201
|
Emerging role and therapeutic implication of Wnt signaling pathways in liver fibrosis. Gene 2018; 674:57-69. [PMID: 29944952 DOI: 10.1016/j.gene.2018.06.053] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 02/08/2023]
Abstract
Activation of hepatic stellate cells (HSCs) is a pivotal cellular event in liver fibrosis. Therefore, improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for liver fibrosis. Greater knowledge of the role of the Wnt signaling pathway in liver fibrosis could improve understanding of the liver fibrosis pathogenesis. The aim of this review is to describe the present knowledge about the Wnt signaling pathway, which significantly participates in liver fibrosis and HSC activation, and look ahead on new perspectives of Wnt signaling pathway research. Moreover, we will discuss the different interactions with Wnt signaling pathway-regulated liver fibrosis. The Wnt signaling pathway modulates several important aspects of function, including cell proliferation, activation and differentiation. Targeting the Wnt signaling pathway can be a promising direction in liver fibrosis treatment. We discuss new perspectives of Wnt signaling pathway activation in liver fibrosis. For example, antagonist to Wnt and Wnt ligands could inhibit liver fibrosis by regulating Wnt/β-catenin signaling pathway. These findings identify the Wnt signaling pathway as a potentially important for therapeutic targets in liver fibrosis. Future studies are needed in order to find safer and more effective Wnt-based drugs.
Collapse
|
202
|
Lee Y, Kim NH, Cho ES, Yang JH, Cha YH, Kang HE, Yun JS, Cho SB, Lee SH, Paclikova P, Radaszkiewicz TW, Bryja V, Kang CG, Yuk YS, Cha SY, Kim SY, Kim HS, Yook JI. Dishevelled has a YAP nuclear export function in a tumor suppressor context-dependent manner. Nat Commun 2018; 9:2301. [PMID: 29895829 PMCID: PMC5997650 DOI: 10.1038/s41467-018-04757-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 05/22/2018] [Indexed: 02/01/2023] Open
Abstract
Phosphorylation-dependent YAP translocation is a well-known intracellular mechanism of the Hippo pathway; however, the molecular effectors governing YAP cytoplasmic translocation remains undefined. Recent findings indicate that oncogenic YAP paradoxically suppresses Wnt activity. Here, we show that Wnt scaffolding protein Dishevelled (DVL) is responsible for cytosolic translocation of phosphorylated YAP. Mutational inactivation of the nuclear export signal embedded in DVL leads to nuclear YAP retention, with an increase in TEAD transcriptional activity. DVL is also required for YAP subcellular localization induced by E-cadherin, α-catenin, or AMPK activation. Importantly, the nuclear-cytoplasmic trafficking is dependent on the p53-Lats2 or LKB1-AMPK tumor suppressor axes, which determine YAP phosphorylation status. In vivo and clinical data support that the loss of p53 or LKB1 relieves DVL-linked reciprocal inhibition between the Wnt and nuclear YAP activity. Our observations provide mechanistic insights into controlled proliferation coupled with epithelial polarity during development and human cancer. Hippo and Wnt pathways are important for cancer development, and they can cross talk; however, the mechanisms behind this connection are unknown. Here the authors show that DVL (a scaffold protein in the Wnt pathway) regulates the shuttling of YAP (a key component of the Hippo pathway) between cytoplasm and nucleus in specific tumor suppressor contexts.
Collapse
Affiliation(s)
- Yoonmi Lee
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Korea.,Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Nam Hee Kim
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Eunae Sandra Cho
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Ji Hye Yang
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Yong Hoon Cha
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Hee Eun Kang
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Jun Seop Yun
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Sue Bean Cho
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Seon-Hyeong Lee
- Cancer Cell and Molecular Biology Branch, National Cancer Center, Ilsan, 10408, Korea
| | - Petra Paclikova
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Tomasz W Radaszkiewicz
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Vitezslav Bryja
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Chi Gu Kang
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Young Soo Yuk
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - So Young Cha
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Soo-Youl Kim
- Cancer Cell and Molecular Biology Branch, National Cancer Center, Ilsan, 10408, Korea
| | - Hyun Sil Kim
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, 03722, Korea.
| | - Jong In Yook
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Korea.
| |
Collapse
|
203
|
Frizzled-8 integrates Wnt-11 and transforming growth factor-β signaling in prostate cancer. Nat Commun 2018; 9:1747. [PMID: 29717114 PMCID: PMC5931552 DOI: 10.1038/s41467-018-04042-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 03/29/2018] [Indexed: 01/14/2023] Open
Abstract
Wnt-11 promotes cancer cell migration and invasion independently of β-catenin but the receptors involved remain unknown. Here, we provide evidence that FZD8 is a major Wnt-11 receptor in prostate cancer that integrates Wnt-11 and TGF-β signals to promote EMT. FZD8 mRNA is upregulated in multiple prostate cancer datasets and in metastatic cancer cell lines in vitro and in vivo. Analysis of patient samples reveals increased levels of FZD8 in cancer, correlating with Wnt-11. FZD8 co-localizes and co-immunoprecipitates with Wnt-11 and potentiates Wnt-11 activation of ATF2-dependent transcription. FZD8 silencing reduces prostate cancer cell migration, invasion, three-dimensional (3D) organotypic cell growth, expression of EMT-related genes, and TGF-β/Smad-dependent signaling. Mechanistically, FZD8 forms a TGF-β-regulated complex with TGF-β receptors that is mediated by the extracellular domains of FZD8 and TGFBR1. Targeting FZD8 may therefore inhibit aberrant activation of both Wnt and TGF-β signals in prostate cancer. Wnt11 has been shown to play a role in invasion and metastasis of prostate cancer. Here the authors show that in prostate cancer cells Wnt11 signals through the Fzd8 receptor and report an interaction between Fzd8 and TGF-β receptors regulating the transcription of a subset of TGF-beta genes.
Collapse
|
204
|
Direct visualization of the Wntless-induced redistribution of WNT1 in developing chick embryos. Dev Biol 2018; 439:53-64. [PMID: 29715461 DOI: 10.1016/j.ydbio.2018.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
Paracrine Wnt signals are critical regulators of cell proliferation, specification, and differentiation during embryogenesis. Consistent with the discovery that Wnt ligands are post-translationally modified with palmitoleate (a 16 carbon mono-unsaturated fatty acid), our studies show that the vast majority of bioavailable chick WNT1 (cWNT1) produced in stably transfected L cells is cell-associated. Thus, it seems unlikely that the WNT1 signal is propagated by diffusion alone. Unfortunately, the production and transport of vertebrate Wnt proteins has been exceedingly difficult to study as few antibodies are able to detect endogenous Wnt proteins and fixation is known to disrupt the architecture of cells and tissues. Furthermore, vertebrate Wnts have been extraordinarily refractory to tagging. To help overcome these obstacles, we have generated a number of tools that permit the detection of WNT1 in palmitoylation assays and the visualization of chick and zebrafish WNT1 in live cells and tissues. Consistent with previous studies in fixed cells, live imaging of cells and tissues with overexpressed cWNT1-moxGFP shows predominant localization of the protein to a reticulated network that is likely to be the endoplasmic reticulum. As PORCN and WLS are important upstream regulators of Wnt gradient formation, we also undertook the generation of mCherry-tagged variants of both proteins. While co-expression of PORCN-mCherry had no discernible effect on the localization of WNT1-moxGFP, co-expression of WLS-mCherry caused a marked redistribution of WNT1-moxGFP to the cell surface and cellular projections in cultured cells as well as in neural crest and surface ectoderm cells in developing chick embryos. Our studies further establish that the levels of WLS, and not PORCN, are rate limiting with respect to WNT1 trafficking.
Collapse
|
205
|
Tribulo P, Leão BCDS, Lehloenya KC, Mingoti GZ, Hansen PJ. Consequences of endogenous and exogenous WNT signaling for development of the preimplantation bovine embryo. Biol Reprod 2018; 96:1129-1141. [PMID: 28575156 PMCID: PMC5803770 DOI: 10.1093/biolre/iox048] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023] Open
Abstract
The specific role of WNT signaling during preimplantation development remains unclear. Here, we evaluated consequences of activation and inhibition of β-catenin (CTNNB1)-dependent and -independent WNT signaling in the bovine preimplantation embryo. Activation of CTNNB1-mediated WNT signaling by the agonist 2-amino-4-(3,4-(methylenedioxy)benzylamino)-6-(3-methoxyphenyl)pyrimidine (AMBMP) and a glycogen synthase kinase 3 inhibitor reduced development to the blastocyst stage. Moreover, the antagonist of WNT signaling, dickkopf-related protein 1 (DKK1), alleviated the negative effect of AMBMP on development via reduction of CTNNB1. Based on labeling for phospho c-Jun N-terminal kinase, there was no evidence that DKK1 activated the planar cell polarity (PCP) pathway. Inhibition of secretion of endogenous WNTs did not affect development but increased number of cells in the inner cell mass (ICM). In contrast, DKK1 did not affect number of ICM or trophectoderm (TE) cells, suggesting that embryo-derived WNTs regulate ICM proliferation through a mechanism independent of CTNNB1. In addition, DKK1 did not affect the number of cells positive for the transcription factor yes-associated protein 1 (YAP1) involved in TE formation. In fact, DKK1 decreased YAP1. In contrast, exposure of embryos to WNT family member 7A (WNT7A) improved blastocyst development, inhibited the PCP pathway, and did not affect amounts of CTNNB1. Results indicate that embryo-derived WNTs are dispensable for blastocyst formation but participate in regulation of ICM proliferation, likely through a mechanism independent of CTNNB1. The response to AMBMP and WNT7A leads to the hypothesis that maternally derived WNTs can play a positive or negative role in regulation of preimplantation development.
Collapse
Affiliation(s)
- Paula Tribulo
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Beatriz Caetano da Silva Leão
- School of Veterinary Medicine, Laboratory of Reproductive Physiology, UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil and Post-Graduation Program in Veterinary Medicine, School of Agrarian and Veterinarian Sciences, Department of Animal Reproduction, UNESP-Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Khoboso C Lehloenya
- Department of Animal and Wildlife Sciences, University of Pretoria, Pretoria, South Africa
| | - Gisele Zoccal Mingoti
- School of Veterinary Medicine, Laboratory of Reproductive Physiology, UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil and Post-Graduation Program in Veterinary Medicine, School of Agrarian and Veterinarian Sciences, Department of Animal Reproduction, UNESP-Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
206
|
Schlensog M, Magnus L, Heide T, Eschenbruch J, Steib F, Tator M, Kloten V, Rose M, Noetzel E, Gaisa NT, Knüchel R, Dahl E. Epigenetic loss of putative tumor suppressor SFRP3 correlates with poor prognosis of lung adenocarcinoma patients. Epigenetics 2018; 13:214-227. [PMID: 27623992 DOI: 10.1080/15592294.2016.1229730] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Secreted frizzled related protein 3 (SFRP3) contains a cysteine-rich domain (CRD) that shares homology with Frizzled CRD and regulates WNT signaling. Independent studies showed epigenetic silencing of SFRP3 in melanoma and hepatocellular carcinoma. Moreover, a tumor suppressive function of SFRP3 was shown in androgen-independent prostate and gastric cancer cells. The current study is the first to investigate SFRP3 expression and its potential clinical impact on non-small cell lung carcinoma (NSCLC). WNT signaling components present on NSCLC subtypes were preliminary elucidated by expression data of The Cancer Genome Atlas (TCGA). We identified a distinct expression signature of relevant WNT signaling components that differ between adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). Of interest, canonical WNT signaling is predominant in LUAD samples and non-canonical WNT signaling is predominant in LUSC. In line, high SFRP3 expression resulted in beneficial clinical outcome for LUAD but not for LUSC patients. Furthermore, SFRP3 mRNA expression was significantly decreased in NSCLC tissue compared to normal lung samples. TCGA data verified the reduction of SFRP3 in LUAD and LUSC patients. Moreover, DNA hypermethylation of SFRP3 was evaluated in the TCGA methylation dataset resulting in epigenetic inactivation of SFRP3 expression in LUAD, but not in LUSC, and was validated by pyrosequencing of our NSCLC tissue cohort and in vitro demethylation experiments. Immunohistochemistry confirmed SFRP3 protein downregulation in primary NSCLC and indicated abundant expression in normal lung tissue. Two adenocarcinoma gain-of-function models were used to analyze the functional impact of SFRP3 on cell proliferation and regulation of CyclinD1 expression in vitro. Our results indicate that SFRP3 acts as a novel putative tumor suppressor gene in adenocarcinoma of the lung possibly regulating canonical WNT signaling.
Collapse
Affiliation(s)
- Martin Schlensog
- a Institute of Pathology , Medical Faculty of the RWTH Aachen University , Aachen , Germany
| | - Lara Magnus
- a Institute of Pathology , Medical Faculty of the RWTH Aachen University , Aachen , Germany
| | - Timon Heide
- a Institute of Pathology , Medical Faculty of the RWTH Aachen University , Aachen , Germany
| | - Julian Eschenbruch
- a Institute of Pathology , Medical Faculty of the RWTH Aachen University , Aachen , Germany
| | - Florian Steib
- a Institute of Pathology , Medical Faculty of the RWTH Aachen University , Aachen , Germany
| | - Maximilian Tator
- a Institute of Pathology , Medical Faculty of the RWTH Aachen University , Aachen , Germany
| | - Vera Kloten
- a Institute of Pathology , Medical Faculty of the RWTH Aachen University , Aachen , Germany
| | - Michael Rose
- a Institute of Pathology , Medical Faculty of the RWTH Aachen University , Aachen , Germany
| | - Erik Noetzel
- b Institute of Complex Systems, Research Center Jülich , Jülich , Germany
| | - Nadine T Gaisa
- a Institute of Pathology , Medical Faculty of the RWTH Aachen University , Aachen , Germany
| | - Ruth Knüchel
- a Institute of Pathology , Medical Faculty of the RWTH Aachen University , Aachen , Germany
| | - Edgar Dahl
- a Institute of Pathology , Medical Faculty of the RWTH Aachen University , Aachen , Germany.,c RWTH centralized Biomaterial Bank (RWTH cBMB) at the Institute of Pathology , Medical Faculty of the RWTH Aachen University , Aachen , Germany
| |
Collapse
|
207
|
Jati S, Kundu S, Chakraborty A, Mahata SK, Nizet V, Sen M. Wnt5A Signaling Promotes Defense Against Bacterial Pathogens by Activating a Host Autophagy Circuit. Front Immunol 2018; 9:679. [PMID: 29686674 PMCID: PMC5900007 DOI: 10.3389/fimmu.2018.00679] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
Bacterial pathogens are associated with severe infections (e.g., sepsis) and exacerbation of debilitating conditions such as chronic obstructive pulmonary disease (COPD). The interactions of bacterial pathogens with macrophages, a key component of innate immunity and host defense, are not clearly understood and continue to be intensively studied. Having previously demonstrated a role of Wnt5A signaling in phagocytosis, we proceeded to decipher the connection of Wnt5A signaling with infection by pathogenic bacteria, namely Pseudomonas aeruginosa (PA) and Streptococcus pneumoniae (SP), which are related with the progression of COPD and sepsis. We found that during the initial hours of infection with PA and SP, there is decrease in the steady state levels of the Wnt5A protein in macrophages. Suppression of Wnt5A signaling, moreover, impairs macrophage clearance of the bacterial infection both in vitro and in vivo. Activation of Wnt5A signaling, on the other hand, enhances clearance of the infection. Macrophage-mediated containment of bacterial infection in our study is dependant on Wnt5A-induced Rac1/Disheveled activation and cytochalasin D inhibitable actin assembly, which is associated with ULK1 kinase activity and LC3BII accumulation. Our experimental findings are consistent with Wnt5A signaling-dependent induction of autophagic killing (xenophagy) of PA and SP, as further substantiated by transmission electron microscopy. Overall, our study unveils the prevalence of a Wnt5A-Rac1-Disheveled-mediated actin-associated autophagy circuit as an important component of innate immunity in host macrophages that may turn out crucial for restricting infection by leading bacterial pathogens.
Collapse
Affiliation(s)
- Suborno Jati
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Suman Kundu
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Arijit Chakraborty
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sushil Kumar Mahata
- Department of Medicine, VA San Diego Healthcare System and University of California, San Diego, La Jolla, CA, United States
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Malini Sen
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
208
|
Karuna EP, Choi SS, Scales MK, Hum J, Cohen M, Fierro FA, Ho HYH. Identification of a WNT5A-Responsive Degradation Domain in the Kinesin Superfamily Protein KIF26B. Genes (Basel) 2018; 9:E196. [PMID: 29621187 PMCID: PMC5924538 DOI: 10.3390/genes9040196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 11/17/2022] Open
Abstract
Noncanonical WNT pathways function independently of the β-catenin transcriptional co-activator to regulate diverse morphogenetic and pathogenic processes. Recent studies showed that noncanonical WNTs, such as WNT5A, can signal the degradation of several downstream effectors, thereby modulating these effectors' cellular activities. The protein domain(s) that mediates the WNT5A-dependent degradation response, however, has not been identified. By coupling protein mutagenesis experiments with a flow cytometry-based degradation reporter assay, we have defined a protein domain in the kinesin superfamily protein KIF26B that is essential for WNT5A-dependent degradation. We found that a human disease-causing KIF26B mutation located at a conserved amino acid within this domain compromises the ability of WNT5A to induce KIF26B degradation. Using pharmacological perturbation, we further uncovered a role of glycogen synthase kinase 3 (GSK3) in WNT5A regulation of KIF26B degradation. Lastly, based on the identification of the WNT5A-responsive domain, we developed a new reporter system that allows for efficient profiling of WNT5A-KIF26B signaling activity in both somatic and stem cells. In conclusion, our study identifies a new protein domain that mediates WNT5A-dependent degradation of KIF26B and provides a new tool for functional characterization of noncanonical WNT5A signaling in cells.
Collapse
Affiliation(s)
- Edith P Karuna
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA.
| | - Shannon S Choi
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA.
| | - Michael K Scales
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA.
| | - Jennie Hum
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA.
| | - Michael Cohen
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA.
| | - Fernando A Fierro
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA.
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
209
|
Pehlivan M, Çalışkan C, Yüce Z, Sercan HO. Secreted Wnt antagonists in leukemia: A road yet to be paved. Leuk Res 2018; 69:24-30. [PMID: 29625321 DOI: 10.1016/j.leukres.2018.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/21/2018] [Accepted: 03/23/2018] [Indexed: 11/20/2022]
Abstract
Wnt signaling has been a topic of research for many years for its diverse and fundamental functions in physiological (such as embryogenesis, organogenesis, proliferation, tissue repair and cellular differentiation) and pathological (carcinogenesis, congenital/genetic diseases, and tissue degeneration) processes. Wnt signaling pathway aberrations are associated with both solid tumors and hematological malignancies. Unregulated Wnt signaling observed in malignancies may be due to a wide spectrum of abnormalities, from mutations in the genes of key players to epigenetic modifications of Wnt antagonists. Of these, Wnt antagonists are gaining significant attention for their potential of being targets for treatment and inhibition of Wnt signaling. In this review, we discuss and summarize the significance of Wnt signaling antagonists in the pathogenesis and treatment of hematological malignancies.
Collapse
Affiliation(s)
- Melek Pehlivan
- Vocational School of Health Services, Izmir Katip Celebi University, Izmir, Turkey.
| | - Ceyda Çalışkan
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology & Genetics, Izmir, Turkey.
| | - Zeynep Yüce
- Dokuz Eylul University Faculty of Medicine, Department of Medical Biology and Genetics, Izmir, Turkey.
| | - Hakki Ogun Sercan
- Dokuz Eylul University Faculty of Medicine, Department of Medical Biology and Genetics, Izmir, Turkey.
| |
Collapse
|
210
|
Sharma M, Castro-Piedras I, Simmons GE, Pruitt K. Dishevelled: A masterful conductor of complex Wnt signals. Cell Signal 2018; 47:52-64. [PMID: 29559363 DOI: 10.1016/j.cellsig.2018.03.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 12/21/2022]
Abstract
The Dishevelled gene was first identified in Drosophila mutants with disoriented hair and bristle polarity [1-3]. The Dsh gene (Dsh/Dvl, in Drosophila and vertebrates respectively) gained popularity when it was discovered that it plays a key role in segment polarity during early embryonic development in Drosophila [4]. Subsequently, the vertebrate homolog of Dishevelled genes were identified in Xenopus (Xdsh), mice (Dvl1, Dvl2, Dvl3), and in humans (DVL1, DVL2, DVL3) [5-10]. Dishevelled functions as a principal component of Wnt signaling pathway and governs several cellular processes including cell proliferation, survival, migration, differentiation, polarity and stem cell renewal. This review will revisit seminal discoveries and also summarize recent advances in characterizing the role of Dishevelled in both normal and pathophysiological settings.
Collapse
Affiliation(s)
- Monica Sharma
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Isabel Castro-Piedras
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Glenn E Simmons
- Department of Biomedical Sciences, University of Minnesota, School of Medicine, Duluth, MN, USA
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
211
|
Liu L, Fu Y, Zhu F, Mu C, Li R, Song W, Shi C, Ye Y, Wang C. Transcriptomic analysis of Portunus trituberculatus reveals a critical role for WNT4 and WNT signalling in limb regeneration. Gene 2018. [PMID: 29524579 DOI: 10.1016/j.gene.2018.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The swimming crab (Portunus trituberculatus) is among the most economically important seawater crustacean species in Asia. Despite its commercial importance and being well-studied status, genomic and transcriptomic data are scarce for this crab species. In the present study, limb bud tissue was collected at different developmental stages post amputation for transcriptomic analysis. Illumina RNA-sequencing was applied to characterise the limb regeneration transcriptome and identify the most characteristic genes. A total of 289,018 transcripts were obtained by clustering and assembly of clean reads, producing 150,869 unigenes with an average length of 956 bp. Subsequent analysis revealed WNT signalling as the key pathway involved in limb regeneration, with WNT4 a key mediator. Overall, limb regeneration appears to be regulated by multiple signalling pathways, with numerous cell differentiation, muscle growth, moult, metabolism, and immune-related genes upregulated, including WNT4, LAMA, FIP2, FSTL5, TNC, HUS1, SWI5, NCGL, SLC22, PLA2, Tdc2, SMOX, GDH, and SMPD4. This is the first experimental study done on regenerating claws of P. trituberculatus. These findings expand existing sequence resources for crab species, and will likely accelerate research into regeneration and development in crustaceans, particularly functional studies on genes involved in limb regeneration.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Yuanyuan Fu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Fang Zhu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Ronghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Weiwei Song
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Ce Shi
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Yangfang Ye
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
212
|
The Coordinated Activities of nAChR and Wnt Signaling Regulate Intestinal Stem Cell Function in Mice. Int J Mol Sci 2018; 19:ijms19030738. [PMID: 29510587 PMCID: PMC5877599 DOI: 10.3390/ijms19030738] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 02/27/2018] [Accepted: 03/03/2018] [Indexed: 12/14/2022] Open
Abstract
Cholinergic signaling, which modulates cell activities via nicotinic and muscarinic acetylcholine receptors (n- and mAChRs) in response to internal or external stimuli, has been demonstrated in mammalian non-neuronal cells that synthesize acetylcholine (ACh). One of the major pathways of excitatory transmission in the enteric nervous system (ENS) is mediated by cholinergic transmission, with the transmitter ACh producing excitatory potentials in postsynaptic effector cells. In addition to ACh-synthesizing and ACh-metabolizing elements in the ENS, the presence of non-neuronal ACh machinery has been reported in epithelial cells of the small and large intestines of rats and humans. However, little is known about how non-neuronal ACh controls physiological function in the intestine. Here, experiments using crypt-villus organoids that lack nerve and immune cells in culture suggest that endogenous ACh is synthesized in the intestinal epithelium to drive organoid growth and differentiation through activation of nAChRs. Treatment of organoids with nicotine enhanced cell growth and the expression of marker genes for stem and epithelial cells. On the other hand, the nAChR antagonist mecamylamine strongly inhibited the growth and differentiation of organoids, suggesting the involvement of nAChRs in the regulation of proliferation and differentiation of Lgr5-positive stem cells. More specifically, RNA sequencing analysis revealed that Wnt5a expression was dramatically upregulated after nicotine treatment, and Wnt5a rescued organoid growth and differentiation in response to mecamylamine. Taken together, our results indicate that coordinated activities of nAChR and Wnt signaling maintain Lgr5-positive stem cell activity and balanced differentiation. Furthermore, we could clearly separate the two groups, neuronal ACh in the ENS and non-neuronal ACh in the intestinal epithelium. Dysfunction of the non-neuronal cholinergic system is involved in the pathogenesis of disease. The data will increase our understanding of the cholinergic properties of non-neuronal cells and lead to optimization of drug therapy.
Collapse
|
213
|
Sastre-Perona A, Riesco-Eizaguirre G, Zaballos MA, Santisteban P. β-catenin signaling is required for RAS-driven thyroid cancer through PI3K activation. Oncotarget 2018; 7:49435-49449. [PMID: 27384483 PMCID: PMC5226519 DOI: 10.18632/oncotarget.10356] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/16/2016] [Indexed: 11/26/2022] Open
Abstract
Mutations in ß-catenin are traditionally described as late events in thyroid cancer progression. However, the functional implications of ß-catenin dysregulation in the context of tumor initiating events remain unclear. The aim of this work was to investigate whether the two main oncogenic drivers in thyroid cancer, RAS and BRAF, could activate the Wnt/ß-catenin pathway. Expression of HRASV12 but not BRAFV600E in thyroid cells induced ß-catenin nuclear localization, increased ß-catenin-dependent transcriptional activity and inhibited GSK3ß. In a panel of human thyroid cancer cell lines representative of the main genetic events in thyroid cancer, ß-catenin activation was highly dependent on PI3K/AKT activity through its phosphorylation at S552, but not on MAPK. Silencing of ß-catenin expression in cell lines led to a dramatic reduction in proliferation due to an induction of senescence, which was concordant with a reduction in tumor size in nude mice. Moreover, ß-catenin silencing suppressed the expression of EMT-related genes and reduced the invasive capacity of the tumor cells. In conclusion, this work demonstrates that RAS-driven tumors induce PI3K/AKT-dependent ß-catenin activation.
Collapse
Affiliation(s)
- Ana Sastre-Perona
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Garcilaso Riesco-Eizaguirre
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Servicio de Endocrinología, Hospital Universitario de Móstoles, Madrid, Spain
| | - Miguel A Zaballos
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
214
|
Knockdown of ARL4C inhibits osteogenic differentiation of human adipose-derived stem cells through disruption of the Wnt signaling pathway. Biochem Biophys Res Commun 2018; 497:256-263. [PMID: 29432742 DOI: 10.1016/j.bbrc.2018.02.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/23/2022]
Abstract
ADP-ribosylation factor-like 4C (ARL4C) has been shown to play an important role in cholesterol secretion, microtubule dynamics, and cell morphological changes. However, its role in osteogenesis has not been explored. In this study, we found that ARL4C is downregulated during the osteogenic differentiation of human adipose derived stem cells (hASCs). Knockdown of ARL4C suppresses osteogenesis of hASCs in vitro and in vivo. We demonstrate that ARL4C knockdown likely attenuates osteogenesis of hASCs through inhibition of the Wnt signaling pathway. These results provide new insights into the mechanisms of osteogenic differentiation and provide a potential molecular target for bone tissue engineering.
Collapse
|
215
|
Affiliation(s)
- Isabella Albanese
- Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Kashif Khan
- Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bianca Barratt
- Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Hamood Al-Kindi
- Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Adel Schwertani
- Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
216
|
Yue Y, Yuan Y, Li L, Fan J, Li C, Peng W, Ren G. Homeobox protein MSX1 inhibits the growth and metastasis of breast cancer cells and is frequently silenced by promoter methylation. Int J Mol Med 2018; 41:2986-2996. [PMID: 29436596 DOI: 10.3892/ijmm.2018.3468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/24/2018] [Indexed: 11/05/2022] Open
Abstract
Deregulation of msh homeobox 1 (MSX1) has been identified to be associated with multiple human malignant neoplasms. However, the association of the expression and biological function of MSX1 with breast tumorigenesis, and the underlying mechanism remain largely unknown. Therefore, the present study examined the expression and promoter methylation of MSX1 in breast tumor cell lines, primary breast tumors and normal breast tissues using semi-quantitative, quantitative and methylation-specific reverse transcription‑polymerase chain reaction. Colony formation assays, flow cytometric analysis, and wound healing and Transwell assays were used to assess various functions of MSX1. Western blot analyses were also conducted to explore the mechanism of MSX1. The results revealed that MSX1 was broadly expressed in normal human tissues, including breast tissues, but was frequently downregulated or silenced in breast cancer cell lines and primary tumors by promoter methylation. Methylation of the MSX1 promoter was observed in 7/9 (77.8%) breast cancer cell lines and 47/99 (47.5%) primary tumors, but not in normal breast tissues or surgical margin tissues, suggesting that tumor-specific methylation of MSX1 occurs in breast cancer. Pharmacological demethylation reduced MSX1 promoter methylation levels and restored the expression of MSX1. The ectopic expression of MSX1, induced by transfection with a lentiviral vector, significantly inhibited the clonogenicity, proliferation, migration and invasion of breast tumor cells by inducing G1/S cell cycle arrest and apoptosis. Ectopic MSX1 expression also inhibited the expression of active β-catenin and its downstream targets c-Myc and cyclin D1, and also increased the cleavage of caspase-3 and poly (ADP-ribose) polymerase. In conclusion, MSX1 exerts tumor-suppressive functions by inducing G1/S cell cycle arrest and apoptosis in breast tumorigenesis. Its methylation may be used as an epigenetic biomarker for the early detection and diagnosis of breast cancer.
Collapse
Affiliation(s)
- Yujuan Yue
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ying Yuan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong, SAR 999077, P.R. China
| | - Jiangxia Fan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chen Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong, SAR 999077, P.R. China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
217
|
Hu X, Gao JH, Liao YJ, Tang SJ, Lu F. 2,3,7,8-Tetrachlorodibenzo-p-dioxin Delays Palatal Shelf Elevation and Suppresses Wnt5a and Lymphoid Enhancing-Binding Factor 1 Signaling in Developing Palate. Cleft Palate Craniofac J 2018; 52:54-61. [PMID: 24555447 DOI: 10.1597/13-018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE 2,3,7,8-Tetrachlorodibenzo-p-dioxin contributes to cleft palate, but the cellular and molecular mechanisms responsible for the deleterious effect on the developing palate are unclear. Because Wnt signaling is associated with 2,3,7,8-tetrachlorodibenzo-p-dioxin in organ development, we wondered whether the malformation of the palate also results from altered Wnt signaling. RESULTS The 2,3,7,8-tetrachlorodibenzo-p-dioxin administration affected cell proliferation of the anteroposterior axis of the palatal shelf and delayed shelf elevation in mice. The activity of Wnt5a and lymphoid enhancing-binding factor 1 was inhibited by 2,3,7,8-tetrachlorodibenzo-p-dioxin in the developing palate. CONCLUSIONS Downregulated Wnt5a and lymphoid enhancing-binding factor 1 are associated with 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cleft palate. Moreover, delayed shelf elevation by 2,3,7,8-tetrachlorodibenzo-p-dioxin is the crucial mechanism contributing to the high incidence of cleft palate. Our findings may help in elucidating the mechanisms of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cleft palate.
Collapse
|
218
|
Upadhyay M, Kuna M, Tudor S, Martino Cortez Y, Rangan P. A switch in the mode of Wnt signaling orchestrates the formation of germline stem cell differentiation niche in Drosophila. PLoS Genet 2018; 14:e1007154. [PMID: 29370168 PMCID: PMC5811049 DOI: 10.1371/journal.pgen.1007154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/13/2018] [Accepted: 12/13/2017] [Indexed: 01/12/2023] Open
Abstract
Germline stem cell (GSC) self-renewal and differentiation into gametes is regulated by both intrinsic factors in the germ line as well as extrinsic factors from the surrounding somatic niche. dWnt4, in the escort cells of the adult somatic niche promotes GSC differentiation using the canonical β-catenin-dependent transcriptional pathway to regulate escort cell survival, adhesion to the germ line and downregulation of self-renewal signaling. Here, we show that in addition to the β-catenin-dependent canonical pathway, dWnt4 also uses downstream components of the Wnt non-canonical pathway to promote escort cell function earlier in development. We find that the downstream non-canonical components, RhoA, Rac1 and cdc42, are expressed at high levels and are active in escort cell precursors of the female larval gonad compared to the adult somatic niche. Consistent with this expression pattern, we find that the non-canonical pathway components function in the larval stages but not in adults to regulate GSC differentiation. In the larval gonad, dWnt4, RhoA, Rac1 and cdc42 are required to promote intermingling of escort cell precursors, a function that then promotes proper escort cell function in the adults. We find that dWnt4 acts by modulating the activity of RhoA, Rac1 and cdc42, but not their protein levels. Together, our results indicate that at different points of development, dWnt4 switches from using the non-canonical pathway components to using a β-catenin-dependent canonical pathway in the escort cells to facilitate the proper differentiation of GSCs. Germ line association with the somatic cells is critical for various aspects of germ cell biology, including migration, self-renewal and differentiation. In Drosophila females, soma–germ line association begins during embryogenesis and continues until the mature egg is formed. In the adult, the somatic escort cells promote differentiation of the germline stem cell daughter using Wnt signaling. dWnt4, a Wnt ligand, acts in an autocrine manner in these escort cells, using the canonical pathway to regulate survival, division and encapsulation of the stem cell daughter, a function critical for differentiation. Here, we show at an earlier stage, in the larvae, the same ligand uses components of Wnt non-canonical pathway, RhoA, Rac1 and cdc42, to regulate proper mingling of escort cell precursors between the germ cells. Thus, dWnt4 uses different modules of signaling at different points in development to promote cell movement and control cytoplasmic protrusions. As Wnts have been associated with cancers, understanding how Wnts modulate cell movement by switching on and off different modules may lead to insights into the etiology and progression of cancers.
Collapse
Affiliation(s)
- Maitreyi Upadhyay
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
| | - Michael Kuna
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
- Albany Medical College, Albany, New York, United States of America
| | - Sara Tudor
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
- Albany Medical College, Albany, New York, United States of America
| | - Yesenia Martino Cortez
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
219
|
Kahn M. Wnt Signaling in Stem Cells and Cancer Stem Cells: A Tale of Two Coactivators. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:209-244. [PMID: 29389517 DOI: 10.1016/bs.pmbts.2017.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wnt signaling in stem cells plays critical roles in development, normal adult physiology, and disease. In this chapter, we focus on the role of the Wnt signaling pathway in somatic stem cell biology and its critical role in normal tissue homeostasis and cancer. Wnt signaling can both maintain potency and initiate differentiation in somatic stem cells, depending on the cellular and environmental context. Based principally on studies from our lab, we will explain the dichotomous behavior of this signaling pathway in determining stem cell fate decisions, placing special emphasis on the interaction of β-catenin with either of the two highly homologous Kat3 coactivator proteins, CBP and p300. We will also discuss our results, both preclinical and clinical, demonstrating that small molecule modulators of the β-catenin/Kat3 coactivator interaction can be safely utilized to shift the balance between maintenance of potency and initiation of differentiation.
Collapse
Affiliation(s)
- Michael Kahn
- Beckman Research Institute of the City of Hope, Duarte, CA, United States.
| |
Collapse
|
220
|
Ben Khadra Y, Sugni M, Ferrario C, Bonasoro F, Oliveri P, Martinez P, Candia Carnevali MD. Regeneration in Stellate Echinoderms: Crinoidea, Asteroidea and Ophiuroidea. Results Probl Cell Differ 2018; 65:285-320. [PMID: 30083925 DOI: 10.1007/978-3-319-92486-1_14] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reparative regeneration is defined as the replacement of lost adult body parts and is a phenomenon widespread yet highly variable among animals. This raises the question of which key cellular and molecular mechanisms have to be implemented in order to efficiently and correctly replace entire body parts in any animal. To address this question, different studies using an integrated cellular and functional genomic approach to study regeneration in stellate echinoderms (crinoids, asteroids and ophiuroids) had been carried out over the last few years. The phylum Echinodermata is recognized for the striking regeneration potential shown by the members of its different clades. Indeed, stellate echinoderms are considered among the most useful and tractable experimental models for carrying comprehensive studies focused on ecological, developmental and evolutionary aspects. Moreover, most of them are tractable in the laboratory and, thus, should allow us to understand the underlying mechanisms, cellular and molecular, which are involved. Here, a comprehensive analysis of the cellular/histological components of the regenerative process in crinoids, asteroids and ophiuroids is described and compared. However, though this knowledge provided us with some clear insights into the global distribution of cell types at different times, it did not explain us how the recruited cells are specified (and from which precursors) over time and where are they located in the animal. The precise answer to these queries needs the incorporation of molecular approaches, both descriptive and functional. Yet, the molecular studies in stellate echinoderms are still limited to characterization of some gene families and protein factors involved in arm regeneration but, at present, have not shed light on most of the basic mechanisms. In this context, further studies are needed specifically to understand the role of regulatory factors and their spatio-temporal deployment in the growing arms. A focus on developing functional tools over the next few years should be of fundamental importance.
Collapse
Affiliation(s)
- Yousra Ben Khadra
- Laboratoire de Recherche, Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia.
| | - Michela Sugni
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy.
- Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy.
| | - Cinzia Ferrario
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy
| | - Francesco Bonasoro
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Pedro Martinez
- Departament de Genètica, Microbiologia I Estadística, Universitat de Barcelona, Barcelona, Spain
- ICREA (Institut Català de Recerca i Estudis Avancats), Barcelona, Spain
| | | |
Collapse
|
221
|
Tan SH, Barker N. Wnt Signaling in Adult Epithelial Stem Cells and Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:21-79. [PMID: 29389518 DOI: 10.1016/bs.pmbts.2017.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Wnt/β-catenin signaling is integral to the homeostasis and regeneration of many epithelial tissues due to its critical role in adult stem cell regulation. It is also implicated in many epithelial cancers, with mutations in core pathway components frequently present in patient tumors. In this chapter, we discuss the roles of Wnt/β-catenin signaling and Wnt-regulated stem cells in homeostatic, regenerative and cancer contexts of the intestines, stomach, skin, and liver. We also examine the sources of Wnt ligands that form part of the stem cell niche. Despite the diversity in characteristics of various tissue stem cells, the role(s) of Wnt/β-catenin signaling is generally coherent in maintaining stem cell fate and/or promoting proliferation. It is also likely to play similar roles in cancer stem cells, making the pathway a salient therapeutic target for cancer. While promising progress is being made in the field, deeper understanding of the functions and signaling mechanisms of the pathway in individual epithelial tissues will expedite efforts to modulate Wnt/β-catenin signaling in cancer treatment and tissue regeneration.
Collapse
Affiliation(s)
- Si Hui Tan
- A*STAR Institute of Medical Biology, Singapore
| | - Nick Barker
- A*STAR Institute of Medical Biology, Singapore; Kanazawa University, Kanazawa, Japan; Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
222
|
Karuna EP, Susman MW, Ho HYH. Quantitative Live-cell Reporter Assay for Noncanonical Wnt Activity. Bio Protoc 2018; 8:e2762. [PMID: 29770348 DOI: 10.21769/bioprotoc.2762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Noncanonical Wnt signaling functions independently of the β-catenin pathway to control diverse developmental processes, and dysfunction of the pathway contributes to a number of human pathological conditions, including birth defects and metastatic cancer. Progress in the field, however, has been hampered by the scarcity of functional assays for measuring noncanonical Wnt signaling activity. We recently described the Wnt5a-Ror-Kif26b (WRK) reporter assay, which directly monitors a post-transcriptional regulatory event in noncanonical Wnt signaling. In this protocol, we describe the generation of the stable GFP-Kif26b reporter cell line and a quantitative reporter assay for detecting and measuring Wnt5a signaling activities in live cells via flow cytometry.
Collapse
Affiliation(s)
- Edith P Karuna
- Department of Cell Biology and Human Anatomy University of California, Davis School of Medicine, Davis, California, USA
| | - Michael W Susman
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy University of California, Davis School of Medicine, Davis, California, USA
| |
Collapse
|
223
|
Stabilized β-Catenin Ameliorates ALPS-Like Symptoms of B6/ lpr Mice. J Immunol Res 2017; 2017:3469108. [PMID: 29250557 PMCID: PMC5700472 DOI: 10.1155/2017/3469108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/15/2017] [Indexed: 01/05/2023] Open
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is an incurable disease mainly caused by the defect of Fas-mediated apoptosis and characterized by nonmalignant autoimmune lymphoproliferation. Stabilized β-catenin could not only potentiate Fas-mediated T cell apoptosis via upregulating the expression of Fas on activated T cells, but also potentiate T cell apoptosis via intrinsic apoptotic pathway. In the present study, we introduced β-catTg into lpr/lpr mice and aimed to explore the potential role of stabilized β-catenin (β-catTg) in the development of ALPS-like phenotypes of lpr/lpr mice. We found that the total splenocyte cells and some compositions were slightly downregulated in β-catTglpr/lpr mice, especially the CD4 and CD8 TEM cells were significantly reduced. Meanwhile, stabilized β-catenin obviously decreased the numbers of spleen TCRβ+CD4−CD8− T (DNT) cells, and the levels of some serum proinflammatory factors also were lowered in β-catTglpr/lpr mice. Beyond that, stabilized β-catenin slightly lowered the levels of the serum autoantibodies and the scores of kidney histopathology of β-catTglpr/lpr mice compared with lpr/lpr mice. Our study suggested that stabilized β-catenin ameliorated some ALPS-like symptoms of lpr/lpr mice by potentiating Fas-independent signal-mediated T cell apoptosis, which might uncover a potential novel therapeutic direction for ALPS.
Collapse
|
224
|
Hamdoun S, Fleischer E, Klinger A, Efferth T. Lawsone derivatives target the Wnt/β-catenin signaling pathway in multidrug-resistant acute lymphoblastic leukemia cells. Biochem Pharmacol 2017; 146:63-73. [DOI: 10.1016/j.bcp.2017.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
|
225
|
Ong MS, Cai W, Yuan Y, Leong HC, Tan TZ, Mohammad A, You ML, Arfuso F, Goh BC, Warrier S, Sethi G, Tolwinski NS, Lobie PE, Yap CT, Hooi SC, Huang RY, Kumar AP. 'Lnc'-ing Wnt in female reproductive cancers: therapeutic potential of long non-coding RNAs in Wnt signalling. Br J Pharmacol 2017; 174:4684-4700. [PMID: 28736855 PMCID: PMC5727316 DOI: 10.1111/bph.13958] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/30/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023] Open
Abstract
Recent discoveries in the non-coding genome have challenged the original central dogma of molecular biology, as non-coding RNAs and related processes have been found to be important in regulating gene expression. MicroRNAs and long non-coding RNAs (lncRNAs) are among those that have gained attention recently in human diseases, including cancer, with the involvement of many more non-coding RNAs (ncRNAs) waiting to be discovered. ncRNAs are a group of ribonucleic acids transcribed from regions of the human genome, which do not become translated into proteins, despite having essential roles in cellular physiology. Deregulation of ncRNA expression and function has been observed in cancer pathogenesis. Recently, the roles of a group of ncRNA known as lncRNA have gained attention in cancer, with increasing reports of their oncogenic involvement. Female reproductive cancers remain a leading cause of death in the female population, accounting for almost a third of all female cancer deaths in 2016. The Wnt signalling pathway is one of the most important oncogenic signalling pathways which is hyperactivated in cancers, including female reproductive cancers. The extension of ncRNA research into their mechanistic roles in human cancers has also led to novel reported roles of ncRNAs in the Wnt pathway and Wnt-mediated oncogenesis. This review aims to provide a critical summary of the respective roles and cellular functions of Wnt-associated lncRNAs in female reproductive cancers and explores the potential of circulating cell-free lncRNAs as diagnostic markers and lncRNAs as therapeutic targets. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Mei S Ong
- Departments of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Wanpei Cai
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Yi Yuan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Hin C Leong
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Tuan Z Tan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Asad Mohammad
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Ming L You
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
| | - Boon C Goh
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
- Department of Haematology‐OncologyNational University Health SystemSingapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative MedicineManipal UniversityBangaloreIndia
- School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
| | - Gautam Sethi
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
| | - Nicholas S Tolwinski
- Division of ScienceYale‐NUS CollegeSingapore
- Department of Biological ScienceNational University of SingaporeSingapore
| | - Peter E Lobie
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Departments of Anatomy, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Tsinghua Berkeley Shenzhen Institute and Division of Life Science and HealthTsinghua University Graduate SchoolShenzhenChina
| | - Celestial T Yap
- Departments of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
| | - Shing C Hooi
- Departments of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Ruby Y Huang
- Departments of Anatomy, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
- Department of Obstetrics and GynaecologyNational University HospitalSingapore
| | - Alan P Kumar
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative MedicineManipal UniversityBangaloreIndia
- Curtin Medical School, Faculty of Health ScienceCurtin UniversityPerthWAAustralia
- Department of Biological SciencesUniversity of North TexasDentonTXUSA
| |
Collapse
|
226
|
Park EJ, Jung HJ, Choi HJ, Cho JI, Park HJ, Kwon TH. miR-34c-5p and CaMKII are involved in aldosterone-induced fibrosis in kidney collecting duct cells. Am J Physiol Renal Physiol 2017; 314:F329-F342. [PMID: 29070573 DOI: 10.1152/ajprenal.00358.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mineralocorticoids trigger a profibrotic process in the kidney. In mouse cortical collecting duct cells, the present study addressed two main questions: 1) what are microRNAs (miRNAs) and their target genes that are changed by aldosterone? and 2) what do miRNAs, in response to aldosterone, regulate regarding signaling pathways related to fibrosis? A microarray chip assay was done in cells in the absence or presence of aldosterone treatment (10-6 M; 3 days). The candidate miRNAs were identified by the criteria of >30% of fold change among the significantly changed miRNAs ( P < 0.05). Twenty-nine miRNAs were upregulated (>1.3-fold), and 27 miRNAs were downregulated (<0.7-fold). Putative target genes of identified miRNAs were associated with 74 Kyoto Encyclopedia of Genes and Genomes pathways. Among them, the wingless-related integration site (Wnt) signaling pathway was highly ranked, where 15 mature miRNAs were observed. These miRNAs were further analyzed by real-time quantitative PCR, and among them, miR-130b-3p, miR-34c-5p, and miR-146a-5p were selected. Through the identification of putative target genes of these three miRNAs, mRNA and protein expression of the Ca2+/calmodulin-dependent protein kinase type II β-chain ( Camk2b) gene (a target gene of miR-34c-5p) were found to be increased significantly in aldosterone-treated cells, where fibronectin (FN) and α-smooth muscle actin were induced. When CaMKIIβ small interfering RNA or the miR-34c-5p mimic was transfected, aldosterone-induced FN expression was significantly attenuated, along with reduced CaMKIIβ protein expression. A luciferase reporter assay revealed a decrease of CaMKIIβ translation in cells transfected with miRNA mimics of miR-34c-5p. In conclusion, aldosterone-induced downregulation of miR-34c-5p in the Wnt signaling pathway and a consequent increase of CaMKIIβ expression are likely to be involved in aldosterone-induced fibrosis.
Collapse
Affiliation(s)
- Eui-Jung Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Hyun Jun Jung
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea.,Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Hyo-Jung Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Jeong-In Cho
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Hye-Jeong Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
227
|
Schmid A, Sailland J, Novak L, Baumlin N, Fregien N, Salathe M. Modulation of Wnt signaling is essential for the differentiation of ciliated epithelial cells in human airways. FEBS Lett 2017; 591:3493-3506. [PMID: 28921507 PMCID: PMC5683904 DOI: 10.1002/1873-3468.12851] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 12/20/2022]
Abstract
Wnt signaling is essential for the differentiation of airway epithelial cells during development. Here, we examined the role of Wnt signaling during redifferentiation of ciliated airway epithelial cells in vitro at the air liquid interface as a model of airway epithelial repair. Phases of proliferation and differentiation were defined. Markers of squamous metaplasia and epithelial ciliation were followed while enhancing β‐catenin signaling by blocking glycogen synthase kinase 3β with SB216763 and shRNA as well as inhibiting canonical WNT signaling with apical application of Dickkopf 1 (Dkk1). Our findings indicate that enhanced β‐catenin signaling decreases the number of ciliated cells and causes squamous changes in the epithelium, whereas treatment with DDk1 leads to an increased number of ciliated cells.
Collapse
Affiliation(s)
- Andreas Schmid
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, FL, USA
| | - Juliette Sailland
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, FL, USA
| | - Lisa Novak
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, FL, USA
| | - Nathalie Baumlin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, FL, USA
| | - Nevis Fregien
- Department of Cell Biology, University of Miami School of Medicine, FL, USA
| | - Matthias Salathe
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, FL, USA
| |
Collapse
|
228
|
Yang Q, Wang Y, Pan X, Ye J, Gan S, Qu F, Chen L, Chu C, Gao Y, Cui X. Frizzled 8 promotes the cell proliferation and metastasis of renal cell carcinoma. Oncotarget 2017; 8:78989-79002. [PMID: 29108281 PMCID: PMC5668014 DOI: 10.18632/oncotarget.20742] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 08/08/2017] [Indexed: 12/23/2022] Open
Abstract
Recent reports have shown a rapid rise in the incidence of renal cell carcinoma (RCC), and Wnt (Wingless-related integration site) signaling pathway is important in RCC. Frizzled 8 (FZD8) is a member of Frizzled (FZD) receptor family which could activate canonical or non-canonical Wnt/β-catenin pathways. Nevertheless, the role of FZD8 in RCC is poorly investigated. The immunohistochemical analysis showed high expression of FZD8 in RCC tissues compared with peri-tumor tissues. FZD8 knockdown decreased the ability of proliferation and metastasis of RCC cells. Research revealed that the FZD8 regulated the transcription of Cyclin D1, c-Myc, and could promote the epithelial to mesenchymal transition (EMT) by mediating Vimentin and Snail through the Wnt/β-catenin signaling pathway. In addition, the results of our experiment revealed that FZD8 is involved in the regulation of non-canonical Wnt signaling pathway. These data suggested that the expression of FZD8 may play an important role in the proliferation and metastasis of RCC, and serve as a putative promising drug target for human RCC therapy.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai 201805, People’s Republic of China
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, People’s Republic of China
| | - Ye Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200082, People’s Republic of China
| | - Xiuwu Pan
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai 201805, People’s Republic of China
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, People’s Republic of China
| | - Jianqing Ye
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai 201805, People’s Republic of China
| | - Sishun Gan
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai 201805, People’s Republic of China
| | - Fajun Qu
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai 201805, People’s Republic of China
| | - Lu Chen
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University, Shanghai 200025, People’s Republic of China
| | - Chuanmin Chu
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai 201805, People’s Republic of China
| | - Yi Gao
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University, Shanghai 200025, People’s Republic of China
| | - Xingang Cui
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai 201805, People’s Republic of China
| |
Collapse
|
229
|
McQuate A, Latorre-Esteves E, Barria A. A Wnt/Calcium Signaling Cascade Regulates Neuronal Excitability and Trafficking of NMDARs. Cell Rep 2017; 21:60-69. [DOI: 10.1016/j.celrep.2017.09.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023] Open
|
230
|
Shi Z, Yang X, Li BB, Chen S, Yang L, Cheng L, Zhang T, Wang H, Zheng Y. Novel Mutation of LRP6
Identified in Chinese Han Population Links Canonical WNT Signaling to Neural Tube Defects. Birth Defects Res 2017; 110:63-71. [DOI: 10.1002/bdr2.1122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/09/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Zhiwen Shi
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University; Shanghai China
| | - Xueyan Yang
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University; Shanghai China
| | - Bin-Bin Li
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University; Shanghai China
| | - Shuxia Chen
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University; Shanghai China
| | - Luming Yang
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University; Shanghai China
| | - Liangping Cheng
- Heart Centre; Children's Hospital of Chongqing Medical University; Chongqing China
| | - Ting Zhang
- Capital Institute of Pediatrics; Beijing China
| | - Hongyan Wang
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University; Shanghai China
- Obstetrics & Gynecology Hospital; Key Lab of Reproduction Regulation of NPFPC in SIPPR, Institute of Reproduction & Development, Fudan University; Shanghai China
- Children's Hospital of Fudan University; Shanghai China
| | - Yufang Zheng
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University; Shanghai China
- Obstetrics & Gynecology Hospital; Key Lab of Reproduction Regulation of NPFPC in SIPPR, Institute of Reproduction & Development, Fudan University; Shanghai China
- Institute of Developmental Biology & Molecular Medicine; Fudan University; Shanghai China
| |
Collapse
|
231
|
|
232
|
Susman MW, Karuna EP, Kunz RC, Gujral TS, Cantú AV, Choi SS, Jong BY, Okada K, Scales MK, Hum J, Hu LS, Kirschner MW, Nishinakamura R, Yamada S, Laird DJ, Jao LE, Gygi SP, Greenberg ME, Ho HYH. Kinesin superfamily protein Kif26b links Wnt5a-Ror signaling to the control of cell and tissue behaviors in vertebrates. eLife 2017; 6:e26509. [PMID: 28885975 PMCID: PMC5590807 DOI: 10.7554/elife.26509] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022] Open
Abstract
Wnt5a-Ror signaling constitutes a developmental pathway crucial for embryonic tissue morphogenesis, reproduction and adult tissue regeneration, yet the molecular mechanisms by which the Wnt5a-Ror pathway mediates these processes are largely unknown. Using a proteomic screen, we identify the kinesin superfamily protein Kif26b as a downstream target of the Wnt5a-Ror pathway. Wnt5a-Ror, through a process independent of the canonical Wnt/β-catenin-dependent pathway, regulates the cellular stability of Kif26b by inducing its degradation via the ubiquitin-proteasome system. Through this mechanism, Kif26b modulates the migratory behavior of cultured mesenchymal cells in a Wnt5a-dependent manner. Genetic perturbation of Kif26b function in vivo caused embryonic axis malformations and depletion of primordial germ cells in the developing gonad, two phenotypes characteristic of disrupted Wnt5a-Ror signaling. These findings indicate that Kif26b links Wnt5a-Ror signaling to the control of morphogenetic cell and tissue behaviors in vertebrates and reveal a new role for regulated proteolysis in noncanonical Wnt5a-Ror signal transduction.
Collapse
Affiliation(s)
- Michael W Susman
- Department of NeurobiologyHarvard Medical SchoolBostonUnited States
| | - Edith P Karuna
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Ryan C Kunz
- Department of Cell BiologyHarvard Medical SchoolBostonUnited States
| | - Taranjit S Gujral
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
- Division of Human BiologyFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Andrea V Cantú
- Department of Obstetrics, Gynecology and Reproductive SciencesCenter for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of CaliforniaSan FranciscoUnited States
| | - Shannon S Choi
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Brigette Y Jong
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Kyoko Okada
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Michael K Scales
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Jennie Hum
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Linda S Hu
- Department of NeurobiologyHarvard Medical SchoolBostonUnited States
| | - Marc W Kirschner
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Ryuichi Nishinakamura
- Department of Kidney DevelopmentInstitute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Soichiro Yamada
- Department of Biomedical EngineeringUniversity of CaliforniaDavisUnited States
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive SciencesCenter for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of CaliforniaSan FranciscoUnited States
| | - Li-En Jao
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Steven P Gygi
- Department of Cell BiologyHarvard Medical SchoolBostonUnited States
| | | | - Hsin-Yi Henry Ho
- Department of NeurobiologyHarvard Medical SchoolBostonUnited States
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| |
Collapse
|
233
|
Hussain M, Xu C, Lu M, Wu X, Tang L, Wu X. Wnt/β-catenin signaling links embryonic lung development and asthmatic airway remodeling. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3226-3242. [PMID: 28866134 DOI: 10.1016/j.bbadis.2017.08.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/10/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022]
Abstract
Embryonic lung development requires reciprocal endodermal-mesodermal interactions; mediated by various signaling proteins. Wnt/β-catenin is a signaling protein that exhibits the pivotal role in lung development, injury and repair while aberrant expression of Wnt/β-catenin signaling leads to asthmatic airway remodeling: characterized by hyperplasia and hypertrophy of airway smooth muscle cells, alveolar and vascular damage goblet cells metaplasia, and deposition of extracellular matrix; resulting in decreased lung compliance and increased airway resistance. The substantial evidence suggests that Wnt/β-catenin signaling links embryonic lung development and asthmatic airway remodeling. Here, we summarized the recent advances related to the mechanistic role of Wnt/β-catenin signaling in lung development, consequences of aberrant expression or deletion of Wnt/β-catenin signaling in expansion and progression of asthmatic airway remodeling, and linking early-impaired pulmonary development and airway remodeling later in life. Finally, we emphasized all possible recent potential therapeutic significance and future prospectives, that are adaptable for therapeutic intervention to treat asthmatic airway remodeling.
Collapse
Affiliation(s)
- Musaddique Hussain
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310058, China; The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City 310058, China.
| | - Chengyun Xu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310058, China; The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City 310058, China
| | - Meiping Lu
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City 310006, China
| | - Xiling Wu
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City 310006, China.
| | - Lanfang Tang
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City 310006, China
| | - Ximei Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310058, China; The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City 310058, China.
| |
Collapse
|
234
|
The N-Terminal Part of the Dishevelled DEP Domain Is Required for Wnt/β-Catenin Signaling in Mammalian Cells. Mol Cell Biol 2017; 37:MCB.00145-17. [PMID: 28674183 PMCID: PMC5574038 DOI: 10.1128/mcb.00145-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/15/2017] [Indexed: 12/27/2022] Open
Abstract
Dishevelled (DVL) proteins are key mediators of the Wnt/β-catenin signaling pathway. All DVL proteins contain three conserved domains: DIX, PDZ, and DEP. There is a consensus in the field that the DIX domain is critical for Wnt/β-catenin signaling, but contradictory evidence regarding the function of the DEP domain exists. It has been difficult, until recently, to test the importance of the DEP domain rigorously because of the interference with endogenous DVL, expressed in all Wnt-responsive cell lines. In this study, we took advantage of DVL knockout (DVL1/DVL2/DVL3 triple knockout) cells fully deficient in Wnt3a-induced signaling events and performed a series of rescue experiments. Using these complementation assays, we analyzed the role of individual DVL isoforms. Further domain mapping of DVL1 showed that both the DVL1 DEP domain and especially its N-terminal region are required and sufficient for Wnt3a-induced phosphorylation of LRP6 and TopFlash reporter activation. On the contrary, multiple DEP domain mutants deficient in the planar cell polarity (PCP) pathway could fully rescue the Wnt3a response. This study provides conclusive evidence that the DVL DEP domain is essential for Wnt/β-catenin signaling in mammalian cells and establishes an experimental system suitable for further functional testing of DVL.
Collapse
|
235
|
Yang T, Williams BO. Low-Density Lipoprotein Receptor-Related Proteins in Skeletal Development and Disease. Physiol Rev 2017; 97:1211-1228. [PMID: 28615463 DOI: 10.1152/physrev.00013.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
The identification of the low-density lipoprotein receptor (LDLR) provided a foundation for subsequent studies in lipoprotein metabolism, receptor-mediated endocytosis, and many other fundamental biological functions. The importance of the LDLR led to numerous studies that identified homologous molecules and ultimately resulted in the description of the LDL-receptor superfamily, a group of proteins that contain domains also found in the LDLR. Subsequent studies have revealed that members of the LDLR-related protein family play roles in regulating many aspects of signal transduction. This review is focused on the roles of selected members of this protein family in skeletal development and disease. We present background on the identification of this subgroup of receptors, discuss the phenotypes associated with alterations in their function in human patients and mouse models, and describe the current efforts to therapeutically target these proteins to treat human skeletal disease.
Collapse
Affiliation(s)
- Tao Yang
- Program in Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Bart O Williams
- Program in Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| |
Collapse
|
236
|
Brunetti G, Faienza MF, Colaianni G, Grano M, Colucci S. Mechanisms of Altered Bone Remodeling in Multiple Myeloma. Clin Rev Bone Miner Metab 2017. [DOI: 10.1007/s12018-017-9236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
237
|
Inhibition of Histone Methyltransferase, Histone Deacetylase, and β-Catenin Synergistically Enhance the Cardiac Potential of Bone Marrow Cells. Stem Cells Int 2017; 2017:3464953. [PMID: 28791052 PMCID: PMC5534312 DOI: 10.1155/2017/3464953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/02/2017] [Accepted: 05/17/2017] [Indexed: 11/17/2022] Open
Abstract
Previously, we reported that treatment with the G9a histone methyltransferase inhibitor BIX01294 causes bone marrow mesenchymal stem cells (MSCs) to exhibit a cardiocompetent phenotype, as indicated by the induction of the precardiac markers Mesp1 and brachyury. Here, we report that combining the histone deacetylase inhibitor trichostatin A (TSA) with BIX01294 synergistically enhances MSC cardiogenesis. Although TSA by itself had no effect on cardiac gene expression, coaddition of TSA to MSC cultures enhanced BIX01294-induced levels of Mesp1 and brachyury expression 5.6- and 7.2-fold. Moreover, MSCs exposed to the cardiogenic stimulus Wnt11 generated 2.6- to 5.6-fold higher levels of the cardiomyocyte markers GATA4, Nkx2.5, and myocardin when pretreated with TSA in addition to BIX01294. MSC cultures also showed a corresponding increase in the prevalence of sarcomeric protein-positive cells when treated with these small molecule inhibitors. These results correlated with data showing synergism between (1) TSA and BIX01294 in promoting acetylation of lysine 27 on histone H3 and (2) BIX01294 and Wnt11 in decreasing β-catenin accumulation in MSCs. The implications of these findings are discussed in light of observations in the early embryo on the importance of β-catenin signaling and histone modifications for cardiomyocyte differentiation and heart development.
Collapse
|
238
|
Koch S. Extrinsic control of Wnt signaling in the intestine. Differentiation 2017; 97:1-8. [PMID: 28802143 DOI: 10.1016/j.diff.2017.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/28/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022]
Abstract
The canonical Wnt/β-catenin signaling pathway is a central regulator of development and tissue homeostasis. In the intestine, Wnt signaling is primarily known as the principal organizer of epithelial stem cell identity and proliferation. Within the last decade, numerous scientific breakthroughs have shed light on epithelial self-organization in the gut, and organoids are now routinely used to study stem cell biology and intestinal pathophysiology. The contribution of non-epithelial cells to Wnt signaling in the gut has received less attention. However, there is mounting evidence that stromal cells are a rich source of Wnt pathway activators and inhibitors, which can dynamically shape Wnt signaling to control epithelial proliferation and restitution. Elucidating the extent and mechanisms of paracrine Wnt signaling in the intestine has the potential to broaden our understanding of epithelial homeostasis, and may be of particular relevance for disorders such as inflammatory bowel diseases and colitis-associated cancers.
Collapse
Affiliation(s)
- Stefan Koch
- Department of Clinical and Experimental Medicine (IKE), Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Linköping University, S-581 85 Linköping, Sweden.
| |
Collapse
|
239
|
Pridgeon MG, Grohar PJ, Steensma MR, Williams BO. Wnt Signaling in Ewing Sarcoma, Osteosarcoma, and Malignant Peripheral Nerve Sheath Tumors. Curr Osteoporos Rep 2017. [PMID: 28647886 DOI: 10.1007/s11914-017-0377-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Wnt signaling plays a central role in development and homeostasis, and its dysregulation is a common event in many types of human cancer. Here we explore in detail the contributions of Wnt signaling to the initiation and maintenance of three types of saroma: Ewing sarcoma, osteosarcoma, and malignant peripheral nerve sheath tumors. This review provides an overview of the Wnt signaling pathway and explores in detail the current knowledge about its role in the initiation or maintenance of three tumor types: Ewing sarcoma, osteosarcoma, and malignant peripheral nerve sheath tumors. RECENT FINDINGS Recent work has assessed the role(s) of Wnt signaling within these cell types. This review provides an overview of the mechanistic insights that have been gained from a number of recent studies to set the foundation for potential therapeutic applications. Wnt signaling has emerged as a potentially critical pathway in maintaining the growth of these types of tumors. Given the fact that many new inhibitors of the pathway have recently or will soon enter Phase 1 clinical trials, it is likely that assessment of their activity in these tumor types will occur in human patients.
Collapse
Affiliation(s)
- Matthew G Pridgeon
- Grand Rapids Medical Education Partners, Grand Rapids, MI, USA
- Spectrum Health Cancer Center, Spectrum Health System, Grand Rapids, MI, USA
- Helen De Vos Children's Hospital, Grand Rapids, MI, USA
| | - Patrick J Grohar
- Spectrum Health Cancer Center, Spectrum Health System, Grand Rapids, MI, USA
- Helen De Vos Children's Hospital, Grand Rapids, MI, USA
- Department of Pediatrics, Michigan State University, Grand Rapids, MI, USA
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Matthew R Steensma
- Spectrum Health Cancer Center, Spectrum Health System, Grand Rapids, MI, USA
- Helen De Vos Children's Hospital, Grand Rapids, MI, USA
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
- Department of Surgery, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Bart O Williams
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA.
| |
Collapse
|
240
|
García-Velázquez L, Arias C. The emerging role of Wnt signaling dysregulation in the understanding and modification of age-associated diseases. Ageing Res Rev 2017. [PMID: 28624530 DOI: 10.1016/j.arr.2017.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wnt signaling is a highly conserved pathway that participates in multiple aspects of cellular function during development and in adults. In particular, this pathway has been implicated in cell fate determination, proliferation and cell polarity establishment. In the brain, it contributes to synapse formation, axonal remodeling, dendrite outgrowth, synaptic activity, neurogenesis and behavioral plasticity. The expression and distribution of Wnt components in different organs vary with age, which may have important implications for preserving tissue homeostasis. The dysregulation of Wnt signaling has been implicated in age-associated diseases, such as cancer and some neurodegenerative conditions. This is a relevant research topic, as an important research avenue for therapeutic targeting of the Wnt pathway in regenerative medicine has recently been opened. In this review, we discuss the recent findings on the regulation of Wnt components during aging, particularly in brain functioning, and the implications of Wnt signaling in age-related diseases.
Collapse
|
241
|
RhoA phosphorylation mediated by Rho/RhoA-associated kinase pathway improves the anti-freezing potentiality of murine hatched and diapaused blastocysts. Sci Rep 2017; 7:6705. [PMID: 28751650 PMCID: PMC5532275 DOI: 10.1038/s41598-017-07066-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022] Open
Abstract
Embryonic cryopreservation has a relatively low survival rate because of cytoskeletal damage. However, molecular anti-freezing mechanisms have been largely unexplored. This study investigated the significance of RhoA, involved in embryonic development, and the Rho/RhoA-associated kinase (ROCK) signalling pathway in cryopreservation. The anti-freezing mechanism in murine dormant embryos, compared with normal blastocysts, was assessed by combining molecular, physiological and pharmacological approaches. Real-time PCR and western blotting experiments showed high RhoA expression in cryo-dormant and dormant embryos. RhoA GTPases were overexpressed on the surface of trophectoderm cells in dormant embryos. Treatment with Y-27632, a ROCK antagonist, decreased survival of both normal and dormant blastocysts, while recombinant RhoA protein remarkably increased survival, after freeze-thawing, of normal hatched blastocysts. Our findings elucidated the molecular mechanism of anti-freezing, involving RhoA phosphorylation, meditated by the Rho/ROCK signalling pathway, in hatched and diapaused murine blastocysts. In addition, evidence for a potentially protective additive suggests a new method for improving the anti-freezing potential of mammalian embryos, without protecting the zona pellucida.
Collapse
|
242
|
Yang S, Liu Y, Li MY, Ng CSH, Yang SL, Wang S, Zou C, Dong Y, Du J, Long X, Liu LZ, Wan IYP, Mok T, Underwood MJ, Chen GG. FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer. Mol Cancer 2017; 16:124. [PMID: 28716029 PMCID: PMC5514503 DOI: 10.1186/s12943-017-0700-1] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
Background The role of cancer cell FOXP3 in tumorigenesis is conflicting. We aimed to study FOXP3 expression and regulation, function and clinical implication in human non-small cell lung cancer (NSCLC). Methods One hundred and six patients with histologically-confirmed NSCLC who underwent surgery were recruited for the study. Tumor samples and NSCLC cell lines were used to examine FOXP3 and its related molecules. Various cell functions related to tumorigenesis were performed. In vivo mouse tumor xenograft was used to confirm the in vitro results. Results NSCLC patients with the high level of FOXP3 had a significant decrease in overall survival and recurrence-free survival. FOXP3 overexpression significantly induced cell proliferation, migration, and invasion, whereas its inhibition impaired its oncogenic function. In vivo studies confirmed that FOXP3 promoted tumor growth and metastasis. The ectopic expression of FOXP3 induced epithelial–mesenchymal transition (EMT) with downregulation of E-cadherin and upregulation of N-cadherin, vimentin, snail, slug, and MMP9. The oncogenic effects by FOXP3 could be attributed to FOX3-mediated activation of Wnt/β-catenin signaling, as FOXP3 increased luciferase activity of Topflash reporter and upregulated Wnt signaling target genes including c-Myc and Cyclin D1 in NSCLC cells. Co-immunoprecipitation results further indicated that FOXP3 could physically interacted with β-catenin and TCF4 to enhance the functions of β-catenin and TCF4, inducing transcription of Wnt target genes to promote cell proliferation, invasion and EMT induction. Conclusions FOXP3 can act as a co-activator to facilitate the Wnt-b-catenin signaling pathway, inducing EMT and tumor growth and metastasis in NSCLC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0700-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shucai Yang
- Department of Clinical Laboratory, Pingshan District People's Hospital Of Shenzhen, Shenzhen, China.,Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Yi Liu
- Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.,Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ming-Yue Li
- Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.,Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Calvin S H Ng
- Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Sheng-Li Yang
- Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shanshan Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Chang Zou
- Clinical Research Centre, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Yujuan Dong
- Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Jing Du
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xiang Long
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Li-Zhong Liu
- Faculty of Medicine, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Innes Y P Wan
- Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Tony Mok
- Department of Clinical Oncology, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Malcolm J Underwood
- Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - George G Chen
- Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China. .,Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
243
|
A genomic approach to susceptibility and pathogenesis leads to identifying potential novel therapeutic targets in androgenetic alopecia. Genomics 2017; 109:165-176. [DOI: 10.1016/j.ygeno.2017.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/03/2017] [Accepted: 02/25/2017] [Indexed: 02/07/2023]
|
244
|
Chakraborty A, Kurati SP, Mahata SK, Sundar S, Roy S, Sen M. Wnt5a Signaling Promotes Host Defense against Leishmania donovani Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:992-1002. [PMID: 28659356 DOI: 10.4049/jimmunol.1601927] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/30/2017] [Indexed: 11/19/2022]
Abstract
Leishmania donovani infects macrophages, disrupting immune homeostasis. The underlying mechanism that sustains infection remains unresolved. In view of the potential of Wnt5a signaling to support immune homeostasis, we evaluated the interrelationship of Wnt5a signaling and Leishmania donovani infection. Upon infecting macrophages separately with antimony drug-sensitive and -resistant L. donovani, we noted disruption in the steady-state level of Wnt5a. Moreover, inhibition of Wnt5a signaling by small interfering RNA transfection in vitro or by use of inhibitor of Wnt production in vivo led to an increase in cellular parasite load. In contrast, treatment of macrophages with recombinant Wnt5a caused a decrease in the load of antimony-sensitive and -resistant parasites, thus confirming that Wnt5a signaling antagonizes L. donovani infection. Using inhibitors of the Wnt5a signaling intermediates Rac1 and Rho kinase, we demonstrated that Wnt5a-mediated inhibition of parasite infection in macrophages is Rac1/Rho dependent. Furthermore, phalloidin staining and reactive oxygen species estimation of Wnt5a-treated macrophages suggested that a Wnt5a-Rac/Rho-mediated decrease in parasite load is associated with an increase in F- actin assembly and NADPH oxidase activity. Moreover, live microscopy of L. donovani-infected macrophages treated with Wnt5a demonstrated increased endosomal/lysosomal fusions with parasite-containing vacuoles (parasitophorous vacuoles [PV]). An increase in PV-endosomal/lysosomal fusion accompanied by augmented PV degradation in Wnt5a-treated macrophages was also apparent from transmission electron microscopy of infected cells. Our results suggest that, although L. donovani evades host immune response, at least in part through inhibition of Wnt5a signaling, revamping Wnt5a signaling can inhibit L. donovani infection, irrespective of drug sensitivity or resistance.
Collapse
Affiliation(s)
- Arijit Chakraborty
- Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Sony Priya Kurati
- Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Sushil K Mahata
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161.,Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Syamal Roy
- Division of Infectious Disease and Immunology, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India; and.,Coochbehar Panchanan Barma University, Cooch Behar, West Bengal 736101, India
| | - Malini Sen
- Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India;
| |
Collapse
|
245
|
Xiao Q, Chen Z, Jin X, Mao R, Chen Z. The many postures of noncanonical Wnt signaling in development and diseases. Biomed Pharmacother 2017. [PMID: 28651237 DOI: 10.1016/j.biopha.2017.06.061] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Wnt signaling regulates many aspects of vertebrate development. Its dysregulation causes developmental defects and diseases including cancer. The signaling can be categorized in two pathways: canonical and noncanonical. Canonical pathway plays a key role in regulating proliferation and differentiation of cells whilst noncanonical Wnt signaling mainly controls cellular polarity and motility. During development, noncanonical Wnt signaling is required for tissue formation. Recent studies have shown that noncanonical Wnt signaling is involved in adult tissue development and cancer progression. In this review, we try to describe and discuss the mechanisms behind the biological effects of noncanonical Wnt signaling, diseases caused by its dysregulation, and implications in adult tissue development biology.
Collapse
Affiliation(s)
- Qian Xiao
- Senior Research Scientist, Department of Pharmacology, School of Medicine, Yale University, New Haven, USA
| | - Zhengxi Chen
- PhD, Department of Orthodontics, Ninth People's Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaozhuang Jin
- PhD, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Runyi Mao
- MDS student, Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenqi Chen
- Professor, Department of Orthodontics, Ninth People's Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
246
|
Tayyab M, Shahi MH, Farheen S, Mariyath MPM, Khanam N, Castresana JS, Hossain MM. Sonic hedgehog, Wnt, and brain-derived neurotrophic factor cell signaling pathway crosstalk: potential therapy for depression. J Neurosci Res 2017. [PMID: 28631844 DOI: 10.1002/jnr.24104] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There are various theories to explain the pathophysiology of depression and support its diagnosis and treatment. The roles of monoamines, brain-derived neurotrophic factor (BDNF), and Wnt signaling are well researched, but sonic hedgehog (Shh) signaling and its downstream transcription factor Gli1 are not well studied in depression. Shh signaling plays a fundamental role in embryonic development and adult hippocampal neurogenesis and also involved in the growth of cancer. In this article, we summarize the evidence for the Shh signaling pathway in depression and the potential crosstalk of Shh with Wnt and BDNF. Antidepressants are known to upregulate the adult hippocampal neurogenesis to treat depression. Shh plays an important role in adult hippocampal neurogenesis, and its downstream signaling components regulate the synthesis of Wnt proteins. Moreover, the expression of Gli1 and Smo is downregulated in depression. BDNF and Wnt signaling are also regulated by various available antidepressants, so there is the possibility that Shh may be involved in the pathophysiology of depression. Therefore, the crosstalk between the Shh, Wnt, and BDNF signaling pathways is being discussed to identify the potential targets. Specifically, the potential role of the Shh signaling pathway in depression is explored as a new target for better therapies for depression.
Collapse
Affiliation(s)
- Mohd Tayyab
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mehdi H Shahi
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Shirin Farheen
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mubeena P M Mariyath
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Nabeela Khanam
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Javier S Castresana
- Department of Biochemistry and Genetics, University of Navarra, Faculty of Sciences, Pamplona, Spain
| | - M Mobarak Hossain
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India.,Department of Physiology, JNMC, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
247
|
Zimmerli D, Hausmann G, Cantù C, Basler K. Pharmacological interventions in the Wnt pathway: inhibition of Wnt secretion versus disrupting the protein-protein interfaces of nuclear factors. Br J Pharmacol 2017; 174:4600-4610. [PMID: 28521071 DOI: 10.1111/bph.13864] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
Mutations in components of the Wnt pathways are a frequent cause of many human diseases, particularly cancer. Despite the fact that a causative link between aberrant Wnt signalling and many types of human cancers was established more than a decade ago, no Wnt signalling inhibitors have made it into the clinic so far. One reason for this is that no pathway-specific kinase is known. Additionally, targeting the protein-protein interactions needed to transduce the signal has not met with success so far. Complicating the search for and use of inhibitors is the complexity of the cascades triggered by the Wnts and their paramount biological importance. Wnt/β-catenin signalling is involved in virtually all aspects of embryonic development and in the control of the homeostasis of adult tissues. Encouragingly, however, in recent years, first successes with Wnt-pathway inhibitors have been reported in mouse models of disease. In this review, we summarize possible roads to follow during the quest to pharmacologically modulate the Wnt signalling pathway in cancer. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Dario Zimmerli
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - George Hausmann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Claudio Cantù
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
248
|
Zhang W, Yan Y, Gu M, Wang X, Zhu H, Zhang S, Wang W. High expression levels of Wnt5a and Ror2 in laryngeal squamous cell carcinoma are associated with poor prognosis. Oncol Lett 2017; 14:2232-2238. [PMID: 28781662 PMCID: PMC5530173 DOI: 10.3892/ol.2017.6386] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/30/2017] [Indexed: 12/16/2022] Open
Abstract
The present study investigated the prognostic significance of Wnt family member 5a (Wnt5a) and receptor tyrosine kinase-like orphan receptor 2 (Ror2) expression in laryngeal squamous cell carcinoma (LSCC). The protein expression levels of Wnt5a and Ror2 were analyzed in specimens from 137 patients with LSCC, using immunohistochemical staining of tissue microarrays and pairs of LSCC and adjacent tissue samples, and examined the associations between the two markers and various clinicopathological parameters. The Wnt5a and Ror2 expression levels were significantly higher in LSCC tissues than in normal tissue samples (Wnt5a, P=0.015; Ror2, P=0.039), and were significantly associated with high tumor stage (P<0.001), lymph node metastasis (Wnt5a, P=0.029; Ror2, P=0.018), and with each other (P=0.002). Patients with LSCC with high Wnt5a or Ror2 expression had poorer prognosis compared with those with low Wnt5a (P=0.022) or Ror2 (P=0.038) expression. Thus, Wnt5a and Ror2 may affect LSCC development, and are potential biomarkers in LSCC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yongbing Yan
- Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Miao Gu
- Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xudong Wang
- Department of Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Huijun Zhu
- Department of Clinical Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shu Zhang
- Department of Clinical Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wei Wang
- Department of Clinical Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
249
|
Zou L, Wang X, Jiang L, Wang S, Xiong X, Yang H, Gao W, Gong M, Hu CAA, Yin Y. Molecular cloning, characterization and expression analysis of Frizzled 6 in the small intestine of pigs (Sus scrofa). PLoS One 2017; 12:e0179421. [PMID: 28614361 PMCID: PMC5470702 DOI: 10.1371/journal.pone.0179421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 05/30/2017] [Indexed: 11/18/2022] Open
Abstract
Frizzled 6 (FZD6) encodes an integral membrane protein that functions in multiple signal transduction pathways, for example, as a receptor in Wnt/planar cell polarity (PCP) signaling pathway for polarized cell migration and organ morphogenesis. Mutations in FZD6 have been identified in a variety of tumors. In this study, the full-length cDNA of Sus scrofa FZD6 (Sfz6) was cloned and characterized. Nucleotide sequence analysis demonstrates that the Sfz6 gene encodes the 712 amino-acid (aa) protein with seven transmembrane domain. Tissue distribution analysis showed that Sfz6 mRNA is ubiquitously expressed in various tissues, being highest in kidney, moderate in jejunum, ileum, colon, liver, and spleen. However, FZD6 protein is highly expressed in the heart and there was no significant difference in other tissues. The relative abundance and localization of FZD6 protein in jejunum along the crypt-villus axis was determined by Western blot and immunohistochemical localization. The results show that in the jejunum, FZD6 protein is highly expressed in the villus and less in the crypt cells. Cellular proliferation and viability assays indicate that knockdown of FZD6 with small interfering RNAs (siRNA) significantly reduced the cell viability of the intestinal porcine enterocyte cells (IPEC-J2). Furthermore, qPCR and Western blot analysis revealed that expressions of ras-related C3 botulinum toxin substrate 1 (Rac1); ras homolog gene family member A (RhoA) and c-Jun N-terminal kinase 1 (JNK1), some components of PCP signaling pathway were upregulated (P < 0.05) by knockdown of FZD6 in IPEC-J2 cells. In conclusion, these results showed that FZD6 abundance in the villus was higher than that in crypt cells and knockdown of FZD6 induces PCP signal pathway components expression in IPEC-J2 cells. Our findings provide the foundation for further investigation into porcine FZD6 gene.
Collapse
Affiliation(s)
- Lijun Zou
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China.,Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.,Laboratory of Basic Biology, Hunan First Normal College, Changsha, Hunan, China
| | - Xiaocheng Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Liping Jiang
- School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shengping Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Xia Xiong
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Huansheng Yang
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wei Gao
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Min Gong
- Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Chien-An A Hu
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yulong Yin
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China.,Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
250
|
Laganà AS, Vitale SG, Salmeri FM, Triolo O, Ban Frangež H, Vrtačnik-Bokal E, Stojanovska L, Apostolopoulos V, Granese R, Sofo V. Unus pro omnibus, omnes pro uno: A novel, evidence-based, unifying theory for the pathogenesis of endometriosis. Med Hypotheses 2017; 103:10-20. [DOI: 10.1016/j.mehy.2017.03.032] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 03/21/2017] [Indexed: 01/17/2023]
|