201
|
Coronell-Tovar A, Pardo JP, Rodríguez-Romero A, Sosa-Peinado A, Vásquez-Bochm L, Cano-Sánchez P, Álvarez-Añorve LI, González-Andrade M. Protein tyrosine phosphatase 1B (PTP1B) function, structure, and inhibition strategies to develop antidiabetic drugs. FEBS Lett 2024; 598:1811-1838. [PMID: 38724486 DOI: 10.1002/1873-3468.14901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 08/13/2024]
Abstract
Tyrosine protein phosphatase non-receptor type 1 (PTP1B; also known as protein tyrosine phosphatase 1B) is a member of the protein tyrosine phosphatase (PTP) family and is a soluble enzyme that plays an essential role in different physiological processes, including the regulation of metabolism, specifically in insulin and leptin sensitivity. PTP1B is crucial in the pathogenesis of type 2 diabetes mellitus and obesity. These biological functions have made PTP1B validated as an antidiabetic and anti-obesity, and potentially anticancer, molecular target. Four main approaches aim to inhibit PTP1B: orthosteric, allosteric, bidentate inhibition, and PTPN1 gene silencing. Developing a potent and selective PTP1B inhibitor is still challenging due to the enzyme's ubiquitous expression, subcellular location, and structural properties. This article reviews the main advances in the study of PTP1B since it was first isolated in 1988, as well as recent contextual information related to the PTP family to which this protein belongs. Furthermore, we offer an overview of the role of PTP1B in diabetes and obesity, and the challenges to developing selective, effective, potent, bioavailable, and cell-permeable compounds that can inhibit the enzyme.
Collapse
Affiliation(s)
- Andrea Coronell-Tovar
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Juan P Pardo
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Alejandro Sosa-Peinado
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luz Vásquez-Bochm
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Laura Iliana Álvarez-Añorve
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Martin González-Andrade
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
202
|
Zhao X, Song B, Yao T, Fan H, Liu T, Gao G, Wang K, Lu W, Liu C. Waist circumference glucose, a novel and effective predictor of type 2 diabetes: a prospective cohort study. Front Endocrinol (Lausanne) 2024; 15:1427785. [PMID: 39135621 PMCID: PMC11317235 DOI: 10.3389/fendo.2024.1427785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Waist circumference (WC) and fasting plasma glucose (FPG) have been demonstrated as risk factors for type 2 diabetes mellitus (T2DM). Evidence is limited regarding the association of the combination of WC and FPG (WyG) with the risk of T2DM. The primary aim of the study was to investigate the relationship between WyG and T2DM. Research design and methods The current study was a population-based cohort study using data from the NAGALA database. Participants were divided into tertiles based on WyG. Cox proportional hazard regression model was applied to identify the association of WyG with T2DM. Results During a median follow-up of 6.19 years in the normoglycemia group and 5.58 years in the prediabetes group, respectively, 88 and 285 individuals in the two groups received a diagnosis of T2DM. After full adjustment, risk of T2DM increased in step-wise fashion with increasing tertiles of WyG. For a per-SD increase in WyG, the hazard ratios for T2DM were 3.05 (95% CI 2.64 - 3.51) in all populations, 1.94 (95% CI 1.46 - 2.58) in the normoglycemia group and 1.63 (95% CI 1.40 - 1.90) in the prediabetes group. The interaction between WyG and fatty liver on T2DM was statistically significant in the prediabetes group (P for interaction = 0.034). Conclusions Elevated WyG was independently associated with incident T2DM in Japan. Baseline WyG help identify individuals at high risk of T2DM and implement effective preventive measures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weilin Lu
- *Correspondence: Weilin Lu, ; Chengyun Liu,
| | | |
Collapse
|
203
|
Szekeres Z, Nagy A, Jahner K, Szabados E. Impact of Selected Glucagon-like Peptide-1 Receptor Agonists on Serum Lipids, Adipose Tissue, and Muscle Metabolism-A Narrative Review. Int J Mol Sci 2024; 25:8214. [PMID: 39125786 PMCID: PMC11311305 DOI: 10.3390/ijms25158214] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RA) are novel antihyperglycemic agents. By acting through the central nervous system, they increase satiety and reduce food intake, thus lowering body weight. Furthermore, they increase the secretion of insulin while decreasing the production of glucagon. However, recent studies suggest a more complex metabolic impact through the interaction with various other tissues. In our present review, we aim to provide a summary of the effects of GLP-1 RA on serum lipids, adipose tissue, and muscle metabolism. It has been found that GLP-1 RA therapy is associated with decreased serum cholesterol levels. Epicardial adipose tissue thickness, hepatic lipid droplets, and visceral fat volume were reduced in obese patients with cardiovascular disease. GLP-1 RA therapy decreased the level of proinflammatory adipokines and reduced the expression of inflammatory genes. They have been found to reduce endoplasmic reticulum stress in adipocytes, leading to better adipocyte function and metabolism. Furthermore, GLP-1 RA therapy increased microvascular blood flow in muscle tissue, resulting in increased myocyte metabolism. They inhibited muscle atrophy and increased muscle mass and function. It was also observed that the levels of muscle-derived inflammatory cytokines decreased, and insulin sensitivity increased, resulting in improved metabolism. However, some clinical trials have been conducted on a very small number of patients, which limits the strength of these observations.
Collapse
Affiliation(s)
- Zsolt Szekeres
- Department of Laboratory Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Andras Nagy
- Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary;
| | - Kamilla Jahner
- Department of Medical Imaging, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Eszter Szabados
- 1st Department of Medicine, Division of Preventive Cardiology and Rehabilitation, Medical School, University of Pecs, 7624 Pecs, Hungary
| |
Collapse
|
204
|
Abel ED, Gloyn AL, Evans-Molina C, Joseph JJ, Misra S, Pajvani UB, Simcox J, Susztak K, Drucker DJ. Diabetes mellitus-Progress and opportunities in the evolving epidemic. Cell 2024; 187:3789-3820. [PMID: 39059357 PMCID: PMC11299851 DOI: 10.1016/j.cell.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Diabetes, a complex multisystem metabolic disorder characterized by hyperglycemia, leads to complications that reduce quality of life and increase mortality. Diabetes pathophysiology includes dysfunction of beta cells, adipose tissue, skeletal muscle, and liver. Type 1 diabetes (T1D) results from immune-mediated beta cell destruction. The more prevalent type 2 diabetes (T2D) is a heterogeneous disorder characterized by varying degrees of beta cell dysfunction in concert with insulin resistance. The strong association between obesity and T2D involves pathways regulated by the central nervous system governing food intake and energy expenditure, integrating inputs from peripheral organs and the environment. The risk of developing diabetes or its complications represents interactions between genetic susceptibility and environmental factors, including the availability of nutritious food and other social determinants of health. This perspective reviews recent advances in understanding the pathophysiology and treatment of diabetes and its complications, which could alter the course of this prevalent disorder.
Collapse
Affiliation(s)
- E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Diabetes, Department of Genetics, Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua J Joseph
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, and Imperial College NHS Trust, London, UK
| | - Utpal B Pajvani
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Judith Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
205
|
Halabitska I, Babinets L, Oksenych V, Kamyshnyi O. Diabetes and Osteoarthritis: Exploring the Interactions and Therapeutic Implications of Insulin, Metformin, and GLP-1-Based Interventions. Biomedicines 2024; 12:1630. [PMID: 39200096 PMCID: PMC11351146 DOI: 10.3390/biomedicines12081630] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Diabetes mellitus (DM) and osteoarthritis (OA) are prevalent chronic conditions with shared pathophysiological links, including inflammation and metabolic dysregulation. This study investigates the potential impact of insulin, metformin, and GLP-1-based therapies on OA progression. Methods involved a literature review of clinical trials and mechanistic studies exploring the effects of these medications on OA outcomes. Results indicate that insulin, beyond its role in glycemic control, may modulate inflammatory pathways relevant to OA, potentially influencing joint health. Metformin, recognized for its anti-inflammatory properties via AMPK activation, shows promise in mitigating OA progression by preserving cartilage integrity and reducing inflammatory markers. GLP-1-based therapies, known for enhancing insulin secretion and improving metabolic profiles in DM, also exhibit anti-inflammatory effects that may benefit OA by suppressing cytokine-mediated joint inflammation and supporting cartilage repair mechanisms. Conclusions suggest that these medications, while primarily indicated for diabetes management, hold therapeutic potential in OA by targeting common underlying mechanisms. Further clinical trials are warranted to validate these findings and explore optimal therapeutic strategies for managing both DM and OA comorbidities effectively.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Liliia Babinets
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
206
|
Stojchevski R, Chandrasekaran P, Hadzi-Petrushev N, Mladenov M, Avtanski D. Adipose Tissue Dysfunction Related to Climate Change and Air Pollution: Understanding the Metabolic Consequences. Int J Mol Sci 2024; 25:7849. [PMID: 39063092 PMCID: PMC11277516 DOI: 10.3390/ijms25147849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity, a global pandemic, poses a major threat to healthcare systems worldwide. Adipose tissue, the energy-storing organ during excessive energy intake, functions as a thermoregulator, interacting with other tissues to regulate systemic metabolism. Specifically, brown adipose tissue (BAT) is positively associated with an increased resistance to obesity, due to its thermogenic function in the presence of uncoupled protein 1 (UCP1). Recently, studies on climate change and the influence of environmental pollutants on energy homeostasis and obesity have drawn increasing attention. The reciprocal relationship between increasing adiposity and increasing temperatures results in reduced adaptive thermogenesis, decreased physical activity, and increased carbon footprint production. In addition, the impact of climate change makes obese individuals more prone to developing type 2 diabetes mellitus (T2DM). An impaired response to heat stress, compromised vasodilation, and sweating increase the risk of diabetes-related comorbidities. This comprehensive review provides information about the effects of climate change on obesity and adipose tissue, the risk of T2DM development, and insights into the environmental pollutants causing adipose tissue dysfunction and obesity. The effects of altered dietary patterns on adiposity and adaptation strategies to mitigate the detrimental effects of climate change are also discussed.
Collapse
Affiliation(s)
- Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10003, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | | | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10003, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
207
|
Kim DH, Lee MJ, Kang D, Khang AR, Bae JH, Kim JY, Kim SH, Kang YH, Yi D. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Transcription Regulation of AgRP and POMC Genes. Curr Issues Mol Biol 2024; 46:7505-7515. [PMID: 39057086 PMCID: PMC11275895 DOI: 10.3390/cimb46070445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors regulate plasma glucose levels in patients with type 2 diabetes mellitus (T2DM) by inhibiting renal glucose reabsorption. This study investigated the impact of empagliflozin (EMPA), an SGLT2 inhibitor, on hypothalamic energy regulation. To directly investigate the role of SGLT2 inhibitors in the hypothalamus, we administered EMPA through intracerebroventricular (i.c.v.) injections into the murine ventricles. After dental cementing the i.c.v. cannula onto the skull, the mice were given 5 days to recover before receiving vehicle or EMPA (50 nM/2 μL) injections. In a high-fat diet (HFD)-induced obesity model, we determined the gene expression levels of agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) in the hypothalamus. Additionally, we assessed FoxO1 expression, which regulates AgRP and POMC gene transcription in hypothalamic cell lines. We found that EMPA directly influenced the expression of endogenous mRNA of POMC and AgRP, which are critical for energy homeostasis, and modulated their transcription in high-fat diet-induced obese mice. Additionally, EMPA affected the expression of FoxO1, a key transcriptional regulator of glucose homeostasis, thereby regulating the transcriptional activity of POMC and AgRP. These results indicate that EMPA significantly influences hypothalamic energy homeostasis, highlighting its potential as a regulator in obesity and T2DM management.
Collapse
Affiliation(s)
- Dong Hee Kim
- Department of BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea;
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (M.J.L.); (A.R.K.); (J.H.B.); (J.Y.K.); (S.H.K.); (Y.H.K.)
| | - Min Jin Lee
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (M.J.L.); (A.R.K.); (J.H.B.); (J.Y.K.); (S.H.K.); (Y.H.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Dasol Kang
- Department of Biological Sciences, College of National Sciences, University of Ulsan, Ulsan 44919, Republic of Korea;
| | - Ah Reum Khang
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (M.J.L.); (A.R.K.); (J.H.B.); (J.Y.K.); (S.H.K.); (Y.H.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Ji Hyun Bae
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (M.J.L.); (A.R.K.); (J.H.B.); (J.Y.K.); (S.H.K.); (Y.H.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Joo Yeon Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (M.J.L.); (A.R.K.); (J.H.B.); (J.Y.K.); (S.H.K.); (Y.H.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Su Hyun Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (M.J.L.); (A.R.K.); (J.H.B.); (J.Y.K.); (S.H.K.); (Y.H.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Yang Ho Kang
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (M.J.L.); (A.R.K.); (J.H.B.); (J.Y.K.); (S.H.K.); (Y.H.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Dongwon Yi
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (M.J.L.); (A.R.K.); (J.H.B.); (J.Y.K.); (S.H.K.); (Y.H.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
208
|
Liu Y, Liang X, Hu Y, Zhang N, Zhu X, Feng Y, Qin Z, Wang Z, Kangzhuo B, Xiao X, Zhao X. Temporal relationship between hepatic steatosis and fasting blood glucose elevation: a longitudinal analysis from China and UK. BMC Public Health 2024; 24:1865. [PMID: 38997689 PMCID: PMC11241918 DOI: 10.1186/s12889-024-19177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND The link between nonalcoholic fatty liver disease and type 2 diabetes has not been fully established. We investigated the temporal relationship between nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D), quantitatively assessed the impact, and evaluated the related mediation effect. METHODS This study involved participants from the China Multi-Ethnic Cohort Study and the UK Biobank. We performed cross-lagged path analysis to compare the relative magnitude of the effects between NAFLD and T2D using two-period biochemical data. Hepatic steatosis and fasting blood glucose elevation (FBG) represented NAFLD and T2D respectively. We fitted two separate Cox proportional-hazards models to evaluate the influence of hepatic steatosis on T2D. Furthermore, we applied the difference method to assess mediation effects. RESULTS In cross-lagged path analyses, the path coefficients from baseline hepatic steatosis to first repeat FBG (βCMEC = 0.068, βUK-Biobank = 0.033) were significantly greater than the path coefficients from baseline FBG to first repeat hepatic steatosis (βCMEC = 0.027, βUK-Biobank = -0.01). Individuals with hepatic steatosis have a risk of T2D that is roughly three times higher than those without the condition (HR = 3.478 [3.314, 3.650]). Hepatic steatosis mediated approximately 69.514% of the total effect between obesity and follow-up T2D. CONCLUSIONS Our findings contribute to determining the sequential relationship between NAFLD and T2D in the causal pathway, highlighting that the dominant pathway in the relationship between these two early stages of diseases was the one from hepatic steatosis to fasting blood glucose elevation. Individuals having NAFLD face a significantly increased risk of T2D and require long-term monitoring of their glucose status as well.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, CN, 610041, China
| | - Xian Liang
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Yifan Hu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, CN, 610041, China
| | - Ning Zhang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, CN, 610041, China
| | - Xingren Zhu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, CN, 610041, China
| | - Yuemei Feng
- School of Public Health, Kunming Medical University, Kunming, China
| | - Zixiu Qin
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Zihao Wang
- Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Baima Kangzhuo
- High Altitude Health Science Research Center of Tibet University, Lhasa, Tibet, China
| | - Xiong Xiao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, CN, 610041, China.
| | - Xing Zhao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, CN, 610041, China
| |
Collapse
|
209
|
Yan X, Chen S. Obesity and adiposity promote the development of non-suppurative otitis media: a Mendelian randomization study. Front Med (Lausanne) 2024; 11:1422786. [PMID: 39050546 PMCID: PMC11266012 DOI: 10.3389/fmed.2024.1422786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
Background Observational studies have found that obesity is associated with the development of non-suppurative otitis media (NSOM), but the causality and pathogenesis are unclear. This study aimed to investigate the association between obesity, lipid metabolism, and NSOM at the genetic level. Methods We performed a bidirectional two-sample Mendelian randomization (MR) study to examine the causal relationship between obesity, lipid metabolism-related factors, and NSOM by using the datasets obtained from the IEU Open genome-wide association studies (GWAS) Project. Furthermore, a multivariate MR (MVMR) analysis on lipid indicators was conducted to validate the results. We then used obesity or body mass index (BMI) as the exposure and NSOM as the outcome to search for possible mediators in lipids and adipokines. Results Using NSOM as the outcome, we found nine positive exposure results related to obesity and lipid metabolism. Among them, obesity, BMI, body fat percentage, waist circumference, hip circumference, and resistin were risk factors, while apolipoprotein A1 (apoA1), high-density lipoprotein cholesterol (HDL-C), and nerve growth factor (NGF) were protective factors. Then, we used the obesity and lipid metabolism-related factors as outcomes and NSOM as the exposure to perform the MR analysis, which failed to obtain positive results. In the MVMR analysis, we found that HDL cholesterol and apoA1 remained causally associated with NSOM after correction for other potential confounders. Simultaneously, when obesity or BMI was used as the exposure and NSOM as the outcome, HDL cholesterol or apoA1 served as mediators through a two-step MR analysis. The MR analysis for mediation, obesity, and BMI reduced the production of HDL or apoA1, which served as protective factors affecting the development of NSOM. Conclusion At the genetic level, obesity and adiposity may promote the development of NSOM, while NSOM has no effect on obesity and adiposity. Obesity can also encourage the progress of NSOM by reducing HDL cholesterol/apoA1. Resistin may be a potential risk factor for NSOM, whereas NGF may be a potential protective factor.
Collapse
Affiliation(s)
- Xin Yan
- Department of Otolaryngology, Shaoxing People’s Hospital, Shaoxing, China
| | - Suhua Chen
- Department of Pharmacy, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
210
|
Weng X, Jiang H, Walker DJ, Zhou H, Lin D, Wang J, Kang L. Deletion of CD44 promotes adipogenesis by regulating PPARγ and cell cycle-related pathways. J Endocrinol 2024; 262:e240079. [PMID: 38692289 PMCID: PMC11227036 DOI: 10.1530/joe-24-0079] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/01/2024] [Indexed: 05/03/2024]
Abstract
CD44, a cell surface adhesion receptor and stem cell biomarker, is recently implicated in chronic metabolic diseases. Ablation of CD44 ameliorates adipose tissue inflammation and insulin resistance in obesity. Here, we investigated cell type-specific CD44 expression in human and mouse adipose tissue and further studied how CD44 in preadipocytes regulates adipocyte function. Using Crispr Cas9-mdediated gene deletion and lentivirus-mediated gene re-expression, we discovered that deletion of CD44 promotes adipocyte differentiation and adipogenesis, whereas re-expression of CD44 abolishes this effect and decreases insulin responsiveness and adiponectin secretion in 3T3-L1 cells. Mechanistically, CD44 does so via suppressing Pparg expression. Using quantitative proteomics analysis, we further discovered that cell cycle-regulated pathways were mostly decreased by deletion of CD44. Indeed, re-expression of CD44 moderately restored expression of proteins involved in all phases of the cell cycle. These data were further supported by increased preadipocyte proliferation rates in CD44-deficient cells and re-expression of CD44 diminished this effect. Our data suggest that CD44 plays a crucial role in regulating adipogenesis and adipocyte function possibly through regulating PPARγ and cell cycle-related pathways. This study provides evidence for the first time that CD44 expressed in preadipocytes plays key roles in regulating adipocyte function outside immune cells where CD44 is primarily expressed. Therefore, targeting CD44 in (pre)adipocytes may provide therapeutic potential to treat obesity-associated metabolic complications.
Collapse
Affiliation(s)
- Xiong Weng
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Hao Jiang
- Gene Expression and Regulation, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - David J Walker
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Houjiang Zhou
- MRC Protein Phosphorylation Unit, School of Life Sciences, Dundee, Scotland, UK
| | - De Lin
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Jing Wang
- Science for Life Laboratory, Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Li Kang
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
211
|
Risi R, Vidal-Puig A, Bidault G. An adipocentric perspective of pancreatic lipotoxicity in diabetes pathogenesis. J Endocrinol 2024; 262:e230313. [PMID: 38642584 PMCID: PMC11227041 DOI: 10.1530/joe-23-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Obesity and diabetes represent two increasing and invalidating public health issues that often coexist. It is acknowledged that fat mass excess predisposes to insulin resistance and type 2 diabetes mellitus (T2D), with the increasing incidence of the two diseases significantly associated. Moreover, emerging evidence suggests that obesity might also accelerate the appearance of type 1 diabetes (T1D), which is now a relatively frequent comorbidity in patients with obesity. It is a common clinical finding that not all patients with obesity will develop diabetes at the same level of adiposity, with gender, genetic, and ethnic factors playing an important role in defining the timing of diabetes appearance. The adipose tissue (AT) expandability hypothesis explains this paradigm, indicating that the individual capacity to appropriately store energy surplus in the form of fat within the AT determines and prevents the toxic deposition of lipids in other organs, such as the pancreas. Thus, we posit that when the maximal storing capacity of AT is exceeded, individuals will develop T2D. In this review, we provide insight into mechanisms by which the AT controls pancreas lipid content and homeostasis in case of obesity to offer an adipocentric perspective of pancreatic lipotoxicity in the pathogenesis of diabetes. Moreover, we suggest that improving AT function is a valid therapeutic approach to fighting obesity-associated complications including diabetes.
Collapse
Affiliation(s)
- Renata Risi
- Department of Experimental Medicine, Sapienza University of Rome, Sapienza University of Rome, Rome, Italy
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, P. R. China
- Centro de Investigacion Principe Felipe, Valencia, Spain
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| |
Collapse
|
212
|
Zhong Y, Emam H, Hou W, Yan J, Abudurexiti A, Zhang R, Qi S, Lei Y, Ma X. Cichorium glandulosum Ameliorates HFD-Induced Obesity in Mice by Modulating Gut Microbiota and Bile Acids. J Med Food 2024; 27:601-614. [PMID: 38742981 DOI: 10.1089/jmf.2024.k.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Obesity is an ongoing global health problem, and Cichorium glandulosum (CG, chicory) is traditionally used as a hepatoprotective and lipid-lowering drug. However, there is still a lack of research on the role of CG in the treatment of obesity. In the present study, we found that CG significantly delayed weight gain and positively affected glucolipid metabolism disorders, serum metabolism levels, and the degree of liver and kidney oxidative stress in high-fat diet (HFD) mice. Further examination of the effects of CG on intestinal microenvironmental dysregulation and its metabolites in HFD mice revealed that the CG ethanol extract high-dose group (CGH) did not have a significant regulatory effect on short-chain fatty acids. Still, CGH significantly decreased the levels of 12α-OH/non-12α-OH bile acids and also found significant upregulation of proteobacteria and downregulation of cyanobacteria at the phylum level. CG may have ameliorated obesity and metabolic abnormalities in mice by repairing gut microbiota dysbiosis and modulating bile acid biosynthesis.
Collapse
Affiliation(s)
- Yewei Zhong
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Hurxida Emam
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Wenhui Hou
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Junlin Yan
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | | | - Rui Zhang
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Shuwen Qi
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Yi Lei
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Xiaoli Ma
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
213
|
Merwass NA, Alkhader YK, Alharthi SA, Al Fardan RM, Alqahtani AM, Mahnashi FA, Salam NM, Al Najim MM, Alenezi AA, Binobaid AO. The Role of Screening, Risk Factors, and Early Intervention in Preventing Diabetes in the Obese Population: A Systematic Review. Cureus 2024; 16:e63952. [PMID: 39104999 PMCID: PMC11299129 DOI: 10.7759/cureus.63952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 08/07/2024] Open
Abstract
With its rising global prevalence, diabetes has become one of the most significant and challenging health problems afflicting the world's population today. The increasing burden of diabetes and its associated complications calls for immediate action for prevention which primarily includes addressing the risk factors. The most significant risk factor for the onset of diabetes is obesity. Obesity and diabetes rates have been rising simultaneously, posing a threat to patient mortality and driving up community healthcare costs. A weight loss of five percent or more of total body weight has been shown to improve the quality of life, reduce the need for pharmacological therapy for diabetes, and enhance glycemic control. This level of weight loss can have significant health benefits, particularly for individuals with diabetes or at risk for developing diabetes. We aim to conduct this systematic review to assess diverse risk factors contributing to the incidence of diabetes among the obese population and determine various preventive strategies and recommendations in practice for the prevention of diabetes in this cohort. As a result, we included original studies that recruited the obese and diabetic populations and defined preventive measures for early intervention. Additionally, we included studies published in the last 10 years (2014-2024) only for the latest evidence. Studies including obese populations with cardiovascular diseases and neurological disorders were excluded. The Newcastle-Ottoman Castle assessment tool was utilized to assess the quality of the studies. We included nine studies that recruited 60,645 patients and were published between 2015 and 2022. Findings suggest that obesity alone is a significant contributor to the occurrence or onset of diabetes. At the same time, the presence of other risk factors, including hypertension, dyslipidemia, elevated triglycerides, or HDL and LDL levels, may further increase the risk of diabetes and its associated complications among the obese population. Preventive strategies emphasize early intervention through increasing awareness and educating communities about risk factors and lifestyle interventions, including the limitations of fast food diets for the prevention of diabetes and weight control. Since obesity is considered to be an independent risk factor for the development of diabetes, addressing and managing it is of critical importance clinically. Targeted early interventions, including screening for risk factors, health promotion, and education activities, can aid in the adaptation of healthier lifestyles, which can reduce the burden of these diseases significantly.
Collapse
Affiliation(s)
- Noor A Merwass
- Department of Internal Medicine, Al Thager Hospital, Jeddah, SAU
| | - Yazed K Alkhader
- Family Medicine, Riyadh Second Health Cluster, King Fahad Medical City, Riyadh, SAU
| | - Salma A Alharthi
- Department of Internal Medicine, King Abdulaziz Specialist Hospital, Taif, SAU
| | | | | | - Fahad A Mahnashi
- Department of Family Medicine, Medical Administration at Presidency of State Security, Riyadh, SAU
| | - Nora M Salam
- Nursing Department, King Salman Hospital, Riyadh, SAU
| | - Mustafa M Al Najim
- Department of General Medicine, Locumlimk Healthcare Agency, Mullingar, IRL
| | - Ahmad A Alenezi
- Department of Primary Care, Al-Jahra Health Region, Al Jahra, KWT
| | | |
Collapse
|
214
|
Sun A, Yang H, Li T, Luo J, Zhou L, Chen R, Han L, Lin Y. Molecular mechanisms, targets and clinical potential of berberine in regulating metabolism: a review focussing on databases and molecular docking studies. Front Pharmacol 2024; 15:1368950. [PMID: 38957396 PMCID: PMC11217548 DOI: 10.3389/fphar.2024.1368950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Background: Metabolic imbalance is the common basis of many diseases. As natural isoquinoline alkaloid, berberine (BBR) has shown great promise in regulating glucose and lipids metabolism and treating metabolic disorders. However, the related mechanism still lacks systematic research. Aim: To discuss the role of BBR in the whole body's systemic metabolic regulation and further explore its therapeutic potential and targets. Method: Based on animal and cell experiments, the mechanism of BBR regulating systemic metabolic processes is reviewed. Potential metabolism-related targets were summarized using Therapeutic Target Database (TTD), DrugBank, GeneCards, and cutting-edge literature. Molecular modeling was applied to explore BBR binding to the potential targets. Results: BBR regulates the whole-body metabolic response including digestive, circulatory, immune, endocrine, and motor systems through adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), sirtuin (SIRT)1/forkhead box O (FOXO)1/sterol regulatory element-binding protein (SREBP)2, nuclear factor erythroid 2-related factor (Nrf) 2/heme oxygenase (HO)-1, and other signaling pathways. Through these reactions, BBR exerts hypoglycemic, lipid-regulating, anti-inflammatory, anti-oxidation, and immune regulation. Molecular docking results showed that BBR could regulate metabolism targeting FOXO3, Nrf2, NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione peroxidase (Gpx) 4 and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA). Evaluating the target clinical effects, we found that BBR has the therapeutic potential of anti-aging, anti-cancer, relieving kidney disease, regulating the nervous system, and alleviating other chronic diseases. Conclusion: This review elucidates the interaction between potential targets and small molecular metabolites by exploring the mechanism of BBR regulating metabolism. That will help pharmacologists to identify new promising metabolites interacting with these targets.
Collapse
Affiliation(s)
- Aru Sun
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haoyu Yang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Li
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinli Luo
- China Traditional Chinese Medicine Holdings Co. Limited, Guangdong e-fong Pharmaceutical Co., Ltd., Foshan, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Zhou
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Chen
- College of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Lin Han
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiqun Lin
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
215
|
Lo CH, O’Connor LM, Loi GWZ, Saipuljumri EN, Indajang J, Lopes KM, Shirihai OS, Grinstaff MW, Zeng J. Acidic Nanoparticles Restore Lysosomal Acidification and Rescue Metabolic Dysfunction in Pancreatic β-Cells under Lipotoxic Conditions. ACS NANO 2024; 18:15452-15467. [PMID: 38830624 PMCID: PMC11192035 DOI: 10.1021/acsnano.3c09206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
Type 2 diabetes (T2D), a prevalent metabolic disorder lacking effective treatments, is associated with lysosomal acidification dysfunction, as well as autophagic and mitochondrial impairments. Here, we report a series of biodegradable poly(butylene tetrafluorosuccinate-co-succinate) polyesters, comprising a 1,4-butanediol linker and varying ratios of tetrafluorosuccinic acid (TFSA) and succinic acid as components, to engineer lysosome-acidifying nanoparticles (NPs). The synthesized NPs are spherical with diameters of ≈100 nm and have low polydispersity and good stability. Notably, TFSA NPs, which are composed entirely of TFSA, exhibit the strongest degradation capability and superior acidifying properties. We further reveal significant downregulation of lysosomal vacuolar (H+)-ATPase subunits, which are responsible for maintaining lysosomal acidification, in human T2D pancreatic islets, INS-1 β-cells under chronic lipotoxic conditions, and pancreatic tissues of high-fat-diet (HFD) mice. Treatment with TFSA NPs restores lysosomal acidification, autophagic function, and mitochondrial activity, thereby improving the pancreatic function in INS-1 cells and HFD mice with lipid overload. Importantly, the administration of TFSA NPs to HFD mice reduces insulin resistance and improves glucose clearance. These findings highlight the therapeutic potential of lysosome-acidifying TFSA NPs for T2D.
Collapse
Affiliation(s)
- Chih Hung Lo
- Lee
Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Lance M. O’Connor
- College
of Biological Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gavin Wen Zhao Loi
- Lee
Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | | | - Jonathan Indajang
- Meinig
School of Biomedical Engineering, Cornell
University, Ithaca, New York 14853, United States
| | - Kaitlynn M. Lopes
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Orian S. Shirihai
- Division
of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90045, United States
- Department
of Molecular and Medical Pharmacology, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Mark W. Grinstaff
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Jialiu Zeng
- Lee
Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
216
|
Salle L, Foulatier O, Coupaye M, Frering V, Constantin A, Joly AS, Braithwaite B, Gharbi F, Jubin L. ACTION-FRANCE: Insights into Perceptions, Attitudes, and Barriers to Obesity Management in France. J Clin Med 2024; 13:3519. [PMID: 38930048 PMCID: PMC11204730 DOI: 10.3390/jcm13123519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Background/Objectives: ACTION-FRANCE (Awareness, Care, and Treatment In Obesity maNagement in France) aims to identify the perceptions, attitudes, behaviors, and potential barriers to effective obesity management in France and guide collaborative actions. Methods: ACTION-FRANCE is a cross-sectional survey of people with obesity (PwO) and healthcare professionals (HCPs) in France. The PwO and HCP survey questionnaire periods ran from 27 September 2022 to 1 February 2023 and from 19 December 2022 to 31 March 2023, respectively. Results: The study, encompassing 1226 PwO and 166 HCPs, reveals a shared recognition of obesity as a chronic condition. However, despite being requested by most PwO, weight-related discussions are surprisingly infrequent, leading to delayed diagnosis and care. PwO and HCPs held different views as to why: HCPs often attributed it to PwO's lack of motivation or disinterest, whereas PwO avoided them because they felt weight management was their own responsibility and were uncomfortable discussing it. When weight was discussed, primarily with general practitioners (GPs), discussions mostly focused on physical activity and diet. However, results identified the strong psychosocial impact of obesity: 42% of respondents reported anxiety/depressive symptoms, and many more hesitated to engage in certain social activities because of their weight. Psychotherapy was only discussed by 55% of HCPs. Pharmaceutical options were also rarely discussed (19.5% of HCPs), though 56.1% of PwO reported they would want to. Conclusions: HCPs' and PwO's perceptions differed significantly and need to converge through enhanced communication. A holistic approach, integrating comprehensive training for GPs and recognizing psychological comorbidities, would help to bridge perceptual gaps effectively and foster more empathetic and effective patient care.
Collapse
Affiliation(s)
- Laurence Salle
- Inserm, U1094, IRD, U270, EpiMaCT—Épidémiologie des Maladies Chroniques en Zone Tropicale, 2 Rue du Dr Marcland, 87025 Limoges, France
- CHU de Limoges, Service d’Endocrinologie-Diabétologie-Maladies Métaboliques, 2 Avenue Martin Luther King, 87042 Limoges, France
| | - Olivier Foulatier
- Ligue Contre l’Obésité, 24 Rue Tronchet, 75008 Paris, France
- Clinique Croix Saint Michel, 40 Avenue Charles de Gaulle, 82000 Montauban, France
| | - Muriel Coupaye
- AFERO (Association Française d’Etude et de Recherche sur l’Obésité), 1 Avenue du Pr Jean Poulhès, BP 84225, 31400 Toulouse, France
- Centre Intégré Nord Francilien de Prise en Charge de l’Obésité (CINFO), Assistance Publique-Hôpitaux de Paris, Service des Explorations Fonctionnelles, Hôpital Louis-Mourier, 92700 Colombes, France
| | - Vincent Frering
- Clinique de la Sauvegarde, Espace Médico-Chirurgical, Immeuble Trait d’Union, Entrée A29, Av des Sources, 69009 Lyon, France
| | | | - Anne-Sophie Joly
- Collectif National des Associations d’Obèses, 62 Rue Jean Jaurès, 92800 Puteaux, France
| | - Ben Braithwaite
- Sanoïa e-Health Services, 188 Av 2nd Division Blindée, 13420 Gémenos, France
| | - Fella Gharbi
- Novo Nordisk, Carré Michelet, 12 Cours Michelet, 92800 Puteaux, France (L.J.)
| | - Lysiane Jubin
- Novo Nordisk, Carré Michelet, 12 Cours Michelet, 92800 Puteaux, France (L.J.)
| |
Collapse
|
217
|
Wang G, Muñoz-Rojas AR, Spallanzani RG, Franklin RA, Benoist C, Mathis D. Adipose-tissue Treg cells restrain differentiation of stromal adipocyte precursors to promote insulin sensitivity and metabolic homeostasis. Immunity 2024; 57:1345-1359.e5. [PMID: 38692280 PMCID: PMC11188921 DOI: 10.1016/j.immuni.2024.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/08/2024] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Regulatory T (Treg) cells in epidydimal visceral adipose tissue (eVAT) of lean mice and humans regulate metabolic homeostasis. We found that constitutive or punctual depletion of eVAT-Treg cells reined in the differentiation of stromal adipocyte precursors. Co-culture of these precursors with conditional medium from eVAT-Treg cells limited their differentiation in vitro, suggesting a direct effect. Transcriptional comparison of adipocyte precursors, matured in the presence or absence of the eVAT-Treg-conditioned medium, identified the oncostatin-M (OSM) signaling pathway as a key distinction. Addition of OSM to in vitro cultures blocked the differentiation of adipocyte precursors, while co-addition of anti-OSM antibodies reversed the ability of the eVAT-Treg-conditioned medium to inhibit in vitro adipogenesis. Genetic depletion of OSM (specifically in Treg) cells or of the OSM receptor (specifically on stromal cells) strongly impaired insulin sensitivity and related metabolic indices. Thus, Treg-cell-mediated control of local progenitor cells maintains adipose tissue and metabolic homeostasis, a regulatory axis seemingly conserved in humans.
Collapse
Affiliation(s)
- Gang Wang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | | | - Ruth A Franklin
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
218
|
Fang Y, Feng H, Zhang B, Zhang S, Zhou Y, Hao P, Zhou Z, Zhou S, Li N, Hui Y, Ma L, Xiong J, Wu J, Liu L, Zhang X. Cytosolic pH is a direct nexus in linking environmental cues with insulin processing and secretion in pancreatic β cells. Cell Metab 2024; 36:1237-1251.e4. [PMID: 38513648 DOI: 10.1016/j.cmet.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
Pancreatic β cells actively respond to glucose fluctuations through regulating insulin processing and secretion. However, how this process is elaborately tuned in circumstance of variable microenvironments as well as β cell-intrinsic states and whether its dysfunction links to metabolic diseases remain largely elusive. Here, we show that the cytosolic pH (pHc) in β cells is increased upon glucose challenge, which can be sensed by Smad5 via its nucleocytoplasmic shuttling. Lesion of Smad5 in β cells results in hyperglycemia and glucose intolerance due to insulin processing and secretion deficiency. The role of Smad5 in regulating insulin processing and secretion attributes to its non-canonical function by regulating V-ATPase activity for granule acidification. Genetic mutation of Smad5 or administration of alkaline water to mirror cytosolic alkalization ameliorated glucose intolerance in high-fat diet (HFD)-treated mice. Collectively, our findings suggest that pHc is a direct nexus in linking environmental cues with insulin processing and secretion in β cells.
Collapse
Affiliation(s)
- Yujiang Fang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.
| | - Hexi Feng
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Bowen Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Shuwei Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Yanjie Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Pengcheng Hao
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhongshu Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Shanshan Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Nan Li
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Yi Hui
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Lin Ma
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Jie Xiong
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Jinjin Wu
- Shanghai Children's Medical Center, Shanghai Jiaotong University, Shanghai, China
| | - Ling Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.
| | - Xiaoqing Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China; Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China.
| |
Collapse
|
219
|
Rodríguez Jiménez B, Rodríguez de Vera Gómez P, Belmonte Lomas S, Mesa Díaz ÁM, Caballero Mateos I, Galán I, Morales Portillo C, Martínez-Brocca MA. Transforming body composition with semaglutide in adults with obesity and type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1386542. [PMID: 38894744 PMCID: PMC11182984 DOI: 10.3389/fendo.2024.1386542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Background Glucagon-like peptide-1 receptor-agonists (GLP-1ra), such as semaglutide, have emerged as promising treatments, demonstrating sustained weight reduction and metabolic benefits. This study aims to assess the impact of oral and subcutaneous semaglutide on body composition and metabolic parameters in patients with T2DM and obesity. Methods A 24-week quasi-experimental retrospective study including adults with T2DM and obesity (BMI ≥ 30 kg/m²) who were treated with either daily-oral or weekly-subcutaneous semaglutide. Body composition was measured using bioelectrical impedance analysis, evaluating fat mass, fat-free mass, total body water, skeletal muscle mass, and whole-body phase angle. Analytical parameters included lipid profile and glycaemic control. Statistical analyses were performed using SPSS v.26. Results Participants (n=88) experienced significant weight loss after treatment with semaglutide (9.5% in subcutaneous, 9.4% in oral, P<0.001). Weight reduction primarily resulted from fat mass reduction without substantial lean mass compromise. Visceral fat area decreased, whiles phase-angle remained stable. Improvements in lipid profiles and glycaemic control were observed, with a decrease in both HbA1c and insulin requirements. Multivariate analysis demonstrated comparable impacts of oral and subcutaneous semaglutide on body composition. Conclusion Semaglutide, administered orally or subcutaneously, demonstrated positive effects on body composition, metabolic and glycaemic control in patients with T2DM and obesity. This real-world study highlights the potential of bioelectrical impedance analysis in assessing antidiabetic drugs' impact on body composition, providing valuable insights for future research and clinical applications.
Collapse
|
220
|
Abraham A, Cule M, Thanaj M, Basty N, Hashemloo MA, Sorokin EP, Whitcher B, Burgess S, Bell JD, Sattar N, Thomas EL, Yaghootkar H. Genetic Evidence for Distinct Biological Mechanisms That Link Adiposity to Type 2 Diabetes: Toward Precision Medicine. Diabetes 2024; 73:1012-1025. [PMID: 38530928 PMCID: PMC11109787 DOI: 10.2337/db23-1005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
We aimed to unravel the mechanisms connecting adiposity to type 2 diabetes. We used MR-Clust to cluster independent genetic variants associated with body fat percentage (388 variants) and BMI (540 variants) based on their impact on type 2 diabetes. We identified five clusters of adiposity-increasing alleles associated with higher type 2 diabetes risk (unfavorable adiposity) and three clusters associated with lower risk (favorable adiposity). We then characterized each cluster based on various biomarkers, metabolites, and MRI-based measures of fat distribution and muscle quality. Analyzing the metabolic signatures of these clusters revealed two primary mechanisms connecting higher adiposity to reduced type 2 diabetes risk. The first involves higher adiposity in subcutaneous tissues (abdomen and thigh), lower liver fat, improved insulin sensitivity, and decreased risk of cardiometabolic diseases and diabetes complications. The second mechanism is characterized by increased body size and enhanced muscle quality, with no impact on cardiometabolic outcomes. Furthermore, our findings unveil diverse mechanisms linking higher adiposity to higher disease risk, such as cholesterol pathways or inflammation. These results reinforce the existence of adiposity-related mechanisms that may act as protective factors against type 2 diabetes and its complications, especially when accompanied by reduced ectopic liver fat. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Angela Abraham
- Joseph Banks Laboratories, College of Health and Science, University of Lincoln, Lincoln, U.K
| | | | - Marjola Thanaj
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Nicolas Basty
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - M. Amin Hashemloo
- Department of Life Sciences, Brunel University London, Uxbridge, U.K
| | | | - Brandon Whitcher
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
- MRI Unit, Department of Radiology, The Royal Marsden National Health Service Foundation Trust, London, U.K
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, U.K
| | - Jimmy D. Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, U.K
| | - E. Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Hanieh Yaghootkar
- Joseph Banks Laboratories, College of Health and Science, University of Lincoln, Lincoln, U.K
| |
Collapse
|
221
|
Chowdhury NN, Surowiec RK, Kohler RK, Reul ON, Segvich DM, Wallace JM. Metabolic and Skeletal Characterization of the KK/A y Mouse Model-A Polygenic Mutation Model of Obese Type 2 Diabetes. Calcif Tissue Int 2024; 114:638-649. [PMID: 38642089 PMCID: PMC11184323 DOI: 10.1007/s00223-024-01216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/05/2024] [Indexed: 04/22/2024]
Abstract
Type 2 diabetes (T2D) increases fracture incidence and fracture-related mortality rates (KK.Cg-Ay/J. The Jackson Laboratory; Available from: https://www.jax.org/strain/002468 ). While numerous mouse models for T2D exist, few effectively stimulate persistent hyperglycemia in both sexes, and even fewer are suitable for bone studies. Commonly used models like db/db and ob/ob have altered leptin pathways, confounding bone-related findings since leptin regulates bone properties (Fajardo et al. in Journal of Bone and Mineral Research 29(5): 1025-1040, 2014). The Yellow Kuo Kondo (KK/Ay) mouse, a polygenic mutation model of T2D, is able to produce a consistent diabetic state in both sexes and addresses the lack of a suitable model of T2D for bone studies. The diabetic state of KK/Ay stems from a mutation in the agouti gene, responsible for coat color in mice. This mutation induces ectopic gene expression across various tissue types, resulting in diabetic mice with yellow fur coats (Moussa and Claycombe in Obesity Research 7(5): 506-514, 1999). Male and female KK/Ay mice exhibited persistent hyperglycemia, defining them as diabetic with blood glucose (BG) levels consistently exceeding 300 mg/dL. Notably, male control mice in this study were also diabetic, presenting a significant limitation. Nevertheless, male and female KK/Ay mice showed significantly elevated BG levels, HbA1c, and serum insulin concentration when compared to the non-diabetic female control mice. Early stages of T2D are characterized by hyperglycemia and hyperinsulinemia resulting from cellular insulin resistance, whereas later stages may feature hypoinsulinemia due to β-cell apoptosis (Banday et al. Avicenna Journal of Medicine 10(04): 174-188, 2020 and Klein et al. Cell Metabolism 34(1): 11-20, 2022). The observed hyperglycemia, hyperinsulinemia, and the absence of differences in β-cell mass suggest that KK/Ay mice in this study are modeling the earlier stages of T2D. While compromised bone microarchitecture was observed in this study, older KK/Ay mice, representing more advanced stages of T2D, might exhibit more pronounced skeletal manifestations. Compared to the control group, the femora of KK/Ay mice had higher cortical area and cortical thickness, and improved trabecular properties which would typically be indicative of greater bone strength. However, KK/Ay mice displayed lower cortical tissue mineral density in both sexes and increased cortical porosity in females. Fracture instability toughness of the femora was lower in KK/Ay mice overall compared to controls. These findings indicate that decreased mechanical integrity noted in the femora of KK/Ay mice was likely due to overall bone quality being compromised.
Collapse
Affiliation(s)
- Nusaiba N Chowdhury
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Rachel K Surowiec
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rachel K Kohler
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Olivia N Reul
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Dyann M Segvich
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
222
|
Yanto TA, Vatvani AD, Hariyanto TI, Suastika K. Glucagon-like peptide-1 receptor agonist and new-onset diabetes in overweight/obese individuals with prediabetes: A systematic review and meta-analysis of randomized trials. Diabetes Metab Syndr 2024; 18:103069. [PMID: 38963997 DOI: 10.1016/j.dsx.2024.103069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Glucagon-like peptide-1 receptor agonist (GLP-1RA) is incretin-based therapy that possessed significant glucose lowering and weight loss properties. The present study aims to analyze the efficacy of GLP-1RA in the management of overweight/obese individuals with prediabetes. METHODS A thorough search was carried out on the Cochrane Library, ClinicalTrials.gov, Scopus, and Medline databases until April 3rd, 2024, using a mix of pertinent keywords. This review incorporates randomized clinical trials (RCTs) concerning the efficacy of GLP-1RA for prediabetes. The primary outcome was regression to normoglycemia and/or progression to type 2 diabetes (T2D). We used random-effect models to examine the odds ratio (OR) and mean difference (MD). RESULTS A total of eight RCTs were incorporated. The results of our meta-analysis indicated that GLP-1RA therapy was associated with higher odds of regression to normoglycemia (OR 4.80; 95%CI: 3.40-6.77, p < 0.00001, I2 = 67 %) and lower risk of progression into T2D (OR 0.27; 95%CI: 0.18-0.42, p < 0.00001, I2 = 0 %) in overweight/obese individuals with prediabetes. Administration of GLP-1RA was also associated with higher reduction in HbA1c (MD -0.28 %; p < 0.00001), fasting glucose (MD -0.45 mmol/L; p < 0.00001), and BMI (MD -1.71 kg/m2; p < 0.00001) in comparison to placebo. However, the administration of GLP-1RA was associated with higher incidence of total adverse events (TAEs), treatment discontinuation due to AEs, hypoglycemia, and gastrointestinal AEs. CONCLUSIONS This study indicates that while GLP-1RA is a potent therapeutic agent for prediabetes, its adverse effects are concerning, thereby precluding its recommendation as a prediabetes therapy.
Collapse
Affiliation(s)
- Theo Audi Yanto
- Department of Internal Medicine, Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang, 15811, Indonesia.
| | - Akhil Deepak Vatvani
- Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang, 15811, Indonesia.
| | | | - Ketut Suastika
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Faculty of Medicine, Udayana University, Denpasar, Bali, 80232, Indonesia.
| |
Collapse
|
223
|
Chen ZT, Weng ZX, Lin JD, Meng ZX. Myokines: metabolic regulation in obesity and type 2 diabetes. LIFE METABOLISM 2024; 3:loae006. [PMID: 39872377 PMCID: PMC11749576 DOI: 10.1093/lifemeta/loae006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 01/30/2025]
Abstract
Skeletal muscle plays a vital role in the regulation of systemic metabolism, partly through its secretion of endocrine factors which are collectively known as myokines. Altered myokine levels are associated with metabolic diseases, such as type 2 diabetes (T2D). The significance of interorgan crosstalk, particularly through myokines, has emerged as a fundamental aspect of nutrient and energy homeostasis. However, a comprehensive understanding of myokine biology in the setting of obesity and T2D remains a major challenge. In this review, we discuss the regulation and biological functions of key myokines that have been extensively studied during the past two decades, namely interleukin 6 (IL-6), irisin, myostatin (MSTN), growth differentiation factor 11 (GDF11), fibroblast growth factor 21 (FGF21), apelin, brain-derived neurotrophic factor (BDNF), meteorin-like (Metrnl), secreted protein acidic and rich in cysteine (SPARC), β-aminoisobutyric acid (BAIBA), Musclin, and Dickkopf 3 (Dkk3). Related to these, we detail the role of exercise in myokine expression and secretion together with their contributions to metabolic physiology and disease. Despite significant advancements in myokine research, many myokines remain challenging to measure accurately and investigate thoroughly. Hence, new research techniques and detection methods should be developed and rigorously tested. Therefore, developing a comprehensive perspective on myokine biology is crucial, as this will likely offer new insights into the pathophysiological mechanisms underlying obesity and T2D and may reveal novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhi-Tian Chen
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute (ZJE), School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Zhi-Xuan Weng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
224
|
Miguel-Albarreal AD, Rivero-Pino F, Marquez-Paradas E, Grao-Cruces E, Gonzalez-de la Rosa T, Montserrat-de la Paz S. Mediterranean Diet Combined with Regular Aerobic Exercise and Hemp Protein Supplementation Modulates Plasma Circulating Amino Acids and Improves the Health Status of Overweight Individuals. Nutrients 2024; 16:1594. [PMID: 38892526 PMCID: PMC11174559 DOI: 10.3390/nu16111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Plant protein is considered a sustainable health-promoting strategy to prevent metabolic syndrome. Lifestyle changes (including dietary patterns and exercise) have been demonstrated to exert an effect on human health by modulating the biochemical status in humans. The objective of this study was to assess whether supplementation with hemp protein within a Mediterranean diet context together with exercise could help to ameliorate the metabolic statuses of patients prone to developing metabolic syndrome. For this study, 23 patients followed with Mediterranean diet and engaged in aerobic exercise according to the WHO's recommendations, while also being supplemented with hemp protein, for 12 weeks. A comparison of anthropometric, biochemical, and mineral data as well as amino acid values was made between the start and the end of the study, with the subjects acting as their own control group. Statistical analyses included a paired t-test, Wilcoxon paired test, Pearson correlation coefficient, and Sparse Partial Least Squares Discriminant Analysis to evaluate significant differences and correlations among parameters. There were statistically significant changes in total cholesterol, HDL-C (+52.3%), LDL-C (-54.0%), and TAG levels (-49.8%), but not in glucose plasma levels. Following the intervention, plasma concentrations of some amino acids, including α-aminoadipic acid, phosphoethanolamine, and 1-metylhistidine, increased, whereas those of asparagine and alanine declined. Different correlations between amino acids and the other parameters evaluated were reported and discussed. A Mediterranean diet combined with regular aerobic exercise, together with protein supplementation, can highly improve the metabolic parameters and anthropometric parameters of subjects with obesity and impaired glucose levels, ameliorating their health status and likely delaying the development of metabolic syndrome.
Collapse
Affiliation(s)
- Antonio D. Miguel-Albarreal
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.D.M.-A.); (E.M.-P.); (E.G.-C.); (T.G.-d.l.R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.D.M.-A.); (E.M.-P.); (E.G.-C.); (T.G.-d.l.R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| | - Elvira Marquez-Paradas
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.D.M.-A.); (E.M.-P.); (E.G.-C.); (T.G.-d.l.R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| | - Elena Grao-Cruces
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.D.M.-A.); (E.M.-P.); (E.G.-C.); (T.G.-d.l.R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| | - Teresa Gonzalez-de la Rosa
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.D.M.-A.); (E.M.-P.); (E.G.-C.); (T.G.-d.l.R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.D.M.-A.); (E.M.-P.); (E.G.-C.); (T.G.-d.l.R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| |
Collapse
|
225
|
Bertran L, Capellades J, Abelló S, Aguilar C, Auguet T, Richart C. Untargeted lipidomics analysis in women with morbid obesity and type 2 diabetes mellitus: A comprehensive study. PLoS One 2024; 19:e0303569. [PMID: 38743756 PMCID: PMC11093320 DOI: 10.1371/journal.pone.0303569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
There is a phenotype of obese individuals termed metabolically healthy obese that present a reduced cardiometabolic risk. This phenotype offers a valuable model for investigating the mechanisms connecting obesity and metabolic alterations such as Type 2 Diabetes Mellitus (T2DM). Previously, in an untargeted metabolomics analysis in a cohort of morbidly obese women, we observed a different lipid metabolite pattern between metabolically healthy morbid obese individuals and those with associated T2DM. To validate these findings, we have performed a complementary study of lipidomics. In this study, we assessed a liquid chromatography coupled to a mass spectrometer untargeted lipidomic analysis on serum samples from 209 women, 73 normal-weight women (control group) and 136 morbid obese women. From those, 65 metabolically healthy morbid obese and 71 with associated T2DM. In this work, we find elevated levels of ceramides, sphingomyelins, diacyl and triacylglycerols, fatty acids, and phosphoethanolamines in morbid obese vs normal weight. Conversely, decreased levels of acylcarnitines, bile acids, lyso-phosphatidylcholines, phosphatidylcholines (PC), phosphatidylinositols, and phosphoethanolamine PE (O-38:4) were noted. Furthermore, comparing morbid obese women with T2DM vs metabolically healthy MO, a distinct lipid profile emerged, featuring increased levels of metabolites: deoxycholic acid, diacylglycerol DG (36:2), triacylglycerols, phosphatidylcholines, phosphoethanolamines, phosphatidylinositols, and lyso-phosphatidylinositol LPI (16:0). To conclude, analysing both comparatives, we observed decreased levels of deoxycholic acid, PC (34:3), and PE (O-38:4) in morbid obese women vs normal-weight. Conversely, we found elevated levels of these lipids in morbid obese women with T2DM vs metabolically healthy MO. These profiles of metabolites could be explored for the research as potential markers of metabolic risk of T2DM in morbid obese women.
Collapse
Affiliation(s)
- Laia Bertran
- Department of Medicine and Surgery, Study Group on Metabolic Diseases Associated with Insulin-Resistance (GEMMAIR), Rovira i Virgili University, Hospital Universitari de Tarragona Joan XXIII, IISPV, Tarragona, Spain
| | - Jordi Capellades
- Department of Electronic, Electric and Automatic Engineering, Higher Technical School of Engineering, Rovira i Virgili University, IISPV, Tarragona, Spain
| | - Sonia Abelló
- Scientific and Technical Service, Rovira i Virgili University, Tarragona, Spain
| | - Carmen Aguilar
- Department of Medicine and Surgery, Study Group on Metabolic Diseases Associated with Insulin-Resistance (GEMMAIR), Rovira i Virgili University, Hospital Universitari de Tarragona Joan XXIII, IISPV, Tarragona, Spain
| | - Teresa Auguet
- Department of Medicine and Surgery, Study Group on Metabolic Diseases Associated with Insulin-Resistance (GEMMAIR), Rovira i Virgili University, Hospital Universitari de Tarragona Joan XXIII, IISPV, Tarragona, Spain
| | - Cristóbal Richart
- Department of Medicine and Surgery, Study Group on Metabolic Diseases Associated with Insulin-Resistance (GEMMAIR), Rovira i Virgili University, Hospital Universitari de Tarragona Joan XXIII, IISPV, Tarragona, Spain
| |
Collapse
|
226
|
Zhang X, Wang Y, Li Y, Gui J, Mei Y, Yang X, Liu H, Guo LL, Li J, Lei Y, Li X, Sun L, Yang L, Yuan T, Wang C, Zhang D, Li J, Liu M, Hua Y, Zhang L. Optimal obesity- and lipid-related indices for predicting type 2 diabetes in middle-aged and elderly Chinese. Sci Rep 2024; 14:10901. [PMID: 38740846 DOI: 10.1038/s41598-024-61592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
To investigate the screening and predicting functions of obesity- and lipid-related indices for type 2 diabetes (T2D) in middle-aged and elderly Chinese, as well as the ideal predicted cut-off value. This study's data comes from the 2011 China Health and Retirement Longitudinal Study (CHARLS). A cross-sectional study design was used to investigate the relationship of T2D and 13 obesity- and lipid-related indices, including body mass index (BMI), waist circumference (WC), waist-height ratio (WHtR), visceral adiposity index (VAI), a body shape index (ABSI), body roundness index (BRI), lipid accumulation product (LAP), conicity index (CI), Chinese visceral adiposity index (CVAI), triglyceride- glucose index (TyG index) and its correlation index (TyG-BMI, TyG-WC, TyG-WHtR). The unadjusted and adjusted correlations between 13 indices and T2D were assessed using binary logistic regression analysis. The receiver operating characteristic curve (ROC) was used to determine the usefulness of anthropometric indices for screening for T2D and determining their cut‑off value, sensitivity, specificity, and area under the curve (AUC). The study comprised 9488 people aged 45 years or above in total, of whom 4354 (45.89%) were males and 5134 (54.11%) were females. Among them were 716 male cases of T2D (16.44%) and 870 female cases of T2D (16.95%). A total of 13 obesity- and lipid-related indices were independently associated with T2D risk after adjusted for confounding factors (P < 0.05). According to ROC analysis, the TyG index was the best predictor of T2D among males (AUC = 0.780, 95% CI 0.761, 0.799) and females (AUC = 0.782, 95% CI 0.764, 0.799). The AUC values of the 13 indicators were higher than 0.5, indicating that they have predictive values for T2D in middle-aged and elderly Chinese. The 13 obesity- and lipid-related indices can predict the risk of T2D in middle‑aged and elderly Chinese. Among 13 indicators, the TyG index is the best predictor of T2D in both males and females. TyG-WC, TyG-BMI, TyG-WHtR, LAP, and CVAI all outperformed BMI, WC, and WHtR in predicting T2D.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Department of Graduate School, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Ying Wang
- Department of Graduate School, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Yuqing Li
- Department of Graduate School, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Jiaofeng Gui
- Department of Graduate School, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Yujin Mei
- Department of Graduate School, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Xue Yang
- Department of Graduate School, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Haiyang Liu
- Student Health Center, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Lei-Lei Guo
- Department of Surgical Nursing, School of Nursing, Jinzhou Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou City, Liaoning Province, People's Republic of China
| | - Jinlong Li
- Department of Occupational and Environmental Health, Key Laboratory of Occupational Health and Safety for Coal Industry in Hebei Province, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, People's Republic of China
| | - Yunxiao Lei
- Obstetrics and Gynecology Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Xiaoping Li
- Department of Emergency and Critical Care Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Lu Sun
- Department of Emergency and Critical Care Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Liu Yang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Ting Yuan
- Obstetrics and Gynecology Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Congzhi Wang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Dongmei Zhang
- Department of Pediatric Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Jing Li
- Department of Surgical Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Mingming Liu
- Department of Surgical Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Ying Hua
- Rehabilitation Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Lin Zhang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China.
| |
Collapse
|
227
|
Lu S, Wang Q, Lu H, Kuang M, Zhang M, Sheng G, Zou Y, Peng X. Lipids as potential mediators linking body mass index to diabetes: evidence from a mediation analysis based on the NAGALA cohort. BMC Endocr Disord 2024; 24:66. [PMID: 38730299 PMCID: PMC11083816 DOI: 10.1186/s12902-024-01594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Body mass index (BMI) and lipid disorders are both known to be strongly associated with the development of diabetes, however, the indirect effect of lipid parameters in the BMI-related diabetes risk is currently unknown. This study aimed to investigate the mediating role of lipid parameters in the association of BMI with diabetes risk. METHODS We assessed the association of diabetes risk with BMI, as well as lipid parameters including high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-CF and LDL-CS), triglycerides(TG), total cholesterol(TC), remnant cholesterol(RC), non-HDL-C, and combined indices of lipid parameters with HDL-C (RC/HDL-C ratio, TG/HDL-C ratio, TC/HDL-C ratio, non-HDL/HDL-C ratio, LDL/HDL-C ratio) using data from 15,453 subjects in the NAGALA project. Mediation models were used to explore the mediating role of lipid parameters in the association of BMI with diabetes risk, and mediation percentages were calculated for quantifying the strength of the indirect effects. Finally, receiver operating characteristic curve (ROC) analysis was used to compare the accuracy of BMI and BMI combined with lipid parameters in predicting incident diabetes. RESULTS Multivariate regression models, adjusted for confounding factors, demonstrated robust associations of lipid parameters, BMI, with diabetes risk, with the exception of TC, LDL-CF, LDL-CS, and non-HDL-C. Mediation analysis showed that lipid parameters except TC, LDL-CF, LDL-CS, and Non-HDL-C were involved in and mediated the association of BMI with diabetes risk, with the largest mediation percentage being the RC/HDL-C ratio, which was as high as 40%; it is worth mentioning that HDL-C and HDL-C-related lipid ratio parameters also play an important mediating role in the association between BMI and diabetes, with the mediator proportion being greater than 30%. Finally, based on the ROC results, we found that the prediction performance of all lipid parameters in the current study except TC was significantly improved when combined with BMI. CONCLUSION Our fresh findings suggested that lipid parameters partially mediated the association of BMI with diabetes risk; this result indicated that in the context of diabetes risk screening and disease management, it is important to not only monitor BMI but also pay attention to lipid parameters, particularly HDL-C and HDL-C-related lipid ratio parameters.
Collapse
Affiliation(s)
- Song Lu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qun Wang
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Hengcheng Lu
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Maobin Kuang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Min Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Hypertension Research Institute, Nanchang, 330006, China
| | - Guotai Sheng
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Yang Zou
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China.
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- Jiangxi Hypertension Research Institute, Nanchang, 330006, China.
| |
Collapse
|
228
|
Leeson-Payne A, Iyinikkel J, Malcolm C, Lam BYH, Sommer N, Dowsett GKC, Martinez de Morentin PB, Thompson D, Mackenzie A, Chianese R, Kentistou K, Gardner EJ, Perry JRB, Grassmann F, Speakman JR, Rochford JJ, Yeo GSH, Murray F, Heisler LK. Loss of GPR75 protects against non-alcoholic fatty liver disease and body fat accumulation. Cell Metab 2024; 36:1076-1087.e4. [PMID: 38653246 DOI: 10.1016/j.cmet.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/04/2023] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Approximately 1 in 4 people worldwide have non-alcoholic fatty liver disease (NAFLD); however, there are currently no medications to treat this condition. This study investigated the role of adiposity-associated orphan G protein-coupled receptor 75 (GPR75) in liver lipid accumulation. We profiled Gpr75 expression and report that it is most abundant in the brain. Next, we generated the first single-cell-level analysis of Gpr75 and identified a subpopulation co-expressed with key appetite-regulating hypothalamic neurons. CRISPR-Cas9-deleted Gpr75 mice fed a palatable western diet high in fat adjusted caloric intake to remain in energy balance, thereby preventing NAFLD. Consistent with mouse results, analysis of whole-exome sequencing data from 428,719 individuals (UK Biobank) revealed that variants in GPR75 are associated with a reduced likelihood of hepatic steatosis. Here, we provide a significant advance in understanding of the expression and function of GPR75, demonstrating that it is a promising pharmaceutical target for NAFLD treatment.
Collapse
Affiliation(s)
| | - Jean Iyinikkel
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Cameron Malcolm
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Brian Y H Lam
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Nadine Sommer
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Georgina K C Dowsett
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | | | - Dawn Thompson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | - Katherine Kentistou
- Medical Research Council Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Eugene J Gardner
- Medical Research Council Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - John R B Perry
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Medical Research Council Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Felix Grassmann
- Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Giles S H Yeo
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Fiona Murray
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| | - Lora K Heisler
- The Rowett Institute, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
229
|
Islam MT, Cai J, Allen S, Moreno DG, Bloom SI, Bramwell RC, Mitton J, Horn AG, Zhu W, Donato AJ, Holland WL, Lesniewski LA. Endothelial-Specific Reduction in Arf6 Impairs Insulin-Stimulated Vasodilation and Skeletal Muscle Blood Flow Resulting in Systemic Insulin Resistance in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1101-1113. [PMID: 38545783 PMCID: PMC11042974 DOI: 10.1161/atvbaha.123.319375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Much of what we know about insulin resistance is based on studies from metabolically active tissues such as the liver, adipose tissue, and skeletal muscle. Emerging evidence suggests that the vascular endothelium plays a crucial role in systemic insulin resistance; however, the underlying mechanisms remain incompletely understood. Arf6 (ADP ribosylation factor 6) is a small GTPase that plays a critical role in endothelial cell function. Here, we tested the hypothesis that the deletion of endothelial Arf6 will result in systemic insulin resistance. METHODS We used mouse models of constitutive endothelial cell-specific Arf6 deletion (Arf6f/- Tie2Cre+) and tamoxifen-inducible Arf6 knockout (Arf6f/f Cdh5CreER+). Endothelium-dependent vasodilation was assessed using pressure myography. Metabolic function was assessed using a battery of metabolic assessments including glucose and insulin tolerance tests and hyperinsulinemic-euglycemic clamps. We used a fluorescence microsphere-based technique to measure tissue blood flow. Skeletal muscle capillary density was assessed using intravital microscopy. RESULTS Endothelial Arf6 deletion impaired insulin-stimulated vasodilation in white adipose tissue and skeletal muscle feed arteries. The impairment in vasodilation was primarily due to attenuated insulin-stimulated nitric oxide bioavailability but independent of altered acetylcholine-mediated or sodium nitroprusside-mediated vasodilation. Endothelial cell-specific deletion of Arf6 also resulted in systematic insulin resistance in normal chow-fed mice and glucose intolerance in high-fat diet-fed obese mice. The underlying mechanisms of glucose intolerance were reductions in insulin-stimulated blood flow and glucose uptake in the skeletal muscle and were independent of changes in capillary density or vascular permeability. CONCLUSIONS Results from this study support the conclusion that endothelial Arf6 signaling is essential for maintaining insulin sensitivity. Reduced expression of endothelial Arf6 impairs insulin-mediated vasodilation and results in systemic insulin resistance. These results have therapeutic implications for diseases that are associated with endothelial cell dysfunction and insulin resistance such as diabetes.
Collapse
Affiliation(s)
- Md Torikul Islam
- Department of Nutrition and Integrative Physiology (M.T.I., S.I.B., A.J.D., W.L.H., L.A.L.), The University of Utah, Salt Lake City
| | - Jinjin Cai
- Division of Geriatrics, Department of Internal Medicine (J.C., S.A., D.G.M., R.C.B., J.M., A.J.D., L.A.L.), The University of Utah, Salt Lake City
| | - Shanena Allen
- Division of Geriatrics, Department of Internal Medicine (J.C., S.A., D.G.M., R.C.B., J.M., A.J.D., L.A.L.), The University of Utah, Salt Lake City
| | - Denisse G Moreno
- Division of Geriatrics, Department of Internal Medicine (J.C., S.A., D.G.M., R.C.B., J.M., A.J.D., L.A.L.), The University of Utah, Salt Lake City
| | - Samuel I Bloom
- Department of Nutrition and Integrative Physiology (M.T.I., S.I.B., A.J.D., W.L.H., L.A.L.), The University of Utah, Salt Lake City
| | - R Colton Bramwell
- Division of Geriatrics, Department of Internal Medicine (J.C., S.A., D.G.M., R.C.B., J.M., A.J.D., L.A.L.), The University of Utah, Salt Lake City
| | - Jonathan Mitton
- Division of Geriatrics, Department of Internal Medicine (J.C., S.A., D.G.M., R.C.B., J.M., A.J.D., L.A.L.), The University of Utah, Salt Lake City
| | - Andrew G Horn
- Department of Kinesiology, Kansas State University, Manhattan (A.G.H.)
| | - Weiquan Zhu
- Division of Cardiovascular Medicine, Department of Internal Medicine (W.Z.), The University of Utah, Salt Lake City
- Department of Pathology (W.Z.), The University of Utah, Salt Lake City
- Program of Molecular Medicine (W.Z.), The University of Utah, Salt Lake City
| | - Anthony J Donato
- Department of Nutrition and Integrative Physiology (M.T.I., S.I.B., A.J.D., W.L.H., L.A.L.), The University of Utah, Salt Lake City
- Division of Geriatrics, Department of Internal Medicine (J.C., S.A., D.G.M., R.C.B., J.M., A.J.D., L.A.L.), The University of Utah, Salt Lake City
- Department of Biochemistry (A.J.D.), The University of Utah, Salt Lake City
- Nora Eccles Harrison Cardiovascular Research and Training Institute (A.J.D., L.A.L.), The University of Utah, Salt Lake City
- Veteran's Affairs Medical Center-Salt Lake City, Geriatric Research and Clinical Center, UT (A.J.D., L.A.L.)
| | - William L Holland
- Department of Nutrition and Integrative Physiology (M.T.I., S.I.B., A.J.D., W.L.H., L.A.L.), The University of Utah, Salt Lake City
| | - Lisa A Lesniewski
- Department of Nutrition and Integrative Physiology (M.T.I., S.I.B., A.J.D., W.L.H., L.A.L.), The University of Utah, Salt Lake City
- Division of Geriatrics, Department of Internal Medicine (J.C., S.A., D.G.M., R.C.B., J.M., A.J.D., L.A.L.), The University of Utah, Salt Lake City
- Nora Eccles Harrison Cardiovascular Research and Training Institute (A.J.D., L.A.L.), The University of Utah, Salt Lake City
- Veteran's Affairs Medical Center-Salt Lake City, Geriatric Research and Clinical Center, UT (A.J.D., L.A.L.)
| |
Collapse
|
230
|
Sullivan VK, Kim H, Caulfield LE, Steffen LM, Selvin E, Rebholz CM. Plant-Based Dietary Patterns and Incident Diabetes in the Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care 2024; 47:803-809. [PMID: 38349856 PMCID: PMC11043224 DOI: 10.2337/dc23-2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024]
Abstract
OBJECTIVE Plant-based dietary patterns emphasize plant foods and minimize animal-derived foods. We investigated the association between plant-based dietary patterns and diabetes in a community-based U.S. sample of Black and White adults. RESEARCH DESIGN AND METHODS We included middle-aged adults from the Atherosclerosis Risk in Communities (ARIC) study without diabetes at baseline who completed a food-frequency questionnaire (n = 11,965). We scored plant-based diet adherence according to three indices: overall, healthy, and unhealthy plant-based diet indices. Higher overall plant-based diet index (PDI) scores represent greater intakes of all plant foods and lower intakes of animal-derived foods. Higher healthy plant-based diet index (hPDI) scores represent greater healthy plant food intake and lower intakes of animal-derived and unhealthy plant foods. Higher unhealthy plant-based diet index (uPDI) scores represent greater unhealthy plant food intake and lower intakes of animal-derived and healthy plant foods. We used Cox regression to estimate hazard ratios (HRs) for incident diabetes (defined according to self-reported diagnosis, medication use, or elevated blood glucose) associated with each index. RESULTS Over a median follow-up of 22 years, we identified 4,208 cases of diabetes among subjects. Higher PDI scores were associated with a lower risk of diabetes (quintile 5 vs. 1 HR 0.89 [95% CI 0.80, 0.98]; Ptrend = 0.01). hPDI scores were also inversely associated with diabetes risk (quintile 5 vs. 1 HR 0.85 [95% CI 0.77, 0.94]; Ptrend < 0.001). uPDI scores were not associated with diabetes risk. CONCLUSIONS A dietary pattern that minimizes animal-derived foods and emphasizes plant foods may reduce diabetes risk.
Collapse
Affiliation(s)
- Valerie K. Sullivan
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Hyunju Kim
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Laura E. Caulfield
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Lyn M. Steffen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN
| | - Elizabeth Selvin
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Casey M. Rebholz
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
231
|
Bai M, Wang X, Liu D, Xu A, Cheng H, Li L, Zhang C. Tolypocladium sinense Mycelium Polysaccharide Alleviates Obesity, Lipid Metabolism Disorder, and Inflammation Caused by High Fat Diet via Improving Intestinal Barrier and Modulating Gut Microbiota. Mol Nutr Food Res 2024; 68:e2300759. [PMID: 38651284 DOI: 10.1002/mnfr.202300759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/29/2024] [Indexed: 04/25/2024]
Abstract
SCOPE Tolypocladium sinense is a fungus isolated from Cordyceps. Cordyceps has some medicinal value and is also a daily health care product. This study explores the preventive effects of T. sinense mycelium polysaccharide (TSMP) on high-fat diet-induced obesity and chronic inflammation in mice. METHODS AND RESULTS Here, the study establishes an obese mouse model induced by high-fat diet. In this study, the mice are administered TSMP daily basis to evaluate its effect on alleviating obesity. The results show that TSMP can significantly inhibit obesity and alleviate dyslipidemia by regulating the expression of lipid metabolism-related genes such as liver kinase B1 (LKB1), phosphorylated AMP-activated protein kinase (pAMPK), peroxisome proliferator activated receptor α (PPARα), fatty acid synthase (FAS), and hydroxymethylglutaryl-CoA reductase (HMGCR) in the liver. TSMP can increase the protein expression of zona occludens-1 (ZO-1), Occludin, and Claudin-1 in the colon, improve the intestinal barrier dysfunction, and reduce the level of serum LPS, thereby reducing the inflammatory response. 16S rDNA sequencing shows that TSMP alters the intestinal microbiota by increasing the relative abundance of Akkermansia, Lactobacillus, and Prevotellaceae_NK3B31_group, while decreasing the relative abundance of Faecalibaculum. CONCLUSION The findings show that TSMP can inhibit obesity and alleviates obesity-related lipid metabolism disorders, inflammatory responses, and oxidative stress by modulating the gut microbiota and improving intestinal barrier.
Collapse
Affiliation(s)
- Mingjian Bai
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Xiaolong Wang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Dongyang Liu
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Aofeng Xu
- Special Medical Service Department Section Four, People's Liberation Army Strategic Support Force, Characteristics Medical Center, Beijing, 100000, China
| | - Hao Cheng
- Qiqihar Medical University Clinical Department, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Lin Li
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Chunjing Zhang
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| |
Collapse
|
232
|
Scoditti E, Sabatini S, Carli F, Gastaldelli A. Hepatic glucose metabolism in the steatotic liver. Nat Rev Gastroenterol Hepatol 2024; 21:319-334. [PMID: 38308003 DOI: 10.1038/s41575-023-00888-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/04/2024]
Abstract
The liver is central in regulating glucose homeostasis, being the major contributor to endogenous glucose production and the greatest reserve of glucose as glycogen. It is both a target and regulator of the action of glucoregulatory hormones. Hepatic metabolic functions are altered in and contribute to the highly prevalent steatotic liver disease (SLD), including metabolic dysfunction-associated SLD (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). In this Review, we describe the dysregulation of hepatic glucose metabolism in MASLD and MASH and associated metabolic comorbidities, and how advances in techniques and models for the assessment of hepatic glucose fluxes in vivo have led to the identification of the mechanisms related to the alterations in glucose metabolism in MASLD and comorbidities. These fluxes can ultimately increase hepatic glucose production concomitantly with fat accumulation and alterations in the secretion and action of glucoregulatory hormones. No pharmacological treatment has yet been approved for MASLD or MASH, but some antihyperglycaemic drugs approved for treating type 2 diabetes have shown positive effects on hepatic glucose metabolism and hepatosteatosis. A deep understanding of how MASLD affects glucose metabolic fluxes and glucoregulatory hormones might assist in the early identification of at-risk individuals and the use or development of targeted therapies.
Collapse
Affiliation(s)
- Egeria Scoditti
- Institute of Clinical Physiology, National Research Council, Lecce, Italy
| | - Silvia Sabatini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| |
Collapse
|
233
|
Rogers AM. Invited Commentary: Examining the Gastric Bypass Long-Term Metabolic Benefit. J Am Coll Surg 2024; 238:872-873. [PMID: 38372337 DOI: 10.1097/xcs.0000000000001051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
|
234
|
Della Pepa G, Carli F, Sabatini S, Pezzica S, Russo M, Vitale M, Masulli M, Riccardi G, Rivellese AA, Vaccaro O, Bozzetto L, Gastaldelli A. Clusters of adipose tissue dysfunction in adults with type 2 diabetes identify those with worse lipidomic profile despite similar glycaemic control. Diabetes Metab Res Rev 2024; 40:e3798. [PMID: 38558269 DOI: 10.1002/dmrr.3798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/30/2023] [Accepted: 12/31/2023] [Indexed: 04/04/2024]
Abstract
AIMS To investigate clusters of adipose tissue dysfunction, that is, with adipose tissue insulin resistance (ADIPO-IR) and large waist circumference (WC), identify a worse lipidomic profile characterised by a high proportion of lipids rich in saturated fatty acids (SFA). MATERIALS AND METHODS Hierarchical clustering based on WC and ADIPO-IR (calculated as fasting plasma non-esterified fatty acids times fasting plasma insulin, FFA×INS), was performed in 192 adults with overweight/obesity and type 2 diabetes (T2D) treated with metformin (HbA1c = 7.8%). Free fatty acid composition and lipidomic profile were measured by mass spectrometry (GC-MS and LC-MSQTOF). Indexes of fatty acid desaturation (stearoyl-coA desaturase-1 activity, SCD116 = palmitoleic acid/palmitic acid and SCD118 = oleic acid/stearic acid) and of insulin resistance (HOMA-IR) were also calculated. RESULTS Three clusters were identified: CL1 (ADIPO-IR = 4.9 ± 2.4 and WC = 96±7 cm, mean ± SD), CL2 (ADIPO-IR = 6.5 ± 2.5 and WC = 114 ± 7 cm), and CL3 (ADIPO-IR = 15.0 ± 4.7 and WC = 107 ± 8 cm). Insulin concentrations, ADIPO-IR, and HOMA-IR significantly increased from CL1 to CL3 (all p < 0.001), while fasting glucose concentrations, HbA1c, dietary lipids and caloric intake were similar. Moreover, CL3 showed significantly higher concentrations of monounsaturated free fatty acids, oleic and palmitoleic acids, triglycerides (TAG) rich in saturated FA and associated with de novo lipogenesis (i.e., TAG 46-50), higher SCD116, SCD118, ceramide (d18:0/18:0), and phosphatidylcholine aa(36:5) compared with CL1/CL2 (all p < 0.005). CONCLUSIONS High ADIPO-IR and large WC identify a worse lipid profile in T2D characterised by complex lipids rich in SFA, likely due to de novo synthesis given higher plasma monounsaturated FFA and increased desaturase activity indexes. REGISTRATION NUMBER TRIAL ID NCT00700856 https://clinicaltrials.gov.
Collapse
Affiliation(s)
- Giuseppe Della Pepa
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Fabrizia Carli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Silvia Sabatini
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Samantha Pezzica
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Marco Russo
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Marilena Vitale
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maria Masulli
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Angela A Rivellese
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Olga Vaccaro
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Lutgarda Bozzetto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy
| |
Collapse
|
235
|
Roumane A, Mcilroy GD, Sommer N, Han W, Heisler LK, Rochford JJ. GLP-1 receptor agonist improves metabolic disease in a pre-clinical model of lipodystrophy. Front Endocrinol (Lausanne) 2024; 15:1379228. [PMID: 38745956 PMCID: PMC11091257 DOI: 10.3389/fendo.2024.1379228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Aims Individuals with lipodystrophies typically suffer from metabolic disease linked to adipose tissue dysfunction including lipoatrophic diabetes. In the most severe forms of lipodystrophy, congenital generalised lipodystrophy, adipose tissue may be almost entirely absent. Better therapies for affected individuals are urgently needed. Here we performed the first detailed investigation of the effects of a glucagon like peptide-1 receptor (GLP-1R) agonist in lipoatrophic diabetes, using mice with generalised lipodystrophy. Methods Lipodystrophic insulin resistant and glucose intolerant seipin knockout mice were treated with the GLP-1R agonist liraglutide either acutely preceding analyses of insulin and glucose tolerance or chronically prior to metabolic phenotyping and ex vivo studies. Results Acute liraglutide treatment significantly improved insulin, glucose and pyruvate tolerance. Once daily injection of seipin knockout mice with liraglutide for 14 days led to significant improvements in hepatomegaly associated with steatosis and reduced markers of liver fibrosis. Moreover, liraglutide enhanced insulin secretion in response to glucose challenge with concomitantly improved glucose control. Conclusions GLP-1R agonist liraglutide significantly improved lipoatrophic diabetes and hepatic steatosis in mice with generalised lipodystrophy. This provides important insights regarding the benefits of GLP-1R agonists for treating lipodystrophy, informing more widespread use to improve the health of individuals with this condition.
Collapse
Affiliation(s)
- Ahlima Roumane
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, United Kingdom
| | - George D. Mcilroy
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, United Kingdom
| | - Nadine Sommer
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, United Kingdom
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Lora K. Heisler
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, United Kingdom
| | - Justin J. Rochford
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
236
|
Silva-Neto LGR, Silva Júnior AED, Bueno NB, Florêncio TMDMT. Type 2 diabetes mellitus is associated with food addiction in Brazilian women living in poverty. Br J Nutr 2024; 131:1421-1424. [PMID: 38185816 DOI: 10.1017/s0007114523002891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Food addiction (FA) has been widely investigated. For the first time, two studies reported its association with type 2 diabetes mellitus (DM2) in the general population and populations with mental disorders and undergoing bariatric surgery. However, the relationship between FA and DM2 needs to be better explored in different social contexts and population groups. Given this, the present study aims to evaluate whether DM2 diagnosis is associated with FA diagnosis in women living in poverty. This is a cross-sectional, population-based study conducted in a Brazilian capital city. FA was assessed by the modified Yale Food Addiction Scale (mYFAS) 2.0, and DM2 diagnosis was assessed by self-reporting of previous medical diagnosis. The association was assessed by multivariable Poisson regression with robust variance estimation adjusted for age, poverty situation, race/skin colour, physical activity and BMI. A total of 1878 women were included, of whom 15·1 % had FA and 3·2 % had a medical diagnosis of DM2. In the multivariable analysis, the medical diagnosis of DM2 was associated with FA (prevalence ratio, PR: 2·18; 95 % CI (1·26, 3·76)). The DM2 diagnosis was also identified to be associated with role interference (PR: 1·93; 95 % CI (1·01, 3·67)) symptom of FA. In conclusion, a positive association between FA and DM2 in women living in poverty was observed, information that adds to the current evidence already available in the literature, pointing to a new line of research and integrated care.
Collapse
Affiliation(s)
| | - André Eduardo da Silva Júnior
- Postgraduate Program in Nutrition, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Laboratório de Nutrição e Metabolismo (LANUM), Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Nassib Bezerra Bueno
- Postgraduate Program in Nutrition, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Laboratório de Nutrição e Metabolismo (LANUM), Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
- Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, Alagoas57072-900, Brazil
| | - Telma Maria de Menezes Toledo Florêncio
- Postgraduate Program in Nutrition, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, Alagoas57072-900, Brazil
| |
Collapse
|
237
|
Hateley C, Olona A, Halliday L, Edin ML, Ko JH, Forlano R, Terra X, Lih FB, Beltrán-Debón R, Manousou P, Purkayastha S, Moorthy K, Thursz MR, Zhang G, Goldin RD, Zeldin DC, Petretto E, Behmoaras J. Multi-tissue profiling of oxylipins reveal a conserved up-regulation of epoxide:diol ratio that associates with white adipose tissue inflammation and liver steatosis in obesity. EBioMedicine 2024; 103:105127. [PMID: 38677183 PMCID: PMC11061246 DOI: 10.1016/j.ebiom.2024.105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Obesity drives maladaptive changes in the white adipose tissue (WAT) which can progressively cause insulin resistance, type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated liver disease (MASLD). Obesity-mediated loss of WAT homeostasis can trigger liver steatosis through dysregulated lipid pathways such as those related to polyunsaturated fatty acid (PUFA)-derived oxylipins. However, the exact relationship between oxylipins and metabolic syndrome remains elusive and cross-tissue dynamics of oxylipins are ill-defined. METHODS We quantified PUFA-related oxylipin species in the omental WAT, liver biopsies and plasma of 88 patients undergoing bariatric surgery (female N = 79) and 9 patients (female N = 4) undergoing upper gastrointestinal surgery, using UPLC-MS/MS. We integrated oxylipin abundance with WAT phenotypes (adipogenesis, adipocyte hypertrophy, macrophage infiltration, type I and VI collagen remodelling) and the severity of MASLD (steatosis, inflammation, fibrosis) quantified in each biopsy. The integrative analysis was subjected to (i) adjustment for known risk factors and, (ii) control for potential drug-effects through UPLC-MS/MS analysis of metformin-treated fat explants ex vivo. FINDINGS We reveal a generalized down-regulation of cytochrome P450 (CYP)-derived diols during obesity conserved between the WAT and plasma. Notably, epoxide:diol ratio, indicative of soluble epoxide hydrolyse (sEH) activity, increases with WAT inflammation/fibrosis, hepatic steatosis and T2DM. Increased 12,13-EpOME:DiHOME in WAT and liver is a marker of worsening metabolic syndrome in patients with obesity. INTERPRETATION These findings suggest a dampened sEH activity and a possible role of fatty acid diols during metabolic syndrome in major metabolic organs such as WAT and liver. They also have implications in view of the clinical trials based on sEH inhibition for metabolic syndrome. FUNDING Wellcome Trust (PS3431_WMIH); Duke-NUS (Intramural Goh Cardiovascular Research Award (Duke-NUS-GCR/2022/0020); National Medical Research Council (OFLCG22may-0011); National Institute of Environmental Health Sciences (Z01 ES025034); NIHR Imperial Biomedical Research Centre.
Collapse
Affiliation(s)
- Charlotte Hateley
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Antoni Olona
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Laura Halliday
- Department of Surgery and Cancer, Imperial College London, UK
| | - Matthew L Edin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Jeong-Hun Ko
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | - Roberta Forlano
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Ximena Terra
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, MoBioFood Research Group, Tarragona, Spain
| | - Fred B Lih
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Raúl Beltrán-Debón
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, MoBioFood Research Group, Tarragona, Spain
| | - Penelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Sanjay Purkayastha
- Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK; University of Brunel, Kingston Lane, Uxbridge, London, UB8 3PH, UK
| | - Krishna Moorthy
- Department of Surgery and Cancer, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Mark R Thursz
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Guodong Zhang
- Department of Nutrition, College of Agriculture and Environmental Sciences, 3135 Meyer Hall, One Shields Avenue, UC Davis, Davis, CA, 95616, USA
| | - Robert D Goldin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Darryl C Zeldin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Enrico Petretto
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore; Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, China
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK; Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
238
|
Roos J, Zinngrebe J, Huber-Lang M, Lupu L, Schmidt MA, Strobel H, Westhoff MA, Stifel U, Gebhard F, Wabitsch M, Mollnes TE, Debatin KM, Halbgebauer R, Fischer-Posovszky P. Trauma-associated extracellular histones mediate inflammation via a MYD88-IRAK1-ERK signaling axis and induce lytic cell death in human adipocytes. Cell Death Dis 2024; 15:285. [PMID: 38653969 PMCID: PMC11039744 DOI: 10.1038/s41419-024-06676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Despite advances in the treatment and care of severe physical injuries, trauma remains one of the main reasons for disability-adjusted life years worldwide. Trauma patients often suffer from disturbances in energy utilization and metabolic dysfunction, including hyperglycemia and increased insulin resistance. White adipose tissue plays an essential role in the regulation of energy homeostasis and is frequently implicated in traumatic injury due to its ubiquitous body distribution but remains poorly studied. Initial triggers of the trauma response are mainly damage-associated molecular patterns (DAMPs) such as histones. We hypothesized that DAMP-induced adipose tissue inflammation contributes to metabolic dysfunction in trauma patients. Therefore, we investigated whether histone release during traumatic injury affects adipose tissue. Making use of a murine polytrauma model with hemorrhagic shock, we found increased serum levels of histones accompanied by an inflammatory response in white adipose tissue. In vitro, extracellular histones induced an inflammatory response in human adipocytes. On the molecular level, this inflammatory response was mediated via a MYD88-IRAK1-ERK signaling axis as demonstrated by pharmacological and genetic inhibition. Histones also induced lytic cell death executed independently of caspases and RIPK1 activity. Importantly, we detected increased histone levels in the bloodstream of patients after polytrauma. Such patients might benefit from a therapy consisting of activated protein C and the FDA-approved ERK inhibitor trametinib, as this combination effectively prevented histone-mediated effects on both, inflammatory gene activation and cell death in adipocytes. Preventing adipose tissue inflammation and adipocyte death in patients with polytrauma could help minimize posttraumatic metabolic dysfunction.
Collapse
Affiliation(s)
- Julian Roos
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Julia Zinngrebe
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Medical Center, Ulm, Germany
| | - Ludmila Lupu
- Institute of Clinical and Experimental Trauma Immunology, University Medical Center, Ulm, Germany
| | - Miriam A Schmidt
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Ulrich Stifel
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Florian Gebhard
- Department of Orthopedic Trauma, Hand, and Reconstructive Surgery, University Medical Center, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital Trust, Bodo, Norway
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, University Medical Center, Ulm, Germany
| | | |
Collapse
|
239
|
Lu Z, Zheng Y, Zheng J, Liang Q, Zhen Q, Cui M, Yang H, Wu H, Tian C, Zhu K, Bian C, Du L, Wu H, Guo X. Theabrownin from Fu Brick tea ameliorates high-fat induced insulin resistance, hepatic steatosis, and inflammation in mice by altering the composition and metabolites of gut microbiota. Food Funct 2024; 15:4421-4435. [PMID: 38563324 DOI: 10.1039/d3fo05459d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Fu Brick tea belongs to fermented dark tea, which is one of the six categories of tea. Fu Brick tea has been reported to reduce adiposity and has beneficial effects in the treatment of hypercholesterolemia and cardiovascular disease. Theabrownin (TB) is one of the pigments with the most abundant content in Fu Brick tea. TB has also been reported to have lipid-lowering effects, but its mechanism remains unclear. We found that TB could effectively reduce the insulin resistance and fat deposition induced by a high fat diet (HFD), decrease inflammation in the liver, improve intestinal integrity, and reduce endotoxins in circulation. Further studies showed that TB increased the abundance of Verrucomicrobiota and reduced the abundance of Firmicutes and Desulfobacterota in the intestinal tract of obese mice. The alteration of gut microbiota is closely linked to the metabolic phenotype after TB treatment through correlation analysis. Moreover, TB changed the gut microbial metabolites including L-ornithine, α-ketoglutarate, and glutamine, which have also been found to be upregulated in the liver after TB intervention. In vitro, L-ornithine, α-ketoglutarate, or glutamine significantly reduced lipopolysaccharide (LPS)-induced inflammation in macrophages. Therefore, our results suggest that TB can reduce adiposity, systemic insulin resistance, and liver inflammation induced by a HFD through altering gut microbiota and improving the intestinal tight junction integrity. The metabolites of gut microbiota might also play a role in ameliorating the HFD-induced phenotype by TB.
Collapse
Affiliation(s)
- Zhongting Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan 430022, China
| | - Qijian Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Qingcai Zhen
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Mengjie Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Haoru Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Haotian Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Cuixia Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Kangming Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Chunyong Bian
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Lei Du
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Hao Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| |
Collapse
|
240
|
Pichetkun V, Khine HEE, Srifa S, Nukulkit S, Nuengchamnong N, Hansapaiboon S, Saenmuangchin R, Chaotham C, Chansriniyom C. Diverse effects of a Cyperus rotundus extract on glucose uptake in myotubes and adipocytes and its suppression on adipocyte maturation. Sci Rep 2024; 14:9018. [PMID: 38641685 PMCID: PMC11031566 DOI: 10.1038/s41598-024-59357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/09/2024] [Indexed: 04/21/2024] Open
Abstract
Cyperus rotundus rhizomes have been used in longevity remedies in Thailand for nourishing good health, which led us to investigate the effect on energy homeostasis, especially glucose utilization in myotubes and adipocytes, and on inhibition of lipogenesis in adipocytes. The results showed that an ethyl acetate extract of C. rotundus rhizomes (ECR) containing 1.61%w/w piceatannol, with a half-maximal concentration of 17.76 ± 0.03 μg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, caused upregulation and cell-membrane translocation of glucose transporters GLUT4 and 1 in L6 myotubes but downregulation and cytoplasmic localization of GLUT4 expression in 3T3-L1 adipocytes and was related to the p-Akt/Akt ratio in both cells, especially at 100 μg/mL. Moreover, ECR (25-100 μg/mL) significantly inhibited lipid accumulation via Adenosine Monophosphate-Activated Protein Kinase (AMPK), Acetyl CoA Carboxylase (ACC), and Glycogen Synthase Kinase (GSK) pathways. Its immunoblot showed increased expression of p-AMPKα/AMPKα and p-ACC/ACC but decreased expression of p-Akt/Akt and p-GSK3β/GSK3β in 3T3-L1 adipocytes. Moreover, the decreased expression of the adipogenic effectors, perilipin1 and lipoprotein lipase, in ECR-incubated adipocytes (50 and 100 μg/mL) indicated reduced de novo lipogenesis. Our study elucidated mechanisms of C. rotundus that help attenuate glucose tolerance in skeletal muscle and inhibit lipid droplet accumulation in adipose tissue.
Collapse
Affiliation(s)
- Vipawee Pichetkun
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Natural Products and Nanoparticles (NP2), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hnin Ei Ei Khine
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suchada Srifa
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sasiwimon Nukulkit
- Center of Excellence in Natural Products and Nanoparticles (NP2), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nitra Nuengchamnong
- Science Laboratory Center, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Supakarn Hansapaiboon
- Pharmaceutical Research Instrument Center of the Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rattaporn Saenmuangchin
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Phahonyothin Rd., Klongluang, Pathumthani, 12120, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chaisak Chansriniyom
- Center of Excellence in Natural Products and Nanoparticles (NP2), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
241
|
Nezhadmoghadam F, Tamez-Peña JG, Martinez-Ledesma E. Exploring the intersection of obesity and gender in COVID-19 outcomes in hospitalized Mexican patients: a comparative analysis of risk profiles using unsupervised machine learning. Front Public Health 2024; 12:1337432. [PMID: 38699419 PMCID: PMC11063238 DOI: 10.3389/fpubh.2024.1337432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction Obesity and gender play a critical role in shaping the outcomes of COVID-19 disease. These two factors have a dynamic relationship with each other, as well as other risk factors, which hinders interpretation of how they influence severity and disease progression. This work aimed to study differences in COVID-19 disease outcomes through analysis of risk profiles stratified by gender and obesity status. Methods This study employed an unsupervised clustering analysis, using Mexico's national COVID-19 hospitalization dataset, which contains demographic information and health outcomes of patients hospitalized due to COVID-19. Patients were segmented into four groups by obesity and gender, with participants' attributes and clinical outcome data described for each. Then, Consensus and PAM clustering methods were used to identify distinct risk profiles based on underlying patient characteristics. Risk profile discovery was completed on 70% of records, with the remaining 30% available for validation. Results Data from 88,536 hospitalized patients were analyzed. Obesity, regardless of gender, was linked with higher odds of hypertension, diabetes, cardiovascular diseases, pneumonia, and Intensive Care Unit (ICU) admissions. Men tended to have higher frequencies of ICU admissions and pneumonia and higher mortality rates than women. Within each of the four analysis groups (divided based on gender and obesity status), clustering analyses identified four to five distinct risk profiles. For example, among women with obesity, there were four profiles; those with a hypertensive profile were more likely to have pneumonia, and those with a diabetic profile were most likely to be admitted to the ICU. Conclusion Our analysis emphasizes the complex interplay between obesity, gender, and health outcomes in COVID-19 hospitalizations. The identified risk profiles highlight the need for personalized treatment strategies for COVID-19 patients and can assist in planning for patterns of deterioration in future waves of SARS-CoV-2 virus transmission. This research underscores the importance of tackling obesity as a major public health concern, given its interplay with many other health conditions, including infectious diseases such as COVID-19.
Collapse
Affiliation(s)
| | | | - Emmanuel Martinez-Ledesma
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|
242
|
Zhang Q, Lu C, Lu F, Liao Y, Cai J, Gao J. Challenges and opportunities in obesity: the role of adipocytes during tissue fibrosis. Front Endocrinol (Lausanne) 2024; 15:1365156. [PMID: 38686209 PMCID: PMC11056552 DOI: 10.3389/fendo.2024.1365156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Obesity is a chronic disease that affects the energy balance of the whole body. In addition to increasing fat mass, tissue fibrosis occurred in white adipose tissue in obese condition. Fibrosis is the over-activation of fibroblasts leading to excessive accumulation of extracellular matrix, which could be caused by various factors, including the status of adipocytes. The morphology of adipocytes responds rapidly and dynamically to nutrient fluctuations. Adaptive hypertrophy of normal adipocytes protects peripheral organs from damage from lipotoxicity. However, the biological behavior of hypertrophic adipocytes in chronic obesity is abnormally altered. Adipocytes lead to fibrotic remodeling of the extracellular matrix by inducing unresolved chronic inflammation, persistent hypoxia, and increasing myofibroblast numbers. Moreover, adipocyte-induced fibrosis not only restricts the flexible expansion and contraction of adipose tissue but also initiates the development of various diseases through cellular autonomic and paracrine effects. Regarding anti-fibrotic therapy, dysregulated intracellular signaling and epigenetic changes represent potential candidate targets. Thus, modulation of adipocytes may provide potential therapeutic avenues for reversing pathological fibrosis in adipose tissue and achieving the anti-obesity purpose.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chongxuan Lu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junrong Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
243
|
Nielsen S, Jensen MD. Insulin regulation of regional lipolysis in upper-body obese and lean humans. JCI Insight 2024; 9:e175629. [PMID: 38602778 PMCID: PMC11141918 DOI: 10.1172/jci.insight.175629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Upper-body obesity (UBO) results in insulin resistance with regards to free fatty acid (FFA) release; how this differs by fat depot and sex between adults with UBO and lean adults is unknown. We tested the hypothesis that insulin suppression of FFA release from the splanchnic bed, leg fat, and upper-body nonsplanchnic (UBNS) adipose tissue would be impaired in UBO. METHODS Fourteen volunteers with UBO (7 men and 7 women) and 14 healthy volunteers with normal weight (7 men and 7 women) participated in studies that included femoral artery, femoral vein, and hepatic vein catheterization. We then measured leg and splanchnic plasma flow as well as FFA kinetics (using isotopic tracers) under overnight fasting as well as low- and high-dose insulin infusion using the insulin clamp technique. RESULTS We found the expected insulin resistance in UBO; the most quantitatively important difference between adults with UBO and lean adults was greater FFA release from UBNS adipose tissue when plasma insulin concentrations were in the postprandial, physiological range. There were obesity, but not sex, differences in the regulation of splanchnic FFA release and sex differences in the regulation of leg FFA release. CONCLUSION Reversing the defects in insulin-regulated UBNS adipose tissue FFA release would have the greatest effect on systemic FFA abnormalities in UBO. FUNDING These studies were supported by the US Public Health Service (grants DK45343 and DK40484), the Novo Nordic Foundation (grant NNF18OC0031804 and NNF16OC0021406), and the Independent Research Fund Denmark (grant 8020-00420B).
Collapse
Affiliation(s)
- Søren Nielsen
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota, USA
- Steno Diabetes Center, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
244
|
Amarowicz R, Pegg RB. Condensed tannins-Their content in plant foods, changes during processing, antioxidant and biological activities. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:327-398. [PMID: 38906590 DOI: 10.1016/bs.afnr.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Condensed tannins are considered nutritionally undesirable, because they precipitate proteins, inhibit digestive enzymes, and can affect the absorption of vitamins and minerals. From the consumer's point of view, they impart astringency to foods. Yet, they are viewed as a double-edged sword, since they possess antioxidant and anti-inflammatory activities. Intake of a small quantity of the right kind of tannins may in fact be beneficial to human health. This chapter reports on the chemical structure of condensed tannins, their content in plants and food of plant origin, how they are extracted, and methods for their determination. A description of the effects of processing on condensed tannins is discussed and includes soaking, dehulling, thermal processing (i.e., cooking, boiling, autoclaving, extrusion), and germination. The astringency of condensed tannins is described in relation to their interactions with proteins. Finally, details about the biological properties of condensed tannins, including their antimicrobial, anti-inflammatory, anticancer, anti-diabetic, and anti-obesity activities, are reviewed.
Collapse
Affiliation(s)
- Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Ronald B Pegg
- Department of Food Science & Technology, The University of Georgia, Athens, GA, United States
| |
Collapse
|
245
|
Hazar N, Jokar M, Namavari N, Hosseini S, Rahmanian V. An updated systematic review and Meta-analysis of the prevalence of type 2 diabetes in Iran, 1996-2023. Front Public Health 2024; 12:1322072. [PMID: 38638475 PMCID: PMC11025666 DOI: 10.3389/fpubh.2024.1322072] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Background Diabetes mellitus (DM) poses a significant threat to public health, and the anticipated surge of over 100% in the age-standardized prevalence of type 2 diabetes in Iran between 2021 and 2050 underscores the pressing need for focused attention. The rationale for estimating the prevalence of type 2 diabetes in Iran becomes even more compelling when considering the potential cascading effects on the healthcare system, quality of life, and economic burden. The aim of this study was to estimate the prevalence and trends of DM from 1996 to 2023 in the Islamic Republic of Iran. Methods Up to July 2023, without deadlines, the search for appropriate articles in Persian and English. Iranian sources including SID, Magiran, and Element were included in the databases, along with foreign ones like PubMed/MEDLINE, Web of Science, Science Direct, Embase, Scopus, ProQuest, and Google Scholar. Using the JBI quality checklist, the study's level of quality was evaluated. Version 14 of STATA was used to carry out the statistical analysis. The Dersimonian and Liard random-effects models were used because of heterogeneity. To investigate the causes of heterogeneity, subgroup analysis and univariate meta-regression were utilized. Sensitivity analysis was then carried out to see how each study's findings affected the final findings. The prevalence pattern over time was also followed using cumulative meta-analysis. Results There were 53 studies in all, with a combined sample size of 1,244,896 people. Men were predicted to have a type 2 diabetes prevalence of 10.80% (95% CI: 9.1-12.4), while women were assessed to have a prevalence of 13.4% (95% CI: 11.6-15.3). Additionally, the prevalence of diabetes was much higher in the 55-64 age group, coming in at 21.7% (95% CI: 17.5-25.0). The anticipated prevalence of diabetes was 7.08% for 1988 to 2002, 9.05% for 2003 to 2007, 9.14% for 2008 to 2012, 15.0% for 2013 to 2017, and 13.40% for 2018 to 2023, among other time periods. Geographically, type 2 diabetes was most prevalent in Khuzestan (15.3%), followed by Razavi Khorasan (14.4%), Qazvin (14.3%), and Yazd (12.6%). Conclusion The prevalence of type 2 diabetes was estimated at 10.8%, highlighting variations across gender, age groups, and geographic regions that underscore the necessity for specific interventions. These findings advocate for proactive measures, including tailored screening and lifestyle modification programs. The notable temporal increase from 2013 to 2017 signals the need for policymakers and healthcare practitioners to develop effective strategies, anticipating and addressing the potential future burden on the healthcare system. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023437506, identifier: CRD42023437506.
Collapse
Affiliation(s)
- Narjes Hazar
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Jokar
- Young Researchers and Elite Club, Islamic Azad University of Karaj, Karaj, Iran
| | - Negin Namavari
- Research Center for Non Communicable Disease, Jahrom University of Medical Sciences, Jahrom, Fars, Iran
| | - Saeed Hosseini
- Center for Healthcare Data Modeling, Department of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vahid Rahmanian
- Department of Public Health, Torbat Jam Faculty of Medical Science, Torbat Jam, Iran
| |
Collapse
|
246
|
Arvanitakis Z, Capuano AW, Tong H, Mehta RI, Anokye-Danso F, Bennett DA, Arnold SE, Ahima RS. Associations of Serum Insulin and Related Measures With Neuropathology and Cognition in Older Persons With and Without Diabetes. Ann Neurol 2024; 95:665-676. [PMID: 38379184 PMCID: PMC11023784 DOI: 10.1002/ana.26882] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/23/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
OBJECTIVE To examine associations of serum insulin and related measures with neuropathology and cognition in older persons. METHODS We studied 192 older persons (96 with diabetes and 96 without, matched by sex and balanced by age-at-death, education, and postmortem interval) from a community-based, clinical-pathologic study of aging, with annual evaluations including neuropsychological testing (summarized into global cognition and 5 cognitive domains) and postmortem autopsy. We assessed serum insulin, glucose, leptin, adiponectin, hemoglobin A1C, advanced glycation-end products (AGEs), and receptors for advanced glycation-end products, and calculated the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) and adiponectin-to-leptin ratio. Using adjusted regression analyses, we examined the associations of serum measures with neuropathology of cerebrovascular disease and Alzheimer's disease, and with the level of cognition proximate-to-death. RESULTS Higher HOMA-IR was associated with the presence of brain infarcts and specifically microinfarcts, and higher HOMA-IR and leptin were each associated with subcortical infarcts. Further, higher leptin levels and lower adiponectin-to-leptin ratios were associated with the presence of moderate-to-severe atherosclerosis. Serum insulin and related measures were not associated with the level of Alzheimer's disease pathology, as assessed by global, as well as amyloid burden or tau tangle density scores. Regarding cognitive outcomes, higher insulin and leptin levels, and lower adiponectin and receptors for advanced glycation-end products levels, respectively, were each associated with lower levels of global cognition. INTERPRETATION Peripheral insulin resistance indicated by HOMA-IR and related serum measures was associated with a greater burden of cerebrovascular neuropathology and lower cognition. ANN NEUROL 2024;95:665-676.
Collapse
Affiliation(s)
- Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL
| | - Ana W Capuano
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL
| | - Han Tong
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL
| | - Rupal I Mehta
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL
| | - Frederick Anokye-Danso
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL
| | - Steven E Arnold
- Alzheimer's Clinical and Translational Research Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Rexford S Ahima
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
247
|
Kummel M, Luther-Tontasse E, Koskenniemi J, Vahlberg T, Viitanen M, Johansson J, Korhonen P, Viikari L, Salminen M. National treatment guidelines poorly achieved among older subjects with type 2 diabetes - call to action! Prim Care Diabetes 2024; 18:126-131. [PMID: 38342666 DOI: 10.1016/j.pcd.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/13/2024]
Abstract
OBJECTIVE To assess risk factors and factors associated with nonachievement of the treatment target levels among 75-year-old Finns with type 2 diabetes (T2D). DESIGN Cross-sectional study. SETTING Outpatient. SUBJECTS Seventy-five-year-old participants of the Turku Senior Health Clinic Study (N = 1296) with T2D (n = 247). MAIN OUTCOME MEASURES Nonachievement of fasting blood glucose (FBG), low-density lipoprotein (LDL-C), and blood pressure (BP) levels set by the national treatment guidelines. RESULTS Nonachievement rates of FBG, BP and LDL-C were 47%, 85%, and 47%, respectively. Non-usage of T2D medication was negatively (adjusted OR 0.38, 95% CI 0.16-0.88) and central obesity positively (1.88, 1.09-3.24) related to nonachievement of FBG target level; alcohol use was positively (3.71, 1.04-13.16) and decreased self-rated health negatively (0.34, 0.12-0.97) related to the nonachievement of BP target level. Nonachievement of LDL-C target level was positively related to poor financial status (3.50, 1.19-10.28) and non-use of lipid-lowering medication (7.70, 4.07-14.56). CONCLUSIONS Nonachievement rates of the national treatment goals were high among older T2D patients, and nonachievement was related to use of medication, obesity, alcohol use, poor health, and poor financial status. We emphasize the importance of customized target setting by risk factor levels and active treatment.
Collapse
Affiliation(s)
- Maika Kummel
- Turku University of Applied Sciences/Health and Well-being, Turku, Finland; Faculty of Medicine/Clinical Medicine, Department of General Practice, University of Turku and The wellbeing services county of Southwest Finland, Turku, Finland
| | - Emma Luther-Tontasse
- Health Station Services, The wellbeing services county of Southwest Finland, Turku, Finland; University of Turku Graduate School UTUGS and Doctoral Programmes, Doctoral Programme in Clinical Research (DPCR), Turku, Finland
| | - Jaana Koskenniemi
- Turku University Hospital Services/Geriatric Medicine, The wellbeing services county of Southwest Finland, Turku, Finland
| | - Tero Vahlberg
- Faculty of Medicine, Department of Biostatistics, University of Turku and Turku University Hospital, Turku, Finland
| | - Matti Viitanen
- Turku University Hospital Services/Geriatric Medicine, The wellbeing services county of Southwest Finland, Turku, Finland; Faculty of Medicine/Clinical Medicine, Department of Geriatric Medicine, University of Turku and Turku University Hospital, Turku, Finland; Division of clinical geriatrics, NVS, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Jouni Johansson
- Faculty of Medicine/Clinical Medicine, Department of General Practice, University of Turku and The wellbeing services county of Southwest Finland, Turku, Finland; Health Station Services, The wellbeing services county of Southwest Finland, Turku, Finland
| | - Päivi Korhonen
- Faculty of Medicine/Clinical Medicine, Department of General Practice, University of Turku and The wellbeing services county of Southwest Finland, Turku, Finland
| | - Laura Viikari
- Faculty of Medicine/Clinical Medicine, Department of Geriatric Medicine, University of Turku and Turku University Hospital, Turku, Finland; Tyks Acute/Turku University Hospital, The wellbeing services county of Southwest Finland, Turku, Finland
| | - Marika Salminen
- Faculty of Medicine/Clinical Medicine, Department of General Practice, University of Turku and The wellbeing services county of Southwest Finland, Turku, Finland; Turku University Hospital Services/Geriatric Medicine, The wellbeing services county of Southwest Finland, Turku, Finland.
| |
Collapse
|
248
|
Rosendo-Silva D, Gomes PB, Rodrigues T, Viana S, da Costa AN, Scherer PE, Reis F, Pereira F, Seiça R, Matafome P. Clinical and molecular profiling of human visceral adipose tissue reveals impairment of vascular architecture and remodeling as an early hallmark of dysfunction. Metabolism 2024; 153:155788. [PMID: 38219974 DOI: 10.1016/j.metabol.2024.155788] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Adipose tissue dysfunction is more related to insulin resistance than body mass index itself and an alteration in adipose tissue function is thought to underlie the shift from metabolically healthy to unhealthy obesity. Herein, we performed a clustering analysis that revealed distinct visceral adipose tissue gene expression patterns in patients with obesity at distinct stages of metabolic dysregulation. We have built a cross-sectional cohort that aims at reflecting the evolution of the metabolic sequelae of obesity with the main objective to map the sequential events that play a role in adipose tissue dysfunction from the metabolically healthy (insulin-sensitive) state to several incremental degrees of metabolic dysregulation, encompassing insulin resistance establishment, pre-diabetes, and type 2 diabetes. We found that insulin resistance is mainly marked by the downregulation of adipose tissue vasculature remodeling-associated gene expression, suggesting that processes like angiogenesis and adaptative expansion/retraction ability suffer early dysregulation. Prediabetes was characterized by compensatory growth factor-dependent signaling and increased response to hypoxia, while type 2 diabetes was associated with loss of cellular response to insulin and hypoxia and concomitant upregulation of inflammatory markers. Our findings suggest a putative sequence of dysregulation of biological processes that is not linear and has multiple distinct phases across the metabolic dysregulation process, ultimately culminating in the climax of adipose tissue dysfunction in type 2 diabetes. Several studies have addressed the transcriptomic changes in adipose tissue of patients with obesity. However, to the best of our knowledge, this is the first study unraveling the potential molecular mechanisms associated with the multi-step evolution of adipose tissue dysfunction along the metabolic sequelae of obesity.
Collapse
Affiliation(s)
- Daniela Rosendo-Silva
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Pedro Bastos Gomes
- Department of Surgery, Universitary Hospital Center of Coimbra, Portugal
| | - Tiago Rodrigues
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Sofia Viana
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Polytechnic University of Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - André Nogueira da Costa
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Translational Medicine, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Flávio Reis
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Francisco Pereira
- Polytechnic University of Coimbra, Coimbra Institute of Engineering, Coimbra, Portugal; Centre for Informatics and Systems of the University of Coimbra (CISUC), University of Coimbra, Coimbra, Portugal
| | - Raquel Seiça
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
| | - Paulo Matafome
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Polytechnic University of Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal.
| |
Collapse
|
249
|
Muaddi MA. Exploring the Causal Relationship Between Modifiable Exposures and Diabetes Mellitus: A Two-Sample Mendelian Randomization Analysis. Cureus 2024; 16:e59034. [PMID: 38800249 PMCID: PMC11128034 DOI: 10.7759/cureus.59034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background Observational studies link lifestyle factors to diabetes, but confounding limits causal inference. This study employed Mendelian randomization (MR) to investigate the potential causal effects of major dietary, obesity, smoking, and physical activity exposures on diabetes risk. Methods A two-sample MR framework integrated FinnGen and United Kingdom Biobank (UKB) data. Genetic instruments for diet (fruits, vegetables, cheese), smoking (initiation, intensity, maternal), body mass index (BMI), and physical activity came from various consortia (n=64, 949-632, 802). Associations with diabetes odds were assessed using inverse-variance weighted analysis. Results Fruit and cheese intake and physical activity per standard deviation increase causally reduced diabetes risk in both cohorts. Conversely, smoking initiation, maternal smoking around birth, and BMI per standard deviation increase causally increased diabetes risk in both cohorts. Coffee increased diabetes risk only in FinnGen, whereas smoking intensity increased diabetes risk only in UKB. Conclusion This study provides robust evidence that modifiable lifestyle factors may have causal effects on diabetes risk. Fruit, cheese, and physical activity may protect against diabetes, whereas smoking, maternal smoking, and higher BMI appear to increase risk. Findings support public health interventions targeting diet, physical activity, smoking cessation, and healthy weight to combat the global diabetes epidemic.
Collapse
Affiliation(s)
- Mohammed A Muaddi
- Family and Community Medicine Department, Jazan University, Jazan, SAU
| |
Collapse
|
250
|
Peng C, Chen J, Wu R, Jiang H, Li J. Unraveling the complex roles of macrophages in obese adipose tissue: an overview. Front Med 2024; 18:205-236. [PMID: 38165533 DOI: 10.1007/s11684-023-1033-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/15/2023] [Indexed: 01/03/2024]
Abstract
Macrophages, a heterogeneous population of innate immune cells, exhibit remarkable plasticity and play pivotal roles in coordinating immune responses and maintaining tissue homeostasis within the context of metabolic diseases. The activation of inflammatory macrophages in obese adipose tissue leads to detrimental effects, inducing insulin resistance through increased inflammation, impaired thermogenesis, and adipose tissue fibrosis. Meanwhile, adipose tissue macrophages also play a beneficial role in maintaining adipose tissue homeostasis by regulating angiogenesis, facilitating the clearance of dead adipocytes, and promoting mitochondrial transfer. Exploring the heterogeneity of macrophages in obese adipose tissue is crucial for unraveling the pathogenesis of obesity and holds significant potential for targeted therapeutic interventions. Recently, the dual effects and some potential regulatory mechanisms of macrophages in adipose tissue have been elucidated using single-cell technology. In this review, we present a comprehensive overview of the intricate activation mechanisms and diverse functions of macrophages in adipose tissue during obesity, as well as explore the potential of drug delivery systems targeting macrophages, aiming to enhance the understanding of current regulatory mechanisms that may be potentially targeted for treating obesity or metabolic diseases.
Collapse
Affiliation(s)
- Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rui Wu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jia Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|