201
|
He H, Hao SJ, Yao L, Yang F, Di Y, Li J, Jiang YJ, Jin C, Fu DL. MicroRNA-218 inhibits cell invasion and migration of pancreatic cancer via regulating ROBO1. Cancer Biol Ther 2014; 15:1333-1339. [PMID: 25010661 PMCID: PMC4130726 DOI: 10.4161/cbt.29706] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 01/22/2023] Open
Abstract
miRNA-218 is a highlighted tumor suppressor and its underlying role in tumor progression is still unknown. Here, we restored the expression of miRNA-218 in pancreatic cancer to clarify the function and potent downstream pathway of miRNA-218. The expressions of both miRNA-218 and its potent target gene ROBO1 were revealed by RT-PCR and western blotting analysis. Transfection of miRNA-218 precursor mimics and luciferase assay were performed to elucidate the regulation mechanism between miRNA-218 and ROBO1. Cells, stably expressing miRNA-218 followed by forced expression of mutant ROBO1, were established through co-transfections of both lentivirus vector and plasmid vector. The cell migration and invasion abilities were evaluated by migration assay and invasion assay respectively. An increased expression of ROBO1 was revealed in cell BxPC-3-LN compared with cell BxPC-3. Elevated expression of miRNA-218 would suppress the expression of ROBO1 via complementary binding to a specific region within 3'UTR of ROBO1 mRNA (sites 971-978) in pancreatic cancer cells. Stably restoring the expression of miRNA-218 in pancreatic cancer significantly downregulated the expression of ROBO1 and effectively inhibited cell migration and invasion. Forced expression of mutant ROBO1 could reverse the repression effects of miRNA-218 on cell migration and invasion. Consequently, miRNA-218 acted as a tumor suppressor in pancreatic cancer by inhibiting cell invasion and migration. ROBO1 was a functional target of miRNA-218's downstream pathway involving in cell invasion and migration of pancreatic cancer.
Collapse
Affiliation(s)
- Hang He
- Pancreatic Disease Institute; Department of Pancreatic Surgery; Huashan Hospital; Shanghai Medical College; Fudan University; Shanghai, PR China
| | - Si-jie Hao
- Pancreatic Disease Institute; Department of Pancreatic Surgery; Huashan Hospital; Shanghai Medical College; Fudan University; Shanghai, PR China
| | - Lie Yao
- Pancreatic Disease Institute; Department of Pancreatic Surgery; Huashan Hospital; Shanghai Medical College; Fudan University; Shanghai, PR China
| | - Feng Yang
- Pancreatic Disease Institute; Department of Pancreatic Surgery; Huashan Hospital; Shanghai Medical College; Fudan University; Shanghai, PR China
| | - Yang Di
- Pancreatic Disease Institute; Department of Pancreatic Surgery; Huashan Hospital; Shanghai Medical College; Fudan University; Shanghai, PR China
| | - Ji Li
- Pancreatic Disease Institute; Department of Pancreatic Surgery; Huashan Hospital; Shanghai Medical College; Fudan University; Shanghai, PR China
| | - Yong-jian Jiang
- Pancreatic Disease Institute; Department of Pancreatic Surgery; Huashan Hospital; Shanghai Medical College; Fudan University; Shanghai, PR China
| | - Chen Jin
- Pancreatic Disease Institute; Department of Pancreatic Surgery; Huashan Hospital; Shanghai Medical College; Fudan University; Shanghai, PR China
| | - De-Liang Fu
- Pancreatic Disease Institute; Department of Pancreatic Surgery; Huashan Hospital; Shanghai Medical College; Fudan University; Shanghai, PR China
| |
Collapse
|
202
|
Diao H, Wang L, Huang J, Jiang M, Zhou H, Li X, Chen Q, Jiang Z, Feng H. BRCA1-mediated inflammation and growth activated & inhibited transition mechanisms between no-tumor hepatitis/cirrhotic tissues and HCC. J Cell Biochem 2014; 115:641-50. [PMID: 24151232 DOI: 10.1002/jcb.24699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 10/16/2013] [Indexed: 12/23/2022]
Abstract
To understand breast cancer 1 early onset (BRCA1)-mediated inflammation and growth activated and inhibited transition mechanisms between no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) and human hepatocellular carcinoma (HCC), BRCA1-activated different complete (all no positive correlation, Pearson correlation coefficient <0.25) and uncomplete (partly no positive correlation except BRCA1, Pearson <0.25) networks were identified in higher HCC compared with lower no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) from the corresponding BRCA1-stimulated (Pearson ≥0.25) or inhibited (Pearson ≤-0.25) overlapping molecules of Pearson and GRNInfer, respectively. This result was verified by the corresponding scatter matrix. As visualized by GO, KEGG, GenMAPP, BioCarta, and disease database integration, we proposed mainly that BRCA1-stimulated different complete network was involved in BRCA1 activation with integral to membrane killer cell lectin-like receptor C to nucleus interferon regulatory factor 5-induced inflammation, whereas the corresponding inhibited network participated in BRCA1 repression with matrix roundabout axon guidance receptor homolog 1 to plasma membrane versican-induced growth in lower no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection). However, BRCA1-stimulated network contained BRCA1 activation with endothelium-specific to lysosomal transmembrane and carbamoyl synthetase to tastin, histone cluster and cyclin-induced growth, whereas the corresponding inhibited different complete network included BRCA1 repression with ovalbumin, thyroid stimulating hormone beta and Hu antigen C to cytochrome P450 to transducin-induced inflammation in higher HCC. Our BRCA1 different networks were verified by BRCA1-activated or -inhibited complete and uncomplete networks within and between no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) or (and) HCC.
Collapse
Affiliation(s)
- Haizhen Diao
- Bioinformatics Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China; State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Yue JX, Yu JK, Putnam NH, Holland LZ. The transcriptome of an amphioxus, Asymmetron lucayanum, from the Bahamas: a window into chordate evolution. Genome Biol Evol 2014; 6:2681-96. [PMID: 25240057 PMCID: PMC4224339 DOI: 10.1093/gbe/evu212] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cephalochordates, the sister group of tunicates plus vertebrates, have been called “living fossils” due to their resemblance to fossil chordates from Cambrian strata. The genome of the cephalochordate Branchiostoma floridae shares remarkable synteny with vertebrates and is free from whole-genome duplication. We performed RNA sequencing from larvae and adults of Asymmetron lucayanum, a cephalochordate distantly related to B. floridae. Comparisons of about 430 orthologous gene groups among both cephalochordates and 10 vertebrates using an echinoderm, a hemichordate, and a mollusk as outgroups showed that cephalochordates are evolving more slowly than the slowest evolving vertebrate known (the elephant shark), with A. lucayanum evolving even more slowly than B. floridae. Against this background of slow evolution, some genes, notably several involved in innate immunity, stand out as evolving relatively quickly. This may be due to the lack of an adaptive immune system and the relatively high levels of bacteria in the inshore waters cephalochordates inhabit. Molecular dating analysis including several time constraints revealed a divergence time of ∼120 Ma for A. lucayanum and B. floridae. The divisions between cephalochordates and vertebrates, and that between chordates and the hemichordate plus echinoderm clade likely occurred before the Cambrian.
Collapse
Affiliation(s)
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | - Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego
| |
Collapse
|
204
|
St Pourcain B, Cents RA, Whitehouse AJ, Haworth CM, Davis OS, O’Reilly PF, Roulstone S, Wren Y, Ang QW, Velders FP, Evans DM, Kemp JP, Warrington NM, Miller L, Timpson NJ, Ring SM, Verhulst FC, Hofman A, Rivadeneira F, Meaburn EL, Price TS, Dale PS, Pillas D, Yliherva A, Rodriguez A, Golding J, Jaddoe VW, Jarvelin MR, Plomin R, Pennell CE, Tiemeier H, Davey Smith G. Common variation near ROBO2 is associated with expressive vocabulary in infancy. Nat Commun 2014; 5:4831. [PMID: 25226531 PMCID: PMC4175587 DOI: 10.1038/ncomms5831] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/28/2014] [Indexed: 12/01/2022] Open
Abstract
Twin studies suggest that expressive vocabulary at ~24 months is modestly heritable. However, the genes influencing this early linguistic phenotype are unknown. Here we conduct a genome-wide screen and follow-up study of expressive vocabulary in toddlers of European descent from up to four studies of the EArly Genetics and Lifecourse Epidemiology consortium, analysing an early (15-18 months, 'one-word stage', N(Total) = 8,889) and a later (24-30 months, 'two-word stage', N(Total)=10,819) phase of language acquisition. For the early phase, one single-nucleotide polymorphism (rs7642482) at 3p12.3 near ROBO2, encoding a conserved axon-binding receptor, reaches the genome-wide significance level (P=1.3 × 10(-8)) in the combined sample. This association links language-related common genetic variation in the general population to a potential autism susceptibility locus and a linkage region for dyslexia, speech-sound disorder and reading. The contribution of common genetic influences is, although modest, supported by genome-wide complex trait analysis (meta-GCTA h(2)(15-18-months) = 0.13, meta-GCTA h(2)(24-30-months) = 0.14) and in concordance with additional twin analysis (5,733 pairs of European descent, h(2)(24-months) = 0.20).
Collapse
Affiliation(s)
- Beate St Pourcain
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Oakfield House, 15-23 Oakfield Grove, Bristol BS8 2BN, UK
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
- School of Experimental Psychology, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK
- These authors contributed equally to this work
| | - Rolieke A.M. Cents
- Generation R Study Group, Erasmus MC-University Medical Centre, Postbus 2040, 3000 CA Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-University Medical Centre, Postbus 2060, 3000 CB Rotterdam, The Netherlands
- These authors contributed equally to this work
| | - Andrew J.O. Whitehouse
- Telethon Kids Institute, Centre for Child Health Research, University of Western Australia, 100 Roberts Road, Subiaco, Western Australia 6008, Australia
- These authors contributed equally to this work
| | - Claire M.A. Haworth
- Department of Psychology, University of Warwick, Coventry CV4 7AL, UK
- Medical Research Council, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
- These authors contributed equally to this work
| | - Oliver S.P. Davis
- Medical Research Council, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
- Department of Genetics, Evolution and Environment, UCL, UCL Genetics Institute, Darwin Building, Gower Street, London WC1E 6BT, UK
- These authors contributed equally to this work
| | - Paul F. O’Reilly
- Medical Research Council, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
- Department of Epidemiology and Biostatistics, Medical Research Council (MRC) Public Health England (PHE) Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Susan Roulstone
- Bristol Speech and Language Therapy Research Unit, University of the West of England, Frenchay Hospital, Frenchay Park Road, BS16 1LE Bristol, UK
| | - Yvonne Wren
- Bristol Speech and Language Therapy Research Unit, University of the West of England, Frenchay Hospital, Frenchay Park Road, BS16 1LE Bristol, UK
| | - Qi W. Ang
- School of Women’s and Infants’ Health, University of Western Australia, 374 Bagot Road, Subiaco, Western Australia 6008, Australia
| | - Fleur P. Velders
- Generation R Study Group, Erasmus MC-University Medical Centre, Postbus 2040, 3000 CA Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-University Medical Centre, Postbus 2060, 3000 CB Rotterdam, The Netherlands
| | - David M. Evans
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Oakfield House, 15-23 Oakfield Grove, Bristol BS8 2BN, UK
- School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK
- University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, 37 Kent Street Woolloongabba, Queensland 4102, Australia
| | - John P. Kemp
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Oakfield House, 15-23 Oakfield Grove, Bristol BS8 2BN, UK
- School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK
- University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, 37 Kent Street Woolloongabba, Queensland 4102, Australia
| | - Nicole M. Warrington
- School of Women’s and Infants’ Health, University of Western Australia, 374 Bagot Road, Subiaco, Western Australia 6008, Australia
- University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, 37 Kent Street Woolloongabba, Queensland 4102, Australia
| | - Laura Miller
- School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK
| | - Nicholas J. Timpson
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Oakfield House, 15-23 Oakfield Grove, Bristol BS8 2BN, UK
- School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK
| | - Susan M. Ring
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Oakfield House, 15-23 Oakfield Grove, Bristol BS8 2BN, UK
- School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK
| | - Frank C. Verhulst
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-University Medical Centre, Postbus 2060, 3000 CB Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC-University Medical Centre, Postbus 2040, 3000 CA Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus MC-University Medical Centre, Postbus 2040, 3000 CA Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Postbus 2040, 3000 CA Rotterdam, The Netherlands
| | - Emma L. Meaburn
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Thomas S. Price
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, 3400 Civic Center Boulevard, Building 421, Philadelphia, Pennsylvania 19104-5158, USA
| | - Philip S. Dale
- Department of Speech and Hearing Sciences, University of New Mexico, 1700 Lomas Boulevard NE Suite 1300, Albuquerque, New Mexico 87131, USA
| | - Demetris Pillas
- Department of Epidemiology and Biostatistics, Medical Research Council (MRC) Public Health England (PHE) Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Anneli Yliherva
- Faculty of Humanities, Logopedics, Child Language Research Center, University of Oulu, BOX 1000, Oulu 90014, Finland
| | - Alina Rodriguez
- Department of Epidemiology and Biostatistics, Medical Research Council (MRC) Public Health England (PHE) Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
- Mid Sweden University Department for Psychology/Mittuniversitetet Avdelningen för psykologi, 83125 Östersund, Sweden
| | - Jean Golding
- School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK
| | - Vincent W.V. Jaddoe
- Generation R Study Group, Erasmus MC-University Medical Centre, Postbus 2040, 3000 CA Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC-University Medical Centre, Postbus 2040, 3000 CA Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC-University Medical Centre, Postbus 2060, 3000 CB Rotterdam, The Netherlands
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, Medical Research Council (MRC) Public Health England (PHE) Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
- Unit of Primary Care, Oulu University Hospital, Kajaanintie 50, PO Box 20, FI-90220, Oulu 90029, Finland
- Department of Children and Young People and Families, National Institute for Health and Welfare, Aapistie 1, Box 310, FI-90101 Oulu, Finland
- Institute of Health Sciences, University of Oulu, PO Box 5000, Oulu FI-90014, Finland
- Biocenter Oulu, University of Oulu, PO Box 5000, Aapistie 5A, OuluFI-90014, Finland
| | - Robert Plomin
- Medical Research Council, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Craig E. Pennell
- School of Women’s and Infants’ Health, University of Western Australia, 374 Bagot Road, Subiaco, Western Australia 6008, Australia
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-University Medical Centre, Postbus 2060, 3000 CB Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC-University Medical Centre, Postbus 2040, 3000 CA Rotterdam, The Netherlands
- These authors contributed equally to this work
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Oakfield House, 15-23 Oakfield Grove, Bristol BS8 2BN, UK
- School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK
| |
Collapse
|
205
|
Chen DB, Zheng J. Regulation of placental angiogenesis. Microcirculation 2014; 21:15-25. [PMID: 23981199 DOI: 10.1111/micc.12093] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/21/2013] [Indexed: 12/13/2022]
Abstract
Ample interest has been evoked in using placental angiogenesis as a target for the development of diagnosis tools and potential therapeutics for pregnancy complications based on the knowledge of placental angiogenesis in normal and aberrant pregnancies. Although these goals are still far from reach, one would expect that two complementary processes should be balanced for therapeutic angiogenesis to be successful in restoring a mature and functional vascular network in the placenta in any pregnancy complication: (i) pro-angiogenic stimulation of new vessel growth and (ii) anti-angiogenic inhibition of vessel overgrowth. As the best model of physiological angiogenesis, investigations of placental angiogenesis provide critical insights not only for better understanding of normal placental endothelial biology but also for the development of diagnosis tools for pregnancy complications. Such investigations will potentially identify novel pro-angiogenic factors for therapeutic intervention for tissue damage in various obstetric complications or heart failure or anti-angiogenic factors to target on cancer or vision loss in which circulation needs to be constrained. This review summarizes the genetic and molecular aspects of normal placental angiogenesis as well as the signaling mechanisms by which the dominant angiogenic factor vascular endothelial growth factor regulates placental angiogenesis with a focus on placental endothelial cells.
Collapse
Affiliation(s)
- Dong-Bao Chen
- Department of Obstetrics & Gynecology, University of California, Irvine, California, USA
| | | |
Collapse
|
206
|
MiRiad Roles for MicroRNAs in Cardiac Development and Regeneration. Cells 2014; 3:724-50. [PMID: 25055156 PMCID: PMC4197632 DOI: 10.3390/cells3030724] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/25/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022] Open
Abstract
Cardiac development is an exquisitely regulated process that is sensitive to perturbations in transcriptional activity and gene dosage. Accordingly, congenital heart abnormalities are prevalent worldwide, and are estimated to occur in approximately 1% of live births. Recently, small non-coding RNAs, known as microRNAs, have emerged as critical components of the cardiogenic regulatory network, and have been shown to play numerous roles in the growth, differentiation, and morphogenesis of the developing heart. Moreover, the importance of miRNA function in cardiac development has facilitated the identification of prospective therapeutic targets for patients with congenital and acquired cardiac diseases. Here, we discuss findings attesting to the critical role of miRNAs in cardiogenesis and cardiac regeneration, and present evidence regarding the therapeutic potential of miRNAs for cardiovascular diseases.
Collapse
|
207
|
Slit2 promotes tumor growth and invasion in chemically induced skin carcinogenesis. J Transl Med 2014; 94:766-76. [PMID: 24840330 DOI: 10.1038/labinvest.2014.70] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 11/09/2022] Open
Abstract
Slit, a neuronal guidance cue, binds to Roundabout (Robo) receptors to modulate neuronal, leukocytic, and endothelial migration. Slit has been reported to have an important effect on tumor growth and metastasis. In the current study, we evaluated the role of Slit2 in skin tumor growth and invasion in mice using a two-step chemical carcinogenesis protocol. We found that Slit2 expression correlated with the loss of basement membrane in the samples of human skin squamous cell carcinoma at different stages of disease progression. Slit2-Tg mice developed significantly more skin tumors than wild-type mice. Furthermore, the skin tumors that occurred in Slit2-Tg mice were significantly larger than those in the wild-type mice 10 weeks after 7,12-dimethylbenz[a]anthracene initiation until the end of the experiment. We also found that pathological development of the wild-type mice was delayed compared with that of Slit2-Tg mice. To further investigate the mechanism of increasing tumors in Slit2-Tg mice, we analyzed the expression of 5-bromo-2'-deoxyuridine (BrdU) in mouse skin lesions and found that the number of BrdU-positive cells and microvessel density in skin lesions were significantly higher in Slit2-Tg mice than in wild-type mice. Histological staining of PAS and type IV collagen and the colocalization of Slit2 and type IV collagen demonstrated varying degrees of loss of the basement membrane in the skin lesions from Slit2-Tg mice that were at the stage of carcinoma in situ. However, the basement membrane was well defined in the wild-type mice. In addition, MMP2, but not MMP9, was upregulated in the skin tissue of Slit2-Tg mice. Interruption of Slit2-Robo1 signaling by the antibody R5 significantly repressed the invasive capability of the squamous cell carcinoma cell line A431. Taken together, our findings reveal that Slit2 promotes DMBA/TPA-induced skin tumorigenesis by increasing cell proliferation, microvessel density, and invasive behavior of cutaneous squamous cell carcinoma, along with loss of basement membrane, by upregulation of MMP2 expression.
Collapse
|
208
|
Biteau B, Jasper H. Slit/Robo signaling regulates cell fate decisions in the intestinal stem cell lineage of Drosophila. Cell Rep 2014; 7:1867-75. [PMID: 24931602 PMCID: PMC4086754 DOI: 10.1016/j.celrep.2014.05.024] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 03/21/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022] Open
Abstract
In order to maintain tissue homeostasis, cell fate decisions within stem cell lineages have to respond to the needs of the tissue. This coordination of lineage choices with regenerative demand remains poorly characterized. Here, we identify a signal from enteroendocrine cells (EEs) that controls lineage specification in the Drosophila intestine. We find that EEs secrete Slit, a ligand for the Robo2 receptor in intestinal stem cells (ISCs) that limits ISC commitment to the endocrine lineage, establishing negative feedback control of EE regeneration. Furthermore, we show that this lineage decision is made within ISCs and requires induction of the transcription factor Prospero in ISCs. Our work identifies a function for the conserved Slit/Robo pathway in the regulation of adult stem cells, establishing negative feedback control of ISC lineage specification as a critical strategy to preserve tissue homeostasis. Our results further amend the current understanding of cell fate commitment within the Drosophila ISC lineage.
Collapse
Affiliation(s)
- Benoît Biteau
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| |
Collapse
|
209
|
Kato M, Okanoya K, Koike T, Sasaki E, Okano H, Watanabe S, Iriki A. Human speech- and reading-related genes display partially overlapping expression patterns in the marmoset brain. BRAIN AND LANGUAGE 2014; 133:26-38. [PMID: 24769279 DOI: 10.1016/j.bandl.2014.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 03/02/2014] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
Language is a characteristic feature of human communication. Several familial language impairments have been identified, and candidate genes for language impairments already isolated. Studies comparing expression patterns of these genes in human brain are necessary to further understanding of these genes. However, it is difficult to examine gene expression in human brain. In this study, we used a non-human primate (common marmoset; Callithrix jacchus) as a biological model of the human brain to investigate expression patterns of human speech- and reading-related genes. Expression patterns of speech disorder- (FoxP2, FoxP1, CNTNAP2, and CMIP) and dyslexia- (ROBO1, DCDC2, and KIAA0319) related genes were analyzed. We found the genes displayed overlapping expression patterns in the ocular, auditory, and motor systems. Our results enhance understanding of the molecular mechanisms underlying language impairments.
Collapse
Affiliation(s)
- Masaki Kato
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory for Biolinguistics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Center for Advanced Research on Logic and Sensibility (CARLS), Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.
| | - Kazuo Okanoya
- Laboratory for Biolinguistics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Taku Koike
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki, Kanagawa 210-0821, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; KEIO-RIKEN Research Center for Human Cognition, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; KEIO-RIKEN Research Center for Human Cognition, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan; Keio University Joint Research Laboratory, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shigeru Watanabe
- KEIO-RIKEN Research Center for Human Cognition, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan; Center for Advanced Research on Logic and Sensibility (CARLS), Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; KEIO-RIKEN Research Center for Human Cognition, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan; Center for Advanced Research on Logic and Sensibility (CARLS), Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.
| |
Collapse
|
210
|
Fujiwara K, Koyama K, Suga K, Ikemura M, Saito Y, Hino A, Iwanari H, Kusano-Arai O, Mitsui K, Kasahara H, Fukayama M, Kodama T, Hamakubo T, Momose T. A (90)Y-labelled anti-ROBO1 monoclonal antibody exhibits antitumour activity against hepatocellular carcinoma xenografts during ROBO1-targeted radioimmunotherapy. EJNMMI Res 2014; 4:29. [PMID: 25006547 PMCID: PMC4077627 DOI: 10.1186/s13550-014-0029-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/15/2014] [Indexed: 01/19/2023] Open
Abstract
Background ROBO1 is a membrane protein that functions in axon guidance. ROBO1 contributes to tumour metastasis and angiogenesis and may have potential as a target protein of immunotherapy because ROBO1 is specifically expressed at high levels in hepatocellular carcinoma. In this study, we examined biodistribution and radioimmunotherapy (RIT) using a radioisotope-labelled anti-ROBO1 monoclonal antibody (MAb) against hepatocellular carcinoma models. Methods ROBO1-positive HepG2 human hepatocellular carcinoma xenograft nude mice were used in this study. We conjugated anti-ROBO1 MAb with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and the conjugates were labelled with 111In and 90Y. To study biodistribution, the 111In-DOTA-anti-ROBO1 MAb was injected into HepG2 xenograft mice via the tail vein. To evaluate any antitumour effect, a RIT study was performed, and the 90Y-DOTA-anti-ROBO1 MAb was injected via the tail vein. Tumour volume, mouse weight, and blood cell count were periodically measured throughout the experiments. The tumours and organs of mice were collected, and a histopathological analysis was carried out. Results The tumour uptake of 111In-anti-ROBO1 MAb in HepG2 xenograft mice was 15.0% ± 0.69% injected dose per gram at 48 h after injection. Immunotherapy with cold-anti-ROBO1 MAb (70 μg) did not cause a significant antitumour effect. RIT with 6.7 MBq of 90Y-anti-ROBO1 MAb caused significant tumour growth suppression. Transient body weight loss and bone-marrow suppression were observed. Histopathological analyses of tumours revealed the fatal degeneration of tumour cells, significant reduction of the Ki-67 index, and an increase of the apoptosis index. Normal organs showed no significant injury, but a transient reduction of hematopoietic cells was observed in the spleen and in the sternal bone marrow. Conclusions These results suggest that RIT with 90Y-anti-ROBO1 MAb is a promising treatment for ROBO1-positive hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kentaro Fujiwara
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 3-1, Hongo 7-Chome, Bunkyo-ku 113-8655, Tokyo, Japan
| | - Keitaro Koyama
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 3-1, Hongo 7-Chome, Bunkyo-ku 113-8655, Tokyo, Japan
| | - Kosuke Suga
- SANKYO LABO SERVICE Co., Ltd., 2-13-16, Nishiichinoe, Edogawaku 132-0023, Tokyo, Japan
| | - Masako Ikemura
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 3-1, Hongo 7-Chome, Bunkyo-ku 113-8655, Tokyo, Japan
| | - Yasutaka Saito
- FUJIFILM RI Pharma Co., Ltd., 453-1, Shimo-Okura, Matsuo-Machi, Sammu-City 289-1592, Chiba, Japan
| | - Akihiro Hino
- FUJIFILM RI Pharma Co., Ltd., 453-1, Shimo-Okura, Matsuo-Machi, Sammu-City 289-1592, Chiba, Japan
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan
| | - Osamu Kusano-Arai
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan ; Institute of Immunology Co., Ltd., 1-1-1 Koraku, Bunkyo 112-0004, Tokyo, Japan
| | - Kenichi Mitsui
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan
| | - Hiroyuki Kasahara
- FUJIFILM RI Pharma Co., Ltd., 453-1, Shimo-Okura, Matsuo-Machi, Sammu-City 289-1592, Chiba, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 3-1, Hongo 7-Chome, Bunkyo-ku 113-8655, Tokyo, Japan
| | - Tatsuhiko Kodama
- Department of Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan
| | - Toshimitsu Momose
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 3-1, Hongo 7-Chome, Bunkyo-ku 113-8655, Tokyo, Japan
| |
Collapse
|
211
|
Phinney DG, Isakova IA. Mesenchymal stem cells as cellular vectors for pediatric neurological disorders. Brain Res 2014; 1573:92-107. [PMID: 24858930 DOI: 10.1016/j.brainres.2014.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/07/2014] [Accepted: 05/16/2014] [Indexed: 12/15/2022]
Abstract
Lysosomal storage diseases are a heterogeneous group of hereditary disorders characterized by a deficiency in lysosomal function. Although these disorders differ in their etiology and phenotype those that affect the nervous system generally manifest as a profound deterioration in neurologic function with age. Over the past several decades implementation of various treatment regimens including bone marrow and cord blood cell transplantation, enzyme replacement, and substrate reduction therapy have proved effective for managing some clinical manifestations of these diseases but their ability to ameliorate neurologic complications remains unclear. Consequently, there exists a need to develop alternative therapies that more effectively target the central nervous system. Recently, direct intracranial transplantation of tissue-specific stem and progenitor cells has been explored as a means to reconstitute metabolic deficiencies in the CNS. In this chapter we discuss the merits of bone marrow-derived mesenchymal stem cells (MSCs) for this purpose. Originally identified as progenitors of connective tissue cell lineages, recent findings have revealed several novel aspects of MSC biology that make them attractive as therapeutic agents in the CNS. We relate these advances in MSC biology to their utility as cellular vectors for treating neurologic sequelae associated with pediatric neurologic disorders.
Collapse
Affiliation(s)
- Donald G Phinney
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, A213, Jupiter, FL 33458, USA.
| | - Iryna A Isakova
- Division of Clinical Laboratory Diagnostics, Biology Department, National Dnepropetrovsk University, Dnepropetrovsk, Ukraine
| |
Collapse
|
212
|
Barak R, Lahmi R, Gevorkyan-Airapetov L, Levy E, Tzur A, Opatowsky Y. Crystal structure of the extracellular juxtamembrane region of Robo1. J Struct Biol 2014; 186:283-91. [PMID: 24607414 DOI: 10.1016/j.jsb.2014.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 12/17/2022]
Abstract
Robo receptors play pivotal roles in neurodevelopment, and their deregulation is implicated in several neuropathological conditions and cancers. To date, the mechanism of Robo activation and regulation remains obscure. Here we present the crystal structure of the juxtamembrane (JM) domains of human Robo1. The structure exhibits unexpectedly high backbone similarity to the netrin and RGM binding region of neogenin and DCC, which are functionally related receptors of Robo1. Comparison of these structures reveals a conserved surface that overlaps with a cluster of oncogenic and neuropathological mutations found in all Robo isoforms. The structure also reveals the intricate folding of the JM linker, which points to its role in Robo1 activation. Further experiments with cultured cells demonstrate that exposure or relief of the folded JM linker results in enhanced shedding of the Robo1 ectodomain.
Collapse
Affiliation(s)
- Reut Barak
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Roxane Lahmi
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lada Gevorkyan-Airapetov
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Eliad Levy
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Amit Tzur
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yarden Opatowsky
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
213
|
Yeh ML, Gonda Y, Mommersteeg MTM, Barber M, Ypsilanti AR, Hanashima C, Parnavelas JG, Andrews WD. Robo1 modulates proliferation and neurogenesis in the developing neocortex. J Neurosci 2014; 34:5717-31. [PMID: 24741061 PMCID: PMC3988420 DOI: 10.1523/jneurosci.4256-13.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/19/2014] [Accepted: 03/19/2014] [Indexed: 12/11/2022] Open
Abstract
The elaborate cytoarchitecture of the mammalian neocortex requires the timely production of its constituent pyramidal neurons and interneurons and their disposition in appropriate layers. Numerous chemotropic factors present in the forebrain throughout cortical development play important roles in the orchestration of these events. The Roundabout (Robo) family of receptors and their ligands, the Slit proteins, are expressed in the developing forebrain, and are known to play important roles in the generation and migration of cortical interneurons. However, few studies have investigated their function(s) in the development of pyramidal cells. Here, we observed expression of Robo1 and Slit genes (Slit1, Slit2) in cells lining the telencephalic ventricles, and found significant increases in progenitor cells (basal and apical) at embryonic day (E)12.5 and E14.5 in the developing cortex of Robo1(-/-), Slit1(-/-), and Slit1(-/-)/Slit2(-/-), but not in mice lacking the other Robo or Slit genes. Using layer-specific markers, we found that both early- and late-born pyramidal neuron populations were significantly increased in the cortices of Robo1(-/-) mice at the end of corticogenesis (E18.5). The excess number of cortical pyramidal neurons generated prenatally appears to die in early postnatal life. The observed increase in pyramidal neurons was due to prolonged proliferative activity of their progenitors and not due to changes in cell cycle events. This finding, confirmed by in utero electroporation with Robo1 short hairpin RNA (shRNA) or control constructs into progenitors along the ventricular zone as well as in dissociated cortical cell cultures, points to a novel role for Robo1 in regulating the proliferation and generation of pyramidal neurons.
Collapse
Affiliation(s)
- Mason L. Yeh
- Department of Cell and Developmental Biology, University College London, London, United Kingdom WC1E 6DE
| | - Yuko Gonda
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Mathilda T. M. Mommersteeg
- Department of Cell and Developmental Biology, University College London, London, United Kingdom WC1E 6DE
| | - Melissa Barber
- Institut Jacques-Monod, Université Paris Diderot/CNRS, 75201 Paris, France, and
| | | | - Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - John G. Parnavelas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom WC1E 6DE
| | - William D. Andrews
- Department of Cell and Developmental Biology, University College London, London, United Kingdom WC1E 6DE
| |
Collapse
|
214
|
Tran C, Wigg KG, Zhang K, Cate-Carter TD, Kerr E, Field LL, Kaplan BJ, Lovett MW, Barr CL. Association of the ROBO1 gene with reading disabilities in a family-based analysis. GENES, BRAIN, AND BEHAVIOR 2014; 13:430-8. [PMID: 24612512 PMCID: PMC4930671 DOI: 10.1111/gbb.12126] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/10/2014] [Accepted: 02/18/2014] [Indexed: 01/28/2023]
Abstract
Linkage studies have identified a locus on chromosome 3 as reading disabilities (RD) and speech and sound disorder (SSD) susceptibility region, with both RD and SSD sharing similar phonological processing and phonological memory difficulties. One gene in this region, roundabout homolog 1 (ROBO1), has been indicated as a RD candidate and has shown significant association with measures of phonological memory in a population-based sample. In this study, we conducted a family-based association analysis using two independent samples collected in Toronto and Calgary, Canada. Using the two samples, we tested for association between ROBO1 single nucleotide polymorphisms (SNPs) and RD, along with quantitative measures for reading, spelling and phonological memory. One SNP, rs331142, which was selected based on its correlation with ROBO1 expression in brain tissue, was found to be significantly associated with RD in the Toronto sample with over transmission of the minor C allele (P = 0.001), correlated with low expression. This SNP is located ~200 bp from a putative enhancer and results for a marker within the enhancer, rs12495133, showed evidence for association with the same allele in both the Toronto and Calgary samples (P = 0.005 and P = 0.007). These results support previous associations between ROBO1 and RD, as well as correlation with low gene expression, suggesting a possible mechanism of risk conferred by this gene.
Collapse
Affiliation(s)
- C. Tran
- Genetics and Development Division, Toronto Western Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario
- Institute of Medical Science, University of Toronto, Toronto, Ontario
| | - K. G. Wigg
- Genetics and Development Division, Toronto Western Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario
| | - K. Zhang
- Genetics and Development Division, Toronto Western Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario
| | - T. D. Cate-Carter
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario
| | - E. Kerr
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario
| | - L. L. Field
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia
| | - B. J. Kaplan
- Department of Paediatrics, Faculty of Medicine, Alberta Children’s Hospital, University of Calgary, Calgary, Alberta, Canada
| | - M. W. Lovett
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario
| | - C. L. Barr
- Genetics and Development Division, Toronto Western Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario
- Institute of Medical Science, University of Toronto, Toronto, Ontario
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario
| |
Collapse
|
215
|
Santiago C, Labrador JP, Bashaw GJ. The homeodomain transcription factor Hb9 controls axon guidance in Drosophila through the regulation of Robo receptors. Cell Rep 2014; 7:153-65. [PMID: 24685136 DOI: 10.1016/j.celrep.2014.02.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/06/2014] [Accepted: 02/25/2014] [Indexed: 02/05/2023] Open
Abstract
Transcription factors establish neural diversity and wiring specificity; however, how they orchestrate changes in cell morphology remains poorly understood. The Drosophila Roundabout (Robo) receptors regulate connectivity in the CNS, but how their precise expression domains are established is unknown. Here, we show that the homeodomain transcription factor Hb9 acts upstream of Robo2 and Robo3 to regulate axon guidance in the Drosophila embryo. In ventrally projecting motor neurons, hb9 is required for robo2 expression, and restoring Robo2 activity in hb9 mutants rescues motor axon defects. Hb9 requires its conserved repressor domain and functions in parallel with Nkx6 to regulate robo2. Moreover, hb9 can regulate the medio-lateral position of axons through robo2 and robo3, and restoring robo3 expression in hb9 mutants rescues the lateral position defects of a subset of neurons. Altogether, these data identify Robo2 and Robo3 as key effectors of Hb9 in regulating nervous system development.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
216
|
SUZ12 is involved in progression of non-small cell lung cancer by promoting cell proliferation and metastasis. Tumour Biol 2014; 35:6073-82. [PMID: 24633887 DOI: 10.1007/s13277-014-1804-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 02/26/2014] [Indexed: 01/21/2023] Open
Abstract
The suppressor of zeste-12 protein (SUZ12), a core component of Polycomb repressive complex 2 (PRC2), is implicated in transcriptional silencing by generating di- and tri-methylation of lysine 27 on histone H3 (H3K27Me3). Although SUZ12 is known to be of great importance in several human cancer tumorigenesis, limited data are available on the expression profile and functional role of SUZ12 in non-small cell lung cancer (NSCLC). Here, we determined the expression level of SUZ12 in 40 paired clinical NSCLC tissues and adjacent normal tissues by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The results showed that SUZ12 was anomalously expressed in NSCLC tissues compared to adjacent noncancerous tissues (P<0.05) and was highly correlated to tumor size, lymph node metastasis, and clinical stages (P<0.05). Additionally, siRNA-mediated knockdown of SUZ12 could inhibit tumor cell growth, migration, and invasion, indicating that SUZ12 might function as an oncogene in NSCLC initiation and progression. Furthermore, we found that SUZ12 silencing significantly reduced the expression levels of transcription factor transcription factor E2F1 (E2F1) as well as potential metastasis promoters Rho-associated, coiled-coil-containing protein kinase 1 (ROCK1) and roundabout homolog 1 (ROBO1) through Western blot analysis. Altogether, we provide evidences suggesting that SUZ12 is an oncogene in NSCLC and can regulate NSCLC cells proliferation and metastasis partly via reducing E2F1, ROCK1, and ROBO1. Thus, SUZ12 may represent a new potential diagnostic marker for NSCLC and may be a novel therapeutic target for NSCLC intervention.
Collapse
|
217
|
Stathopoulos S, Neafsey DE, Lawniczak MKN, Muskavitch MAT, Christophides GK. Genetic dissection of Anopheles gambiae gut epithelial responses to Serratia marcescens. PLoS Pathog 2014; 10:e1003897. [PMID: 24603764 PMCID: PMC3946313 DOI: 10.1371/journal.ppat.1003897] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/09/2013] [Indexed: 12/29/2022] Open
Abstract
Genetic variation in the mosquito Anopheles gambiae profoundly influences its ability to transmit malaria. Mosquito gut bacteria are shown to influence the outcome of infections with Plasmodium parasites and are also thought to exert a strong drive on genetic variation through natural selection; however, a link between antibacterial effects and genetic variation is yet to emerge. Here, we combined SNP genotyping and expression profiling with phenotypic analyses of candidate genes by RNAi-mediated silencing and 454 pyrosequencing to investigate this intricate biological system. We identified 138 An. gambiae genes to be genetically associated with the outcome of Serratia marcescens infection, including the peptidoglycan recognition receptor PGRPLC that triggers activation of the antibacterial IMD/REL2 pathway and the epidermal growth factor receptor EGFR. Silencing of three genes encoding type III fibronectin domain proteins (FN3Ds) increased the Serratia load and altered the gut microbiota composition in favor of Enterobacteriaceae. These data suggest that natural genetic variation in immune-related genes can shape the bacterial population structure of the mosquito gut with high specificity. Importantly, FN3D2 encodes a homolog of the hypervariable pattern recognition receptor Dscam, suggesting that pathogen-specific recognition may involve a broader family of immune factors. Additionally, we showed that silencing the gene encoding the gustatory receptor Gr9 that is also associated with the Serratia infection phenotype drastically increased Serratia levels. The Gr9 antibacterial activity appears to be related to mosquito feeding behavior and to mostly rely on changes of neuropeptide F expression, together suggesting a behavioral immune response following Serratia infection. Our findings reveal that the mosquito response to oral Serratia infection comprises both an epithelial and a behavioral immune component. In malaria vector mosquitoes, the presence of bacteria and malaria parasites is tightly linked. Bacteria that are part of the mosquito gut ecosystem are critical modulators of the immune response elicited during infection with malaria parasites. Furthermore, responses against oral bacterial infections can affect malaria parasites. Here, we combined mosquito gut infections with the enterobacterium Serratia marcescens with genome-wide discovery and phenotypic analysis of genes involved in antibacterial responses to characterize molecular processes that control gut bacterial infections thus possibly affecting the mosquito susceptibility to infection by malaria parasites. Our data reveal complex genetic networks controlling the gut bacterial infection load and ecosystem homeostasis. These networks appear to exhibit much higher specificity toward specific classes of bacteria than previously thought and include behavioral response circuits involved in antibacterial immunity.
Collapse
Affiliation(s)
| | | | | | | | - George K. Christophides
- Department of Life Sciences, Imperial College London, London, United Kingdom
- The Cyprus Institute, Nicosia, Cyprus
- * E-mail:
| |
Collapse
|
218
|
Okada Y. [Transcriptional regulation of the endothelial cell-specific receptor, Robo4]. YAKUGAKU ZASSHI 2014; 132:1045-9. [PMID: 23023422 DOI: 10.1248/yakushi.132.1045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Roundabout4 (Robo4) is a transmembrane receptor that belongs to the Robo family of neural cell adhesion molecules. Robo4 has been shown to play a role in endothelial cell (EC) migration, proliferation, angiogenesis, and stabilizing the vasculature. Robo4 is expressed specifically in ECs in the developing embryo, placenta, tumors, and normal tissues. The goal of our study is to understand the mechanism for Robo4 gene expression. In the previous study we demonstrated that EC-specific Robo4 gene expression was regulated by the 3-kb Robo4 promoter in the 5'-flanking region of the human Robo4 gene. In vitro studies demonstrated that the Robo4 promoter is activated by the transcription factors GA-binding protein (GABP) and SP1 through the ETS binding site at -119 and the 2 SP1 binding sites at -42 and -153, respectively. The functional relevance of these sites was confirmed by in vivo reporter gene assays using Hprt locus knock in mice. In addition to the regulation mechanism by transcription factors, our recent study implicated that epigenetic modification of the promoter contributes to the Robo4 gene expression. Here I will discuss the regulation mechanism of Robo4 gene expression by transcription factors and epigenetic control.
Collapse
Affiliation(s)
- Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, Japan.
| |
Collapse
|
219
|
Jacobi A, Schmalz A, Bareyre FM. Abundant expression of guidance and synaptogenic molecules in the injured spinal cord. PLoS One 2014; 9:e88449. [PMID: 24523897 PMCID: PMC3921160 DOI: 10.1371/journal.pone.0088449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 01/08/2014] [Indexed: 11/18/2022] Open
Abstract
Background Spinal interneurons have emerged as crucial targets of supraspinal input during post-injury axonal remodelling. For example, lesioned corticospinal projections use propriospinal neurons as relay stations to form intraspinal detour circuits that circumvent the lesion site and contribute to functional recovery. While a number of the molecules that determine the formation of neuronal circuits in the developing nervous system have been identified, it is much less understood which of these cues are also expressed in the injured spinal cord and can thus guide growing collaterals and initiate synaptogenesis during circuit remodelling. Methodology/Principal Findings To address this question we characterized the expression profile of a number of guidance and synaptogenic molecules in the cervical spinal cord of healthy and spinal cord-injured mice by in situ hybridization. To assign the expression of these molecules to distinct populations of interneurons we labeled short and long propriospinal neurons by retrograde tracing and glycinergic neurons using a transgenically expressed fluorescent protein. Interestingly, we found that most of the molecules studied including members of slit-, semaphorin-, synCAM-, neuroligin- and ephrin- families as well as their receptors are also present in the adult CNS. While many of these molecules were abundantly expressed in all interneurons examined, some molecules including slits, semaphorin 7a, synCAM4 and neuroligin 1 showed preferential expression in propriospinal interneurons. Overall the expression pattern of guidance and synaptogenic molecules in the cervical spinal cord appeared to be stable over time and was not substantially altered following a midthoracic spinal cord injury. Conclusions Taken together, our study indicates that many of the guidance and synaptogenic cues that regulate neuronal circuit formation in development are also present in the adult CNS and therefore likely contribute to the remodelling of axonal connections in the injured spinal cord.
Collapse
Affiliation(s)
- Anne Jacobi
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Anja Schmalz
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Florence M. Bareyre
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- * E-mail:
| |
Collapse
|
220
|
Role of ROBO4 signalling in developmental and pathological angiogenesis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:683025. [PMID: 24689049 PMCID: PMC3933320 DOI: 10.1155/2014/683025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 11/29/2013] [Accepted: 12/12/2013] [Indexed: 01/13/2023]
Abstract
Transmembrane roundabout receptor family members (ROBO1-ROBO4) principally orchestrate the neuronal guidance mechanism of the nervous system. Secreted glycoprotein SLITs are the most appreciated ligands for ROBOs. Recently identified ROBO4 is the key mediator of SLIT-ROBO mediated developmental and pathological angiogenesis. Although SLIT2 has been shown to interact with ROBO4 as ligand, it remains an open question whether this protein is the physiologic partner of ROBO4. The purpose of this review is to summarise how reliable SLIT2 as ligand for ROBO4 is, if not what the other possible mechanisms demonstrated till date for ROBO4 mediated developmental and pathological angiogenesis are. We conclude that ROBO4 is expressed specially in vascular endothelial cells and maintains the vascular integrity via either SLIT2 dependent or SLIT2 independent manner. On the contrary, it promotes the pathological angiogenesis by involving different signalling arm(s)/unknown ligand(s). This review explores the interactions SLIT2/ROBO1, SLIT2/ROBO1-ROBO4, ROBO1/ROBO4, and ROBO4/UNC5B which can be promising and potential therapeutic targets for developmental angiogenesis defects and pathological angiogenesis. Finally we have reviewed the ROBO4 signalling pathways and made an effort to elaborate the insight of this signalling as therapeutic target of pathological angiogenesis.
Collapse
|
221
|
Zarin AA, Asadzadeh J, Labrador JP. Transcriptional regulation of guidance at the midline and in motor circuits. Cell Mol Life Sci 2014; 71:419-32. [PMID: 23917723 PMCID: PMC11113760 DOI: 10.1007/s00018-013-1434-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/01/2013] [Accepted: 07/22/2013] [Indexed: 12/16/2022]
Abstract
Axon navigation through the developing body of an embryo is a challenging and exquisitely precise process. Axonal processes within the nervous system harbor extremely complicated internal regulatory mechanisms that enable each of them to respond to environmental cues in a unique way, so that every single neuron has an exact stereotypical localization and axonal projection pattern. Receptors and adhesion molecules expressed on axonal membranes will determine their guidance properties. Axon guidance is thought to be controlled to a large extent through transcription factor codes. These codes would be responsible for the deployment of specific guidance receptors and adhesion molecules on axonal membranes to allow them to reach their targets. Although families of transcriptional regulators as well as families of guidance molecules have been conserved across evolution, their relationships seem to have developed independently. This review focuses on the midline and the neuromuscular system in both vertebrates and Drosophila in which such relationships have been particularly well studied.
Collapse
Affiliation(s)
- Aref Arzan Zarin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Jamshid Asadzadeh
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Juan-Pablo Labrador
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
222
|
A comparison of midline and tracheal gene regulation during Drosophila development. PLoS One 2014; 9:e85518. [PMID: 24465586 PMCID: PMC3896416 DOI: 10.1371/journal.pone.0085518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 11/28/2013] [Indexed: 11/19/2022] Open
Abstract
Within the Drosophila embryo, two related bHLH-PAS proteins, Single-minded and Trachealess, control development of the central nervous system midline and the trachea, respectively. These two proteins are bHLH-PAS transcription factors and independently form heterodimers with another bHLH-PAS protein, Tango. During early embryogenesis, expression of Single-minded is restricted to the midline and Trachealess to the trachea and salivary glands, whereas Tango is ubiquitously expressed. Both Single-minded/Tango and Trachealess/Tango heterodimers bind to the same DNA sequence, called the CNS midline element (CME) within cis-regulatory sequences of downstream target genes. While Single-minded/Tango and Trachealess/Tango activate some of the same genes in their respective tissues during embryogenesis, they also activate a number of different genes restricted to only certain tissues. The goal of this research is to understand how these two related heterodimers bind different enhancers to activate different genes, thereby regulating the development of functionally diverse tissues. Existing data indicates that Single-minded and Trachealess may bind to different co-factors restricted to various tissues, causing them to interact with the CME only within certain sequence contexts. This would lead to the activation of different target genes in different cell types. To understand how the context surrounding the CME is recognized by different bHLH-PAS heterodimers and their co-factors, we identified and analyzed novel enhancers that drive midline and/or tracheal expression and compared them to previously characterized enhancers. In addition, we tested expression of synthetic reporter genes containing the CME flanked by different sequences. Taken together, these experiments identify elements overrepresented within midline and tracheal enhancers and suggest that sequences immediately surrounding a CME help dictate whether a gene is expressed in the midline or trachea.
Collapse
|
223
|
Abstract
Roundabout receptors (Robo) and their Slit ligands were discovered in the 1990s and found to be key players in axon guidance. Slit was initially described s an extracellular matrix protein that was expressed by midline glia in Drosophila. A few years later, it was shown that, in vertebrates and invertebrates, Slits acted as chemorepellents for axons crossing the midline. Robo proteins were originally discovered in Drosophila in a mutant screen for genes involved in the regulation of midline crossing. This ligand-receptor pair has since been implicated in a variety of other neuronal and non-neuronal processes ranging from cell migration to angiogenesis, tumourigenesis and even organogenesis of tissues such as kidneys, lungs and breasts.
Collapse
|
224
|
Dadds MR, Moul C, Cauchi A, Hawes DJ, Brennan J. Replication of a ROBO2 polymorphism associated with conduct problems but not psychopathic tendencies in children. Psychiatr Genet 2013; 23:251-4. [DOI: 10.1097/ypg.0b013e3283650f83] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
225
|
Moustaqim-Barrette A, Lin YQ, Pradhan S, Neely GG, Bellen HJ, Tsuda H. The amyotrophic lateral sclerosis 8 protein, VAP, is required for ER protein quality control. Hum Mol Genet 2013; 23:1975-89. [PMID: 24271015 DOI: 10.1093/hmg/ddt594] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A familial form of Amyotrophic lateral sclerosis (ALS8) is caused by a point mutation (P56S) in the vesicle-associated membrane protein associated protein B (VapB). Human VapB and Drosophila Vap-33-1 (Vap) are homologous type II transmembrane proteins that are localized to the ER. However, the precise consequences of the defects associated with the P56S mutation in the endoplasmic reticulum (ER) and its role in the pathology of ALS are not well understood. Here we show that Vap is required for ER protein quality control (ERQC). Loss of Vap in flies shows various ERQC associated defects, including protein accumulation, ER expansion, and ER stress. We also show that wild type Vap, but not the ALS8 mutant Vap, interacts with a lipid-binding protein, Oxysterol binding protein (Osbp), and that Vap is required for the proper localization of Osbp to the ER. Restoring the expression of Osbp in the ER suppresses the defects associated with loss of Vap and the ALS8 mutant Vap. Hence, we propose that the ALS8 mutation impairs the interaction of Vap with Osbp, resulting in hypomorphic defects that might contribute to the pathology of ALS8.
Collapse
Affiliation(s)
- Amina Moustaqim-Barrette
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal H3A 2B4 Canada
| | | | | | | | | | | |
Collapse
|
226
|
Yang YHC, Manning Fox JE, Zhang KL, MacDonald PE, Johnson JD. Intraislet SLIT-ROBO signaling is required for beta-cell survival and potentiates insulin secretion. Proc Natl Acad Sci U S A 2013; 110:16480-5. [PMID: 24065825 PMCID: PMC3799350 DOI: 10.1073/pnas.1214312110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously cataloged putative autocrine/paracrine signaling loops in pancreatic islets, including factors best known for their roles in axon guidance. Emerging evidence points to nonneuronal roles for these factors, including the Slit-Roundabout receptor (Robo) family, in cell growth, migration, and survival. We found SLIT1 and SLIT3 in both beta cells and alpha cells, whereas SLIT2 was predominantly expressed in beta cells. ROBO1 and ROBO2 receptors were detected in beta and alpha cells. Remarkably, even modest knockdown of Slit production resulted in significant beta-cell death, demonstrating a critical autocrine/paracrine survival role for this pathway. Indeed, recombinant SLIT1, SLIT2, and SLIT3 decreased serum deprivation, cytokine, and thapsigargin-induced cell death under hyperglycemic conditions. SLIT treatment also induced a gradual release of endoplasmic reticulum luminal Ca(2+), suggesting a unique molecular mechanism capable of protecting beta cells from endoplasmic reticulum stress-induced apoptosis. SLIT treatment was also associated with rapid actin remodeling. SLITs potentiated glucose-stimulated insulin secretion and increased the frequency of glucose-induced Ca(2+) oscillations. These observations point to unexpected roles for local Slit secretion in the survival and function of pancreatic beta cells. Because diabetes results from a deficiency in functional beta-cell mass, these studies may contribute to therapeutic approaches for improving beta-cell survival and function.
Collapse
Affiliation(s)
- Yu Hsuan Carol Yang
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3; and
| | - Jocelyn E. Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - Kevin L. Zhang
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3; and
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3; and
| |
Collapse
|
227
|
Nesler KR, Sand RI, Symmes BA, Pradhan SJ, Boin NG, Laun AE, Barbee SA. The miRNA pathway controls rapid changes in activity-dependent synaptic structure at the Drosophila melanogaster neuromuscular junction. PLoS One 2013; 8:e68385. [PMID: 23844193 PMCID: PMC3699548 DOI: 10.1371/journal.pone.0068385] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/29/2013] [Indexed: 01/12/2023] Open
Abstract
It is widely accepted that long-term changes in synapse structure and function are mediated by rapid activity-dependent gene transcription and new protein synthesis. A growing amount of evidence suggests that the microRNA (miRNA) pathway plays an important role in coordinating these processes. Despite recent advances in this field, there remains a critical need to identify specific activity-regulated miRNAs as well as their key messenger RNA (mRNA) targets. To address these questions, we used the larval Drosophila melanogaster neuromuscular junction (NMJ) as a model synapse in which to identify novel miRNA-mediated mechanisms that control activity-dependent synaptic growth. First, we developed a screen to identify miRNAs differentially regulated in the larval CNS following spaced synaptic stimulation. Surprisingly, we identified five miRNAs (miRs-1, -8, -289, -314, and -958) that were significantly downregulated by activity. Neuronal misexpression of three miRNAs (miRs-8, -289, and -958) suppressed activity-dependent synaptic growth suggesting that these miRNAs control the translation of biologically relevant target mRNAs. Functional annotation cluster analysis revealed that putative targets of miRs-8 and -289 are significantly enriched in clusters involved in the control of neuronal processes including axon development, pathfinding, and growth. In support of this, miR-8 regulated the expression of a wingless 3′UTR (wg 3′ untranslated region) reporter in vitro. Wg is an important presynaptic regulatory protein required for activity-dependent axon terminal growth at the fly NMJ. In conclusion, our results are consistent with a model where key activity-regulated miRNAs are required to coordinate the expression of genes involved in activity-dependent synaptogenesis.
Collapse
Affiliation(s)
- Katherine R. Nesler
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, United States of America
| | - Robert I. Sand
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, United States of America
| | - Breanna A. Symmes
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, United States of America
| | - Sarala J. Pradhan
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, United States of America
| | - Nathan G. Boin
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, United States of America
| | - Anna E. Laun
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, United States of America
| | - Scott A. Barbee
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, United States of America
- Molecular and Cellular Biophysics Program, University of Denver, Denver, Colorado, United States of America
- Colorado Intellectual and Developmental Disabilities Research Center (IDDRC), University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
228
|
Abstract
PURPOSE OF REVIEW Vascular injury is a common contributor to, and complication of, kidney disease. Given the prevalence and importance of vascular injury in renal disease, interest has grown in a novel signaling pathway first identified in developing neurons that also has widespread effects on vascular structure and function, comprising the secreted ligand Slit2 and its cognate Roundabout (Robo) receptors. RECENT FINDINGS Although initially discovered as a modulator of neuronal migration during development, the Slit2-Robo signaling pathway has recently been found to regulate the structure and function of various subsets of vascular cells and circulating hematopoietic cells that interact with the vessel wall. Through the regulation of intermediate signaling enzymes that control the organization of the actin cytoskeleton, Slit2 and its Robo receptors regulate such diverse processes as angiogenesis, endothelial permeability, vascular smooth muscle cell migration, and thrombosis. SUMMARY Recent advances in our understanding of Slit2-Robo signaling have provided novel insights into the pathophysiology of vascular injury that is commonly associated with renal disease. These insights have created potential opportunities for the development of new therapies targeting vascular injury associated with renal disease.
Collapse
Affiliation(s)
- Darren A Yuen
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
229
|
Yang B, Peng G, Gao J. Expression of unc5 family genes in zebrafish brain during embryonic development. Gene Expr Patterns 2013; 13:311-8. [PMID: 23806443 DOI: 10.1016/j.gep.2013.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/17/2013] [Accepted: 06/13/2013] [Indexed: 01/18/2023]
Abstract
UNC5 family proteins are trans-membrane receptors which mediate both repulsion and attraction signals for the axonal growth cones. The UNC5 family proteins may also play critical roles in angiogenesis and carcinogenesis. Here we have determined the temporal and spatial expression patterns of unc5 gene family members (unc5a, unc5b, unc5c, unc5da and unc5db) by RT-PCR and in situ hybridization. RT-PCR results showed that all transcripts except unc5b were expressed maternally. While unc5b and unc5c transcript was detected at all time points between shield stage and 48h post fertilization (hpf), unc5a, unc5da and unc5db showed expression at 24hpf and later time points. In situ hybridization analysis revealed that unc5a, unc5da and unc5db transcripts were expressed in the telencephalon, parts of thalamus and hindbrain between 24 and 48hpf. The expression patterns of unc5a-unc5da and unc5a-unc5db in the telencephalon showed substantial overlap by fluorescent in situ hybridization. Unc5b showed expression in the eye region, epiphysis and thalamus. Unc5c showed expression in the roof plate, the hindbrain and the mouth region. Our results provide a starting point to uncovering roles of unc5 gene family in zebrafish forebrain development and axonal outgrowth or guidance.
Collapse
Affiliation(s)
- Bin Yang
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | | | | |
Collapse
|
230
|
Abstract
Heart development involves the precise orchestration of gene expression during cardiac differentiation and morphogenesis by evolutionarily conserved regulatory networks. miRNAs (microRNAs) play important roles in the post-transcriptional regulation of gene expression, and recent studies have established critical functions for these tiny RNAs in almost every facet of cardiac development and disease. The realization that miRNAs are amenable to therapeutic manipulation has also generated considerable interest in the potential of miRNA-based drugs for the treatment of a number of human diseases, including cardiovascular disease. In the present review, I discuss well-established and emerging roles of miRNAs in cardiac development, their relevance to congenital heart disease and unresolved questions in the field for future investigation, as well as emerging therapeutic possibilities for cardiac regeneration.
Collapse
|
231
|
Chaturvedi S, Yuen DA, Bajwa A, Huang YW, Sokollik C, Huang L, Lam GY, Tole S, Liu GY, Pan J, Chan L, Sokolskyy Y, Puthia M, Godaly G, John R, Wang C, Lee WL, Brumell JH, Okusa MD, Robinson LA. Slit2 prevents neutrophil recruitment and renal ischemia-reperfusion injury. J Am Soc Nephrol 2013; 24:1274-87. [PMID: 23766538 DOI: 10.1681/asn.2012090890] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Neutrophils recruited to the postischemic kidney contribute to the pathogenesis of ischemia-reperfusion injury (IRI), which is the most common cause of renal failure among hospitalized patients. The Slit family of secreted proteins inhibits chemotaxis of leukocytes by preventing activation of Rho-family GTPases, suggesting that members of this family might modulate the recruitment of neutrophils and the resulting IRI. Here, in static and microfluidic shear assays, Slit2 inhibited multiple steps required for the infiltration of neutrophils into tissue. Specifically, Slit2 blocked the capture and firm adhesion of human neutrophils to inflamed vascular endothelial barriers as well as their subsequent transmigration. To examine whether these observations were relevant to renal IRI, we administered Slit2 to mice before bilateral clamping of the renal pedicles. Assessed at 18 hours after reperfusion, Slit2 significantly inhibited renal tubular necrosis, neutrophil and macrophage infiltration, and rise in plasma creatinine. In vitro, Slit2 did not impair the protective functions of neutrophils, including phagocytosis and superoxide production, and did not inhibit neutrophils from killing the extracellular pathogen Staphylococcus aureus. In vivo, administration of Slit2 did not attenuate neutrophil recruitment or bacterial clearance in mice with ascending Escherichia coli urinary tract infections and did not increase the bacterial load in the livers of mice infected with the intracellular pathogen Listeria monocytogenes. Collectively, these results suggest that Slit2 may hold promise as a strategy to combat renal IRI without compromising the protective innate immune response.
Collapse
Affiliation(s)
- Swasti Chaturvedi
- Division of Nephrology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Gangaraju S, Sultan K, Whitehead SN, Nilchi L, Slinn J, Li X, Hou ST. Cerebral endothelial expression of Robo1 affects brain infiltration of polymorphonuclear neutrophils during mouse stroke recovery. Neurobiol Dis 2013; 54:24-31. [PMID: 23473743 DOI: 10.1016/j.nbd.2013.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 12/13/2022] Open
Abstract
Increased brain infiltration of polymorphonuclear neutrophils (PMNs) occurs early after stroke and is important in eliciting brain inflammatory response during stroke recovery. In order to understand the molecular mechanism of PMN entry, we investigated the expression and requirement for Slit1, a chemorepulsive guidance cue, and its cognate receptor, Robo1, in a long-term recovery mouse model of cerebral ischemia. The expression levels of Robo1 were significantly decreased bilaterally at 24h following reperfusion. Robo1 expression levels remained suppressed in the ipsilateral cortex until 28d post MCAO-reperfusion, while the levels of Robo1 in the contralateral cortex recovered to the level of sham-operated mouse by 7d reperfusion. Circulating PMNs express high levels of Slit1, but not Robo1. Influx of PMNs into the ischemic core area occurred early (24h) after cerebral ischemia, when endothelial Robo1 expression was significantly reduced in the ischemic brain, indicating that Robo1 may form a repulsive barrier to PMN entry into the brain parenchyma. Indeed, blocking Slit1 on PMNs in a transwell migration assay in combination with an antibody blocking of Robo1 on human umbilical vein endothelial cells (HUVEC) significantly increased PMN transmigration during oxygen glucose deprivation, an in vitro model of ischemia. Collectively, in the normal brain, the presence of Slit1 on PMNs, and Robo1 on cerebral endothelial cells, generated a repulsive force to prevent the infiltration of PMNs into the brain. During stroke recovery, a transient reduction in Robo1 expression on the cerebral endothelial cells allowed the uncontrolled infiltration of Slit1-expressing PMNs into the brain causing inflammatory reactions.
Collapse
Affiliation(s)
- Sandhya Gangaraju
- Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Bldg M54, Ottawa, ON K1A 0R6, Canada
| | | | | | | | | | | | | |
Collapse
|
233
|
Gonda Y, Andrews WD, Tabata H, Namba T, Parnavelas JG, Nakajima K, Kohsaka S, Hanashima C, Uchino S. Robo1 regulates the migration and laminar distribution of upper-layer pyramidal neurons of the cerebral cortex. Cereb Cortex 2013; 23:1495-508. [PMID: 22661412 PMCID: PMC3643720 DOI: 10.1093/cercor/bhs141] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Laminar organization is a key feature of the mammalian cerebral cortex, but the mechanisms by which final positioning and "inside-out" distribution of neurons are determined remain largely unknown. Here, we demonstrate that Robo1, a member of the family of Roundabout receptors, regulates the correct positioning of layers II/III pyramidal neurons in the neocortex. Specifically, we used RNA interference in mice to suppress the expression of Robo1 in a subset of layers II/III neurons, and observed the positions of these cells at distinct developmental stages. In contrast to control neurons that migrated toward the pial surface by P1, Robo1-suppressed neurons exhibited a delay in entering the cortical plate at respective stages. Unexpectedly, after the first postnatal week, these neurons were predominantly located in the upper part of layers II/III, in contrast to control cells that were distributed throughout these layers. Sequential electroporation studies revealed that Robo1-suppressed cells failed to establish the characteristic inside-out neuronal distribution and, instead, they accumulated beneath the marginal zone regardless of their birthdate. These results demonstrate that Robo receptors play a crucial role in neocortical lamination and particularly in the positioning of layers II/III pyramidal neurons.
Collapse
Affiliation(s)
- Yuko Gonda
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Abstract
Commissural circuits are brain and spinal cord connections which interconnect the two sides of the central nervous system (CNS). They play essential roles in brain and spinal cord processing, ensuring left-right coordination and synchronization of information and commands. During the formation of neuronal circuits, all commissural neurons of the central nervous system must accomplish a common task, which is to project their axon onto the other side of the nervous system, across the midline that delineates the two halves of the CNS. How this task is accomplished has been the topic of extensive studies over the last past 20 years and remains one of the best models to investigate axon guidance mechanisms. In the first part of this review, I will introduce the commissural circuits, their general role in the physiology of the nervous system, and their recognized or suspected pathogenic properties in human diseases. In the second part of the review, I will concentrate on two commissural circuits, the spinal commissures and the corpus callosum, to detail the cellular and molecular mechanisms governing their formation, mostly during their navigation at the midline.
Collapse
|
235
|
van den Brink DM, Banerji O, Tear G. Commissureless regulation of axon outgrowth across the midline is independent of Rab function. PLoS One 2013; 8:e64427. [PMID: 23696892 PMCID: PMC3655966 DOI: 10.1371/journal.pone.0064427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/15/2013] [Indexed: 12/13/2022] Open
Abstract
Nervous system function requires that neurons within neural circuits are connected together precisely. These connections form during the process of axon guidance whereby each neuron extends an axon that migrates, often large distances, through a complex environment to reach its synaptic target. This task can be simplified by utilising intermediate targets to divide the route into smaller sections. This requires that axons adapt their behaviour as they migrate towards and away from intermediate targets. In the central nervous system the midline acts as an intermediate target for commissural axons. In Drosophila commissural axons switch from attraction towards to extension away from the midline by regulating the levels of the Roundabout receptor on their cell surface. This is achieved by Commissureless which directs Roundabout to an intracellular compartment in the soma prior to reaching the midline. Once across the midline Roundabout is allowed to reach the surface and acts as a receptor for the repellent ligand Slit that is secreted by cells at the midline. Here we investigated candidate intracellular mechanisms that may facilitate the intracellular targeting of Commissureless and Roundabout within the soma of commissural neurons. Using modified forms of Commissureless or Rabs we show that neither ubiquitination nor Rab activity are necessary for the intracellular targeting of Commissureless. In addition we reveal that axon outgrowth of many populations of neurons within the Drosophila central nervous system is also independent of Rab activity.
Collapse
Affiliation(s)
- Daan M. van den Brink
- Medical Research Council Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Oishik Banerji
- Medical Research Council Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Guy Tear
- Medical Research Council Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
236
|
Wang G, Li Y, Wang XY, Han Z, Chuai M, Wang LJ, Ho Lee KK, Geng JG, Yang X. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation. Exp Cell Res 2013; 319:1083-93. [PMID: 23438940 DOI: 10.1016/j.yexcr.2013.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 02/05/2013] [Accepted: 02/08/2013] [Indexed: 12/27/2022]
Abstract
Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes to block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1(+) migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug(+) pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1(+) migrating NCCs but reduced Pax7 expression and fewer Slug(+) pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube development by tightly coordinating cell proliferation and differentiation during neurulation.
Collapse
Affiliation(s)
- Guang Wang
- Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Src inhibits midline axon crossing independent of Frazzled/Deleted in Colorectal Carcinoma (DCC) receptor tyrosine phosphorylation. J Neurosci 2013; 33:305-14. [PMID: 23283343 DOI: 10.1523/jneurosci.2756-12.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The phylogenetically conserved Netrin family of chemoattractants signal outgrowth and attractive turning of commissural axons through the Deleted in Colorectal Carcinoma (DCC) family of receptors. Src family kinases are thought to be major signaling effectors of Netrin/DCC. In vertebrates, Src and the closely related Fyn kinases phosphorylate DCC and form a receptor-bound signaling complex leading to activation of downstream effectors. Here we show that, in the Drosophila embryonic CNS, Src kinases are dispensable for midline attraction of commissural axons. Consistent with this observation, tyrosine phosphorylation of the Netrin receptor DCC or its Drosophila ortholog, Frazzled, is not necessary for attraction to Netrin. Moreover, we uncover an unexpected function of Src kinases: inhibition of midline axon crossing through a novel mechanism. We propose that distinct signaling outputs must exist for midline axon crossing independent of Src kinases in commissural neurons.
Collapse
|
238
|
Mirza R, Kivrak BG, Erzurumlu RS. Cooperative slit and netrin signaling in contralateralization of the mouse trigeminothalamic pathway. J Comp Neurol 2013; 521:312-25. [PMID: 22806432 PMCID: PMC3491114 DOI: 10.1002/cne.23188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/24/2012] [Accepted: 07/06/2012] [Indexed: 12/13/2022]
Abstract
Ascending somatosensory pathways are crossed pathways representing each side of the body in the contralateral neocortex. The principal sensory nucleus of the trigeminal nerve (PrV) relays the facial sensations to the contralateral somatosensory cortex via the ventrobasal thalamus. In the companion article (Kivrak and Erzurumlu [2012] J. Comp. Neurol. 12-0013) we described the normal development of the trigeminal lemniscal pathway in the mouse. In this study we investigated the role of midline axon navigation signals, the netrin and slit proteins. In situ hybridization assays revealed that both netrin and slit mRNAs are expressed along the midline facing the PrV axons and their receptors are expressed in developing PrV neurons. In wild-type mouse embryos, PrV axons cross the midline and take a sharp rostral turn heading toward the contralateral thalamus. Examination of trigeminal lemniscal axons in dcc knockout mice revealed absence of midline crossing between E11 and E15. However, a few axons crossed the midline at E17 and reached the contralateral thalamus, resulting in a bilateral PrV lemniscal pathway at P0. We also found that slit1, -2 or -3 single or double knockout mice have impaired development of the trigeminal-lemniscal pathway. These include axon stalling along the midline, running within the midline, and recrossing of axons back to the site of origin. Collectively, our studies indicate a cooperative role for netrin and slit proteins in midline attraction and crossing behavior of the ascending facial somatosensory projections during development.
Collapse
Affiliation(s)
- Rusella Mirza
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
239
|
Domyan ET, Branchfield K, Gibson DA, Naiche L, Lewandoski M, Tessier-Lavigne M, Ma L, Sun X. Roundabout receptors are critical for foregut separation from the body wall. Dev Cell 2013; 24:52-63. [PMID: 23328398 PMCID: PMC3551250 DOI: 10.1016/j.devcel.2012.11.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 10/27/2012] [Accepted: 11/27/2012] [Indexed: 01/08/2023]
Abstract
In mammals, precise placement of organs is essential for survival. We show here that inactivation of Roundabout (Robo) receptors 1 and 2 in mice leads to mispositioning of the stomach in the thoracic instead of the abdominal cavity, which likely contributes to poor lung inflation and lethality at birth, reminiscent of congenital diaphragmatic hernia (CDH) cases in humans. Unexpectedly, in Robo mutant mice, the primary defect preceding organ misplacement and diaphragm malformation is a delayed separation of foregut from the dorsal body wall. Foregut separation is a rarely considered morphogenetic event, and our data indicate that it occurs via repulsion of Robo-expressing foregut cells away from the Slit ligand source. In humans, genomic lesions containing Robo genes have been documented in CDH. Our findings suggest that separation of the foregut from the body wall is genetically controlled and that defects in this event may contribute to CDH.
Collapse
Affiliation(s)
- Eric Thomas Domyan
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kelsey Branchfield
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daniel A. Gibson
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - L.A. Naiche
- Cancer and Developmental Biology Lab, National Cancer Institute, Frederick, MD 21702, USA
| | - Mark Lewandoski
- Cancer and Developmental Biology Lab, National Cancer Institute, Frederick, MD 21702, USA
| | | | - Le Ma
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
240
|
Raskind WH, Peter B, Richards T, Eckert MM, Berninger VW. The genetics of reading disabilities: from phenotypes to candidate genes. Front Psychol 2013; 3:601. [PMID: 23308072 PMCID: PMC3538356 DOI: 10.3389/fpsyg.2012.00601] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/18/2012] [Indexed: 12/19/2022] Open
Abstract
This article provides an overview of (a) issues in definition and diagnosis of specific reading disabilities at the behavioral level that may occur in different constellations of developmental and phenotypic profiles (patterns); (b) rapidly expanding research on genetic heterogeneity and gene candidates for dyslexia and other reading disabilities; (c) emerging research on gene-brain relationships; and (d) current understanding of epigenetic mechanisms whereby environmental events may alter behavioral expression of genetic variations. A glossary of genetic terms (denoted by bold font) is provided for readers not familiar with the technical terms.
Collapse
Affiliation(s)
- Wendy H Raskind
- Department of Medicine, University of Washington Seattle, WA, USA ; Department of Psychiatry and Behavioral Sciences, University of Washington Seattle, WA, USA
| | | | | | | | | |
Collapse
|
241
|
Byun J, Kim BT, Kim YT, Jiao Z, Hur EM, Zhou FQ. Slit2 inactivates GSK3β to signal neurite outgrowth inhibition. PLoS One 2012; 7:e51895. [PMID: 23284807 PMCID: PMC3526488 DOI: 10.1371/journal.pone.0051895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 11/09/2012] [Indexed: 01/29/2023] Open
Abstract
Slit molecules comprise one of the four canonical families of axon guidance cues that steer the growth cone in the developing nervous system. Apart from their role in axon pathfinding, emerging lines of evidence suggest that a wide range of cellular processes are regulated by Slit, ranging from branch formation and fasciculation during neurite outgrowth to tumor progression and to angiogenesis. However, the molecular and cellular mechanisms downstream of Slit remain largely unknown, in part, because of a lack of a readily manipulatable system that produces easily identifiable traits in response to Slit. The present study demonstrates the feasibility of using the cell line CAD as an assay system to dissect the signaling pathways triggered by Slit. Here, we show that CAD cells express receptors for Slit (Robo1 and Robo2) and that CAD cells respond to nanomolar concentrations of Slit2 by markedly decelerating the rate of process extension. Using this system, we reveal that Slit2 inactivates GSK3β and that inhibition of GSK3β is required for Slit2 to inhibit process outgrowth. Furthermore, we show that Slit2 induces GSK3β phosphorylation and inhibits neurite outgrowth in adult dorsal root ganglion neurons, validating Slit2 signaling in primary neurons. Given that CAD cells can be conveniently manipulated using standard molecular biological methods and that the process extension phenotype regulated by Slit2 can be readily traced and quantified, the use of a cell line CAD will facilitate the identification of downstream effectors and elucidation of signaling cascade triggered by Slit.
Collapse
Affiliation(s)
- Justin Byun
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Bo Taek Kim
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yun Tai Kim
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Korea Food Research Institute, Seongnam, Republic of Korea
| | - Zhongxian Jiao
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Eun-Mi Hur
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- * E-mail: (F-QZ); (E-MH)
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (F-QZ); (E-MH)
| |
Collapse
|
242
|
Yang T, Terman JR. Regulating small G protein signaling to coordinate axon adhesion and repulsion. Small GTPases 2012; 4:34-41. [PMID: 23247636 DOI: 10.4161/sgtp.22765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Small GTPases play critical roles in diverse biological events including regulating both the cytoskeletal and adhesive properties of cells. The importance of small GTPases to these events stems from their ability to be turned on and off, respectively, by specific GEFs and GAPs. In neurons, for example, regulation of small GTPase activity by extracellular guidance cues controls axonal and dendritic process shape, extension and navigation. Here, we discuss recent findings that indicate a specific regulator of small GTPase signaling, the Plexin transmembrane GAP, is differentially controlled by specific extracellular cues to guide growing axons. In particular, Plexins are receptors for one of the largest families of axon guidance cues, Semaphorins and negatively regulate cell morphology and motility by serving as GAPs for Ras/Rap family GTPases. Recent observations reveal that Plexin's GAP activity is controlled by the cAMP-dependent protein kinase (PKA), which phosphorylates Plexin and generates a binding site for the phospho-serine/threonine binding protein 14-3-3ε. This PKA-mediated Plexin-14-3-3ε interaction prevents Plexin from associating with its GTPase substrate, and thus antagonizes Semaphorin signaling. We now further examine these interactions and how they provide a new logic by which axon guidance signaling pathways over-ride one another to steer growing axons. We also further explore how Plexin interacting proteins, including Ras, PKA and 14-3-3 may interact with the Plexin GAP domain. Our observations also further indicate that 14-3-3 proteins may have conserved roles in the regulation of GTPase activity.
Collapse
Affiliation(s)
- Taehong Yang
- Departments of Neuroscience and Pharmacology; The University of Texas Southwestern Medical Center; Dallas, TX USA
| | | |
Collapse
|
243
|
Robo2--slit and Dcc--netrin1 coordinate neuron axonal pathfinding within the embryonic axon tracts. J Neurosci 2012; 32:12589-602. [PMID: 22956848 DOI: 10.1523/jneurosci.6518-11.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In the embryonic vertebrate brain, early born neurons establish highly stereotyped embryonic axonal tracts along which the neuronal interconnections form. To understand the mechanism underlying neuron axonal pathfinding within the embryonic scaffold of axon tracts, we studied zebrafish anterior dorsal telencephalic (ADt) neuron development. While previous studies suggest the ADt neuronal axons extend along a commissural tract [anterior commissure (AC)] and a descending ipsilateral tract [supraoptic tract (SOT)], it is unclear whether individual ADt neuronal axons choose specific projection paths at the intersection between the AC and the SOT. We labeled individual ADt neurons using a forebrain-specific promoter to drive expression of fluorescent proteins. We found the ADt axonal projection patterns were heterogeneous and correlated with their soma positions. Our results suggest that cell intrinsic differences along the dorsal ventral axis of the telencephalon regulate the axonal projection choices. Next, we determined that the guidance receptors roundabout2 (Robo2) and deleted in colorectal cancer (Dcc) were differentially expressed in the ADt neurons. We showed that knocking down Robo2 function by injecting antisense morpholino oligonucleotides abolished the ipsilateral SOT originating from the ADt neurons. Knocking down Dcc function did not prevent formation of the AC and the SOT. In contrast, the AC was specifically reduced when Netrin1 function was knocked down. Further mechanistic studies suggested that Robo2 responded to the repellent Slit signals and suppressed the attractive Netrin signals. These findings demonstrate how Robo2-Slit and Dcc-Netrin coordinate the axonal projection choices of the developing neurons in the vertebrate forebrain.
Collapse
|
244
|
Philipp M, Niederkofler V, Debrunner M, Alther T, Kunz B, Stoeckli ET. RabGDI controls axonal midline crossing by regulating Robo1 surface expression. Neural Dev 2012; 7:36. [PMID: 23140504 PMCID: PMC3520763 DOI: 10.1186/1749-8104-7-36] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Axons navigate to their future synaptic targets with the help of choice points, intermediate targets that express axon guidance cues. Once they reach a choice point, axons need to switch their response from attraction to repulsion in order to move on with the next stage of their journey. The mechanisms underlying the change in axonal responsiveness are poorly understood. Commissural axons become sensitive to the repulsive activity of Slits when they cross the ventral midline of the CNS. Responsiveness to Slits depends on surface expression of Robo receptors. In Drosophila, Commissureless (Comm) plays a crucial regulatory role in midline crossing by keeping Robo levels low on precommissural axons. Interestingly, to date no vertebrate homolog of comm has been identified. Robo3/Rig1 has been shown to control Slit sensitivity before the midline, but without affecting Robo1 surface expression. RESULTS We had identified RabGDI, a gene linked to human mental retardation and an essential component of the vesicle fusion machinery, in a screen for differentially expressed floor-plate genes. Downregulation of RabGDI by in ovo RNAi caused commissural axons to stall in the floor plate, phenocopying the effect observed after downregulation of Robo1. Conversely, premature expression of RabGDI prevented commissural axons from entering the floor plate. Furthermore, RabGDI triggered Robo1 surface expression in cultured commissural neurons. Taken together, our results identify RabGDI as a component of the switching mechanism that is required for commissural axons to change their response from attraction to repulsion at the intermediate target. CONCLUSION RabGDI takes over the functional role of fly Comm by regulating the surface expression of Robo1 on commissural axons in vertebrates. This in turn allows commissural axons to switch from attraction to repulsion at the midline of the spinal cord.
Collapse
Affiliation(s)
- Melanie Philipp
- Institute for Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| | | | - Marc Debrunner
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich, CH, 8057, Switzerland
| | - Tobias Alther
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich, CH, 8057, Switzerland
| | - Beat Kunz
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich, CH, 8057, Switzerland
| | - Esther T Stoeckli
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich, CH, 8057, Switzerland
| |
Collapse
|
245
|
Prasad A, Kuzontkoski PM, Shrivastava A, Zhu W, Li DY, Groopman JE. Slit2N/Robo1 inhibit HIV-gp120-induced migration and podosome formation in immature dendritic cells by sequestering LSP1 and WASp. PLoS One 2012; 7:e48854. [PMID: 23119100 PMCID: PMC3485365 DOI: 10.1371/journal.pone.0048854] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 10/01/2012] [Indexed: 11/26/2022] Open
Abstract
Cell-mediated transmission and dissemination of sexually-acquired human immunodeficiency virus 1 (HIV-1) in the host involves the migration of immature dendritic cells (iDCs). iDCs migrate in response to the HIV-1 envelope protein, gp120, and inhibiting such migration may limit the mucosal transmission of HIV-1. In this study, we elucidated the mechanism of HIV-1-gp120-induced transendothelial migration of iDCs. We found that gp120 enhanced the binding of Wiskott-Aldrich Syndrome protein (WASp) and the Actin-Related Protein 2/3 (Arp2/3) complex with β-actin, an interaction essential for the proper formation of podosomes, specialized adhesion structures required for the migration of iDCs through different tissues. We further identified Leukocyte-Specific Protein 1 (LSP1) as a novel component of the WASp-Arp2/3-β-actin complex. Pretreating iDCs with an active fragment of the secretory glycoprotein Slit2 (Slit2N) inhibited HIV-1-gp120-mediated migration and podosome formation, by inducing the cognate receptor Roundabout 1 (Robo1) to bind to and sequester WASp and LSP1 from β-actin. Slit2N treatment also inhibited Src signaling and the activation of several downstream molecules, including Rac1, Pyk2, paxillin, and CDC42, a major regulator of podosome formation. Taken together, our results support a novel mechanism by which Slit2/Robo1 may inhibit the HIV-1-gp120-induced migration of iDCs, thereby restricting dissemination of HIV-1 from mucosal surfaces in the host.
Collapse
Affiliation(s)
- Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paula M. Kuzontkoski
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ashutosh Shrivastava
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Weiquan Zhu
- Department of Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Dean Y. Li
- Department of Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Jerome E. Groopman
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
246
|
Cariboni A, Andrews WD, Memi F, Ypsilanti AR, Zelina P, Chedotal A, Parnavelas JG. Slit2 and Robo3 modulate the migration of GnRH-secreting neurons. Development 2012; 139:3326-31. [PMID: 22912413 PMCID: PMC3424043 DOI: 10.1242/dev.079418] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are born in the nasal placode and migrate along olfactory and vomeronasal axons to reach the forebrain and settle in the hypothalamus, where they control reproduction. The molecular cues that guide their migration have not been fully identified, but are thought to control either cell movement directly or the patterning of their axonal substrates. Using genetically altered mouse models we show that the migration of GnRH neurons is directly modulated by Slit2 and Robo3, members of the axon guidance Slit ligand and Robo receptor families. Mice lacking Slit2 or Robo3 have a reduced number of GnRH neurons in the forebrain, but a normal complement of their supporting axons, pointing to a direct role for these molecules in GnRH neuron migration.
Collapse
Affiliation(s)
- Anna Cariboni
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT UK.
| | | | | | | | | | | | | |
Collapse
|
247
|
Grondona JM, Hoyo-Becerra C, Visser R, Fernández-Llebrez P, López-Ávalos MD. The subcommissural organ and the development of the posterior commissure. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:63-137. [PMID: 22559938 DOI: 10.1016/b978-0-12-394307-1.00002-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Growing axons navigate through the developing brain by means of axon guidance molecules. Intermediate targets producing such signal molecules are used as guideposts to find distal targets. Glial, and sometimes neuronal, midline structures represent intermediate targets when axons cross the midline to reach the contralateral hemisphere. The subcommissural organ (SCO), a specialized neuroepithelium located at the dorsal midline underneath the posterior commissure, releases SCO-spondin, a large glycoprotein belonging to the thrombospondin superfamily that shares molecular domains with axonal pathfinding molecules. Several evidences suggest that the SCO could be involved in the development of the PC. First, both structures display a close spatiotemporal relationship. Second, certain mutants lacking an SCO present an abnormal PC. Third, some axonal guidance molecules are expressed by SCO cells. Finally, SCO cells, the Reissner's fiber (the aggregated form of SCO-spondin), or synthetic peptides from SCO-spondin affect the neurite outgrowth or neuronal aggregation in vitro.
Collapse
Affiliation(s)
- Jesús M Grondona
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Spain.
| | | | | | | | | |
Collapse
|
248
|
Borrell V, Cárdenas A, Ciceri G, Galcerán J, Flames N, Pla R, Nóbrega-Pereira S, García-Frigola C, Peregrín S, Zhao Z, Ma L, Tessier-Lavigne M, Marín O. Slit/Robo signaling modulates the proliferation of central nervous system progenitors. Neuron 2012; 76:338-52. [PMID: 23083737 PMCID: PMC4443924 DOI: 10.1016/j.neuron.2012.08.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2012] [Indexed: 11/23/2022]
Abstract
Neurogenesis relies on a delicate balance between progenitor maintenance and neuronal production. Progenitors divide symmetrically to increase the pool of dividing cells. Subsequently, they divide asymmetrically to self-renew and produce new neurons or, in some brain regions, intermediate progenitor cells (IPCs). Here we report that central nervous system progenitors express Robo1 and Robo2, receptors for Slit proteins that regulate axon guidance, and that absence of these receptors or their ligands leads to loss of ventricular mitoses. Conversely, production of IPCs is enhanced in Robo1/2 and Slit1/2 mutants, suggesting that Slit/Robo signaling modulates the transition between primary and intermediate progenitors. Unexpectedly, these defects do not lead to transient overproduction of neurons, probably because supernumerary IPCs fail to detach from the ventricular lining and cycle very slowly. At the molecular level, the role of Slit/Robo in progenitor cells involves transcriptional activation of the Notch effector Hes1. These findings demonstrate that Robo signaling modulates progenitor cell dynamics in the developing brain.
Collapse
Affiliation(s)
- Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Adrián Cárdenas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Gabriele Ciceri
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Joan Galcerán
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Nuria Flames
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Ramón Pla
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Sandrina Nóbrega-Pereira
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Cristina García-Frigola
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Sandra Peregrín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Zhen Zhao
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Le Ma
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Oscar Marín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| |
Collapse
|
249
|
Patel S, Huang YW, Reheman A, Pluthero FG, Chaturvedi S, Mukovozov IM, Tole S, Liu GY, Li L, Durocher Y, Ni H, Kahr WHA, Robinson LA. The cell motility modulator Slit2 is a potent inhibitor of platelet function. Circulation 2012; 126:1385-95. [PMID: 22865890 DOI: 10.1161/circulationaha.112.105452] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Vascular injury and atherothrombosis involve vessel infiltration by inflammatory leukocytes, migration of medial vascular smooth muscle cells to the intimal layer, and ultimately acute thrombosis. A strategy to simultaneously target these pathological processes has yet to be identified. The secreted protein, Slit2, and its transmembrane receptor, Robo-1, repel neuronal migration in the developing central nervous system. More recently, it has been appreciated that Slit2 impairs chemotaxis of leukocytes and vascular smooth muscle cells toward diverse inflammatory attractants. The effects of Slit2 on platelet function and thrombus formation have never been explored. METHODS AND RESULTS We detected Robo-1 expression in human and murine platelets and megakaryocytes and confirmed its presence via immunofluorescence microscopy and flow cytometry. In both static and shear microfluidic assays, Slit2 impaired platelet adhesion and spreading on diverse extracellular matrix substrates by suppressing activation of Akt. Slit2 also prevented platelet activation on exposure to ADP. In in vivo studies, Slit2 prolonged bleeding times in murine tail bleeding assays. Using intravital microscopy, we found that after mesenteric arteriolar and carotid artery injury, Slit2 delayed vessel occlusion time and prevented the stable formation of occlusive arteriolar thrombi. CONCLUSIONS These data demonstrate that Slit2 is a powerful negative regulator of platelet function and thrombus formation. The ability to simultaneously block multiple events in vascular injury may allow Slit2 to effectively prevent and treat thrombotic disorders such as myocardial infarction and stroke.
Collapse
Affiliation(s)
- Sajedabanu Patel
- The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Gruber HE, Hoelscher GL, Ingram JA, Hanley EN. Genome-wide analysis of pain-, nerve- and neurotrophin -related gene expression in the degenerating human annulus. Mol Pain 2012; 8:63. [PMID: 22963171 PMCID: PMC3495673 DOI: 10.1186/1744-8069-8-63] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/18/2012] [Indexed: 01/22/2023] Open
Abstract
Background In spite of its high clinical relevance, the relationship between disc degeneration and low back pain is still not well understood. Recent studies have shown that genome-wide gene expression studies utilizing ontology searches provide an efficient and valuable methodology for identification of clinically relevant genes. Here we use this approach in analysis of pain-, nerve-, and neurotrophin-related gene expression patterns in specimens of human disc tissue. Control, non-herniated clinical, and herniated clinical specimens of human annulus tissue were studied following Institutional Review Board approval. Results Analyses were performed on more generated (Thompson grade IV and V) discs vs. less degenerated discs (grades I-III), on surgically operated discs vs. control discs, and on herniated vs. control discs. Analyses of more degenerated vs. less degenerated discs identified significant upregulation of well-recognized pain-related genes (bradykinin receptor B1, calcitonin gene-related peptide and catechol-0-methyltransferase). Nerve growth factor was significantly upregulated in surgical vs. control and in herniated vs. control discs. All three analyses also found significant changes in numerous proinflammatory cytokine- and chemokine-related genes. Nerve, neurotrophin and pain-ontology searches identified many matrix, signaling and functional genes which have known importance in the disc. Immunohistochemistry was utilized to confirm the presence of calcitonin gene-related peptide, catechol-0-methyltransferase and bradykinin receptor B1 at the protein level in the human annulus. Conclusions Findings point to the utility of microarray analyses in identification of pain-, neurotrophin and nerve-related genes in the disc, and point to the importance of future work exploring functional interactions between nerve and disc cells in vitro and in vivo. Nerve, pain and neurotrophin ontology searches identified numerous changes in proinflammatory cytokines and chemokines which also have significant relevance to disc biology. Since the degenerating human disc is primarily an avascular tissue site into which disc cells have contributed high levels of proinflammatory cytokines, these substances are not cleared from the tissue and remain there over time. We hypothesize that as nerves grow into the human annulus, they encounter a proinflammatory cytokine-rich milieu which may sensitize nociceptors and exacerbate pain production.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, NC 28232, USA.
| | | | | | | |
Collapse
|