Bai R, Li L, Chen X, Zhao Y, Song W, Tian H, Cui J. Advances in novel molecular typing and precise treatment strategies for small cell lung cancer. Chin J Cancer Res 2021; 33:522-534. [PMID: 34584377 PMCID: PMC8435821 DOI: 10.21147/j.issn.1000-9604.2021.04.09] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Small cell lung cancer (SCLC) is a high-grade neuroendocrine (NE) cancer characterized by high circulating tumor-cell burden and early extensive metastasis. Considering the complexity of SCLC genes and the immune microenvironment, their unique molecular heterogeneity profiles have been continuously explored. The understanding of SCLC subtypes has recently changed from traditional "classical" and "variant" types to "NE" and "non-NE" phenotypes and to the subtypes defined by major transcriptional regulators, which indicates the gradual revelation of high intratumoral heterogeneity and plasticity characteristics of SCLCs. Advances in genomics as well as the development of single-cell sequencing analysis and new preclinical models have helped investigators gain many new insights into SCLCs and the development of targeted therapy and immunotherapy strategies. This article provides an overview of changes in molecular typing, tumor heterogeneity, and plasticity and that of advances in the precise treatment of different subtypes of SCLC.
Collapse
Affiliation(s)
- Rilan Bai
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Lingyu Li
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Xiao Chen
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Wei Song
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Huimin Tian
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
234
|
Mao S, Zheng S, Lu Z, Wang X, Wang Y, Zhang G, Xu H, Huang J, Lei Y, Liu C, Sun N, He J. Exosomal miR-375-3p breaks vascular barrier and promotes small cell lung cancer metastasis by targeting claudin-1. Transl Lung Cancer Res 2021; 10:3155-3172. [PMID: 34430355 PMCID: PMC8350081 DOI: 10.21037/tlcr-21-356] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022]
Abstract
Background High incidence of metastasis is the main cause of death for small cell lung cancer (SCLC), with its underlying molecular mechanisms remain unclear. Exosomal miRNAs are important regulators in metastatic processes of various tumors, but their specific role in SCLC metastasis is unknown. Methods Small RNA sequencing followed by qRT-PCR verification was used to screen the potential exosomal miRNAs that might mediate SCLC metastasis. SCLC-cell-secreted exosomes were labeled followed by incubating with vascular endothelial cells to evaluate exosome-mediated communication between SCLC cells and vascular endothelial cells. In vitro permeability assay and transendothelial migration assay were applied to investigate the function of exosomal miRNA on vascular endothelial cells. In vivo permeability assay and mouse lung colonization assay were used to verify the effects of exosomal miRNA on vascular barriers and SCLC metastasis in vivo. Proteomics technology, dual-luciferase reporter system together with rescue assays were conducted to excavate the downstream pathways of miRNA. Results Compared with 57 healthy volunteers and 46 non-small cell lung cancer patients, we identified that the level of exosomal miR-375-3p in 126 SCLC patients was obviously higher and was positively correlated with patient TNM stages. In vitro functional experiments found that SCLC-cell-secreted exosomal miR-375-3p could increase the permeability of vascular endothelial cells and facilitate the transendothelial migration of SCLC cells. In vivo, miR-375-3p-enriched exosomes also destroyed the barrier structure of lung, liver and brain tissues of mice, leaded to an increased blood vessel permeability and finally promoted SCLC metastasis. Mechanistically, SCLC-cell-secreted exosomal miR-375-3p was transferred to vascular endothelial cells. The internalized miR-375-3p broke the tight junction of vascular endothelial cells by directedly binding to the 3’UTR of tight junction protein claudin-1 and negatively regulating its expression. Overexpressing claudin-1 in vascular endothelial cells could rescue the broken vascular barriers induced by miR-375-3p. Conclusions Our findings underline the crucial roles of exosomal miRNA-375-3p in regulating vascular endothelial barrier integrity and SCLC metastasis. miRNA-375-3p has a great potential to be a novel biomarker monitoring metastasis and guiding clinical therapeutics of SCLC patients.
Collapse
Affiliation(s)
- Shuangshuang Mao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sufei Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiliang Lu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinfeng Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyan Xu
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianbing Huang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyuan Lei
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
235
|
Mathios D, Johansen JS, Cristiano S, Medina JE, Phallen J, Larsen KR, Bruhm DC, Niknafs N, Ferreira L, Adleff V, Chiao JY, Leal A, Noe M, White JR, Arun AS, Hruban C, Annapragada AV, Jensen SØ, Ørntoft MBW, Madsen AH, Carvalho B, de Wit M, Carey J, Dracopoli NC, Maddala T, Fang KC, Hartman AR, Forde PM, Anagnostou V, Brahmer JR, Fijneman RJA, Nielsen HJ, Meijer GA, Andersen CL, Mellemgaard A, Bojesen SE, Scharpf RB, Velculescu VE. Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nat Commun 2021; 12:5060. [PMID: 34417454 PMCID: PMC8379179 DOI: 10.1038/s41467-021-24994-w] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Non-invasive approaches for cell-free DNA (cfDNA) assessment provide an opportunity for cancer detection and intervention. Here, we use a machine learning model for detecting tumor-derived cfDNA through genome-wide analyses of cfDNA fragmentation in a prospective study of 365 individuals at risk for lung cancer. We validate the cancer detection model using an independent cohort of 385 non-cancer individuals and 46 lung cancer patients. Combining fragmentation features, clinical risk factors, and CEA levels, followed by CT imaging, detected 94% of patients with cancer across stages and subtypes, including 91% of stage I/II and 96% of stage III/IV, at 80% specificity. Genome-wide fragmentation profiles across ~13,000 ASCL1 transcription factor binding sites distinguished individuals with small cell lung cancer from those with non-small cell lung cancer with high accuracy (AUC = 0.98). A higher fragmentation score represented an independent prognostic indicator of survival. This approach provides a facile avenue for non-invasive detection of lung cancer.
Collapse
Affiliation(s)
- Dimitrios Mathios
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Stephen Cristiano
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jamie E Medina
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jillian Phallen
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Klaus R Larsen
- Department of Respiratory Medicine, Infiltrate Unit, Bispebjerg Hospital, Copenhagen, Denmark
| | - Daniel C Bruhm
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Noushin Niknafs
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leonardo Ferreira
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vilmos Adleff
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jia Yuee Chiao
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alessandro Leal
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Noe
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R White
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adith S Arun
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carolyn Hruban
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akshaya V Annapragada
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Østrup Jensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Beatriz Carvalho
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Meike de Wit
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | - Patrick M Forde
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julie R Brahmer
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Remond J A Fijneman
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hans Jørgen Nielsen
- Department of Surgical Gastroenterology 360, Hvidovre Hospital, Hvidovre, Denmark
| | - Gerrit A Meijer
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Anders Mellemgaard
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Stig E Bojesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Robert B Scharpf
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Victor E Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
236
|
Herzog BH, Devarakonda S, Govindan R. Overcoming Chemotherapy Resistance in SCLC. J Thorac Oncol 2021; 16:2002-2015. [PMID: 34358725 DOI: 10.1016/j.jtho.2021.07.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/09/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
SCLC is an aggressive form of lung cancer with a very poor prognosis. Although SCLC initially responds very well to platinum-based chemotherapy, it eventually recurs and at recurrence is nearly universally resistant to therapy. In light of the recent advances in understanding regarding the biology of SCLC, we review findings related to SCLC chemotherapy resistance. We discuss the potential clinical implications of recent preclinical discoveries in altered signaling pathways, transcriptional landscapes, metabolic vulnerabilities, and the tumor microenvironment.
Collapse
Affiliation(s)
- Brett H Herzog
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Alvin J Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Siddhartha Devarakonda
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Alvin J Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Ramaswamy Govindan
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Alvin J Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
237
|
Mahadevan NR, Knelson EH, Wolff JO, Vajdi A, Saigí M, Campisi M, Hong D, Thai TC, Piel B, Han S, Reinhold BB, Duke-Cohan JS, Poitras MJ, Taus LJ, Lizotte PH, Portell A, Quadros V, Santucci AD, Murayama T, Cañadas I, Kitajima S, Akitsu A, Fridrikh M, Watanabe H, Reardon B, Gokhale PC, Paweletz CP, Awad MM, Van Allen EM, Lako A, Wang XT, Chen B, Hong F, Sholl LM, Tolstorukov MY, Pfaff K, Jänne PA, Gjini E, Edwards R, Rodig S, Reinherz EL, Oser MG, Barbie DA. Intrinsic Immunogenicity of Small Cell Lung Carcinoma Revealed by Its Cellular Plasticity. Cancer Discov 2021; 11:1952-1969. [PMID: 33707236 PMCID: PMC8338750 DOI: 10.1158/2159-8290.cd-20-0913] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/06/2021] [Accepted: 03/05/2021] [Indexed: 12/26/2022]
Abstract
Small cell lung carcinoma (SCLC) is highly mutated, yet durable response to immune checkpoint blockade (ICB) is rare. SCLC also exhibits cellular plasticity, which could influence its immunobiology. Here we discover that a distinct subset of SCLC uniquely upregulates MHC I, enriching for durable ICB benefit. In vitro modeling confirms epigenetic recovery of MHC I in SCLC following loss of neuroendocrine differentiation, which tracks with derepression of STING. Transient EZH2 inhibition expands these nonneuroendocrine cells, which display intrinsic innate immune signaling and basally restored antigen presentation. Consistent with these findings, murine nonneuroendocrine SCLC tumors are rejected in a syngeneic model, with clonal expansion of immunodominant effector CD8 T cells. Therapeutically, EZH2 inhibition followed by STING agonism enhances T-cell recognition and rejection of SCLC in mice. Together, these data identify MHC I as a novel biomarker of SCLC immune responsiveness and suggest novel immunotherapeutic approaches to co-opt SCLC's intrinsic immunogenicity. SIGNIFICANCE: SCLC is poorly immunogenic, displaying modest ICB responsiveness with rare durable activity. In profiling its plasticity, we uncover intrinsically immunogenic MHC Ihi subpopulations of nonneuroendocrine SCLC associated with durable ICB benefit. We also find that combined EZH2 inhibition and STING agonism uncovers this cell state, priming cells for immune rejection.This article is highlighted in the In This Issue feature, p. 1861.
Collapse
Affiliation(s)
- Navin R Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Erik H Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jacquelyn O Wolff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amir Vajdi
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Maria Saigí
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Deli Hong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tran C Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Brandon Piel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Saemi Han
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bruce B Reinhold
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jonathan S Duke-Cohan
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Michael J Poitras
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Experimental Therapeutics Core, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Luke J Taus
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Patrick H Lizotte
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrew Portell
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Victor Quadros
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alison D Santucci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Takahiko Murayama
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Israel Cañadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Aoi Akitsu
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Maya Fridrikh
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hideo Watanabe
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brendan Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Prafulla C Gokhale
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Experimental Therapeutics Core, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Cloud P Paweletz
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mark M Awad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ana Lako
- Translational Pathology, Bristol Myers Squibb, Trenton, New Jersey
| | - Xi-Tao Wang
- Translational Pathology, Bristol Myers Squibb, Trenton, New Jersey
| | - Benjamin Chen
- Translational Pathology, Bristol Myers Squibb, Trenton, New Jersey
| | - Fangxin Hong
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michael Y Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kathleen Pfaff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Evisa Gjini
- Translational Pathology, Bristol Myers Squibb, Trenton, New Jersey
| | - Robin Edwards
- Translational Pathology, Bristol Myers Squibb, Trenton, New Jersey
| | - Scott Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
238
|
Labrecque MP, Brown LG, Coleman IM, Lakely B, Brady NJ, Lee JK, Nguyen HM, Li D, Hanratty B, Haffner MC, Rickman DS, True LD, Lin DW, Lam HM, Alumkal JJ, Corey E, Nelson PS, Morrissey C. RNA splicing factors SRRM3 and SRRM4 distinguish molecular phenotypes of castration-resistant neuroendocrine prostate cancer. Cancer Res 2021; 81:4736-4750. [PMID: 34312180 DOI: 10.1158/0008-5472.can-21-0307] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/07/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]
Abstract
Neuroendocrine (NE) differentiation in metastatic castration-resistant prostate cancer (mCRPC) is an increasingly common clinical feature arising from cellular plasticity. We recently characterized two mCRPC phenotypes with NE features: androgen receptor (AR)-positive NE-positive amphicrine prostate cancer (AMPC) and AR-negative small cell or neuroendocrine prostate cancer (SCNPC). Here, we interrogated the regulation of RE1-silencing transcription factor (REST), a transcriptional repressor of neuronal genes, and elucidated molecular programs driving AMPC and SCNPC biology. Analysis of prostate cancer (PC) cell lines, mCRPC specimens, and LuCaP patient-derived xenograft models detected alternative splicing of REST to REST4 and attenuated REST repressor activity in AMPC and SCNPC. The REST locus was also hypermethylated and REST expression was reduced in SCNPC. While serine/arginine repetitive matrix protein 4 (SRRM4) was previously implicated in alternative splicing of REST in mCRPC, we detected SRRM3 expression in REST4-positive, SRRM4-negative AMPC and SCNPC. In CRPC cell lines, SRRM3 induced alternative splicing of REST to REST4 and exacerbated the expression of REST-repressed genes. Furthermore, SRRM3 and SRRM4 expression defined molecular subsets of AMPC and SCNPC across species and tumor types. Two AMPC phenotypes and three SCNPC phenotypes were characterized, denoted either by REST attenuation and ASCL1 activity or by progressive activation of neuronal transcription factor programs, respectively. These results nominate SRRM3 as the principal REST splicing factor expressed in early NE differentiation and provide a framework to molecularly classify diverse NE phenotypes in mCRPC.
Collapse
Affiliation(s)
| | | | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center
| | | | | | - John K Lee
- Human Biology Division, Fred Hutchinson Cancer Research Center
| | | | | | | | | | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine
| | | | | | - Hung-Ming Lam
- Urology, University of Washington School of Medicine
| | - Joshi J Alumkal
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan Medical School
| | - Eva Corey
- Department of Urology, University of Washington
| | - Peter S Nelson
- Division of Clinical Research, Fred Hutchinson Cancer Research Center
| | | |
Collapse
|
239
|
Liang SK, Hsu CC, Song HL, Huang YC, Kuo CW, Yao X, Li CC, Yang HC, Hung YL, Chao SY, Wu SC, Tsai FR, Chen JK, Liao WN, Cheng SC, Tsou TC, Wang IC. FOXM1 is required for small cell lung cancer tumorigenesis and associated with poor clinical prognosis. Oncogene 2021; 40:4847-4858. [PMID: 34155349 DOI: 10.1038/s41388-021-01895-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Small cell lung cancer (SCLC) continues to cause poor clinical outcomes due to limited advances in sustained treatments for rapid cancer cell proliferation and progression. The transcriptional factor Forkhead Box M1 (FOXM1) regulates cell proliferation, tumor initiation, and progression in multiple cancer types. However, its biological function and clinical significance in SCLC remain unestablished. Analysis of the Cancer Cell Line Encyclopedia and SCLC datasets in the present study disclosed significant upregulation of FOXM1 mRNA in SCLC cell lines and tissues. Gene set enrichment analysis (GSEA) revealed that FOXM1 is positively correlated with pathways regulating cell proliferation and DNA damage repair, as evident from sensitization of FOXM1-depleted SCLC cells to chemotherapy. Furthermore, Foxm1 knockout inhibited SCLC formation in the Rb1fl/flTrp53fl/flMycLSL/LSL (RPM) mouse model associated with increased levels of neuroendocrine markers, Ascl1 and Cgrp, and decrease in Yap1. Consistently, FOXM1 depletion in NCI-H1688 SCLC cells reduced migration and enhanced apoptosis and sensitivity to cisplatin and etoposide. SCLC with high FOXM1 expression (N = 30, 57.7%) was significantly correlated with advanced clinical stage, extrathoracic metastases, and decrease in overall survival (OS), compared with the low-FOXM1 group (7.90 vs. 12.46 months). Moreover, the high-FOXM1 group showed shorter progression-free survival after standard chemotherapy, compared with the low-FOXM1 group (3.90 vs. 8.69 months). Our collective findings support the utility of FOXM1 as a prognostic biomarker and potential molecular target for SCLC.
Collapse
Affiliation(s)
- Sheng-Kai Liang
- Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, 300, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Chia-Chan Hsu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Hsiang-Lin Song
- Department of Pathology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Yu-Chi Huang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Chun-Wei Kuo
- Department of Pathology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Xiang Yao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Chien-Cheng Li
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Hui-Chen Yang
- Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, 300, Taiwan
| | - Yu-Ling Hung
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Sheng-Yang Chao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Shun-Chi Wu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Feng-Ren Tsai
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, 350, Taiwan
| | - Wei-Neng Liao
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, 350, Taiwan
| | - Shih-Chin Cheng
- School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Tsui-Chun Tsou
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli, 350, Taiwan
| | - I-Ching Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300, Taiwan.
- Brain Research Center, National Tsing Hua University, Hsinchu, 300, Taiwan.
- Department of Life Sciences, National Tsing Hua University, Hsinchu, 300, Taiwan.
| |
Collapse
|
240
|
Qin J, Xie F, Li C, Han N, Lu H. MYCL1 Amplification and Expression of L-Myc and c-Myc in Surgically Resected Small-Cell Lung Carcinoma. Pathol Oncol Res 2021; 27:1609775. [PMID: 34257619 PMCID: PMC8262133 DOI: 10.3389/pore.2021.1609775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022]
Abstract
Purpose: The Myc family, especially C-MYC and MYCL1, has been found involved in small-cell lung carcinoma (SCLC). Identification of the frequency of C-MYC and MYCL1 expression among SCLC patients may help to identify potential targets for therapeutic intervention. Our aim was to detect MYCL1 amplification, L-Myc and c-Myc expression, and investigate clinicopathological characteristics and survival status in patients with surgically resected SCLC. Methods:MYCL1 amplification was detected using fluorescence in situ hybridization (FISH), while L-Myc and c-Myc protein expressions were determined using immunohistochemistry (IHC) in the primary tumors of 46 resected SCLC patients. Results: Among the 46 evaluated specimens, MYCL1 amplification was identified in 3/46 cases (6.5%). One of the positive cases was MYCL1 gene amplification combined with fusion. 3/46 (6.5%) was positive for L-myc protein expression, and 4/46 (8.7%) was positive for c-Myc protein expression. Conclusion: Our study firstly multidimensional explored the expression of MYCL1 amplification, L-Myc and c-Myc protein and investigated clinicopathological characteristics and survival status in patients with surgically resected SCLC, which makes a contribution to subsequent research and therapeutic strategies.
Collapse
Affiliation(s)
- Jing Qin
- Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, China
| | - Fajun Xie
- Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, China
| | - Chenghui Li
- Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Na Han
- Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Hongyang Lu
- Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
241
|
Multi-omics profiling of primary small cell carcinoma of the esophagus reveals RB1 disruption and additional molecular subtypes. Nat Commun 2021; 12:3785. [PMID: 34145257 PMCID: PMC8213753 DOI: 10.1038/s41467-021-24043-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
Primary small cell carcinoma of the esophagus (PSCCE) is a lethal neuroendocrine carcinoma. Previous studies proposed a genetic similarity between PSCCE and esophageal squamous cell carcinoma (ESCC) but provided little evidence for differences in clinical course and neuroendocrine differentiation. We perform whole-exome sequencing, RNA sequencing and immunohistochemistry profiling on 46 PSCCE cases. Integrated analyses enable the discovery of multiple mechanisms of RB1 disruption in 98% (45/46) of cases. The transcriptomic landscape of PSCCE closely resembles small cell lung cancer (SCLC) but differs from ESCC or esophageal adenocarcinoma (EAC). Distinct gene expression patterns regulated by ASCL1 and NEUROD1 define two molecular subtypes, PSCCE-A and PSCCE-N, which are highly similar to SCLC subtypes. A T cell excluded phenotype is widely observed in PSCCE. In conclusion, PSCCE has genomic alterations, transcriptome features and molecular subtyping highly similar to SCLC but distinct from ESCC or EAC. These observations are relevant to oncogenesis mechanisms and therapeutic vulnerability. Primary small cell carcinoma of the oesophagus has a poor prognosis, and has not been fully characterised molecularly. Here, the authors study the disease using multi-omics technology and find frequent RB1 disruptions and similarities to small cell lung cancer, opening potential therapeutic avenues.
Collapse
|
242
|
Inoue Y, Nikolic A, Farnsworth D, Shi R, Johnson FD, Liu A, Ladanyi M, Somwar R, Gallo M, Lockwood WW. Extracellular signal-regulated kinase mediates chromatin rewiring and lineage transformation in lung cancer. eLife 2021; 10:66524. [PMID: 34121659 PMCID: PMC8337080 DOI: 10.7554/elife.66524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Lineage transformation between lung cancer subtypes is a poorly understood phenomenon associated with resistance to treatment and poor patient outcomes. Here, we aimed to model this transition to define underlying biological mechanisms and identify potential avenues for therapeutic intervention. Small cell lung cancer (SCLC) is neuroendocrine in identity and, in contrast to non-SCLC (NSCLC), rarely contains mutations that drive the MAPK pathway. Likewise, NSCLCs that transform to SCLC concomitantly with development of therapy resistance downregulate MAPK signaling, suggesting an inverse relationship between pathway activation and lineage state. To test this, we activated MAPK in SCLC through conditional expression of mutant KRAS or EGFR, which revealed suppression of the neuroendocrine differentiation program via ERK. We found that ERK induces the expression of ETS factors that mediate transformation into a NSCLC-like state. ATAC-seq demonstrated ERK-driven changes in chromatin accessibility at putative regulatory regions and global chromatin rewiring at neuroendocrine and ETS transcriptional targets. Further, ERK-mediated induction of ETS factors as well as suppression of neuroendocrine differentiation were dependent on histone acetyltransferase activities of CBP/p300. Overall, we describe how the ERK-CBP/p300-ETS axis promotes a lineage shift between neuroendocrine and non-neuroendocrine lung cancer phenotypes and provide rationale for the disruption of this program during transformation-driven resistance to targeted therapy.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Ana Nikolic
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Dylan Farnsworth
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Rocky Shi
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Fraser D Johnson
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Alvin Liu
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Marc Ladanyi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Romel Somwar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Marco Gallo
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - William W Lockwood
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada.,Department of Pathology & Laboratory Medicine, University of British Columbia, Columbia, Canada
| |
Collapse
|
243
|
Dora D, Rivard C, Yu H, Pickard SL, Laszlo V, Harko T, Megyesfalvi Z, Dinya E, Gerdan C, Szegvari G, Hirsch FR, Dome B, Lohinai Z. Characterization of Tumor-Associated Macrophages and the Immune Microenvironment in Limited-Stage Neuroendocrine-High and -Low Small Cell Lung Cancer. BIOLOGY 2021; 10:502. [PMID: 34200100 PMCID: PMC8228874 DOI: 10.3390/biology10060502] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 12/23/2022]
Abstract
This study aims to characterize tumor-infiltrating macrophages (TAMs), myeloid-derived suppressor cells (MDSC), and the related molecular milieu regulating anti-tumor immunity in limited-stage neuroendocrine (NE)-high and NE-low small cell lung cancer. Primary tumors and matched lymph node (LN) metastases of 32 resected, early-stage SCLC patients were analyzed by immunohistochemistry (IHC) with antibodies against pan-macrophage marker CD68, M2-macrophage marker CD163, and MDSC marker CD33. Area-adjusted cell counting on TMAs showed that TAMs are the most abundant cell type in the TME, and their number in tumor nests exceeds the number of CD3 + T-cells (64% vs. 38% in NE-low and 71% vs. 18% in NE-high). Furthermore, the ratio of CD163-expressing M2-polarized TAMs in tumor nests was significantly higher in NE-low vs. NE-high tumors (70% vs. 31%). TAM density shows a strong positive correlation with CD45 and CD3 in tumor nests, but not in the stroma. fGSEA analysis on a targeted RNAseq oncological panel of 2560 genes showed that NE-high tumors exhibited increased enrichment in pathways related to cell proliferation, whereas in NE-low tumors, immune response pathways were significantly upregulated. Interestingly, we identified a subset of NE-high tumors representing an immune-oasis phenotype, but with a different gene expression profile compared to NE-low tumors. In contrast, we found that a limited subgroup of NE-low tumors is immune-deserted and express distinct cellular pathways from NE-high tumors. Furthermore, we identified potential molecular targets based on our expression data in NE-low and immune-oasis tumor subsets, including CD70, ANXA1, ITGB6, TP63, IFI27, YBX3 and CXCR2.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary;
| | - Christopher Rivard
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.R.); (H.Y.); (S.L.P.); (F.R.H.)
| | - Hui Yu
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.R.); (H.Y.); (S.L.P.); (F.R.H.)
| | - Shivaun Lueke Pickard
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.R.); (H.Y.); (S.L.P.); (F.R.H.)
| | - Viktoria Laszlo
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, 1122 Budapest, Hungary
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Tunde Harko
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
| | - Zsolt Megyesfalvi
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, 1122 Budapest, Hungary
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Elek Dinya
- Institute of Digital Health Sciences, Faculty of Public Services, Semmelweis University, 1094 Budapest, Hungary;
| | - Csongor Gerdan
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
| | - Gabor Szegvari
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
| | - Fred R. Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.R.); (H.Y.); (S.L.P.); (F.R.H.)
- Tisch Cancer Institute, Center for Thoracic Oncology, Mount Sinai Health System, New York, NY 1190, USA
| | - Balazs Dome
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, 1122 Budapest, Hungary
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Zoltan Lohinai
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
| |
Collapse
|
244
|
Olsen RR, Ireland AS, Kastner DW, Groves SM, Spainhower KB, Pozo K, Kelenis DP, Whitney CP, Guthrie MR, Wait SJ, Soltero D, Witt BL, Quaranta V, Johnson JE, Oliver TG. ASCL1 represses a SOX9 + neural crest stem-like state in small cell lung cancer. Genes Dev 2021; 35:847-869. [PMID: 34016693 PMCID: PMC8168563 DOI: 10.1101/gad.348295.121] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
ASCL1 is a neuroendocrine lineage-specific oncogenic driver of small cell lung cancer (SCLC), highly expressed in a significant fraction of tumors. However, ∼25% of human SCLC are ASCL1-low and associated with low neuroendocrine fate and high MYC expression. Using genetically engineered mouse models (GEMMs), we show that alterations in Rb1/Trp53/Myc in the mouse lung induce an ASCL1+ state of SCLC in multiple cells of origin. Genetic depletion of ASCL1 in MYC-driven SCLC dramatically inhibits tumor initiation and progression to the NEUROD1+ subtype of SCLC. Surprisingly, ASCL1 loss promotes a SOX9+ mesenchymal/neural crest stem-like state and the emergence of osteosarcoma and chondroid tumors, whose propensity is impacted by cell of origin. ASCL1 is critical for expression of key lineage-related transcription factors NKX2-1, FOXA2, and INSM1 and represses genes involved in the Hippo/Wnt/Notch developmental pathways in vivo. Importantly, ASCL1 represses a SOX9/RUNX1/RUNX2 program in vivo and SOX9 expression in human SCLC cells, suggesting a conserved function for ASCL1. Together, in a MYC-driven SCLC model, ASCL1 promotes neuroendocrine fate and represses the emergence of a SOX9+ nonendodermal stem-like fate that resembles neural crest.
Collapse
Affiliation(s)
- Rachelle R Olsen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - David W Kastner
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sarah M Groves
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, USA
| | - Kyle B Spainhower
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Karine Pozo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Demetra P Kelenis
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Christopher P Whitney
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Matthew R Guthrie
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sarah J Wait
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Danny Soltero
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Benjamin L Witt
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, USA
- ARUP Laboratories at University of Utah, Salt Lake City, Utah 84108, USA
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
245
|
Li M, Shan W, Hua Y, Chao F, Cui Y, Lv L, Dou X, Bian X, Zou J, Li H, Lin W. Exosomal miR-92b-3p Promotes Chemoresistance of Small Cell Lung Cancer Through the PTEN/AKT Pathway. Front Cell Dev Biol 2021; 9:661602. [PMID: 34136482 PMCID: PMC8201786 DOI: 10.3389/fcell.2021.661602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Resistance to first-line chemotherapy drugs has become an obstacle to improving the clinical prognosis of patients with small cell lung cancer (SCLC). Exosomal microRNAs have been shown to play pro- and anti-chemoresistant roles in various cancers, but their role in SCLC chemoresistance has never been explored. In this study, we observed that the expression of exosomal miR-92b-3p was significantly increased in patients who developed chemoresistance. Luciferase reporter analysis confirmed that PTEN was a target gene of miR-92b-3p. The PTEN/AKT regulatory network was related to miR-92b-3p-mediated cell migration and chemoresistance in vitro and in vivo in SCLC. Importantly, exosomes isolated from the conditioned medium of SBC-3 cells overexpressing miR-92b-3p could promote SCLC chemoresistance and cell migration. Furthermore, we found that plasma miR-92b-3p levels were significantly higher in patients with chemoresistant SCLC than in those with chemosensitive SCLC, but the levels were down-regulated in patients who achieved remission. Kaplan–Meier analysis showed that SCLC patients with high miR-92b-3p expression were associated with shorter progression-free survival. Overall, our results suggested that exosomal miR-92b-3p is a potential dynamic biomarker to monitor chemoresistance in SCLC and represents a promising therapeutic target for chemoresistant SCLC.
Collapse
Affiliation(s)
- Ming Li
- Department of Laboratory Diagnostics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wulin Shan
- Department of Laboratory Diagnostics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Hua
- Department of Laboratory Diagnostics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fengmei Chao
- Department of Laboratory Diagnostics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yayun Cui
- Department of Laboratory Diagnostics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lei Lv
- Department of Laboratory Diagnostics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoyan Dou
- Department of Laboratory Diagnostics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xing Bian
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Jinglu Zou
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Hong Li
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Wenchu Lin
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
246
|
Norton JP, Augert A, Eastwood E, Basom R, Rudin CM, MacPherson D. Protein neddylation as a therapeutic target in pulmonary and extrapulmonary small cell carcinomas. Genes Dev 2021; 35:870-887. [PMID: 34016692 PMCID: PMC8168556 DOI: 10.1101/gad.348316.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Small cell lung carcinoma (SCLC) is among the most lethal of all solid tumor malignancies. In an effort to identify novel therapeutic approaches for this recalcitrant cancer type, we applied genome-scale CRISPR/Cas9 inactivation screens to cell lines that we derived from a murine model of SCLC. SCLC cells were particularly sensitive to the deletion of NEDD8 and other neddylation pathway genes. Genetic suppression or pharmacological inhibition of this pathway using MLN4924 caused cell death not only in mouse SCLC cell lines but also in patient-derived xenograft (PDX) models of pulmonary and extrapulmonary small cell carcinoma treated ex vivo or in vivo. A subset of PDX models were exceptionally sensitive to neddylation inhibition. Neddylation inhibition suppressed expression of major regulators of neuroendocrine cell state such as INSM1 and ASCL1, which a subset of SCLC rely upon for cell proliferation and survival. To identify potential mechanisms of resistance to neddylation inhibition, we performed a genome-scale CRISPR/Cas9 suppressor screen. Deletion of components of the COP9 signalosome strongly mitigated the effects of neddylation inhibition in small cell carcinoma, including the ability of MLN4924 to suppress neuroendocrine transcriptional program expression. This work identifies neddylation as a regulator of neuroendocrine cell state and potential therapeutic target for small cell carcinomas.
Collapse
Affiliation(s)
- Justin P Norton
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Arnaud Augert
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Emily Eastwood
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Ryan Basom
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - David MacPherson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
247
|
Yang X, Nanayakkara J, Claypool D, Saghafinia S, Wong JJM, Xu M, Wang X, Nicol CJB, Michael IP, Hafner M, Yang X, Renwick N. A miR-375/YAP axis regulates neuroendocrine differentiation and tumorigenesis in lung carcinoid cells. Sci Rep 2021; 11:10455. [PMID: 34001972 PMCID: PMC8129150 DOI: 10.1038/s41598-021-89855-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/30/2021] [Indexed: 02/03/2023] Open
Abstract
Lung carcinoids are variably aggressive and mechanistically understudied neuroendocrine neoplasms (NENs). Here, we identified and elucidated the function of a miR-375/yes-associated protein (YAP) axis in lung carcinoid (H727) cells. miR-375 and YAP are respectively high and low expressed in wild-type H727 cells. Following lentiviral CRISPR/Cas9-mediated miR-375 depletion, we identified distinct transcriptomic changes including dramatic YAP upregulation. We also observed a significant decrease in neuroendocrine differentiation and substantial reductions in cell proliferation, transformation, and tumor growth in cell culture and xenograft mouse disease models. Similarly, YAP overexpression resulted in distinct and partially overlapping transcriptomic changes, phenocopying the effects of miR-375 depletion in the same models as above. Transient YAP knockdown in miR-375-depleted cells reversed the effects of miR-375 on neuroendocrine differentiation and cell proliferation. Pathways analysis and confirmatory real-time PCR studies of shared dysregulated target genes indicate that this axis controls neuroendocrine related functions such as neural differentiation, exocytosis, and secretion. Taken together, we provide compelling evidence that a miR-375/YAP axis is a critical mediator of neuroendocrine differentiation and tumorigenesis in lung carcinoid cells.
Collapse
Affiliation(s)
- Xiaojing Yang
- grid.410356.50000 0004 1936 8331Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Jina Nanayakkara
- grid.410356.50000 0004 1936 8331Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Duncan Claypool
- grid.420086.80000 0001 2237 2479Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, 50 South Drive, Bethesda, MD 20892 USA
| | - Sadegh Saghafinia
- grid.5333.60000000121839049Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Justin J. M. Wong
- grid.410356.50000 0004 1936 8331Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Minqi Xu
- grid.410356.50000 0004 1936 8331Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Xiantao Wang
- grid.420086.80000 0001 2237 2479Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, 50 South Drive, Bethesda, MD 20892 USA
| | - Christopher J. B. Nicol
- grid.410356.50000 0004 1936 8331Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada ,Division of Cancer Biology and Genetics, Queen’s Cancer Research Institute, 10 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Iacovos P. Michael
- grid.5333.60000000121839049Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Markus Hafner
- grid.420086.80000 0001 2237 2479Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, 50 South Drive, Bethesda, MD 20892 USA
| | - Xiaolong Yang
- grid.410356.50000 0004 1936 8331Cancer Research Laboratory, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Neil Renwick
- grid.410356.50000 0004 1936 8331Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| |
Collapse
|
248
|
Thomas A, Takahashi N, Rajapakse VN, Zhang X, Sun Y, Ceribelli M, Wilson KM, Zhang Y, Beck E, Sciuto L, Nichols S, Elenbaas B, Puc J, Dahmen H, Zimmermann A, Varonin J, Schultz CW, Kim S, Shimellis H, Desai P, Klumpp-Thomas C, Chen L, Travers J, McKnight C, Michael S, Itkin Z, Lee S, Yuno A, Lee MJ, Redon CE, Kindrick JD, Peer CJ, Wei JS, Aladjem MI, Figg WD, Steinberg SM, Trepel JB, Zenke FT, Pommier Y, Khan J, Thomas CJ. Therapeutic targeting of ATR yields durable regressions in small cell lung cancers with high replication stress. Cancer Cell 2021; 39:566-579.e7. [PMID: 33848478 PMCID: PMC8048383 DOI: 10.1016/j.ccell.2021.02.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/11/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Small cell neuroendocrine cancers (SCNCs) are recalcitrant cancers arising from diverse primary sites that lack effective treatments. Using chemical genetic screens, we identified inhibition of ataxia telangiectasia and rad3 related (ATR), the primary activator of the replication stress response, and topoisomerase I (TOP1), nuclear enzyme that suppresses genomic instability, as synergistically cytotoxic in small cell lung cancer (SCLC). In a proof-of-concept study, we combined M6620 (berzosertib), first-in-class ATR inhibitor, and TOP1 inhibitor topotecan in patients with relapsed SCNCs. Objective response rate among patients with SCLC was 36% (9/25), achieving the primary efficacy endpoint. Durable tumor regressions were observed in patients with platinum-resistant SCNCs, typically fatal within weeks of recurrence. SCNCs with high neuroendocrine differentiation, characterized by enhanced replication stress, were more likely to respond. These findings highlight replication stress as a potentially transformative vulnerability of SCNCs, paving the way for rational patient selection in these cancers, now treated as a single disease.
Collapse
Affiliation(s)
- Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Yilun Sun
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Yang Zhang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erin Beck
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Linda Sciuto
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samantha Nichols
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Elenbaas
- EMD Serono Research and Development Institute Inc., Biopharma R&D, Translational Innovation Platform Oncology, Billerica, MA 01821, USA; A business of Merck KGaA, Darmstadt, Germany
| | - Janusz Puc
- EMD Serono Research and Development Institute Inc., Biopharma R&D, Translational Innovation Platform Oncology, Billerica, MA 01821, USA; A business of Merck KGaA, Darmstadt, Germany
| | - Heike Dahmen
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Frankfurter Street 250, 64293 Darmstadt, Germany
| | - Astrid Zimmermann
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Frankfurter Street 250, 64293 Darmstadt, Germany
| | - Jillian Varonin
- Technology Transfer Center, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD 20850, USA
| | - Christopher W Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sehyun Kim
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hirity Shimellis
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parth Desai
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carleen Klumpp-Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Lu Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Jameson Travers
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Crystal McKnight
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Sam Michael
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Zina Itkin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Akira Yuno
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica D Kindrick
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cody J Peer
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun S Wei
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William Douglas Figg
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frank T Zenke
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Frankfurter Street 250, 64293 Darmstadt, Germany
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA; Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
249
|
Jiang S, Richaud M, Vieugué P, Rama N, Delcros J, Siouda M, Sanada M, Redavid A, Ducarouge B, Hervieu M, Breusa S, Manceau A, Gattolliat C, Gadot N, Combaret V, Neves D, Ortiz‐Cuaran S, Saintigny P, Meurette O, Walter T, Janoueix‐Lerosey I, Hofman P, Mulligan P, Goldshneider D, Mehlen P, Gibert B. Targeting netrin-3 in small cell lung cancer and neuroblastoma. EMBO Mol Med 2021; 13:e12878. [PMID: 33719214 PMCID: PMC8033513 DOI: 10.15252/emmm.202012878] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 01/16/2023] Open
Abstract
The navigation cue netrin-1 is well-documented for its key role in cancer development and represents a promising therapeutic target currently under clinical investigation. Phase 1 and 2 clinical trials are ongoing with NP137, a humanized monoclonal antibody against netrin-1. Interestingly, the epitope recognized by NP137 in netrin-1 shares 90% homology with its counterpart in netrin-3, the closest member to netrin-1 in humans, for which little is known in the field of cancer. Here, we unveiled that netrin-3 appears to be expressed specifically in human neuroblastoma (NB) and small cell lung cancer (SCLC), two subtypes of neuroectodermal/neuroendocrine lineages. Netrin-3 and netrin-1 expression are mutually exclusive, and the former is driven by the MYCN oncogene in NB, and the ASCL-1 or NeuroD1 transcription factors in SCLC. Netrin-3 expression is correlated with disease stage, aggressiveness, and overall survival in NB. Mechanistically, we confirmed the high affinity of netrin-3 for netrin-1 receptors and we demonstrated that netrin-3 genetic silencing or interference using NP137, delayed tumor engraftment, and reduced tumor growth in animal models. Altogether, these data support the targeting of netrin-3 in NB and SCLC.
Collapse
Affiliation(s)
- Shan Jiang
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
| | - Mathieu Richaud
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
| | - Pauline Vieugué
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
| | - Nicolas Rama
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
| | - Jean‐Guy Delcros
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
- Small Molecules for Biological TargetsCentre de Recherche en Cancérologie de LyonUMR INSERM 1052 – CNRS 5286 ISPB RockefellerLyonFrance
| | - Maha Siouda
- Univ LyonCentre Léon BérardCentre de Recherche en Cancérologie de LyonUniversité Claude Bernard Lyon 1INSERM 1052CNRS 5286LyonFrance
| | - Mitsuaki Sanada
- Toray Industries, Inc.New Frontiers Research LabsKanagawaJapan
| | - Anna‐Rita Redavid
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
| | | | - Maëva Hervieu
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
| | - Silvia Breusa
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
| | - Ambroise Manceau
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
| | | | - Nicolas Gadot
- Centre de Recherche en Cancérologie de LyonCentre Léon BérardLyonFrance
| | - Valérie Combaret
- Centre de Recherche en Cancérologie de LyonCentre Léon BérardLyonFrance
| | | | - Sandra Ortiz‐Cuaran
- Univ LyonCentre Léon BérardCentre de Recherche en Cancérologie de LyonUniversité Claude Bernard Lyon 1INSERM 1052CNRS 5286LyonFrance
| | - Pierre Saintigny
- Univ LyonCentre Léon BérardCentre de Recherche en Cancérologie de LyonUniversité Claude Bernard Lyon 1INSERM 1052CNRS 5286LyonFrance
| | - Olivier Meurette
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
| | - Thomas Walter
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
- Hospices Civils de LyonHôpital Edouard HerriotService de Gastroentérologie et d’Oncologie DigestiveLyon Cedex 03France
| | | | - Paul Hofman
- Laboratory of Clinical and Experimental PathologyUniversité Côte d'AzurCHU NiceFHU OncoAgePasteur HospitalNiceFrance
| | - Peter Mulligan
- Univ LyonCentre Léon BérardCentre de Recherche en Cancérologie de LyonUniversité Claude Bernard Lyon 1INSERM 1052CNRS 5286LyonFrance
| | | | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
- Univ LyonCentre Léon BérardCentre de Recherche en Cancérologie de LyonUniversité Claude Bernard Lyon 1INSERM 1052CNRS 5286LyonFrance
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
- Univ LyonCentre Léon BérardCentre de Recherche en Cancérologie de LyonUniversité Claude Bernard Lyon 1INSERM 1052CNRS 5286LyonFrance
| |
Collapse
|
250
|
Drapkin BJ, Rudin CM. Advances in Small-Cell Lung Cancer (SCLC) Translational Research. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038240. [PMID: 32513672 DOI: 10.1101/cshperspect.a038240] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past several years, we have witnessed a resurgence of interest in the biology and therapeutic vulnerabilities of small-cell lung cancer (SCLC). This has been driven in part through the development of a more extensive array of representative models of disease, including a diverse variety of genetically engineered mouse models and human tumor xenografts. Herein, we review recent progress in SCLC model development, and consider some of the particularly active avenues of translational research in SCLC, including interrogation of intratumoral heterogeneity, insights into the cell of origin and oncogenic drivers, mechanisms of chemoresistance, and new therapeutic opportunities including biomarker-directed targeted therapies and immunotherapies. Whereas SCLC remains a highly lethal disease, these new avenues of translational research, bringing together mechanism-based preclinical and clinical research, offer new hope for patients with SCLC.
Collapse
Affiliation(s)
- Benjamin J Drapkin
- University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Charles M Rudin
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|