201
|
Ghitza UE, Nair SG, Golden SA, Gray SM, Uejima JL, Bossert JM, Shaham Y. Peptide YY3-36 decreases reinstatement of high-fat food seeking during dieting in a rat relapse model. J Neurosci 2007; 27:11522-32. [PMID: 17959795 PMCID: PMC2100402 DOI: 10.1523/jneurosci.5405-06.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 09/13/2007] [Accepted: 09/13/2007] [Indexed: 01/01/2023] Open
Abstract
A major problem in treating obesity is high rates of relapse to maladaptive food-taking habits during dieting. This relapse is often provoked by acute re-exposure to palatable food, food-associated cues, or stress. We used a reinstatement model, commonly used to study relapse to abused drugs, to explore the effect of peptide YY3-36 (PYY3-36) on reinstatement of high-fat (35%, 45 mg pellets) food seeking induced by acute exposure to the pellets (pellet priming), a cue previously associated with pellet delivery (pellet cue), or yohimbine (2 mg/kg, a pharmacological stressor). Rats were placed on a restricted diet (16 g of chow per day) and lever-pressed for the pellets for 9-12 sessions (6 h/d, every 48 h); pellet delivery was paired with a tone-light cue. They were then given 10-20 extinction sessions wherein lever presses were not reinforced with the pellets and subsequently tested for reinstatement of food seeking. Systemic PYY3-36 injections (100-200 microg/kg) decreased pellet priming- and pellet cue-induced reinstatement of food seeking but not yohimbine-induced reinstatement. Arcuate nucleus (Arc) injections of PYY3-36 (0.4 microg per side) decreased pellet priming-induced reinstatement. The attenuation of pellet priming-induced reinstatement by systemic PYY3-36 was reversed by systemic (2 mg/kg) but not Arc (0.5 microg per side) injections of the Y2 receptor antagonist BIIE0246. Arc PYY3-36 injections did not decrease pellet cue-induced reinstatement. Finally, systemic PYY3-36 injections had minimal effects on ongoing food self-administration or heroin priming- or heroin cue-induced reinstatement of heroin seeking. These data identify an effect of systemic PYY3-36 on relapse to food seeking that is independent of Y2 receptor activation in Arc and suggest that PYY3-36 should be considered for the treatment of relapse to maladaptive food-taking habits during dieting.
Collapse
Affiliation(s)
- Udi E. Ghitza
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224
| | - Sunila G. Nair
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224
| | - Sam A. Golden
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224
| | - Sarah M. Gray
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224
| | - Jamie L. Uejima
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224
| | - Jennifer M. Bossert
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224
| | - Yavin Shaham
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224
| |
Collapse
|
202
|
Abstract
Obesity is a serious public health problem throughout the world, affecting both developed societies and developing countries. The central nervous system has developed a meticulously interconnected circuitry in order to keep us fed and in an adequate nutritional state. One of these consequences is that an energy-dense environment favors the development of obesity. Neuropeptide Y (NPY) is one of the most abundant and widely distributed peptides in the central nervous system of both rodents and humans and has been implicated in a variety of physiological actions. Within the hypothalamus, NPY plays an essential role in the control of food intake and body weight. Centrally administered NPY causes robust increases in food intake and body weight and, with chronic administration, can eventually produce obesity. NPY activates a population of at least six G protein-coupled Y receptors. NPY analogs exhibit varying degrees of affinity and specificity for these Y receptors. There has been renewed speculation that ligands for Y receptors may be of benefit for the treatment of obesity. This review highlights the therapeutic potential of Y(1), Y(2), Y(4), and Y(5) receptor agonists and antagonists as additional intervention to treat human obesity.
Collapse
Affiliation(s)
- M M Kamiji
- Department of Gastroenterology, Faculty of Medicine, University of Sao Paulo, Ribeirão Preto Campus 14048-900, Ribeirão Preto-SP, Brazil
| | | |
Collapse
|
203
|
Whited KL, Tso P, Raybould HE. Involvement of apolipoprotein A-IV and cholecystokinin1 receptors in exogenous peptide YY3 36-induced stimulation of intestinal feedback. Endocrinology 2007; 148:4695-703. [PMID: 17641001 DOI: 10.1210/en.2006-1665] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Peptide YY (PYY)(3-36), released by intestinal lipid elicits functional effects that comprise the intestinal feedback response to luminal nutrients, but the pathway of action is not fully characterized. The aim of the present study was to determine the role of the apolipoprotein (apo) A-IV-cholecystokinin (CCK)(1) receptor (CCK(1)R) pathway in exogenous PYY(3-36)-induced activation of the gut-brain axis and inhibition of gastric emptying and food intake. PYY(3-36) (5 microg/100 g ip) significantly inhibited gastric emptying of a chow meal in wild-type but not A-IV(-/-) mice andCCK(1)R receptor blockade with devazepide (10 microg/100 g), abolished PYY(3-36)-induced inhibition of gastric emptying. PYY(3-36)-induced inhibition of food intake in both ad libitum-fed and 16-h fasted mice was unaltered in A-IV(-/-) mice, compared with wild-type controls, or by CCK(1)R receptor blockade with devazepide. PYY(3-36) activated neurons in the midregion of the nucleus of the solitary tract (bregma -7.32 to -7.76 mm) in A-IV(+/+) mice; this was measured by immunohistochemical localization of Fos protein. PYY(3-36)-induced Fos expression was significantly reduced by 65% in A-IV(+/+) mice pretreated systemically with the sensory neurotoxin capsaicin (5 mg/100 g), 78% by the CCK(1)R antagonist, devazepide (10 microg/100 g), and 39% by the Y2R antagonist, BIIE0246 (200 and 600 microg/100 g) and decreased by 67% in apo A-IV(-/-) mice, compared with A-IV(+/+) controls. The data suggest a role for apo A-IV and the CCK(1)R in PYY(3-36)-induced activation of the vagal afferent pathway and inhibition of gastric emptying, but this is likely not the pathway mediating the effects of PYY(3-36) on food intake.
Collapse
Affiliation(s)
- K L Whited
- Department of Anatomy, Physiology, and Cell Biology, University of California-Davis, Davis, CA 95616, USA
| | | | | |
Collapse
|
204
|
Gehlert DR, Schober DA, Morin M, Berglund MM. Co-expression of neuropeptide Y Y1 and Y5 receptors results in heterodimerization and altered functional properties. Biochem Pharmacol 2007; 74:1652-64. [PMID: 17897631 DOI: 10.1016/j.bcp.2007.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/09/2007] [Accepted: 08/10/2007] [Indexed: 12/01/2022]
Abstract
Centrally administered neuropeptide Y (NPY) produces anxiolytic and orexigenic effects by interacting with Y1 and Y5 receptors that are colocalized in many brain regions. Therefore, we tested the hypothesis that co-expression of Y1 and Y5 receptors results in heterodimerization, altered pharmacological properties and altered desensitization. To accomplish this, the carboxyl-termini of Y1 and Y5 receptors were fused with Renilla luciferase and green fluorescent protein and the proximity of the tagged receptors assessed using bioluminescent resonance energy transfer. Under basal conditions, cotransfection of tagged Y1 receptor and Y5 produced a substantial dimerization signal that was unaffected by the endogenous, nonselective agonists, NPY and peptide YY (PYY). Selective Y5 agonists produced an increase in the dimerization signal while Y5 antagonists also produced a slight but significant increase. In the absence of agonists, selective antagonists decreased dimerization. In functional studies, Y5 agonists produced a greater inhibition of adenylyl cyclase activity in Y1/Y5 cells than cells expressing Y5 alone while NPY and PYY exhibited no difference. With PYY stimulation, the Y1 antagonist became inactive and the Y5 antagonist exhibited uncompetitive kinetics in the Y1/Y5 cell line. In confocal microscopy studies, Y1/Y5 co-expression resulted in increased Y5 signaling following PYY stimulation. Addition of both Y1 and Y5 receptor antagonists was required to significantly decrease PYY-induced internalization. Therefore, Y1/Y5 co-expression results in heterodimerization, altered agonist and antagonist responses and reduced internalization rate. These results may account for the complex pharmacology observed when assessing the responses to NPY and analogs in vivo.
Collapse
Affiliation(s)
- Donald R Gehlert
- Lilly Neuroscience, Lilly Research Laboratories, Eli Lilly and Co., Lilly Corporate Center, Indianapolis, IN 46285, United States.
| | | | | | | |
Collapse
|
205
|
Dimitrov EL, DeJoseph MR, Brownfield MS, Urban JH. Involvement of neuropeptide Y Y1 receptors in the regulation of neuroendocrine corticotropin-releasing hormone neuronal activity. Endocrinology 2007; 148:3666-73. [PMID: 17463058 DOI: 10.1210/en.2006-1730] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neuroendocrine parvocellular CRH neurons in the paraventricular nucleus (PVN) of the hypothalamus are the main integrators of neural inputs that initiate hypothalamic-pituitary-adrenal (HPA) axis activation. Neuropeptide Y (NPY) expression is prominent within the PVN, and previous reports indicated that NPY stimulates CRH mRNA levels. The purpose of these studies was to examine the participation of NPY receptors in HPA axis activation and determine whether neuroendocrine CRH neurons express NPY receptor immunoreactivity. Infusion of 0.5 nmol NPY into the third ventricle increased plasma corticosterone levels in conscious rats, with the peak of hormone levels occurring 30 min after injection. This increase was prevented by pretreatment with the Y1 receptor antagonist BIBP3226. Immunohistochemistry showed that CRH-immunoreactive neurons coexpressed Y1 receptor immunoreactivity (Y1r-ir) in the PVN, and a majority of these neurons (88.8%) were neuroendocrine as determined by ip injections of FluoroGold. Bilateral infusion of the Y1/Y5 agonist, [leu(31)pro(34)]NPY (110 pmol), into the PVN increased c-Fos and phosphorylated cAMP response element-binding protein expression and elevated plasma corticosterone levels. Increased expression of c-Fos and phosphorylated cAMP response element-binding protein was observed in populations of CRH/Y1r-ir cells. The current findings present a comprehensive study of NPY Y1 receptor distribution and activation with respect to CRH neurons in the PVN. The expression of NPY Y1r-ir by neuroendocrine CRH cells suggests that alterations in NPY release and subsequent activation of NPY Y1 receptors plays an important role in the regulation of the HPA.
Collapse
Affiliation(s)
- Eugene L Dimitrov
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, USA
| | | | | | | |
Collapse
|
206
|
Goodman A. Neurobiology of addiction. An integrative review. Biochem Pharmacol 2007; 75:266-322. [PMID: 17764663 DOI: 10.1016/j.bcp.2007.07.030] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 02/08/2023]
Abstract
Evidence that psychoactive substance use disorders, bulimia nervosa, pathological gambling, and sexual addiction share an underlying biopsychological process is summarized. Definitions are offered for addiction and addictive process, the latter being the proposed designation for the underlying biopsychological process that addictive disorders are hypothesized to share. The addictive process is introduced as an interaction of impairments in three functional systems: motivation-reward, affect regulation, and behavioral inhibition. An integrative review of the literature that addresses the neurobiology of addiction is then presented, organized according to the three functional systems that constitute the addictive process. The review is directed toward identifying candidate neurochemical substrates for the impairments in motivation-reward, affect regulation, and behavioral inhibition that could contribute to an addictive process.
Collapse
Affiliation(s)
- Aviel Goodman
- Minnesota Institute of Psychiatry, 1347 Summit Avenue, St. Paul, MN 55105, USA.
| |
Collapse
|
207
|
Oberto A, Acquadro E, Bus T, Sprengel R, Eva C. Expression patterns of promoters for NPY Y1 and Y5 receptors in Y5RitTA and Y1RVenus BAC-transgenic mice. Eur J Neurosci 2007; 26:155-70. [PMID: 17614946 DOI: 10.1111/j.1460-9568.2007.05631.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the rat brain, neuropeptide Y (NPY) Y(1) and Y(5) receptors are coexpressed in various forebrain regions where they mediate several NPY-activated functions, including feeding behaviour, anxiety, neuronal excitability and hormone secretion. We studied the distribution pattern and cellular colocalization of the Y(1) and the Y(5) receptor gene expression in the mouse brain by using transgenic mice with genomically integrated BAC clones, where the coding regions of the Y(1) and Y(5) receptor genes were replaced by Venus and the synthetic transcription factor itTA reporter genes, respectively (Tg(Y5RitTA/Y1RVenus) mice). Analysis of Venus fluorescence and itTA-mediated activation of Cre recombinase revealed copy number-dependent expression levels, between the lines, but similar expression patterns. In three transgenic lines the BAC encoded Y(5) receptor promoter induced strong Cre expression in the olfactory system, cerebral cortex, hippocampus and basal ganglia. Weaker expression was found in most of the hypothalamic nuclei of line 25, the highest-expressing transgenic line. Activation of Cre was itTA-dependent and could be regulated by doxycycline. The Y(1) receptor promoter-induced Venus fluorescence was intense, widely present through the brain and colocalized with Cre immunostaining in neurons of distinct brain regions, including the cerebral cortex, basolateral amygdala, dentate gyrus and paraventricular nucleus. These data provide a detailed and comparative mapping of Y(1) and Y(5) receptor promoter activity within cells of the mouse brain. The Tg(Y5RitTA/Y1RVenus)-transgenic mice generated here also represent a genetic tool for conditional mutagenesis via the Cre lox system, particularly of genes involved in feeding behaviour, neuronal excitability and hormone secretion.
Collapse
Affiliation(s)
- Alessandra Oberto
- Dipartimento di Anatomia, Farmacologia e Medicina Legale, Sezione di Farmacologia, Via Pietro Giuria 13, 10125 Torino, Italy
| | | | | | | | | |
Collapse
|
208
|
Zammaretti F, Panzica G, Eva C. Sex-dependent regulation of hypothalamic neuropeptide Y-Y1 receptor gene expression in moderate/high fat, high-energy diet-fed mice. J Physiol 2007; 583:445-54. [PMID: 17584829 PMCID: PMC2277036 DOI: 10.1113/jphysiol.2007.133470] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this study we investigated whether long-term consumption of a moderate/high fat (MHF), high-energy diet can affect the gene expression of the Y(1) receptor (Y(1)R) for neuropeptide Y (NPY) in the dorsomedial (DMH), ventromedial (VMH), arcuate (ARC) and paraventricular (PVN) hypothalamic nuclei of male and female Y(1)R/LacZ transgenic mice, carrying the murine Y(1)R promoter linked to the LacZ gene. MHF diet-fed male mice showed an increased consumption of metabolizable energy that was associated with a significant increase in body weight as compared with chow-fed controls. In parallel, consumption of a MHF diet for 8 weeks significantly decreased Y(1)R/LacZ transgene expression in the DMH and VMH of male mice whereas no changes were found in the ARC and PVN. Leptin treatment reduced body weight of both MHF diet- and chow-fed male mice but failed to prevent the decrease in Y(1)R/LacZ transgene expression apparent in the DMH and VMH of male mice after 8 weeks of MHF diet intake. Conversely, no significant changes of metabolizable energy intake, body weight or hypothalamic beta-galactosidase expression were found in MHF diet-fed female Y(1)R/LacZ transgenic mice. A gender-related difference of Y(1)R/LacZ transgenic mice was also observed in response to leptin treatment that failed to decrease body weight of both MHF diet- and chow-fed female mice. Results herein demonstrate that Y(1)R/LacZ FVB mice show a sexual dimorphism both on energy intake and on nucleus-specific regulation of the NPY Y(1)R system in the hypothalamus. Overall, these results provide new insights into the mechanism by which diet composition affects the hypothalamic circuit that controls energy homeostasis.
Collapse
Affiliation(s)
- Francesca Zammaretti
- Pharmacology Section, Department of Anatomy, Pharmacolgy and Forensic Medicine, University of Torino, Italy
| | | | | |
Collapse
|
209
|
Thomsen M, Wörtwein G, Olesen MV, Begtrup M, Havez S, Bolwig TG, Woldbye DPD. Involvement of Y5 receptors in neuropeptide Y agonist-induced analgesic-like effect in the rat hot plate test. Brain Res 2007; 1155:49-55. [PMID: 17498669 DOI: 10.1016/j.brainres.2007.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 04/07/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
Neuropeptide Y (NPY) induces analgesic-like effects after central administration across diverse pain models in rodents. In spinal pain models, previous studies indicate a prominent role for Y(1) receptors at mediating this effect of NPY. In supraspinal pain models like the hot plate test, the NPY receptors involved have not been thoroughly explored. By intracerebroventricular (i.c.v.) administration of selective NPY receptor ligands, the possible involvement of Y(5) receptors in analgesic-like mechanisms was investigated using the hot plate test in rats. Both NPY and selective Y(5) agonists induced analgesic-like effects as revealed by prolonged hot plate latencies. Further consistent with a role for Y(5) receptors, pretreatment with a selective Y(5) receptor antagonist blocked the Y(5) agonist-induced analgesic-like effect. The present study indicates involvement of Y(5) receptors probably at the supraspinal level in mediation of NPY agonist-induced analgesic-like effects in the hot plate test.
Collapse
Affiliation(s)
- Morgane Thomsen
- Laboratory of Neuropsychiatry, Rigshospitalet University Hospital O-6102 and Department of Neuroscience and Pharmacology, University of Copenhagen, 9 Blegdamsvej, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
210
|
Lundberg P, Allison SJ, Lee NJ, Baldock PA, Brouard N, Rost S, Enriquez RF, Sainsbury A, Lamghari M, Simmons P, Eisman JA, Gardiner EM, Herzog H. Greater bone formation of Y2 knockout mice is associated with increased osteoprogenitor numbers and altered Y1 receptor expression. J Biol Chem 2007; 282:19082-91. [PMID: 17491022 DOI: 10.1074/jbc.m609629200] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Germ line or hypothalamus-specific deletion of Y2 receptors in mice results in a doubling of trabecular bone volume. However, the specific mechanism by which deletion of Y2 receptors increases bone mass has not yet been identified. Here we show that cultured adherent bone marrow stromal cells from Y2(-/-) mice also demonstrate increased mineralization in vitro. Isolation of two populations of progenitor cell types, an immature mesenchymal stem cell population and a more highly differentiated population of progenitor cells, revealed a greater number of the progenitor cells within the bone of Y2(-/-) mice. Analysis of Y receptor transcripts in cultured stromal cells from wild-type mice revealed high levels of Y1 but not Y2, Y4, Y5, or y6 receptor mRNA. Interestingly, germ line Y2 receptor deletion causes Y1 receptor down-regulation in stromal cells and bone tissue possibly due to the lack of feedback inhibition of NPY release and subsequent overstimulation of Y1 receptors. Furthermore, deletion of Y1 receptors resulted in increased bone mineral density in mice. Together, these findings indicate that the greater number of mesenchymal progenitors and the altered Y1 receptor expression within bone cells in the absence of Y2 receptors are a likely mechanism for the greater bone mineralization in vivo and in vitro, opening up potential new treatment avenues for osteoporosis.
Collapse
Affiliation(s)
- Pernilla Lundberg
- Neuroscience Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Darlinghurst, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Baldock PA, Allison SJ, Lundberg P, Lee NJ, Slack K, Lin EJD, Enriquez RF, McDonald MM, Zhang L, During MJ, Little DG, Eisman JA, Gardiner EM, Yulyaningsih E, Lin S, Sainsbury A, Herzog H. Novel role of Y1 receptors in the coordinated regulation of bone and energy homeostasis. J Biol Chem 2007; 282:19092-102. [PMID: 17491016 DOI: 10.1074/jbc.m700644200] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The importance of neuropeptide Y (NPY) and Y2 receptors in the regulation of bone and energy homeostasis has recently been demonstrated. However, the contributions of the other Y receptors are less clear. Here we show that Y1 receptors are expressed on osteoblastic cells. Moreover, bone and adipose tissue mass are elevated in Y1(-/-) mice with a generalized increase in bone formation on cortical and cancellous surfaces. Importantly, the inhibitory effects of NPY on bone marrow stromal cells in vitro are absent in cells derived from Y1(-/-) mice, indicating a direct action of NPY on bone cells via this Y receptor. Interestingly, in contrast to Y2 receptor or germ line Y1 receptor deletion, conditional deletion of hypothalamic Y1 receptors in adult mice did not alter bone homeostasis, food intake, or adiposity. Furthermore, deletion of both Y1 and Y2 receptors did not produce additive effects in bone or adiposity. Thus Y1 receptor pathways act powerfully to inhibit bone production and adiposity by nonhypothalamic pathways, with potentially direct effects on bone tissue through a single pathway with Y2 receptors.
Collapse
Affiliation(s)
- Paul A Baldock
- Bone and Mineral Program, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Sainsbury A, Lin S, McNamara K, Slack K, Enriquez R, Lee NJ, Boey D, Smythe GA, Schwarzer C, Baldock P, Karl T, Lin EJD, Couzens M, Herzog H. Dynorphin knockout reduces fat mass and increases weight loss during fasting in mice. Mol Endocrinol 2007; 21:1722-35. [PMID: 17456788 DOI: 10.1210/me.2006-0367] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Endogenous opioids, particularly dynorphins, have been implicated in regulation of energy balance, but it is not known how they mediate this in vivo. We investigated energy homeostasis in dynorphin knockout mice (Dyn(-/-) mice) and probed the interactions between dynorphins and the neuropeptide Y (NPY) system. Dyn(-/-) mice were no different from wild types with regards to body weight and basal and fasting-induced food intake, but fecal output was increased, suggesting decreased nutrient absorption, and they had significantly less white fat and lost more weight during a 24-h fast. The neuroendocrine and thermal responses to fasting were at least as pronounced in Dyn(-/-) as in wild types, and there was no stimulatory effect of dynorphin knockout on 24-h energy expenditure (kilocalories of heat produced) or physical activity. However, Dyn(-/-) mice showed increased circulating concentrations of 3,4-dihydroxyphenlacetic acid and 3,4-dihydroxyphenylglycol, suggesting increased activity of the sympathetic nervous system. The respiratory exchange ratio of male but not female Dyn(-/-) mice was reduced, demonstrating increased fat oxidation. Interestingly, expression of the orexigenic acting NPY in the hypothalamic arcuate nucleus was reduced in Dyn(-/-) mice. However, fasting-induced increases in pre-prodynorphin expression in the arcuate nucleus, the paraventricular nucleus, and the ventromedial hypothalamus but not the lateral hypothalamus were abolished by deletion of Y(1) but not Y(2) receptors. Therefore, ablation of dynorphins results in increases in fatty acid oxidation in male mice, reductions in adiposity, and increased weight loss during fasting, possibly via increases in sympathetic activity, decreases in intestinal nutrient absorption, and interactions with the NPYergic system.
Collapse
Affiliation(s)
- Amanda Sainsbury
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Beck B. Neuropeptide Y in normal eating and in genetic and dietary-induced obesity. Philos Trans R Soc Lond B Biol Sci 2007; 361:1159-85. [PMID: 16874931 PMCID: PMC1642692 DOI: 10.1098/rstb.2006.1855] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropeptide Y (NPY) is one the most potent orexigenic peptides found in the brain. It stimulates food intake with a preferential effect on carbohydrate intake. It decreases latency to eat, increases motivation to eat and delays satiety by augmenting meal size. The effects on feeding are mediated through at least two receptors, the Y1 and Y5 receptors. The NPY system for feeding regulation is mostly located in the hypothalamus. It is formed of the arcuate nucleus (ARC), where the peptide is synthesized, and the paraventricular (PVN), dorsomedial (DMN) and ventromedial (VMN) nuclei and perifornical area where it is active. This activity is modulated by the hindbrain and limbic structures. It is dependent on energy availability, e.g. upregulation with food deprivation or restriction, and return to baseline with refeeding. It is also sensitive to diet composition with variable effects of carbohydrates and fats. Leptin signalling and glucose sensing which are directly linked to diet type are the most important factors involved in its regulation. Absence of leptin signalling in obesity models due to gene mutation either at the receptor level, as in the Zucker rat, the Koletsky rat or the db/db mouse, or at the peptide level, as in ob/ob mouse, is associated with increased mRNA abundance, peptide content and/or release in the ARC or PVN. Other genetic obesity models, such as the Otsuka-Long-Evans-Tokushima Fatty rat, the agouti mouse or the tubby mouse, are characterized by a diminution in NPY expression in the ARC nucleus and by a significant increase in the DMN. Further studies are necessary to determine the exact role of NPY in these latter models. Long-term exposure to high-fat or high-energy palatable diets leads to the development of adiposity and is associated with a decrease in hypothalamic NPY content or expression, consistent with the existence of a counter-regulatory mechanism to diminish energy intake and limit obesity development. On the other hand, an overactive NPY system (increased mRNA expression in the ARC associated with an upregulation of the receptors) is characteristic of rats or rodent strains sensitive to dietary-induced obesity. Finally, NPY appears to play an important role in body weight and feeding regulation, and while it does not constitute the only target for drug treatment of obesity, it may nevertheless provide a useful target in conjunction with others.
Collapse
Affiliation(s)
- B Beck
- Université Henri Poincaré, Neurocal, Nancy, France.
| |
Collapse
|
214
|
Brill J, Kwakye G, Huguenard JR. NPY signaling through Y1 receptors modulates thalamic oscillations. Peptides 2007; 28:250-6. [PMID: 17196708 PMCID: PMC1945169 DOI: 10.1016/j.peptides.2006.08.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 08/29/2006] [Indexed: 11/24/2022]
Abstract
Neuropeptide Y is the ligand of a family of G-protein coupled receptors (Y(1) to Y(6)). In the thalamus, exogenous and endogenously released NPY can shorten the duration of thalamic oscillations in brain slices from P13 to P15 rats, an in vitro model of absence seizures. Here, we examine which Y receptors are involved in this modulation. Application of the Y(1) receptor agonist Leu(31)Pro(34)NPY caused a reversible reduction in the duration of thalamic oscillations (-26.6+/-7.8%), while the Y(2) receptor agonist peptideYY((3-36)) and the Y(5) receptor agonist BWX-46 did not exert a significant effect. No Y receptor agonist affected oscillation period. Application of antagonists of Y(1), Y(2) and Y(5) receptors (BIBP3226, BIIE0246 and L152,806, respectively) produced results consistent with those obtained from agonists. BIBP3226 caused a reversible disinhibition, an effect that increases oscillation duration (18.2+/-9.7%) while BIIE0246 and L152,806 had no significant effect. Expression of NPY is limited to neurons in the reticular thalamic nucleus (nRt), but Y(1) receptors are expressed in both nRt and adjacent thalamic relay nuclei. Thus, intra-nRt or nRt to relay nucleus NPY release could cause Y(1) receptor mediated inhibition of thalamic oscillations.
Collapse
Affiliation(s)
- Julia Brill
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room M016, Stanford, CA 94305, United States
| | | | | |
Collapse
|
215
|
Parrado C, Díaz-Cabiale Z, García-Coronel M, Agnati LF, Coveñas R, Fuxe K, Narváez JA. Region specific galanin receptor/neuropeptide Y Y1 receptor interactions in the tel- and diencephalon of the rat. Relevance for food consumption. Neuropharmacology 2007; 52:684-92. [PMID: 17087983 DOI: 10.1016/j.neuropharm.2006.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 09/15/2006] [Accepted: 09/22/2006] [Indexed: 12/20/2022]
Abstract
The aim of this work was to determine the interactions between NPY and GAL receptor (GALR) subtypes in the hypothalamus and the amygdala using quantitative receptor autoradiography to analyze the binding characteristics of NPY-Y1 and Y2 receptor subtypes in the presence and absence of GAL. Food intake in satiated animals was evaluated after intraventricular co-injections of GAL and NPY-Y1 or Y2 agonists. The expression of c-Fos IR in both regions was also investigated. GAL decreases NPY-Y1 agonist binding in the arcuate nucleus by about 15% (p<0.01), but increases NPY-Y1 agonist binding in amygdala (18%) (p<0.01). These effects were blocked with the GAL antagonist M35. Y2-agonist binding was not modified by GAL. GAL blocked the food intake induced by the Y1 agonist (p<0.01). Co-injections of Y1 agonist and GAL also reduced the c-Fos expression induced by the Y1 agonist in the arcuate nucleus and the dorsomedial hypothalamic nucleus but increased c-Fos expression in amygdala. These results indicate the existence of antagonistic interactions between GALR and NPY-Y1 receptors in the hypothalamus and their functional relevance for food intake. In contrast, a facilitatory interaction between GALR and Y1 receptors exists in the amygdala which may be of relevance for fear related behaviour.
Collapse
Affiliation(s)
- C Parrado
- Department of Histology, University of Málaga, Faculty of Medicine, Campus de Teatinos s/n, Malaga 29080, Spain
| | | | | | | | | | | | | |
Collapse
|
216
|
Gehlert DR, Shaw JL. Increased brain neuropeptide Y1 and Y2 receptor binding in NPY knock out mice does not result in increased receptor function. Peptides 2007; 28:241-9. [PMID: 17208335 DOI: 10.1016/j.peptides.2006.08.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Accepted: 08/20/2006] [Indexed: 10/23/2022]
Abstract
The brain neuropeptide Neuropeptide Y (NPY) is an important modulator of a number of centrally mediated processes including feeding, anxiety-like behaviors, blood pressure and others. NPY produces its effects through at least four functional G-protein coupled receptors termed Y1, Y2, Y4 and Y5. In the brain, the Y1 and Y2 receptor subtypes are the predominant receptor population. To better understand the roles of NPY, genetically modified mice lacking NPY were produced but lacked the expected phenotypes. These mice have previously been reported to have a marked increase in Y2 receptor binding. In the present study, we found an upregulation of both Y1 and Y2 receptor binding and extended these findings to the female. These increases were as large as 10-fold or greater in many brain regions. To assess functional coupling of the receptors, we performed agonist-induced [(35)S]GTPgammaS autoradiography. In the mouse brain, the Y1/Y4/Y5 agonist Leu(31),Pro(34)-NPY increased [(35)S]GTPgammaS binding with a regional distribution consistent with that produced when labeling adjacent sections with [(125)I]-Leu(31),Pro(34)-PYY. In a few brain regions, minor increases were noted in the agonist-induced binding when comparing knock out mice to wild type. The Y2 agonist C2-NPY stimulated [(35)S]GTPgammaS binding in numerous brain areas with a regional distribution similar to the binding observed with [(125)I]-PYY3-36. Again, no major increases were noted in the functional activation of Y2 receptors between knock out and wild type mice. Therefore, the increased Y1 and Y2 binding observed in the NPY knock out mice does not represent an increase in NPY receptor mediated signaling and is likely due to an increase in spare (uncoupled) receptors.
Collapse
Affiliation(s)
- Donald R Gehlert
- Neuroscience Research, Mail Code 0510, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | |
Collapse
|
217
|
Gruninger TR, LeBoeuf B, Liu Y, Garcia LR. Molecular signaling involved in regulating feeding and other mitivated behaviors. Mol Neurobiol 2007; 35:1-20. [PMID: 17519503 DOI: 10.1007/bf02700621] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 11/30/1999] [Accepted: 09/06/2006] [Indexed: 12/29/2022]
Abstract
The metabolic and nutritional status of an organism influences multiple behaviors in addition to food intake. When an organism is hungry, it employs behaviors that help it locate and ingest food while suppressing behaviors that are not associated with this goal. Alternatively, when an organism is satiated, food-seeking behaviors are repressed so that the animal can direct itself to other goal-oriented tasks such as reproductive behaviors. Studies in both vertebrate and invertebrate model systems have revealed that food-deprived and -satiated behaviors are differentially executed and integrated via common molecular signaling mechanisms. This article discusses cellular and molecular mechanisms for how insulin, neuropeptide Y (NPY), and serotonin utilize common signaling pathways to integrate feeding and metabolic state with other motivated behaviors. Insulin, NPY, and serotonin are three of the most well-studied molecules implicated in regulating such behaviors. Overall, insulin signaling allows an organism to coordinate proper behavioral output with changes in metabolism, NPY activates behaviors required for locating and ingesting food, and serotonin modulates behaviors performed when an organism is satiated. These three molecules work to ensure that the proper behaviors are executed in response to the feeding state of an organism.
Collapse
Affiliation(s)
- Todd R Gruninger
- Department of Biology, Texas A&M University, TAMU 3258, College Station, TX, USA
| | | | | | | |
Collapse
|
218
|
Abstract
Neuropeptide Y (NPY) is contained in at least four types of GABAergic interneurons in the dentate gyrus, many of which also contain somatostatin and give rise to the dense NPY innervation of the dentate outer molecular layer. In humans but not rats, minute amounts of NPY are also normally expressed in dentate granule cells, while seizure activity in rats induces robust NPY expression in granule cells. Y1 and Y2 receptors are the most abundant NPY receptors expressed in the dentate gyrus. Y1 receptors are postsynaptic receptors, primarily located on granule cell dendrites in the molecular layer and some interneurons, while Y2 receptors are presynaptic receptors mediating inhibition of glutamate release, and potentially that of NPY and GABA depending on their presynaptic localization, and may also be expressed on some hilar interneurons. In humans, monkeys and mice, Y2 receptors are also present on mossy fibers, but not in most rat species, though functional evidence suggests their presence. Hilar interneurons containing NPY degenerate in temporal lobe epilepsy and in Alzheimer's disease and reduced levels of NPY in dentate hilus are associated with depression. By activating Y1 receptors, NPY also exerts powerful neuroproliferative effects on subgranular zone progenitor cells, increasing the number of newly born granule cells in the adult dentate gyrus. Functionally, NPY exerts anticonvulsive actions mediated by Y2 receptors at mossy fiber terminals, but there are no presynaptic responses to NPY at perforant path inputs to dentate granule cells in rats or mice. NPY also has potentially complicated actions on NPY-containing interneurons. Elevated expression of NPY in mossy fibers of the rat, sprouting of NPY interneurons in the human dentate, and over-expression of Y2 receptors in mossy fibers indicate an anticonvulsive role of endogenous NPY in epilepsy. However, the physiological role of NPY in the healthy dentate gyrus remains unclear.
Collapse
Affiliation(s)
- Günther Sperk
- Department of Pharmacology, Medical University Innsbruck, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria.
| | | | | |
Collapse
|
219
|
Silva AP, Lourenço J, Xapelli S, Ferreira R, Kristiansen H, Woldbye DPD, Oliveira CR, Malva JO. Protein kinase C activity blocks neuropeptide Y-mediated inhibition of glutamate release and contributes to excitability of the hippocampus in status epilepticus. FASEB J 2006; 21:671-81. [PMID: 17167071 DOI: 10.1096/fj.06-6163com] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The unbalanced excitatory/inhibitory neurotransmitter function in the neuronal network afflicted by seizures is the main biochemical and biophysical hallmark of epilepsy. The aim of this work was to identify changes in the signaling mechanisms associated with neuropeptide Y (NPY)-mediated inhibition of glutamate release that may contribute to hyperexcitability. Using isolated rat hippocampal nerve terminals, we showed that the KCl-evoked glutamate release is inhibited by NPY Y2 receptor activation and is potentiated by the stimulation of protein kinase C (PKC). Moreover, we observed that immediately after status epilepticus (6 h postinjection with kainate, 10 mg/kg), the functional inhibition of glutamate release by NPY Y2 receptors was transiently blocked concomitantly with PKC hyperactivation. The pharmacological blockade of seizure-activated PKC revealed again the Y2 receptor-mediated inhibition of glutamate release. The functional activity of PKC immediately after status epilepticus was assessed by evaluating phosphorylation of the AMPA receptor subunit GluR1 (Ser-831), a substrate for PKC. Moreover, NPY-stimulated [35S]GTPgammaS autoradiographic binding studies indicated that the common target for Y2 receptor and PKC on the inhibition/potentiation of glutamate release was located downstream of the Y2 receptor, or its interacting G-protein, and involves voltage-gated calcium channels.
Collapse
Affiliation(s)
- Ana P Silva
- Institute of Pharmacology and Therapeutics, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Ishihara PhD A, Moriya PhD M, MacNeil PhD DJ, Fukami PhD T, Kanatani PhD A. Neuropeptide Y receptors as targets of obesity treatment. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.12.1701] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
221
|
Kharlamov EA, Kharlamov A, Kelly KM. Changes in neuropeptide Y protein expression following photothrombotic brain infarction and epileptogenesis. Brain Res 2006; 1127:151-62. [PMID: 17123484 PMCID: PMC1802128 DOI: 10.1016/j.brainres.2006.09.107] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/29/2006] [Accepted: 09/30/2006] [Indexed: 01/29/2023]
Abstract
This study characterized morphological changes in the cortex and hippocampus of Sprague-Dawley rats following photothrombotic infarction and epileptogenesis with emphasis on the distribution of neuropeptide Y (NPY) expression. Animals were lesioned in the left sensorimotor cortex and compared with age-matched naive and sham-operated controls by immunohistochemical techniques at 1, 3, 7, and 180 days post-lesioning (DPL). NPY immunostaining was assessed by light microscopy and quantified by the optical fractionator technique using unbiased stereological methods. At 1, 3, and 7 DPL, the number of NPY-positive somata in the lesioned cortex was increased significantly compared to controls and the contralateral cortex. At 180 DPL, lesioned epileptic animals with frequent seizure activity demonstrated significant increases of NPY expression in the cortex, CA1, CA3, hilar interneurons, and granule cells of the dentate gyrus. In addition to NPY immunostaining, neuronal degeneration, cell death/cell loss, and astroglial response were assessed with cell-specific markers. Nissl and NeuN staining showed reproducible infarctions at each investigated time point. FJB-positive somata were most abundant in the infarct core at 1 DPL, decreased markedly at 3 DPL, and virtually absent by 7 DPL. Activated astroglia were detected in the cortex and hippocampus following lesioning and the development of seizure activity. In summary, NPY protein expression and morphological changes following cortical photothrombosis were time-, region-, and pathologic state-dependent. Alterations in NPY expression may reflect reactive or compensatory responses of the rat brain to acute infarction and to the development and expression of epileptic seizures.
Collapse
Affiliation(s)
- Elena A. Kharlamov
- Department of Neurology, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA
| | - Alexander Kharlamov
- Department of Anesthesiology, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA
- Drexel University College of Medicine, Philadelphia, PA
| | - Kevin M. Kelly
- Department of Neurology, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA
- Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
222
|
Lin EJD, Sainsbury A, Lee NJ, Boey D, Couzens M, Enriquez R, Slack K, Bland R, During MJ, Herzog H. Combined deletion of Y1, Y2, and Y4 receptors prevents hypothalamic neuropeptide Y overexpression-induced hyperinsulinemia despite persistence of hyperphagia and obesity. Endocrinology 2006; 147:5094-101. [PMID: 16873543 DOI: 10.1210/en.2006-0097] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuropeptide Y (NPY) is a key regulator of energy homeostasis and is implicated in the development of obesity and type 2 diabetes. Whereas it is known that hypothalamic administration of exogenous NPY peptides leads to increased body weight gain, hyperphagia, and many hormonal and metabolic changes characteristic of an obesity syndrome, the Y receptor(s) mediating these effects is disputed and unclear. To investigate the role of different Y receptors in the NPY-induced obesity syndrome, we used recombinant adeno-associated viral vector to overexpress NPY in mice deficient of selective single or multiple Y receptors (including Y1, Y2, and Y4). Results from this study demonstrated that long-term hypothalamic overexpression of NPY lead to marked hyperphagia, hypogonadism, body weight gain, enhanced adipose tissue accumulation, hyperinsulinemia, and other hormonal changes characteristic of an obesity syndrome. NPY-induced hyperphagia, hypogonadism, and obesity syndrome persisted in all genotypes studied (Y1(-/-), Y2(-/-), Y2Y4(-/-), and Y1Y2Y4(-/-) mice). However, triple deletion of Y1, Y2, and Y4 receptors prevented NPY-induced hyperinsulinemia. These findings suggest that Y1, Y2, and Y4 receptors under this condition are not crucially involved in NPY's hyperphagic, hypogonadal, and obesogenic effects, but they are responsible for the central regulation of circulating insulin levels by NPY.
Collapse
Affiliation(s)
- En-Ju D Lin
- Neuroscience Research Program, The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Gamble KL, Paul KN, Karom MC, Tosini G, Albers HE. Paradoxical effects of NPY in the suprachiasmatic nucleus. Eur J Neurosci 2006; 23:2488-94. [PMID: 16706855 DOI: 10.1111/j.1460-9568.2006.04784.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The circadian clock in the suprachiasmatic nucleus (SCN) is synchronized by the 24 h, light : dark cycle, and is reset by photic and non-photic cues. The acute effects of light in the SCN include the increase of mRNA levels of the circadian clock gene Per1 and a dramatic reduction of pineal melatonin. Neuropeptide Y (NPY), which appears to mediate the phase-resetting effects of non-photic stimuli, prevents the ability of light, and stimuli that mimic light, to phase shift the circadian clock when injected into the SCN. The purpose of the present study was to determine if NPY inhibits the ability of light to suppress pineal melatonin. Surprisingly, NPY injected into the SCN of hamsters mimicked the effects of light by suppressing pineal melatonin levels. To confirm that NPY inhibited the effects of light on the induction of Per1 mRNA levels, Per1 mRNA levels in the SCN were measured in these same animals. NPY significantly reduced Per1 mRNA levels induced by the light pulse. The suppression of melatonin by NPY appears to be mediated by the same subtype of NPY receptors in the SCN that mediate the modulation of phase shifts. Injection of Y5 receptor agonists mimicked the effects of NPY on pineal melatonin, while injection of a Y2 agonist did not. Thus, these data are the first to demonstrate the paradoxical effects of NPY within the SCN. NPY mimics the effects of light on pineal melatonin and inhibits the effects of light on the induction of Per1 mRNA.
Collapse
Affiliation(s)
- Karen L Gamble
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
224
|
Eva C, Serra M, Mele P, Panzica G, Oberto A. Physiology and gene regulation of the brain NPY Y1 receptor. Front Neuroendocrinol 2006; 27:308-39. [PMID: 16989896 DOI: 10.1016/j.yfrne.2006.07.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 07/18/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
Neuropeptide Y (NPY) is one of the most prominent and abundant neuropeptides in the mammalian brain where it interacts with a family of G-protein coupled receptors, including the Y(1) receptor subtype (Y(1)R). NPY-Y(1)R signalling plays a prominent role in the regulation of several behavioural and physiological functions including feeding behaviour and energy balance, sexual hormone secretion, stress response, emotional behaviour, neuronal excitability and ethanol drinking. Y(1)R expression is regulated by neuronal activity and peripheral hormones. The Y(1)R gene has been isolated from rodents and humans and it contains multiple regulatory elements that may participate in the regulation of its expression. Y(1)R expression in the hypothalamus is modulated by changes in energetic balance induced by a wide variety of conditions (fasting, pregnancy, hyperglycaemic challenge, hypophagia, diet induced obesity). Estrogens up-regulate responsiveness to NPY to stimulate preovulatory GnRH and gonadotropin surges by increasing Y(1)R gene expression both in the hypothalamus and the pituitary. Y(1)R expression is modulated by different kinds of brain insults, such as stress and seizure activity, and alteration in its expression may contribute to antidepressant action. Chronic modulation of GABA(A) receptor function by benzodiazepines or neuroactive steroids also affects Y(1)R expression in the amygdala, suggesting that a functional interaction between the GABA(A) receptor and Y(1)R mediated signalling may contribute to the regulation of emotional behaviour. In this paper, we review the state of the art concerning Y(1)R function and gene expression, including our personal contribution to many of the subjects mentioned above.
Collapse
Affiliation(s)
- Carola Eva
- Sezione di Farmacologia, Dipartimento di Anatomia, Farmacologia e Medicina Legale, Università di Torino, Italy; Centro Rita Levi Montalcini, Università di Torino, Italy.
| | | | | | | | | |
Collapse
|
225
|
Urban JH, Leitermann RJ, DeJoseph MR, Somponpun SJ, Wolak ML, Sladek CD. Influence of dehydration on the expression of neuropeptide Y Y1 receptors in hypothalamic magnocellular neurons. Endocrinology 2006; 147:4122-31. [PMID: 16728491 DOI: 10.1210/en.2006-0377] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Regulation of vasopressin (VP) and oxytocin (OT) secretion involves integration of neural signals from hypothalamic osmoreceptors, ascending catecholaminergic and peptidergic cell groups in the brain stem, and local and autoregulatory afferents. Neuropeptide Y (NPY) is one factor that stimulates the release of VP and OT from the supraoptic (SON) and paraventricular nuclei of the hypothalamus via activation of Y1 receptors (Y1R). The current studies were designed to assess the regulation and distribution of NPY Y1R expression in the SON of male rats that were either given 2% NaCl drinking water (24-72 h) or water deprived (48 h). Subjecting male rats to these conditions resulted in significant increases in both the number of cells expressing Y1R immunoreactivity (ir) and the amount of Y1R protein per cell within the SON. Y1R immunoreactivity was increased in the magnocellular but not medial parvocellular paraventricular nuclei, and Y1R mRNA levels were increased in the SON of salt-loaded rats. Subpopulations of both VP and OT cells in the hypothalamus express Y1R immunoreactivity and a greater percentage of VP-ir cells express Y1R after salt loading. To control for potential effects of dehydration-induced anorexia, a group of euhydrate animals was pair fed with animals consuming 2% NaCl. No detectable change in Y1R expression was observed in the SON of pair-fed animals, even though body weights were significantly lower than controls. These data demonstrate that NPY Y1R gene and protein expression are increased in the SON of salt-loaded and water-deprived animals and provide a mechanism whereby NPY can support VP/OT release during prolonged challenges to fluid homeostasis.
Collapse
Affiliation(s)
- Janice H Urban
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, USA.
| | | | | | | | | | | |
Collapse
|
226
|
Kash TL, Winder DG. Neuropeptide Y and corticotropin-releasing factor bi-directionally modulate inhibitory synaptic transmission in the bed nucleus of the stria terminalis. Neuropharmacology 2006; 51:1013-22. [PMID: 16904135 DOI: 10.1016/j.neuropharm.2006.06.011] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 06/06/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
Abstract
Neuropeptide Y (NPY) and corticotropin-releasing factor (CRF) have opposing effects on stress and anxiety. Both can modify synaptic activity through their binding to NPY receptors (YRs) and CRF receptors (CRFRs) respectively. The bed nucleus of the stria terminalis (BNST) is a brain region with enriched expression of both NPY and YRs and CRF and CRFRs. A component of the "extended amygdala", the BNST is anatomically well-situated to integrate stress and reward-related processing in the CNS, regulating activation of the hypothalamic-pituitary-adrenal (HPA) axis and reward circuits. Using whole-cell recordings in a BNST slice preparation, we found that NPY and CRF inhibit and enhance GABAergic transmission, respectively. Pharmacological experiments suggest that NPY depresses GABAergic transmission through activation of the Y2 receptor (Y2R), while both pharmacological and genetic experiments suggest that CRF and urocortin enhance GABAergic transmission through activation of the CRF receptor 1 (CRFR1). Further, the data suggest that NPY acts to regulate GABA release, while CRF enhances postsynaptic responses to GABA. These results suggest potential anatomical and cellular substrates for the robust behavioral interactions between NPY and CRF.
Collapse
Affiliation(s)
- Thomas L Kash
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | |
Collapse
|
227
|
Abstract
The role of gastrointestinal hormones in the regulation of appetite is reviewed. The gastrointestinal tract is the largest endocrine organ in the body. Gut hormones function to optimize the process of digestion and absorption of nutrients by the gut. In this capacity, their local effects on gastrointestinal motility and secretion have been well characterized. By altering the rate at which nutrients are delivered to compartments of the alimentary canal, the control of food intake arguably constitutes another point at which intervention may promote efficient digestion and nutrient uptake. In recent decades, gut hormones have come to occupy a central place in the complex neuroendocrine interactions that underlie the regulation of energy balance. Many gut peptides have been shown to influence energy intake. The most well studied in this regard are cholecystokinin (CCK), pancreatic polypeptide, peptide YY, glucagon-like peptide-1 (GLP-1), oxyntomodulin and ghrelin. With the exception of ghrelin, these hormones act to increase satiety and decrease food intake. The mechanisms by which gut hormones modify feeding are the subject of ongoing investigation. Local effects such as the inhibition of gastric emptying might contribute to the decrease in energy intake. Activation of mechanoreceptors as a result of gastric distension may inhibit further food intake via neural reflex arcs. Circulating gut hormones have also been shown to act directly on neurons in hypothalamic and brainstem centres of appetite control. The median eminence and area postrema are characterized by a deficiency of the blood-brain barrier. Some investigators argue that this renders neighbouring structures, such as the arcuate nucleus of the hypothalamus and the nucleus of the tractus solitarius in the brainstem, susceptible to influence by circulating factors. Extensive reciprocal connections exist between these areas and the hypothalamic paraventricular nucleus and other energy-regulating centres of the central nervous system. In this way, hormonal signals from the gut may be translated into the subjective sensation of satiety. Moreover, the importance of the brain-gut axis in the control of food intake is reflected in the dual role exhibited by many gut peptides as both hormones and neurotransmitters. Peptides such as CCK and GLP-1 are expressed in neurons projecting both into and out of areas of the central nervous system critical to energy balance. The global increase in the incidence of obesity and the associated burden of morbidity has imparted greater urgency to understanding the processes of appetite control. Appetite regulation offers an integrated model of a brain-gut axis comprising both endocrine and neurological systems. As physiological mediators of satiety, gut hormones offer an attractive therapeutic target in the treatment of obesity.
Collapse
Affiliation(s)
| | | | - Steve Bloom
- Department of Metabolic Medicine, Imperial College Faculty of MedicineHammersmith Hospital, Du Cane Road, London W12 ONN, UK
| |
Collapse
|
228
|
Primeaux SD, York DA, Bray GA. Neuropeptide Y administration into the amygdala alters high fat food intake. Peptides 2006; 27:1644-51. [PMID: 16426702 DOI: 10.1016/j.peptides.2005.12.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 12/15/2005] [Accepted: 12/15/2005] [Indexed: 11/21/2022]
Abstract
The orexigenic effects of neuropeptide Y (NPY) are mediated through the hypothalamus, while the anxiolytic effects of NPY appear to be mediated through the amygdala. We hypothesized that intra-amygdalar administration of NPY might alter food preference without changing total food intake. Neuropeptide Y was administered into the central nucleus of the amygdala in both satiated and overnight-fasted rats, and intake and preference for a high fat diet (56%)/low carbohydrate (20%) diet or a low fat (10%)/high carbohydrate (66%) diet were measured. Intra-amygdalar NPY administration in satiated rats did not change total caloric intake, but it did produce a dose-dependent decrease in intake of and preference for high fat diet relative to low fat diet over 24 h. In overnight-fasted rats, intra-amygdalar NPY also decreased the intake and preference for a high fat diet relative to low fat diet over 24 h, without altering total caloric intake. Intra-amygdalar NPY administration did not produce conditioned taste aversions to a novel saccharin solution. These results suggest that amygdalar NPY may have a role in macronutrient selection, without altering total caloric intake.
Collapse
Affiliation(s)
- Stefany D Primeaux
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | | | |
Collapse
|
229
|
Primeaux SD, Wilson SP, Bray GA, York DA, Wilson MA. Overexpression of Neuropeptide Y in the Central Nucleus of the Amygdala Decreases Ethanol Self-administration in "Anxious" Rats. Alcohol Clin Exp Res 2006; 30:791-801. [PMID: 16634847 DOI: 10.1111/j.1530-0277.2006.00092.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neuropeptide Y (NPY) has been implicated in a variety of behaviors including those associated with anxiety and ethanol administration. The current experiment investigated the predictive role of anxiety-like behaviors in ethanol self-administration and the relationship of NPY in the central nucleus of the amygdala (CeA) with anxiety and ethanol self-administration. METHODS Rats were divided into anxious and nonanxious groups based on behavior in the elevated plus maze. Following elevated plus maze testing, rats were allowed to consume increasing concentrations of ethanol (2, 4, and 6%) in a 2-bottle choice procedure over a period of 31 days. anxious rats showed an increased preference for 4% ethanol and 6% ethanol compared with non-anxious rats. Following 20-day access to 6% ethanol, rats underwent gene transfer surgery with replication-defective recombinant herpes simplex 1 vectors encoding prepro-NPY, an antisense NPY RNA, or LacZ (control) into the CeA. RESULTS In anxious rats, bilateral injections into the CeA with the NPY-antisense vector increased 6% ethanol preference, while the vector encoding NPY decreased 6% ethanol preference. Herpes simplex viral-mediated alterations in CeA NPY expression did not alter ethanol preference in nonanxious rats. CONCLUSIONS These results suggest that virally mediated alterations in NPY levels in the CeA differentially affect ethanol consumption in rats with low and high basal levels of anxiety.
Collapse
Affiliation(s)
- Stefany D Primeaux
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA.
| | | | | | | | | |
Collapse
|
230
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
231
|
Sajdyk TJ, Fitz SD, Shekhar A. The role of neuropeptide Y in the amygdala on corticotropin-releasing factor receptor-mediated behavioral stress responses in the rat. Stress 2006; 9:21-8. [PMID: 16753930 DOI: 10.1080/10253890600557315] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Neuropeptide Y (NPY) is one of the most abundant peptides in the brain and has been shown to be a critical regulator of emotionality, most notably for its effect in decreasing anxiety-like behaviors. The stress response in both humans and animals has been shown to involve a cascade of biological events initiated by corticotropin releasing factor (CRF), another centrally acting peptide. Interestingly, NPY and CRF are present in similar brain regions mediating stress responses and may act in an opposing fashion. The basolateral nucleus of the amygdala (BLA) is a distinct division of the amygdala and contains CRF receptors and the highest concentration of NPY neurons. The current study investigates the behavioral effects in rodents when NPY is injected directly into the BLA prior to the pharmacological stressor, urocortin I (Ucn; a CRF receptor agonist) or the emotional stressor, restraint. The animals that underwent restraint were evaluated in the social interaction (SI) test, while those injected with Ucn into the BLA were assessed in the two floor choice test, a modified version of the conditioned-place avoidance paradigm. The results showed that injections of NPY into the BLA prior to Ucn significantly blocked the development of the avoidance behavior in the two floor choice test and the decrease in SI time that is usually seen following restraint stress. These results provide further support that an interaction between NPY and CRF within the BLA may be critical for maintaining a normal homeostatic emotional state.
Collapse
Affiliation(s)
- Tammy J Sajdyk
- Department of Psychiatry, Indiana University School of Medicine, Institute of Psychiatric Research, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
232
|
Affiliation(s)
- Susan J Allison
- Bone and Mineral Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | | |
Collapse
|
233
|
Dumont Y, Quirion R. An overview of neuropeptide Y: pharmacology to molecular biology and receptor localization. EXS 2006:7-33. [PMID: 16382995 DOI: 10.1007/3-7643-7417-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Yvan Dumont
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, 6875 Boul. LaSalle, Montreal, QC H4H 1R3, Canada.
| | | |
Collapse
|
234
|
Stanić D, Brumovsky P, Fetissov S, Shuster S, Herzog H, Hökfelt T. Characterization of neuropeptide Y2 receptor protein expression in the mouse brain. I. Distribution in cell bodies and nerve terminals. J Comp Neurol 2006; 499:357-90. [PMID: 16998904 DOI: 10.1002/cne.21046] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuropeptide Y (NPY), a 36-amino-acid peptide, mediates biological effects by activating Y1, Y2, Y5, and y6 receptors. NPY neurons innervate many brain regions, including the hypothalamus, where NPY is involved in regulation of a broad range of homeostatic functions. We examined, by immunohistochemistry with tyramide signal amplification, the expression of the NPY Y2 receptor (Y2R) in the mouse brain with a newly developed rabbit polyclonal antibody. Y2R immunoreactivity was specific with its absence in Y2R knockout (KO) mice and in adjacent sections following preadsorption with the immunogenic peptide (10(-5) M). Y2R-positive processes were located in many brain regions, including the olfactory bulb, some cortical areas, septum, basal forebrain, nucleus accumbens, amygdala, hippocampus, hypothalamus, substantia nigra compacta, locus coeruleus, and solitary tract nucleus. However, colchicine treatment was needed to detect Y2R-like immunoreactivity in cell bodies in many, but not all, areas. The densest distributions of cell bodies were located in the septum basal forebrain, including the bed nucleus, and amygdala, with lower density in the anterior olfactory nucleus, nucleus accumbens, caudal striatum, CA1, CA2, and CA3 hippocampal fields, preoptic nuclei lateral hypothalamus, and A13 DA cells. The widespread distribution of Y2R-positive cell bodies and fibers suggests that NPY signaling through the Y2R is common in the mouse brain. Localization of the Y2R suggests that it is mostly presynaptic, a view supported by its frequent absence in cell bodies in the normal mouse and its dramatic increase in cell bodies of colchicine-treated mice.
Collapse
Affiliation(s)
- Davor Stanić
- Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
235
|
Scharfman HE, Gray WP. Plasticity of neuropeptide Y in the dentate gyrus after seizures, and its relevance to seizure-induced neurogenesis. EXS 2006:193-211. [PMID: 16383008 PMCID: PMC4398306 DOI: 10.1007/3-7643-7417-9_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In summary, NPY is clearly an important peptide in the adult rat dentate gyrus because it has the potential to influence synaptic transmission and neurogenesis. It may even have other functions, as yet undiscovered, mediated by glia or vasculature. The remarkable plasticity of NPY puts it in a position to allow dentate gyrus function to be modified in a changing environment. The importance of this plasticity in the context of epilepsy cannot be emphasized enough. It could help explain a range of observations about epilepsy that currently is poorly understood. For example, rapid increases in NPY could mediate postictal depression, the period of depression that can last for several hours after generalized seizures. It may mediate the "priming effect," which is a reduction in seizure threshold following an initial period of seizures. Finally, it could contribute to the resistance of dentate granule cells to degeneration after seizures. However, despite the focus in this review on seizure-induced changes, the changes described here also appear to occur after other types of manipulations, which considerably broadens the scope of NPY's role in the brain.
Collapse
Affiliation(s)
- Helen E Scharfman
- Departments of Pharmacology and Neurology, Columbia University, New York, USA.
| | | |
Collapse
|
236
|
Wultsch T, Painsipp E, Donner S, Sperk G, Herzog H, Peskar BA, Holzer P. Selective increase of dark phase water intake in neuropeptide-Y Y2 and Y4 receptor knockout mice. Behav Brain Res 2005; 168:255-60. [PMID: 16364461 PMCID: PMC4370833 DOI: 10.1016/j.bbr.2005.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 11/13/2005] [Accepted: 11/14/2005] [Indexed: 10/25/2022]
Abstract
Neuropeptide-Y (NPY) is involved in the regulation of ingestive behaviour and energy homeostasis. Since deletion of the NPY Y2 and Y4 receptor gene increases and decreases food intake, respectively, we examined whether water intake during the light and dark phases is altered in Y2 and Y4 receptor knockout mice. The water consumption of mice staying in their home cages was measured by weighing the water bottles at the beginning and end of the light phase during 4 consecutive days. Control, Y2 and Y4 receptor knockout mice did not differ in their water intake during the light phase. However, during the dark phase Y2 and Y4 receptor knockout mice drank significantly more (46-63%, P<0.05) water than the control mice. The total daily water intake over 24 h was also enhanced. The enhanced water intake during the dark phase was not altered by the beta-adrenoceptor antagonist propranolol or the angiotensin AT1 receptor antagonist telmisartan (each injected intraperitoneally at 10 mg/kg). These data indicate that NPY acting via Y2 and Y4 receptors plays a distinctive role in the regulation of nocturnal water consumption. While beta-adrenoceptors and angiotensin AT1 receptors do not seem to be involved, water intake in Y2 and Y4 receptor knockout mice may be enhanced because presynaptic autoinhibition of NPY release and inhibition of orexin neurons in the central nervous system are prevented.
Collapse
Affiliation(s)
- Thomas Wultsch
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Evelin Painsipp
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Sabine Donner
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Günther Sperk
- Department of Pharmacology, Medical University of Innsbruck, Austria
| | - Herbert Herzog
- Neurobiology Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | - Bernhard A. Peskar
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Peter Holzer
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| |
Collapse
|
237
|
Zhang LP, Wang L. Changes of brain neuropeptide Y and its receptors in rats with flurazepam tolerance and dependence. Acta Pharmacol Sin 2005; 26:1290-6. [PMID: 16225749 DOI: 10.1111/j.1745-7254.2005.00179.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM Anticonvulsant tolerance and dependence are two obstacles that restrict the clinical use of benzodiazepines (BDZ). In order to explore the mechanism of these two adverse reactions, changes of neuropeptide Y (NPY) and its receptors in the hippocampus of rat models, in relation to flurazepam (FZP, a member of BDZ) tolerance and dependence, were investigated. METHODS The mRNA of preproNPY and its receptors (Y1, Y2, and Y5) in the hippocampus were determined by competitive RT-PCR, and the distribution of NPY in the hippocampus was examined by immunohistochemistry. RESULTS A decrease of preproNPY mRNA in the hippocampus was found in tolerant and dependent rats. The level of preproNPY mRNA in the hippocampus was reversely correlated with the degree of tolerance and dependence, measured by the threshold of pentylenetetrazol-induced seizures. Immunohistochemistry indicated a decrease of NPY-immunoreactive material in neurons of the CA1, CA3, and dentate gyrus regions of both tolerant and dependent rats. The mRNA of NPY receptors Y1 and Y5 decreased in tolerant rats but did not change in dependent rats. The mRNA of NPY receptor Y2 increased in tolerant rats but decreased in dependent rats. CONCLUSION A decrease of NPY in the hippocampus might be involved in anticonvulsant tolerance and dependence following long-term treatment with FZP. Y1, Y2, and Y5 mRNA were also altered in FZP tolerance and dependence.
Collapse
Affiliation(s)
- Li-Ping Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | | |
Collapse
|
238
|
Wultsch T, Painsipp E, Thoeringer CK, Herzog H, Sperk G, Holzer P. Endogenous neuropeptide Y depresses the afferent signaling of gastric acid challenge to the mouse brainstem via neuropeptide Y type Y2 and Y4 receptors. Neuroscience 2005; 136:1097-107. [PMID: 16216428 PMCID: PMC4359901 DOI: 10.1016/j.neuroscience.2005.08.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 07/29/2005] [Accepted: 08/10/2005] [Indexed: 01/04/2023]
Abstract
Vagal afferents signal gastric acid challenge to the nucleus tractus solitarii of the rat brainstem. This study investigated whether nucleus tractus solitarii neurons in the mouse also respond to gastric acid challenge and whether this chemonociceptive input is modified by neuropeptide Y acting via neuropeptide Y receptors of type Y2 or Y4. The gastric mucosa of female mice was exposed to different concentrations of HCl or saline, excitation of neurons in the nucleus tractus solitarii visualized by c-Fos immunohistochemistry, gastric emptying deduced from the gastric volume recovery, and gastric lesion formation evaluated by planimetry. Relative to saline, intragastric HCl (0.15-0.35 M) increased the number of c-Fos-expressing cells in the nucleus tractus solitarii in a concentration-dependent manner, inhibited gastric emptying but failed to cause significant hemorrhagic injury in the stomach. Mice in which the Y2 or Y4 receptor gene had been deleted responded to gastric acid challenge with a significantly higher expression of c-Fos in the nucleus tractus solitarii, the increases amounting to 39 and 31%, respectively. The HCl-induced inhibition of gastric emptying was not altered by deletion of the Y2 or Y4 receptor gene. BIIE0246 ((S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6H)-oxodibenz[b,e] azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl] acetyl]-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamide; 0.03 mmol/kg s.c.), a Y2 receptor antagonist which does not cross the blood-brain barrier, did not modify the c-Fos response to gastric acid challenge. The Y2 receptor agonist peptide YY-(3-36) (0.1 mg/kg intraperitoneally) likewise failed to alter the gastric HCl-evoked expression of c-Fos in the nucleus tractus solitarii. BIIE0246, however, prevented the effect of peptide YY-(3-36) to inhibit gastric acid secretion as deduced from measurement of intragastric pH. The current data indicate that gastric challenge with acid concentrations that do not induce overt injury but inhibit gastric emptying is signaled to the mouse nucleus tractus solitarii. Endogenous neuropeptide Y acting via Y2 and Y4 receptors depresses the afferent input to the nucleus tractus solitarii by a presumably central site of action.
Collapse
Affiliation(s)
- T Wultsch
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
239
|
Karl T, Burne THJ, Herzog H. Effect of Y1 receptor deficiency on motor activity, exploration, and anxiety. Behav Brain Res 2005; 167:87-93. [PMID: 16203045 DOI: 10.1016/j.bbr.2005.08.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 08/18/2005] [Accepted: 08/25/2005] [Indexed: 10/25/2022]
Abstract
Neuropeptide Y (NPY) in the CNS plays an important regulatory role in anxiety-related responses as exogenous administration of NPY exerts an anxiolytic-like effect in rodents. This effect is believed to be mediated by the Y(1) receptor system as pharmacological modulation of this Y(1) receptor system results in an increase in anxiety. Here we present a comprehensive phenotyping strategy for characterizing Y(1) receptor knockout animals at different times of the circadian rhythm using several motor activity-, exploration-, and anxiety-related behavioural tasks including open field, elevated plus maze, light-dark, and hole board test. We show that Y(1) deficiency has an important effect on motor activity and explorative-like behaviours and that it results in marked alterations in anxiety-related behaviours. Importantly, the behavioural phenotype of the Y(1) receptor knockout mice is circadian rhythm-dependent and also influenced by stimuli such as restraint stress. In addition, we found evidence for increases in working memory. Taken together, these findings suggest an important role of Y(1) receptors in the regulation of motor activity, exploration, and anxiety-related behaviours. This role is also influenced by several factors such as circadian rhythm and stress exposure confirming the importance of a comprehensive strategy and of using genetic animal models in behavioural neuroscience.
Collapse
Affiliation(s)
- Tim Karl
- Neuroscience Institute of Schizophrenia and Allied Disorders, 384 Victoria Street, Darlinghurst, NSW 2010, Australia.
| | | | | |
Collapse
|
240
|
Primeaux SD, Wilson SP, Cusick MC, York DA, Wilson MA. Effects of altered amygdalar neuropeptide Y expression on anxiety-related behaviors. Neuropsychopharmacology 2005; 30:1589-97. [PMID: 15770236 DOI: 10.1038/sj.npp.1300705] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuropeptide Y (NPY) decreases anxiety-related behaviors in various animal models of anxiety. The purpose of the present study was to examine the role of the amygdalar NPY system in anxiety-related responses in the elevated plus maze. The first experiment determined if herpes virus-mediated alterations in amygdalar NPY levels would alter anxiety-related behaviors in the elevated plus maze. Viral vectors encoding NPY, NPY antisense, or LacZ (control virus) were bilaterally injected into the amygdala, and 4 days postinjection, rats were tested in the elevated plus maze test. NPY-like immunoreactivity (NPY-ir) was measured in the amygdala of these rats. In rats injected with the viral vector encoding NPY, reduced anxiety-related behaviors in the elevated plus maze accompanied by moderate increases in NPY-ir were detected compared to NPY-antisense viral vector-treated subjects. Elevated plus maze behavior did not differ compared to LacZ-treated controls. NPY overexpression at this time point was also suggested by enhanced NPY mRNA expression seen in the amygdala 4 days postinjection using real-time polymerase chain reaction analysis. Experiment 2 was conducted to provide further evidence for a role of amygdalar NPY in regulating anxiety-related behaviors in the elevated plus maze test. The nonpeptide NPY Y1 receptor antagonist, BIBP 3226 (1.5 microg/microl), was bilaterally injected into the amygdala and rats were tested in the elevated plus maze test. Rats receiving BIBP 3226 exhibited increased anxiety-related behaviors in this test. The results of these experiments provide further support for the role of amygdalar NPY in anxiety-related behaviors.
Collapse
Affiliation(s)
- Stefany D Primeaux
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| | | | | | | | | |
Collapse
|
241
|
Faulconbridge LF, Grill HJ, Kaplan JM. Distinct forebrain and caudal brainstem contributions to the neuropeptide Y mediation of ghrelin hyperphagia. Diabetes 2005; 54:1985-93. [PMID: 15983198 DOI: 10.2337/diabetes.54.7.1985] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuropeptide Y (NPY) has been implicated in the downstream mediation of ghrelin hyperphagia, with the site of action for both peptides considered to be intrinsic to the hypothalamus. Here, however, we observed robust hyperphagia with caudal brainstem (CBS) (fourth intracerebroventricular) ghrelin delivery and, moreover, that this response was reversed with coadministration of either of two NPY receptor antagonists (1229U91 and D-Tyr27,36, D-Thr32 NPY27-36) with contrasting NPY receptor subtype-binding properties. The same results were obtained after forebrain (third intracerebroventricular) administration, but the sites for both ghrelin and antagonist action were open to question, given the caudal flow of cerebrospinal fluid (CSF) through the ventricular system. To control for this, we occluded the cerebral aqueduct to restrict CSF flow between the forebrain and CBS ventricles and tested all combinations (same and cross ventricle) of ghrelin (150 pmol/1 microl) and NPY receptor antagonist delivery. With fourth intracerebroventricular ghrelin delivery after aqueduct occlusion, preadministration of either of the two antagonists through the same cannula reversed the hyperphagic response but neither was effective when delivered to the third ventricle. With third intracerebroventricular ghrelin administration, however, 1229U91 reversed the ingestive response only when delivered to the fourth ventricle, whereas D-Tyr27,36) D-Thr32 NPY27-36 was effective only when delivered to the forebrain. These results demonstrate distinct mediating pathways (due to location and subtypes of relevant NPY receptor) for the hyperphagic response driven separately by forebrain and CBS ghrelin administration.
Collapse
Affiliation(s)
- Lucy F Faulconbridge
- Department of Psychology, University of Pennsylvania, 3720 Walnut St., Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
242
|
Henry M, Ghibaudi L, Gao J, Hwa JJ. Energy metabolic profile of mice after chronic activation of central NPY Y1, Y2, or Y5 receptors. ACTA ACUST UNITED AC 2005; 13:36-47. [PMID: 15761161 DOI: 10.1038/oby.2005.6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Neuropeptide Y (NPY), a 36-amino acid peptide with orexigenic properties, is expressed abundantly in the central nervous system and binds to several NPY receptor subtypes. This study examines the roles of the NPY Y1, Y2, and Y5 receptor(s) in energy homeostasis. RESEARCH METHODS AND PROCEDURES We administered intracerebroventricular NPY (3 microg/d) or selective peptide agonists for the Y1, Y2, and Y5 receptor subtypes to C57Bl/6 mice for 6 days by mini-osmotic pumps to assess the role of each receptor subtype in NPY-induced obesity. Energy expenditure (EE) and respiratory quotient (RQ) were studied using indirect calorimetry. Adiposity was measured by DXA scanning and fat pad dissection. Insulin sensitivity was tested by whole-blood glucose measurement after an insulin challenge. RESULTS Central administration of the selective Y1 agonist, Y5 agonist, or NPY for 6 days in mice significantly increased body weight, adiposity, and RQ, with significant hyperphagia in the Y5 agonist- and NPY-treated groups but not in the Y1 agonist-treated group. The NPY, Y1, or Y5 agonist-treated mice had little change in total EE during ad libitum and pair-feeding conditions. Conversely, selective activation of the Y2 receptor reduced feeding and resulted in a significant, but transient, weight loss. DISCUSSION Central activation of both Y1 and Y5 receptors increases RQ and adiposity, whereas only Y5 receptor activation reduces energy expended per energy ingested. Selective activation of Y2 autoreceptors leads to hypophagia and transient weight loss, with little effect on total EE. Our study indicates that all three NPY receptor subtypes may play a role in regulating energy homeostasis in mice.
Collapse
Affiliation(s)
- Melanie Henry
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | | | | | | |
Collapse
|
243
|
Stratford TR, Wirtshafter D. NPY mediates the feeding elicited by muscimol injections into the nucleus accumbens shell. Neuroreport 2005; 15:2673-6. [PMID: 15570176 DOI: 10.1097/00001756-200412030-00024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Injections of muscimol into the nucleus accumbens shell (AcbSh) induce large increases in food intake in satiated rats and also activate neurons in a number of feeding-related brain regions, including NPY-containing neurons in the arcuate hypothalamic nucleus and cells in the paraventricular hypothalamic nucleus. This suggests that the NPY system may participate in the expression of AcbSh-mediated feeding behavior. Therefore, we examined the effects of intraventricular administration of the Y1 receptor antagonist 1229U91 or the Y5 receptor antagonist L-152,804 on AcbSh-mediated food intake. Intra-AcbSh muscimol elicited a large increase in food intake which was potently suppressed by blocking either central Y1 or Y5 receptors. Our results suggest that the AcbSh influences food intake, in part, through the release of NPY.
Collapse
Affiliation(s)
- Thomas R Stratford
- Laboratory of Integrative Neuroscience and Department of Psychology (m/c 285), University of Illinois at Chicago, 1007 W. Harrison Street, Chicago, IL 60607, USA.
| | | |
Collapse
|
244
|
Kishi T, Aschkenasi CJ, Choi BJ, Lopez ME, Lee CE, Liu H, Hollenberg AN, Friedman JM, Elmquist JK. Neuropeptide Y Y1 receptor mRNA in rodent brain: distribution and colocalization with melanocortin-4 receptor. J Comp Neurol 2005; 482:217-43. [PMID: 15690487 DOI: 10.1002/cne.20432] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The central neuropeptide Y (NPY) Y1 receptor (Y1-R) system has been implicated in feeding, endocrine, and autonomic regulation. In the present study, we systematically examined the brain distribution of Y1-R mRNA in rodents by using radioisotopic in situ hybridization histochemistry (ISHH) with a novel sensitive cRNA probe. Within the rat hypothalamus, Y1-R-specific hybridization was observed in the anteroventral periventricular, ventromedial preoptic, suprachiasmatic, paraventricular (PVH), dorsomedial, ventromedial, arcuate, and mamillary nuclei. In the rat, Y1-R mRNA expression was also seen in the subfornical organ, anterior hypothalamic area, dorsal hypothalamic area, and in the lateral hypothalamic area. In addition, Y1-R hybridization was evident in several extrahypothalamic forebrain and hindbrain sites involved in feeding and/or autonomic regulation in the rat. A similar distribution pattern of Y1-R mRNA was observed in the mouse brain. Moreover, by using a transgenic mouse line expressing green fluorescent protein under the control of the melanocortin-4 receptor (MC4-R) promoter, we observed Y1-R mRNA expression in MC4-R-positive cells in several brain sites such as the PVH and central nucleus of the amygdala. Additionally, dual-label ISHH demonstrated that hypophysiotropic PVH cells coexpress Y1-R and pro-thyrotropin-releasing hormone mRNAs in the rat. These observations are consistent with the proposed roles of the central NPY/Y1-R system in energy homeostasis.
Collapse
MESH Headings
- Animals
- Appetite Regulation/physiology
- Brain Mapping
- Feeding Behavior/physiology
- Hypothalamus/metabolism
- In Situ Hybridization, Fluorescence
- Male
- Mice
- Mice, Transgenic
- Prosencephalon/metabolism
- RNA, Complementary/analysis
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Melanocortin, Type 4/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Rhombencephalon
- Tissue Distribution
Collapse
Affiliation(s)
- Toshiro Kishi
- Department of Neurology, Beth Israel Deaconess Medical Center, and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Kokare DM, Dandekar MP, Chopde CT, Subhedar N. Interaction between neuropeptide Y and alpha-melanocyte stimulating hormone in amygdala regulates anxiety in rats. Brain Res 2005; 1043:107-14. [PMID: 15862523 DOI: 10.1016/j.brainres.2005.02.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 02/08/2005] [Accepted: 02/15/2005] [Indexed: 11/16/2022]
Abstract
Neuropeptide Y (NPY) and alpha-melanocyte stimulating hormone (alpha-MSH) have been implicated in pathophysiology of feeding and certain mood disorders, including anxiety and depression. Both the peptides are abundantly present in CNS, especially in the hypothalamus and amygdala. Although they are known to exert opposite effects, particularly with reference to anxiety, the underlying mechanisms are not known. We were interested in studying the interaction between these two peptides in the regulation of anxiety, within the framework of amygdala. We administered agents like NPY, alpha-MSH, selective melanocortin-4 receptor (MC4-R) antagonist HS014 and NPY Y1 receptor agonist [Leu(31), Pro(34)]-NPY, alone and in combinations, unilaterally in right amygdala of rats and measured the response using elevated plus maze test. While NPY and [Leu(31), Pro(34)]-NPY increased the time spent and number of entries in the open arms suggesting anxiolytic-like effects, alpha-MSH resulted in opposite responses. Anxiolytic-like effect of NPY (10 nM) or [Leu(31), Pro(34)]-NPY (5 nM) was significantly reduced following prior alpha-MSH (250 ng) administration. Co-administration of HS014 (1 nM) and NPY (5 nM) or [Leu(31), Pro(34)]-NPY (1 nM) at subeffective doses evoked synergistic anxiolysis. Since the closed arm entries displayed by animals of all the groups were in a similar range, the effects might not be ascribed to the changes in general locomotor activity. These results suggest that endogenous alpha-MSH and NPY containing systems may interact in the amygdala and regulate exploratory behavior in an animal model of anxiety.
Collapse
|
246
|
Tóth A, Záborszky L, Détári L. EEG effect of basal forebrain neuropeptide Y administration in urethane anaesthetized rats. Brain Res Bull 2005; 66:37-42. [PMID: 15925142 DOI: 10.1016/j.brainresbull.2005.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 02/22/2005] [Accepted: 03/02/2005] [Indexed: 11/22/2022]
Abstract
Neuropeptide Y (NPY) is present both in local neurons as well as in fibers in the basal forebrain (BF), an area that plays an important role in the regulation of cortical activation. In previous studies, NPY axons were found to innervate corticopetal cholinergic cells in this area. In addition, identified NPY positive neurons have been shown to be silent during cortical activation, but active during slow EEG waves. However, no in vivo studies have shown the effect of local NPY release in the BF on the EEG. In the present experiments, the EEG was examined following NPY injection (0.5 microl, 300-500 pmol) into the BF of urethane-anaesthetized rats. Fronto-parietal EEG was recorded on both sides and relative EEG power was calculated in the delta (0-3 Hz), theta (3-9 Hz), alpha (9-16 Hz) and beta (16-48 Hz) frequency bands. We found a significant increase in relative delta power and a decrease in the power of all higher frequency bands (theta, alpha, beta) after NPY injection. These results suggest that NPY can inhibit cortical activation via the BF.
Collapse
Affiliation(s)
- Attila Tóth
- Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest 1117, Hungary
| | | | | |
Collapse
|
247
|
Lin S, Boey D, Couzens M, Lee N, Sainsbury A, Herzog H. Compensatory changes in [125I]-PYY binding in Y receptor knockout mice suggest the potential existence of further Y receptor(s). Neuropeptides 2005; 39:21-8. [PMID: 15627497 DOI: 10.1016/j.npep.2004.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 10/06/2004] [Accepted: 10/13/2004] [Indexed: 11/22/2022]
Abstract
Gene knockout approaches have helped to better understand the functions of the different Y receptors. However, some results obtained from these knockout mice are unexpected and differ from the results of pharmacological intervention experiments. One possible explanation for this is that germ-line gene deletion of a particular Y receptor can influence expression and function of the remaining Y receptors. Here we show that such compensation in mRNA and protein expression does occur in Y receptor single, double and triple knockout models. Radio-ligand binding experiments using [(125)I]-PYY revealed significant up- and down-regulation of remaining Y receptor binding sites in various Y receptor knockout models compared to results from control mice employing Y receptor preferring agonist or antagonists for displacement of the radio-ligand. The most obvious change can be seen in the hippocampus of Y(1) knockout mice, where the level of the remaining Y receptors is strongly down-regulated. In Y(2) knockout mice no such trend can be seen, however, the expression pattern is significantly changed with a strong up-regulation of [(125)I]-PYY specific binding in the dentate gyrus. Interestingly, this pattern was also seen in Y(1)Y(2)Y(4) triple knockout mice. Y(5) receptor mRNA was approximately 20% higher in the hippocampus and dentate gyrus in the triple knockout mice compared to wild-type controls, while Y(6) mRNA expression could not be detected. However, competition binding experiments in Y(1)Y(2)Y(4) triple knockout mice with the Y(5) receptor preferring ligands [Leu(31), Pro(34)] NPY and [A(31), Aib(32)] NPY were able to replace only approximately 50% of [(125)I]-PYY binding in the dentate gyrus suggesting the existence of further yet unidentified Y receptor(s).
Collapse
Affiliation(s)
- S Lin
- Neurobiology Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | | | | | | | | | | |
Collapse
|
248
|
Chelikani PK, Haver AC, Reidelberger RD. Intravenous infusion of peptide YY(3-36) potently inhibits food intake in rats. Endocrinology 2005; 146:879-88. [PMID: 15539554 DOI: 10.1210/en.2004-1138] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Peptide YY (3-36) [PYY (3-36)] is postulated to act as a hormonal signal from the gut to the brain to inhibit food intake and gastric emptying. A mixed-nutrient meal produces a prolonged 2-3 h increase in plasma levels of both PYY (3-36) and PYY (1-36). We determined the dose-dependent effects of 3-h iv infusions of PYY (3-36) and PYY (1-36) (0.5-50 pmol.kg(-1).min(-1)) at dark onset on food intake in non-food-deprived rats. PYY (3-36) dose-dependently inhibited food intake: the minimal effective dose was 5 pmol.kg(-1).min(-1); the estimated potency (mean effective dose) and efficacy (maximal percent inhibition) were 15 pmol.kg(-1).min(-1) (2.6 nmol/kg) and 47%, respectively. PYY (1-36) was an order of magnitude less potent than PYY (3-36). Similar total doses of PYY (3-36) (0.9-30 nmol/kg) infused during the 15-min period just before dark onset also dose-dependently inhibited food intake, albeit with a lower potency and efficacy. Other experiments showed that PYY (3-36) inhibited food intake in sham-feeding rats and was more effective in reducing intake of a mixed-nutrient liquid diet than 15% aqueous sucrose. We conclude that: 1) iv infusions of PYY (3-36), which are more likely than ip injections to mimic postprandial increases in plasma PYY (3-36), potently inhibit food intake in a dose-dependent manner; 2) PYY (1-36) is an order of magnitude less potent than PYY (3-36); and 3) PYY (3-36) can inhibit food intake independently of its action to inhibit gastric emptying. It remains to be determined whether iv doses of PYY (3-36) that reproduce postprandial increases in plasma PYY (3-36) are sufficient to inhibit food intake.
Collapse
Affiliation(s)
- Prasanth K Chelikani
- Department of Veterans Affairs-Nebraska Western Iowa Health Care System (151), 4101 Woolworth Avenue, Omaha, Nebraska 68105, USA
| | | | | |
Collapse
|
249
|
Benmaamar R, Richichi C, Gobbi M, Daniels AJ, Beck-Sickinger AG, Vezzani A. Neuropeptide Y Y5 receptors inhibit kindling acquisition in rats. ACTA ACUST UNITED AC 2005; 125:79-83. [PMID: 15582717 DOI: 10.1016/j.regpep.2004.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 07/15/2004] [Accepted: 07/26/2004] [Indexed: 11/27/2022]
Abstract
Neuropeptide Y inhibits neuronal excitability and seizures in various experimental models. This peptide delays kindling epileptogenesis but the receptors involved in this action are unknown. We have studied the role of Y5 receptors in kindling using the selective antagonist GW438014A (IC50=210 nM), a small heterocycle molecule that crosses the blood-brain barrier, and the selective peptide agonist Ala31Aib34 NPY (IC50=6.0 nM). Intraperitoneal injection of GW438014A (10 mg/kg), 30 min before the beginning of a rapid-kindling protocol, significantly accelerated the rate of kindling acquisition as compared to vehicle-injected rats. Thus, the number of electrical stimuli required to reach stages 3 and 4-5 of kindling were reduced by 50% and 25%, respectively. The average afterdischarge duration in the stimulated hippocampus was prolonged by 2-fold. Conversely, kindling rate was delayed by intracerebroventricular administration of 24 nmol Ala31Aib32 NPY. Thus, the number of stimuli necessary to reach stages 2 and 3 of kindling was increased by 3- and 4-fold, respectively. During the stimulation protocol (40 stimuli) none of the rats treated with the Y5 agonist showed stages 4-5 seizures. Twenty-four hours after the last kindling stimulation, thus during the re-test session, Y5 agonist- or antagonist-treated rats had stages 4-5 seizures as their controls. In rats treated with both the antagonist and the agonist, kindling rate was similar to vehicle-injected rats. These data indicate that Y5 receptors mediate inhibitory effects of NPY in kindling and display anticonvulsant rather then antiepileptogenic effects upon agonist stimulation.
Collapse
Affiliation(s)
- R Benmaamar
- Laboratoire de Neuropharmacologie des Epilepsies, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
250
|
Wittmann W, Loacker S, Kapeller I, Herzog H, Schwarzer C. Y1-receptors regulate the expression of Y2-receptors in distinct mouse forebrain areas. Neuroscience 2005; 136:241-50. [PMID: 16198492 DOI: 10.1016/j.neuroscience.2005.07.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 07/27/2005] [Accepted: 07/28/2005] [Indexed: 10/25/2022]
Abstract
Y-receptor-knockout mice have become an important tool to elucidate specific physiological roles of individual Y-receptors. However, their phenotypes are not always confirmatory to results obtained by pharmacological investigations in vivo or in vitro. These discrepancies may, at least in part, be due to compensatory changes in the expression of remaining Y-receptor types. To determine whether deletion of individual Y-receptors results in altered mRNA expression and/or binding toward other Y-receptor types, we applied in-situ hybridization and radioligand-binding studies on brain slices of Npy1r-, Npy2r- or Npy5r-knockout mice. Significant changes were seen in Y1-receptor-deficient mice. Thus, Y2-receptor mRNA and (125)I-peptide YY(3-36) binding in the hippocampus proper were increased by up to 55% and 89%, respectively. Similar increases in (125)I-peptide YY(3-36) binding were observed in the caudo-dorsal extension of the lateral septum, an area heavily targeted by hippocampal projections and involved in Y1-receptor-regulated anxiety. Increased (125)I-peptide YY(3-36) binding and Y2-receptor mRNA levels were also observed in the medial amygdaloid nucleus. In contrast, (125)I-peptide YY(3-36) binding was reduced in the central amygdaloid nucleus. Y2-receptor mRNA in the intermediate part of the lateral septum was reduced by 42%. Only minimal changes were observed in Y2- or Y5-receptor-deficient mice. Our results demonstrate that compensatory changes in the expression of Y2-receptors occur in Y1-receptor-deficient mice. These adaptations are likely to contribute to changed physiological function. Thus, alterations in Y2-receptors have to be taken in account upon discussion of Y1-receptor function, especially in emotional aspects like anxiety and aggression, but also alcoholism.
Collapse
Affiliation(s)
- W Wittmann
- Institute of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|