201
|
Li T, Li H, Peng S, Zhang F, An L, Yang G. Molecular characterization and expression pattern of X box-binding protein-1 (XBP1) in common carp (Cyprinus carpio L.): Indications for a role of XBP1 in antibacterial and antiviral immunity. FISH & SHELLFISH IMMUNOLOGY 2017; 67:667-674. [PMID: 28663129 DOI: 10.1016/j.fsi.2017.06.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 05/05/2023]
Abstract
X box-binding protein-1 (XBP1) is a transcription factor that is essential for the unfolded protein response (UPR) and the differentiation of plasma cells, and some findings have also uncovered its function in innate immunity. XBP1 typically has two different transcripts, un-spliced (XBP1u) and spliced forms (XBP1s), but XBP1s is an active transcription factor in the regulation of target genes. To date, there is no evidence about the identification and function of XBP1 in common carp. Moreover, no data are currently available regarding the role of fish XBP1 in innate immunity. Thus, to determine whether XBP1 is involved in innate immune response in common carp, we cloned CcXBP1s and examined the expression of XBP1s and a XBP1s stimulated gene (IL-6) after Aeromonas hydrophila (A. hydrophila) and polyinosinic-polycytidylic acid (polyI:C) challenges. The results imply that CcXBP1s, as an active transcription factor, might play regulation roles in the antibacterial and antiviral innate immune responses of common carp. This allows us to gain new insights into the immunological function of XBP1 in fish innate immunity and the evolution of this important class of genes across vertebrates.
Collapse
Affiliation(s)
- Ting Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Shaoqing Peng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Fumiao Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China.
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
202
|
Tian L, Zhou XQ, Jiang WD, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Xie F, Feng L. Sodium butyrate improved intestinal immune function associated with NF-κB and p38MAPK signalling pathways in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 66:548-563. [PMID: 28546021 DOI: 10.1016/j.fsi.2017.05.049] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
The present study evaluated the effect of dietary sodium butyrate (SB) supplementation on the growth and immune function in the proximal intestine (PI), middle intestine (MI) and distal intestine (DI) of young grass carp (Ctenopharyngodon idella). The fish were fed one powdery sodium butyrate (PSB) diet (1000.0 mg kg-1 diet) and five graded levels of microencapsulated sodium butyrate (MSB) diets: 0.0 (control), 500.0, 1000.0, 1500.0 and 2000.0 mg kg-1 diet for 60 days. Subsequently, a challenge test was conducted by injection of Aeromonas hydrophila. The results indicated that optimal SB supplementation improved the fish growth performance (percent weight gain, specific growth rate, feed intake and feed efficiency) and intestinal growth and function (intestine weight, intestine length, intestinal somatic index, folds height, trypsin, chymotrypsin, lipase and amylase activities), increased beneficial bacteria lactobacillus amount and butyrate concentration, decreased baneful bacteria Aeromonas and Escherichia coli amounts, reduced acetate and propionate concentrations, elevated lysozyme and acid phosphatase activities, increased complement (C3 and C4) and immunoglobulin M contents, and up-regulated β-defensin-1 (rather than DI), hepcidin, liver expressed antimicrobial peptide 2B (LEAP-2B) (except LEAP-2A), Mucin2, interleukin 10 (IL-10), IL-11 (rather than PI), transforming growth factor β1 (rather than PI), transforming growth factor β2 (rather than PI), IL-4/13A, IL-4/13B and inhibitor of κBα (IκBα) mRNA levels, whereas it down-regulated tumor necrosis factor α, interferon γ2, IL-1β (rather than PI), IL-6, IL-8, IL-15 (rather than PI), IL-17D (rather than PI), IL-12p35, IL-12p40 (rather than PI or MI), nuclear factor kappa B p65 (NF-κB p65) (except NF-κB p52), c-Rel (rather than PI or MI), IκB kinase β (IKKβ) (rather than PI), IKKγ (except IKKα), p38 mitogen-activated protein kinase (p38MAPK) and MAPK kinase 6 mRNA levels in three intestinal segments of young grass carp (P < 0.05), suggesting that SB supplementation improves growth and intestinal immune function of fish. Furthermore, according to the positive effect, MSB was superior to PSB on improving growth and enhancing intestinal immune function of fish, and based on feed efficiency of young grass carp, the efficacy of MSB was 3.5-fold higher than that of PSB. Finally, based on percent weight gain, protecting fish against enteritis morbidity and lysozyme activity, the optimal SB supplementation (MSB as SB source) of young grass carp were estimated to be 160.8, 339.9 and 316.2 mg kg-1 diet, respectively.
Collapse
Affiliation(s)
- Li Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fei Xie
- Shanghai Menon Animal Nutrition Technology Co., Ltd, Shanghai 201807, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
203
|
Wu P, Liu Y, Jiang WD, Jiang J, Zhang YA, Zhou XQ, Feng L. Intestinal immune responses of Jian carp against Aeromonas hydrophila depressed by choline deficiency: Varied change patterns of mRNA levels of cytokines, tight junction proteins and related signaling molecules among three intestinal segments. FISH & SHELLFISH IMMUNOLOGY 2017; 65:34-41. [PMID: 28366783 DOI: 10.1016/j.fsi.2017.03.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/21/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to investigate the effects of choline deficiency on intestinal inflammation of fish after Aeromonas hydrophila infection and the potential molecular mechanisms. Juvenile Jian carp (Cyprinus carpio var. Jian) were fed two diets containing choline at 165 (deficient group) and 607 mg/kg diet respectively for 65 days. Choline deficiency decreased intestinal lysozyme activity, C3 and IgM contents, increased acid phosphatase activity, downregulated mRNA levels of antimicrobial peptides [liver-expressed antimicrobial peptide (LEAP) 2A, LEAP-2B, hepcidin and defensin], cytokines [interleukin (IL) 6a, tumor necrosis factor α (TNF-α), interferon γ2b (IFN-γ2b), IL-6b and transforming growth factor β2 (TGF-β2) only in proximal intestine, IL-10 in mid and distal intestine], immune-related signaling molecules [Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), nuclear factor kappa B (NF-κB), inhibitor of NF-κB (IκB), Janus kinase 3 (JAK3), and signal transducers and activators of transcription 5 (STAT5)], tight junction proteins (claudin 3b, claudin 3c, claudin 11 and occludin), and mitogen-activated protein kinases p38 (p38MAPK) in proximal and distal intestine of juvenile Jian carp after A. hydrophila challenge. In contrast, choline deficiency upregulated mRNA levels of antimicrobial peptides (LEAP-2A, LEAP-2B, hepcidin and defensin), cytokines (IL-6b, IFN-γ2b and TGF-β2), immune-related signaling molecules (TLR4, MyD88, NF-κB, IκB, JAK3, STAT4 in three intestinal segments, and STAT6), claudin 11, and p38MAPK in mid intestine of fish. This study provides new finding that choline deficiency-induced immune responses against A. hydrophila infection were varied among three intestinal segments in fish.
Collapse
Affiliation(s)
- Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
204
|
Kelly C, Salinas I. Under Pressure: Interactions between Commensal Microbiota and the Teleost Immune System. Front Immunol 2017; 8:559. [PMID: 28555138 PMCID: PMC5430139 DOI: 10.3389/fimmu.2017.00559] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 04/26/2017] [Indexed: 01/15/2023] Open
Abstract
Commensal microorganisms inhabit every mucosal surface of teleost fish. At these surfaces, microorganisms directly and indirectly shape the teleost immune system. This review provides a comprehensive overview of how the microbiota and microbiota-derived products influence both the mucosal and systemic immune system of fish. The cross talk between the microbiota and the teleost immune system shifts significantly under stress or disease scenarios rendering commensals into opportunists or pathogens. Lessons learnt from germ-free fish models as well as from oral administration of live probiotics to fish highlight the vast impact that microbiota have on immune development, antibody production, mucosal homeostasis, and resistance to stress. Future studies should dissect the specific mechanisms by which different members of the fish microbiota and the metabolites they produce interact with pathogens, with other commensals, and with the teleost immune system.
Collapse
Affiliation(s)
- Cecelia Kelly
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
205
|
Tang Z, Sun H, Chen T, Lin Z, Jiang H, Zhou X, Shi C, Pan H, Chang O, Ren P, Yu J, Li X, Xu J, Huang Y, Yu X. Oral delivery of Bacillus subtilis spores expressing cysteine protease of Clonorchis sinensis to grass carp (Ctenopharyngodon idellus): Induces immune responses and has no damage on liver and intestine function. FISH & SHELLFISH IMMUNOLOGY 2017; 64:287-296. [PMID: 28323213 DOI: 10.1016/j.fsi.2017.03.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 06/06/2023]
Abstract
Clonorchis sinensis (C. sinensis) is a fish-borne trematode. Human can be infected by ingestion of C. sinensis metacercariae parasitized in grass carp (Ctenopharyngodon idella). For induction of effective oral immune responses, spores of Bacillus subtilis (B. subtilis) WB600 were utilized as vehicle to delivery CsCP (cysteine protease of C. sinensis) cooperated with CotC (B.s-CotC-CP), one of coat proteins, to the gastrointestinal tract. After routine culture of 8-12 h in LB medium, B. subtilis containing CotC-CsCP was transferred into the sporulation culture medium. SDS-PAGE, western blotting and the growth curve indicated that the best sporulation time of recombinant WB600 was 24-30 h at 37 °C with continuous shaking (250 rpm). Grass carp were fed with three levels of B.s-CotC-CP (1 × 106, 1 × 107, and 1 × 108 CFU g-1) incorporated in the basal pellets diet. The commercial pellets or supplemented with spores just expressing CotC (1 × 107 CFU g-1) were served as control diet. Our results showed that grass carp orally immunized with the feed-based B.s-CotC-CP developed a strong specific immune response with significantly (P < 0.05) higher levels of IgM in samples of serum, bile, mucus of surface and intestinal compared to the control groups. Abundant colonization spores expressing CsCP were found in hindgut that is conducive to absorption and presentation of antigen. Moreover, B. subtilis spores appeared to show no sign of toxicity or damage in grass carp. Our cercariae challenge experiments suggested that oral administration of spores expressing CsCP could develop an effective protection against C. sinensis in fish body. Therefore, this study demonstrated that the feed-based recombinant spores could trigger high levels of mucosal and humoral immunity, and would be a promising candidate vaccine against C. sinensis metacercariae formation in freshwater fish.
Collapse
Affiliation(s)
- Zeli Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Hengchang Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - TingJin Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Zhipeng Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Hongye Jiang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Xinyi Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Houjun Pan
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Ouqin Chang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Pengli Ren
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Jinyun Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Jin Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China.
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China.
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
206
|
Kokou F, Sarropoulou E, Cotou E, Kentouri M, Alexis M, Rigos G. Effects of graded dietary levels of soy protein concentrate supplemented with methionine and phosphate on the immune and antioxidant responses of gilthead sea bream (Sparus aurata L.). FISH & SHELLFISH IMMUNOLOGY 2017; 64:111-121. [PMID: 28284854 DOI: 10.1016/j.fsi.2017.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/04/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
The effects of a dietary soy protein concentrate (SPC) as a fish meal (FM) substitute, on selected innate immune responses, the oxidative status, hepatic and intestinal morphology of gilthead sea bream, Sparus aurata, were evaluated after a three-month feeding trial. Isonitrogenous (45% crude protein) and isoenergetic (23 kJ/g gross energy) diets with 20% (SPC20), 40% (SPC40) and 60% (SPC60) of SPC inclusion, supplemented with methionine and phosphate, were evaluated against a diet containing FM as the sole protein source. Diets were allocated in triplicate groups of 26-g fish (8 kg m-3/tank) and administered for three months. Immune responses were evaluated by performing immunological assays in blood (respiratory burst activity) and serum (myeloperoxidase content, bacteriolytic and lysozyme activity), as well as by gene expression analysis of immune-associated genes (MHCIIα, β2m, CSF-1R, NCCRP-1, TGF-β1, HSP70) in the head kidney and distal intestine. In addition, oxidative stress was evaluated by measuring the activity of liver enzymes associated with the antioxidant system. The respiratory burst activity of blood was significantly decreased in the SPC40 group, while serum myeloperoxidase content and bacteriolytic and lysozyme activities were affected. Significantly higher expression levels of NCCRP-1 and HSP70 were found in SPC60 head kidneys, while increased intestinal MHCIIα and NCCRP-1 transcripts were observed in SPC40. Hepatic antioxidant enzyme activity of glutathione reductase and glutathione-S-transferase was significantly enhanced in the SPC40 and SPC60 groups, while superoxide dismutase activity was increased only in the SPC40 group. Moreover, increased lipid accumulation in the enterocytes of the distal intestine was observed in the SPC60 group. Overall, a three-month feeding period with diets over 40% of dietary SPC inclusion as a FM substitute, indicated increases on immune and antioxidant enzyme responses, suggesting the dietary SPC levels that gilthead sea bream can tolerate.
Collapse
Affiliation(s)
- Fotini Kokou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71003 Gournes Pediados, Heraklion Crete/16777 Aghios Kosmas Elliniko, Attiki, Greece.
| | - Elena Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71003 Gournes Pediados, Heraklion Crete/16777 Aghios Kosmas Elliniko, Attiki, Greece
| | - Efthimia Cotou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71003 Gournes Pediados, Heraklion Crete/16777 Aghios Kosmas Elliniko, Attiki, Greece
| | - Maroudio Kentouri
- Department of Biology, University of Crete, PO Box 1470, Heraklion, Crete, 71110, Greece
| | - Maria Alexis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71003 Gournes Pediados, Heraklion Crete/16777 Aghios Kosmas Elliniko, Attiki, Greece
| | - George Rigos
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71003 Gournes Pediados, Heraklion Crete/16777 Aghios Kosmas Elliniko, Attiki, Greece
| |
Collapse
|
207
|
Pan FY, Wu P, Feng L, Jiang WD, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Methionine hydroxy analogue improves intestinal immunological and physical barrier function in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 64:122-136. [PMID: 28279791 DOI: 10.1016/j.fsi.2017.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/27/2017] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
This study was conducted to test the hypothesis that methionine hydroxy analogue (MHA) enhances the defense against enteritis occurrence via improving intestinal barrier function in fish. After 630 young grass carp (Ctenopharyngodon idella) (259.70 ± 0.47 g) fed six graded levels of MHA (0, 2.4, 4.4, 6.4, 8.5 and 10.5 g/kg diet) and one dl-methionine group (6.4 g/kg diet) for 8 weeks. At the end of feeding trial, 15 fish from each treatment were challenged with Aeromonas hydrophila for 14 days. The results indicated that optimal MHA enhanced the capacity of fish against enteritis emergence, which might be related to the positive effects of MHA on intestinal immunological and physical barrier function in fish. Dietary MHA supplementation enhanced intestinal immunological barrier function via (1) lysozyme (LZM) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M (IgM) contents and up-regulated mRNA levels of liver-expressed antimicrobial peptide 2, hepcidin (head kidney), β-defensin-1; (2) repressing p38MAPK/IKKβ/IκBα/NF-κB signaling pathway to down-regulate pro-inflammatory cytokines mRNA levels except IL-8 mRNA level only in mid and distal intestine; (3) potentiating TOR-signal cascades to up-regulate anti-inflammatory cytokines. Meanwhile, dietary MHA supplementation improved intestinal physical barrier via (1) down-regulating c-Jun N-terminal kinase mRNA levels to inhibit death receptor and mitochondria pathways induced apoptosis; (2) modulating Keap1a/Nrf2 system to elevate antioxidant enzymes genes isoforms mRNA levels and corresponding enzymes activities, subsequently alleviate oxidative damage; (3) down-regulating MCLK gene expression to up-regulating occludin, zonula occluden 1 and claudins mRNA levels except claudin-7a and claudin-7b only in the proximal intestine. In conclusion, bases on the capacity defense against enteritis, proximal intestinal malondialdehyde content and lysozyme activity, the optimal MHA supplementation levels were 5.83, 5.59 and 6.07 g/kg diet (4.01 g/kg methionine basal), respectively. This study indicates that MHA exerts a positive effect on fish intestinal health status and a superior efficacy to dl-methionine based on the positive effects.
Collapse
Affiliation(s)
- Fei-Yu Pan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
208
|
Gonçalves AT, Valenzuela-Muñoz V, Gallardo-Escárate C. Intestinal transcriptome modulation by functional diets in rainbow trout: A high-throughput sequencing appraisal to highlight GALT immunomodulation. FISH & SHELLFISH IMMUNOLOGY 2017; 64:325-338. [PMID: 28300682 DOI: 10.1016/j.fsi.2017.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
Functional ingredients such as pre- and probiotics are used in aquaculture to improve fish condition, modulating microbiota and promoting a healthy intestinal functioning. They also exert an active effect on the gut associated lymphoid tissue (GALT), stimulating the immune system. However, the molecular underpinnings of pre- and probiotics effect on intestinal mucosa are still unknown. This study investigated the intestinal mucosa transcriptome modulation when fish were fed functional diets and kept at different stocking densities. Juvenile rainbow trout were kept at low (LD-3Kgm-3) and high density (HD-40 kgm-3) and fed for 30 days functional diets with the prebiotic mannanoligosaccharide (PRE-0.6%), the probiotic Saccharomyces cerevisiae (PRO-0.5%), the mixture of both (MIX) and a control diet (CTRL). Intestinal transcriptome was evaluated by high-throughput sequencing and blood plasma for biochemical parameters. Fish fed functional diets presented better condition regardless density, and that functional diets modulate intestinal transcriptome in different manner depending on the stocking density. At LD, fish from PRO presented stronger modulation with the majority of transcripts being down-regulated, including the immune related ones, whereas at HD both PRO and MIX groups were more modulated, when comparing to the respective CTRL groups. Density had an overwhelming suppressive effect on the immune-related genes, but this effect was counteracted by feeding functional diets, especially in fish fed with probiotics. This study shows for the first time the intestinal transcriptomic modulation when fish are fed functional diets at different stocking densities, and it shows the mitigating effect of these diets against deleterious conditions such as high density.
Collapse
Affiliation(s)
- Ana Teresa Gonçalves
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, University of Concepción, Concepción, Chile.
| | - Valentina Valenzuela-Muñoz
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, University of Concepción, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, University of Concepción, Concepción, Chile
| |
Collapse
|
209
|
Picchietti S, Nuñez-Ortiz N, Stocchi V, Randelli E, Buonocore F, Guerra L, Scapigliati G. Evolution of lymphocytes. Immunoglobulin T of the teleost sea bass (Dicentrarchus labrax): Quantitation of gene expressing and immunoreactive cells. FISH & SHELLFISH IMMUNOLOGY 2017; 63:40-52. [PMID: 28167252 DOI: 10.1016/j.fsi.2017.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/29/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Immunoglobulin T (IgT) is one of the key effector molecules of jawed vertebrate's adaptive immune system, and in this work we describe the quantitative distribution of IgT-expressing and IgT-producing cells in tissues of the European seabass Dicentrarchus labrax by using mRNA riboprobes and a specific anti-IgT antibody. A polyclonal antiserum (pAb) was prepared by immunizing rabbits with three synthetic peptides deduced from the full length IgT cDNA sequence and located in a surface-exposed CH3 domain of IgT constant region. The obtained antiserum, named RAIgT1, was able to recognize by ELISA immunization antigens and IgT from intestinal mucus and serum. In western blots of head kidney leukocytes lysates the antiserum recognized a 180 kDa polypeptide in non-reducing, and a 75 kDa peptide in reducing conditions. Interestingly, the RAIgT1 pAb crossreacted intensely in western blots with rainbow trout IgT purified from mucus and serum. Antisense mRNA IgT oligonucleotide sequences were employed in in situ hybridization to detect IgT-expressing cells in sections from lymphoid tissues, and positive cells were observed in head kidney, spleen, intestine and gills. By employing RAIgT1 in quantitative immunohistochemistry, the highest number of IgT-producing cells was observed in the gills (9.5 ± 0.7%), followed by intestine (8.4 ± 1.2%), head kidney (6.2 ± 1.4%), and spleen (4.1 ± 0.7%). Interestingly, the number of IgT-B cells showed a regionalization in the intestine, increasing from the proximal to the terminal part. By immunofluorescence and flow cytometry of live leukocytes, the percentages of RAIgT1 stained cells were 34 ± 11% in the intestine, 22 ± 5% in head kidney, 16 ± 7% in spleen, and 9 ± 5% in gills. At the fluorescence microscope, live cells from these tissues showed a typical membrane-associated positivity and a lymphocytic morphology, and no IgT/IgM double positive cells were detected. Immunoreactive cells have been purified from head kidney using magnetic beads, and IgT-enriched cells showed by RT-PCR an enhanced expression of the IgT gene, whereas IgT-depleted cells had an highest expression of IgM and TRβ genes. These data describe for the first time a quantitative panel of IgT-expressing and IgT-immunoreactive cells in tissues of a teleost fish species.
Collapse
Affiliation(s)
- S Picchietti
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy
| | - N Nuñez-Ortiz
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy
| | - V Stocchi
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy
| | - E Randelli
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy
| | - F Buonocore
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy
| | - L Guerra
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy
| | - G Scapigliati
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy.
| |
Collapse
|
210
|
Preliminary study of an oral vaccine against infectious hematopoietic necrosis virus using improved yeast surface display technology. Mol Immunol 2017; 85:196-204. [PMID: 28285182 DOI: 10.1016/j.molimm.2017.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 01/25/2023]
Abstract
Infectious hematopoietic necrosis virus (IHNV) is a common pathogen that causes severe disease in the salmonid aquaculture industry. Because oral vaccines induce more efficient mucosal immunity than parenteral immunization, an oral vaccine was developed with an improved yeast cell surface display technology to induce an immune response to IHNV. The oral yeast vaccine, designated EBY100/pYD1-bi-G, was delivered orally to rainbow trout (Oncorhynchus mykiss) on days 1 and 32, and the nonspecific and specific immune responses were measured 50days after the first vaccination. In the hindgut, spleen, and head kidney, the expression of IFN-1 and Mx-1 was significantly upregulated after oral vaccination with EBY100/pYD1-bi-G, and the highest expression of IFN-1 and Mx-1 was observed in the spleen (7.5-fold higher than the control group) and head kidney (3.9-fold higher than the control group), respectively. Several markers of the adaptive immune response (IgM, IgT, CD4, and CD8) were also significantly upregulated, and the highest expression of these markers was observed in the hindgut, suggesting that the mucosal immune response was successfully induced by oral vaccination with EBY100/pYD1-bi-G. Sera from the orally vaccinated rainbow trout showed higher anti-IHNV neutralizing antibody titers (antibody titer 81±4) than the control sera (antibody titer 7±3), and the relative percentage survival after IHNV challenge was 45.8% compared with 2% in the control group. Although the protection afforded by this orally delivered vaccine was lower than that of a DNA vaccine (83%-98%), it is a promising candidate vaccine with which to protect larval fish against IHNV, which are most susceptible to the virus and difficult to inject with a DNA vaccine.
Collapse
|
211
|
Gao Y, He J, He Z, Li Z, Zhao B, Mu Y, Lee JY, Chu Z. Effects of fulvic acid on growth performance and intestinal health of juvenile loach Paramisgurnus dabryanus (Sauvage). FISH & SHELLFISH IMMUNOLOGY 2017; 62:47-56. [PMID: 28089895 DOI: 10.1016/j.fsi.2017.01.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/29/2016] [Accepted: 01/06/2017] [Indexed: 05/27/2023]
Abstract
A 60-day feeding trial was conducted to determine the effect of dietary fulvic acid supplements on intestinal digestive activity (enzymatic analysis), antioxidant activity, immune enzyme activity and microflora composition of juvenile loach (initial weight of 6.2 ± 0.1 g) reared in experimental aquaria. Five test diets containing 0, 0.5, 1.0, 1.5, and 2% fulvic acid were randomly assigned to three aquaria, respectively. Elevated growth performance including final weight, weight gain (WG), specific growth rate (SGR) and feed conversion ratio (FCR) was observed in loaches that were fed fulvic acid. Maximal weight gain rates and specific growth rates occurred at the 1.5% additive level. The optimal dietary fulvic requirement for maximal growth of juvenile loach is 16.4 g per kg of the diet based on the quadratic regression analysis of specific growth rate against dietary fulvic acid levels. Furthermore, intestinal protease activity, antioxidant activity, lysozyme activity (LZM), complement 3 (C3) content, immunoglobulin M (IgM) content, acid phosphatase activity (ACP) and alkaline phosphatase activity (AKP) were significantly elevated with concomitant increasing levels of dietary fulvic acid. Following a deep sequencing analysis, a total of 42,058 valid reads and 609 OTUs (operational taxonomic units) obtained from the control group and the group displaying the most optimal growth rate were analyzed. Fulvic acid supplementation resulted in an abundance of Firmicute and Actinobacteria sequences, with a concomitant reduction in the abundance of Proteobacteria. Results indicated that fulvic acid supplementation resulted in a reduction in the relative abundance of Serratia, Acinetobacter, Aeromonas and Edwardsiella, and a relative increase in the abundance of Lactobacillus in the intestine. In conclusion, these results suggest that fulvic acid improves growth performance and intestinal health condition of loach, indicates that fulvic acid could be used as an immunoenhancer in loach culture.
Collapse
Affiliation(s)
- Yang Gao
- Fishery School, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jie He
- Marine Fishery Research Institute of Zhejiang Province, Zhoushan 316021, China
| | - Zhuliu He
- Fishery School, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhiwei Li
- Fishery School, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bo Zhao
- Fishery School, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yi Mu
- Fishery School, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jeong-Yeol Lee
- Department of Aquaculture and Aquatic Science, Kunsan National University, Gunsan 573-701, South Korea
| | - Zhangjie Chu
- Fishery School, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
212
|
Løvmo SD, Speth MT, Repnik U, Koppang EO, Griffiths GW, Hildahl JP. Translocation of nanoparticles and Mycobacterium marinum across the intestinal epithelium in zebrafish and the role of the mucosal immune system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:508-518. [PMID: 27343826 DOI: 10.1016/j.dci.2016.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Nano- and microparticles are promising carrier systems for oral delivery of drugs or vaccines, particularly in fish aquaculture. However, the mechanisms of uptake, trans-epithelial transport and immune response to nano/micrometer sized particles, or microorganisms such as bacteria are poorly understood in fish. Here, adult zebrafish were used to study the uptake of different nano- and microparticles and the pathogenic bacteria Mycobacterium marinum in the intestine, and their interactions with epithelial cells and the mucosal immune system. Fluorescent particles or bacteria were delivered directly into the adult zebrafish intestine by oral intubation and their localization was imaged in intestine, liver and spleen sections. Zebrafish do not appear to have M-cells, but both nanoparticles and bacteria were rapidly taken up in the intestine and transported to the liver and spleen. In each tissue, both bacteria and particles largely localized to leukocytes, presumably macrophages.
Collapse
Affiliation(s)
- Signe Dille Løvmo
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Martin Tobias Speth
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Urska Repnik
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Erling Olaf Koppang
- School of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - Gareth Wyn Griffiths
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Jon Paul Hildahl
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| |
Collapse
|
213
|
Song X, Hu X, Sun B, Bo Y, Wu K, Xiao L, Gong C. A transcriptome analysis focusing on inflammation-related genes of grass carp intestines following infection with Aeromonas hydrophila. Sci Rep 2017; 7:40777. [PMID: 28094307 PMCID: PMC5240114 DOI: 10.1038/srep40777] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/12/2016] [Indexed: 11/09/2022] Open
Abstract
Inflammation is a protective response that is implicated in bacterial enteritis and other fish diseases. The inflammatory mechanisms behind Aeromonas hydrophila infections in fish remain poorly understood. In this study, we performed a de novo grass carp transcriptome assembly using Illumina's Solexa sequencing technique. On this basis we carried out a comparative analysis of intestinal transcriptomes from A. hydrophila-challenged and physiological saline solution (PSS/mock) -challenged fish, and 315 genes were up-regulated and 234 were down-regulated in the intestines infected with A. hydrophila. The GO enrichment analysis indicated that the differentially expressed genes were enriched to 12, 4, and 8 GO terms in biological process, molecular function, and cellular component, respectively. A KEGG analysis showed that 549 DEGs were involved in 165 pathways. Moreover, 15 DEGs were selected for quantitative real-time PCR analysis to validate the RNA-seq data. The results confirmed the consistency of the expression levels between RNA-seq and qPCR data. In addition, a time-course analysis of the mRNA expression of 12 inflammatory genes further demonstrated that the intestinal inflammatory responses to A. hydrophila infection simultaneously modulated gene expression variations. The present study provides intestine-specific transcriptome data, allowing us to unravel the mechanisms of intestinal inflammation triggered by bacterial pathogens.
Collapse
Affiliation(s)
- Xuehong Song
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.,National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Bingyao Sun
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yunxuan Bo
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Kang Wu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Lanying Xiao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.,National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| |
Collapse
|
214
|
Gao C, Fu Q, Su B, Zhou S, Liu F, Song L, Zhang M, Ren Y, Dong X, Tan F, Li C. Transcriptomic profiling revealed the signatures of intestinal barrier alteration and pathogen entry in turbot (Scophthalmus maximus) following Vibrio anguillarum challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:159-168. [PMID: 27431928 DOI: 10.1016/j.dci.2016.07.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
The mucosal immune system serves as the frontline barriers of host defense against pathogen infection, especially for the fishes, which are living in the pathogen rich aquatic environment. The intestine constitutes the largest surface body area in constantly contact with the external pathogens, and plays a vital role in the immune defense against inflammation and pathogen infection. Previous studies have revealed that fish intestine might serves as the portal of entry for Vibrio anguillarum. To characterize the immune actors and their associated immune activities in turbot intestine barrier during bacterial infection, here we examined the gene expression profiles of turbot intestine at three time points following experimental infection with V. anguillarum utilizing RNA-seq technology. A total of 122 million reads were assembled into 183,101 contigs with an average length of 1151 bp and the N50 size of 2302 bp. Analysis of differential gene expression between control and infected samples at 1 h, 4 h, and 12 h revealed 2079 significantly expressed genes. Enrichment and pathway analysis of the differentially expressed genes showed the centrality of the pathogen attachment and recognition, antioxidant/apoptosis, mucus barrier modification and immune activation/inflammation in the pathogen entry and host immune responses. The present study reported the novel gene expression patterns in turbot mucosal immunity, which were overlooked in previous studies. Our results can help to understand the mechanisms of turbot host defense, and may also provide foundation to identify the biomarkers for future selection of disease-resistant broodstock and evaluation of disease prevention and treatment options.
Collapse
Affiliation(s)
- Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Baofeng Su
- Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China; National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fengqiao Liu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yichao Ren
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyu Dong
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fenghua Tan
- School of International Education and Exchange, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
215
|
Synbiotic (Biomin imbo) alters gut bacterial microflora of Russian sturgeon, Acipenser guldenstadti (Brandt & Ratzeburg, 1833) in a time-dependent pattern. J Parasit Dis 2016; 40:1189-1192. [PMID: 27876912 DOI: 10.1007/s12639-015-0647-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022] Open
Abstract
We investigated the efficiency of Synbiotic (Biomin imbo) in alternation and stabilization of gut microflora of Russian sturgeon, Acipenser guldenstadti. For this purpose, five experimental treatments and one control group with three replicates were considered. In treatment groups, fish were fed with diet containing 1 (T1), 1.5 (T2), 2 (T3), 2.5 (T4) and 3 (T5) g Synbiotic/kg diet. In control group, fish were fed without supplement of Synbiotic. Sampling for bacterial studies was conducted at days 20, 40 and 60 after the beginning of the experiment. According to results, there were no significant differences in total bacterial count between Synbiotic treatments and also in comparison with control group 20 days after the beginning of the experiment (P > 0.05). At days 40 and 60 of experiment, the highest total bacterial counts were observed in control and T1 group respectively. At day 20, the lactic acid bacteria count was higher significantly in Synbiotic treatments compared to control group (P < 0.05). In all sampling times (i.e. days 20, 40 and 60), the highest lactic acid bacteria count was observed in fish fed with 3 g Synbiotic/kg diet i.e. treatment 5 (P < 0.05). In each experimental group, total bacteria and lactic acid bacteria counts increased significantly as the duration of experiment expanded. In this regard, these parameters were significantly higher at day 60 compared to day 40 and 20 (P < 0.05). In conclusion, our results showed that Synbiotic (Biomin imbo) alters and stabilizes efficiently the microflora of Russian sturgeon gut towards lactic acid bacteria in a time-dependent pattern.
Collapse
|
216
|
Parra D, Korytář T, Takizawa F, Sunyer JO. B cells and their role in the teleost gut. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:150-66. [PMID: 26995768 PMCID: PMC5125549 DOI: 10.1016/j.dci.2016.03.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 05/03/2023]
Abstract
Mucosal surfaces are the main route of entry for pathogens in all living organisms. In the case of teleost fish, mucosal surfaces cover the vast majority of the animal. As these surfaces are in constant contact with the environment, fish are perpetually exposed to a vast number of pathogens. Despite the potential prevalence and variety of pathogens, mucosal surfaces are primarily populated by commensal non-pathogenic bacteria. Indeed, a fine balance between these two populations of microorganisms is crucial for animal survival. This equilibrium, controlled by the mucosal immune system, maintains homeostasis at mucosal tissues. Teleost fish possess a diffuse mucosa-associated immune system in the intestine, with B cells being one of the main responders. Immunoglobulins produced by these lymphocytes are a critical line of defense against pathogens and also prevent the entrance of commensal bacteria into the epithelium. In this review we will summarize recent literature regarding the role of B-lymphocytes and immunoglobulins in gut immunity in teleost fish, with specific focus on immunoglobulin isotypes and the microorganisms, pathogenic and non-pathogenic that interact with the immune system.
Collapse
Affiliation(s)
- David Parra
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Tomáš Korytář
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
217
|
Løkka G, Koppang EO. Antigen sampling in the fish intestine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:138-149. [PMID: 26872546 DOI: 10.1016/j.dci.2016.02.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
Antigen uptake in the gastrointestinal tract may induce tolerance, lead to an immune response and also to infection. In mammals, most pathogens gain access to the host though the gastrointestinal tract, and in fish as well, this route seems to be of significant importance. The epithelial surface faces a considerable challenge, functioning both as a barrier towards the external milieu but simultaneously being the site of absorption of nutrients and fluids. The mechanisms allowing antigen uptake over the epithelial barrier play a central role for maintaining the intestinal homeostasis and regulate appropriate immune responses. Such uptake has been widely studied in mammals, but also in fish, a number of experiments have been reported, seeking to reveal cells and mechanisms involved in antigen sampling. In this paper, we review these studies in addition to addressing our current knowledge of the intestinal barrier in fish and its anatomical construction.
Collapse
Affiliation(s)
- Guro Løkka
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway.
| | - Erling Olaf Koppang
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway.
| |
Collapse
|
218
|
Embregts CWE, Forlenza M. Oral vaccination of fish: Lessons from humans and veterinary species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:118-37. [PMID: 27018298 DOI: 10.1016/j.dci.2016.03.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/17/2016] [Indexed: 05/08/2023]
Abstract
The limited number of oral vaccines currently approved for use in humans and veterinary species clearly illustrates that development of efficacious and safe oral vaccines has been a challenge not only for fish immunologists. The insufficient efficacy of oral vaccines is partly due to antigen breakdown in the harsh gastric environment, but also to the high tolerogenic gut environment and to inadequate vaccine design. In this review we discuss current approaches used to develop oral vaccines for mass vaccination of farmed fish species. Furthermore, using various examples from the human and veterinary vaccine development, we propose additional approaches to fish vaccine design also considering recent advances in fish mucosal immunology and novel molecular tools. Finally, we discuss the pros and cons of using the zebrafish as a pre-screening animal model to potentially speed up vaccine design and testing for aquaculture fish species.
Collapse
Affiliation(s)
- Carmen W E Embregts
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
219
|
Galindo-Villegas J, Garcia-Garcia E, Mulero V. Role of histamine in the regulation of intestinal immunity in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:178-186. [PMID: 26872545 DOI: 10.1016/j.dci.2016.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
In mammals, during the acute inflammatory response, the complex interrelationship and cross-talk among histamine and the immune system has been fairly well characterized. There is a substantial body of information on its structure, metabolism, receptors, signal transduction, physiologic and pathologic effects. However, for early vertebrates, there is little such knowledge. In the case of teleost fish, this lack of knowledge has been due to the widely held belief that histamine is not present in this phylogenetic group. However, it has been recently demonstrated, that granules of mast cells in perciforms contain biologically active histamine. More importantly, the inflammatory response was clearly demonstrated to be regulated by the direct action of histamine on professional phagocytes. Nevertheless, the molecular basis and exact role of this biogenic amine in perciforms is still a matter of speculation. Therefore, this review intends to summarize recent experimental evidence regarding fish mast cells and correlate the same with their mammalian counterparts to establish the possible role of histamine in the fish intestinal inflammatory response.
Collapse
Affiliation(s)
- Jorge Galindo-Villegas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Campus Universitario de Espinardo, Murcia 30100, Spain.
| | - Erick Garcia-Garcia
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Campus Universitario de Espinardo, Murcia 30100, Spain
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Campus Universitario de Espinardo, Murcia 30100, Spain.
| |
Collapse
|
220
|
Wu P, Jiang WD, Jiang J, Zhao J, Liu Y, Zhang YA, Zhou XQ, Feng L. Dietary choline deficiency and excess induced intestinal inflammation and alteration of intestinal tight junction protein transcription potentially by modulating NF-κB, STAT and p38 MAPK signaling molecules in juvenile Jian carp. FISH & SHELLFISH IMMUNOLOGY 2016; 58:462-473. [PMID: 27693201 DOI: 10.1016/j.fsi.2016.09.055] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
This study investigated the effects of choline on intestinal mucosal immune and the possible mechanisms in fish by feeding juvenile Jian carp (Cyprinus carpio var. Jian) with graded levels of dietary choline (165-1820 mg/kg diet) for 65 days. The results firstly showed that choline deficiency induced inflammatory infiltration in the proximal intestine (PI), mid intestine (MI) and distal intestine (DI) of fish. Meanwhile, compared with the optimal choline group, choline deficiency decreased the activities of lysozyme and acid phosphatase, contents of complement 3 and IgM in the intestine, downregulated the mRNA levels of antimicrobial peptides (liver-expressed antimicrobial peptide (LEAP) 2A and defensin-3 in the PI and MI, LEAP-2B and hepcidin in the PI, MI and DI), anti-inflammatory cytokines (interleukin (IL) 10 and transforming growth factor β2 in the PI, MI and DI), and signaling molecule IκB in the PI, MI and DI; while upregulated the mRNA levels of pro-inflammatory cytokines (IL-6a and tumor necrosis factor α in the MI and DI, interferon γ2b in the PI and MI, IL-1β and IL-6b in the PI, MI and DI), and signaling molecules (Toll-like receptor 4 in the MI, myeloid differentiation primary response 88 in the PI and MI, Janus kinase 3 and tyrosine kinase 2 in the MI and DI, nuclear factor kappa B (NF-κB), signal transducers and activators of transcription (STAT) 4 and STAT5 in the PI, MI and DI) of juvenile Jian carp, further indicating that choline deficiency caused inflammation and immunity depression in the intestine of fish. But choline deficiency decreased the PI IL-6a mRNA level, and increased the DI LEAP-2A and defensin-3 mRNA levels with unknown reasons. Furthermore, dietary choline deficiency downregulated mRNA levels of tight junction (TJ) proteins (claudin 3c in the PI and MI, claudin 7, claudin 11 and occludin in the PI, MI and DI) and signaling molecule mitogen-activated protein kinases p38 in the PI, MI and DI of juvenile Jian carp, whereas upregulated the mRNA levels of claudin 3b in the MI and DI, and claudin 3c in the DI. Moreover, the excessive choline exhibited negative effects on intestinal immunity and TJ proteins that were similar to the choline deficiency. In summary, dietary choline deficiency or excess caused the depression of intestinal mucosal immune by inducing inflammation and dysfunction of the intestinal physical barrier, and regulating related signaling molecules of fish.
Collapse
Affiliation(s)
- Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
221
|
|
222
|
Torrealba D, Parra D, Seras-Franzoso J, Vallejos-Vidal E, Yero D, Gibert I, Villaverde A, Garcia-Fruitós E, Roher N. Nanostructured recombinant cytokines: A highly stable alternative to short-lived prophylactics. Biomaterials 2016; 107:102-14. [PMID: 27614162 DOI: 10.1016/j.biomaterials.2016.08.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 01/29/2023]
Abstract
Cytokines have been widely used as adjuvants and therapeutic agents in treatments of human diseases. Despite their recognized potential as drugs, the medical use of cytokines has considerable drawbacks, mainly related to their low stability and short half-life. Such intrinsic limitations imply the administration of high doses, often prompting toxicity, undesirable side effects and greater production costs. Here, we describe a new category of mechanically stable nanostructured cytokines (TNFα and CCL4/MIP-1β) that resist harsh physicochemical conditions in vitro (pH and temperature), while maintaining functionality. These bio-functional materials are produced in recombinant cell factories through cost-effective and fully scalable processes. Notably, we demonstrate their prophylactic potential in vivo showing they protect zebrafish from a lethal infection by Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Débora Torrealba
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - David Parra
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Joaquin Seras-Franzoso
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Eva Vallejos-Vidal
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Daniel Yero
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain.
| | - Nerea Roher
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
223
|
Calduch-Giner JA, Sitjà-Bobadilla A, Pérez-Sánchez J. Gene Expression Profiling Reveals Functional Specialization along the Intestinal Tract of a Carnivorous Teleostean Fish (Dicentrarchus labrax). Front Physiol 2016; 7:359. [PMID: 27610085 PMCID: PMC4997091 DOI: 10.3389/fphys.2016.00359] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/05/2016] [Indexed: 01/23/2023] Open
Abstract
High-quality sequencing reads from the intestine of European sea bass were assembled, annotated by similarity against protein reference databases and combined with nucleotide sequences from public and private databases. After redundancy filtering, 24,906 non-redundant annotated sequences encoding 15,367 different gene descriptions were obtained. These annotated sequences were used to design a custom, high-density oligo-microarray (8 × 15 K) for the transcriptomic profiling of anterior (AI), middle (MI), and posterior (PI) intestinal segments. Similar molecular signatures were found for AI and MI segments, which were combined in a single group (AI-MI) whereas the PI outstood separately, with more than 1900 differentially expressed genes with a fold-change cutoff of 2. Functional analysis revealed that molecular and cellular functions related to feed digestion and nutrient absorption and transport were over-represented in AI-MI segments. By contrast, the initiation and establishment of immune defense mechanisms became especially relevant in PI, although the microarray expression profiling validated by qPCR indicated that these functional changes are gradual from anterior to posterior intestinal segments. This functional divergence occurred in association with spatial transcriptional changes in nutrient transporters and the mucosal chemosensing system via G protein-coupled receptors. These findings contribute to identify key indicators of gut functions and to compare different fish feeding strategies and immune defense mechanisms acquired along the evolution of teleosts.
Collapse
Affiliation(s)
- Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| |
Collapse
|
224
|
Beck BR, Song JH, Park BS, Kim D, Kwak JH, Do HK, Kim AR, Kim WJ, Song SK. Distinct immune tones are established by Lactococcus lactis BFE920 and Lactobacillus plantarum FGL0001 in the gut of olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2016; 55:434-443. [PMID: 27320869 DOI: 10.1016/j.fsi.2016.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
The immune tone is defined as an immunological state during which the readiness for immune response is potentiated. The establishment of immune tone in the gut of olive flounder (Paralichthys olivaceus) was investigated by feeding Lactococcus lactis BFE920 (LL) or Lactobacillus plantarum FGL0001 (LP). LL-fed flounder showed significantly increased levels of regulatory genes (FOXP3, IL-10, and TGF-β1), CD18, and CD83 in the gut. In contrast, LP feeding drastically increased proinflammatory genes (T-bet, IL-1β, and IFN-γ) and CD18. This indicates that LL and LP establish different types of local immune tones in the gut through differential activation of innate immune cells: LL activates both macrophages and dendritic cells while LP activates macrophages only. Both of the immune tones required at least a total of 6 probiotic feeds during 72 h for a stable establishment. Once established, the type of immune tone remained steady even up to 30 days (a total of 60 feeds) probiotics feeding. The LL-induced regulatory immune tone enhanced the level of occludin, a tight junction molecule, significantly more than that observed with the proinflammatory immune tone established by LP feeding. Consequently, LL-fed fish showed considerably lower gut permeability than that of the LP-fed group. Furthermore, when orally challenged by Edwardsiella tarda, LL-fed flounder survived at a significantly higher rate than LP-fed fish. The data clearly demonstrate that individual probiotics establish distinct types of immune tone in the fish gut, which in turn influences the immunological status as well as the physiology of the gut. Selection of proper probiotics may be essential for optimal effects in aquaculture farming.
Collapse
Affiliation(s)
- Bo Ram Beck
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea
| | - Joon Hyun Song
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea
| | - Byung Sun Park
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea
| | - Daniel Kim
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea
| | - Jin-Hwan Kwak
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea
| | - Hyung Ki Do
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea
| | - Ah-Ram Kim
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea
| | - Woo-Jin Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Seong Kyu Song
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea.
| |
Collapse
|
225
|
Kim D, Beck BR, Lee SM, Jeon J, Lee DW, Lee JI, Song SK. Pellet feed adsorbed with the recombinant Lactococcus lactis BFE920 expressing SiMA antigen induced strong recall vaccine effects against Streptococcus iniae infection in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2016; 55:374-383. [PMID: 27302864 DOI: 10.1016/j.fsi.2016.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/31/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to develop a fish feed vaccine that provides effective disease prevention and convenient application. A lactic acid bacterium (LAB), Lactococcus lactis BFE920, was modified to express the SiMA antigen, a membrane protein of Streptococcus iniae. The antigen was engineered to be expressed under the nisin promoter, which is induced by nisin produced naturally by the host LAB. Various sizes (40 ± 3.5 g, 80 ± 2.1 g, and 221 ± 2.4 g) of olive flounder (Paralichthys olivaceus) were vaccinated by feeding the extruded pellet feed, onto which the SiMA-expressing L. lactis BFE920 (1.0 × 10(7) CFU/g) was adsorbed. Vaccine-treated feed was administered twice a day for 1 week, and priming and boosting were performed with a 1-week interval in between. The vaccinated fish had significantly elevated levels of antigen-specific serum antibodies and T cell marker mRNAs: CD4-1, CD4-2, and CD8a. In addition, the feed vaccine significantly induced T cell effector functions, such as the production of IFN-γ and activation of the transcription factor that induces its expression, T-bet. When the flounder were challenged by intraperitoneal infection and bath immersion with S. iniae, the vaccinated fish showed 84% and 82% relative percent survival (RPS), respectively. Furthermore, similar protective effects were confirmed even 3 months after vaccination in a field study (n = 4800), indicating that this feed vaccine elicited prolonged duration of immunopotency. In addition, the vaccinated flounder gained 21% more weight and required 16% less feed to gain a unit of body weight compared to the control group. The data clearly demonstrate that the L. lactis BFE920-SiMA feed vaccine has strong protective effects, induces prolonged vaccine efficacy, and has probiotic effects. In addition, this LAB-based fish feed vaccine can be easily used to target many different pathogens of diverse fish species.
Collapse
Affiliation(s)
- Daniel Kim
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea
| | - Bo Ram Beck
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea
| | - Sun Min Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Republic of Korea
| | - Jongsu Jeon
- New Business Development Dept., Medytox Inc, Republic of Korea
| | - Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Jae Il Lee
- GyeongSangbuk-Do Fisheries Technology Center, Pohang 791-941, Republic of Korea
| | - Seong Kyu Song
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea.
| |
Collapse
|
226
|
Xu J, Wu P, Jiang WD, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Feng L. Optimal dietary protein level improved growth, disease resistance, intestinal immune and physical barrier function of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2016; 55:64-87. [PMID: 27211261 DOI: 10.1016/j.fsi.2016.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
This study investigated the effects of dietary proteins on the growth, disease resistance, intestinal immune and physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp (264.11 ± 0.76 g) were fed six diets containing graded levels of protein (143.1, 176.7, 217.2, 257.5, 292.2 and 322.8 g digestible protein kg(-1) diet) for 8 weeks. After the growth trial, fish were challenged with Aeromonas hydrophila and mortalities were recorded for 14 days. The results indicated that optimal dietary protein levels: increased the production of antibacterial components, up-regulated anti-inflammatory cytokines, inhibitor of κBα, target of rapamycin and ribosomal protein S6 kinases 1 mRNA levels, whereas down-regulated pro-inflammatory cytokines, nuclear factor kappa B (NF-κB) P65, NF-κB P52, c-Rel, IκB kinase β, IκB kinase γ and eIF4E-binding proteins 2 mRNA levels in three intestinal segments of young grass carp (P < 0.05), suggesting that optimal dietary protein level could enhance fish intestinal immune barrier function; up-regulated the mRNA levels of tight junction complexes, B-cell lymphoma protein-2, inhibitor of apoptosis proteins, myeloid cell leukemia-1 and NF-E2-related factor 2, and increased the activities and mRNA levels of antioxidant enzymes, whereas down-regulated myosin light chain kinase, cysteinyl aspartic acid-protease 2, 3, 7, 8, 9, fatty acid synthetase ligand, apoptotic protease activating factor-1, Bcl-2 associated X protein, p38 mitogen-activated protein kinase, c-Jun N-terminal protein kinase and Kelch-like-ECH-associated protein 1b mRNA levels, and decreased reactive oxygen species, malondialdehyde and protein carbonyl contents in three intestinal segments of young grass carp (P < 0.05), indicating that optimal dietary protein level could improve fish intestinal physical barrier function. Finally, the optimal dietary protein levels for the growth performance (PWG) and against enteritis morbidity of young grass carp were estimated to be 286.82 g kg(-1) diet (250.66 g digestible protein kg(-1) diet) and 292.10 g kg(-1) diet (255.47 g digestible protein kg(-1) diet), respectively.
Collapse
Affiliation(s)
- Jing Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
227
|
Simó-Mirabet P, Bermejo-Nogales A, Calduch-Giner JA, Pérez-Sánchez J. Tissue-specific gene expression and fasting regulation of sirtuin family in gilthead sea bream (Sparus aurata). J Comp Physiol B 2016; 187:153-163. [DOI: 10.1007/s00360-016-1014-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 01/12/2023]
|
228
|
Do Huu H, Sang HM, Thanh Thuy NT. Dietary β-glucan improved growth performance, Vibrio counts, haematological parameters and stress resistance of pompano fish, Trachinotus ovatus Linnaeus, 1758. FISH & SHELLFISH IMMUNOLOGY 2016; 54:402-410. [PMID: 27036404 DOI: 10.1016/j.fsi.2016.03.161] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/23/2016] [Accepted: 03/26/2016] [Indexed: 06/05/2023]
Abstract
This study evaluated effects of graded levels of dietary β-glucan (0, 0.5, 1, 2 and 4 g kg(-1)) on growth performance, haematological parameters, intestinal Vibrio counts, dose requirement and salinity stress resistance in pompano fish Trachinotus ovatus (6.45 g ± 0.06 (SEM)). After 8-weeks of diet feeding, growth was significantly higher in fish fed diets with 0.10% β-glucan compared to fish fed control diet (no β-glucan). Survival increased significantly in fish fed 0.05 and 0.10% β-glucan compared to control diet. There were significant increases in red blood cells (in 0.20% β-glucan diet), in total leukocytes (in 0.05-0.20% β-glucan diet), in both lymphocyte and monocyte count in fish fed 0.10%-0.40% β-glucan diet. However, dietary β-glucan did not affect neutrophil, eosinophil and basophil counts. Intestinal Vibrio counts were reduced in fish fed any level of β-glucan compared to control. In addition, dietary β-glucan levels highly correlated with growth, survival, intestinal Vibrio counts and haematological index. Optimal β-glucan levels for maximal growth of fish were predicted to be 0.122% at day 21 (R(2) = 98.53%), 0.120% at day 28 (R(2) = 78.55%), 0.115% at day 42 (R(2) = 62.21%) and 0.090% at day 56 (R(2) = 75.18%), showing a decreasing β-glucan requirement with increasing fish size. Furthermore, optimal β-glucan levels for maximal haematological parameters based on lymphocyte count, was estimated to be 0.120% (R(2) = 98.53%) at day 56. Also, fish fed 0.05%-0.20% β-glucan showed better resistance against salinity stress. In conclusion, β-glucan supplementation is effective for improving growth, intestinal Vibrio counts and boosted stress resistance of the pompano fish, T. ovatus.
Collapse
Affiliation(s)
- Hoang Do Huu
- Vietnam Academy of Science and Technology, Institute of Oceanography, 01 Cau Da, Nha Trang, Viet Nam.
| | - Huynh Minh Sang
- Vietnam Academy of Science and Technology, Institute of Oceanography, 01 Cau Da, Nha Trang, Viet Nam
| | - Nguyen Thi Thanh Thuy
- Vietnam Academy of Science and Technology, Institute of Oceanography, 01 Cau Da, Nha Trang, Viet Nam
| |
Collapse
|
229
|
Caruffo M, Maturana C, Kambalapally S, Larenas J, Tobar JA. Protective oral vaccination against infectious salmon anaemia virus in Salmo salar. FISH & SHELLFISH IMMUNOLOGY 2016; 54:54-9. [PMID: 26994669 DOI: 10.1016/j.fsi.2016.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/13/2016] [Accepted: 03/10/2016] [Indexed: 05/19/2023]
Abstract
Infectious salmon anemia (ISA) is a systemic disease caused by an orthomyxovirus, which has a significant economic impact on the production of Atlantic salmon (Salmo salar). Currently, there are several commercial ISA vaccines available, however, those products are applied through injection, causing stress in the fish and leaving them susceptible to infectious diseases due to the injection process and associated handling. In this study, we evaluated an oral vaccine against ISA containing a recombinant viral hemagglutinin-esterase and a fusion protein as antigens. Our findings indicated that oral vaccination is able to protect Atlantic salmon against challenge with a high-virulence Chilean isolate. The oral vaccination was also correlated with the induction of IgM-specific antibodies. On the other hand, the vaccine was unable to modulate expression of the antiviral related gene Mx, showing the importance of the humoral response to the disease survival. This study provides new insights into fish protection and immune response induced by an oral vaccine against ISA, but also promises future development of preventive solutions or validation of the current existing therapies.
Collapse
Affiliation(s)
- Mario Caruffo
- Virbac-Centrovet, Av. Salomón Sack 255, Cerrillos, Santiago, Chile; Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa, 11735, La Pintana, Santiago, Chile
| | - Carlos Maturana
- Virbac-Centrovet, Av. Salomón Sack 255, Cerrillos, Santiago, Chile
| | - Swetha Kambalapally
- Advanced Bionutrition Corp., 7155 Columbia Gateway Drive, Suite H. Columbia, MD, 21046, USA
| | - Julio Larenas
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa, 11735, La Pintana, Santiago, Chile
| | - Jaime A Tobar
- Virbac-Centrovet, Av. Salomón Sack 255, Cerrillos, Santiago, Chile.
| |
Collapse
|
230
|
Hauge H, Dahle M, Moldal T, Thoen E, Gjevre AG, Weli S, Alarcón M, Grove S. Piscine orthoreovirus can infect and shed through the intestine in experimentally challenged Atlantic salmon (Salmo salar L.). Vet Res 2016; 47:57. [PMID: 27216404 PMCID: PMC4877738 DOI: 10.1186/s13567-016-0343-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022] Open
Abstract
Piscine orthoreovirus (PRV) is a ubiquitous virus in Norwegian salmon farms associated with the disease heart and skeletal muscle inflammation (HSMI). Experimental challenge has shown that the virus replicates in circulating red blood cells of Atlantic salmon prior to infecting heart myocytes. The infection route from water to blood is however still unknown. The related mammalian orthoreovirus primarily infects the lungs and gastrointestinal (GI) tract and is proposed to spread mainly through the faecal–oral route. To investigate the role of the salmonid GI tract in PRV-infection, oral and anal administration of virus was compared to intraperitoneal (i.p.) injection. When administered anally, PRV was transferred to blood 4 days post challenge (dpc) and levels peaked at 42 dpc, similar to i.p. injected fish. PRV was detected in heart and faeces with corresponding kinetics, and inflammatory heart lesions consistent with HSMI were observed from 49 dpc. The orally intubated group showed slower virus kinetics in both blood and heart, and no signs of HSMI. Compared to the oral and i.p. administration routes, leakage of virus inoculate by anal intubation was minor and challenge was restricted to the mid- and distal intestine. These findings show that anal intubation is an efficacious method for PRV delivery to the GI tract and demonstrates that PRV can establish infection through the intestine with the potential for transmission via faeces.
Collapse
Affiliation(s)
- Helena Hauge
- Norwegian Veterinary Institute, Pb 750, Sentrum, 0106, Oslo, Norway.
| | - Maria Dahle
- Norwegian Veterinary Institute, Pb 750, Sentrum, 0106, Oslo, Norway
| | - Torfinn Moldal
- Norwegian Veterinary Institute, Pb 750, Sentrum, 0106, Oslo, Norway
| | - Even Thoen
- Norwegian Veterinary Institute, Pb 750, Sentrum, 0106, Oslo, Norway
| | - Anne-Gerd Gjevre
- Norwegian Veterinary Institute, Pb 750, Sentrum, 0106, Oslo, Norway
| | - Simon Weli
- Norwegian Veterinary Institute, Pb 750, Sentrum, 0106, Oslo, Norway
| | - Marta Alarcón
- Norwegian Veterinary Institute, Pb 750, Sentrum, 0106, Oslo, Norway
| | - Søren Grove
- Norwegian Veterinary Institute, Pb 750, Sentrum, 0106, Oslo, Norway
| |
Collapse
|
231
|
Zeng YY, Jiang WD, Liu Y, Wu P, Zhao J, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Feng L. Dietary alpha-linolenic acid/linoleic acid ratios modulate intestinal immunity, tight junctions, anti-oxidant status and mRNA levels of NF-κB p65, MLCK and Nrf2 in juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2016; 51:351-364. [PMID: 26615102 DOI: 10.1016/j.fsi.2015.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
This study was conducted to investigate the effects of dietary alpha-linolenic acid/linoleic acid (ALA/LNA) ratios on the immune response, tight junctions, antioxidant status and immune-related signaling molecules mRNA levels in the intestine of juvenile grass carp (Ctenopharyngodon idella). A total of 1260 juvenile grass carp with an average initial weight of 8.78 ± 0.03 g were fed diets with different ALA/LNA ratios (0.01, 0.34, 0.68, 1.03, 1.41, 1.76 and 2.15) for 60 days. Results indicated that ALA/LNA ratio of 1.03 significantly increased acid phosphatase, lysozyme activities and complement C3 contents, promoted interleukin 10, transforming growth factor β1 and κB inhibitor α mRNA abundance, whereas suppressed pro-inflammatory cytokines (interleukin 1β, interleukin 8, tumor necrosis factor α and interferon γ2) and signal molecules (IκB kinase β, IκB kinase γ and nuclear factor κB p65) mRNA levels in the intestine (P < 0.05), suggesting that optimal dietary ALA/LNA ratio improved intestinal immune response of juvenile fish. Additionally, ALA/LNA ratio of 1.03 significantly promoted Claudin-3, Claudin-b, Claudin-c, Occludin and ZO-1 gene transcription, whereas reduced Claudin-15a and myosin light-chain kinase mRNA levels in the intestine, suggesting that appropriate dietary ALA/LNA ratio strengthened tight junctions in the intestine of juvenile fish. Meanwhile, ALA/LNA ratio of 1.03 noticeably elevated glutathione contents, copper/zinc superoxide dismutase, glutathione peroxidase, glutathione S-transferase and glutathione reductase activities and mRNA levels, as well as signaling molecule nuclear factor erythoid 2-related factor 2 gene transcriptional abundance in the intestine, suggesting that proper ratio of dietary ALA/LNA ameliorate the intestinal antioxidant status of juvenile fish. Based on the quadratic regression analysis of the complement C3 content in the distal intestine and malondialdehyde content in the whole intestine, optimal ALA/LNA ratio for maximum growth of juvenile grass carp (8.78-72.00 g) were estimated to be 1.13 and 1.12, respectively.
Collapse
Affiliation(s)
- Yun-Yun Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
232
|
Guerreiro I, Couto A, Machado M, Castro C, Pousão-Ferreira P, Oliva-Teles A, Enes P. Prebiotics effect on immune and hepatic oxidative status and gut morphology of white sea bream (Diplodus sargus). FISH & SHELLFISH IMMUNOLOGY 2016; 50:168-174. [PMID: 26802896 DOI: 10.1016/j.fsi.2016.01.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
The aim of this study was to evaluate the effects of short-chain fructooligosaccharides (scFOS), xylooligosaccharides (XOS) and galactooligosaccharides (GOS) on immune and hepatic oxidative status, and gut morphology of white sea bream juveniles. Four diets were formulated: a control diet with fish meal (FM) and plant feedstuffs (PF) (30FM:70PF) and three test diets similar to the control but supplemented with 1% of scFOS, XOS or GOS. Dietary prebiotic incorporation did not affect total blood cell counts, hematocrit, hemoglobin, red blood indices or differential white blood cell counts. Fish fed GOS had lower ACH50 and nitric oxide than fish fed control diet. XOS enhanced immune status through the increase in alternative complement pathway (ACH50), lysozyme and total immunoglobulin. The higher activity of glucose 6-phosphate dehydrogenase in fish fed FOS compared to the other dietary groups was the only related antioxidant enzyme affected by prebiotics in the liver. GOS ameliorated the precocious adverse effects of PF based diet on gut histomorphology, as denoted by the lower incidence of histological alterations in fish fed GOS for 15 days. In conclusion, XOS and GOS at 1% might have potential to be used as prebiotics in white sea bream juveniles.
Collapse
Affiliation(s)
- Inês Guerreiro
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Ana Couto
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - Marina Machado
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Carolina Castro
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Pedro Pousão-Ferreira
- IPMA - Instituto Português do Mar e da Atmosfera, Av. 5 de Outubro s/n, 8700-305 Olhão, Portugal
| | - Aires Oliva-Teles
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Paula Enes
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| |
Collapse
|
233
|
Protective and pro-inflammatory roles of intestinal bacteria. ACTA ACUST UNITED AC 2016; 23:67-80. [PMID: 26947707 DOI: 10.1016/j.pathophys.2016.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 02/06/2023]
Abstract
The intestinal mucosal surface in all vertebrates is exposed to enormous numbers of microorganisms that include bacteria, archaea, fungi and viruses. Coexistence of the host with the gut microbiota represents an active and mutually beneficial relationship that helps to shape the mucosal and systemic immune systems of both mammals and teleosts (ray-finned fish). Due to the potential for enteric microorganisms to invade intestinal tissue and induce local and/or systemic inflammation, the mucosal immune system has developed a number of protective mechanisms that allow the host to mount an appropriate immune response to invading bacteria, while limiting bystander tissue injury associated with these immune responses. Failure to properly regulate mucosal immunity is thought to be responsible for the development of chronic intestinal inflammation. The objective of this review is to present our current understanding of the role that intestinal bacteria play in vertebrate health and disease. While our primary focus will be humans and mice, we also present the new and exciting comparative studies being performed in zebrafish to model host-microbe interactions.
Collapse
|
234
|
Leal E, Granja AG, Zarza C, Tafalla C. Distribution of T Cells in Rainbow Trout (Oncorhynchus mykiss) Skin and Responsiveness to Viral Infection. PLoS One 2016; 11:e0147477. [PMID: 26808410 PMCID: PMC4726708 DOI: 10.1371/journal.pone.0147477] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/05/2016] [Indexed: 11/29/2022] Open
Abstract
Although the skin constitutes the first line of defense against waterborne pathogens, there is a great lack of information regarding the skin associated lymphoid tissue (SALT) and whether immune components of the skin are homogeneously distributed through the surface of the fish is still unknown. In the current work, we have analyzed the transcription of several immune genes throughout different rainbow trout (Oncorhynchus mykiss) skin areas. We found that immunoglobulin and chemokine gene transcription levels were higher in a skin area close to the gills. Furthermore, this skin area as well as other anterior sections also transcribed significantly higher levels of many different immune genes related to T cell immunity such as T cell receptor α (TCRα), TCRγ, CD3, CD4, CD8, perforin, GATA3, Tbet, FoxP3, interferon γ (IFNγ), CD40L and Eomes in comparison to posterior skin sections. In agreement with these results, immunohistochemical analysis revealed that anterior skin areas had a higher concentration of CD3+ T cells and flow cytometry analysis confirmed that the percentage of CD8+ T lymphocytes was also higher in anterior skin sections. These results demonstrate for the first time that T cells are not homogeneously distributed throughout the teleost skin. Additionally, we studied the transcriptional regulation of these and additional T cell markers in response to a bath infection with viral hemorrhagic septicemia virus (VHSV). We found that VHSV regulated the transcription of several of these T cell markers in both the skin and the spleen; with some differences between anterior and posterior skin sections. Altogether, our results point to skin T cells as major players of teleost skin immunity in response to waterborne viral infections.
Collapse
Affiliation(s)
- Esther Leal
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
| | - Aitor G. Granja
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
| | - Carlos Zarza
- Skretting Aquaculture Research Centre, PO Box 48, Stavanger, 4001, Norway
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
- * E-mail:
| |
Collapse
|
235
|
Delamare-Deboutteville J, Bowater R, Condon K, Reynolds A, Fisk A, Aviles F, Barnes AC. Infection and pathology in Queensland grouper, Epinephelus lanceolatus, (Bloch), caused by exposure to Streptococcus agalactiae via different routes. JOURNAL OF FISH DISEASES 2015; 38:1021-1035. [PMID: 25117665 DOI: 10.1111/jfd.12273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/03/2014] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
Abstract
Since 2007, 96 wild Queensland groupers, Epinephelus lanceolatus, (Bloch), have been found dead in NE Australia. In some cases, Streptococcus agalactiae (Group B Streptococcus, GBS) was isolated. At present, a GBS isolate from a wild grouper case was employed in experimental challenge trials in hatchery-reared Queensland grouper by different routes of exposure. Injection resulted in rapid development of clinical signs including bilateral exophthalmia, hyperaemic skin or fins and abnormal swimming. Death occurred in, and GBS was re-isolated from, 98% fish injected and was detected by PCR in brain, head kidney and spleen from all fish, regardless of challenge dose. Challenge by immersion resulted in lower morbidity with a clear dose response. Whilst infection was established via oral challenge by admixture with feed, no mortality occurred. Histology showed pathology consistent with GBS infection in organs examined from all injected fish, from fish challenged with medium and high doses by immersion, and from high-dose oral challenge. These experimental challenges demonstrated that GBS isolated from wild Queensland grouper reproduced disease in experimentally challenged fish and resulted in pathology that was consistent with that seen in wild Queensland grouper infected with S. agalactiae.
Collapse
Affiliation(s)
- J Delamare-Deboutteville
- School of Biological Sciences and Centre for Marine Science, The University of Queensland, Brisbane, Qld, Australia
| | - R Bowater
- Biosecurity Queensland, Department of Agriculture Fisheries & Forestry, Townsville, Qld, Australia
| | - K Condon
- Biosecurity Queensland, Department of Agriculture Fisheries & Forestry, Townsville, Qld, Australia
| | - A Reynolds
- Northern Fisheries Centre (NFC), Department of Agriculture Fisheries & Forestry, Cairns, Qld, Australia
| | - A Fisk
- Biosecurity Queensland, Department of Agriculture Fisheries & Forestry, Townsville, Qld, Australia
| | - F Aviles
- School of Biological Sciences and Centre for Marine Science, The University of Queensland, Brisbane, Qld, Australia
| | - A C Barnes
- School of Biological Sciences and Centre for Marine Science, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
236
|
Ghosh B, Nowak BF, Bridle AR. Alginate Microencapsulation for Oral Immunisation of Finfish: Release Characteristics, Ex Vivo Intestinal Uptake and In Vivo Administration in Atlantic Salmon, Salmo salar L. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:841-853. [PMID: 26410294 DOI: 10.1007/s10126-015-9663-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 08/24/2015] [Indexed: 06/05/2023]
Abstract
This study examined the feasibility of alginate microcapsules manufactured using a low-impact technology and reagents to protect orally delivered immunogens for use as immunoprophylactics for fish. Physical characteristics and protein release kinetics of the microcapsules were examined at different pH and temperature levels using a microencapsulated model protein, bovine serum albumin (BSA). Impact of the microencapsulation process on contents was determined by analysing change in bioactivity of microencapsulated lysozyme. Feasibility of the method for oral immunoprophylaxis of finfish was assessed using FITC-labelled microcapsules. These were applied to distal intestinal explants of Atlantic salmon (Salmo salar) to investigate uptake ex vivo. Systemic distribution of microcapsules was investigated by oral administration of FITC-labelled microcapsules to Atlantic salmon fry by incorporating into feed. The microcapsules produced were structurally robust and retained surface integrity, with a modal size distribution of 250-750 nm and a tendency to aggregate. Entrapment efficiency of microencapsulation was 51.2 % for BSA and 43.2 % in the case of lysozyme. Microcapsules demonstrated controlled release of protein, which increased with increasing pH or temperature, and the process had no significant negative effect on bioactivity of lysozyme. Uptake of fluorescent-labelled microcapsules was clearly demonstrated by intestinal explants over a 24-h period. Evidence of microcapsules was found in the intestine, spleen, kidney and liver of fry following oral administration. Amenability of the microcapsules to intestinal uptake and distribution reinforced the strong potential for use of this microencapsulation method in oral immunoprophylaxis of finfish using sensitive immunogenic substances.
Collapse
Affiliation(s)
- Bikramjit Ghosh
- Institute for Marine and Antarctic Studies, University of Tasmania, Locked Bag 1370, Launceston, Tasmania, 7250, Australia.
| | - Barbara F Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania, Locked Bag 1370, Launceston, Tasmania, 7250, Australia.
| | - Andrew R Bridle
- Institute for Marine and Antarctic Studies, University of Tasmania, Locked Bag 1370, Launceston, Tasmania, 7250, Australia.
| |
Collapse
|
237
|
Weir H, Chen PL, Deiss TC, Jacobs N, Nabity MB, Young M, Criscitiello MF. DNP-KLH Yields Changes in Leukocyte Populations and Immunoglobulin Isotype Use with Different Immunization Routes in Zebrafish. Front Immunol 2015; 6:606. [PMID: 26648935 PMCID: PMC4664633 DOI: 10.3389/fimmu.2015.00606] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/13/2015] [Indexed: 01/22/2023] Open
Abstract
Distinct methods are required for inducing mucosal versus systemic immunity in mammals for vaccine protection at the tissues most commonly breached by pathogens. Understanding of mucosal immunization in teleost fish is needed to combat aquaculture disease, understand emerging ecological threats, and know how vertebrate adaptive immunity evolved. Here, we quantitatively measured expression levels of IgM as well as the teleost mucosal immunoglobulin, IgZ/IgT, in zebrafish given an antigen systemically via intraperitoneal (i.p.) injection or mucosally via bath immersion. Both immunoglobulin isotypes and the B cell activating factor gene transcription was induced in fish injected with antigen as compared to saline injected or antigen immersed fish, though these failed to reach statistical significance. Here we provide additional reference hematology for this model species. Differential blood counts revealed a greater lymphocyte percentage in both i.p. and immersed fish, with increase in large lymphocyte counts and decrease in neutrophils. These humoral adaptive gene transcription and cytological data should provide a foundation for more studies connecting immunology in this dominant developmental and genetic fish model to other species where mucosal immunization is of greater commercial importance.
Collapse
Affiliation(s)
- Heather Weir
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Science, A&M Consolidated High School , College Station, TX , USA
| | - Patricia L Chen
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA
| | - Thaddeus C Deiss
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA
| | - Natalie Jacobs
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA
| | - Mary B Nabity
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA
| | - Matt Young
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Science, A&M Consolidated High School , College Station, TX , USA
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA
| |
Collapse
|
238
|
Chen L, Feng L, Jiang WD, Jiang J, Wu P, Zhao J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Intestinal immune function, antioxidant status and tight junction proteins mRNA expression in young grass carp (Ctenopharyngodon idella) fed riboflavin deficient diet. FISH & SHELLFISH IMMUNOLOGY 2015; 47:470-484. [PMID: 26419312 DOI: 10.1016/j.fsi.2015.09.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/14/2015] [Accepted: 09/24/2015] [Indexed: 06/05/2023]
Abstract
This study investigated the effects of riboflavin on intestinal immunity, tight junctions and antioxidant status of young grass carp (Ctenopharyngodon idella). Fish were fed diets containing graded levels of riboflavin (0.63-10.04 mg/kg diet) for 8 weeks. The study indicated that riboflavin deficiency decreased lysozyme, acid phosphatase, copper/zinc superoxide dismutase, glutathione reductase and glutathione peroxidase activities, and contents of complement component 3 and reduced glutathione in the intestine of fish (P < 0.05). Meanwhile, riboflavin deficiency increased reactive oxygen species, malondialdehyde and protein carbonyl contents and catalase activity (P < 0.05) in the intestine of fish. Furthermore, real-time polymerase chain reaction analysis was used to investigate mRNA expression patterns and found that the mRNA levels of interleukin 10 and transforming growth factor β1, Occludin, zonula occludens 1, Claudin-b and Claudin-c, inhibitor protein κBα, target of rapamycin, ribosomal S6 protein kinase 1 and NF-E2-related factor 2, copper/zinc superoxide dismutase, glutathione peroxidase and glutathione reductase were decreased (P < 0.05) in the intestine of fish fed riboflavin-deficient diet. Conversely, the mRNA levels of tumor necrosis factor α, interleukin 1β, interleukin 8, nuclear factor kappa B p65, Ikappa B kinase β, Ikappa B kinase γ, Kelch-like-ECH-associated protein 1b, p38 mitogen-activated protein kinase, myosin light chain kinase and Claudin-12 were increased (P < 0.05) in the intestine of fish fed riboflavin-deficient diet. In conclusion, riboflavin deficiency decreased immunity and structural integrity of fish intestine. The optimum riboflavin level for intestinal acid phosphatase activity of young grass carp was estimated to be 6.65 mg/kg diet.
Collapse
Affiliation(s)
- Liang Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
239
|
Dezfuli BS, Manera M, Giari L, DePasquale JA, Bosi G. Occurrence of immune cells in the intestinal wall of Squalius cephalus infected with Pomphorhynchus laevis. FISH & SHELLFISH IMMUNOLOGY 2015; 47:556-564. [PMID: 26434712 DOI: 10.1016/j.fsi.2015.09.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
A sub-population of 34 specimens of chub, Squalius cephalus, was sampled from the River Brenta (Northern Italy) and examined for ecto- and endo-parasites. Pomphorhynchus laevis (Acanthocephala) was the only enteric helminth encountered. Immunofluorescence and ultrastructural studies were conducted on the intestines of chub. Near the site of parasite's attachment, mucous cells, mast cells (MCs), neutrophils and rodlet cells (RCs) were found to co-occur within the intestinal epithelium. The numbers of mucous cells, MCs and neutrophils were significantly higher in infected fish (Mann-Whitney U test, p < 0.05). Dual immunofluorescence staining with the lectin Dolichos Biflorus Agglutinin (DBA) and the macrophage-specific MAC387 monoclonal antibody, with parallel transmission electron microscopy, revealed that epithelial MCs often made intimate contact with the mucous cells. Degranulation of a large number of MCs around the site of the acanthocephalan's attachment and in proximity to mucous cells was also documented. MCs and neutrophils were abundant in the submucosa. Immune cells of the intestinal epithelium have been described at the ultrastructural level and their possible functions and interactions are discussed.
Collapse
Affiliation(s)
- Bahram S Dezfuli
- Department of Life Sciences & Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy.
| | - Maurizio Manera
- Faculty of Biosciences, Agro-Alimentary and Environmental Technologies, University of Teramo, St. Crispi 212, I-64100 Teramo, Italy
| | - Luisa Giari
- Department of Life Sciences & Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | | | - Giampaolo Bosi
- Department of Veterinary Sciences and Technologies for Food Safety, Università degli Studi di Milano, St. Trentacoste 2, 20134 Milan, Italy
| |
Collapse
|
240
|
Chen YP, Jiang WD, Liu Y, Jiang J, Wu P, Zhao J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Feng L. Exogenous phospholipids supplementation improves growth and modulates immune response and physical barrier referring to NF-κB, TOR, MLCK and Nrf2 signaling factors in the intestine of juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2015; 47:46-62. [PMID: 26306855 DOI: 10.1016/j.fsi.2015.08.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 06/29/2015] [Accepted: 08/21/2015] [Indexed: 06/04/2023]
Abstract
This study was conducted to investigate the effects of dietary phospholipids (PL) on the growth performance, intestinal enzyme activity and immune response and intestinal physical barrier of juvenile grass carp (Ctenopharyngodon idella). A total of 1080 juvenile grass carp with an average initial weight of 9.34 ± 0.03 g were fed six semi-purified diets containing 0.40% (unsupplemented control group), 1.43%, 2.38%, 3.29%, 4.37% and 5.42% PL for 2 months. Results indicated that 3.29% PL increased lysozyme (LZ) and acid phosphatase (ACP) activities and complement component 3 (C3) content (P < 0.05), up-regulated the mRNA relative expression levels of interleukin 10, transforming growth factor β1 (TGF-β1), inhibitor protein κBα (IκBα), target of rapamycin (TOR) and casein kinase 2 (CK2) (P < 0.05), and down-regulated tumor necrosis factor α (TNF-α), interleukin 1β, nuclear factor κB p65 (NF-κB p65), IκB kinase β (IKKβ) and IκB kinase γ (IKKγ) mRNA relative expression levels (P < 0.05) in the intestine, suggesting that optimum PL could improve fish intestinal immunity. In addition, 3.29% PL increased the activities of anti-superoxide anion (ASA), anti-hydroxyl radical, copper/zinc superoxide dismutase (SOD1), glutathione peroxidase (GPx) and glutathione reductase (GR), the content of glutathione (P < 0.05), and the mRNA relative expression levels of occludin, zonula occludens 1 (ZO-1), claudin 3, claudin 12, claudin b, claudin c, SOD1, GPx, GR and NF-E2-related factor 2 (Nrf2) and decreased malondialdehyde (MDA), protein carbonyl (PC) and ROS content (P < 0.05), the mRNA relative expression levels of Kelch-like-ECH-associated protein 1a (Keap1a), myosin light chain kinase (MLCK) and p38 mitogen-activated protein kinase (p38 MAPK) in the intestine, indicating that the optimum PL could improve fish intestinal physical barrier. Finally, based on the PWG, C3 content in the DI, ACP activity in the DI, intestinal PC content and intestinal ASA activity, the optimal dietary PL levels for juvenile grass carp (9.34-87.50 g) were estimated to be 3.46%, 3.79%, 3.93%, 3.72%, and 4.12%, respectively.
Collapse
Affiliation(s)
- Yong-Po Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
241
|
Munang’andu HM, Mutoloki S, Evensen Ø. An Overview of Challenges Limiting the Design of Protective Mucosal Vaccines for Finfish. Front Immunol 2015; 6:542. [PMID: 26557121 PMCID: PMC4617105 DOI: 10.3389/fimmu.2015.00542] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 10/08/2015] [Indexed: 01/18/2023] Open
Abstract
Research in mucosal vaccination in finfish has gained prominence in the last decade in pursuit of mucosal vaccines that would lengthen the duration of protective immunity in vaccinated fish. However, injectable vaccines have continued to dominate in the vaccination of finfish because they are perceived to be more protective than mucosal vaccines. Therefore, it has become important to identify the factors that limit developing protective mucosal vaccines in finfish as an overture to identifying key areas that require optimization in mucosal vaccine design. Some of the factors that limit the success for designing protective mucosal vaccines for finfish identified in this review include the lack optimized protective antigen doses for mucosal vaccines, absence of immunostimulants able to enhance the performance of non-replicative mucosal vaccines, reduction of systemic antibodies due to prolonged exposure to oral vaccination and the lack of predefined correlates of protective immunity for use in the optimization of newly developed mucosal vaccines. This review also points out the need to develop prime-boost vaccination regimes able to induce long-term protective immunity in vaccinated fish. By overcoming some of the obstacles identified herein, it is anticipated that future mucosal vaccines shall be designed to induce long-term protective immunity in finfish.
Collapse
Affiliation(s)
- Hetron Mweemba Munang’andu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Stephen Mutoloki
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Øystein Evensen
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
242
|
Mutoloki S, Munang'andu HM, Evensen Ø. Oral Vaccination of Fish - Antigen Preparations, Uptake, and Immune Induction. Front Immunol 2015; 6:519. [PMID: 26539192 PMCID: PMC4610203 DOI: 10.3389/fimmu.2015.00519] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/24/2015] [Indexed: 11/13/2022] Open
Abstract
The oral route offers the most attractive approach of immunization of fish for a number of reasons: the ease of administration of antigens, it is less stressful than parenteral delivery and in principle, it is applicable to small and large sized fish; it also provides a procedure for oral boosting during grow-out periods in cages or ponds. There are, however, not many commercial vaccines available at the moment due to lack of efficacy and challenges associated with production of large quantities of antigens. These are required to stimulate an effective immune response locally and systemically, and need to be protected against degradation before they reach the sites where immune induction occurs. The hostile stomach environment is believed to be particularly important with regard to degradation of antigens in certain species. There is also a poor understanding about the requirements for proper immune induction following oral administration on one side, and the potential for induction of tolerance on the other. To what extent primary immunization via the oral route will elicit both local and systemic responses is not understood in detail. Furthermore, to what extent parenteral delivery will protect mucosal/gut surfaces and vice-versa is also not fully understood. We review the work that has been done on the subject and discuss it in light of recent advances that include mass production of antigens, including the use of plant systems. Different encapsulation techniques that have been developed in the quest to protect antigens against digestive degradation, as well as to target them for appropriate immune induction are also highlighted.
Collapse
Affiliation(s)
- Stephen Mutoloki
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| | - Hetron Mweemba Munang'andu
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| | - Øystein Evensen
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| |
Collapse
|
243
|
Montalban-Arques A, De Schryver P, Bossier P, Gorkiewicz G, Mulero V, Gatlin DM, Galindo-Villegas J. Selective Manipulation of the Gut Microbiota Improves Immune Status in Vertebrates. Front Immunol 2015; 6:512. [PMID: 26500650 PMCID: PMC4598590 DOI: 10.3389/fimmu.2015.00512] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/20/2015] [Indexed: 12/12/2022] Open
Abstract
All animals develop in association with complex microbial communities. It is now well established that commensal microbiota is essential for the correct functionality of each organ in the host. Particularly, the commensal gastro-intestinal microbiota (CGIM) is a key factor for development, immunity and nutrient conversion, rendering them bio-available for various uses. Thus, nutritional inputs generate a positive loop in maintaining host health and are essential in shaping the composition of the CGIM communities. Probiotics, which are live exogenous microorganisms, selectively provided to the host, are a promising concept for manipulating the microbiota and thus for increasing the host health status. Nevertheless, most mechanisms induced by probiotics to fortify the immune system are still a matter of debate. Alternatively, prebiotics, which are non-digestible food ingredients, can favor the growth of specific target groups of CGIM. Several metabolites are produced by the CGIM, one of the most important are the short-chain fatty acids (SCFAs), which emerge from the fermentation of complex carbohydrates. SCFAs have been recognized as key players in triggering beneficial effects elicited by simple diffusion and by specific receptors present, thus, far only in epithelial cells of higher vertebrates at different gastro-intestinal locations. However, both strategies have shown to provide resistance against pathogens during periods of high stress. In fish, knowledge about the action of pro- and prebiotics and SCFAs is still limited. Thus, in this review, we briefly summarize the mechanisms described on this topic for higher vertebrates and discuss why many of them may operate in the fish gut representing a model for different mucosal tissues
Collapse
Affiliation(s)
| | - Peter De Schryver
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University , Ghent , Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University , Ghent , Belgium
| | | | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia , Murcia , Spain
| | - Delbert Monroe Gatlin
- Department of Wildlife and Fisheries Sciences, College of Agriculture and Life Sciences, Texas A&M University , College Station, TX , USA
| | - Jorge Galindo-Villegas
- Department of Cell Biology and Histology, Faculty of Biology, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia , Murcia , Spain
| |
Collapse
|
244
|
Azeredo R, Pérez-Sánchez J, Sitjà-Bobadilla A, Fouz B, Tort L, Aragão C, Oliva-Teles A, Costas B. European Sea Bass (Dicentrarchus labrax) Immune Status and Disease Resistance Are Impaired by Arginine Dietary Supplementation. PLoS One 2015; 10:e0139967. [PMID: 26447480 PMCID: PMC4598043 DOI: 10.1371/journal.pone.0139967] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/18/2015] [Indexed: 11/19/2022] Open
Abstract
Infectious diseases and fish feeds management are probably the major expenses in the aquaculture business. Hence, it is a priority to define sustainable strategies which simultaneously avoid therapeutic procedures and reinforce fish immunity. Currently, one preferred approach is the use of immunostimulants which can be supplemented to the fish diets. Arginine is a versatile amino acid with important mechanisms closely related to the immune response. Aiming at finding out how arginine affects the innate immune status or improve disease resistance of European seabass (Dicentrarchus labrax) against vibriosis, fish were fed two arginine-supplemented diets (1% and 2% arginine supplementation). A third diet meeting arginine requirement level for seabass served as control diet. Following 15 or 29 days of feeding, fish were sampled for blood, spleen and gut to assess cell-mediated immune parameters and immune-related gene expression. At the same time, fish from each dietary group were challenged against Vibrio anguillarum and survival was monitored. Cell-mediated immune parameters such as the extracellular superoxide and nitric oxide decreased in fish fed arginine-supplemented diets. Interleukins and immune-cell marker transcripts were down-regulated by the highest supplementation level. Disease resistance data were in accordance with a generally depressed immune status, with increased susceptibility to vibriosis in fish fed arginine supplemented diets. Altogether, these results suggest a general inhibitory effect of arginine on the immune defences and disease resistance of European seabass. Still, further research will certainly clarify arginine immunomodulation pathways thereby allowing the validation of its potential as a prophylactic strategy.
Collapse
Affiliation(s)
- Rita Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), 4169-007, Porto, Portugal
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - Belén Fouz
- Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, Dr Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Lluis Tort
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Cláudia Aragão
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, edf. 7, 8005-139, Faro, Portugal
| | - Aires Oliva-Teles
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), 4169-007, Porto, Portugal
| | - Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| |
Collapse
|
245
|
Nakanishi T, Shibasaki Y, Matsuura Y. T Cells in Fish. BIOLOGY 2015; 4:640-63. [PMID: 26426066 PMCID: PMC4690012 DOI: 10.3390/biology4040640] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 12/26/2022]
Abstract
Cartilaginous and bony fish are the most primitive vertebrates with a thymus, and possess T cells equivalent to those in mammals. There are a number of studies in fish demonstrating that the thymus is the essential organ for development of T lymphocytes from early thymocyte progenitors to functionally competent T cells. A high number of T cells in the intestine and gills has been reported in several fish species. Involvement of CD4+ and CD8α+ T cells in allograft rejection and graft-versus-host reaction (GVHR) has been demonstrated using monoclonal antibodies. Conservation of CD4+ helper T cell functions among teleost fishes has been suggested in a number studies employing mixed leukocyte culture (MLC) and hapten/carrier effect. Alloantigen- and virus-specific cytotoxicity has also been demonstrated in ginbuna and rainbow trout. Furthermore, the important role of cell-mediated immunity rather than humoral immunity has been reported in the protection against intracellular bacterial infection. Recently, the direct antibacterial activity of CD8α+, CD4+ T-cells and sIgM+ cells in fish has been reported. In this review, we summarize the recent progress in T cell research focusing on the tissue distribution and function of fish T cells.
Collapse
Affiliation(s)
- Teruyuki Nakanishi
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Yasuhiro Shibasaki
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Yuta Matsuura
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
246
|
Vitamin D inhibits lipopolysaccharide-induced inflammatory response potentially through the Toll-like receptor 4 signalling pathway in the intestine and enterocytes of juvenile Jian carp (Cyprinus carpio var. Jian). Br J Nutr 2015; 114:1560-8. [DOI: 10.1017/s0007114515003256] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractThe present study was conducted to investigate the anti-inflammatory effect of vitamin D both in juvenile Jian carp (Cyprinus carpio var. Jian) in vivo and in enterocytes in vitro. In primary enterocytes, exposure to 10 mg lipopolysaccharide (LPS)/l increased lactate dehydrogenase activity in the culture medium (P<0·05) and resulted in a significant loss of cell viability (P<0·05). LPS exposure increased (P<0·05) the mRNA expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-8), which was decreased by pre-treatment with 1,25-dihydroxyvitamin D (1,25D3) in a dose-dependent manner (P<0·05). Further results showed that pre-treatment with 1,25D3 down-regulated Toll-like receptor 4 (TLR4), myeloid differentiation primary response gene 88 (Myd88) and NF-κB p65 mRNA expression (P<0·05), suggesting potential mechanisms against LPS-induced inflammatory response. In vivo, intraperitoneal injection of LPS significantly increased TNF-α, IL-1β, IL-6 and IL-8 mRNA expression in the intestine of carp (P<0·05). Pre-treatment of fish with vitamin D3 protected the fish intestine from the LPS-induced increase of TNF-α, IL-1β, IL-6 and IL-8 mainly by downregulating TLR4, Myd88 and NF-κB p65 mRNA expression (P<0·05). These observations suggest that vitamin D could inhibit LPS-induced inflammatory response in juvenile Jian carp in vivo and in enterocytes in vitro. The anti-inflammatory effect of vitamin D is mediated at least in part by TLR4-Myd88 signalling pathways in the intestine and enterocytes of juvenile Jian carp.
Collapse
|
247
|
Somamoto T, Miura Y, Nakanishi T, Nakao M. Local and systemic adaptive immune responses toward viral infection via gills in ginbuna crucian carp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:81-87. [PMID: 25936589 DOI: 10.1016/j.dci.2015.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
Recent studies on fish immunity highlighted the significance of gills as mucosal immune tissues. To understand potential of gills as vaccination sites for inducing adaptive systemic immunity, we investigated virus-specific cell-mediated and humoral immune responses following a "per-gill infection method", which directly exposes virus only to gills. The viral load in crucian carp hematopoietic necrosis virus (CHNV)-infected gills decreased after peaking at a particular time point. Furthermore, the viral titers in the gills following the secondary infection were lower than that after the primary infection, indicating that local adaptive immunity helped the elimination of virus. Gene expression analysis demonstrated that IFN-γ in gills and perforin in kidney were increased after the gill infection. CD8(+) cells in kidney leukocytes increased after the secondary infection, whereas IgM(+) cells decreased. These results suggest that IFN-γ and CTL contribute in controlling CHNV-replication in gills and kidney. Gill infection could induce specific cell-mediated cytotoxicity of peripheral blood leukocytes (PBL) and secretion of CHNV-specific IgM in serum, indicating that local priming of the gill site can generate adaptive systemic immunity. Thus, the gills could be prospective antigen-sensitization sites for mucosal vaccination.
Collapse
Affiliation(s)
- Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | - Yuhei Miura
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Teruyuki Nakanishi
- Department of Veterinary Medicine, Nihon University, Kanagawa, Fujisawa 252-8510, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
248
|
Estruch G, Collado MC, Peñaranda DS, Tomás Vidal A, Jover Cerdá M, Pérez Martínez G, Martinez-Llorens S. Impact of Fishmeal Replacement in Diets for Gilthead Sea Bream (Sparus aurata) on the Gastrointestinal Microbiota Determined by Pyrosequencing the 16S rRNA Gene. PLoS One 2015; 10:e0136389. [PMID: 26317431 PMCID: PMC4552794 DOI: 10.1371/journal.pone.0136389] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 08/04/2015] [Indexed: 11/18/2022] Open
Abstract
Recent studies have demonstrated the impact of diet on microbiota composition, but the essential need for the optimization of production rates and costs forces farms and aquaculture production to carry out continuous dietary tests. In order to understand the effect of total fishmeal replacement by vegetable-based feed in the sea bream (Sparus aurata), the microbial composition of the stomach, foregut, midgut and hindgut was analysed using high-throughput 16S rDNA sequencing, also considering parameters of growth, survival and nutrient utilisation indices.A total of 91,539 16S rRNA filtered-sequences were analysed, with an average number of 3661.56 taxonomically assigned, high-quality sequences per sample. The dominant phyla throughout the whole gastrointestinal tract were Actinobacteria, Protebacteria and Firmicutes. A lower diversity in the stomach in comparison to the other intestinal sections was observed. The microbial composition of the Recirculating Aquaculture System was totally different to that of the sea bream gastrointestinal tract. Total fishmeal replacement had an important impact on microbial profiles but not on diversity. Streptococcus (p-value: 0.043) and Photobacterium (p-value: 0.025) were highly represented in fish fed with fishmeal and vegetable-meal diets, respectively. In the stomach samples with the vegetable diet, reads of chloroplasts and mitochondria from vegetable dietary ingredients were rather abundant. Principal Coordinate Analysis showed a clear differentiation between diets in the microbiota present in the gut, supporting the presence of specific bacterial consortia associated with the diet.Although differences in growth and nutritive parameters were not observed, a negative effect of the vegetable diet on the survival rate was determined. Further studies are required to shed more light on the relationship between the immune system and sea bream gastrointestinal tract microbiota and should consider the modulation of the microbiota to improve the survival rate and nutritive efficacy when using plant-based diets.
Collapse
Affiliation(s)
- G. Estruch
- Aquaculture and Biodiversity Research Group. Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Valencia (Valencia), Spain
| | - M. C. Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna (Valencia), Spain
| | - D. S. Peñaranda
- Aquaculture and Biodiversity Research Group. Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Valencia (Valencia), Spain
| | - A. Tomás Vidal
- Aquaculture and Biodiversity Research Group. Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Valencia (Valencia), Spain
| | - M. Jover Cerdá
- Aquaculture and Biodiversity Research Group. Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Valencia (Valencia), Spain
| | - G. Pérez Martínez
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna (Valencia), Spain
| | - S. Martinez-Llorens
- Aquaculture and Biodiversity Research Group. Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Valencia (Valencia), Spain
- * E-mail:
| |
Collapse
|
249
|
Munang'andu HM, Mutoloki S, Evensen Ø. A Review of the Immunological Mechanisms Following Mucosal Vaccination of Finfish. Front Immunol 2015; 6:427. [PMID: 26379665 PMCID: PMC4547047 DOI: 10.3389/fimmu.2015.00427] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/06/2015] [Indexed: 11/13/2022] Open
Abstract
Mucosal organs are principle portals of entry for microbial invasion and as such developing protective vaccines against these pathogens can serve as a first line of defense against infections. In general, all mucosal organs in finfish are covered by a layer of mucus whose main function is not only to prevent pathogen attachment by being continuously secreted and sloughing-off but it serves as a vehicle for antimicrobial compounds, complement, and immunoglobulins that degrade, opsonize, and neutralize invading pathogens on mucosal surfaces. In addition, all mucosal organs in finfish possess antigen-presenting cells (APCs) that activate cells of the adaptive immune system to generate long-lasting protective immune responses. The functional activities of APCs are orchestrated by a vast array of proinflammatory cytokines and chemokines found in all mucosal organs. The adaptive immune system in mucosal organs is made of humoral immune responses that are able to neutralize invading pathogens as well as cellular-mediated immune responses whose kinetics are comparable to those induced by parenteral vaccines. In general, finfish mucosal immune system has the capacity to serve as the first-line defense mechanism against microbial invasion as well as being responsive to vaccination.
Collapse
Affiliation(s)
- Hetron Mweemba Munang'andu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| | - Stephen Mutoloki
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| | - Øystein Evensen
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| |
Collapse
|
250
|
Torrecillas S, Montero D, Caballero MJ, Pittman KA, Custódio M, Campo A, Sweetman J, Izquierdo M. Dietary Mannan Oligosaccharides: Counteracting the Side Effects of Soybean Meal Oil Inclusion on European Sea Bass (Dicentrarchus labrax) Gut Health and Skin Mucosa Mucus Production? Front Immunol 2015; 6:397. [PMID: 26300883 PMCID: PMC4525062 DOI: 10.3389/fimmu.2015.00397] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/20/2015] [Indexed: 01/08/2023] Open
Abstract
The main objective of this study was to assess the effects of 4 g kg(-1) dietary mannan oligosaccharides (MOS) inclusion in soybean oil (SBO)- and fish oil (FO)-based diets on the gut health and skin mucosa mucus production of European sea bass juveniles after 8 weeks of feeding. Dietary MOS, regardless of the oil source, promoted growth. The intestinal somatic index was not affected, however dietary SBO reduced the intestinal fold length, while dietary MOS increased it. The dietary oil source fed produced changes on the posterior intestine fatty acid profiles irrespective of MOS dietary supplementation. SBO down-regulated the gene expression of TCRβ, COX2, IL-1β, TNFα, IL-8, IL-6, IL-10, TGFβ, and Ig and up-regulated MHCII. MOS supplementation up-regulated the expression of MHCI, CD4, COX2, TNFα, and Ig when included in FO-based diets. However, there was a minor up-regulating effect on these genes when MOS was supplemented in the SBO-based diet. Both dietary oil sources and MOS affected mean mucous cell areas within the posterior gut, however the addition of MOS to a SBO diet increased the mucous cell size over the values shown in FO fed fish. Dietary SBO also trends to reduce mucous cell density in the anterior gut relative to FO, suggesting a lower overall mucosal secretion. There are no effects of dietary oil or MOS in the skin mucosal patterns. Complete replacement of FO by SBO, modified the gut fatty acid profile, altered posterior gut-associated immune system (GALT)-related gene expression and gut mucous cells patterns, induced shorter intestinal folds and tended to reduce European sea bass growth. However, when combined with MOS, the harmful effects of SBO appear to be partially balanced by moderating the down-regulation of certain GALT-related genes involved in the functioning of gut mucous barrier and increasing posterior gut mucous cell diffusion rates, thus helping to preserve immune homeostasis. This denotes the importance of a balanced dietary n-3/n-6 ratio for an appropriate GALT-immune response against MOS in European sea bass juveniles.
Collapse
Affiliation(s)
- Silvia Torrecillas
- Grupo de Investigación en Acuicultura (GIA), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Maria José Caballero
- Grupo de Investigación en Acuicultura (GIA), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | | | - Marco Custódio
- Department of Biology, University of Bergen, Bergen, Norway
| | - Aurora Campo
- Department of Biology, University of Bergen, Bergen, Norway
| | | | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura (GIA), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|