201
|
Bardoxolone Methyl Displays Detrimental Effects on Endothelial Bioenergetics, Suppresses Endothelial ET-1 Release, and Increases Endothelial Permeability in Human Microvascular Endothelium. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4678252. [PMID: 33123312 PMCID: PMC7584962 DOI: 10.1155/2020/4678252] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/24/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
Nrf2 is a master regulator of antioxidant cellular defence, and agents activating the Nrf2 pathway have been tested in various diseases. However, unexpected side effects of cardiovascular nature reported for bardoxolone methyl in patients with type 2 diabetes mellitus and stage 4 chronic kidney disease (the BEACON trial) still have not been fully explained. Here, we aimed to characterize the effects of bardoxolone methyl compared with other Nrf2 activators—dimethyl fumarate and L-sulforaphane—on human microvascular endothelium. Endothelial toxicity, bioenergetics, mitochondrial membrane potential, endothelin-1 (ET-1) release, endothelial permeability, Nrf2 expression, and ROS production were assessed in human microvascular endothelial cells (HMEC-1) incubated for 3 and 24 hours with 100 nM–5 μM of either bardoxolone methyl, dimethyl fumarate, or L-sulforaphane. Three-hour incubation with bardoxolone methyl (100 nM–5 μM), although not toxic to endothelial cells, significantly affected endothelial bioenergetics by decreasing mitochondrial membrane potential (concentrations ≥ 3 μM), decreasing spare respiratory capacity (concentrations ≥ 1 μM), and increasing proton leak (concentrations ≥ 500 nM), while dimethyl fumarate and L-sulforaphane did not exert such actions. Bardoxolone methyl at concentrations ≥ 3 μM also decreased cellular viability and induced necrosis and apoptosis in the endothelium upon 24-hour incubation. In turn, endothelin-1 decreased permeability in endothelial cells in picomolar range, while bardoxolone methyl decreased ET-1 release and increased endothelial permeability even after short-term (3 hours) incubation. In conclusion, despite that all three Nrf2 activators exerted some beneficial effects on the endothelium, as evidenced by a decrease in ROS production, bardoxolone methyl, the most potent Nrf2 activator among the tested compounds, displayed a distinct endothelial profile of activity comprising detrimental effects on mitochondria and cellular viability and suppression of endothelial ET-1 release possibly interfering with ET-1–dependent local regulation of endothelial permeability.
Collapse
|
202
|
Nrf2 in Neoplastic and Non-Neoplastic Liver Diseases. Cancers (Basel) 2020; 12:cancers12102932. [PMID: 33053665 PMCID: PMC7599585 DOI: 10.3390/cancers12102932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Although the Keap1-Nrf2 pathway represents a powerful cell defense mechanism against a variety of toxic insults, its role in acute or chronic liver damage and tumor development is not completely understood. This review addresses how Nrf2 is involved in liver pathophysiology and critically discusses the contrasting results emerging from the literature. The aim of the present report is to stimulate further investigation on the role of Nrf2 that could lead to define the best strategies to therapeutically target this pathway. Abstract Activation of the Keap1/Nrf2 pathway, the most important cell defense signal, triggered to neutralize the harmful effects of electrophilic and oxidative stress, plays a crucial role in cell survival. Therefore, its ability to attenuate acute and chronic liver damage, where oxidative stress represents the key player, is not surprising. On the other hand, while Nrf2 promotes proliferation in cancer cells, its role in non-neoplastic hepatocytes is a matter of debate. Another topic of uncertainty concerns the nature of the mechanisms of Nrf2 activation in hepatocarcinogenesis. Indeed, it remains unclear what is the main mechanism behind the sustained activation of the Keap1/Nrf2 pathway in hepatocarcinogenesis. This raises doubts about the best strategies to therapeutically target this pathway. In this review, we will analyze and discuss our present knowledge concerning the role of Nrf2 in hepatic physiology and pathology, including hepatocellular carcinoma. In particular, we will critically examine and discuss some findings originating from animal models that raise questions that still need to be adequately answered.
Collapse
|
203
|
Yi Z, Deng M, Scott MJ, Fu G, Loughran PA, Lei Z, Li S, Sun P, Yang C, Li W, Xu H, Huang F, Billiar TR. Immune-Responsive Gene 1/Itaconate Activates Nuclear Factor Erythroid 2-Related Factor 2 in Hepatocytes to Protect Against Liver Ischemia-Reperfusion Injury. Hepatology 2020; 72:1394-1411. [PMID: 31997373 PMCID: PMC7702080 DOI: 10.1002/hep.31147] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Itaconate, a metabolite of the tricarboxylic acid cycle, plays anti-inflammatory roles in macrophages during endotoxemia. The mechanisms underlying its anti-inflammatory roles have been shown to be mediated by the modulation of oxidative stress, an important mechanism of hepatic ischemia-reperfusion (I/R) injury. However, the role of itaconate in liver I/R injury is unknown. APPROACH AND RESULTS We found that deletion of immune-responsive gene 1 (IRG1), encoding for the enzyme producing itaconate, exacerbated liver injury and systemic inflammation. Furthermore, bone marrow adoptive transfer experiments indicated that deletion of IRG1 in both hematopoietic and nonhematopoietic compartments contributes to the protection mediated by IRG1 after I/R. Interestingly, the expression of IRG1 was up-regulated in hepatocytes after I/R and hypoxia/reoxygenation-induced oxidative stress. Modulation of the IRG1 expression levels in hepatocytes regulated hepatocyte cell death. Importantly, addition of 4-octyl itaconate significantly improved liver injury and hepatocyte cell death after I/R. Furthermore, our data indicated that nuclear factor erythroid 2-related factor 2 (Nrf2) is required for the protective effect of IRG1 on mouse and human hepatocytes against oxidative stress-induced injury. Our studies document the important role of IRG1 in the acute setting of sterile injury induced by I/R. Specifically, we provide evidence that the IRG1/itaconate pathway activates Nrf2-mediated antioxidative response in hepatocytes to protect liver from I/R injury. CONCLUSIONS Our data expand on the importance of IRG1/itaconate in nonimmune cells and identify itaconate as a potential therapeutic strategy for this unfavorable postsurgical complication.
Collapse
Affiliation(s)
- Zhongjie Yi
- Department of Hepatobiliary SurgeryThe Third Xiangya HospitalCentral South UniversityChangshaChina,Department of SurgeryUniversity of PittsburghPittsburghPA
| | - Meihong Deng
- Department of SurgeryUniversity of PittsburghPittsburghPA
| | - Melanie J. Scott
- Department of SurgeryUniversity of PittsburghPittsburghPA,Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPA
| | - Guang Fu
- Department of Hepatobiliary SurgeryThe Third Xiangya HospitalCentral South UniversityChangshaChina,Department of SurgeryUniversity of PittsburghPittsburghPA
| | - Patricia A. Loughran
- Department of SurgeryUniversity of PittsburghPittsburghPA,Center for Biological ImagingUniversity of PittsburghPittsburghPA
| | - Zhao Lei
- Department of Hepatobiliary SurgeryThe Third Xiangya HospitalCentral South UniversityChangshaChina,Department of SurgeryUniversity of PittsburghPittsburghPA
| | - Shilai Li
- Department of SurgeryUniversity of PittsburghPittsburghPA,Department of EmergencyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Ping Sun
- Department of SurgeryUniversity of PittsburghPittsburghPA,Department of Hepatobiliary SurgeryUnion HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Chenxuan Yang
- Department of SurgeryUniversity of PittsburghPittsburghPA,School of MedicineStudent at Tsinghua UniversityBeijingChina
| | - Wenbo Li
- Department of Hepatobiliary SurgeryThe Third Xiangya HospitalCentral South UniversityChangshaChina,Department of SurgeryUniversity of PittsburghPittsburghPA
| | - Hongbo Xu
- Department of SurgeryUniversity of PittsburghPittsburghPA
| | - Feizhou Huang
- Department of Hepatobiliary SurgeryThe Third Xiangya HospitalCentral South UniversityChangshaChina
| | | |
Collapse
|
204
|
Wei W, Ma N, Fan X, Yu Q, Ci X. The role of Nrf2 in acute kidney injury: Novel molecular mechanisms and therapeutic approaches. Free Radic Biol Med 2020; 158:1-12. [PMID: 32663513 DOI: 10.1016/j.freeradbiomed.2020.06.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/24/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Acute kidney injury (AKI) is a common clinical syndrome that is related to high morbidity and mortality. Oxidative stress, including the production of reactive oxygen species (ROS), appears to be the main element in the occurrence of AKI and the cause of the progression of chronic kidney disease (CKD) into end-stage renal disease (ESRD). Nuclear factor erythroid 2 related factor 2 (Nrf2) is a significant regulator of redox balance that has been shown to improve kidney disease by eliminating ROS. To date, researchers have found that the use of Nrf2-activated compounds can effectively reduce ROS, thereby preventing or retarding the progression of various types of AKI. In this review, we summarized the molecular mechanisms of Nrf2 and ROS in AKI and described the latest findings on the therapeutic potential of Nrf2 activators in various types of AKI.
Collapse
Affiliation(s)
- Wei Wei
- Department of Urology, The First Hospital, Jilin University, Changchun, China
| | - Ning Ma
- Department of Urology, The First Hospital, Jilin University, Changchun, China
| | - Xiaoye Fan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qinlei Yu
- Jilin Provincial Animal Disease Control Center, 4510 Xi'an Road, Changchun, 130062, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
205
|
Liu X, Zhang D, Cai Q, Liu D, Sun S. Involvement of nuclear factor erythroid 2‑related factor 2 in neonatal intestinal interleukin‑17D expression in hyperoxia. Int J Mol Med 2020; 46:1423-1432. [PMID: 32945417 PMCID: PMC7447302 DOI: 10.3892/ijmm.2020.4697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin 17D (IL‑17D) plays an important role in host defense against inflammation and infection. In the present study, the role of nuclear factor erythroid 2‑related factor 2 (Nrf2) in regulating the production of IL‑17D was investigated under hyperoxia. For this purpose, neonatal rats were randomized into two groups; the model group was exposed to hyperoxia (80‑85% O2), while the control group was maintained under normoxic conditions (21% O2). Small intestine tissue was collected on postnatal days 3, 7, 10 and 14. IL‑17D expression was detected by immunofluorescence, immunohistochemistry and western blotting. The levels of Nrf2 and kelch‑like ECH‑associated protein 1 (keap1) were detected by immunohistochemistry and western blotting. Results showed that IL‑17D expression in intestine epithelial cells increased steadily, reaching a peak on day 7, and decreased gradually on days 10 and 14 under hyperoxia. Nrf2 expression was consistent with IL‑17D, and it was positively correlated with IL‑17D. However, on postnatal days 10 and 14, the number of CD4+ T cells and CD19+ B cells expressing IL‑17D was increased, and positive cells of the model group were significantly more than that of the control group. Keap1 levels were lower at the early stage. In conclusion, the expression levels of intestinal IL‑17D and Nrf2 were altered simultaneously following neonatal rat development in hyperoxia, indicating that Nrf2 may be involved in regulating the expression of IL‑17D in intestinal epithelial cells. Moreover, IL‑17D in intestinal epithelial cells may play a unique immunological role during hyperoxia.
Collapse
Affiliation(s)
- Xuying Liu
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases
| | - Dongyang Zhang
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases
| | - Qing Cai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Dongyan Liu
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
206
|
Liu L, Kelly MG, Yang XR, Fernandez TG, Wierzbicki EL, Skrobach A, Doré S. Nrf2 Deficiency Exacerbates Cognitive Impairment and Reactive Microgliosis in a Lipopolysaccharide-Induced Neuroinflammatory Mouse Model. Cell Mol Neurobiol 2020; 40:1185-1197. [PMID: 32170572 PMCID: PMC11448839 DOI: 10.1007/s10571-020-00807-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/30/2020] [Indexed: 02/08/2023]
Abstract
The transcription factor Nrf2 is a central regulator of anti-inflammatory and antioxidant mechanisms that contribute to the development and progression of various neurological disorders. Although the direct and indirect Nrf2 regulatory roles on inflammation have been reviewed in recent years, the in vivo evidence of Nrf2 function on lipopolysaccharide (LPS)-induced cognitive decline and characteristic alterations of reactive microglia and astrocytes remains incomplete. During the 3-5 days after LPS or saline injection, 5-6-month-old wildtype (WT) and Nrf2-/- C57BL/6 mice were subjected to the novel object recognition task. Immunohistochemistry staining was employed for analyses of brain cells. The Nrf2-/- mice displayed exacerbated LPS-induced cognition impairment (28.1 ± 9.6% in the discrimination index of the novel object recognition task), enhanced hippocampal reactive microgliosis and astrogliosis, and an increased expression level of the water channel transmembrane protein aquaporin 4 when compared with WT controls. In addition, similar overt effects of Nrf2 deficiency on LPS-induced characteristic alterations of brain cells were observed in the cortex and striatum regions of mice. In summary, this transgenic loss-of-function study provides direct in vivo evidence that highlights the functional importance of Nrf2 activation in regulating LPS-induced cognitive alteration, glial responses, and aquaporin 4 expression. This finding provides a better understanding of the complex nature of Nrf2 signaling and neuroprotection.
Collapse
Affiliation(s)
- Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Marie G Kelly
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Xiao Rui Yang
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Tyler G Fernandez
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Erika L Wierzbicki
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Anna Skrobach
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA.
- Departments of Neurology, Psychiatry, Pharmaceutics, and Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
207
|
Lee KH, Cha M, Lee BH. Neuroprotective Effect of Antioxidants in the Brain. Int J Mol Sci 2020; 21:ijms21197152. [PMID: 32998277 PMCID: PMC7582347 DOI: 10.3390/ijms21197152] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/29/2022] Open
Abstract
The brain is vulnerable to excessive oxidative insults because of its abundant lipid content, high energy requirements, and weak antioxidant capacity. Reactive oxygen species (ROS) increase susceptibility to neuronal damage and functional deficits, via oxidative changes in the brain in neurodegenerative diseases. Overabundance and abnormal levels of ROS and/or overload of metals are regulated by cellular defense mechanisms, intracellular signaling, and physiological functions of antioxidants in the brain. Single and/or complex antioxidant compounds targeting oxidative stress, redox metals, and neuronal cell death have been evaluated in multiple preclinical and clinical trials as a complementary therapeutic strategy for combating oxidative stress associated with neurodegenerative diseases. Herein, we present a general analysis and overview of various antioxidants and suggest potential courses of antioxidant treatments for the neuroprotection of the brain from oxidative injury. This review focuses on enzymatic and non-enzymatic antioxidant mechanisms in the brain and examines the relative advantages and methodological concerns when assessing antioxidant compounds for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Kyung Hee Lee
- Department of Dental Hygiene, Division of Health Science, Dongseo University, Busan 47011, Korea;
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea;
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2228-1711
| |
Collapse
|
208
|
Valenzuela R, Ortiz M, Hernández-Rodas MC, Echeverría F, Videla LA. Targeting n-3 Polyunsaturated Fatty Acids in Non-Alcoholic Fatty Liver Disease. Curr Med Chem 2020; 27:5250-5272. [PMID: 30968772 DOI: 10.2174/0929867326666190410121716] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/14/2018] [Accepted: 01/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-Alcoholic Fatty Liver Disease (NAFLD) is characterized by abnormal hepatic accumulation of triacylglycerides in the absence of alcohol consumption, in association with Oxidative Stress (OS), a pro-inflammatory state and Insulin Resistance (IR), which are attenuated by n-3 long-chain polyunsaturated Fatty Acids (FAs) C20-C22 (LCPUFAs) supplementation. Main causes of NAFLD comprise high caloric intake and a sedentary lifestyle, with high intakes of saturated FAs. METHODS The review includes several searches considering the effects of n-3 LCPUFAs in NAFLD in vivo and in vitro models, using the PubMed database from the National Library of Medicine- National Institutes of Health. RESULT The LCPUFAs eicosapentaenoic acid (C20:5 n-3, EPA) and docosahexaenoic acid (C22:6 n- 3, DHA) have a positive effect in diminishing liver steatosis, OS, and the levels of aspartate aminotransferase, alanine aminotransferase and pro-inflammatory cytokines, with improvement of insulin sensitivity and adiponectin levels. The molecular pathways described for n-3 LCPUFAs in cellular and animal models and humans include peroxisome proliferator-activated receptor-α activation favouring FA oxidation, diminution of lipogenesis due to sterol responsive element binding protein-1c downregulation and inflammation resolution. Besides, nuclear factor erythroid-2-related factor-2 activation is elicited by n-3 LCPUFA-derived oxidation products producing direct and indirect antioxidant responses, with concomitant anti-fibrogenic action. CONCLUSION The discussed effects of n-3 LCPUFA supplementation support its use in NAFLD, although having a limited value in NASH, a contention that may involve n-3 LCPUFA oxygenated derivatives. Clinical trials establishing optimal dosages, intervention times, type of patients and possible synergies with other natural products are needed in future studies.
Collapse
Affiliation(s)
- Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
| | - Macarena Ortiz
- Nutrition and Dietetics School, Faculty of Health Sciences, Catholic University of Maule, Merced 333, Curicó 3340000, Chile
| | - María Catalina Hernández-Rodas
- Department of Nutrition, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
| | - Francisca Echeverría
- Department of Nutrition, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
| | - Luis Alberto Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
| |
Collapse
|
209
|
Takahashi T, Nakano T, Katoh G, Shinoda Y, Yamamoto C, Yoshida E, Kaji T, Fujiwara Y. Nuclear factor erythroid 2-related factor 2 (NRF2) is a negative regulator of tissue plasminogen activator synthesis in cultured human vascular endothelial EA.hy926 cells. J Toxicol Sci 2020; 45:237-243. [PMID: 32238698 DOI: 10.2131/jts.45.237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Blood coagulation and the fibrinolytic system contribute to vascular lesions. Fibrinolysis in normal circulating blood strongly depends on the balance between tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) secreted from vascular endothelial cells; however, the mechanisms by which endothelial fibrinolysis is regulated remain to be fully understood. In the present study, human vascular endothelial EA.hy926 cells were transfected with small interfering RNA for nuclear factor erythroid 2-related factor 2 (NRF2) and the expression of t-PA and PAI-1 and fibrinolytic activity in the conditioned medium were examined. EA.hy926 cells were also treated with sulforaphane, an NRF2 activator, and fibrinolytic activity was examined to confirm the NRF2 signaling pathway's effect. Enhanced fibrinolytic activity in the conditioned medium was observed in association with increased expression and secretion levels of t-PA in NRF2 knockdown EA.hy926 cells. However, sulforaphane inhibited fibrinolytic activity and t-PA synthesis in EA.hy926 cells without any cell damage. The expression level of PAI-1 did not change in either NRF2 knockdown or sulforaphane treated cells. These results suggest that transcription factor NRF2 may play a role in down-regulating endothelial t-PA synthesis and fibrinolytic activity.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Tsuyoshi Nakano
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Go Katoh
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yo Shinoda
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Chika Yamamoto
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University
| | - Eiko Yoshida
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Yasuyuki Fujiwara
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
210
|
Li B, Yang L, Peng X, Fan Q, Wei S, Yang S, Li X, Jin H, Wu B, Huang M, Tang S, Liu J, Li H. Emerging mechanisms and applications of ferroptosis in the treatment of resistant cancers. Biomed Pharmacother 2020; 130:110710. [PMID: 33568263 DOI: 10.1016/j.biopha.2020.110710] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/09/2023] Open
Abstract
The development of chemotherapy drugs has promoted anticancer treatment, but the effect on tumours is not clear because of treatment resistance; thus, it is necessary to further understand the mechanism of cell death to explore new therapeutic targets. As a new type of programmed cell death, ferroptosis is increasingly being targeted in the treatment of many cancers with clinical drugs and experimental compounds. Ferroptosis is stimulated in tumours with inherently high levels of ferrous ions by a reaction with abundant polyunsaturated fatty acids and the inhibition of antioxidant enzymes, which can overcome treatment resistance in cancers mainly through GPX4. In this review, we focus on the intrinsic cellular regulators against ferroptosis in cancer resistance, such as GPX4, NRF2 and the thioredoxin system. We summarize the application of novel compounds and drugs to circumvent treatment resistance. We also introduce the application of nanoparticles for the treatment of resistant cancers. In conclusion, targeting ferroptosis represents a considerable strategy for resistant cancer treatment.
Collapse
Affiliation(s)
- Bowen Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Liang Yang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Qin Fan
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shibo Wei
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shuo Yang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Xinyu Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Hongyuan Jin
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Bo Wu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Mingyao Huang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shilei Tang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Jingang Liu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Hangyu Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China.
| |
Collapse
|
211
|
Anti-Inflammatory Activity of Kurarinone Involves Induction of HO-1 via the KEAP1/Nrf2 Pathway. Antioxidants (Basel) 2020; 9:antiox9090842. [PMID: 32916869 PMCID: PMC7554885 DOI: 10.3390/antiox9090842] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Kurarinone, a flavonoid isolated from the roots of Sophora flavescens, was suggested to exert potent antioxidant and immunosuppressive effects. However, the underlying mechanisms remain unclear. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor that regulates the antioxidant defense system with anti-inflammatory activity. In the present study, we demonstrated that kurarinone activated Nrf2 and increased the expression of antioxidant enzymes, including heme oxygenase-1 (HO-1). Mechanistically, kurarinone downregulated the expression of kelch-like ECH-associated protein 1 (KEAP1), subsequently leading to the activation of Nrf2. Kurarinone also inhibited the expression of the inflammatory cytokine, interleukin (IL)-1β, and inducible nitric oxide synthase (iNos) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The overexpression of HO-1 suppressed the LPS-induced production of inflammatory mediators in RAW264.7 cells, and the immunosuppressive effects of kurarinone were partially inhibited by a treatment with Tin Protomorphyrin IX (TinPPIX), an inhibitor of HO-1. These results indicate that kurarinone activates the KEAP1/Nrf2 pathway to induce HO-1 expression, thereby exerting immunosuppressive effects.
Collapse
|
212
|
Huang Z, Wu Y, Dong H, Zhao Y, Wu C. Design and Synthesis of Disulfide-Rich Peptides with Orthogonal Disulfide Pairing Motifs. J Org Chem 2020; 85:11475-11481. [PMID: 32786636 DOI: 10.1021/acs.joc.0c01600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Disulfide-rich peptides (DRPs) are a class of peptides that are constrained through two or more disulfide bonds. Though natural DRPs have been extensively exploited for developing protein binders or potential therapeutics, their synthesis and re-engineering to bind new targets are not straightforward due to difficulties in handling the disulfide pairing problem. Rationally designed DRPs with an intrinsically orthogonal disulfide pairing propensity provide an alternative to the natural scaffolds for developing functional DRPs. Herein we report the use of tandem CXPen/PenXC motifs ((C) cysteine; (Pen) penicillamine; (X) any residue) for directing the oxidative folding of peptides. Diverse tricyclic peptides were designed and synthesized by varying the pattern of C/Pen residues and incorporating a tandem CXPen/PenXC motif into peptides. The folding of these peptides was determined primarily by C/Pen patterns and tolerated to sequence manipulations. The applicability of the designed C/Pen-DRPs was demonstrated by designing protein binders using an epitope grafting strategy. This study thus demonstrates the potential of using orthogonal disulfide pairing to design DRP scaffolds with new structures and functions, which would greatly benefit the development of multicyclic peptide ligands and therapeutics.
Collapse
Affiliation(s)
- Zirong Huang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yapei Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, People's Republic of China
| | - Huilei Dong
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
213
|
Activation of NRF2 by topical apocarotenoid treatment mitigates radiation-induced dermatitis. Redox Biol 2020; 37:101714. [PMID: 32927319 PMCID: PMC7494798 DOI: 10.1016/j.redox.2020.101714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/17/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Radiation therapy is a frontline treatment option for cancer patients; however, the effects of radiotherapy on non-tumor tissue (e.g. radiation-induced dermatitis) often worsen patient quality of life. Previous studies have implicated the importance of redox balance in preventing dermatitis, specifically in reference to modulation of the nuclear factor (erythroid-derived 2)-like 2 (NRF2) signaling pathway. Due to the cytoprotective functions of transcriptional target genes of NRF2, we investigated how modulation of NRF2 expression could affect DNA damage, oxidative stress, and cell viability in response to radiotherapy. Specifically, it was noted that NRF2 knockdown sensitized human skin keratinocytes to ionizing radiation; likewise, genetic ablation of NRF2 in vivo increased radiosensitivity of murine epidermis. Oppositely, pharmacological induction of NRF2 via the apocarotenoid bixin lowered markers of DNA damage and oxidative stress, while preserving viability in irradiated keratinocytes. Mechanistic studies indicated that topical pretreatment using bixin as an NRF2 activator antagonized initial DNA damage by raising cellular glutathione levels. Additionally, topical application of bixin prevented radiation-induced dermatitis, epidermal thickening, and oxidative stress in the skin of SKH1 mice. Overall, these data indicate that NRF2 is critical for mitigating the harmful skin toxicities associated with ionizing radiation, and that topical upregulation of NRF2 via bixin could prevent radiation-induced dermatitis.
Collapse
|
214
|
Molecular Mechanism of Cellular Oxidative Stress Sensing by Keap1. Cell Rep 2020; 28:746-758.e4. [PMID: 31315052 DOI: 10.1016/j.celrep.2019.06.047] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/20/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022] Open
Abstract
The Keap1-Nrf2 system plays a central role in the oxidative stress response; however, the identity of the reactive oxygen species sensor within Keap1 remains poorly understood. Here, we show that a Keap1 mutant lacking 11 cysteine residues retains the ability to target Nrf2 for degradation, but it is unable to respond to cysteine-reactive Nrf2 inducers. Of the 11 mutated cysteine residues, we find that 4 (Cys226/613/622/624) are important for sensing hydrogen peroxide. Our analyses of multiple mutant mice lines, complemented by MEFs expressing a series of Keap1 mutants, reveal that Keap1 uses the cysteine residues redundantly to set up an elaborate fail-safe mechanism in which specific combinations of these four cysteine residues can form a disulfide bond to sense hydrogen peroxide. This sensing mechanism is distinct from that used for electrophilic Nrf2 inducers, demonstrating that Keap1 is equipped with multiple cysteine-based sensors to detect various endogenous and exogenous stresses.
Collapse
|
215
|
Discovery of 2-oxy-2-phenylacetic acid substituted naphthalene sulfonamide derivatives as potent KEAP1-NRF2 protein-protein interaction inhibitors for inflammatory conditions. Eur J Med Chem 2020; 207:112734. [PMID: 32866756 DOI: 10.1016/j.ejmech.2020.112734] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/26/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a pleiotropic transcription factor which regulates the constitutive and inducible transcription of a wide array of genes and confers protection against a variety of pathologies. Directly disrupting Kelch-like ECH-associated protein 1 (KEAP1)-NRF2 protein-protein interaction (PPI) has been explored as a promising strategy to activate NRF2. We reported here the first identification of a series of 2-oxy-2-phenylacetic acid substituted naphthalene sulfonamide derivatives as potent KEAP1-NRF2 inhibitors. Our efforts led to the potent small molecule KEAP1-NRF2 inhibitor, 20c, which exhibited a Kd of 24 nM to KEAP1 and an IC50 of 75 nM in disrupting KEAP1-NRF2 interaction. Subsequent biological studies provided consistent evidence across mouse macrophage cell-based and in vivo models that 20c induced NRF2 target gene expression and enhanced downstream antioxidant and anti-inflammatory activities. Our study not only demonstrated that small molecule KEAP1-NRF2 PPI inhibitors can be potential preventive and therapeutic agents for diseases and conditions involving oxidative stress and inflammation but also enriched the chemical diversity of the KEAP1-NRF2 inhibitors.
Collapse
|
216
|
Carlström KE, Zhu K, Ewing E, Krabbendam IE, Harris RA, Falcão AM, Jagodic M, Castelo-Branco G, Piehl F. Gsta4 controls apoptosis of differentiating adult oligodendrocytes during homeostasis and remyelination via the mitochondria-associated Fas-Casp8-Bid-axis. Nat Commun 2020; 11:4071. [PMID: 32792491 PMCID: PMC7426940 DOI: 10.1038/s41467-020-17871-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/23/2020] [Indexed: 01/20/2023] Open
Abstract
Arrest of oligodendrocyte (OL) differentiation and remyelination following myelin damage in multiple sclerosis (MS) is associated with neurodegeneration and clinical worsening. We show that Glutathione S-transferase 4α (Gsta4) is highly expressed during adult OL differentiation and that Gsta4 loss impairs differentiation into myelinating OLs in vitro. In addition, we identify Gsta4 as a target of both dimethyl fumarate, an existing MS therapy, and clemastine fumarate, a candidate remyelinating agent in MS. Overexpression of Gsta4 reduces expression of Fas and activity of the mitochondria-associated Casp8-Bid-axis in adult oligodendrocyte precursor cells, leading to improved OL survival during differentiation. The Gsta4 effect on apoptosis during adult OL differentiation was corroborated in vivo in both lysolecithin-induced demyelination and experimental autoimmune encephalomyelitis models, where Casp8 activity was reduced in Gsta4-overexpressing OLs. Our results identify Gsta4 as an intrinsic regulator of OL differentiation, survival and remyelination, as well as a potential target for future reparative MS therapies.
Collapse
Affiliation(s)
- Karl E Carlström
- Department of Clinical Neurosciences, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, 17177, Stockholm, Sweden.
| | - Keying Zhu
- Department of Clinical Neurosciences, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, 17177, Stockholm, Sweden
| | - Ewoud Ewing
- Department of Clinical Neurosciences, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, 17177, Stockholm, Sweden
| | - Inge E Krabbendam
- Department of Clinical Neurosciences, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, 17177, Stockholm, Sweden
| | - Robert A Harris
- Department of Clinical Neurosciences, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, 17177, Stockholm, Sweden
| | - Ana Mendanha Falcão
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, 17177, Stockholm, Sweden
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Minho, Portugal
| | - Maja Jagodic
- Department of Clinical Neurosciences, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, 17177, Stockholm, Sweden
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, 17177, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neurosciences, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, 17177, Stockholm, Sweden
| |
Collapse
|
217
|
Michalska P, León R. When It Comes to an End: Oxidative Stress Crosstalk with Protein Aggregation and Neuroinflammation Induce Neurodegeneration. Antioxidants (Basel) 2020; 9:antiox9080740. [PMID: 32806679 PMCID: PMC7463521 DOI: 10.3390/antiox9080740] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are characterized by a progressive loss of neurons in the brain or spinal cord that leads to a loss of function of the affected areas. The lack of effective treatments and the ever-increasing life expectancy is raising the number of individuals affected, having a tremendous social and economic impact. The brain is particularly vulnerable to oxidative damage given the high energy demand, low levels of antioxidant defenses, and high levels of metal ions. Driven by age-related changes, neurodegeneration is characterized by increased oxidative stress leading to irreversible neuronal damage, followed by cell death. Nevertheless, neurodegenerative diseases are known as complex pathologies where several mechanisms drive neuronal death. Herein we discuss the interplay among oxidative stress, proteinopathy, and neuroinflammation at the early stages of neurodegenerative diseases. Finally, we discuss the use of the Nrf2-ARE pathway as a potential therapeutic strategy based on these molecular mechanisms to develop transformative medicines.
Collapse
Affiliation(s)
- Patrycja Michalska
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Correspondence: (P.M.); (R.L.); Tel.: +34-91-497-27-66 (P.M. & R.L.)
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), 28006 Madrid, Spain
- Correspondence: (P.M.); (R.L.); Tel.: +34-91-497-27-66 (P.M. & R.L.)
| |
Collapse
|
218
|
Chhunchha B, Kubo E, Singh DP. Clock Protein Bmal1 and Nrf2 Cooperatively Control Aging or Oxidative Response and Redox Homeostasis by Regulating Rhythmic Expression of Prdx6. Cells 2020; 9:E1861. [PMID: 32784474 PMCID: PMC7463585 DOI: 10.3390/cells9081861] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Many disorders of aging, including blinding-diseases, are associated with deficiency of brain and muscle arnt-like protein 1 (Bmal1) and, thereby, dysregulation of antioxidant-defense pathway. However, knowledge is limited regarding the role of Bmal1 regulation of antioxidant-pathway in the eye lens/lens epithelial cells (LECs) at the molecular level. We found that, in aging human (h)LECs, a progressive decline of nuclear factor erythroid 2-related factor 2 (Nrf2)/ARE (antioxidant response element)-mediated antioxidant genes was connected to Bmal1-deficiency, leading to accumulation of reactive oxygen species (ROS) and cell-death. Bmal1-depletion disrupted Nrf2 and expression of its target antioxidant genes, like Peroxiredoxin 6 (Prdx6). DNA binding and transcription assays showed that Bmal1 controlled expression by direct binding to E-Box in Prdx6 promoter to regulate its transcription. Mutation at E-Box or ARE reduced promoter activity, while disruption of both sites diminished the activity, suggesting that both sites were required for peak Prdx6-transcription. As in aging hLECs, ROS accumulation was increased in Bmal1-deficient cells and the cells were vulnerable to death. Intriguingly, Bmal1/Nrf2/Prdx6 and PhaseII antioxidants showed rhythmic expression in mouse lenses in vivo and were reciprocally linked to ROS levels. We propose that Bmal1 is pivotal for regulating oxidative responses. Findings also reveal a circadian control of antioxidant-pathway, which is important in combating lens/LECs damage induced by aging or oxidative stress.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 9200293, Japan;
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
219
|
Yagishita Y, Gatbonton-Schwager TN, McCallum ML, Kensler TW. Current Landscape of NRF2 Biomarkers in Clinical Trials. Antioxidants (Basel) 2020; 9:antiox9080716. [PMID: 32784785 PMCID: PMC7464243 DOI: 10.3390/antiox9080716] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
The transcription factor NF-E2 p45-related factor 2 (NRF2; encoded by NFE2L2) plays a critical role in the maintenance of cellular redox and metabolic homeostasis, as well as the regulation of inflammation and cellular detoxication pathways. The contribution of the NRF2 pathway to organismal homeostasis is seen in many studies using cell lines and animal models, raising intense attention towards targeting its clinical promise. Over the last three decades, an expanding number of clinical studies have examined NRF2 inducers targeting an ever-widening range of diseases. Full understanding of the pharmacokinetic and pharmacodynamic properties of drug candidates rely partly on the identification, validation, and use of biomarkers to optimize clinical applications. This review focuses on results from clinical trials with four agents known to target NRF2 signaling in preclinical studies (dimethyl fumarate, bardoxolone methyl, oltipraz, and sulforaphane), and evaluates the successes and limitations of biomarkers focused on expression of NRF2 target genes and others, inflammation and oxidative stress biomarkers, carcinogen metabolism and adduct biomarkers in unavoidably exposed populations, and targeted and untargeted metabolomics. While no biomarkers excel at defining pharmacodynamic actions in this setting, it is clear that these four lead clinical compounds do touch the NRF2 pathway in humans.
Collapse
|
220
|
Du J, Zhu M, Li H, Liang G, Li Y, Feng S. Metformin attenuates cardiac remodeling in mice through the Nrf2/Keap1 signaling pathway. Exp Ther Med 2020; 20:838-845. [PMID: 32742327 PMCID: PMC7388283 DOI: 10.3892/etm.2020.8764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity results in a variety of metabolic alterations that may contribute to abnormalities in cardiac structure and function. Although metformin (Met) has been previously reported to exhibit beneficial effects against cardiomyopathy associated obesity, the mechanism underlying this observation remains unclear. The aim of the present study was to investigate the status of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/kelch-like ECH-associated protein 1 (Keap1) system underlying the protective effects of Met against cardiac remodeling. High-fat diet-induced obesity mouse models were first generated, which were subsequently treated with Met. Metabolic parameters, heart weight index and degree of cardiac fibrosis were examined. The expression levels of genes and proteins associated with the Nrf2/Keap1 signaling pathway were assessed using reverse transcription-quantitative PCR and western blotting. In obese mice, Met treatment significantly ameliorated the obesity phenotype, improved metabolic disorders, reduced the heart weight index and attenuated cardiac fibrosis. The cardioprotective effects of Met may be mediated through the promotion of Keap1 degradation whilst increasing the expression of Nrf2 and associated downstream antioxidant factors.
Collapse
Affiliation(s)
- Jingxia Du
- Pharmacy Department, Medical College, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Mengxi Zhu
- Pharmacy Department, Medical College, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Hongchao Li
- Pharmacy Department, Medical College, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Gaofeng Liang
- Pharmacy Department, Medical College, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China.,Medical Research Center, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Yan Li
- Pharmacy Department, Medical College, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Shuying Feng
- Pharmacy Department, Medical College, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China.,Medical Research Center, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| |
Collapse
|
221
|
Lee K, Kim S, Lee Y, Lee H, Lee Y, Park H, Nahm JH, Ahn S, Yu SJ, Lee K, Kim H. The Clinicopathological and Prognostic Significance of Nrf2 and Keap1 Expression in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12082128. [PMID: 32751896 PMCID: PMC7464028 DOI: 10.3390/cancers12082128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor E2-related factor2 (Nrf2) activation is associated with both cytoprotective effects and malignant behavior of cancer cells. This study aimed to evaluate the clinicopathological implications of the expression of Nrf2, pNrf2, and its regulator Keap1 in human hepatocellular carcinomas (HCCs). Tissue microarrays consisting of 285 surgically resected HCCs were immunohistochemically stained with pNrf2, Nrf2, Keap1, stemness-related markers (keratin 19 (K19), epithelial cell adhesion molecule (EpCAM)), carbonic anhydrase IX (CAIX), epithelial–mesenchymal transition (EMT)-related markers (ezrin, uPAR, E-cadherin), and p53, and the results were correlated with the clinicopathological features. pNrf2 expression was significantly associated with increased proliferative activity, as well as EpCAM, ezrin, p53, and CAIX expression and E-cadherin loss (p < 0.05, all). Strong cytoplasmic Nrf2 expression was associated with CAIX and ezrin expression (p < 0.05, both). Keap1 was associated with increased proliferative activity, portal vein invasion, EMT-related markers, and p53 expression in CAIX-negative HCCs (p < 0.05, all). Both pNrf2 and cytoplasmic Nrf2 expression were associated with decreased overall survival (p < 0.05, both), and cytoplasmic Nrf2 expression was an independent predictor of decreased overall survival on multivariate analysis (hazard ratio 4.15, p < 0.001). Both pNrf2 and cytoplasmic Nrf2 expression were associated with poor survival and aggressive behavior of HCC. In addition, Keap1 expression was also associated with aggressive HCC behavior in CAIX-negative HCCs, suggesting that Keap1 expression should be interpreted in the context of hypoxia status.
Collapse
Affiliation(s)
- Kiryang Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea; (K.L.); (S.K.); (H.L.); (Y.L.); (K.L.)
| | - Seunghye Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea; (K.L.); (S.K.); (H.L.); (Y.L.); (K.L.)
| | - Yangkyu Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea;
| | - Hyejung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea; (K.L.); (S.K.); (H.L.); (Y.L.); (K.L.)
| | - Youngeun Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea; (K.L.); (S.K.); (H.L.); (Y.L.); (K.L.)
| | - Hyunjin Park
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.P.); (J.H.N.)
| | - Ji Hae Nahm
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.P.); (J.H.N.)
| | - Soomin Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine; Biomedical Research Institute, Center for Medical Innovation, Seoul National University Hospital, Seoul 03080, Korea;
| | - Kyoungbun Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea; (K.L.); (S.K.); (H.L.); (Y.L.); (K.L.)
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea; (K.L.); (S.K.); (H.L.); (Y.L.); (K.L.)
- Correspondence: ; Tel.: +82-(2)-740-8322
| |
Collapse
|
222
|
Ferroptosis in Liver Diseases: An Overview. Int J Mol Sci 2020; 21:ijms21144908. [PMID: 32664576 PMCID: PMC7404091 DOI: 10.3390/ijms21144908] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis is an iron-dependent form of cell death characterized by intracellular lipid peroxide accumulation and redox imbalance. Ferroptosis shows specific biological and morphological features when compared to the other cell death patterns. The loss of lipid peroxide repair activity by glutathione peroxidase 4 (GPX4), the presence of redox-active iron and the oxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids are considered as distinct fingerprints of ferroptosis. Several pathways, including amino acid and iron metabolism, ferritinophagy, cell adhesion, p53, Keap1/Nrf2 and phospholipid biosynthesis, can modify susceptibility to ferroptosis. Through the decades, various diseases, including acute kidney injury; cancer; ischemia–reperfusion injury; and cardiovascular, neurodegenerative and hepatic disorders, have been associated with ferroptosis. In this review, we provide a comprehensive analysis of the main biological and biochemical mechanisms of ferroptosis and an overview of chemicals used as inducers and inhibitors. Then, we report the contribution of ferroptosis to the spectrum of liver diseases, acute or chronic. Finally, we discuss the use of ferroptosis as a therapeutic approach against hepatocellular carcinoma, the most common form of primary liver cancer.
Collapse
|
223
|
Su Y, Zhao B, Zhou L, Zhang Z, Shen Y, Lv H, AlQudsy LHH, Shang P. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett 2020; 483:127-136. [DOI: 10.1016/j.canlet.2020.02.015] [Citation(s) in RCA: 376] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
|
224
|
Hirudin protects against isoproternol-induced myocardial infraction by alleviating oxidative via an Nrf2 dependent manner. Int J Biol Macromol 2020; 162:425-435. [PMID: 32553970 DOI: 10.1016/j.ijbiomac.2020.06.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 01/03/2023]
Abstract
Oxidative stress plays a critical role in the progression of myocardial injury. Increasing evidence suggests that hiruidin can treat patients with cardio-injury. However, the mechanism of hirudin against myocardial infraction remains unknown. In the present study, we evaluated the potential role and mechanism of hirudin on both isoproterenol (ISO)-induced myocardial infraction (MI) in rats and Hypoxia-Reoxygenation model in H9C2 cells. Compared with the model group, hirudin apparently decreased the levels of myocardial Creatine Kinase Isoenzyme-MB (CK-MB), lactate dehydrogenase (LDH), and alleviated myocardial histopathological changes induced by ISO injection. The underlying mechanisms were revealed by the following observations: Hirudin exerted its cardioprotective effect via restoring super oxide dismutase (SOD), attenuating reactive oxygen species (ROS) and malondialdehyde (MDA). It induced the activation of Nuclear factor erythroid 2-related factor 2 (Nrf2) signal pathway through disrupting Keap1-Nrf2 complex, thus Nrf2 translocated from cytoplasm to nucleus to regulate Nrf2-dependent gene (HO-1, SOD) expressions. Furthermore, it should be noted that hirudin restored mitochondrial membrane potential in addition to cytochrome C-related apoptosis.
Collapse
|
225
|
Gao A, Li F, Zhou Q, Chen L. Sestrin2 as a potential therapeutic target for cardiovascular diseases. Pharmacol Res 2020; 159:104990. [PMID: 32505836 DOI: 10.1016/j.phrs.2020.104990] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/17/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022]
Abstract
Sestrin2 is a cysteine sulfinyl reductase that plays crucial roles in regulation of antioxidant actions. Sestrin2 provides cytoprotection against multiple stress conditions, including hypoxia, endoplasmic reticulum (ER) stress and oxidative stress. Recent research reveals that upregulation of Sestrin2 is induced by various transcription factors such as p53 and activator protein 1 (AP-1), which further promotes AMP-activated protein kinase (AMPK) activation and inhibits mammalian target of rapamycin protein kinase (mTOR) signaling. Sestrin2 triggers autophagy activity to reduce cellular reactive oxygen species (ROS) levels by promoting nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) activation and Kelch-like ECH-associated protein 1 (Keap1) degradation, which plays a pivotal role in homeostasis of metabolic regulation. Under hypoxia and ER stress conditions, elevated Sestrin2 expression maintains cellular homeostasis through regulation of antioxidant genes. Sestrin2 is responsible for diminishing cellular ROS accumulation through autophagy via AMPK activation, which displays cardioprotection effect in cardiovascular diseases. In this review, we summarize the recent understanding of molecular structure, biological roles and biochemical functions of Sestrin2, and discuss the roles and mechanisms of Sestrin2 in autophagy, hypoxia and ER stress. Understanding the precise functions and exact mechanism of Sestrin2 in cellular homeostasis will provide the evidence for future experimental research and aid in the development of novel therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Anbo Gao
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, People's Republic of China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421002, Hunan, People's Republic of China
| | - Feng Li
- Medical Shcool, Hunan University of Chinese Medicine, Changsha 410000, Hunan, People's Republic of China
| | - Qun Zhou
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, Hunan, People's Republic of China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, People's Republic of China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421002, Hunan, People's Republic of China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Provincial Science and Technology Department, 28 Western Changshen Road, Hengyang 421002, Hunan, People's Republic of China.
| |
Collapse
|
226
|
Chen J, Yang X, Fang X, Wang F, Min J. [The role of ferroptosis in chronic diseases]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:44-57. [PMID: 32621416 DOI: 10.3785/j.issn.1008-9292.2020.02.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, ferroptosis, an iron-dependent novel type of cell death, has been characterized as an excessive accumulation of lipid peroxides and reactive oxygen species. Emerging studies demonstrate that ferroptosis not only plays an important role in the pathogenesis and progression of chronic diseases, but also functions differently in the different disease context. Notably, it is shown that activation of ferroptosis could potently inhibit tumor growth and increase sensitivity to chemotherapy and immunotherapy in various cancer settings. As a result, the development of more efficacious ferroptosis agonists remains the mainstay of ferroptosis-targeting strategy for cancer therapeutics. By contrast, in non-cancerous chronic diseases, including cardiovascular & cerebrovascular diseases and neurodegenerative diseases, ferroptosis functions as a risk factor to promote these diseases progression through triggering or accelerating tissue injury. As a matter of fact, blocking ferroptosis has been demonstrated to effectively prevent ischemia-reperfusion heart disease in preclinical animal models. Therefore, it is a promising field to develope potent ferroptosis inhibitors for preventing and treating cardiovascular & cerebrovascular diseases and neurodegenerative diseases. In this article, we summarize the most recent progress on ferroptosis in chronic diseases, and draw attention to the possible clinical impact of this recently emerged ferroptosis modalities.
Collapse
Affiliation(s)
- Junyi Chen
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiang Yang
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuexian Fang
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Fudi Wang
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Junxia Min
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
227
|
Woo Y, Lim JS, Oh J, Lee JS, Kim JS. Neuroprotective Effects of Euonymus alatus Extract on Scopolamine-Induced Memory Deficits in Mice. Antioxidants (Basel) 2020; 9:antiox9050449. [PMID: 32456069 PMCID: PMC7278771 DOI: 10.3390/antiox9050449] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/09/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Euonymus alatus is considered to elicit various beneficial effects against cancer, hyperglycemia, menstrual discomfort, diabetic complications, and detoxification. The young leaves of this plant are exploited as food and also utilized for traditional medicine in East Asian countries, including Korea and China. Our preliminary study demonstrated that ethanolic extract from the Euonymus alatus leaf (EAE) exhibited the strongest antioxidant enzyme-inducing activity among more than 100 kinds of edible tree leaf extracts. This study investigated whether EAE could attenuate the cognitive deficits caused by oxidative stress in mice. Oral intubation of EAE at 100 mg/kg bw or higher resulted in significant improvements to the memory and behavioral impairment induced via i.p. injection of scopolamine. Furthermore, EAE enhanced the expression levels of hippocampal neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor in mice, activated the Nrf2, and the downstream heme oxygenase-1 (HO-1) a quintessential antioxidant enzyme. As rutin (quercetin-3-O-rutinose) was abundantly present in EAE and free quercetin was able to induce defensive antioxidant enzymes in an Nrf2-dependent manner, our findings suggested that quercetin derived from rutin via the intestinal microflora played a significant role in the protection of the mouse hippocampus from scopolamine-induced damage through BDNF-mediated Nrf2 activation, thereby dampening cognitive decline.
Collapse
Affiliation(s)
- Yunju Woo
- School of Food Science and Biotechnology (BK21 plus) and Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea
| | - Ji Sun Lim
- School of Food Science and Biotechnology (BK21 plus) and Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea
| | - Jisun Oh
- School of Food Science and Biotechnology (BK21 plus) and Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea
| | - Jeong Soon Lee
- Forest Resources Development Institute of Gyeongsangbuk-do, Andong 36605, Korea
| | - Jong-Sang Kim
- School of Food Science and Biotechnology (BK21 plus) and Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
228
|
Development of an enzyme-linked immunosorbent assay for Keap1-Nrf2 interaction inhibitors identification. Redox Biol 2020; 34:101573. [PMID: 32422542 PMCID: PMC7231848 DOI: 10.1016/j.redox.2020.101573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022] Open
Abstract
Development of Keap1–Nrf2 interaction inhibitors is a promising strategy for the discovery of therapeutic agents against oxidative stress-mediated diseases. Two motifs of Nrf2, ETGE and DLG motif, are responsible for Keap1-Nrf2 binding. Previously, ETGE peptide or ETGE-derived peptide-based approaches were used to detect Keap1-Nrf2 interaction; however, these approaches are not able to monitor Keap1-DLG motif binding. We first report here a novel Enzyme-linked Immunosorbent Assay (ELISA) approach to detect the protein-protein interaction of full length Keap1 and Nrf2. In our assay, the test compounds can target either ETGE or DLG binding site, therefore facilitating the exploration of diverse Keap1-Nrf2 inhibitors. Three FDA-approved drugs, zafirlukast, dutasteride and ketoconazole, were found to inhibit the Keap1-Nrf2 interaction with IC50 of 5.87, 2.81 and 1.67 μM, respectively. Additionally, these three drugs also activated Nrf2 pathway in neuroblasts and lipopolysaccharide (LPS)-challenged mice. The results presented here indicate that the ELISA approach has the capacity to identify Keap1-Nrf2 inhibitors. We established a novel Enzyme-linked Immunosorbent Assay for Keap1-Nrf2 interaction inhibitors identification. This ELISA is the first approach to detect the protein-protein interaction of full length Keap1 and Nrf2. In this assay, the test compounds can target either ETGE or DLG binding site, therefore facilitating the exploration of diverse Keap1-Nrf2 inhibitors. Zafirlukast, dutasteride and ketoconazole have been identified as inhibitors of the Keap1-Nrf2 interaction.
Collapse
|
229
|
Zhang C, Fortin PY, Barnoin G, Qin X, Wang X, Fernandez Alvarez A, Bijani C, Maddelein ML, Hemmert C, Cuvillier O, Gornitzka H. An Artemisinin-Derivative-(NHC)Gold(I) Hybrid with Enhanced Cytotoxicity through Inhibition of NRF2 Transcriptional Activity. Angew Chem Int Ed Engl 2020; 59:12062-12068. [PMID: 32304346 DOI: 10.1002/anie.202002992] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/14/2020] [Indexed: 01/19/2023]
Abstract
A family of hybrid complexes combining two biologically active motifs, an artemisinin derivative and a cationic bis(NHC)-gold(I) unit, has been synthesized. One of these complexes, 2 a, has been analyzed by single-crystal X-ray diffraction. 2 a shows strong anticancer activities on a large panel of human cancer cell models (prostate, breast, lung, liver, bladder, bone, acute and chronic myeloid leukemias) with GI50 values in the nm range, together with a high selectivity. An original and distinctive mechanism of action, that is, through inhibition of the redox antioxidant NRF2 transcription factor (strongly associated with aggressiveness and resistance to cancer therapies) has been evidenced. 2 a could remarkably sensitize to sorafenib in HepG2 liver cells, in which dysregulated NRF2 signaling is linked to primary and acquired drug resistance. 2 a also inhibited NF-κB and HIF transcriptional activities, which are also associated with progression and resistance in cancer. Our findings provide evidence that hybrid (NHC)gold(I) compounds represent a new class of organometallic hybrid molecules that may yield new therapeutic agents.
Collapse
Affiliation(s)
- Chen Zhang
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Present address: Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Pierre-Yves Fortin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Xue Qin
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Xing Wang
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | | | - Marie-Lise Maddelein
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Olivier Cuvillier
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Heinz Gornitzka
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
230
|
Zhang C, Fortin P, Barnoin G, Qin X, Wang X, Fernandez Alvarez A, Bijani C, Maddelein M, Hemmert C, Cuvillier O, Gornitzka H. An Artemisinin‐Derivative–(NHC)Gold(I) Hybrid with Enhanced Cytotoxicity through Inhibition of NRF2 Transcriptional Activity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Chen Zhang
- LCC-CNRS Université de Toulouse CNRS, UPS Toulouse France
- Institut de Pharmacologie et de Biologie Structurale Université de Toulouse CNRS, UPS Toulouse France
- Present address: Shanghai Key Laboratory of New Drug Design State Key Laboratory of Bioreactor Engineering School of Pharmacy East China University of Science and Technology Shanghai 200237 China
| | - Pierre‐Yves Fortin
- Institut de Pharmacologie et de Biologie Structurale Université de Toulouse CNRS, UPS Toulouse France
| | | | - Xue Qin
- LCC-CNRS Université de Toulouse CNRS, UPS Toulouse France
| | - Xing Wang
- LCC-CNRS Université de Toulouse CNRS, UPS Toulouse France
| | | | | | - Marie‐Lise Maddelein
- Institut de Pharmacologie et de Biologie Structurale Université de Toulouse CNRS, UPS Toulouse France
| | | | - Olivier Cuvillier
- Institut de Pharmacologie et de Biologie Structurale Université de Toulouse CNRS, UPS Toulouse France
| | | |
Collapse
|
231
|
Wang N, Wang W, Sadiq FA, Wang S, Caiqin L, Jianchang J. Involvement of Nrf2 and Keap1 in the activation of antioxidant responsive element (ARE) by chemopreventive agent peptides from soft-shelled turtle. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
232
|
Saei AA, Gullberg H, Sabatier P, Beusch CM, Johansson K, Lundgren B, Arvidsson PI, Arnér ESJ, Zubarev RA. Comprehensive chemical proteomics for target deconvolution of the redox active drug auranofin. Redox Biol 2020; 32:101491. [PMID: 32199331 PMCID: PMC7082630 DOI: 10.1016/j.redox.2020.101491] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/17/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022] Open
Abstract
Chemical proteomics encompasses novel drug target deconvolution methods in which compound modification is not required. Herein we use Thermal Proteome Profiling, Functional Identification of Target by Expression Proteomics and multiplexed redox proteomics for deconvolution of auranofin targets to aid elucidation of its mechanisms of action. Auranofin (Ridaura®) was approved for treatment of rheumatoid arthritis in 1985. Because several clinical trials are currently ongoing to repurpose auranofin for cancer therapy, comprehensive characterization of its targets and effects in cancer cells is important. Together, our chemical proteomics tools confirmed thioredoxin reductase 1 (TXNRD1, EC:1.8.1.9) as a main auranofin target, with perturbation of oxidoreductase pathways as the top mechanism of drug action. Additional indirect targets included NFKB2 and CHORDC1. Our comprehensive data can be used as a proteomic signature resource for further analyses of the effects of auranofin. Here we also assessed the orthogonality and complementarity of different chemical proteomics methods that can furnish invaluable mechanistic information and thus the approach can facilitate drug discovery efforts in general.
Collapse
Affiliation(s)
- Amir Ata Saei
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden; Science for Life Laboratory, Drug Discovery and Development Platform, Biochemical and Cellular Assay Facility, Stockholm, Sweden and Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hjalmar Gullberg
- Science for Life Laboratory, Drug Discovery and Development Platform, Biochemical and Cellular Assay Facility, Stockholm, Sweden and Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Pierre Sabatier
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Christian M Beusch
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Katarina Johansson
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 65, Stockholm, Sweden; Pfizer Innovations AB, 191 90, Sollentuna, Sweden
| | - Bo Lundgren
- Science for Life Laboratory, Drug Discovery and Development Platform, Biochemical and Cellular Assay Facility, Stockholm, Sweden and Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Per I Arvidsson
- Science for Life Laboratory Drug Discovery and Development Platform and Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Elias S J Arnér
- Science for Life Laboratory, Drug Discovery and Development Platform, Biochemical and Cellular Assay Facility, Stockholm, Sweden and Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden; Sechenov First Moscow State Medical University, 119146, Moscow, Russia.
| |
Collapse
|
233
|
Zhang X, Wang J, Gong G, Ma R, Xu F, Yan T, Wu B, Jia Y. Spinosin Inhibits Aβ 1-42 Production and Aggregation via Activating Nrf2/HO-1 Pathway. Biomol Ther (Seoul) 2020; 28:259-266. [PMID: 31791116 PMCID: PMC7216747 DOI: 10.4062/biomolther.2019.123] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022] Open
Abstract
The present research work primarily investigated whether spinosin has the potential of improving the pathogenesis of Alzheimer’s disease (AD) driven by β-amyloid (Aβ) overproduction through impacting the procession of amyloid precursor protein (APP). Wild type mouse Neuro-2a cells (N2a/WT) and N2a stably expressing human APP695 (N2a/APP695) cells were treated with spinosin for 24 h. The levels of APP protein and secreted enzymes closely related to APP procession were examined by western blot analysis. Oxidative stress related proteins, such as nuclear factor-erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were detected by immunofluorescence assay and western blot analysis, respectively. The intracellular reactive oxygen species (ROS) level was analyzed by flow cytometry, the levels of Aβ1-42 were determined by ELISA kit, and Thioflavin T (ThT) assay was used to detect the effect of spinosin on Aβ1-42 aggregation. The results showed that ROS induced the expression of ADAM10 and reduced the expression of BACE1, while spinosin inhibited ROS production by activating Nrf2 and up-regulating the expression of HO-1. Additionally, spinosin reduced Aβ1-42 production by impacting the procession of APP. In addition, spinosin inhibited the aggregation of Aβ1-42. In conclusion, spinosin reduced Aβ1-42 production by activating the Nrf2/HO-1 pathway in N2a/WT and N2a/APP695 cells. Therefore, spinosin is expected to be a promising treatment of AD.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinyu Wang
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Ruixin Ma
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tingxu Yan
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bo Wu
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ying Jia
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
234
|
TBHQ Attenuates Neurotoxicity Induced by Methamphetamine in the VTA through the Nrf2/HO-1 and PI3K/AKT Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8787156. [PMID: 32351675 PMCID: PMC7174937 DOI: 10.1155/2020/8787156] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 12/29/2022]
Abstract
Methamphetamine (METH) leads to nervous system toxicity. Long-term exposure to METH results in damage to dopamine neurons in the ventral tegmental area (VTA), and depression-like behavior is a clinical symptom of this toxicity. The current study was designed to investigate whether the antioxidant tertiary butylhydroquinone (TBHQ) can alleviate neurotoxicity through both antioxidative stress and antiapoptotic signaling pathways in the VTA. Rats were randomly divided into a control group, a METH-treated group (METH group), and a METH+TBHQ-treated group (METH+TBHQ group). Intraperitoneal injections of METH at a dose of 10 mg/kg were administered to the rats in the METH and METH+TBHQ groups for one week, and METH was then administered at a dose that increased by 1 mg/kg per week until the sixth week, when the daily dosage reached 15 mg/kg. The rats in the METH+TBHQ group received 12.5 mg/kg TBHQ intragastrically. Chronic exposure to METH resulted in increased immobility times in the forced swimming test (FST) and tail suspension test (TST) and led to depression-like behavior. The production of reactive oxygen species (ROS) and apoptosis levels were increased in the VTA of animals in the METH-treated group. METH downregulated Nrf2, HO-1, PI3K, and AKT, key factors of oxidative stress, and the apoptosis signaling pathway. Moreover, METH increased the caspase-3 immunocontent. These changes were reversed by treatment with the antioxidant TBHQ. The results indicate that TBHQ can enhance Nrf2-induced antioxidative stress and PI3K-induced antiapoptotic effects, which can alleviate METH-induced ROS and apoptosis, and that the crosstalk between Nrf2 and PI3K/AKT is likely the key factor involved in the protective effect of TBHQ against METH-induced chronic nervous system toxicity.
Collapse
|
235
|
Abstract
Activation of the transcription factor Nrf2 via the Keap1-Nrf2-ARE signaling system regulates the transcription and subsequent expression of cellular cytoprotective proteins and plays a crucial role in preventing pathological conditions exacerbated by the overproduction of oxidative stress. In addition to electrophilic modulators, direct non-covalent inhibitors that interrupt the Keap1-Nrf2 protein-protein interaction (PPI) leading to Nrf2 activation have attracted a great deal of attention as potential preventive and therapeutic agents for oxidative stress-related diseases. Structural studies of Keap1-binding ligands, development of biochemical and cellular assays, and new structure-based design approaches have facilitated the discovery of small molecule PPI inhibitors. This perspective reviews the Keap1-Nrf2-ARE system, its physiological functions, and the recent progress in the discovery and the potential applications of direct inhibitors of Keap1-Nrf2 PPI.
Collapse
|
236
|
Fan L, Huang R, Wu C, Cao Y, Du T, Pu G, Wang H, Zhou W, Li P, Kim SW. Defatted Rice Bran Supplementation in Diets of Finishing Pigs: Effects on Physiological, Intestinal Barrier, and Oxidative Stress Parameters. Animals (Basel) 2020; 10:ani10030449. [PMID: 32182669 PMCID: PMC7143537 DOI: 10.3390/ani10030449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Most studies on dietary fiber mainly focus on the digestibility of feed nutrients and microbial flora, etc. However, insufficient attention has been paid to the regulation of immune and oxidative stress of the intestinal tract by dietary fiber. This study investigated the effects of varying levels of defatted rice bran replacing corn on physiological, intestinal barrier, and oxidative stress parameters in finishing pigs. Based on the current findings, a high diet of rice bran will not only reduce the level of inflammatory factors in the peripheral blood of finishing pigs, but also enhance the healthy level of the colon through mucin2 and keap1-Nrf2 pathways. Our results can be used as reference for dietary rice bran to improve intestinal health in finishing pigs. Abstract Rice bran is a waste product with low cost and high fiber content, giving it an added advantage over corn and soybean meal, which have to be purchased and always at a relatively higher cost. Under the background of increased attention to sustainable agriculture, it is significant to find alternative uses for this byproduct. A total of 35 finishing pigs were allotted to five dietary treatments: a control group with basal diet and four experimental diets where corn was equivalently substituted by 7%, 14%, 21%, and 28% defatted rice bran (DFRB), respectively. With increasing levels of DFRB, the neutrophil to lymphocyte ratio (NLR) linearly decreased (p < 0.05). In the jejunum, the mRNA level of nuclear factor erythroid-2 related factor-2 (Nrf2) exhibited a quadratic response (p < 0.01) with incremental levels of DFRB. In the colon, the mRNA levels of mucin 2 (MUC2), Nrf2, and NAD(P)H: quinone oxidoreductase 1 (NQO1) were upregulated (linear, p < 0.05) and heme oxygenase-1 (HO-1) was upregulated (linear, p < 0.01). Overall, using DFRB to replace corn decreased the inflammatory biomarkers of serum and showed potential function in modulating the intestinal barrier by upregulating the mRNA expression levels of MUC2 and downregulating that of Nrf2, NQO1, and HO-1 in the colon.
Collapse
Affiliation(s)
- Lijuan Fan
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (L.F.); (R.H.); (C.W.); (Y.C.); (T.D.); (G.P.); (H.W.); (W.Z.)
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
| | - Ruihua Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (L.F.); (R.H.); (C.W.); (Y.C.); (T.D.); (G.P.); (H.W.); (W.Z.)
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing 210095, China
| | - Chengwu Wu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (L.F.); (R.H.); (C.W.); (Y.C.); (T.D.); (G.P.); (H.W.); (W.Z.)
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
| | - Yang Cao
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (L.F.); (R.H.); (C.W.); (Y.C.); (T.D.); (G.P.); (H.W.); (W.Z.)
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
| | - Taoran Du
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (L.F.); (R.H.); (C.W.); (Y.C.); (T.D.); (G.P.); (H.W.); (W.Z.)
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
| | - Guang Pu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (L.F.); (R.H.); (C.W.); (Y.C.); (T.D.); (G.P.); (H.W.); (W.Z.)
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
| | - Huan Wang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (L.F.); (R.H.); (C.W.); (Y.C.); (T.D.); (G.P.); (H.W.); (W.Z.)
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
| | - Wuduo Zhou
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (L.F.); (R.H.); (C.W.); (Y.C.); (T.D.); (G.P.); (H.W.); (W.Z.)
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing 210095, China
| | - Pinghua Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (L.F.); (R.H.); (C.W.); (Y.C.); (T.D.); (G.P.); (H.W.); (W.Z.)
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing 210095, China
- Nanjing Agricultural University’s New Rural Research and Development Corporation of Huaian City, Huaian 223003, China
- Correspondence:
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA;
| |
Collapse
|
237
|
Macías-Rodríguez RU, Inzaugarat ME, Ruiz-Margáin A, Nelson LJ, Trautwein C, Cubero FJ. Reclassifying Hepatic Cell Death during Liver Damage: Ferroptosis-A Novel Form of Non-Apoptotic Cell Death? Int J Mol Sci 2020; 21:1651. [PMID: 32121273 PMCID: PMC7084577 DOI: 10.3390/ijms21051651] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis has emerged as a new type of cell death in different pathological conditions, including neurological and kidney diseases and, especially, in different types of cancer. The hallmark of this regulated cell death is the presence of iron-driven lipid peroxidation; the activation of key genes related to this process such as glutathione peroxidase-4 (gpx4), acyl-CoA synthetase long-chain family member-4 (acsl4), carbonyl reductase [NADPH] 3 (cbr3), and prostaglandin peroxidase synthase-2 (ptgs2); and morphological changes including shrunken and electron-dense mitochondria. Iron overload in the liver has long been recognized as both a major trigger of liver damage in different diseases, and it is also associated with liver fibrosis. New evidence suggests that ferroptosis might be a novel type of non-apoptotic cell death in several liver diseases including non-alcoholic steatohepatitis (NASH), alcoholic liver disease (ALD), drug-induced liver injury (DILI), viral hepatitis, and hemochromatosis. The interaction between iron-related lipid peroxidation, cellular stress signals, and antioxidant systems plays a pivotal role in the development of this novel type of cell death. In addition, integrated responses from lipidic mediators together with free iron from iron-containing enzymes are essential to understanding this process. The presence of ferroptosis and the exact mechanisms leading to this non-apoptotic type of cell death in the liver remain scarcely elucidated. Recognizing ferroptosis as a novel type of cell death in the liver could lead to the understanding of the complex interaction between different types of cell death, their role in progression of liver fibrosis, the development of new biomarkers, as well as the use of modulators of ferroptosis, allowing improved theranostic approaches in the clinic.
Collapse
Affiliation(s)
- Ricardo U. Macías-Rodríguez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; (M.E.I.); (C.T.)
- MICTLÁN-Network (Mechanisms of Liver Injury, Cell Death and Translational Nutrition in Liver Diseases Research Network), Mexico City 14080, Mexico
- Liver Fibrosis and Nutrition Lab (LFN Lab), Mexico City 14080, Mexico
| | - María Eugenia Inzaugarat
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; (M.E.I.); (C.T.)
- MICTLÁN-Network (Mechanisms of Liver Injury, Cell Death and Translational Nutrition in Liver Diseases Research Network), Mexico City 14080, Mexico
| | - Astrid Ruiz-Margáin
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; (M.E.I.); (C.T.)
- MICTLÁN-Network (Mechanisms of Liver Injury, Cell Death and Translational Nutrition in Liver Diseases Research Network), Mexico City 14080, Mexico
- Liver Fibrosis and Nutrition Lab (LFN Lab), Mexico City 14080, Mexico
| | - Leonard J. Nelson
- Institute for Bioengineering (IBioE), School of Engineering, Faraday Building, The University of Edinburgh, Edinburgh EH9 3 JL, UK;
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; (M.E.I.); (C.T.)
| | - Francisco Javier Cubero
- MICTLÁN-Network (Mechanisms of Liver Injury, Cell Death and Translational Nutrition in Liver Diseases Research Network), Mexico City 14080, Mexico
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| |
Collapse
|
238
|
Zheng X, Li Z, Gao W, Meng X, Li X, Luk LYP, Zhao Y, Tsai YH, Wu C. Condensation of 2-((Alkylthio)(aryl)methylene)malononitrile with 1,2-Aminothiol as a Novel Bioorthogonal Reaction for Site-Specific Protein Modification and Peptide Cyclization. J Am Chem Soc 2020; 142:5097-5103. [DOI: 10.1021/jacs.9b11875] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoli Zheng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhuoru Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Wei Gao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaoting Meng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Xuefei Li
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Louis Y. P. Luk
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
239
|
Madden SK, Itzhaki LS. Structural and mechanistic insights into the Keap1-Nrf2 system as a route to drug discovery. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140405. [PMID: 32120017 DOI: 10.1016/j.bbapap.2020.140405] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/11/2020] [Accepted: 02/26/2020] [Indexed: 01/13/2023]
Abstract
The proteins Keap1 and Nrf2 together act as a cytoprotective mechanism that enables cells to overcome electrophilic and oxidative stress. Research has shown that manipulating this system by modulating the Keap1-Nrf2 interaction either through inhibition at the binding interface or via the covalent modification of Keap1 could provide a powerful therapeutic strategy for a range of diseases. However, despite intensive investigation of the system and significant progress in the development of inhibitory small molecules, there is still much to learn about the pathways associated with the Keap1-Nrf2 system and the structural details underpinning its mechanism of action. In this review, we discuss how a deeper understanding could prove revolutionary in the development of new inhibitors and activators as well as guiding how to best harness Keap1 for targeted protein degradation.
Collapse
Affiliation(s)
- Sarah K Madden
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, United Kingdom
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, United Kingdom.
| |
Collapse
|
240
|
Insulin signaling pathway and related molecules: Role in neurodegeneration and Alzheimer's disease. Neurochem Int 2020; 135:104707. [PMID: 32092326 DOI: 10.1016/j.neuint.2020.104707] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Its major pathological hallmarks, neurofibrillary tangles (NFT), and amyloid-β plaques can result from dysfunctional insulin signaling. Insulin is an important growth factor that regulates cell growth, energy utilization, mitochondrial function, autophagy, oxidative stress, synaptic plasticity, and cognitive function. Insulin and its downstream signaling molecules are located majorly in the regions of cortex and hippocampus. The major molecules involved in impaired insulin signaling include IRS, PI3K, Akt, and GSK-3β. Activation or inactivation of these major molecules through increased or decreased phosphorylation plays a role in insulin signaling abnormalities or insulin resistance. Insulin resistance, therefore, is considered as a major culprit in generating the hallmarks of AD arising from neuroinflammation and oxidative stress, etc. Moreover, caspases, Nrf2, and NF-κB influence this pathway in an indirect way. Various studies also suggest a strong link between Diabetes Mellitus and AD due to the impairment of insulin signaling pathway. Moreover, studies also depict a strong correlation of other neurodegenerative diseases such as Parkinson's disease and Huntington's disease with insulin resistance. Hence this review will provide an insight into the role of insulin signaling pathway and related molecules as therapeutic targets in AD and other neurodegenerative diseases.
Collapse
|
241
|
Cui Y, Li Y, Huang N, Xiong Y, Cao R, Meng L, Liu J, Feng Z. Structure based modification of chalcone analogue activates Nrf2 in the human retinal pigment epithelial cell line ARPE-19. Free Radic Biol Med 2020; 148:52-59. [PMID: 31887452 DOI: 10.1016/j.freeradbiomed.2019.12.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022]
Abstract
Oxidative stress-induced degeneration of retinal pigment epithelial (RPE) cells is known to be a key contributor to the development of age-related macular degeneration (AMD). Activation of the nuclear factor-(erythroid-derived 2)-related factor-2 (Nrf2)-mediated cellular defense system is believed to be a valid therapeutic approach. In the present study, we designed and synthesized a novel chalcone analogue, 1-(2,3,4-trimethoxyphenyl)-2-(3,4,5-trimethoxyphenyl)-acrylketone (Tak), as a Nrf2 activator. The potency of Tak was measured in RPE cells by the induction of the Nrf2-dependent antioxidant genes HO-1, NQO-1, GCLc, and GCLm, which were regulated through the Erk pathway. We also showed that Tak could protect RPE cells against oxidative stress-induced cell death and mitochondrial dysfunction. Furthermore, by modifying the α, β unsaturated carbonyl entity in Tak, we showed that the induction of antioxidant genes was abolished, indicating that this unique feature in Tak was responsible for the Nrf2 activation. These results suggest that Tak is a potential candidate for clinical application against AMD.
Collapse
Affiliation(s)
- Yuting Cui
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuan Li
- Institute of Basic Medical Science, Xi'an Medical University, Xi'an, 710021, PR China
| | - Na Huang
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yue Xiong
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ruijun Cao
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lingjie Meng
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
242
|
Abstract
The use of an acetylene (ethynyl) group in medicinal chemistry coincides with the launch of the Journal of Medicinal Chemistry in 1959. Since then, the acetylene group has been broadly exploited in drug discovery and development. As a result, it has become recognized as a privileged structural feature for targeting a wide range of therapeutic target proteins, including MAO, tyrosine kinases, BACE1, steroid receptors, mGlu5 receptors, FFA1/GPR40, and HIV-1 RT. Furthermore, a terminal alkyne functionality is frequently introduced in chemical biology probes as a click handle to identify molecular targets and to assess target engagement. This Perspective is divided into three parts encompassing: (1) the physicochemical properties of the ethynyl group, (2) the advantages and disadvantages of the ethynyl group in medicinal chemistry, and (3) the impact of the ethynyl group on chemical biology approaches.
Collapse
Affiliation(s)
- Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| |
Collapse
|
243
|
Song ZL, Bai F, Zhang B, Fang J. Synthesis of Dithiolethiones and Identification of Potential Neuroprotective Agents via Activation of Nrf2-Driven Antioxidant Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2214-2231. [PMID: 31986030 DOI: 10.1021/acs.jafc.9b06360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxidative stress is implicated in the pathogenesis of a wide variety of neurodegenerative disorders, and accordingly, dietary supplement of exogenous antioxidants or/and upregulation of the endogenous antioxidant defense system are promising for therapeutic intervention or chemoprevention of neurodegenerative diseases. Nrf2, a master regulator of the cellular antioxidant machinery, cardinally participates in the transcription of cytoprotective genes against oxidative/electrophilic stresses. Herein, we report the synthesis of 59 structurally diverse dithiolethiones and evaluation of their neuroprotection against 6-hydroxydopamine- or H2O2-induced oxidative damages in PC12 cells, a neuron-like rat pheochromocytoma cell line. Initial screening identified compounds 10 and 11 having low cytotoxicity but conferring remarkable protection on PC12 cells from oxidative-mediated damages. Further studies demonstrated that both compounds upregulated a battery of antioxidant genes as well as corresponding genes' products. Significantly, silence of Nrf2 expression abolishes cytoprotection of 10 and 11, indicating targeting Nrf2 activation is pivotal for their cellular functions. Taken together, the two lead compounds discovered here with potent neuroprotective functions against oxidative stress via Nrf2 activation merit further development as therapeutic or chemopreventive candidates for neurodegenerative disorders.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Feifei Bai
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| |
Collapse
|
244
|
Stress Resistance Screen in a Human Primary Cell Line Identifies Small Molecules That Affect Aging Pathways and Extend Caenorhabditis elegans' Lifespan. G3-GENES GENOMES GENETICS 2020; 10:849-862. [PMID: 31879284 PMCID: PMC7003076 DOI: 10.1534/g3.119.400618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increased resistance to environmental stress at the cellular level is correlated with the longevity of long-lived mutants and wild-animal species. Moreover, in experimental organisms, screens for increased stress resistance have yielded mutants that are long-lived. To find entry points for small molecules that might extend healthy longevity in humans, we screened ∼100,000 small molecules in a human primary-fibroblast cell line and identified a set that increased oxidative-stress resistance. Some of the hits fell into structurally related chemical groups, suggesting that they may act on common targets. Two small molecules increased C. elegans’ stress resistance, and at least 9 extended their lifespan by ∼10–50%. We further evaluated a chalcone that produced relatively large effects on lifespan and were able to implicate the activity of two, stress-response regulators, NRF2/skn-1 and SESN/sesn-1, in its mechanism of action. Our findings suggest that screening for increased stress resistance in human cells can enrich for compounds with promising pro-longevity effects. Further characterization of these compounds may reveal new ways to extend healthy human lifespan.
Collapse
|
245
|
Pentamethylquercetin Attenuates Cardiac Remodeling via Activation of the Sestrins/Keap1/Nrf2 Pathway in MSG-Induced Obese Mice. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3243906. [PMID: 32090078 PMCID: PMC7013309 DOI: 10.1155/2020/3243906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/11/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
Objective Obesity causes a variety of metabolic alterations that may contribute to abnormalities of the cardiac structure and function (obesity cardiomyopathy). In previous works, we have shown that pentamethylquercetin (PMQ) significantly improved metabolic disorders in obese mice and it inhibited pressure overload-induced cardiac remodeling in mice. However, its potential benefit in obesity cardiomyopathy remains unclear. The aim of this study was to investigate the effects of PMQ on cardiac remodeling in obese mice. Methods We generated a monosodium glutamate-induced obese (MSG-IO) model in mice, which were treated with PMQ (5, 10, and 20 mg/kg) for 16 weeks consecutively. We examined the metabolic parameters and observed cardiac remodeling by performing cardiac echocardiography and Masson's staining. The expression levels of molecules associated with the endogenous antioxidant system, including the sestrins/kelch-like ECH-associated protein 1 (Keap1)/Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling pathway, were analyzed by western blotting and immunofluorescent staining. Results We found that PMQ treatment significantly ameliorated obesity phenotypes and improved metabolic disorders in MSG-IO mice. PMQ decreased the heart wall thickness and attenuated cardiac fibrosis. Further study revealed that the protective effects of PMQ might be mediated by promoting Keap1 degradation and augmenting sestrins expression and Nrf2 nuclear translocation. Conclusion Our findings indicated that PMQ ameliorated cardiac remodeling in obese mice by targeting the sestrins/Keap1/Nrf2 signaling pathway.
Collapse
|
246
|
Liu J, Tian S, Fu M, He Y, Yu H, Cao X, Cao Y, Xu H. Protective Effects of Anthocyanins from
Coreopsis tinctoria
against Oxidative Stress Induced by Hydrogen Peroxide in MIN6 Cells. Chem Biodivers 2020; 17:e1900587. [DOI: 10.1002/cbdv.201900587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jianli Liu
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Siqi Tian
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Mingyang Fu
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Yin He
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Hui Yu
- Shenyang He Eye Hospital INC Shenyang 110034 P. R. China
| | - Xiangyu Cao
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Yiyang Cao
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Hanyuan Xu
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| |
Collapse
|
247
|
Adelusi TI, Du L, Hao M, Zhou X, Xuan Q, Apu C, Sun Y, Lu Q, Yin X. Keap1/Nrf2/ARE signaling unfolds therapeutic targets for redox imbalanced-mediated diseases and diabetic nephropathy. Biomed Pharmacother 2020; 123:109732. [PMID: 31945695 DOI: 10.1016/j.biopha.2019.109732] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Hyperglycemia/oxidative stress has been implicated in the initiation and progression of diabetic complications while the components of Keap1/Nrf2/ARE signaling are being exploited as therapeutic targets for the treatment/management of these pathologies. Antioxidant agents like drugs, nutraceuticals and pure compounds that target the proteins of this pathway and their downstream genes hold the therapeutic strength to put the progression of this disease at bay. Here, we elucidate how the modulation of Keap1/Nrf2/ARE had been exploited for the treatment/management of end-stage diabetic kidney complication (diabetic nephropathy) by looking into (1) Nrf2 nuclear translocation and phosphorylation by some protein kinases at specific amino acid sequences and (2) Keap1 downregulation/Keap1-Nrf2 protein-protein inhibition (PPI) as potential therapeutic mechanisms exploited by Nrf2 activators for the modulation of diabetic nephropathy biomarkers (Collagen IV, Laminin, TGF-β1 and Fibronectin) that ultimately lead to the amelioration of this disease progression. Furthermore, we brought to limelight the relationship between diabetic nephropathy and Keap1/Nrf2/ARE and finally elucidate how the modulation of this signaling pathway could be further explored to create novel therapeutic milestones.
Collapse
Affiliation(s)
- Temitope Isaac Adelusi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Meng Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Xuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Chowdhury Apu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
248
|
Mei Y, Wang Z, Zhang Y, Wan T, Xue J, He W, Luo Y, Xu Y, Bai X, Wang Q, Huang Y. FA-97, a New Synthetic Caffeic Acid Phenethyl Ester Derivative, Ameliorates DSS-Induced Colitis Against Oxidative Stress by Activating Nrf2/HO-1 Pathway. Front Immunol 2020; 10:2969. [PMID: 31969881 PMCID: PMC6960141 DOI: 10.3389/fimmu.2019.02969] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic idiopathic inflammatory disorder of gastro-intestinal tract, lacking effective drug targets and medications. Caffeic acid phenethyl ester (CAPE), a phenolic constituent derived from propolis, has been reported to be a potential therapeutic agent for IBD with low water solubility and poor bioavailability. In this study, we synthesized a new CAPE derivative (FA-97) and aimed to investigate the effect of FA-97 on DSS-induced colitis. Here, we found that FA-97 attenuated body weight loss, colon length shortening and colonic pathological damage in colitis mice, as well as inhibited inflammatory cell infiltration and expression of pro-inflammatory cytokines in colons. In addition, FA-97 reduced ROS production and MDA generation, while total antioxidant capacity both in DSS-induced colitis mice and LPS-stimulated primary BMDMs and RAW 264.7 cells were enhanced. Mechanically, FA-97 activated Nrf2 followed by increased HO-1 and NQO-1 and down-regulated nuclear levels of p65 and c-Jun, to suppress DSS-induced colonic oxidative stress. Moreover, FA-97 decreased pro-inflammatory cytokine expression and increased the antioxidant defenses in RAW 264.7 via Nrf2 activation. In general, this study reveals that FA-97 activates Nrf2/HO-1 pathway to eventually alleviate DSS-induced colitis against oxidative stress, which has potential activity and may serve as a candidate for IBD therapy.
Collapse
Affiliation(s)
- Yu Mei
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zihao Wang
- Centre of Clinical Research for Chinese Medicine, School of Chinese Medicine, Institute of Brain and Gut Axis (IBAG), Hong Kong Baptist University, Kowloon Tong, China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Yifan Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Wan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jincheng Xue
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yijun Xu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Bai
- Southwestern Medical University Affiliated Chinese Medicine Hospital, Quzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
249
|
Chen G, Guo G, Zhou X, Chen H. Potential mechanism of ferroptosis in pancreatic cancer. Oncol Lett 2020; 19:579-587. [PMID: 31897173 PMCID: PMC6923864 DOI: 10.3892/ol.2019.11159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Despite the incidence rates of pancreatic cancer being low worldwide, the mortality rates remain high. To date, there is no effective drug treatment for pancreatic cancer. Numerous signalling pathways and cytokines regulate the occurrence and development of pancreatic cancer. Ferroptosis is a non-traditional form of cell death resulting from iron-dependent lipid peroxide accumulation. Studies have demonstrated that ferroptosis is associated with a variety of different types of cancer, such as breast cancer, hepatocellular carcinoma and pancreatic cancer. The present study demonstrated that ferroptosis controls the growth and proliferation of pancreatic cancer, providing a new approach for the treatment of pancreatic cancer. Iron metabolism and reactive oxygen species metabolism are the key pathways involved in ferroptosis in pancreatic cancer. In addition, a number of regulators of ferroptosis, such as glutathione peroxidase 4 and the cystine/glutamate antiporter system Xc-, also play pivotal roles in the regulation of ferroptosis. In the present review, the regulatory mechanisms associated with ferroptosis in pancreatic cancer are summarized, alongside other associated forms of digestive system cancer. The treatment of ferroptosis-based diseases is also addressed.
Collapse
Affiliation(s)
- Gang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guangqi Guo
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaodong Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hongxia Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
250
|
Ramprasath T, Freddy AJ, Velmurugan G, Tomar D, Rekha B, Suvekbala V, Ramasamy S. Context-Dependent Regulation of Nrf2/ARE Axis on Vascular Cell Function during Hyperglycemic Condition. Curr Diabetes Rev 2020; 16:797-806. [PMID: 32000646 DOI: 10.2174/1573399816666200130094512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/03/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is associated with an increased risk of micro and macrovascular complications. During hyperglycemic conditions, endothelial cells and vascular smooth muscle cells are exquisitely sensitive to high glucose. This high glucose-induced sustained reactive oxygen species production leads to redox imbalance, which is associated with endothelial dysfunction and vascular wall remodeling. Nrf2, a redox-regulated transcription factor plays a key role in the antioxidant response element (ARE)-mediated expression of antioxidant genes. Although accumulating data indicate the molecular mechanisms underpinning the Nrf2 regulated redox balance, understanding the influence of the Nrf2/ARE axis during hyperglycemic condition on vascular cells is paramount. This review focuses on the context-dependent role of Nrf2/ARE signaling on vascular endothelial and smooth muscle cell function during hyperglycemic conditions. This review also highlights improving the Nrf2 system in vascular tissues, which could be a potential therapeutic strategy for vascular dysfunction.
Collapse
Affiliation(s)
- Tharmarajan Ramprasath
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Allen John Freddy
- Department of Zoology, Madras Christian College, Chennai 600 059, Tamil Nadu, India
| | - Ganesan Velmurugan
- Chemomicrobiomics Laboratory, KMCH Research Foundation, Kovai Medical Center & Hospital, Coimbatore 641 014, Tamil Nadu, India
| | - Dhanendra Tomar
- Center for Translational Medicine, Temple University, Philadelphia 19140, United States
| | - Balakrishnan Rekha
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Vemparthan Suvekbala
- Department of Biomedical Sciences & Technology, Noorul Islam Centre for Higher Education, Kumaracoil, Thucklay, Tamilnadu 629180, India
| | - Subbiah Ramasamy
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| |
Collapse
|