201
|
Reiniers MJ, de Haan L, Weijer R, Wiggers JK, Jongejan A, Moerland PD, Alles LK, van Kampen AHC, van Gulik TM, Heger M, van Golen RF. Effect of preoperative biliary drainage on cholestasis-associated inflammatory and fibrotic gene signatures in perihilar cholangiocarcinoma. Br J Surg 2018; 106:55-58. [PMID: 30395349 DOI: 10.1002/bjs.11022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 11/07/2022]
Abstract
Preoperative biliary drainage (PBD) is used routinely in the evaluation of patients with potentially resectable perihilar cholangiocarcinoma to relieve cholestasis and improve the liver's resilience to surgery. Little preclinical or translatational data are, however, currently available to guide the use of PBD in this patient group. The effect of PBD on hepatic gene expression profiles was therefore studied by microarray analysis. Drainage affects inflammatory and fibrotic gene signatures.
Collapse
Affiliation(s)
- M J Reiniers
- Department of Experimental Surgery, University of Amsterdam, Amsterdam, The Netherlands
| | - L de Haan
- Department of Experimental Surgery, University of Amsterdam, Amsterdam, The Netherlands
| | - R Weijer
- Department of Experimental Surgery, University of Amsterdam, Amsterdam, The Netherlands
| | - J K Wiggers
- Department of Experimental Surgery, University of Amsterdam, Amsterdam, The Netherlands
| | - A Jongejan
- Bioinformatics Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - P D Moerland
- Bioinformatics Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - L K Alles
- Department of Experimental Surgery, University of Amsterdam, Amsterdam, The Netherlands
| | - A H C van Kampen
- Bioinformatics Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - T M van Gulik
- Department of Experimental Surgery, University of Amsterdam, Amsterdam, The Netherlands
| | - M Heger
- Department of Experimental Surgery, University of Amsterdam, Amsterdam, The Netherlands
| | - R F van Golen
- Department of Experimental Surgery, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
202
|
Zhao X, Zheng F, Li Y, Hao J, Tang Z, Tian C, Yang Q, Zhu T, Diao C, Zhang C, Chen M, Hu S, Guo P, Zhang L, Liao Y, Yu W, Chen M, Zou L, Guo W, Deng W. BPTF promotes hepatocellular carcinoma growth by modulating hTERT signaling and cancer stem cell traits. Redox Biol 2018; 20:427-441. [PMID: 30419422 PMCID: PMC6230923 DOI: 10.1016/j.redox.2018.10.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022] Open
Abstract
Bromodomain PHD finger transcription factor (BPTF), a core subunit of nucleosome-remodeling factor (NURF) complex, plays an important role in chromatin remodeling. However, its precise function and molecular mechanism involved in hepatocellular carcinoma (HCC) growth are still poorly defined. Here, we demonstrated the tumor-promoting role of BPTF in HCC progression. BPTF was highly expressed in HCC cells and tumor tissues of HCC patients compared with normal liver cells and tissues. Knockdown of BPTF inhibited cell proliferation, colony formation and stem cell-like traits in HCC cells. In addition, BPTF knockdown effectively sensitized the anti-tumor effect of chemotherapeutic drugs and induced more apoptosis in HCC cells. Consistently, knockdown of BPTF in a xenograft mouse model also suppressed tumor growth and metastasis accompanied by the suppression of cancer stem cells (CSC)-related protein markers. Moreover, the mechanism study showed that the tumor-promoting role of BPTF in HCC was realized by transcriptionally regulating the expression of human telomerase reverse transcriptase (hTERT). Furthermore, we found that HCC patients with high BPTF expression displayed high hTERT expression, and high BPTF or hTERT expression level was positively correlated with advanced malignancy and poor prognosis in HCC patients. Collectively, our results demonstrate that BPTF promotes HCC growth by targeting hTERT and suggest that the BPTF-hTERT axis maybe a novel and potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Xinrui Zhao
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Fufu Zheng
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yizhuo Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jiaojiao Hao
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhipeng Tang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chunfang Tian
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qian Yang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Tianhua Zhu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chaoliang Diao
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Changlin Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Manyu Chen
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Sheng Hu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ping Guo
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Lizhi Zhang
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yina Liao
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Lijuan Zou
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| |
Collapse
|
203
|
Cheng Z, Lei Z, Yang P, Si A, Xiang D, Zhou J, Hüser N. Long non-coding RNA THOR promotes liver cancer stem cells expansion via β-catenin pathway. Gene 2018; 684:95-103. [PMID: 30359743 DOI: 10.1016/j.gene.2018.10.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/14/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive liver tumor containing cancer stem cells (CSCs), which participate in tumor invasion, therapeutic resistance, and tumor relapse leading to poor outcome and limited therapeutic options. Recently, a novel lncRNA, THOR (testis-associated highly conserved oncogenic long non-coding RNA), was characterized in human cancers and shown to exhibit an oncogenic role. However, the role of THOR in liver cancer stem cells (CSCs) remains obscure. Herein, we observed high expression of THOR in chemoresistant hepatocellular carcinomas (HCCs). A remarkable increase of THOR expression in OV6 or EpCAM-positive liver CSCs as well as in CSC-enriched hepatoma spheres. Interference THOR suppressed liver CSC expansion by inhibiting the dedifferentiation of hepatoma cells and decreasing the self-renewal ability of liver CSCs. Mechanistically, we found β-catenin as the downstream of THOR in HCC cells. The special β-catenin inhibitor FH535 abolished the discrepancy in liver CSC proportion and the self-renewal capacity between THOR knockdown HCC cells and control cells, which further confirmed that β-catenin was required in THOR promoted liver CSCs expansion. Moreover, interference THOR hepatoma cells were more sensitive to sorafenib treatment, indicates that HCC patients with low THOR expression may benefit from sorafenib treatment. Collectively, THOR was upregulated in liver CSCs and could promote HCC cells dedifferentiation and liver CSCs expansion by targeting β-catenin signaling.
Collapse
Affiliation(s)
- Zhangjun Cheng
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Zhengqing Lei
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Pinghua Yang
- Department of Laparoscope, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Anfeng Si
- Department of Surgical Oncology, The Bayi Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Daimin Xiang
- National Liver Cancer Science Center, Second Military Medical University, Shanghai, China
| | - Jiahua Zhou
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Norbert Hüser
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| |
Collapse
|
204
|
Yu B, Wu K, Wang X, Zhang J, Wang L, Jiang Y, Zhu X, Chen W, Yan M. Periostin secreted by cancer-associated fibroblasts promotes cancer stemness in head and neck cancer by activating protein tyrosine kinase 7. Cell Death Dis 2018; 9:1082. [PMID: 30348980 PMCID: PMC6197282 DOI: 10.1038/s41419-018-1116-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023]
Abstract
Protein tyrosine kinase 7 (PTK7) and cancer-associated fibroblasts (CAFs) play important roles in cancer stemness, respectively. However, little is known about interaction between CAFs and PTK7 in cancers. In this study, we showed that PTK7 was significantly correlated with the Wnt/β-Catenin pathway and aggressive clinicopathologic features in human head and neck squamous cell carcinoma (HNSCC). Meanwhile, animal experiments showed that PTK7 enhanced chemoresistance and lung metastasis of HNSCC in vivo. In addition, co-immunoprecipitation (co-IP) assay demonstrated that POSTN secreted by CAFs was a potential upstream ligand of PTK7 which might act as a receptor. Further analysis revealed that POSTN promoted the cancer stem cell (CSC)-like phenotype via PTK7-Wnt/β-Catenin signaling, including the proliferation and invasion of HNSCC cells in vitro, as well as tumor initiation and progression in vivo. Collectively, our study proved that CAF-derived POSTN might promote cancer stemness via interacting with PTK7 in HNSCC, suggesting that the combination of POSTN and PTK7 might be a potential prognostic and diagnostic indicator and a promising therapeutic target.
Collapse
Affiliation(s)
- Binbin Yu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Kailiu Wu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lizhen Wang
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yingying Jiang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xueqin Zhu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| | - Ming Yan
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
205
|
Hüser L, Sachindra S, Granados K, Federico A, Larribère L, Novak D, Umansky V, Altevogt P, Utikal J. SOX2-mediated upregulation of CD24 promotes adaptive resistance toward targeted therapy in melanoma. Int J Cancer 2018; 143:3131-3142. [PMID: 29905375 DOI: 10.1002/ijc.31609] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/06/2018] [Accepted: 05/03/2018] [Indexed: 12/19/2022]
Abstract
Melanoma is often characterized by a constitutively active RAS-RAF-MEK-ERK pathway. For targeted therapy, BRAF inhibitors are available that are powerful in the beginning but resistance occurs rather fast. A better understanding of the mechanisms of resistance is urgently needed to increase the success of the treatment. Here, we observed that SOX2 and CD24 are upregulated upon BRAF inhibitor treatment. A similar upregulation was seen in targeted therapy-resistant, melanoma-derived induced pluripotent cancer cells (iPCCs). SOX2 and CD24 are known to promote an undifferentiated and cancer stem cell-like phenotype associated with resistance. We, therefore, elucidated the role of SOX2 and CD24 in targeted therapy resistance in more detail. We found that the upregulation of SOX2 and CD24 required activation of STAT3 and that SOX2 induced the expression of CD24 by binding to its promoter. We find that the overexpression of SOX2 or CD24 significantly increases the resistance toward BRAF inhibitors, while SOX2 knock-down rendered cells more sensitivity toward treatment. The overexpression of CD24 or SOX2 induced Src and STAT3 activity. Importantly, by either CD24 knock-down or Src/STAT3 inhibition in resistant SOX2-overexpressing cells, the sensitivity toward BRAF inhibitors was re-established. Hence, we suggest a novel mechanism of adaptive resistance whereby BRAF inhibition is circumvented via the activation of STAT3, SOX2 and CD24. Thus, to prevent adaptive resistance, it might be beneficial to combine Src/STAT3 inhibitors together with MAPK pathway inhibitors.
Collapse
Affiliation(s)
- Laura Hüser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, D-68135, Germany
| | - Sachindra Sachindra
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, D-68135, Germany
| | - Karol Granados
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, D-68135, Germany
| | - Aniello Federico
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, D-68135, Germany
| | - Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, D-68135, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, D-68135, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, D-68135, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, D-68135, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, D-68135, Germany
| |
Collapse
|
206
|
iNOS promotes CD24 +CD133 + liver cancer stem cell phenotype through a TACE/ADAM17-dependent Notch signaling pathway. Proc Natl Acad Sci U S A 2018; 115:E10127-E10136. [PMID: 30297396 PMCID: PMC6205478 DOI: 10.1073/pnas.1722100115] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CD24+CD133+ liver cancer stem cells (LCSCs) express higher levels of the inducible nitric oxide synthase (iNOS) and possess self-renewal and tumor growth properties. iNOS is associated with more aggressive hepatocellular carcinoma (HCC), leading to the upregulation of Notch1 signaling. The activation of Notch1 by iNOS/NO is dependent on cGMP/PKG-mediated activation of TACE and upregulation of iRhom-2. The expression of iNOS, CD24, and CD133 correlates with the expression of activated TACE and Notch signaling in more aggressive human HCC. These findings have implications for understanding how LCSCs are regulated in the setting of chronic inflammation, where signals to upregulate iNOS are often present. Targeting iNOS could have therapeutic benefit in HCC. The inducible nitric oxide synthase (iNOS) is associated with more aggressive solid tumors, including hepatocellular carcinoma (HCC). Notch signaling in cancer stem cells promotes cancer progression and requires Notch cleavage by ADAM (a disintegrin and metalloprotease) proteases. We hypothesized that iNOS/NO promotes Notch1 activation through TACE/ADAM17 activation in liver cancer stem cells (LCSCs), leading to a more aggressive cancer phenotype. Expression of the stem cell markers CD24 and CD133 in the tumors of patients with HCC was associated with greater iNOS expression and worse outcomes. The expression of iNOS in CD24+CD133+ LCSCs, but not CD24−CD133− LCSCs, promoted Notch1 signaling and stemness characteristics in vitro and in vivo, as well as accelerating HCC initiation and tumor formation in the mouse xenograft tumor model. iNOS/NO led to Notch1 signaling through a pathway involving the soluble guanylyl cyclase/cGMP/PKG-dependent activation of TACE/ADAM17 and up-regulation of iRhom2 in LCSCs. In patients with HCC, higher TACE/ADAM17 expression and Notch1 activation correlated with poor prognosis. These findings link iNOS to Notch1 signaling in CD24+CD133+ LCSCs through the activation of TACE/ADAM17 and identify a mechanism for how iNOS contributes to progression of CD24+CD133+ HCC.
Collapse
|
207
|
Ooki A, VandenBussche CJ, Kates M, Hahn NM, Matoso A, McConkey DJ, Bivalacqua TJ, Hoque MO. CD24 regulates cancer stem cell (CSC)-like traits and a panel of CSC-related molecules serves as a non-invasive urinary biomarker for the detection of bladder cancer. Br J Cancer 2018; 119:961-970. [PMID: 30327565 PMCID: PMC6203855 DOI: 10.1038/s41416-018-0291-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND CD24 is a cornerstone of tumour progression in urothelial carcinoma of the bladder (UCB). However, its contribution to cancer stem cell (CSC)-like traits and the clinical utility of CD24 as a urinary biomarker for cancer detection have not been determined. METHODS The functional relevance of CD24 was evaluated using in vitro and in vivo approaches. The clinical utility of CSC-related molecules was assessed in urine samples by quantitative RT-PCR. RESULTS The knockdown of CD24 attenuated cancer stemness properties. The high-CD24-expressing cells, isolated from patient-derived UCB xenograft tumours, exhibited their enhanced stemness properties. CD24 was overexpressed not only in primary tumours but also in urine from UCB subjects. By assessment of 15 candidate CSC-related molecules in urine samples of a training cohort, a panel of three molecules (CD24, CD49f, and NANOG) was selected. The combination of these three molecules yielded a sensitivity and specificity of 81.7% and 74.3%, respectively, in an independent cohort. A combined set of 84 cases and 207 controls provided a sensitivity and specificity of 82% and 76%, respectively. CONCLUSION CD24 has a crucial role in maintaining the urothelial cancer stem-like traits and a panel of CSC-related molecules has potential as a urinary biomarker for non-invasive UCB detection.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | | | - Max Kates
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Noah M Hahn
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Andres Matoso
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231-2410, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - David J McConkey
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Trinity J Bivalacqua
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Mohammad Obaidul Hoque
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| |
Collapse
|
208
|
Xu J, Tan Y, Shao X, Zhang C, He Y, Wang J, Xi Y. Evaluation of NCAM and c-Kit as hepatic progenitor cell markers for intrahepatic cholangiocarcinomas. Pathol Res Pract 2018; 214:2011-2017. [PMID: 30301635 DOI: 10.1016/j.prp.2018.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/23/2018] [Accepted: 09/11/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Intrahepatic cholangiocarcinomas (ICCs) are primary liver malignancies and are the second most common type of malignancy after hepatocellular carcinoma. ICCs are heterogeneous in clinical features, genotype, and biological behavior, suggesting that ICCs can initiate in different cell lineages. AIM We investigated intrahepatic cholangiocarcinoma RBE cell lines for the markers neural cell adhesion molecule (NCAM) and c-Kit, which possess hepatic progenitor cells properties. METHODS NCAM + c-Kit + cells were tested for hepatic progenitor cell properties including proliferation ability, colony formation, spheroid formation, and invasiveness in NOD/SCID mice. The Agilent Whole Human Genome Microarray Kit was used to evaluate differences in gene expression related to stem cell signaling pathways between NCAM + c-Kit + and NCAM-c-Kit- subset cells. Microarray results were further confirmed by real-time RT-PCR. RESULTS NCAM + c-Kit + cells showed hepatic progenitor cell-like traits including the abilities to self-renew and differentiate and tumorigenicity in NOD/SCID mice. Differences were observed in the expression of 421 genes related to stem cell signaling pathways (fc ≥ 2 or fc ≤ 0.5), among which 231 genes were upregulated and 190 genes were downregulated. CONCLUSION NCAM + c-Kit + subset cells in RBE may have properties of hepatic progenitor cells. NCAM combined with c-Kit may be a valuable marker for isolating and purifying ICC stem/progenitor cells.
Collapse
Affiliation(s)
- Jing Xu
- Department of Pathology, Shanxi Medical University, Taiyuan, China.
| | - Yanhong Tan
- Institute of Hematology, the Second Affiliated Hospital, Shanxi Medical University, Taiyuan, China
| | - Xiaoxia Shao
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Cuiming Zhang
- Department of ultrasound, the Second Affiliated Hospital, Shanxi Medical University, Taiyuan, China
| | - Yanling He
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Jie Wang
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Yanfeng Xi
- Department of Pathology, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
209
|
Abstract
Cancer is one of the most serious diseases all over the world, and the cancer stem cell (CSC) model accounts for tumor initiation, metastasis, drug resistance, and relapse. The CSCs within tumor bulk have the capacity to self-renew, differentiate, and give rise to a new tumor. The self-renewal of CSCs is precisely regulated by various modulators, including Wnt/β-catenin signaling, Notch signaling, Hedgehog signaling, transcription factors, chromatin remodeling complexes, and non-coding RNAs. CSCs reside in their niches that are also involved in the self-renewal maintenance of CSCs and protection of CSCs from chemotherapy, radiotherapy, and even endogenous damages. Moreover, CSCs can also remodel their niches to initiate tumorigenesis. The mutual interactions between CSCs and their niches play a critical role in the regulation of CSC self-renewal and tumorigenesis as well. Many surface markers of CSCs have been identified, and these markers become first choices for CSC targeting. Due to heterogeneity and plasticity, targeting CSCs is still a big challenge for tumor elimination. In this review, we summarize recent progresses on the biological features of CSCs and targeting strategies against CSCs.
Collapse
Affiliation(s)
- Pingping Zhu
- 1CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zusen Fan
- 1CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
210
|
Xiang X, Deng L, Xiong R, Xiao D, Chen Z, Yang F, Liu K, Feng G. Tex10 is upregulated and promotes cancer stem cell properties and chemoresistance in hepatocellular carcinoma. Cell Cycle 2018; 17:1310-1318. [PMID: 30045663 DOI: 10.1080/15384101.2018.1480208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Testis expressed 10 (Tex10), a new core component of the pluripotency circuitry, has been reported to positively regulate embryonic stem cell (ESC) super-enhancers to promote ESC self-renewal; however, the expression and function of Tex10 in hepatocellular carcinoma (HCC) and liver cancer stem cells remains unclear. The present study was designed to investigate the expression patterns of Tex10 with immunohistochemistry, western blotting and RT-qPCR in samples from HCC patients and HCC cell lines. The results obtained show that Tex10 was highly expressed in HCC tissues, and elevated Tex10 protein levels positively correlate with the poorly differentiated carcinoma. Likewise, we found that Tex10 expression in the high-metastasis HCCLM3 potential cell line was higher than that in the low-metastasis HepG2 potential cell line, and Tex10 expression in liver cancer stem cells was also higher than that in adhered HCC cells. In addition, Tex10 knockdown decreased stem cell marker expression and drug resistance. Tex10 promoted cancer stemness through activation of the STAT3 signaling pathway. Taken together, our study demonstrates that Tex10 plays a potent carcinogenic role in HCC tumorigenesis by maintaining cancer stem cell properties through activation of the STAT3 signaling pathway and promoting chemo-resistance. Thus, targeting Tex10 may provide a novel and effective therapeutic strategy to suppress the tumorigenicity of advanced HCC.
Collapse
Affiliation(s)
- Xiaocong Xiang
- a Institute of Tissue Engineering and Stem Cells , Nanchong Central Hospital, the Second Clinical Medical College of North Sichuan Medical College , Nanchong , China
| | - Li Deng
- a Institute of Tissue Engineering and Stem Cells , Nanchong Central Hospital, the Second Clinical Medical College of North Sichuan Medical College , Nanchong , China
| | - Rong Xiong
- a Institute of Tissue Engineering and Stem Cells , Nanchong Central Hospital, the Second Clinical Medical College of North Sichuan Medical College , Nanchong , China
| | - Dongqin Xiao
- a Institute of Tissue Engineering and Stem Cells , Nanchong Central Hospital, the Second Clinical Medical College of North Sichuan Medical College , Nanchong , China
| | - Zhu Chen
- a Institute of Tissue Engineering and Stem Cells , Nanchong Central Hospital, the Second Clinical Medical College of North Sichuan Medical College , Nanchong , China
| | - Fei Yang
- a Institute of Tissue Engineering and Stem Cells , Nanchong Central Hospital, the Second Clinical Medical College of North Sichuan Medical College , Nanchong , China
| | - Kang Liu
- a Institute of Tissue Engineering and Stem Cells , Nanchong Central Hospital, the Second Clinical Medical College of North Sichuan Medical College , Nanchong , China
| | - Gang Feng
- a Institute of Tissue Engineering and Stem Cells , Nanchong Central Hospital, the Second Clinical Medical College of North Sichuan Medical College , Nanchong , China
| |
Collapse
|
211
|
Zheng H, Pomyen Y, Hernandez MO, Li C, Livak F, Tang W, Dang H, Greten TF, Davis JL, Zhao Y, Mehta M, Levin Y, Shetty J, Tran B, Budhu A, Wang XW. Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology 2018; 68:127-140. [PMID: 29315726 PMCID: PMC6033650 DOI: 10.1002/hep.29778] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/28/2017] [Accepted: 01/01/2018] [Indexed: 02/06/2023]
Abstract
UNLABELLED Intratumor molecular heterogeneity of hepatocellular carcinoma is partly attributed to the presence of hepatic cancer stem cells (CSCs). Different CSC populations defined by various cell surface markers may contain different oncogenic drivers, posing a challenge in defining molecularly targeted therapeutics. We combined transcriptomic and functional analyses of hepatocellular carcinoma cells at the single-cell level to assess the degree of CSC heterogeneity. We provide evidence that hepatic CSCs at the single-cell level are phenotypically, functionally, and transcriptomically heterogeneous. We found that different CSC subpopulations contain distinct molecular signatures. Interestingly, distinct genes within different CSC subpopulations are independently associated with hepatocellular carcinoma prognosis, suggesting that a diverse hepatic CSC transcriptome affects intratumor heterogeneity and tumor progression. CONCLUSION Our work provides unique perspectives into the biodiversity of CSC subpopulations, whose molecular heterogeneity further highlights their role in tumor heterogeneity, prognosis, and hepatic CSC therapy. (Hepatology 2018;68:127-140).
Collapse
Affiliation(s)
- Hongping Zheng
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Yotsawat Pomyen
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,Translational Research Unit, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Maria Olga Hernandez
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Caiyi Li
- Flow Cytometry Core Facility, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Ferenc Livak
- Flow Cytometry Core Facility, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Wei Tang
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Hien Dang
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Tim F. Greten
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jeremy L. Davis
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Yongmei Zhao
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21701
| | - Monika Mehta
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21701
| | - Yelena Levin
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21701
| | - Jyoti Shetty
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21701
| | - Bao Tran
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21701
| | - Anuradha Budhu
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,Correspondence: Xin Wei Wang, National Cancer Institute, 37 Convent Drive, Building 37, Room 3044A, Bethesda, Maryland 20892; ; Phone: 240-760-6858; Fax: 240-541-4496
| |
Collapse
|
212
|
Wu CX, Wang XQ, Chok SH, Man K, Tsang SHY, Chan ACY, Ma KW, Xia W, Cheung TT. Blocking CDK1/PDK1/β-Catenin signaling by CDK1 inhibitor RO3306 increased the efficacy of sorafenib treatment by targeting cancer stem cells in a preclinical model of hepatocellular carcinoma. Theranostics 2018; 8:3737-3750. [PMID: 30083256 PMCID: PMC6071527 DOI: 10.7150/thno.25487] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/20/2018] [Indexed: 12/31/2022] Open
Abstract
Rationale: Hepatocellular carcinoma (HCC) is an aggressive malignant solid tumor wherein CDK1/PDK1/β-Catenin is activated, suggesting that inhibition of this pathway may have therapeutic potential. Methods: CDK1 overexpression and clinicopathological parameters were analyzed. HCC patient-derived xenograft (PDX) tumor models were treated with RO3306 (4 mg/kg) or sorafenib (30 mg/kg), alone or in combination. The relevant signaling of CDK1/PDK1/β-Catenin was measured by western blot. Silencing of CDK1 with shRNA and corresponding inhibitors was performed for mechanism and functional studies. Results: We found that CDK1 was frequently augmented in up to 46% (18/39) of HCC tissues, which was significantly associated with poor overall survival (p=0.008). CDK1 inhibitor RO3306 in combination with sorafenib treatment significantly decreased tumor growth in PDX tumor models. Furthermore, the combinatorial treatment could overcome sorafenib resistance in the HCC case #10 PDX model. Western blot results demonstrated the combined administration resulted in synergistic down-regulation of CDK1, PDK1 and β-Catenin as well as concurrent decreases of pluripotency proteins Oct4, Sox2 and Nanog. Decreased CDK1/PDK1/β-Catenin was associated with suppression of epithelial mesenchymal transition (EMT). In addition, a low dose of RO3306 and sorafenib combination could inhibit 97H CSC growth via decreasing the S phase and promoting cells to enter into a Sub-G1 phase. Mechanistic and functional studies silencing CDK1 with shRNA and RO3306 combined with sorafenib abolished oncogenic function via downregulating CDK1, with downstream PDK1 and β-Catenin inactivation. Conclusion: Anti-CDK1 treatment can boost sorafenib antitumor responses in PDX tumor models, providing a rational combined treatment to increase sorafenib efficacy in the clinic.
Collapse
Affiliation(s)
- Chuan Xing Wu
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Xiao Qi Wang
- Department of Surgery, The University of Hong Kong, Hong Kong
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Siu Ho Chok
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Kwan Man
- Department of Surgery, The University of Hong Kong, Hong Kong
| | | | | | - Ka Wing Ma
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Wei Xia
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Tan To Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong
| |
Collapse
|
213
|
Song J, Xie C, Jiang L, Wu G, Zhu J, Zhang S, Tang M, Song L, Li J. Transcription factor AP-4 promotes tumorigenic capability and activates the Wnt/β-catenin pathway in hepatocellular carcinoma. Am J Cancer Res 2018; 8:3571-3583. [PMID: 30026867 PMCID: PMC6037031 DOI: 10.7150/thno.25194] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/19/2018] [Indexed: 01/27/2023] Open
Abstract
It has been reported that the transcription factor activating enhancer-binding protein 4 (TFAP4) is upregulated and associated with an aggressive phenotype in several cancers. However, the precise mechanisms underlying the oncogenic role of TFAP4 remain largely unknown. Methods: TFAP4 expression levels in hepatocellular carcinoma (HCC) cells and tissues were detected by quantitative real-time PCR (qPCR) and immunohistochemistry (IHC). In vitro and in vivo assays were performed to investigate the oncogenic function of TFAP4 in the tumor-initiating cell (TIC)-like phenotype and the tumorigenic capability of HCC cells. Luciferase reporter and chromatin immunoprecipitation (ChIP)-qPCR assays were performed to determine the underlying mechanism of TFAP4-mediated HCC aggressiveness. Results: TFAP4 was markedly upregulated in human HCC, and was associated with significantly poorer overall and relapse-free survival in patients with HCC. Furthermore, we found that overexpression of TFAP4 significantly enhanced, whereas silencing TFAP4 inhibited, the tumor sphere formation ability and proportion of side-population cells in HCC cells in vitro, and ectopic TFAP4 enhanced the tumorigenicity of HCC cells in vivo. Mechanistically, we demonstrated that TFAP4 played an important role in activating Wnt/β-catenin signaling by directly binding to the promoters of DVL1 (dishevelled segment polarity protein 1) and LEF1 (lymphoid enhancer binding factor 1). Conclusions: Our results provide new insight into the mechanisms underlying hyperactivation of the Wnt/β-catenin pathway in HCC, as well the oncogenic ability of TFAP4 to enhance the tumor-forming ability of HCC cells.
Collapse
|
214
|
Chen J, Chen CY, Nguyen C, Chen L, Lee K, Stiles BL. Emerging signals regulating liver tumor initiating cells. LIVER RESEARCH 2018. [DOI: 10.1016/j.livres.2018.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
215
|
Zhao J, Fu Y, Wu J, Li J, Huang G, Qin L. The Diverse Mechanisms of miRNAs and lncRNAs in the Maintenance of Liver Cancer Stem Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8686027. [PMID: 29888282 PMCID: PMC5977062 DOI: 10.1155/2018/8686027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/03/2018] [Indexed: 12/26/2022]
Abstract
Liver cancer is the second leading cause of cancer-related death worldwide. The high frequency of recurrence and metastasis is the main reason for poor prognosis. Liver cancer stem cells (CSCs) have unlimited self-renewal, differentiation, and tumor-regenerating capacities. The maintenance of CSCs may account for the refractory features of liver cancer. Despite extensive investigations, the underlying regulatory mechanisms of liver CSCs remain elusive. miRNA and lncRNA, two major classes of the ncRNA family, can exert important roles in various biological processes, and their diverse regulatory mechanisms in CSC maintenance have acquired increasing attention. However, to the best of our knowledge, there is a lack of reviews summarizing these findings. Therefore, we systematically recapitulated the latest studies on miRNAs and lncRNAs in sustaining liver CSCs. Moreover, we highlighted the potential clinical application of these dysregulated ncRNAs as novel diagnostic and prognostic biomarkers and therapeutic targets. This review not only sheds new light to fully understand liver CSCs but also provides valuable clues on targeting ncRNAs to block or eradicate CSCs in cancer treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Yan Fu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Juan Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Guangjian Huang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| |
Collapse
|
216
|
Guo W, Sun YF, Shen MN, Ma XL, Wu J, Zhang CY, Zhou Y, Xu Y, Hu B, Zhang M, Wang G, Chen WQ, Guo L, Lu RQ, Zhou CH, Zhang X, Shi YH, Qiu SJ, Pan BS, Cao Y, Zhou J, Yang XR, Fan J. Circulating Tumor Cells with Stem-Like Phenotypes for Diagnosis, Prognosis, and Therapeutic Response Evaluation in Hepatocellular Carcinoma. Clin Cancer Res 2018; 24:2203-2213. [PMID: 29374055 DOI: 10.1158/1078-0432.ccr-17-1753] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/29/2017] [Accepted: 01/22/2018] [Indexed: 12/17/2022]
Abstract
Background: In the present study, we assessed the clinical value of circulating tumor cells (CTC) with stem-like phenotypes for diagnosis, prognosis, and surveillance in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) by an optimized qPCR-based detection platform.Methods: Differing subsets of CTCs were investigated, and a multimarker diagnostic CTC panel was constructed in a multicenter patient study with independent validation (total n = 1,006), including healthy individuals and patients with chronic hepatitis B infection (CHB), liver cirrhosis (LC), benign hepatic lesion (BHL), and HBV-related HCC, with area under the receiver operating characteristic curve (AUC-ROC) reflecting diagnostic accuracy. The role of the CTC panel in treatment response surveillance and its prognostic significance were further investigated.Results: The AUC of the CTC panel was 0.88 in the training set [sensitivity = 72.5%, specificity = 95.0%, positive predictive value (PPV) = 92.4, negative predictive value (NPV) = 77.8] and 0.93 in the validation set (sensitivity = 82.1%, specificity = 94.2%, PPV = 89.9, NPV = 89.3). This panel performed equally well in detecting early-stage and α-fetoprotein-negative HCC, as well as differentiating HCC from CHB, LC, and BHL. The CTC load was decreased significantly after tumor resection, and patients with persistently high CTC load showed a propensity of tumor recurrence after surgery. The prognostic significance of the CTC panel in predicting tumor recurrence was further confirmed [training: HR = 2.692; 95% confidence interval (CI), 1.617-4.483; P < 0.001; and validation: HR = 3.127; 95% CI, 1.360-7.190; P = 0.007].Conclusions: Our CTC panel showed high sensitivity and specificity in HCC diagnosis and could be a real-time parameter for risk prediction and treatment monitoring, enabling early decision-making to tailor effective antitumor strategies. Clin Cancer Res; 24(9); 2203-13. ©2018 AACR.
Collapse
Affiliation(s)
- Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Yun-Fan Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Min-Na Shen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Xiao-Lu Ma
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Jiong Wu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Chun-Yan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Yan Zhou
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Yang Xu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Bo Hu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Min Zhang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Fudan University, Shanghai, P.R. China
| | - Gang Wang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Fudan University, Shanghai, P.R. China
| | - Wei-Qin Chen
- Department of Clinical Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Lin Guo
- Department of Laboratory Medicine, Shanghai Cancer Center, Fudan University, Shanghai, P.R. China
| | - Ren-Quan Lu
- Department of Laboratory Medicine, Shanghai Cancer Center, Fudan University, Shanghai, P.R. China
| | - Chao-Hui Zhou
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Xin Zhang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Ying-Hong Shi
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Shuang-Jian Qiu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Bai-Shen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University; and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, China
| | - Jian Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
- Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Xin-Rong Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China.
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China.
- Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| |
Collapse
|
217
|
Chen W, Wang H, Cheng M, Ni L, Zou L, Yang Q, Cai X, Jiao B. Isoharringtonine inhibits breast cancer stem-like properties and STAT3 signaling. Biomed Pharmacother 2018; 103:435-442. [PMID: 29679903 DOI: 10.1016/j.biopha.2018.04.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Breast cancer stem cells (BCSCs) contribute to breast cancer progression, relapse, and treatment resistance. Identification of the natural inhibitory components of BCSCs is therefore critical for clinical treatment. Here, we investigated whether isoharringtonine (IHT) had inhibitory effects on BCSCs in breast cancer cell lines. METHODS HCC1806, HCC1937, and MCF7 cells were treated with IHT. The proliferation and the migration of cells were detected by MTS assay and wound healing migration assay, respectively. The proportions of BCSCs were determined by flow cytometry and tumor sphere formation assay. Using real-time quantitative polymerase chain reaction (qRT-PCR) and Western blotting, the expression of Nanog and activation of STAT3 were detected, respectively. RESULTS Results showed that IHT inhibited the proliferation of HCC1806, HCC1937, and MCF-7 cells, and suppressed the migration of HCC1806 and HCC1937 cells in a dose-dependent manner. IHT treatment decreased the proportion of BCSCs in MCF-7, HCC1806, and HCC1937 cells. In addition, the mRNA level of Nanong was significantly downregulated after IHT treatment. We also found an inhibitory effect of IHT on STAT3 activation. CONCLUSION IHT inhibited the proliferation, migration, and BCSC proportion of breast cancer cell lines via inhibition of the STAT3/Nanong pathway.
Collapse
Affiliation(s)
- Wei Chen
- Institute of Physical Science and Information Technology, Anhui University, 230601, China; Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hui Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Mei Cheng
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650223, China
| | - Ling Ni
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Li Zou
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Qin Yang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xianghai Cai
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Baowei Jiao
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
218
|
Hu J, Guan W, Liu P, Dai J, Tang K, Xiao H, Qian Y, Sharrow AC, Ye Z, Wu L, Xu H. Endoglin Is Essential for the Maintenance of Self-Renewal and Chemoresistance in Renal Cancer Stem Cells. Stem Cell Reports 2018; 9:464-477. [PMID: 28793246 PMCID: PMC5550272 DOI: 10.1016/j.stemcr.2017.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/26/2022] Open
Abstract
Renal cell carcinoma (RCC) is a deadly malignancy due to its tendency to metastasize and resistance to chemotherapy. Stem-like tumor cells often confer these aggressive behaviors. We discovered an endoglin (CD105)-expressing subpopulation in human RCC xenografts and patient samples with a greater capability to form spheres in vitro and tumors in mice at low dilutions than parental cells. Knockdown of CD105 by short hairpin RNA and CRISPR/cas9 reduced stemness markers and sphere-formation ability while accelerating senescence in vitro. Importantly, downregulation of CD105 significantly decreased the tumorigenicity and gemcitabine resistance. This loss of stem-like properties can be rescued by CDA, MYC, or NANOG, and CDA might act as a demethylase maintaining MYC and NANOG. In this study, we showed that Endoglin (CD105) expression not only demarcates a cancer stem cell subpopulation but also confers self-renewal ability and contributes to chemoresistance in RCC.
Collapse
Affiliation(s)
- Junhui Hu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China; Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Wei Guan
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Peijun Liu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Jin Dai
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
| | - Kun Tang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Haibing Xiao
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Yuan Qian
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Allison C Sharrow
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Zhangqun Ye
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Hua Xu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China.
| |
Collapse
|
219
|
NKG2D Immunoligand rG7S-MICA Enhances NK Cell-mediated Immunosurveillance in Colorectal Carcinoma. J Immunother 2018. [DOI: 10.1097/cji.0000000000000215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
220
|
Noncoding RNAs in liver cancer stem cells: The big impact of little things. Cancer Lett 2018; 418:51-63. [DOI: 10.1016/j.canlet.2018.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022]
|
221
|
Xu WW, Li B, Zhao JF, Yang JG, Li JQ, Tsao SW, He QY, Cheung ALM. IGF2 induces CD133 expression in esophageal cancer cells to promote cancer stemness. Cancer Lett 2018; 425:88-100. [PMID: 29604392 DOI: 10.1016/j.canlet.2018.03.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/18/2022]
Abstract
Failure to eradicate cancer stem cells (CSC) during primary therapy may lead to cancer recurrence. We recently reported that CD133 is a functional biomarker for CSCs in esophageal squamous cell carcinoma (ESCC) but the molecular pathways critical for maintenance of CD133-positive CSCs are largely unknown. Here, we revealed that knockdown of IGF2 or treatment with PI3K/AKT inhibitors markedly inhibited the abilities of CD133-positive ESCC cells to self-renew, resist chemotherapeutic drugs, and form tumors. Further functional analysis identified miR-377 as a downstream regulator of PI3K/AKT signaling, and a mediator of the effects of IGF2 on CD133 expression and CSC properties. We found that the expression levels of IGF2 and CD133 were positively correlated with each other in primary ESCC, and that concurrent elevation of IGF2 and CD133 expression was significantly associated with poor patient survival. Furthermore, in vivo experiments demonstrated that IGF2-neutralizing antibody enhanced the sensitivity of tumor xenografts in nude mice to 5-fluorouracil treatment. This study underpins the importance of the IGF2-PI3K/AKT-miR-377-CD133 signaling axis in the maintenance of cancer stemness and in the development of novel therapeutic strategy for treatment of esophageal cancer.
Collapse
Affiliation(s)
- Wen Wen Xu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Bin Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Jian Fu Zhao
- Department of Oncology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Jing Ge Yang
- Department of General Surgery, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Jun Qi Li
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Annie L M Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
222
|
Tsui YM, Sze KMF, Tung EKK, Ho DWH, Lee TKW, Ng IOL. Dishevelled-3 phosphorylation is governed by HIPK2/PP1Cα/ITCH axis and the non-phosphorylated form promotes cancer stemness via LGR5 in hepatocellular carcinoma. Oncotarget 2018; 8:39430-39442. [PMID: 28455968 PMCID: PMC5503623 DOI: 10.18632/oncotarget.17049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/20/2017] [Indexed: 12/23/2022] Open
Abstract
Dishevelled-3 (Dvl3) is regarded as a binding hub with many different interacting partners. However, its regulation and mechanism on cancer stemness remain to be explored. In this study, we showed that Dvl3 was significantly overexpressed in human hepatocellular carcinomas (HCCs) and promoted cancer stemness both in vitro and in vivo. We found that the non-phosphorylated (NP)-Dvl3 was more stable than the phosphorylated form, more active in activating β-catenin transcriptional activity, and more potent in enhancing self-renewal ability in HCC cells. Mechanistically, we confirmed that the homeodomain-interacting protein kinase-2 (HIPK2) and E3 ubiquitin ligase ITCH were able to physically bind to Dvl3 protein. Knockdown of HIPK2 and the protein phosphatase regulatory unit C-alpha (PP1Cα) resulted in sustained Dvl3 phosphorylation and hence decrease in the NP form of Dvl3. On the other hand, knockdown of E3 ubiquitin ligase ITCH reduced the phosphorylation-induced degradation and stabilized the phosphorylated Dvl3 protein. Furthermore, the NP-Dvl3 enhanced the LGR5 promoter activity to upregulate LGR5 expression, which was associated with increased cancer stemness in HCC. Our findings established that HIPK2/PP1Cα/ITCH axis sustains the de-phosphorylation of Dvl3. This post-translational modification of Dvl3 in turn maintains LGR5 expression and enhances the cancer stemness properties in HCC.
Collapse
Affiliation(s)
- Yu-Man Tsui
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong.,Department of Pathology, The University of Hong Kong, Hong Kong
| | - Karen Man-Fong Sze
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong.,Department of Pathology, The University of Hong Kong, Hong Kong
| | - Edmund Kwok-Kwan Tung
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong.,Department of Pathology, The University of Hong Kong, Hong Kong
| | - Daniel Wai-Hung Ho
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong.,Department of Pathology, The University of Hong Kong, Hong Kong
| | - Terence Kin-Wah Lee
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong.,Department of Pathology, The University of Hong Kong, Hong Kong.,Present address: Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Irene Oi-Lin Ng
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong.,Department of Pathology, The University of Hong Kong, Hong Kong
| |
Collapse
|
223
|
Chang CW, Chen YS, Chen CC, Chan IO, Chen CC, Sheu SJ, Lin TW, Chou SH, Liu CJ, Lee TC, Lo JF. Targeting cancer initiating cells by promoting cell differentiation and restoring chemosensitivity via dual inactivation of STAT3 and src activity using an active component of antrodia cinnamomea mycelia. Oncotarget 2018; 7:73016-73031. [PMID: 27682875 PMCID: PMC5341960 DOI: 10.18632/oncotarget.12194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer initiating cells (CICs) represent a subpopulation of cancer cells, which are responsible for tumor growth and resistance to chemotherapy. Herein, we first used a cell-based aldehyde dehydrogenase (ALDH) activity assay to identify that YMGKI-2 (also named as Ergone), an active component purified from Antrodia cinnamomea Mycelia extract (ACME), effectively abrogated the ALDH activity and abolished the CICs in head and neck squamous cell carcinoma cells (HNSCCs). Consequently, YMGKI-2 treatment suppressed self-renewal ability and expression of stemness signature genes (Oct-4 and Nanog) of sphere cells with enriched CICs. Moreover, YMGKI-2 treated sphere cells displayed reduction of CICs properties and promotion of cell differentiation, but not significant cytotoxicity. YMGKI-2 treatment also attenuated the tumorigenicity of HNSCC cells in vivo. Mechanistically, treatment of YMGKI-2 resulted in inactivation of STAT3 and Src. Lastly, combinatorial treatments with YMGKI-2 and standard chemotherapeutic drugs (cisplatin or Fluorouracil) restored the chemosensivity on sphere cells and cisplatin-resistant HNSCC cells. Together, we demonstrate that YMGKI-2 treatment effectively induces differentiation and reduces tumorigenicity of CICs. Further, combined treatment of YMGKI-2 and conventional chemotherapy can overcome chemoresistance. These results suggest that YMGKI-2 treatment may be used to improve future clinical responses in head and neck cancer treatment through targeting CICs.
Collapse
Affiliation(s)
- Ching-Wen Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Syuan Chen
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Chih Chen
- Department of Biotechnology, Hungkuang University, Taichung, Taiwan
| | - Ik-On Chan
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | - Shiu-Huey Chou
- Department of Life Science, Fu-Jen University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Oral and Maxillofacial Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jeng-Fan Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Graduate Institute of Chinese Medical Science and Institute of Medical Science, China Medical University, Taichung, Taiwan.,Genome Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
224
|
Lin B, Chen T, Zhang Q, Lu X, Zheng Z, Ding J, Liu J, Yang Z, Geng L, Wu L, Zhou L, Zheng S. FAM83D associates with high tumor recurrence after liver transplantation involving expansion of CD44+ carcinoma stem cells. Oncotarget 2018; 7:77495-77507. [PMID: 27769048 PMCID: PMC5363599 DOI: 10.18632/oncotarget.12715] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/01/2016] [Indexed: 02/07/2023] Open
Abstract
To investigate the potential oncogene promoting recurrence of hepatocellular carcinoma (HCC) following liver transplantation (LT), throughput RNA sequencing was performed in a subgroup of HCC patients. The up-regulated FAM83D in HCC tissues was found and further verified in 150 patients by real-time PCR and immunohistochemistry. FAM83D overexpression significantly correlated with high HCC recurrence rate following LT and poor HCC characteristics such as high AFP, poor differentiation. Of cancer stem cells (CSCs) markers, CD44 expression was effectively suppressed when FAM83D was knocked down by siRNA. Meanwhile, the siRNA transfected cells suppressed formation of sphere and ability of self-renew. In a xenograft tumorigenesis model, FAM83D knockdown apparently inhibited tumor growth and metastasis. Microarray assays revealed that FAM83D promotes CD44 expression via activating the MAPK, TGF-β and Hippo signaling pathways. Furthermore, CD44 knockdown presented reverse effect on above signaling pathways, which suggested that FAM83D was a key activator of loop between CD44 and above signaling pathways. In conclusion, FAM83D promotes HCC recurrence by promoting CD44 expression and CD44+ CSCs malignancy. FAM83D provides a novel therapeutic approach against HCC recurrence after LT.
Collapse
Affiliation(s)
- Binyi Lin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Tianchi Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Qijun Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Xiaoxiao Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Zhiyun Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Jun Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Jinfeng Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Zhe Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Lei Geng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Liming Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| |
Collapse
|
225
|
Cheng BY, Lau EY, Leung HW, Leung CON, Ho NP, Gurung S, Cheng LK, Lin CH, Lo RCL, Ma S, Ng IOL, Lee TK. IRAK1 Augments Cancer Stemness and Drug Resistance via the AP-1/AKR1B10 Signaling Cascade in Hepatocellular Carcinoma. Cancer Res 2018; 78:2332-2342. [PMID: 29483095 DOI: 10.1158/0008-5472.can-17-2445] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/24/2018] [Accepted: 02/20/2018] [Indexed: 11/16/2022]
Abstract
Frequent relapse and drug resistance in patients with hepatocellular carcinoma (HCC) can be attributed to the existence of tumor-initiating cells (TIC) within the tumor bulk. Therefore, targeting liver TICs may improve the prognosis of these patients. From transcriptome sequencing of 16 pairs of clinical HCC samples, we report that interleukin-1 receptor-associated kinase 1 (IRAK1) in the TLR/IRAK pathway is significantly upregulated in HCC. IRAK1 overexpression in HCC was further confirmed at the mRNA and protein levels and correlated with advanced tumor stages and poor patient survival. Interestingly, IRAK4, an upstream regulator of IRAK1, was also consistently upregulated. IRAK1 regulated liver TIC properties, including self-renewal, tumorigenicity, and liver TIC marker expression. IRAK1 inhibition sensitized HCC cells to doxorubicin and sorafenib treatment in vitro via suppression of the apoptotic cascade. Pharmacological inhibition of IRAK1 with a specific IRAK1/4 kinase inhibitor consistently suppressed liver TIC populations. We identified aldo-keto reductase family 1 member 10 (AKR1B10) as a novel downstream target of IRAK1, which was found to be overexpressed in HCC and significantly correlated with IRAK1 expression. Knockdown of AKR1B10 negated IRAK1-induced TIC functions via modulation of the AP-1 complex. Inhibition of IRAK1/4 inhibitor in combination with sorafenib synergistically suppressed tumor growth in an HCC xenograft model. In conclusion, targeting the IRAK4/IRAK1/AP-1/AKR1B10 signaling pathway may be a potential therapeutic strategy against HCC.Significance: IRAK4/IRAK1/AP-1/AKR1B10 signaling pathway regulates cancer stemness and drug resistance and may be a novel therapeutic target in HCC. Cancer Res; 78(9); 2332-42. ©2018 AACR.
Collapse
Affiliation(s)
- Bowie Y Cheng
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Eunice Y Lau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong.,Department of Clinical Oncology, Queen Elizabeth Hospital, The Hong Kong Polytechnic University, Hong Kong
| | - Hoi-Wing Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Carmen Oi-Ning Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Nicole P Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Shilpa Gurung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Lily K Cheng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chi Ho Lin
- Centre for Genomic Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Regina Cheuk-Lam Lo
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Stephanie Ma
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong. .,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Terence K Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong. .,State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
226
|
Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Precis Oncol 2018; 2:6. [PMID: 29872724 PMCID: PMC5871907 DOI: 10.1038/s41698-018-0048-z] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/23/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has become a leading cause of cancer-related death, making the elucidation of its underlying mechanisms an urgent priority. Inflammation is an adaptive response to infection and tissue injury under strict regulations. When the host regulatory machine runs out of control, nonresolving inflammation occurs. Nonresolving inflammation is a recognized hallmark of cancer that substantially contributes to the development and progression of HCC. The HCC-associated inflammation can be initiated and propagated by extrinsic pathways through activation of pattern-recognition receptors (PRRs) by pathogen-associated molecule patterns (PAMPs) derived from gut microflora or damage-associated molecule patterns (DAMPs) released from dying liver cells. The inflammation can also be orchestrated by the tumor itself through secreting factors that recruit inflammatory cells to the tumor favoring the buildup of a microenvironment. Accumulating datas from human and mouse models showed that inflammation promotes HCC development by promoting proliferative and survival signaling, inducing angiogenesis, evading immune surveillance, supporting cancer stem cells, activating invasion and metastasis as well as inducing genomic instability. Targeting inflammation may represent a promising avenue for the HCC treatment. Some inhibitors targeting inflammatory pathways have been developed and under different stages of clinical trials, and one (sorafenib) have been approved by FDA. However, as most of the data were obtained from animal models, and there is a big difference between human HCC and mouse HCC models, it is challenging on successful translation from bench to bedside.
Collapse
|
227
|
Shen YA, Wang CY, Chuang HY, Hwang JJJ, Chi WH, Shu CH, Ho CY, Li WY, Chen YJ. CD44 and CD24 coordinate the reprogramming of nasopharyngeal carcinoma cells towards a cancer stem cell phenotype through STAT3 activation. Oncotarget 2018; 7:58351-58366. [PMID: 27521216 PMCID: PMC5295435 DOI: 10.18632/oncotarget.11113] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/26/2016] [Indexed: 12/29/2022] Open
Abstract
Cell surface proteins such as CD44 and CD24 are used to distinguish cancer stem cells (CSCs) from the bulk-tumor population. However, the molecular functionalities of CD24 and CD44, and how these two molecules coordinate in CSCs remain poorly understood. We found that nasopharyngeal carcinoma (NPC) cells with high expression of CD44 and CD24 proteins presented with pronounced CSC properties. Accordingly, a subpopulation of NPC cells with co-expression of CD44 and CD24 were specially enriched in high-stage clinical samples. Furthermore, ectopically expressing the epithelial-mesenchymal transition (EMT) regulator Twist was able to upregulate the stemness factors, and vice versa. This indicates a reciprocal regulation of stemness and EMT. Intriguingly, we found that this reciprocal regulation was differentially orchestrated by CD44 and CD24, and only simultaneous silencing the expression of CD44 and CD24 led to a broad-spectrum suppression of CSC properties. Oppositely, overexpression of CD44 and CD24 induced the reprogramming of parental NPC cells into CSCs through STAT3 activation, which could be blunted by STAT3 inhibition, indicating that CD44 and CD24 collaboratively drive the reprogramming of NPC cells through STAT3-mediated stemness and EMT activation. Consequently, targeting of the CD44/CD24/STAT3 axis may provide a potential therapeutic paradigm for the treatment of NPC through repressing CSC activities.
Collapse
Affiliation(s)
- Yao-An Shen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Chia-Yu Wang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Hui-Yen Chuang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - John Jeng-Jong Hwang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Wei-Hsin Chi
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Chih-Hung Shu
- Department of Otorhinolaryngology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Ching-Yin Ho
- Department of Otorhinolaryngology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wing-Yin Li
- Department of Pathology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Yann-Jang Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan.,Department of Pediatrics, Taipei City Hospital, Renai Branch, Taipei 106, Taiwan
| |
Collapse
|
228
|
Correnti M, Raggi C. Stem-like plasticity and heterogeneity of circulating tumor cells: current status and prospect challenges in liver cancer. Oncotarget 2018; 8:7094-7115. [PMID: 27738343 PMCID: PMC5351693 DOI: 10.18632/oncotarget.12569] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022] Open
Abstract
Poor prognosis and high recurrence remain leading causes of primary liver cancerassociated mortality. The spread of circulating tumor cells (CTCs) in the blood plays a major role in the initiation of metastasis and tumor recurrence after surgery. Nevertheless, only a subset of CTCs can survive, migrate to distant sites and establish secondary tumors. Consistent with cancer stem cell (CSC) hypothesis, stem-like CTCs might represent a potential source for cancer relapse and distant metastasis. Thus, identification of stem-like metastasis-initiating CTC-subset may provide useful clinically prognostic information. This review will emphasize the most relevant findings of CTCs in the context of stem-like biology associated to liver carcinogenesis. In this view, the emerging field of stem-like CTCs may deliver substantial contribution in liver cancer field in order to move to personalized approaches for diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Margherita Correnti
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Chiara Raggi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
229
|
Wang D, Xiang T, Zhao Z, Lin K, Yin P, Jiang L, Liang Z, Zhu B. Autocrine interleukin-23 promotes self-renewal of CD133+ ovarian cancer stem-like cells. Oncotarget 2018; 7:76006-76020. [PMID: 27738346 PMCID: PMC5342794 DOI: 10.18632/oncotarget.12579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) are a group of cells which possess the ability of self-renewing and unlimited proliferation. And these CSCs are thought to be the cause of metastasis, recurrence and resistance. Recent study has found that pro-inflammatory cytokine and chemotactic factor mediate the self-renewing and differentiation of most of CSCs. Thus we speculate that ovarian cancer stem cells (OCSCs) can also maintain the ability of self-renewing and differentiation by releasing inflammatory factor. This report we discuss the biological characteristics and the specific molecular mechanism mediated by interleukin-23 (IL-23) and its receptor on the self-renewing of OCSCs. We found that OCSCs had high expression of IL-23 and IL-23R. IL-23 could promote the self-renewal ability of OCSCs and played a very important role to maintain the stable expression of stem cell markers in vitro. Moreover, we verified that IL-23 could maintain the potential tumorigenic of OCSCs in vivo and mediate the self-renewal ability and the formation of tumor in OCSCs by activating the signal pathways of STAT3 and NF-κB. In addition, human low differentiation tissues showed overexpression of IL-23. And IL-23 positively correlated to the expression level of CD133, Nanog and Oct4. In conclusion, Our discoveries demonstrate that autocrine IL-23 contribute to ovarian cancer malignancy through promoting the self-renewal of CD133+ ovarian cancer stem-like cells, and this suggests that IL-23 and its signaling pathway might serve as therapeutic targets for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Dan Wang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Tong Xiang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.,Department of Oncology, No. 421 Hospital of PLA, Guangzhou 510318, China
| | - Zhongquan Zhao
- Department of Oncology, Fuzhou General Hospital, Fuzhou, Fujian 350025, China
| | - Kailong Lin
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Pin Yin
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lupin Jiang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhiqing Liang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
230
|
Wang X, Zhang Y, Zhao Y, Liang Y, Xiang C, Zhou H, Zhang H, Zhang Q, Qing H, Jiang B, Xiong H, Peng L. CD24 promoted cancer cell angiogenesis via Hsp90-mediated STAT3/VEGF signaling pathway in colorectal cancer. Oncotarget 2018; 7:55663-55676. [PMID: 27494878 PMCID: PMC5342444 DOI: 10.18632/oncotarget.10971] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 07/16/2016] [Indexed: 01/05/2023] Open
Abstract
CD24 is involved in tumor progression of various cancers, but the effects of CD24 on tumor angiogenesis in colorectal cancer are still unknown. We aimed to investigate the underlying mechanism and role of CD24 on colorectal cancer (CRC) angiogenesis. Our data showed that the microvessal density (MVD) was related to the expression of CD24 in primary and metastasis CRC. Silencing of CD24 could dramatically decrease human umbilical vein endothelial cell (HUVEC) migration, invasion and tubule formation, but trivially affected cell proliferation. We also mechanically showed that silencing CD24 could downregulate the expression of VEGF via inhibiting the phosphorylation and translocation of STAT3. Moreover, Hsp90 was identified as the down-interaction protein of CD24 with co-immunoprecipitation assay and systematic mass spectrometry. Immunofluorescence results showed Hsp90 partly co-localized with CD24 in CRC cell membrane and there was a positive correlation between CD24 and Hsp90 expression in CRC tissues. We gradually evidenced that Hsp90 modulated the stability and degradation of CD24 in a proteasome-depended manner, and transferred the signal transmission from CD24 to STAT3. 17-AAG, a specific Hsp90, could abrogate the CD24 induce- HUVEC migration, invasion and tubule formation in vitro and in vivo. Collectively, our results suggested that CD24 induced CRC angiogenesis in Hsp90-dependent manner and activated STAT3-mediated transcription of VEGF. We provided a new insight into the regulation mechanism of tumor angiogenesis by exploring the role of CD24 in angiogenesis.
Collapse
Affiliation(s)
- Xinying Wang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China
| | - Yu Zhang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming 65003, China
| | - Yingying Zhao
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China
| | - Yanling Liang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China
| | - Cheng Xiang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China
| | - Huanyu Zhou
- Department of Ultrasound Imaging, 306 Hospital of PLA, Beijing 100101, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical College, Jining 272067, China.,Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Qiang Zhang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China
| | - Haitao Qing
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China
| | - Bo Jiang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China
| | - Huabao Xiong
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Liang Peng
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China.,Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| |
Collapse
|
231
|
Talukdar S, Das SK, Pradhan AK, Emdad L, Shen XN, Windle JJ, Sarkar D, Fisher PB. Novel function of MDA-9/Syntenin (SDCBP) as a regulator of survival and stemness in glioma stem cells. Oncotarget 2018; 7:54102-54119. [PMID: 27472461 PMCID: PMC5342330 DOI: 10.18632/oncotarget.10851] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/07/2016] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive cancer with current therapies only marginally impacting on patient survival. Glioma stem cells (GSCs), a subpopulation of highly tumorigenic cells, are considered major contributors to glioma progression and play seminal roles in therapy resistance, immune evasion and increased invasion. Despite clinical relevance, effective/selective therapeutic targeting strategies for GSCs do not exist, potentially due to the lack of a definitive understanding of key regulators of GSCs. Consequently, there is a pressing need to identify therapeutic targets and novel options to effectively target this therapy-resistant cell population. The precise roles of GSCs in governing GBM development, progression and prognosis are under intense scrutiny, but key upstream regulatory genes remain speculative. MDA-9/Syntenin (SDCBP), a scaffold protein, regulates tumor pathogenesis in multiple cancers. Highly aggressive cancers like GBM express elevated levels of MDA-9 and contain increased populations of GSCs. We now uncover a unique function of MDA-9 as a facilitator and determinant of glioma stemness and survival. Mechanistically, MDA-9 regulates multiple stemness genes (Nanog, Oct4 and Sox2) through activation of STAT3. MDA-9 controls survival of GSCs by activating the NOTCH1 pathway through phospho-Src and DLL1. Once activated, cleaved NOTCH1 regulates C-Myc expression through RBPJK, thereby facilitating GSC growth and proliferation. Knockdown of MDA-9 affects the NOTCH1/C-Myc and p-STAT3/Nanog pathways causing a loss of stemness and initiation of apoptosis in GSCs. Our data uncover a previously unidentified relationship between MDA-9 and GSCs, reinforcing relevance of this gene as a potential therapeutic target in GBM.
Collapse
Affiliation(s)
- Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
232
|
Abstract
Resistance to chemotherapy and cancer relapse are major clinical challenges attributed to a sub population of cancer stem cells (CSCs). The concept of CSCs has been the subject of intense research by the oncology community since evidence for their existence was first published over twenty years ago. Emerging data indicates that they are also able to evade novel therapies such as targeted agents, immunotherapies and anti-angiogenics. The inability to appropriately identify and isolate CSCs is a major hindrance to the field and novel technologies are now being utilized. Agents that target CSC-associated cell surface receptors and signaling pathways have generated promising pre-clinical results and are now entering clinical trial. Here we discuss and evaluate current therapeutic strategies to target CSCs.
Collapse
Affiliation(s)
- Stephanie Annett
- Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Ireland
| | - Tracy Robson
- Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Ireland.
| |
Collapse
|
233
|
Leung CON, Mak WN, Kai AKL, Chan KS, Lee TKW, Ng IOL, Lo RCL. Sox9 confers stemness properties in hepatocellular carcinoma through Frizzled-7 mediated Wnt/β-catenin signaling. Oncotarget 2017; 7:29371-86. [PMID: 27105493 PMCID: PMC5045402 DOI: 10.18632/oncotarget.8835] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/29/2016] [Indexed: 01/01/2023] Open
Abstract
Sox9, an SRY-related HMG box transcription factor, is a progenitor/precursor cell marker of the liver expressed during embryogenesis and following liver injury. In this study, we investigated the role of Sox9 and its molecular mechanism with reference to stemness properties in hepatocellular carcinoma (HCC). Here, we observed upregulation of Sox9 in human HCC tissues compared with the non-tumorous liver counterparts (p < 0.001). Upregulation of Sox9 transcript level was associated with poorer tumor cell differentiation (p = 0.003), venous invasion (p = 0.026), advanced tumor stage (p = 0.044) and shorter overall survival (p = 0.042). Transcript levels of Sox9 and CD24 were positively correlated. Silencing of Sox9 in HCC cells inhibited in vitro cell proliferation and tumorsphere formation, sensitized HCC cells to chemotherapeutic agents, and suppressed in vivo tumorigenicity. In addition, knockdown of Sox9 suppressed HCC cell migration, invasion, and in vivo lung metastasis. Further studies showed that Sox9 endowed stemness features through activation of Wnt/β-catenin signaling, which was confirmed by the partial rescue effect on tumorigenicity and self-renewal upon transfection of active β-catenin in Sox9 knockdown cells. By ChIP and luciferase promoter assays, Frizzled-7 was identified to be the direct transcriptional target of Sox9. In conclusion, Sox9 confers stemness properties of HCC through Frizzled-7 mediated Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Carmen Oi-Ning Leung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wing-Nga Mak
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Alan Ka-Lun Kai
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kwan-Shuen Chan
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Terence Kin-Wah Lee
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Regina Cheuk-Lam Lo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
234
|
Liu C, Liu L, Chen X, Cheng J, Zhang H, Zhang C, Shan J, Shen J, Qian C. LSD1 Stimulates Cancer-Associated Fibroblasts to Drive Notch3-Dependent Self-Renewal of Liver Cancer Stem-like Cells. Cancer Res 2017; 78:938-949. [PMID: 29259010 DOI: 10.1158/0008-5472.can-17-1236] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/20/2017] [Accepted: 12/14/2017] [Indexed: 02/01/2023]
Abstract
Cancer stem-like cells (CSC) in hepatocellular carcinoma (HCC) are thought to mediate therapeutic resistance and poor survival outcomes, but their intrinsic and extrinsic control is not well understood. In this study, we found that the chromatin modification factor LSD1 is highly expressed in HCC CSC where it decreases during differentiation. LSD1 was responsible for maintaining CSC self-renewal and tumorigenicity in HCC, and its overexpression was sufficient to drive self-renewal of non-CSC. Levels of acetylated LSD1 were low in CSC with high LSD1 activity, and these CSC were capable of self-renewal. Notch signaling activated LSD1 through induction of the sirtuin SIRT1, leading to deacetylation and activation of LSD1 and CSC self-renewal. Notably, we found that LSD1 expression was increased in cancer-associated fibroblasts (CAF) as an upstream driver of Notch3-mediated CSC self-renewal. In clinical specimens of HCC, the presence of CAF, LSD1, and Notch3 strongly associated with poor patient survival. Overall, our results reveal that CAF-induced expression of Notch3 is responsible for LSD1 activation in CSC, driving their self-renewal in HCC.Significance: These seminal findings illuminate a complex pathway in the tissue microenvironment of liver cancer, which is responsible for orchestrating the self-renewal of stem-like cancer cells, with potential implications to improve therapy and limit relapses. Cancer Res; 78(4); 938-49. ©2017 AACR.
Collapse
Affiliation(s)
- Chungang Liu
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Limei Liu
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xuejiao Chen
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiamin Cheng
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Heng Zhang
- Institute of Urology Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chengcheng Zhang
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Juanjuan Shan
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junjie Shen
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Cheng Qian
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
235
|
Acquisition of Cholangiocarcinoma Traits during Advanced Hepatocellular Carcinoma Development in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:656-671. [PMID: 29248454 DOI: 10.1016/j.ajpath.2017.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/01/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
Past studies have identified hepatic tumors with mixed hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) characteristics that have a more aggressive behavior and a poorer prognosis than classic HCC. Whether this pathologic heterogeneity is due to a cell of origin of bipotent liver progenitors or the plasticity of cellular constituents comprising these tumors remains debated. In this study, we investigated the potential acquisition of CC-like traits during advanced development of HCC in mice. Primary and rare high-grade HCC developed in a genetic mouse model. A mouse model of highly efficient HCC invasion and metastasis by orthotopic transplantation of liver cancer organoids propagated from primary tumors in the genetic model was further developed. Invasive/metastatic tumors developed in both models closely recapitulated advanced human HCC and displayed a striking acquisition of CC-related pathologic and molecular features, which was absent in the primary HCC tumors. Our study directly demonstrates the pathologic evolution of HCC during advanced tumor development, providing the first evidence that tumors with mixed HCC and CC features, or at least a subset of these tumors, represent a more advanced developmental stage of HCC. Finally, liver cancer organoid-generated high-grade tumors exhibited significantly increased extracellular vesicle secretion, suggesting that identifying tumor-specific extracellular vesicle proteins in plasma may be a promising tool for liver cancer detection.
Collapse
|
236
|
Cui CP, Wong CCL, Kai AKL, Ho DWH, Lau EYT, Tsui YM, Chan LK, Cheung TT, Chok KSH, Chan ACY, Lo RCL, Lee JMF, Lee TKW, Ng IOL. SENP1 promotes hypoxia-induced cancer stemness by HIF-1α deSUMOylation and SENP1/HIF-1α positive feedback loop. Gut 2017; 66:2149-2159. [PMID: 28258134 PMCID: PMC5749365 DOI: 10.1136/gutjnl-2016-313264] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/25/2017] [Accepted: 02/08/2017] [Indexed: 01/15/2023]
Abstract
OBJECTIVE We investigated the effect and mechanism of hypoxic microenvironment and hypoxia-inducible factors (HIFs) on hepatocellular carcinoma (HCC) cancer stemness. DESIGN HCC cancer stemness was analysed by self-renewal ability, chemoresistance, expression of stemness-related genes and cancer stem cell (CSC) marker-positive cell population. Specific small ubiquitin-like modifier (SUMO) proteases 1 (SENP1) mRNA level was examined with quantitative PCR in human paired HCCs. Immunoprecipitation was used to examine the binding of proteins and chromatin immunoprecipitation assay to detect the binding of HIFs with hypoxia response element sequence. In vivo characterisation was performed in immunocompromised mice and stem cell frequency was analysed. RESULTS We showed that hypoxia enhanced the stemness of HCC cells and hepatocarcinogenesis through enhancing HIF-1α deSUMOylation by SENP1 and increasing stabilisation and transcriptional activity of HIF-1α. Furthermore, we demonstrated that SENP1 is a direct target of HIF-1/2α and a previously unrecognised positive feedback loop exists between SENP1 and HIF-1α. CONCLUSIONS Taken together, our findings suggest the significance of this positive feedback loop between HIF-1α and SENP1 in contributing to the increased cancer stemness in HCC and hepatocarcinogenesis under hypoxia. Drugs that specifically target SENP1 may offer a potential novel therapeutic approach for HCC.
Collapse
Affiliation(s)
- Chun-Ping Cui
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Carmen Chak-Lui Wong
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- State Key Laboratory for Liver Research, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Alan Ka-Lun Kai
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- State Key Laboratory for Liver Research, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Eunice Yuen-Ting Lau
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Yu-Man Tsui
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- State Key Laboratory for Liver Research, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Lo-Kong Chan
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- State Key Laboratory for Liver Research, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Tan-To Cheung
- State Key Laboratory for Liver Research, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Kenneth Siu-Ho Chok
- State Key Laboratory for Liver Research, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Albert C Y Chan
- State Key Laboratory for Liver Research, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Regina Cheuk-Lam Lo
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- State Key Laboratory for Liver Research, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Joyce Man-Fong Lee
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Terence Kin-Wah Lee
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- State Key Laboratory for Liver Research, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Irene Oi Lin Ng
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- State Key Laboratory for Liver Research, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| |
Collapse
|
237
|
Li XF, Chen C, Xiang DM, Qu L, Sun W, Lu XY, Zhou TF, Chen SZ, Ning BF, Cheng Z, Xia MY, Shen WF, Yang W, Wen W, Lee TKW, Cong WM, Wang HY, Ding J. Chronic inflammation-elicited liver progenitor cell conversion to liver cancer stem cell with clinical significance. Hepatology 2017; 66:1934-1951. [PMID: 28714104 DOI: 10.1002/hep.29372] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/26/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022]
Abstract
UNLABELLED The substantial heterogeneity and hierarchical organization in liver cancer support the theory of liver cancer stem cells (LCSCs). However, the relationship between chronic hepatic inflammation and LCSC generation remains obscure. Here, we observed a close correlation between aggravated inflammation and liver progenitor cell (LPC) propagation in the cirrhotic liver of rats exposed to diethylnitrosamine. LPCs isolated from the rat cirrhotic liver initiated subcutaneous liver cancers in nonobese diabetic/severe combined immunodeficient mice, suggesting the malignant transformation of LPCs toward LCSCs. Interestingly, depletion of Kupffer cells in vivo attenuated the LCSC properties of transformed LPCs and suppressed cytokeratin 19/Oval cell 6-positive tumor occurrence. Conversely, LPCs cocultured with macrophages exhibited enhanced LCSC properties. We further demonstrated that macrophage-secreted tumor necrosis factor-α triggered chromosomal instability in LPCs through the deregulation of ubiquitin D and checkpoint kinase 2 and enhanced the self-renewal of LPCs through the tumor necrosis factor receptor 1/Src/signal transducer and activator of transcription 3 pathway, which synergistically contributed to the conversion of LPCs to LCSCs. Clinical investigation revealed that cytokeratin 19/Oval cell 6-positive liver cancer patients displayed a worse prognosis and exhibited superior response to sorafenib treatment. CONCLUSION Our results not only clarify the cellular and molecular mechanisms underlying the inflammation-mediated LCSC generation but also provide a molecular classification for the individualized treatment of liver cancer. (Hepatology 2017;66:1934-1951).
Collapse
Affiliation(s)
- Xiao-Feng Li
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Cheng Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China.,Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Dai-Min Xiang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China.,National Center of Liver Cancer, Shanghai, China
| | - Le Qu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China.,Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Wen Sun
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Xin-Yuan Lu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Teng-Fei Zhou
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Shu-Zhen Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Bei-Fang Ning
- Department of Gastroenterology, Changzheng Hospital, Shanghai, China
| | - Zhuo Cheng
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Ming-Yang Xia
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Wei-Feng Shen
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Wen Yang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Wen Wen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Wen-Ming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Hong-Yang Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China.,National Center of Liver Cancer, Shanghai, China
| | - Jin Ding
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China.,National Center of Liver Cancer, Shanghai, China
| |
Collapse
|
238
|
Long J, Jiang C, Liu B, Dai Q, Hua R, Chen C, Zhang B, Li H. Maintenance of stemness by miR-589-5p in hepatocellular carcinoma cells promotes chemoresistance via STAT3 signaling. Cancer Lett 2017; 423:113-126. [PMID: 29196128 DOI: 10.1016/j.canlet.2017.11.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/22/2017] [Accepted: 11/25/2017] [Indexed: 12/12/2022]
Abstract
The strength and duration of STAT3 signaling are tightly controlled by multiple negative feedback mechanisms under physical conditions. However, how these serial feedback loops are simultaneously disrupted in cancers, leading to constitutive activation of STAT3 signaling in hepatocellular carcinoma (HCC), remains obscure. Here we report that miR-589-5p is elevated in HCC tissues, which is caused by recurrent gains. Overexpression of miR-589-5p correlates with poor overall and relapse-free survival in HCC patients. Upregulating miR-589-5p enhances spheroid formation ability, fraction of CD133 positive and side population cells, expression of cancer stem cell factors and the mitochondrial potential, and represses the apoptosis induced by doxorubicin in vitro and tumorigenicity in vivo in HCC cells; conversely, silencing miR-589-5p yields an opposite effect. Our findings further demonstrate miR-589-5p promotes the cancer stem cell characteristics and chemoresistance via targeting multiple negative regulators of STAT3 signaling pathway, including SOCS2, SOCS5, PTPN1 and PTPN11, leading to constitutive activation of STAT3 signaling. Collectively, our results unravel a novel mechanism by which miR-589-5p promotes the maintenance of stemness and chemoresistance in HCC, providing a potential rational registry of anti-miR-589-5p combining with conventional chemotherapy against HCC.
Collapse
Affiliation(s)
- Jianting Long
- Department of Medicinal Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Chunlin Jiang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, SUN Yat-Sen University, 510080, China
| | - Baoxian Liu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, SUN Yat-Sen University, 510080, China
| | - Qiangsheng Dai
- Department of Medicinal Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ruixi Hua
- Department of Medicinal Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Cui Chen
- Department of Medicinal Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Bing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, SUN Yat-Sen University, 510080, China
| | - Heping Li
- Department of Medicinal Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
239
|
Ooki A, Del Carmen Rodriguez Pena M, Marchionni L, Dinalankara W, Begum A, Hahn NM, VandenBussche CJ, Rasheed ZA, Mao S, Netto GJ, Sidransky D, Hoque MO. YAP1 and COX2 Coordinately Regulate Urothelial Cancer Stem-like Cells. Cancer Res 2017; 78:168-181. [PMID: 29180467 DOI: 10.1158/0008-5472.can-17-0836] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/30/2017] [Accepted: 11/03/2017] [Indexed: 12/24/2022]
Abstract
Overcoming acquired drug resistance remains a core challenge in the clinical management of human cancer, including in urothelial carcinoma of the bladder (UCB). Cancer stem-like cells (CSC) have been implicated in the emergence of drug resistance but mechanisms and intervention points are not completely understood. Here, we report that the proinflammatory COX2/PGE2 pathway and the YAP1 growth-regulatory pathway cooperate to recruit the stem cell factor SOX2 in expanding and sustaining the accumulation of urothelial CSCs. Mechanistically, COX2/PGE2 signaling induced promoter methylation of let-7, resulting in its downregulation and subsequent SOX2 upregulation. YAP1 induced SOX2 expression more directly by binding its enhancer region. In UCB clinical specimens, positive correlations in the expression of SOX2, COX2, and YAP1 were observed, with coexpression of COX2 and YAP1 particularly commonly observed. Additional investigations suggested that activation of the COX2/PGE2 and YAP1 pathways also promoted acquired resistance to EGFR inhibitors in basal-type UCB. In a mouse xenograft model of UCB, dual inhibition of COX2 and YAP1 elicited a long-lasting therapeutic response by limiting CSC expansion after chemotherapy and EGFR inhibition. Our findings provide a preclinical rationale to target these pathways concurrently with systemic chemotherapy as a strategy to improve the clinical management of UCB.Significance: These findings offer a preclinical rationale to target the COX2 and YAP1 pathways concurrently with systemic chemotherapy to improve the clinical management of UCB, based on evidence that these two pathways expand cancer stem-like cell populations that mediate resistance to chemotherapy. Cancer Res; 78(1); 168-81. ©2017 AACR.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wikum Dinalankara
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Asma Begum
- The Sidney Kimmel Comprehensive Cancer, Johns Hopkins University, Baltimore, Maryland
| | - Noah M Hahn
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer, Johns Hopkins University, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Zeshaan A Rasheed
- The Sidney Kimmel Comprehensive Cancer, Johns Hopkins University, Baltimore, Maryland
| | - Shifeng Mao
- Allegheny Health Network Cancer Institute, Pittsburgh, Pennsylvania
| | - George J Netto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mohammad O Hoque
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
240
|
Ma MKF, Lau EYT, Leung DHW, Lo J, Ho NPY, Cheng LKW, Ma S, Lin CH, Copland JA, Ding J, Lo RCL, Ng IOL, Lee TKW. Stearoyl-CoA desaturase regulates sorafenib resistance via modulation of ER stress-induced differentiation. J Hepatol 2017. [PMID: 28647567 DOI: 10.1016/j.jhep.2017.06.015] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS We investigated the functional role and clinical significance of stearoyl-CoA desaturase-1 (SCD1) mediated endoplasmic reticulum (ER) stress in regulating liver tumor-initiating cells (T-ICs) and sorafenib resistance, with the aim of developing a novel therapeutic strategy against hepatocellular carcinomas (HCCs). METHODS We evaluated the clinic-pathological relevance of SCD1 and its correlation with sorafenib resistance in large cohorts of HCC clinical samples by qPCR and immunohistochemical analyses. Lentiviral-based overexpression and knockdown approaches were performed to characterize the functional roles of SCD1 in regulating liver T-ICs and sorafenib resistance. Molecular pathways mediating the phenotypic alterations were identified through RNA sequencing analysis and functional rescue experiments. The combinatorial effect of SCD1 inhibition and sorafenib was tested using a patient-derived tumor xenograft (PDTX) model. RESULTS SCD1 overexpression was found in HCC, which was associated with shorter disease-free survival (p = 0.008, log rank test). SCD1 was found to regulate the populations of liver T-ICs; while its suppression by a SCD1 inhibitor suppressed liver T-ICs and sorafenib resistance. Interestingly, SCD1 was markedly upregulated in our established sorafenib-resistant PDTX model, and its overexpression predicts the clinical response of HCC patients to sorafenib treatment. Suppression of SCD1 forces liver T-ICs to differentiate via ER stress-induced unfolded protein response, resulting in an enhanced sensitivity to sorafenib. The PDTX#1 model, combined with sorafenib treatment and a novel SCD1 inhibitor (SSI-4), showed a maximal growth suppressive effect. CONCLUSIONS SCD1-mediated ER stress regulates liver T-ICs and sorafenib sensitivity. Targeting SCD1 alone or in combination with sorafenib might be a novel personalized medicine against HCC. Lay summary: In this study, SCD1 was found to play a critical role in regulating liver tumor-initiating cells and sorafenib resistance through the regulation of ER stress-mediated differentiation. Targeting SCD1 in combination with sorafenib may be a novel therapeutic strategy against liver cancer.
Collapse
Affiliation(s)
- Mark Kin Fai Ma
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Eunice Yuen Ting Lau
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong; Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong
| | - Doris Hoi Wing Leung
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Jessica Lo
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Nicole Pui Yu Ho
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Lily Kwan Wai Cheng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Stephanie Ma
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chi Ho Lin
- Centre for Genomic Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - John A Copland
- Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, United States
| | - Jin Ding
- Eastern Hepatobiliary Surgery Hospital, The International Cooperation Laboratory on Signal Transduction, China
| | - Regina Cheuk Lam Lo
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Irene Oi Lin Ng
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| | - Terence Kin Wah Lee
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong; State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
241
|
Sporadic PCDH18 somatic mutations in EpCAM-positive hepatocellular carcinoma. Cancer Cell Int 2017; 17:94. [PMID: 29075151 PMCID: PMC5654054 DOI: 10.1186/s12935-017-0467-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022] Open
Abstract
Background The relationship between specific genome alterations and hepatocellular carcinoma (HCC) cancer stem cells (CSCs) remains unclear. In this study, we evaluated the relationship between somatic mutations and epithelial cell adhesion molecule positive (EpCAM+) CSCs. Methods Two patient-derived HCC samples (HCC1 and HCC2) were sorted by EpCAM expression and analyzed by whole exome sequence. We measured PCDH18 expression level in eight HCC cell lines as well as HCC1 and HCC2 by real-time quantitative RT-PCR. We validated the identified gene mutations in 57 paired of HCC and matched non-cancerous liver tissues by Sanger sequence. Results Whole exome sequencing on the sorted EpCAM+ and EpCAM− HCC1 and HCC2 cells revealed 19,263 nonsynonymous mutations in the cording region. We selected mutations that potentially impair the function of the encoded protein. Ultimately, 60 mutations including 13 novel nonsense and frameshift mutations were identified. Among them, PCDH18 mutation was more frequently detected in sorted EpCAM+ cells than in EpCAM− cells in HCC1 by whole exome sequences. However, we could not confirm the difference of PCDH18 mutation frequency between sorted EpCAM+ and EpCAM− cells by Sanger sequencing, indicating that PCDH18 mutation could not explain intracellular heterogeneity. In contrast, we found novel PCDH18 mutations, including c.2556_2557delTG, c.1474C>G, c.2337A>G, and c.2976G>T, were detected in HCC1 and 3/57 (5.3%) additional HCC surgical specimens. All four HCCs with PCDH18 mutations were EpCAM-positive, suggesting that PCDH18 somatic mutations might explain the intertumor heterogeneity of HCCs in terms of the expression status of EpCAM. Furthermore, EpCAM-positive cell lines (Huh1, Huh7, HepG2, and Hep3B) had lower PCDH18 expression than EpCAM-negative cell lines (PLC/PRL/5, HLE, HLF, and SK-Hep-1), and PCDH18 knockdown in HCC2 cells slightly enhanced cell proliferation. Conclusions Our data suggest that PCDH18 is functionally suppressed in a subset of EpCAM-positive HCCs through somatic mutations, and may play a role in the development of EpCAM-positive HCCs. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0467-x) contains supplementary material, which is available to authorized users.
Collapse
|
242
|
Szaryńska M, Olejniczak A, Kobiela J, Spychalski P, Kmieć Z. Therapeutic strategies against cancer stem cells in human colorectal cancer. Oncol Lett 2017; 14:7653-7668. [PMID: 29250169 PMCID: PMC5727596 DOI: 10.3892/ol.2017.7261] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most frequent malignancy and represents the fourth most common cause of cancer-associated mortalities in the world. Despite many advances in the treatment of CRC, the 5-year survival rate of patients with CRC remains unsatisfactory due to tumor recurrence and metastases. Recently, cancer stem cells (CSCs), have been suggested to be responsible for the initiation and relapse of the disease, and have been identified in CRC. Due to their basic biological features, which include self-renewal and pluripotency, CSCs may be novel therapeutic targets for CRC and other cancer types. Conventional therapeutics only act on proliferating and mature cancer cells, while quiescent CSCs survive and often become resistant to chemotherapy. In this review, markers of CRC-CSCs are evaluated and the recently introduced experimental therapies that specifically target these cells by inducing CSC proliferation, differentiation and sensitization to apoptotic signals via molecules including Dickkopf-1, bone morphogenetic protein 4, Kindlin-1, tankyrases, and p21-activated kinase 1, are discussed. In addition, novel strategies aimed at inhibiting some crucial processes engaged in cancer progression regulated by the Wnt, transforming growth factor β and Notch signaling pathways (pyrvinium pamoate, silibinin, PRI-724, P17, and P144 peptides) are also evaluated. Although the metabolic alterations in cancer were first described decades ago, it is only recently that the concept of targeting key regulatory molecules of cell metabolism, such as sirtuin 1 (miR-34a) and AMPK (metformin), has emerged. In conclusion, the discovery of CSCs has resulted in the definition of novel therapeutic targets and the development of novel experimental therapies for CRC. However, further investigations are required in order to apply these novel drugs in human CRC.
Collapse
Affiliation(s)
- Magdalena Szaryńska
- Department of Histology, Medical University of Gdańsk, 80-210 Gdańsk; Gdańsk, Poland
| | - Agata Olejniczak
- Department of Histology, Medical University of Gdańsk, 80-210 Gdańsk; Gdańsk, Poland
| | - Jarosław Kobiela
- Department of General, Endocrine and Transplant Surgery, Invasive Medicine Center, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Piotr Spychalski
- Department of General, Endocrine and Transplant Surgery, Invasive Medicine Center, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, 80-210 Gdańsk; Gdańsk, Poland
| |
Collapse
|
243
|
Zhang Y, Zhao W, Han H, Li S, Chen D, Zhang Z. MicroRNA-31 suppresses the self-renewal capability of α2δ1 + liver tumor-initiating cells by targeting ISL1. Oncotarget 2017; 8:87647-87657. [PMID: 29152108 PMCID: PMC5675660 DOI: 10.18632/oncotarget.21140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/26/2017] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidence demonstrates that miRNAs, a class of small non-coding RNAs, are involved in the regulation of tumor-initiating cells (TICs) which are considered to be the origin of cancer development according to the cancer stem cell hypothesis. We have previously identified that miR-31 may play suppressive roles in α2δ1+ hepatocellular carcinoma (HCC) TICs. Here, we confirm that the expression of miR-31 is significantly downregulated in α2δ1+ HCC TICs. Overexpression of miR-31 in α2δ1+ HCC TICs results in significant suppression of the self-renewal and tumorigenicity abilities of these cells. Conversely, knockdown the expression of miR-31 in PLC/PRF/5 cells is able to reprogram them into TICs with stem cell-like properties. Furthermore, the expression of ISL LIM Homeobox 1(ISL1), a transcription factor involved in recognition of undifferentiated cardiac progenitors, is negatively regulated by miR-31, and the luciferase reporters’ activities with the 3′-UTRs of ISL1 are inhibited significantly by miR-31. Collectively, our results suggest that miR-31 can negatively regulate the self-renewal ability of α2δ1+ liver TICs via silencing ISL1.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Wei Zhao
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Haibo Han
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Sheng Li
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Dongji Chen
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zhiqian Zhang
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
244
|
Involvement of inflammation and its related microRNAs in hepatocellular carcinoma. Oncotarget 2017; 8:22145-22165. [PMID: 27888618 PMCID: PMC5400654 DOI: 10.18632/oncotarget.13530] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most commonly diagnosed type of cancer. The tumor inflammatory microenvironment regulates almost every step towards liver tumorigenesis and subsequent progression, and regulation of the inflammation-related signaling pathways, cytokines, chemokines and non-coding RNAs influences the proliferation, migration and metastasis of liver tumor cells. Inflammation fine-tunes the cancer microenvironment to favor epithelial-mesenchymal transition, in which cancer stem cells maintain tumorigenic potential. Emerging evidence points to inflammation-related microRNAs as crucial molecules to integrate the complex cellular and molecular crosstalk during HCC progression. Thus understanding the mechanisms by which inflammation regulates microRNAs might provide novel and admissible strategies for preventing, diagnosing and treating HCC. In this review, we will update three hypotheses of hepatocarcinogenesis and elaborate the most predominant inflammation signaling pathways, i.e. IL-6/STAT3 and NF-κB. We also try to summarize the crucial tumor-promoting and tumor-suppressing microRNAs and detail how they regulate HCC initiation and progression and collaborate with other critical modulators in this review.
Collapse
|
245
|
Flores-Téllez TNJ, Villa-Treviño S, Piña-Vázquez C. Road to stemness in hepatocellular carcinoma. World J Gastroenterol 2017; 23:6750-6776. [PMID: 29085221 PMCID: PMC5645611 DOI: 10.3748/wjg.v23.i37.6750] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/27/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
Carcinogenic process has been proposed to relay on the capacity to induce local tissue damage and proliferative repair. Liver has a great regeneration capacity and currently, most studies point towards the dominant role of hepatocytes in regeneration at all levels of liver damage. The most frequent liver cancer is hepatocellular carcinoma (HCC). Historical findings originally led to the idea that the cell of origin of HCC might be a progenitor cell. However, current linage tracing studies put the progenitor hypothesis of HCC origin into question. In agreement with their dominant role in liver regeneration, mature hepatocytes are emerging as the cell of origin of HCC, although, the specific hepatocyte subpopulation of origin is yet to be determined. The relationship between the cancer cell of origin (CCO) and cancer-propagating cells, known as hepatic cancer stem cell (HCSC) is unknown. It has been challenging to identify the definitive phenotypic marker of HCSC, probably due to the existence of different cancer stem cells (CSC) subpopulations with different functions within HCC. There is a dynamic interconversion among different CSCs, and between CSC and non-CSCs. Because of that, CSC-state is currently defined as a description of a highly adaptable and dynamic intrinsic property of tumor cells, instead of a static subpopulation of a tumor. Altered conditions could trigger the gain of stemness, some of them include: EMT-MET, epigenetics, microenvironment and selective stimulus such as chemotherapy. This CSC heterogeneity and dynamism makes them out reach from therapeutic protocols directed to a single target. A further avenue of research in this line will be to uncover mechanisms that trigger this interconversion of cell populations within tumors and target it.
Collapse
Affiliation(s)
- Teresita NJ Flores-Téllez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| |
Collapse
|
246
|
Abe M, Yoshida T, Akiba J, Ikezono Y, Wada F, Masuda A, Sakaue T, Tanaka T, Iwamoto H, Nakamura T, Sata M, Koga H, Yoshimura A, Torimura T. STAT3 deficiency prevents hepatocarcinogenesis and promotes biliary proliferation in thioacetamide-induced liver injury. World J Gastroenterol 2017; 23:6833-6844. [PMID: 29085226 PMCID: PMC5645616 DOI: 10.3748/wjg.v23.i37.6833] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/24/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To elucidate the role of STAT3 in hepatocarcinogenesis and biliary ductular proliferation following chronic liver injury.
METHODS We investigated thioacetamide (TAA)-induced liver injury, compensatory hepatocyte proliferation, and hepatocellular carcinoma (HCC) development in hepatic STAT3-deficient mice. In addition, we evaluated TAA-induced biliary ductular proliferation and analyzed the activation of sex determining region Y-box9 (SOX9) and Yes-associated protein (YAP), which regulate the transdifferentiation of hepatocytes to cholangiocytes.
RESULTS Both compensatory hepatocyte proliferation and HCC formation were significantly decreased in hepatic STAT3-deficient mice as compared with control mice. STAT3 deficiency resulted in augmentation of hepatic necrosis and fibrosis. On the other hand, biliary ductular proliferation increased in hepatic STAT3-deficient livers as compared with control livers. SOX9 and YAP were upregulated in hepatic STAT3-deficient hepatocytes.
CONCLUSION STAT3 may regulate hepatocyte proliferation as well as transdifferentiation into cholangiocytes and serve as a therapeutic target for HCC inhibition and biliary regeneration.
Collapse
Affiliation(s)
- Mitsuhiko Abe
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
- Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume 830-0011, Japan
| | - Takafumi Yoshida
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
- Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume 830-0011, Japan
- Kurume Clinical Pharmacology Clinic, Kurume 830-0011, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume 830-0011, Japan
| | - Yu Ikezono
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
- Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume 830-0011, Japan
| | - Fumitaka Wada
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
- Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume 830-0011, Japan
| | - Atsutaka Masuda
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
- Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume 830-0011, Japan
| | - Takahiko Sakaue
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
- Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume 830-0011, Japan
| | - Toshimitsu Tanaka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
- Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume 830-0011, Japan
| | - Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
- Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume 830-0011, Japan
| | - Toru Nakamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
- Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume 830-0011, Japan
| | - Michio Sata
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
- Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume 830-0011, Japan
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
- Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume 830-0011, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
- Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume 830-0011, Japan
| |
Collapse
|
247
|
Xu G, Ye J, Liu XJ, Zhang NP, Zhao YM, Fan J, Liu XP, Wu J. Activation of pluripotent genes in hepatic progenitor cells in the transition of nonalcoholic steatohepatitis to pre-malignant lesions. J Transl Med 2017; 97:1201-1217. [PMID: 28869588 DOI: 10.1038/labinvest.2017.84] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/26/2017] [Accepted: 07/11/2017] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic steatohepatitis is considered as a precancerous condition. However, hepatic carcinogenesis from NASH is poorly understood. This study aims to investigate the activation of pluripotent genes (c-Myc, Oct-4, KLF-4, and Nanog) and morphogenic gene (Gli-1) in hepatic progenitor cells from patient specimens and in an animal model to determine the possibility of normal stem/progenitor cells becoming the origin of NASH-HCC. In this study, expression of pluripotent and morphogenic genes in human NASH-HCC tissues was significantly upregulated compared to adjacent non-tumor liver tissues. After feeding high-fat/calorie diet plus high fructose/glucose in drinking water (HFC diet plus HF/G) for up to 12 months, mice developed obesity, insulin resistance, and steatohepatitis with significant necroptotic inflammation and fibrotic progression, as well as occurrence of hyperplastic nodules with dysplasia; and this model represents pathohistologically as a transition from NASH to NASH-HCC in a pre-carcinomatous stage. High expression of pluripotent and morphogenic genes was immunohistochemically visualized in the dysplasia areas of mouse liver, where there were many OV-6-positive cells, indicating proliferation of HOCs in NASH with fibrotic progression. Moreover, oncogenic transcription factors (c-Myc, KLF-4, and Nanog) were co-localized in these hepatic progenitor cells. In conclusion, pluripotent and morphogenic genes may contribute to the reprogramming of hepatic progenitor cells in driving these cells to be the origin of NASH-HCC in a steatotic and inflamed microenvironment.
Collapse
Affiliation(s)
- Gang Xu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Juan Ye
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xue-Jing Liu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ning-Ping Zhang
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi-Ming Zhao
- Institute of Liver Cancer, Fudan University-Affiliated Zhongshan Hospital, Shanghai, China.,Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jia Fan
- Institute of Liver Cancer, Fudan University-Affiliated Zhongshan Hospital, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University, Shanghai, China
| | - Xiu-Ping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jian Wu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University, Shanghai, China
| |
Collapse
|
248
|
Ma Z, He H, Sun F, Xu Y, Huang X, Ma Y, Zhao H, Wang Y, Wang M, Zhang J. Selective targeted delivery of doxorubicin via conjugating to anti-CD24 antibody results in enhanced antitumor potency for hepatocellular carcinoma both in vitro and in vivo. J Cancer Res Clin Oncol 2017; 143:1929-1940. [PMID: 28536738 DOI: 10.1007/s00432-017-2436-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE Antibody-drug conjugates (ADCs) represent a promising therapeutic approach for clinical application. Cluster of differentiation 24 (CD24) is over-expressed in several human malignancies, especially in hepatocellular carcinoma (HCC). We aimed to develop a new class of CD24-targeted ADCs for HCC. METHODS DOX was conjugated with G7mAb by a heterobifunctional cross-linker GMBS (N-[gamma-maleimido butyryloxy] succinimide ester) and further analyzed using HPLC. The targeting specificity and endocytosis of the newly generated ADC, G7mAb-DOX, were characterized using flow cytometry assay, near-infrared fluorescence imaging and laser scanning confocal microscope. The antitumor effects were evaluated in nude mice bearing HCC xenografts. RESULTS G7mAb-DOX with average two drug molecules per antibody was selectively captured and endocytosed by CD24 (+) tumor cells in vitro. In vivo, the ADC was proved to target tumor tissues, suppress tumor growth and prolong the survival of HCC-bearing nude mice with improved efficacy and less systemic toxicity compared with either G7mAb or DOX single-agent treatment. CONCLUSION These studies provide proof of concept for development of DOX-based ADCs which provide a novel approach for HCC-targeted immune therapy in clinical application.
Collapse
Affiliation(s)
- Zhaoxiong Ma
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009, People's Republic of China
| | - Hua He
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009, People's Republic of China
| | - Fumou Sun
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009, People's Republic of China
| | - Yao Xu
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009, People's Republic of China
| | - Xuequn Huang
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009, People's Republic of China
| | - Yuexing Ma
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009, People's Republic of China
| | - Hong Zhao
- First Affiliate Hospital of Zhejiang Chinese Medicine University, Hangzhou, 310006, China
| | - Yang Wang
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009, People's Republic of China
| | - Min Wang
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009, People's Republic of China.
| | - Juan Zhang
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
249
|
High-throughput flow cytometry screening of human hepatocellular carcinoma reveals CD146 to be a novel marker of tumor-initiating cells. Biochem Biophys Rep 2017; 8:107-113. [PMID: 28955945 PMCID: PMC5613743 DOI: 10.1016/j.bbrep.2016.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains a common and lethal cancer. Cancer stem cells, or tumor-initiating cells (TICs), are thought to contribute to the pathogenesis of HCC, but remain to be fully characterized. Unbiased screens of primary human HCC cells for the identification of novel HCC TIC markers have not been reported. We conducted high-throughput flow cytometry (HT-FC) profiling to characterize the expression of 375 CD antigens on tumor cells from 10 different human HCC samples. We selected 91 of these for further analysis based on HT-FC data that showed consistent expression in discrete, rare, sortable populations of HCC cells. Nine of these CD antigens demonstrated significantly increased expression in the EpCAM+ stem/progenitor fraction of a human HCC cell line and were further evaluated in primary human HCC tissues from 30 different patients. Of the nine tested, only CD146 demonstrated significantly increased expression in HCC tumor tissue as compared with matched adjacent non-tumor liver tissue. CD146+CD31−CD45− cells purified from HCC tumors and cell lines demonstrated a unique phenotype distinct from mesenchymal stem cells. As compared with other tumor cell fractions, CD146+CD31−CD45− cells showed significantly increased colony-forming capacity in vitro, consistent with TICs. This study demonstrates that HT-FC screening can be successfully applied to primary human HCC and reveals CD146 to be a novel TIC marker in this disease. Unbiased screens of human HCC cells for novel TIC markers have not been reported. A high-throughput flow cytometry screen of human HCC cells was successfully performed . Candidate TIC markers were further evaluated by RT-PCR and functional assays. Of candidates tested, only CD146 expression was significantly increased in HCC tissues. CD146+ cells had increased colony-forming capacity, consistent with a TIC phenotype.
Collapse
|
250
|
Choi JH, Kim MJ, Park YK, Im JY, Kwon SM, Kim HC, Woo HG, Wang HJ. Mutations acquired by hepatocellular carcinoma recurrence give rise to an aggressive phenotype. Oncotarget 2017; 8:22903-22916. [PMID: 28038442 PMCID: PMC5410272 DOI: 10.18632/oncotarget.14248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/01/2016] [Indexed: 02/06/2023] Open
Abstract
Recurrence of hepatocellular carcinoma (HCC) even after curative resection causes dismal outcomes of patients. Here, to delineate the driver events of genomic and transcription alteration during HCC recurrence, we performed RNA-Seq profiling of the paired primary and recurrent tumors from two patients with intrahepatic HCC. By comparing the mutational and transcriptomic profiles, we identified somatic mutations acquired by HCC recurrence including novel mutants of GOLGB1 (E2721V) and SF3B3 (H804Y). By performing experimental evaluation using siRNA-mediated knockdown and overexpression constructs, we demonstrated that the mutants of GOLGB1 and SF3B3 can promote cell proliferation, colony formation, migration, and invasion of liver cancer cells. Transcriptome analysis also revealed that the recurrent HCCs reprogram their transcriptomes to acquire aggressive phenotypes. Network analysis revealed CXCL8 (IL-8) and SOX4 as common downstream targets of the mutants. In conclusion, we suggest that the mutations of GOLGB1 and SF3B3 are potential key drivers for the acquisition of an aggressive phenotype in recurrent HCC.
Collapse
Affiliation(s)
- Ji-Hye Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Min Jae Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Yong Keun Park
- Department of Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon, Korea
| | - Jong-Yeop Im
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - So Mee Kwon
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Hyung Chul Kim
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Hee-Jung Wang
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|