201
|
Chen J, McKay RM, Parada LF. Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 2012; 149:36-47. [PMID: 22464322 DOI: 10.1016/j.cell.2012.03.009] [Citation(s) in RCA: 425] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Indexed: 02/06/2023]
Abstract
Eighty percent of malignant tumors that develop in the central nervous system are malignant gliomas, which are essentially incurable. Here, we discuss how recent sequencing studies are identifying unexpected drivers of gliomagenesis, including mutations in isocitrate dehydrogenase 1 and the NF-κB pathway, and how genome-wide analyses are reshaping the classification schemes for tumors and enhancing prognostic value of molecular markers. We discuss the controversies surrounding glioma stem cells and explore how the integration of new molecular data allows for the generation of more informative animal models to advance our knowledge of glioma's origin, progression, and treatment.
Collapse
Affiliation(s)
- Jian Chen
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
202
|
Kim Y, Kim E, Wu Q, Guryanova O, Hitomi M, Lathia JD, Serwanski D, Sloan AE, Weil RJ, Lee J, Nishiyama A, Bao S, Hjelmeland AB, Rich JN. Platelet-derived growth factor receptors differentially inform intertumoral and intratumoral heterogeneity. Genes Dev 2012; 26:1247-62. [PMID: 22661233 PMCID: PMC3371412 DOI: 10.1101/gad.193565.112] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/16/2012] [Indexed: 01/22/2023]
Abstract
Growth factor-mediated proliferation and self-renewal maintain tissue-specific stem cells and are frequently dysregulated in cancers. Platelet-derived growth factor (PDGF) ligands and receptors (PDGFRs) are commonly overexpressed in gliomas and initiate tumors, as proven in genetically engineered models. While PDGFRα alterations inform intertumoral heterogeneity toward a proneural glioblastoma (GBM) subtype, we interrogated the role of PDGFRs in intratumoral GBM heterogeneity. We found that PDGFRα is expressed only in a subset of GBMs, while PDGFRβ is more commonly expressed in tumors but is preferentially expressed by self-renewing tumorigenic GBM stem cells (GSCs). Genetic or pharmacological targeting of PDGFRβ (but not PDGFRα) attenuated GSC self-renewal, survival, tumor growth, and invasion. PDGFRβ inhibition decreased activation of the cancer stem cell signaling node STAT3, while constitutively active STAT3 rescued the loss of GSC self-renewal caused by PDGFRβ targeting. In silico survival analysis demonstrated that PDGFRB informed poor prognosis, while PDGFRA was a positive prognostic factor. Our results may explain mixed clinical responses of anti-PDGFR-based approaches and suggest the need for integration of models of cancer as an organ system into development of cancer therapies.
Collapse
Affiliation(s)
- Youngmi Kim
- Department of Stem Cell Biology and Regenerative Medicine
| | - Eunhee Kim
- Department of Stem Cell Biology and Regenerative Medicine
| | - Qiulian Wu
- Department of Stem Cell Biology and Regenerative Medicine
| | - Olga Guryanova
- Department of Stem Cell Biology and Regenerative Medicine
| | | | - Justin D. Lathia
- Department of Stem Cell Biology and Regenerative Medicine
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - David Serwanski
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Andrew E. Sloan
- Department of Neurological Surgery
- Department of Pathology
- Center for Translational Neuroscience, Case Western Reserve University School of Medicine, University Hospitals, Cleveland, Ohio 44106, USA
| | - Robert J. Weil
- Department of Neurosurgery, the Neurological Institute, Burkhardt Brain Tumor and Neuro-oncology Center, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Jeongwu Lee
- Department of Stem Cell Biology and Regenerative Medicine
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine
| | | | - Jeremy N. Rich
- Department of Stem Cell Biology and Regenerative Medicine
| |
Collapse
|
203
|
Abstract
Glioblastoma remains one of the deadliest forms of cancer. Infiltrating cancer cells in the surrounding brain prevent complete resection, and tumor cell resistance to chemoradiation results in the poor prognosis of the glioblastoma (GBM) patient. Much research has been devoted over the years to the pathogenesis and treatment of GBM. The tumor stem cell hypothesis, which was initially described in hematopoietic cell malignancies, may explain the resistance of these tumors to conventional therapies. In this model, a certain subset of tumor cells, with characteristics similar to normal stem cells, is capable of producing the variety of cell types, which constitute the bulk of a tumor. As these tumor cells have properties distinct from those constituting the bulk of the tumor, a different approach may be required to eradicate these residual cells within the brain. Here we outline the history behind the theory of GBM cancer stem-like cells, as they are now referred to. We will also discuss the implications of their existence on commonly held beliefs about GBM pathogenesis and how they might influence future treatment strategies.
Collapse
|
204
|
Abstract
Glioblastoma multiforme is a histopathologically heterogeneous disease with few treatment options. Therapy based on genomic alterations is rapidly gaining popularity because of the high response rate and high specificity. DNA copy number and exon-sequencing studies of glioblastoma multiforme samples have revealed recurrent genomic alterations in genes such as TP53, EGFR, and IDH1, but to date, this has not resulted in novel glioblastoma multiforme therapies. Identification of expression subtypes has resulted in new insights such as the association between genomic abnormalities and expression signatures. This review describes the types of genomic studies that have been performed and that are underway, the most prominent results, and the implications of genomic research for the development of clinical treatment modalities.
Collapse
|
205
|
Abstract
Platelet-derived growth factor B (PDGF-B) is a growth factor promoting and regulating cell migration, proliferation, and differentiation, involved in both developmental processes and in maintaining tissue homeostasis under strict regulation. What are the implications of prolonged or uncontrolled growth factor signaling in vivo, and when does a growth factor such as PDGF-B become an oncogene? Under experimental conditions, PDGF-B induces proliferation and causes tumor induction. It is not known whether these tumors are strictly a PDGF-B-driven proliferation of cells or associated with secondary genetic events such as acquired mutations or methylation-mediated gene silencing promoting neoplasia. If PDGF-B-driven tumorigenesis was only cellular proliferation, associated changes in gene expression would thus be correlated with proliferation and not associated with secondary events involved in tumorigenesis and neoplastic transformation such as cycle delay, DNA damage response, and cell death. Changes in gene expression might be expected to be reversible, as is PDGF-B-driven proliferation under normal circumstances. Since PDGF signaling is involved in oligodendrocyte progenitor cell differentiation and maintenance, it is likely that PDGF-B stimulates proliferation of a pool of cells with that phenotype, and inhibition of PDGF-B signaling would result in reduced expression of oligodendrocyte-associated genes. More importantly, inhibition of PDGF signaling would be expected to result in reversion of genes induced by PDGF-B accompanied by a decrease in proliferation. However, if PDGF-B-driven tumorigenesis is more than simply a proliferation of cells, inhibition of PDGF signaling may not reverse gene expression or halt proliferation. These fundamental questions concerning PDGF-B as a potential oncogene have not been resolved.
Collapse
Affiliation(s)
- Nanna Lindberg
- Department of Neurosurgery, Department of Cancer Biology and Genetics, and Brain Tumor Center, 1275 York Ave, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Eric C. Holland
- Department of Neurosurgery, Department of Cancer Biology and Genetics, and Brain Tumor Center, 1275 York Ave, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| |
Collapse
|
206
|
Abstract
The family of platelet-derived growth factors (PDGFs) plays a number of critical roles in normal embryonic development, cellular differentiation, and response to tissue damage. Not surprisingly, as it is a multi-faceted regulatory system, numerous pathological conditions are associated with aberrant activity of the PDGFs and their receptors. As we and others have shown, human gliomas, especially glioblastoma, express all PDGF ligands and both the two cell surface receptors, PDGFR-α and -β. The cellular distribution of these proteins in tumors indicates that glial tumor cells are stimulated via PDGF/PDGFR-α autocrine and paracrine loops, while tumor vessels are stimulated via the PDGFR-β. Here we summarize the initial discoveries on the role of PDGF and PDGF receptors in gliomas and provide a brief overview of what is known in this field.
Collapse
Affiliation(s)
- Inga Nazarenko
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| | - Sanna-Maria Hede
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
- (currently) Uppsala University, Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, SE-751 85 Uppsala, Sweden
| | - Xiaobing He
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| | - Anna Hedrén
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| | - James Thompson
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
- Karolinska Healthcare Research Biobank (KHRBB), Clinical Pathology/Cytology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Mikael S. Lindström
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
- Karolinska Healthcare Research Biobank (KHRBB), Clinical Pathology/Cytology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
207
|
Marei HES, Ahmed AE, Michetti F, Pescatori M, Pallini R, Casalbore P, Cenciarelli C, Elhadidy M. Gene expression profile of adult human olfactory bulb and embryonic neural stem cell suggests distinct signaling pathways and epigenetic control. PLoS One 2012; 7:e33542. [PMID: 22485144 PMCID: PMC3317670 DOI: 10.1371/journal.pone.0033542] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/10/2012] [Indexed: 12/20/2022] Open
Abstract
Global gene expression profiling was performed using RNA from human embryonic neural stem cells (hENSC), and adult human olfactory bulb-derived neural stem cells (OBNSCs), to define a gene expression pattern and signaling pathways that are specific for each cell lineage. We have demonstrated large differences in the gene expression profile of human embryonic NSC, and adult human OBNSCs, but less variability between parallel cultures. Transcripts of genes involved in neural tube development and patterning (ALDH1A2, FOXA2), progenitor marker genes (LMX1a, ALDH1A1, SOX10), proliferation of neural progenitors (WNT1 and WNT3a), neuroplastin (NPTN), POU3F1 (OCT6), neuroligin (NLGN4X), MEIS2, and NPAS1 were up-regulated in both cell populations. By Gene Ontology, 325 out of 3875 investigated gene sets were scientifically different. 41 out of the 307 investigated Cellular Component (CC) categories, 45 out of the 620 investigated Molecular Function (MF) categories, and 239 out of the 2948 investigated Biological Process (BP) categories were significant. KEGG Pathway Class Comparison had revealed that 75 out of 171 investigated gene sets passed the 0.005 significance threshold. Levels of gene expression were explored in three signaling pathways, Notch, Wnt, and mTOR that are known to be involved in NS cell fates determination. The transcriptional signature also deciphers the role of genes involved in epigenetic modifications. SWI/SNF DNA chromatin remodeling complex family, including SMARCC1 and SMARCE1, were found specifically up-regulated in our OBNSC but not in hENSC. Differences in gene expression profile of transcripts controlling epigenetic modifications, and signaling pathways might indicate differences in the therapeutic potential of our examined two cell populations in relation to in cell survival, proliferation, migration, and differentiation following engraftments in different CNS insults.
Collapse
Affiliation(s)
- Hany E S Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Nageswara Rao AA, Scafidi J, Wells EM, Packer RJ. Biologically targeted therapeutics in pediatric brain tumors. Pediatr Neurol 2012; 46:203-11. [PMID: 22490764 PMCID: PMC3654250 DOI: 10.1016/j.pediatrneurol.2012.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 02/10/2012] [Indexed: 01/10/2023]
Abstract
Pediatric brain tumors are often difficult to cure and involve significant morbidity when treated with traditional treatment modalities, including neurosurgery, conventional chemotherapy, and radiotherapy. During the past two decades, a clearer understanding of tumorigenesis, molecular growth pathways, and immune mechanisms in the pathogenesis of cancer has opened up promising avenues for therapy. Pediatric clinical trials with novel biologic agents are underway to treat various pediatric brain tumors, including high and low grade gliomas and embryonal tumors. As the therapeutic potential of these agents undergoes evaluation, their toxicity profiles are also becoming better understood. These agents have potentially better central nervous system penetration and lower toxicity profiles compared with conventional chemotherapy. In infants and younger children, biologic agents may prove to be of equal or greater efficacy compared with traditional chemotherapy and radiation therapy, and may reduce the deleterious side effects of traditional therapeutics on the developing brain. Molecular pathways implicated in pediatric brain tumors, agents that target these pathways, and current clinical trials are reviewed. Associated neurologic toxicities will be discussed subsequently. Considerable work is needed to establish the efficacy of these agents alone and in combination, but pediatric neurologists should be aware of these agents and their rationale.
Collapse
Affiliation(s)
- Amulya A. Nageswara Rao
- Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota,Department of Neurology and Pediatrics, George Washington University, Washington, DC,Brain Tumor Institute, Children’s National Medical Center, Washington, DC,Center for Neuroscience and Behavioral Medicine, Children’s National Medical Center, Washington, DC
| | - Joseph Scafidi
- Department of Neurology and Pediatrics, George Washington University, Washington, DC,Brain Tumor Institute, Children’s National Medical Center, Washington, DC,Center for Neuroscience and Behavioral Medicine, Children’s National Medical Center, Washington, DC
| | - Elizabeth M. Wells
- Department of Neurology and Pediatrics, George Washington University, Washington, DC,Brain Tumor Institute, Children’s National Medical Center, Washington, DC,Center for Neuroscience and Behavioral Medicine, Children’s National Medical Center, Washington, DC
| | - Roger J. Packer
- Department of Neurology and Pediatrics, George Washington University, Washington, DC,Brain Tumor Institute, Children’s National Medical Center, Washington, DC,Center for Neuroscience and Behavioral Medicine, Children’s National Medical Center, Washington, DC,Communications should be addressed to: Dr. Packer; Department of Neurology; Children’s National Medical Center; 111 Michigan Avenue NW; Washington, DC 20010.
| |
Collapse
|
209
|
Katz AM, Amankulor NM, Pitter K, Helmy K, Squatrito M, Holland EC. Astrocyte-specific expression patterns associated with the PDGF-induced glioma microenvironment. PLoS One 2012; 7:e32453. [PMID: 22393407 PMCID: PMC3290579 DOI: 10.1371/journal.pone.0032453] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 01/31/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The tumor microenvironment contains normal, non-neoplastic cells that may contribute to tumor growth and maintenance. Within PDGF-driven murine gliomas, tumor-associated astrocytes (TAAs) are a large component of the tumor microenvironment. The function of non-neoplastic astrocytes in the glioma microenvironment has not been fully elucidated; moreover, the differences between these astrocytes and normal astrocytes are unknown. We therefore sought to identify genes and pathways that are increased in TAAs relative to normal astrocytes and also to determine whether expression of these genes correlates with glioma behavior. METHODOLOGY/PRINCIPAL FINDINGS We compared the gene expression profiles of TAAs to normal astrocytes and found the Antigen Presentation Pathway to be significantly increased in TAAs. We then identified a gene signature for glioblastoma (GBM) TAAs and validated the expression of some of those genes within the tumor. We also show that TAAs are derived from the non-tumor, stromal environment, in contrast to the Olig2+ tumor cells that constitute the neoplastic elements in our model. Finally, we validate this GBM TAA signature in patients and show that a TAA-derived gene signature predicts survival specifically in the human proneural subtype of glioma. CONCLUSIONS/SIGNIFICANCE Our data identifies unique gene expression patterns between populations of TAAs and suggests potential roles for stromal astrocytes within the glioma microenvironment. We show that certain stromal astrocytes in the tumor microenvironment express a GBM-specific gene signature and that the majority of these stromal astrocyte genes can predict survival in the human disease.
Collapse
Affiliation(s)
- Amanda M. Katz
- Biochemistry, Cell, and Molecular Biology Program, Weill Medical College of Cornell University, New York, New York, United States of America
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Nduka M. Amankulor
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Departments of Neurosurgery, Neurology and Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Ken Pitter
- Biochemistry, Cell, and Molecular Biology Program, Weill Medical College of Cornell University, New York, New York, United States of America
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Karim Helmy
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Massimo Squatrito
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Eric C. Holland
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Departments of Neurosurgery, Neurology and Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
210
|
Reardon DA, Desjardins A, Vredenburgh JJ, Herndon JE, Coan A, Gururangan S, Peters KB, McLendon R, Sathornsumetee S, Rich JN, Lipp ES, Janney D, Friedman HS. Phase II study of Gleevec plus hydroxyurea in adults with progressive or recurrent low-grade glioma. Cancer 2012; 118:4759-67. [PMID: 22371319 DOI: 10.1002/cncr.26541] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/26/2011] [Accepted: 06/21/2011] [Indexed: 11/06/2022]
Abstract
BACKGROUND We evaluated the efficacy of imatinib plus hydroxyurea in patients with progressive/recurrent low-grade glioma. METHODS A total of 64 patients with recurrent/progressive low-grade glioma were enrolled in this single-center study that stratified patients into astrocytoma and oligodendroglioma cohorts. All patients received 500 mg of hydroxyurea twice a day. Imatinib was administered at 400 mg per day for patients not on enzyme-inducing antiepileptic drugs (EIAEDs) and at 500 mg twice a day if on EIAEDs. The primary endpoint was progression-free survival at 12 months (PFS-12) and secondary endpoints were safety, median progression-free survival, and radiographic response rate. RESULTS Thirty-two patients were enrolled into each cohort. Eleven patients (17%) had before radiotherapy and 24 (38%) had received before chemotherapy. The median PFS and PFS-12 were 11 months and 39%, respectively. Outcome did not differ between the histologic cohorts. No patient achieved a radiographic response. The most common grade 3 or greater adverse events were neutropenia (11%), thrombocytopenia (3%), and diarrhea (3%). CONCLUSIONS Imatinib plus hydroxyurea was well tolerated among recurrent/progressive LGG patients but this regimen demonstrated negligible antitumor activity.
Collapse
Affiliation(s)
- David A Reardon
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Jadasz JJ, Aigner L, Rivera FJ, Küry P. The remyelination Philosopher's Stone: stem and progenitor cell therapies for multiple sclerosis. Cell Tissue Res 2012; 349:331-47. [PMID: 22322424 DOI: 10.1007/s00441-012-1331-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/16/2012] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease that leads to oligodendrocyte loss and subsequent demyelination of the adult central nervous system (CNS). The pathology is characterized by transient phases of recovery during which remyelination can occur as a result of resident oligodendroglial precursor and stem/progenitor cell activation. However, myelin repair efficiency remains low urging the development of new therapeutical approaches that promote remyelination activities. Current MS treatments target primarily the immune system in order to reduce the relapse rate and the formation of inflammatory lesions, whereas no therapies exist in order to regenerate damaged myelin sheaths. During the last few years, several transplantation studies have been conducted with adult neural stem/progenitor cells and glial precursor cells to evaluate their potential to generate mature oligodendrocytes that can remyelinate axons. In parallel, modulation of the endogenous progenitor niche by neural and mesenchymal stem cell transplantation with the aim of promoting CNS progenitor differentiation and myelination has been studied. Here, we summarize these findings and discuss the properties and consequences of the various molecular and cell-mediated remyelination approaches. Moreover, we address age-associated intrinsic cellular changes that might influence the regenerative outcome. We also evaluate the extent to which these experimental treatments might increase the regeneration capacity of the demyelinated human CNS and hence be turned into future therapies.
Collapse
Affiliation(s)
- Janusz J Jadasz
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | |
Collapse
|
212
|
Arias A, Lamé MW, Santarelli L, Hen R, Greene LA, Angelastro JM. Regulated ATF5 loss-of-function in adult mice blocks formation and causes regression/eradication of gliomas. Oncogene 2012; 31:739-51. [PMID: 21725368 PMCID: PMC3277917 DOI: 10.1038/onc.2011.276] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 04/29/2011] [Accepted: 05/26/2011] [Indexed: 12/03/2022]
Abstract
Glioblastomas are among the most incurable cancers. Our past findings indicated that glioblastoma cells, but not neurons or glia, require the transcription factor ATF5 (activating transcription factor 5) for survival. However, it was unknown whether interference with ATF5 function can prevent or promote regression/eradication of malignant gliomas in vivo. To address this issue, we created a mouse model by crossing a human glial fibrillary acidic protein (GFAP) promoter-tetracycline transactivator mouse line with tetracycline operon-dominant negative-ATF5 (d/n-ATF5) mice to establish bi-transgenic mice. In this model, d/n-ATF5 expression is controlled by doxycycline and the promoter for GFAP, a marker for stem/progenitor cells as well as gliomas. Endogenous gliomas were produced with high efficiency by retroviral delivery of platelet-derived growth factor (PDGF)-B and p53-short hairpin RNA (shRNA) in adult bi-transgenic mice in which expression of d/n-ATF5 was spatially and temporally regulated. Induction of d/n-ATF5 before delivery of PDGF-B/p53-shRNA virus greatly reduced the proportion of mice that formed tumors. Moreover, d/n-ATF5 induction after tumor formation led to regression/eradication of detectable gliomas without evident damage to normal brain cells in all 24 mice assessed.
Collapse
Affiliation(s)
- A Arias
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | - M W Lamé
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | - L Santarelli
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - R Hen
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - L A Greene
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - J M Angelastro
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| |
Collapse
|
213
|
Blackmore DG, Reynolds BA, Golmohammadi MG, Large B, Aguilar RM, Haro L, Waters MJ, Rietze RL. Growth hormone responsive neural precursor cells reside within the adult mammalian brain. Sci Rep 2012; 2:250. [PMID: 22355762 PMCID: PMC3274722 DOI: 10.1038/srep00250] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 01/16/2012] [Indexed: 12/02/2022] Open
Abstract
The detection of growth hormone (GH) and its receptor in germinal regions of the mammalian brain prompted our investigation of GH and its role in the regulation of endogenous neural precursor cell activity. Here we report that the addition of exogenous GH significantly increased the expansion rate in long-term neurosphere cultures derived from wild-type mice, while neurospheres derived from GH null mice exhibited a reduced expansion rate. We also detected a doubling in the frequency of large (i.e. stem cell-derived) colonies for up to 120 days following a 7-day intracerebroventricular infusion of GH suggesting the activation of endogenous stem cells. Moreover, gamma irradiation induced the ablation of normally quiescent stem cells in GH-infused mice, resulting in a decline in olfactory bulb neurogenesis. These results suggest that GH activates populations of resident stem and progenitor cells, and therefore may represent a novel therapeutic target for age-related neurodegeneration and associated cognitive decline.
Collapse
Affiliation(s)
- Daniel G Blackmore
- Queensland Brain Institute, The University of Queensland, Brisbane Queensland, 4072, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Phillips JJ, Huillard E, Robinson AE, Ward A, Lum DH, Polley MY, Rosen SD, Rowitch DH, Werb Z. Heparan sulfate sulfatase SULF2 regulates PDGFRα signaling and growth in human and mouse malignant glioma. J Clin Invest 2012; 122:911-22. [PMID: 22293178 DOI: 10.1172/jci58215] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 12/14/2011] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM), a uniformly lethal brain cancer, is characterized by diffuse invasion and abnormal activation of multiple receptor tyrosine kinase (RTK) signaling pathways, presenting a major challenge to effective therapy. The activation of many RTK pathways is regulated by extracellular heparan sulfate proteoglycans (HSPG), suggesting these molecules may be effective targets in the tumor microenvironment. In this study, we demonstrated that the extracellular sulfatase, SULF2, an enzyme that regulates multiple HSPG-dependent RTK signaling pathways, was expressed in primary human GBM tumors and cell lines. Knockdown of SULF2 in human GBM cell lines and generation of gliomas from Sulf2(-/-) tumorigenic neurospheres resulted in decreased growth in vivo in mice. We found a striking SULF2 dependence in activity of PDGFRα, a major signaling pathway in GBM. Ablation of SULF2 resulted in decreased PDGFRα phosphorylation and decreased downstream MAPK signaling activity. Interestingly, in a survey of SULF2 levels in different subtypes of GBM, the proneural subtype, characterized by aberrations in PDGFRα, demonstrated the strongest SULF2 expression. Therefore, in addition to its potential as an upstream target for therapy of GBM, SULF2 may help identify a subset of GBMs that are more dependent on exogenous growth factor-mediated signaling. Our results suggest the bioavailability of growth factors from the microenvironment is a significant contributor to tumor growth in a major subset of human GBM.
Collapse
Affiliation(s)
- Joanna J Phillips
- Department of Neurological Surgery, UCSF, San Francisco, California 94158, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Patel DA, Booze RM, Mactutus CF. Prenatal cocaine exposure alters progenitor cell markers in the subventricular zone of the adult rat brain. Int J Dev Neurosci 2012; 30:1-9. [PMID: 22119286 PMCID: PMC3825177 DOI: 10.1016/j.ijdevneu.2011.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/07/2011] [Accepted: 11/07/2011] [Indexed: 01/18/2023] Open
Abstract
Long-term consequences of early developmental exposure to drugs of abuse may have deleterious effects on the proliferative plasticity of the brain. The purpose of this study was to examine the long-term effects of prenatal exposure to cocaine, using the IV route of administration and doses that mimic the peak arterial levels of cocaine use in humans, on the proliferative cell types of the subventricular zones (SVZ) in the adult (180 days-old) rat brain. Employing immunocytochemistry, the expression of GFAP(+) (type B cells) and nestin(+)(GFAP(-)) (type C and A cells) staining was quantified in the subcallosal area of the SVZ. GFAP(+) expression was significantly different between the prenatal cocaine treated group and the vehicle (saline) control group. The prenatal cocaine treated group possessed significantly lower GFAP(+) expression relative to the vehicle control group, suggesting that prenatal cocaine exposure significantly reduced the expression of type B neural stem cells of the SVZ. In addition, there was a significant sex difference in nestin(+) expression with females showing approximately 8-13% higher nestin(+) expression compared to the males. More importantly, a significant prenatal treatment condition (prenatal cocaine, control) by sex interaction in nestin(+) expression was confirmed, indicating different effects of cocaine based on sex of the animal. Specifically, prenatal cocaine exposure eliminated the basal difference between the sexes. Collectively, the present findings suggest that prenatal exposure to cocaine, when delivered via a protocol designed to capture prominent features of recreational usage, can selectively alter the major proliferative cell types in the subcallosal area of the SVZ in an adult rat brain, and does so differently for males and females.
Collapse
|
216
|
Barrett LE, Granot Z, Coker C, Iavarone A, Hambardzumyan D, Holland EC, Nam HS, Benezra R. Self-renewal does not predict tumor growth potential in mouse models of high-grade glioma. Cancer Cell 2012; 21:11-24. [PMID: 22264785 DOI: 10.1016/j.ccr.2011.11.025] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 10/20/2011] [Accepted: 11/29/2011] [Indexed: 01/08/2023]
Abstract
Within high-grade gliomas, the precise identities and functional roles of stem-like cells remain unclear. In the normal neurogenic niche, ID (Inhibitor of DNA-binding) genes maintain self-renewal and multipotency of adult neural stem cells. Using PDGF- and KRAS-driven murine models of gliomagenesis, we show that high Id1 expression (Id1(high)) identifies tumor cells with high self-renewal capacity, while low Id1 expression (Id1(low)) identifies tumor cells with proliferative potential but limited self-renewal capacity. Surprisingly, Id1(low) cells generate tumors more rapidly and with higher penetrance than Id1(high) cells. Further, eliminating tumor cell self-renewal through deletion of Id1 has modest effects on animal survival, while knockdown of Olig2 within Id1(low) cells has a significant survival benefit, underscoring the importance of non-self-renewing lineages in disease progression.
Collapse
Affiliation(s)
- Lindy E Barrett
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Fredriksson L, Nilsson I, Su EJ, Andrae J, Ding H, Betsholtz C, Eriksson U, Lawrence DA. Platelet-derived growth factor C deficiency in C57BL/6 mice leads to abnormal cerebral vascularization, loss of neuroependymal integrity, and ventricular abnormalities. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1136-1144. [PMID: 22230248 DOI: 10.1016/j.ajpath.2011.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/04/2011] [Accepted: 12/02/2011] [Indexed: 12/11/2022]
Abstract
Platelet-derived growth factors (PDGFs) and their tyrosine kinase receptors (PDGFRs) are known to play important roles during development of the lungs, central nervous system (CNS), and skeleton and in several diseases. PDGF-C is a ligand for the tyrosine kinase receptor PDGFRα. Mutations in the gene encoding PDGF-C have been linked to clefts of the lip and/or palate in humans, and ablation of PDGF-C in 129/Sv background mice results in death during the perinatal period. In this study, we report that ablation of PDGF-C in C57BL/6 mice results in a milder phenotype than in 129/Sv mice, and we present a phenotypic characterization of PDGF-C deficiency in the adult murine CNS. Multiple congenital defects were observed in the CNS of PDGF-C-null C57BL/6 mice, including cerebral vascular abnormalities with abnormal vascular smooth muscle cell coverage. In vivo imaging of mice deficient in PDGF-C also revealed cerebral ventricular abnormalities, such as asymmetry of the lateral ventricles and hypoplasia of the septum, reminiscent of cavum septum pellucidum in humans. We further noted that PDGF-C-deficient mice displayed a distorted ependymal lining of the lateral ventricles, and we found evidence of misplaced neurons in the ventricular lining. We conclude that PDGF-C plays a critical role in the development of normal cerebral ventricles and neuroependymal integrity as well as in normal cerebral vascularization.
Collapse
Affiliation(s)
- Linda Fredriksson
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan; Vascular Biology Group, Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ingrid Nilsson
- Tissue Biology Group, Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Enming J Su
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Johanna Andrae
- Vascular Biology Group, Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Hao Ding
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christer Betsholtz
- Vascular Biology Group, Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ulf Eriksson
- Tissue Biology Group, Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | - Daniel A Lawrence
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
218
|
Guerrero-Cazares H, Attenello FJ, Noiman L, Quiñones-Hinojosa A. Stem cells in gliomas. HANDBOOK OF CLINICAL NEUROLOGY 2012; 104:63-73. [PMID: 22230436 DOI: 10.1016/b978-0-444-52138-5.00006-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Hugo Guerrero-Cazares
- Department of Neurosurgery, John Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
219
|
Xu Q, Yuan X, Yu JS. Glioma stem cell research for the development of immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 746:216-25. [PMID: 22639171 DOI: 10.1007/978-1-4614-3146-6_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Malignant gliomas are characterized by its invasiveness and dissemination, resulting in frequent tumor recurrence after surgical resection and/or conventional chemotherapy and radiation therapy. Various strategies of active and passive immunotherapy in developing stages have shown promise to increase patient survival time with little severe side effects. In recent years, glioma stem cells had been isolated from patient tumor specimens. Biochemical and biological characterization of these cancer initiating cells implicated their critical roles in cancer growth, malignancy and resistance to conventional treatments. In this chapter, we review recent research progress in targeting brain cancer using neural stem cells delivered cytotoxic factors and immune regulation factor, dendritic cell based vaccination, with special emphasis on targeting glioma stem cells. We present evidence supporting the notion that glioma stem cells may be preferred therapeutic targets not only for conventional therapies, but also for immunotherapies. Future progress in glioma stem cell research may fundamentally improve the prospect of malignant glioma treatments.
Collapse
Affiliation(s)
- Qijin Xu
- Maxine Dunitz Neurosurgical Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | | |
Collapse
|
220
|
Affiliation(s)
- Andrew S Chi
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
221
|
Abstract
Despite advances in surgery, radiation, and chemotherapy, malignant gliomas are still highly lethal tumors. Traditional treatments that rely on nonspecific, cytotoxic approaches have a marginal impact on patient survival. However, recent advances in the molecular cancer biology underlying glioma pathogenesis have revealed that abnormalities in common cell surface receptors, including receptor tyrosine kinase and other cytokines, mediate the abnormal cellular signal pathways and aggressive biological behavior among the majority of these tumors. Some cell surface receptors have been targeted by novel agents in preclinical and clinical development. Such cancer-specific targeted agents might offer the promise of improved cancer control without substantial toxicity. Here, we review these common cell surface receptors with clinical significance for malignant glioma and discuss the molecular characteristics, pathological significance, and potential therapeutic application of these cell surface receptors. We also summarize the clinical trials of drugs targeting these cell surface receptors in malignant glioma patients.
Collapse
Affiliation(s)
- Yan Michael Li
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY, USA
| | | |
Collapse
|
222
|
Tepavčević V, Lazarini F, Alfaro-Cervello C, Kerninon C, Yoshikawa K, Garcia-Verdugo JM, Lledo PM, Nait-Oumesmar B, Baron-Van Evercooren A. Inflammation-induced subventricular zone dysfunction leads to olfactory deficits in a targeted mouse model of multiple sclerosis. J Clin Invest 2011; 121:4722-34. [PMID: 22056384 DOI: 10.1172/jci59145] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 09/21/2011] [Indexed: 01/19/2023] Open
Abstract
Neural stem cells (NSCs) persist in defined brain niches, including the subventricular zone (SVZ), throughout adulthood and generate new neurons destined to support specific neurological functions. Whether brain diseases such as multiple sclerosis (MS) are associated with changes in adult NSCs and whether this might contribute to the development and/or persistence of neurological deficits remains poorly investigated. We examined SVZ function in mice in which we targeted an MS-like pathology to the forebrain. In these mice, which we refer to herein as targeted EAE (tEAE) mice, there was a reduction in the number of neuroblasts compared with control mice. Altered expression of the transcription factors Olig2 and Dlx2 in the tEAE SVZ niche was associated with amplification of pro-oligodendrogenic transit-amplifying cells and decreased neuroblast generation, which resulted in persistent reduction in olfactory bulb neurogenesis. Altered SVZ neurogenesis led to impaired long-term olfactory memory, mimicking the olfactory dysfunction observed in MS patients. Importantly, we also found that neurogenesis was reduced in the SVZ of MS patients compared with controls. Thus, our findings suggest that neuroinflammation induces functional alteration of adult NSCs that may contribute to olfactory dysfunction in MS patients.
Collapse
|
223
|
Guerrero-Cázares H, Chen L, Quiñones-Hinojosa A. Glioblastoma heterogeneity and more accurate representation in research models. World Neurosurg 2011; 78:594-6. [PMID: 22120218 DOI: 10.1016/j.wneu.2011.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/06/2011] [Indexed: 11/28/2022]
|
224
|
Cobbs CS. Evolving evidence implicates cytomegalovirus as a promoter of malignant glioma pathogenesis. HERPESVIRIDAE 2011; 2:10. [PMID: 22030012 PMCID: PMC3214144 DOI: 10.1186/2042-4280-2-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/26/2011] [Indexed: 01/01/2023]
Abstract
Human cytomegalovirus (HCMV) was first reported to be strongly associated with human malignant gliomas in 2002. HCMV is a herpesvirus that causes congenital brain infection and multi-organ disease in immumocompromised individuals. Malignant gliomas are the most common and aggressive adult brain tumors and glioblastoma multiforme (GBM), the highest grade glioma, is associated with a life expectancy of less than two years. HCMV gene products encode for multiple proteins that can promote the various signaling pathways critical to tumor growth, including those involved in mitogenesis, mutagenesis, apoptosis, inflammation, angiogenesis, invasion and immuno-evasion. Several groups have now demonstrated that human malignant gliomas are universally infected with HCMV and express gene products that can promote key signaling pathways in glioma pathogenesis. In this review I discuss specific HCMV gene products that we and others have recently found to be expressed in GBM in vivo, including the HCMV IE1, US28, gB and IL-10 proteins. The roles these HCMV gene products play in dysregulating key pathways in glioma biology, including the PDGFR, AKT, STAT3, and monocyte/microglia function are discussed. Finally, I review emerging human clinical trials for GBM based on anti-HCMV strategies.
Collapse
Affiliation(s)
- Charles S Cobbs
- California Pacific Medical Center Research Institute, 475 Brannan Street, San Francisco, CA, 94114, USA.
| |
Collapse
|
225
|
Lai A, Kharbanda S, Pope WB, Tran A, Solis OE, Peale F, Forrest WF, Pujara K, Carrillo JA, Pandita A, Ellingson BM, Bowers CW, Soriano RH, Schmidt NO, Mohan S, Yong WH, Seshagiri S, Modrusan Z, Jiang Z, Aldape KD, Mischel PS, Liau LM, Escovedo CJ, Chen W, Nghiemphu PL, James CD, Prados MD, Westphal M, Lamszus K, Cloughesy T, Phillips HS. Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol 2011; 29:4482-90. [PMID: 22025148 DOI: 10.1200/jco.2010.33.8715] [Citation(s) in RCA: 341] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Mutation in isocitrate dehydrogenase 1 (IDH1) at R132 (IDH1(R132MUT)) is frequent in low-grade diffuse gliomas and, within glioblastoma (GBM), has been proposed as a marker for GBMs that arise by transformation from lower-grade gliomas, regardless of clinical history. To determine how GBMs arising with IDH1(R132MUT) differ from other GBMs, we undertook a comprehensive comparison of patients presenting clinically with primary GBM as a function of IDH1(R132) mutation status. PATIENTS AND METHODS In all, 618 treatment-naive primary GBMs and 235 lower-grade diffuse gliomas were sequenced for IDH1(R132) and analyzed for demographic, radiographic, anatomic, histologic, genomic, epigenetic, and transcriptional characteristics. RESULTS Investigation revealed a constellation of features that distinguishes IDH1(R132MUT) GBMs from other GBMs (including frontal location and lesser extent of contrast enhancement and necrosis), relates them to lower-grade IDH1(R132MUT) gliomas, and supports the concept that IDH1(R132MUT) gliomas arise from a neural precursor population that is spatially and temporally restricted in the brain. The observed patterns of DNA sequence, methylation, and copy number alterations support a model of ordered molecular evolution of IDH1(R132MUT) GBM in which the appearance of mutant IDH1 protein is an initial event, followed by production of p53 mutant protein, and finally by copy number alterations of PTEN and EGFR. CONCLUSION Although histologically similar, GBMs arising with and without IDH1(R132MUT) appear to represent distinct disease entities that arise from separate cell types of origin as the result of largely nonoverlapping sets of molecular events. Optimal clinical management should account for the distinction between these GBM disease subtypes.
Collapse
Affiliation(s)
- Albert Lai
- David Geffen School of Medicine at theUniversity of California at Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Abstract
The spontaneous recovery observed in the early stages of multiple sclerosis (MS) is substituted with a later progressive course and failure of endogenous processes of repair and remyelination. Although this is the basic rationale for cell therapy, it is not clear yet to what degree the MS brain is amenable for repair and whether cell therapy has an advantage in comparison to other strategies to enhance endogenous remyelination. Central to the promise of stem cell therapy is the therapeutic plasticity, by which neural precursors can replace damaged oligodendrocytes and myelin, and also effectively attenuate the autoimmune process in a local, nonsystemic manner to protect brain cells from further injury, as well as facilitate the intrinsic capacity of the brain for recovery. These fundamental immunomodulatory and neurotrophic properties are shared by stem cells of different sources. By using different routes of delivery, cells may target both affected white matter tracts and the perivascular niche where the trafficking of immune cells occur. It is unclear yet whether the therapeutic properties of transplanted cells are maintained with the duration of time. The application of neural stem cell therapy (derived from fetal brain or from human embryonic stem cells) will be realized once their purification, mass generation, and safety are guaranteed. However, previous clinical experience with bone marrow stromal (mesenchymal) stem cells and the relative easy expansion of autologous cells have opened the way to their experimental application in MS. An initial clinical trial has established the probable safety of their intravenous and intrathecal delivery. Short-term follow-up observed immunomodulatory effects and clinical benefit justifying further clinical trials.
Collapse
Affiliation(s)
- Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Hospital, Jerusalem 91120, Israel.
| |
Collapse
|
227
|
Nieto-Sampedro M, Valle-Argos B, Gómez-Nicola D, Fernández-Mayoralas A, Nieto-Díaz M. Inhibitors of Glioma Growth that Reveal the Tumour to the Immune System. Clin Med Insights Oncol 2011; 5:265-314. [PMID: 22084619 PMCID: PMC3201112 DOI: 10.4137/cmo.s7685] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Treated glioblastoma patients survive from 6 to 14 months. In the first part of this review, we describe glioma origins, cancer stem cells and the genomic alterations that generate dysregulated cell division, with enhanced proliferation and diverse response to radiation and chemotherapy. We review the pathways that mediate tumour cell proliferation, neo-angiogenesis, tumor cell invasion, as well as necrotic and apoptotic cell death. Then, we examine the ability of gliomas to evade and suppress the host immune system, exhibited at the levels of antigen recognition and immune activation, limiting the effective signaling between glioma and host immune cells.The second part of the review presents current therapies and their drawbacks. This is followed by a summary of the work of our laboratory during the past 20 years, on oligosaccharide and glycosphingolipid inhibitors of astroblast and astrocytoma division. Neurostatins, the O-acetylated forms of gangliosides GD1b and GT1b naturally present in mammalian brain, are cytostatic for normal astroblasts, but cytotoxic for rat C6 glioma cells and human astrocytoma grades III and IV, with ID50 values ranging from 200 to 450 nM. The inhibitors do not affect neurons or fibroblasts up to concentrations of 4 μM or higher.At least four different neurostatin-activated, cell-mediated antitumoral processes, lead to tumor destruction: (i) inhibition of tumor neovascularization; (ii) activation of microglia; (iii) activation of natural killer (NK) cells; (iv) activation of cytotoxic lymphocytes (CTL). The enhanced antigenicity of neurostatin-treated glioma cells, could be related to their increased expression of connexin 43. Because neurostatins and their analogues show specific activity and no toxicity for normal cells, a clinical trial would be the logical next step.
Collapse
Affiliation(s)
- Manuel Nieto-Sampedro
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Beatriz Valle-Argos
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Diego Gómez-Nicola
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | | | | |
Collapse
|
228
|
PDGFRα expression distinguishes GFAP-expressing neural stem cells from PDGF-responsive neural precursors in the adult periventricular area. J Neurosci 2011; 31:9503-12. [PMID: 21715615 DOI: 10.1523/jneurosci.1531-11.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Jackson et al. (2006) have reported that adult glial fibrillary acid protein (GFAP)-expressing neural stem cells (NSCs) also express platelet-derived growth factor (PDGF) receptor-α (PDGFRα), and that their stimulation by PDGF induced the formation of a glioma-like mass. Here, we reexamined the relationship between PDGFRα and GFAP expression within the three-dimensional organization of the adult periventricular area. Using four independent PDGFRα antibodies, we found that adult mouse GFAP-expressing NSCs and PDGFRα-expressing cells represent two distinct populations of neural precursors. Examination of the adult periventricular area in a mouse line that expresses nuclear-localized enhanced green fluorescent protein under the control of the PDGFRα promoter confirmed that GFAP-expressing NSCs do not express PDGFRα. Furthermore, PDGF-responsive neural precursors were found at least one cell layer subjacent to the ependymal layer, and were evenly distributed across the lateral ventricular wall, which contrasts with the reported patchy and often ependymal localization of adult GFAP-expressing NSCs. Adult human PDGFRα-expressing neural precursors were also found not to express GFAP. PDGF-responsive neural precursors, but not GFAP-expressing NSCs, responded to infusions of PDGF by generating glioma-like masses. Our results do not support the view that GFAP-expressing NSCs are the origin of glioma-like masses that form after intraventricular PDGF infusion.
Collapse
|
229
|
The probable cell of origin of NF1- and PDGF-driven glioblastomas. PLoS One 2011; 6:e24454. [PMID: 21931722 PMCID: PMC3170338 DOI: 10.1371/journal.pone.0024454] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/10/2011] [Indexed: 11/19/2022] Open
Abstract
Primary glioblastomas are subdivided into several molecular subtypes. There is an ongoing debate over the cell of origin for these tumor types where some suggest a progenitor while others argue for a stem cell origin. Even within the same molecular subgroup, and using lineage tracing in mouse models, different groups have reached different conclusions. We addressed this problem from a combined mathematical modeling and experimental standpoint. We designed a novel mathematical framework to identify the most likely cells of origin of two glioma subtypes. Our mathematical model of the unperturbed in vivo system predicts that if a genetic event contributing to tumor initiation imparts symmetric self-renewing cell division (such as PDGF overexpression), then the cell of origin is a transit amplifier. Otherwise, the initiating mutations arise in stem cells. The mathematical framework was validated with the RCAS/tv-a system of somatic gene transfer in mice. We demonstrated that PDGF-induced gliomas can be derived from GFAP-expressing cells of the subventricular zone or the cortex (reactive astrocytes), thus validating the predictions of our mathematical model. This interdisciplinary approach allowed us to determine the likelihood that individual cell types serve as the cells of origin of gliomas in an unperturbed system.
Collapse
|
230
|
Alvarez-Palazuelos LE, Robles-Cervantes MS, Castillo-Velazquez G, Rivas-Souza M, Guzman-Muniz J, Moy-Lopez N, Gonzalez-Castaneda RE, Luquin S, Gonzalez-Perez O. Regulation of neural stem cell in the human SVZ by trophic and morphogenic factors. CURRENT SIGNAL TRANSDUCTION THERAPY 2011; 6:320-326. [PMID: 22053150 PMCID: PMC3204663 DOI: 10.2174/157436211797483958] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The subventricular zone (SVZ), lining the lateral ventricular system, is the largest germinal region in mammals. In there, neural stem cells express markers related to astoglial lineage that give rise to new neurons and oligodendrocytes in vivo. In the adult human brain, in vitro evidence has also shown that astrocytic cells isolated from the SVZ can generate new neurons and oligodendrocytes. These proliferative cells are strongly controlled by a number of signals and molecules that modulate, activate or repress the cell division, renewal, proliferation and fate of neural stem cells. In this review, we summarize the cellular composition of the adult human SVZ (hSVZ) and discuss the increasing evidence showing that some trophic modulators strongly control the function of neural stem cells in the SVZ.
Collapse
Affiliation(s)
| | | | - Gabriel Castillo-Velazquez
- Department of Neurosurgery. Instituto Nacional de Neurología y Neurocirugia "Manuel Velasco Suárez" México, DF
| | - Mario Rivas-Souza
- Forensic medicine. Instituto Jalisciense de Ciencias Forenses, Guadalajara, Jalisco
| | - Jorge Guzman-Muniz
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara
| | - Norma Moy-Lopez
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara
| | | | - Sonia Luquin
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara
| | - Oscar Gonzalez-Perez
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara ; Laboratory of Neuroscience, Facultad de Psicología, Universidad de Colima, Colima, Col, México
| |
Collapse
|
231
|
Abstract
MicroRNAs (miRNAs) carry out post-transcriptional control of a multitude of cellular processes. Aberrant expression of miRNA can lead to diseases, including cancer. Gliomas are aggressive brain tumors that are thought to arise from transformed glioma-initiating neural stem cells (giNSCs). With the use of giNSCs and human glioblastoma cells, we investigated the function of miRNAs in gliomas. We identified pro-neuronal miR-128 as a candidate glioma tumor suppressor miRNA. Decreased expression of miR-128 correlates with aggressive human glioma subtypes. With a combination of molecular, cellular and in vivo approaches, we characterize miR-128's tumor suppressive role. miR-128 represses giNSC growth by enhancing neuronal differentiation. miR-128 represses growth and mediates differentiation by targeting oncogenic receptor tyrosine kinases (RTKs) epithelial growth factor receptor and platelet-derived growth factor receptor-α. Using an autochthonous glioma mouse model, we demonstrated that miR-128 repressed gliomagenesis. We identified miR-128 as a glioma tumor suppressor that targets RTK signaling to repress giNSC self-renewal and enhance differentiation.
Collapse
|
232
|
Nakagomi T, Molnár Z, Nakano-Doi A, Taguchi A, Saino O, Kubo S, Clausen M, Yoshikawa H, Nakagomi N, Matsuyama T. Ischemia-induced neural stem/progenitor cells in the pia mater following cortical infarction. Stem Cells Dev 2011; 20:2037-51. [PMID: 21838536 DOI: 10.1089/scd.2011.0279] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence shows that neural stem/progenitor cells (NSPCs) can be activated in the nonconventional neurogenic zones such as the cortex following ischemic stroke. However, the precise origin, identity, and subtypes of the ischemia-induced NSPCs (iNSPCs), which can contribute to cortical neurogenesis, is currently still unclear. In our present study, using an adult mouse cortical infarction model, we found that the leptomeninges (pia mater), which is widely distributed within and closely associated with blood vessels as microvascular pericytes/perivascular cells throughout central nervous system (CNS), have NSPC activity in response to ischemia and can generate neurons. These observations indicate that microvascular pericytes residing near blood vessels that are distributed from the leptomeninges to the cortex are potential sources of iNSPCs for neurogenesis following cortical infarction. In addition, our results propose a novel concept that the leptomeninges, which cover the entire brain, have an important role in CNS restoration following brain injury such as stroke.
Collapse
Affiliation(s)
- Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Hyogo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Aberrant signaling pathways in glioma. Cancers (Basel) 2011; 3:3242-78. [PMID: 24212955 PMCID: PMC3759196 DOI: 10.3390/cancers3033242] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/01/2011] [Accepted: 08/03/2011] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies.
Collapse
|
234
|
Westphal M, Lamszus K. The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 2011; 12:495-508. [PMID: 21811295 DOI: 10.1038/nrn3060] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gliomas are the most common type of primary brain tumour and are often fast growing with a poor prognosis for the patient. Their complex cellular composition, diffuse invasiveness and capacity to escape therapies has challenged researchers for decades and hampered progress towards an effective treatment. Recent molecular characterization of tumour cells combined with new insights into cellular diversification that occurs during development, and the modelling of these processes in transgenic animals have enabled a more detailed understanding of the events that underlie gliomagenesis. Combining this enhanced understanding of the relationship between neural stem cell biology and the cell lineage relationships of tumour cells with model systems offers new opportunities to develop specific and effective therapies.
Collapse
Affiliation(s)
- Manfred Westphal
- Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | |
Collapse
|
235
|
Astrocytes and pericytes cooperatively maintain a capillary-like structure composed of endothelial cells on gel matrix. Brain Res 2011; 1406:74-83. [DOI: 10.1016/j.brainres.2011.06.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/11/2011] [Accepted: 06/15/2011] [Indexed: 12/25/2022]
|
236
|
Cimini A, Ippoliti R. Innovative Therapies against Human Glioblastoma Multiforme. ISRN ONCOLOGY 2011; 2011:787490. [PMID: 22091432 PMCID: PMC3195804 DOI: 10.5402/2011/787490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 05/25/2011] [Indexed: 01/20/2023]
Abstract
Glioblastoma multiforme is the most invasive and aggressive brain tumor in humans, and despite the latest chemical and radiative therapeutic approaches, it is still scarcely sensitive to these treatments and is generally considered an incurable disease. This paper will focus on the latest approaches to the treatment of this cancer, including the new chemicals such as proautophagic drugs and kinases inhibitors, and differentiating agents. In this field, there have been opening new perspectives as the discovery of possible specific targets such as the EGFRvIII, a truncated form of the EGF receptor. Antibodies against these targets can be used as proapoptotic agents and as possible carriers for chemicals, drugs, radioisotopes, and toxins. In this paper, we review the possible mechanism of action of these therapies, with particular attention to the combined use of toxic substances (for example, immunotoxins) and antiproliferative/differentiating compounds (i.e., ATRA, PPARγ agonists). All these aspects will be discussed in the view of progress clinical trials and of possible new approaches for directed drug formulations.
Collapse
Affiliation(s)
- Annamaria Cimini
- Department of Basic and Applied Biology, University of l'Aquila, Via Vetoio No. 10, 67010 L'Aquila, Italy
| | | |
Collapse
|
237
|
Dziurzynski K, Wei J, Qiao W, Hatiboglu MA, Kong LY, Wu A, Wang Y, Cahill D, Levine N, Prabhu S, Rao G, Sawaya R, Heimberger AB. Glioma-associated cytomegalovirus mediates subversion of the monocyte lineage to a tumor propagating phenotype. Clin Cancer Res 2011; 17:4642-9. [PMID: 21490182 PMCID: PMC3139801 DOI: 10.1158/1078-0432.ccr-11-0414] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE Cytomegalovirus (CMV) has been ubiquitously detected within high-grade gliomas, but its role in gliomagenesis has not been fully elicited. EXPERIMENTAL DESIGN Glioblastoma multiforme (GBM) tumors were analyzed by flow cytometry to determine CMV antigen expression within various glioma-associated immune populations. The glioma cancer stem cell (gCSC) CMV interleukin (IL)-10 production was determined by ELISA. Human monocytes were stimulated with recombinant CMV IL-10 and levels of expression of p-STAT3, VEGF (vascular endothelial growth factor), TGF-β, viral IE1, and pp65 were determined by flow cytometry. The influence of CMV IL-10-treated monocytes on gCSC biology was ascertained by functional assays. RESULTS CMV showed a tropism for macrophages (MΦ)/microglia and CD133+ gCSCs within GBMs. The gCSCs produce CMV IL-10, which induces human monocytes (the precursor to the central nervous system MΦs/microglia) to assume an M2 immunosuppressive phenotype (as manifested by downmodulation of the major histocompatibility complex and costimulatory molecules) while upregulating immunoinhibitory B7-H1. CMV IL-10 also induces expression of viral IE1, a modulator of viral replication and transcription in the monocytes. Finally, the CMV IL-10-treated monocytes produced angiogenic VEGF, immunosuppressive TGF-β, and enhanced migration of gCSCs. CONCLUSIONS CMV triggers a feedforward mechanism of gliomagenesis by inducing tumor-supportive monocytes.
Collapse
Affiliation(s)
- Kristine Dziurzynski
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Jun Wei
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Wei Qiao
- Department of Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Mustafa Aziz Hatiboglu
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Ling-Yuan Kong
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Adam Wu
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Yongtao Wang
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Daniel Cahill
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Nicholas Levine
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Sujit Prabhu
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Raymond Sawaya
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Amy B. Heimberger
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| |
Collapse
|
238
|
Fomchenko EI, Dougherty JD, Helmy KY, Katz AM, Pietras A, Brennan C, Huse JT, Milosevic A, Holland EC. Recruited cells can become transformed and overtake PDGF-induced murine gliomas in vivo during tumor progression. PLoS One 2011; 6:e20605. [PMID: 21754979 PMCID: PMC3130733 DOI: 10.1371/journal.pone.0020605] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 05/05/2011] [Indexed: 11/19/2022] Open
Abstract
Background Gliomas are thought to form by clonal expansion from a single cell-of-origin, and progression-associated mutations to occur in its progeny cells. Glioma progression is associated with elevated growth factor signaling and loss of function of tumor suppressors Ink4a, Arf and Pten. Yet, gliomas are cellularly heterogeneous; they recruit and trap normal cells during infiltration. Methodology/Principal Findings We performed lineage tracing in a retrovirally mediated, molecularly and histologically accurate mouse model of hPDGFb-driven gliomagenesis. We were able to distinguish cells in the tumor that were derived from the cell-of-origin from those that were not. Phenotypic, tumorigenic and expression analyses were performed on both populations of these cells. Here we show that during progression of hPDGFb-induced murine gliomas, tumor suppressor loss can expand the recruited cell population not derived from the cell-of-origin within glioma microenvironment to dominate regions of the tumor, with essentially no contribution from the progeny of glioma cell-of-origin. Moreover, the recruited cells can give rise to gliomas upon transplantation and passaging, acquire polysomal expression profiles and genetic aberrations typically present in glioma cells rather than normal progenitors, aid progeny cells in glioma initiation upon transplantation, and become independent of PDGFR signaling. Conclusions/Significance These results indicate that non-cell-of-origin derived cells within glioma environment in the mouse can be corrupted to become bona fide tumor, and deviate from the generally established view of gliomagenesis.
Collapse
Affiliation(s)
- Elena I. Fomchenko
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Joseph D. Dougherty
- Department of Molecular Biology, Rockefeller University, New York, New York, United States of America
| | - Karim Y. Helmy
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Amanda M. Katz
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Alexander Pietras
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Cameron Brennan
- Departments of Surgery (Neurosurgery) and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Jason T. Huse
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Departments of Human Oncology, Pathology and Pathogenesis, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Ana Milosevic
- Department of Molecular Biology, Rockefeller University, New York, New York, United States of America
| | - Eric C. Holland
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Departments of Surgery (Neurosurgery) and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
239
|
MicroRNAs as regulators of neural stem cell-related pathways in glioblastoma multiforme. Mol Neurobiol 2011; 44:235-49. [PMID: 21728042 DOI: 10.1007/s12035-011-8196-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/21/2011] [Indexed: 12/27/2022]
Abstract
MicroRNAs are endogenous non-coding small RNAs that have been described as highly conserved regulators of gene expression. They are involved in cancer and in the regulation of neural development and stem cell function. Recent studies suggest that a small subpopulation of cancer stem cells (CSCs) has the capacity to repopulate solid tumours such as glioblastoma (GBM), drive malignant progression and mediate radio- and chemoresistance. GBM-derived CSCs share the fundamental stem cell properties of self-renewal and multipotency with neural stem cells (NSCs) and may be regulated by miRNAs. In this review, we will summarize the current knowledge regarding the role of miRNAs in GBM development with a focus on the regulation of GBM-CSCs. We propose a list of miRNAs that could serve as molecular classifiers for GBMs and/or as promising therapeutic targets for such brain tumours.
Collapse
|
240
|
Dahiya S, Lee DY, Gutmann DH. Comparative characterization of the human and mouse third ventricle germinal zones. J Neuropathol Exp Neurol 2011; 70:622-33. [PMID: 21666496 PMCID: PMC3127083 DOI: 10.1097/nen.0b013e31822200aa] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Recent evidence indicates differences in neural stem cell biology in different brain regions. For example, we demonstrated that neurofibromatosis 1 (NF1) tumor suppressor gene inactivation leads to increased neural stem cell proliferation and gliogenesis in the optic chiasm and brainstem but not in the cerebral cortex. The differential effect of Nf1 inactivation in the optic nerve and brainstem (in which gliomas commonly form in children with NF1) versus the cortex (in which gliomas rarely develop) suggests the existence of distinct ventricular zones for gliomagenesis in children and in adults. Here, we characterized the third ventricle subventricular zone (tv-SVZ) in young and adult mouse and human brains. In children, but not adult humans, the tv-SVZ contains nestin-positive, glial fibrillary acidic protein-positive, brain fatty acid binding protein-positive, and sox2-positive cells with radial processes and prominent cilia. In contrast, the tv-SVZ in young mice contains sox2-positive progenitor cells and ciliated ependymal lining cells but lacks glial fibrillary acidic protein-positive, nestin-positive radial glia. As in the lateral ventricle SVZ, proliferation in the human and murine tv-SVZ decreases with age. The tv-SVZ in adult mice lacks the hypocellular subventricular zone observed in adult human specimens. Collectively, these data indicate the existence of a subventricular zone relevant to our understanding of glioma formation in children and will assist interpretation of genetically engineered mouse glioma models.
Collapse
Affiliation(s)
- Sonika Dahiya
- Division of Neuropathology, Washington University School of Medicine, St. Louis, Missouri
| | - Da Yong Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - David H. Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
241
|
Gonzalez-Perez O, Alvarez-Buylla A. Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. BRAIN RESEARCH REVIEWS 2011; 67:147-56. [PMID: 21236296 PMCID: PMC3109119 DOI: 10.1016/j.brainresrev.2011.01.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 01/18/2023]
Abstract
Demyelinating diseases are characterized by an extensive loss of oligodendrocytes and myelin sheaths from axolemma. These neurological disorders are a common cause of disability in young adults, but so far, there is no effective treatment against them. It has been suggested that neural stem cells (NSCs) may play an important role in brain repair therapies. NSCs in the adult subventricular zone (SVZ), also known as Type-B cells, are multipotential cells that can self-renew and give rise to neurons and glia. Recent findings have shown that cells derived from SVZ Type-B cells actively respond to epidermal-growth-factor (EGF) stimulation becoming highly migratory and proliferative. Interestingly, a subpopulation of these EGF-activated cells expresses markers of oligodendrocyte precursor cells (OPCs). When EGF administration is removed, SVZ-derived OPCs differentiate into myelinating and pre-myelinating oligodendrocytes in the white matter tracts of corpus callosum, fimbria fornix and striatum. In the presence of a demyelinating lesion, OPCs derived from EGF-stimulated SVZ progenitors contribute to myelin repair. Given their high migratory potential and their ability to differentiate into myelin-forming cells, SVZ NSCs represent an important endogenous source of OPCs for preserving the oligodendrocyte population in the white matter and for the repair of demyelinating injuries.
Collapse
Affiliation(s)
- Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Colima 28040, Mexico.
| | | |
Collapse
|
242
|
Bohman LE, Swanson KR, Moore JL, Rockne R, Mandigo C, Hankinson T, Assanah M, Canoll P, Bruce JN. Magnetic resonance imaging characteristics of glioblastoma multiforme: implications for understanding glioma ontogeny. Neurosurgery 2011; 67:1319-27; discussion 1327-8. [PMID: 20871424 DOI: 10.1227/neu.0b013e3181f556ab] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Identifying the origin of gliomas carries important implications for advancing the treatment of these recalcitrant tumors. Recent research promotes the hypothesis of a subventricular zone (SVZ) origin for the stemlike gliomagenic cells identified within human glioma specimens. However, conflicting evidence suggests that SVZ-like cells are not uniquely gliomagenic but this capacity may be shared by cycling progenitors distributed throughout the subcortical white matter (SCWM). OBJECTIVE To review radiological evidence in glioblastoma multiforme (GBM) patients to provide insight into the question of glioma ontogeny. METHODS We explored whether GBMs at first diagnosis demonstrated a pattern of anatomic distribution consistent with origin at the SVZ through retrospective analysis of preoperative contrast-enhanced T1-weighted magnetic resonance images in 63 patients. We then examined the relationship of tumor volume, point of origin, and proximity to the ventricles using a computer model of glioma growth. RESULTS Fewer than half of the GBMs analyzed had contrast-enhancing portions that contacted the ventricle on preoperative imaging. A strong correlation was found between tumor volume and the distance between the contrast-enhancing edge of the tumor and the ventricle, demonstrating that tumors abutting the ventricle are significantly larger than those that do not. The lesions simulated by the computer model validated our assumption that tumors that are radiographically distant from the ventricles are unlikely to have originated in the SVZ and supported our hypothesis that as they grow, the edges of all tumors will near the ventricles, regardless of their point of origin. CONCLUSION This work offers further support for the hypothesis that the origins of GBMs are at sites distributed throughout the white matter and are not limited to the region of the SVZ.
Collapse
Affiliation(s)
- Leif-Erik Bohman
- Department of Neurological Surgery, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Zurich MG, Honegger P. Ochratoxin A at nanomolar concentration perturbs the homeostasis of neural stem cells in highly differentiated but not in immature three-dimensional brain cell cultures. Toxicol Lett 2011; 205:203-8. [PMID: 21703336 DOI: 10.1016/j.toxlet.2011.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
Abstract
Ochratoxin A (OTA), a fungal contaminant of basic food commodities, is known to be highly cytotoxic, but the pathways underlying adverse effects at subcytotoxic concentrations remain to be elucidated. Recent reports indicate that OTA affects cell cycle regulation. Therefore, 3D brain cell cultures were used to study OTA effects on mitotically active neural stem/progenitor cells, comparing highly differentiated cultures with their immature counterparts. Changes in the rate of DNA synthesis were related to early changes in the mRNA expression of neural stem/progenitor cell markers. OTA at 10nM, a concentration below the cytotoxic level, was ineffective in immature cultures, whereas in mature cultures it significantly decreased the rate of DNA synthesis together with the mRNA expression of key transcriptional regulators such as Sox2, Mash1, Hes5, and Gli1; the cell cycle activator cyclin D2; the phenotypic markers nestin, doublecortin, and PDGFRα. These effects were largely prevented by Sonic hedgehog (Shh) peptide (500ngml(-1)) administration, indicating that OTA impaired the Shh pathway and the Sox2 regulatory transcription factor critical for stem cell self-renewal. Similar adverse effects of OTA in vivo might perturb the regulation of stem cell proliferation in the adult brain and in other organs exhibiting homeostatic and/or regenerative cell proliferation.
Collapse
|
244
|
Sun Y, Hu J, Zhou L, Pollard SM, Smith A. Interplay between FGF2 and BMP controls the self-renewal, dormancy and differentiation of rat neural stem cells. J Cell Sci 2011; 124:1867-77. [PMID: 21558414 PMCID: PMC3096055 DOI: 10.1242/jcs.085506] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2011] [Indexed: 12/29/2022] Open
Abstract
Mouse and human central nervous system progenitor cells can be propagated extensively ex vivo as stem cell lines. For the rat, however, in vitro expansion has proven to be problematic owing to proliferation arrest and differentiation. Here, we analyse the establishment, in adherent culture, of undifferentiated tripotent neural stem (NS) cell lines derived from rat foetal brain and spinal cord. Rat NS cells invariably undergo growth arrest and apparent differentiation after several passages; however, conditioned medium from proliferating cultures can overcome this block, enabling continuous propagation of undifferentiated rat NS cells. We found that dormancy is induced by autocrine production of bone morphogenetic proteins (BMPs). Accordingly, the BMP antagonist noggin can replace conditioned medium to sustain continuous self-renewal. Noggin can also induce dormant cells to re-enter the cell cycle, upon which they reacquire neurogenic potential. We further show that fibroblast growth factor 2 (FGF2) is required to suppress terminal astrocytic differentiation and maintain stem cell potency during dormancy. These findings highlight an extrinsic regulatory network, comprising BMPs, BMP antagonists and FGF2 signals, that governs the proliferation, dormancy and differentiation of rat NS cells and which can be manipulated to enable long-term clonogenic self-renewal.
Collapse
Affiliation(s)
- Yirui Sun
- Wellcome Trust Centre for Stem Cell Research and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Neurosurgery, Shanghai Huashan Hospital, Fu Dan University, Shanghai 200040, People's Republic of China
- Shanghai No. 6 Hospital, Jiaotong University, Shanghai 200233, People's Republic of China
| | - Jin Hu
- Department of Neurosurgery, Shanghai Huashan Hospital, Fu Dan University, Shanghai 200040, People's Republic of China
| | - Liangfu Zhou
- Department of Neurosurgery, Shanghai Huashan Hospital, Fu Dan University, Shanghai 200040, People's Republic of China
| | - Steven M. Pollard
- Wellcome Trust Centre for Stem Cell Research and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Austin Smith
- Wellcome Trust Centre for Stem Cell Research and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
245
|
Ihrie RA, Alvarez-Buylla A. Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain. Neuron 2011; 70:674-86. [PMID: 21609824 PMCID: PMC3346178 DOI: 10.1016/j.neuron.2011.05.004] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Abstract
New neurons and glial cells are generated in an extensive germinal niche adjacent to the walls of the lateral ventricles in the adult brain. The primary progenitors (B1 cells) have astroglial characteristics but retain important neuroepithelial properties. Recent work shows how B1 cells contact all major compartments of this niche. They share the "shoreline" on the ventricles with ependymal cells, forming a unique adult ventricular zone (VZ). In the subventricular zone (SVZ), B1 cells contact transit amplifying (type C) cells, chains of young neurons (A cells), and blood vessels. How signals from these compartments influence the behavior of B1 or C cells remains largely unknown, but recent work highlights growth factors, neurotransmitters, morphogens, and the extracellular matrix as key regulators of this niche. The integration of emerging molecular and anatomical clues forecasts an exciting new understanding of how the germ of youth is actively maintained in the adult brain.
Collapse
Affiliation(s)
- Rebecca A Ihrie
- Department of Neurosurgery and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
| | | |
Collapse
|
246
|
Richardson WD, Young KM, Tripathi RB, McKenzie I. NG2-glia as multipotent neural stem cells: fact or fantasy? Neuron 2011; 70:661-73. [PMID: 21609823 PMCID: PMC3119948 DOI: 10.1016/j.neuron.2011.05.013] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2011] [Indexed: 12/23/2022]
Abstract
Cycling glial precursors-"NG2-glia"-are abundant in the developing and mature central nervous system (CNS). During development, they generate oligodendrocytes. In culture, they can revert to a multipotent state, suggesting that they might have latent stem cell potential that could be harnessed to treat neurodegenerative disease. This hope has been subdued recently by a series of fate-mapping studies that cast NG2-glia as dedicated oligodendrocyte precursors in the healthy adult CNS-though rare, neuron production in the piriform cortex remains a possibility. Following CNS damage, the repertoire of NG2-glia expands to include Schwann cells and possibly astrocytes-but so far not neurons. This reaffirms the central role of NG2-glia in myelin repair. The realization that oligodendrocyte generation continues throughout normal adulthood has seeded the idea that myelin genesis might also be involved in neural plasticity. We review these developments, highlighting areas of current interest, contention, and speculation.
Collapse
Affiliation(s)
- William D Richardson
- Wolfson Institute for Biomedical Research and Research Department of Cell and Developmental Biology, University College London (UCL), UK.
| | | | | | | |
Collapse
|
247
|
Lei L, Sonabend AM, Guarnieri P, Soderquist C, Ludwig T, Rosenfeld S, Bruce JN, Canoll P. Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype. PLoS One 2011; 6:e20041. [PMID: 21625383 PMCID: PMC3100315 DOI: 10.1371/journal.pone.0020041] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 04/11/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Tumor heterogeneity is a major obstacle for finding effective treatment of Glioblastoma (GBM). Based on global expression analysis, GBM can be classified into distinct subtypes: Proneural, Neural, Classical and Mesenchymal. The signatures of these different tumor subtypes may reflect the phenotypes of cells giving rise to them. However, the experimental evidence connecting any specific subtype of GBM to particular cells of origin is lacking. In addition, it is unclear how different genetic alterations interact with cells of origin in determining tumor heterogeneity. This issue cannot be addressed by studying end-stage human tumors. METHODOLOGY/PRINCIPAL FINDINGS To address this issue, we used retroviruses to deliver transforming genetic lesions to glial progenitors in adult mouse brain. We compared the resulting tumors to human GBM. We found that different initiating genetic lesions gave rise to tumors with different growth rates. However all mouse tumors closely resembled the human Proneural GBM. Comparative analysis of these mouse tumors allowed us to identify a set of genes whose expression in humans with Proneural GBM correlates with survival. CONCLUSIONS/SIGNIFICANCE This study offers insights into the relationship between adult glial progenitors and Proneural GBM, and allows us to identify molecular alterations that lead to more aggressive tumor growth. In addition, we present a new preclinical model that can be used to test treatments directed at a specific type of GBM in future studies.
Collapse
Affiliation(s)
- Liang Lei
- Department of Pathology and Cell Biology, Columbia University, New York,
New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University, New
York, New York, United States of America
| | - Adam M. Sonabend
- Department of Neurological Surgery, Columbia University, New York, New
York, United States of America
| | - Paolo Guarnieri
- Biomedical Informatics Shared Resources, Bioinformatics Division,
Columbia University, New York, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University, New
York, New York, United States of America
| | - Craig Soderquist
- Department of Pathology and Cell Biology, Columbia University, New York,
New York, United States of America
| | - Thomas Ludwig
- Department of Pathology and Cell Biology, Columbia University, New York,
New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University, New
York, New York, United States of America
| | - Steven Rosenfeld
- Department of Neurology, Columbia University, New York, New York, United
States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University, New
York, New York, United States of America
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University, New York, New
York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University, New
York, New York, United States of America
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York,
New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University, New
York, New York, United States of America
| |
Collapse
|
248
|
Kurian KM. The impact of neural stem cell biology on CNS carcinogenesis and tumor types. PATHOLOGY RESEARCH INTERNATIONAL 2011; 2011:685271. [PMID: 21660278 PMCID: PMC3108550 DOI: 10.4061/2011/685271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/14/2011] [Indexed: 01/19/2023]
Abstract
The incidence of gliomas is on the increase, according to epidemiological data. This increase is a conundrum because the brain is in a privileged protected site behind the blood-brain barrier, and therefore partially buffered from environmental factors. In addition the brain also has a very low proliferative potential compared with other parts of the body. Recent advances in neural stem cell biology have impacted on our understanding of CNS carcinogenesis and tumor types. This article considers the cancer stem cell theory with regard to CNS cancers, whether CNS tumors arise from human neural stem cells and whether glioma stem cells can be reprogrammed.
Collapse
Affiliation(s)
- K M Kurian
- Department of Neuropathology, Frenchay Hospital, Bristol BS16 1LE, UK
| |
Collapse
|
249
|
Nicholas MK, Lukas RV, Chmura S, Yamini B, Lesniak M, Pytel P. Molecular heterogeneity in glioblastoma: therapeutic opportunities and challenges. Semin Oncol 2011; 38:243-53. [PMID: 21421114 DOI: 10.1053/j.seminoncol.2011.01.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glioblastoma (GBM) has been recognized as a clinical and pathologic entity for more than a century. Throughout its history, its cells of origin have been in question. Its behavior is aggressive and despite decades of effort, median survival is just beginning to improve. Surgical techniques and radiotherapy schemas continue to be refined, but the most recent progress has been achieved through improved medical therapies. These are the result of both pharmacological advances and a deeper understanding of the biological characteristics of GBM. Due to a combination of its complex phenotype and organ-specific clinical manifestations, efforts to refine GBM treatment with targeted therapies largely have been frustrated. In this review, we discuss recent attempts to exploit new molecular insights, consider the reasons for slow progress in developing better treatments, and examine future therapeutic options.
Collapse
Affiliation(s)
- M Kelly Nicholas
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
250
|
Abstract
Olig2 is essential for the selection of motor neuron and oligodendrocyte fates and the choice of neural progenitors to either proliferate or differentiate. Three new studies demonstrate that these diverse actions of Olig2 are gated by phosphorylation at two distinct motifs and that Olig2's proliferative function acts in opposition to the p53 tumor suppressor pathway.
Collapse
|