201
|
Moriggi E, Pisteljic M, Rosi-Andersen A, Opitz L, Azzi A, Brown SA. The NONO protein regulates nonclassical DNA structure: Effects on circadian genes and DNA damage. iScience 2025; 28:112408. [PMID: 40352720 PMCID: PMC12063141 DOI: 10.1016/j.isci.2025.112408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/17/2024] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
The DBHS protein family of Nono, PSPC1, and SFPQ regulates diverse aspects of RNA metabolism. Whether these proteins share similar functions is currently unknown. In mouse embryonic fibroblasts (MEFs), we observed around 2000 circadian and non-circadian genes regulated by Nono and PSPC1, with only 35% in common. Considering specifically circadian genes, up- or downregulation by Nono and PSPC1 depends mainly on the gene phase. We postulated a regulatory role of Nono on R-loops, the class of non-B DNA structures that form during transcription. We confirmed this by showing a broad effect of Nono on genome-wide R-loop homeostasis. Interestingly, the R-loop regulation by Nono occurs in a time-of-day dependent manner among the circadian genes. Moreover, we showed a protective role of Nono in a DNA damage cellular model that involves R-loop accumulation. Further studies are required to understand the circadian regulation of R-loops and their implications on gene regulation and disease.
Collapse
Affiliation(s)
- Ermanno Moriggi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Melissa Pisteljic
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Alex Rosi-Andersen
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Lennart Opitz
- Functional Genomic Center Zurich, ETH and University of Zurich, Zurich, Switzerland
| | - Abdelhalim Azzi
- Laboratory of Lipids and Chronobiology, IMol, Polish Academy of Sciences, Warsaw, Poland
| | - Steven A. Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
202
|
Praiss AM, Moukarzel LA, Zhu Y, Longhini ALF, Derakhshan F, Hoang T, Pesci G, Green H, Ozsoy MA, Hanlon E, Kahn R, Brodeur MN, Sia T, Abu-Rustum NR, Gardner G, Roche KL, Sonoda Y, Zivanovic O, Chi DS, Merghoub T, Gardner R, Weigelt B, Zamarin D. Evolution of tumor stress response during cytoreductive surgery for ovarian cancer. iScience 2025; 28:112317. [PMID: 40256326 PMCID: PMC12008711 DOI: 10.1016/j.isci.2025.112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/28/2025] [Accepted: 03/25/2025] [Indexed: 04/22/2025] Open
Abstract
Upfront treatment for patients with advanced high-grade serous ovarian cancer (HGSOC) includes a multi-hour cytoreductive surgery. Although the procedure is necessary for maximal tumor cytoreduction, understanding of the biology of systemic and intratumoral responses induced by surgical cytoreduction is limited. Through analysis of matched tumor and normal tissues and peripheral blood collected at multiple time points during cytoreductive surgery in patients with HGSOC, we demonstrate that surgery leads to rapid induction of systemic inflammatory response and activation of inflammatory signaling in the tumor and normal tissue, with interleukin-6 emerging as a dominant inflammatory pathway. A parallel study in a syngeneic murine HGSOC model recapitulated these findings and demonstrated accelerated tumor growth in response to surgery. This study highlights the previously unappreciated impact of specimen collection timing on the tumor signaling networks and provides insights into stress pathways activated by surgery, generating rationale for perioperative therapeutic interventions to reduce protumorigenic effects.
Collapse
Affiliation(s)
- Aaron M. Praiss
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lea A. Moukarzel
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yingjie Zhu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ana Leda F. Longhini
- Department of Flow Cytometry, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fatemeh Derakhshan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy Hoang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giulio Pesci
- Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
| | - Hunter Green
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melih A. Ozsoy
- Department of OB/GYN, Weill Cornell Medical College, New York, NY, USA
| | - Etta Hanlon
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan Kahn
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Tiffany Sia
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem R. Abu-Rustum
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of OB/GYN, Weill Cornell Medical College, New York, NY, USA
| | - Ginger Gardner
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of OB/GYN, Weill Cornell Medical College, New York, NY, USA
| | - Kara Long Roche
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of OB/GYN, Weill Cornell Medical College, New York, NY, USA
| | - Yukio Sonoda
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of OB/GYN, Weill Cornell Medical College, New York, NY, USA
| | - Oliver Zivanovic
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dennis S. Chi
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of OB/GYN, Weill Cornell Medical College, New York, NY, USA
| | - Taha Merghoub
- Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
| | - Rui Gardner
- Department of Flow Cytometry, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dmitriy Zamarin
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
203
|
Wolfe Z, Liska D, Norris A. Deep transcriptomics reveals cell-specific isoforms of pan-neuronal genes. Nat Commun 2025; 16:4507. [PMID: 40379625 PMCID: PMC12084633 DOI: 10.1038/s41467-025-58296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 03/18/2025] [Indexed: 05/19/2025] Open
Abstract
Profiling alternative splicing in single neurons using RNA-seq is challenging due to low capture efficiency and sensitivity. We therefore know much less about splicing patterns and regulation across neurons than we do about gene expression. Here we leverage unique attributes of C. elegans to investigate deep neuron-specific transcriptomes with biological replicates generated by the CeNGEN consortium, enabling high-confidence assessment of splicing across neuron types even for lowly-expressed genes. Global splicing maps reveal several striking observations, including pan-neuronal genes harboring cell-specific splice variants, and abundant differential intron retention across neuron types. We develop an algorithm to identify unique cell-specific expression patterns, which reveals both cell-specific isoforms and potential regulatory factors establishing these isoforms. Genetic interrogation of these factors in vivo identifies three distinct splicing factors employed to control splicing in a single neuron. Finally, we develop a user-friendly platform for spatial transcriptomic visualization of these splicing patterns with single-neuron resolution.
Collapse
Affiliation(s)
- Zachery Wolfe
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA
| | - David Liska
- Office of Information Technology, Southern Methodist University, Dallas, TX, USA
| | - Adam Norris
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
204
|
Ramon-Mateu J, Ferraioli A, Teixidó N, Domart-Coulon I, Houliston E, Copley RR. Aboral cell types of Clytia and coral larvae have shared features and link taurine to the regulation of settlement. SCIENCE ADVANCES 2025; 11:eadv1159. [PMID: 40378222 DOI: 10.1126/sciadv.adv1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/14/2025] [Indexed: 05/18/2025]
Abstract
Larval settlement is of interest both for ecologists and for evolutionary biologists, who have proposed that anterior sensory systems for substrate selection provided the basis for animal brains. Nevertheless, the cellular and molecular regulation of settlement, including in Cnidaria (corals, jellyfish, sea anemones, and hydroids), is not well understood. We generated and compared anterior (aboral) transcriptomes and single-cell RNA sequencing datasets from the planula larvae of three cnidarian species: the jellyfish Clytia hemisphaerica and the corals Astroides calycularis and Pocillopora acuta. Integrating these datasets and characterizing aboral cell types, we defined common cellular features of the planula aboral end and identified clade-specific specializations in cell types. Among shared features were genes implicated in taurine uptake and catabolism expressed in distinct specialized aboral cell types. In functional assays using both Clytia and Astroides planulae, exogenous taurine inhibited settlement. These findings define the molecular and cellular architecture of the planula aboral pole and implicate localized taurine destruction in regulating settlement.
Collapse
Affiliation(s)
- Julia Ramon-Mateu
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Anna Ferraioli
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Núria Teixidó
- National Institute of Marine Biology, Ecology and Biotechnology, Ischia Marine Center, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy
- Laboratoire d'Océanographie de Villefranche (LOV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Isabelle Domart-Coulon
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM) (UMR7245), Muséum National d'Histoire Naturelle (MNHN), CNRS, CP54, 63 Rue Buffon, 75005 Paris, France
| | - Evelyn Houliston
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Richard R Copley
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| |
Collapse
|
205
|
Wardaszka-Pianka P, Kuzniewska B, GumiNska N, Hojka-Osinska A, Puchalska M, Milek J, Stawikowska A, Krawczyk P, Pauzin FP, Wojtowicz T, Radwanska K, Bramham CR, Dziembowski A, Dziembowska M. Terminal nucleotidyltransferase Tent2 microRNA A-tailing enzyme regulates excitatory/inhibitory balance in the hippocampus. RNA (NEW YORK, N.Y.) 2025; 31:756-771. [PMID: 40101932 DOI: 10.1261/rna.080240.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/25/2025] [Indexed: 03/20/2025]
Abstract
One of the posttranscriptional mechanisms regulating the stability of RNA molecules involves the addition of nontemplated nucleotides to their 3' ends, a process known as RNA tailing. To systematically investigate the physiological consequences of terminal nucleotidyltransferase TENT2 absence on RNA 3' end modifications in the mouse hippocampus, we developed a new Tent2 knockout mouse. Electrophysiological measurements revealed increased excitability in Tent2 KO hippocampal neurons, and behavioral analyses showed decreased anxiety and improved fear extinction in these mice. At the molecular level, we observed changes in miRNAs' monoadenylation in Tent2 KO mouse hippocampus, but found no effect of the TENT2 loss on the mRNAs' total poly(A) tail length, as measured by direct nanopore RNA sequencing. Moreover, differential expression analysis revealed transcripts related to synaptic transmission to be downregulated in the hippocampus of Tent2 knockout mice. These changes may explain the observed behavioral and electrophysiological alterations. Our data thus establish a link between TENT2-dependent miRNA tailing and the balance of inhibitory and excitatory neurotransmission.
Collapse
Affiliation(s)
| | - Bozena Kuzniewska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Natalia GumiNska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Anna Hojka-Osinska
- Bioinformatics Facility, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Monika Puchalska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Jacek Milek
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Aleksandra Stawikowska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Pawel Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Francois P Pauzin
- Department of Biomedicine, University of Bergen, 5007 Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, 5007 Bergen, Norway
| | - Tomasz Wojtowicz
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Clive R Bramham
- Department of Biomedicine, University of Bergen, 5007 Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, 5007 Bergen, Norway
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Magdalena Dziembowska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| |
Collapse
|
206
|
Playter C, Golloshi R, Garretson JH, Rodriguez Gonzalez A, Olajide TH, Saad A, Benson SJ, McCord RP. Deciphering pre-existing and induced 3D genome architecture changes involved in constricted melanoma migration. iScience 2025; 28:112346. [PMID: 40292313 PMCID: PMC12032941 DOI: 10.1016/j.isci.2025.112346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/22/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Metastatic cancer cells traverse constricted spaces that exert forces on their nucleus and the genomic contents within. Cancerous tumors are highly heterogeneous and not all cells within them can achieve such a feat. Here, we investigated what initial genome architecture characteristics favor the constricted migratory ability of cancer cells and which arise only after passage through multiple constrictions. We identified a cell surface protein (ITGB4) whose expression correlates with increased initial constricted migration ability in human melanoma A375 cells. Sorting out this subpopulation allowed us to identify cellular and nuclear features that pre-exist and favor migration, as well as alterations that only appear after cells have passed through constrictions. We identified specific genomic regions that experienced altered genome spatial compartment profiles only after constricted migration. Our study reveals 3D genome structure contributions to both selection and induction mechanisms of cell fate change during cancer metastasis.
Collapse
Affiliation(s)
- Christopher Playter
- Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Rosela Golloshi
- Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Joshua H. Garretson
- Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Alvaro Rodriguez Gonzalez
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Taiwo Habeeb Olajide
- Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Ahmed Saad
- Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Samuel John Benson
- Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Rachel Patton McCord
- Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
207
|
Halli K, Yin T, Koch C, Krebs S, König S. Heat stress induces specific methylation, transcriptomic and metabolic pattern in dairy cows and their female progeny. Sci Rep 2025; 15:17021. [PMID: 40379708 PMCID: PMC12084553 DOI: 10.1038/s41598-025-01082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025] Open
Abstract
A heat stress (HS) cattle research design was implemented to study HS effects on the three different "omics features" methylations, gene expressions and metabolic pattern from a direct perspective in pregnant cows and from an indirect time-lagged intergenerational perspective in offspring (the respective F1 and as F1 offspring before calving). In this regard, a total number of 88 German Holstein dairy cows and their 93 female calves were blood sampled for DNA and RNA extraction and for metabolic phenotyping, and allocated to HS and respective control groups (the cows (dams) as well as their calves) according to a temperature-humidity threshold of 60. Separate principal component analyses for all "omics-tiers" revealed clear separations of HS from respective control groups, as well as dam-offspring separations according to gene expressions and metabolic pattern. The GO enrichment analyses based on the differentially expressed genes contributed to the detection of 10 significantly overrepresented biological processes in heat stressed dams, and of 95 overrepresented biological processes due to indirect maternal heat stress in calves. With regard to direct HS in dams and the first PCs of the different "omics" features, the correlation coefficient was 0.45 between methylation and gene expression data, 0.62 between expression and metabolites, and 0.38 between methylation and metabolite data. The separation of HS from the control group was very obvious when using the average and weighted average of the first and second components from the three multi-omics datasets. The present study provides extended insights into the complex genetic and physiological mechanisms of HS response in dam and calf groups from different generations, contributing to a deeper understanding of the interplay of prompt and time lagged HS effects between different omics-tiers.
Collapse
Affiliation(s)
- Kathrin Halli
- Institute of Animal Breeding and Genetics, Justus-Liebig-University, 35390, Giessen, Germany
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University, 35390, Giessen, Germany
- Zhejiang Key Laboratory of Dairy Cattle Genetic Improvement and Milk Quality Research, Wenzhou, 32500, People's Republic of China
| | - Christian Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728, Muenchweiler an der Alsenz, Germany
| | - Stefan Krebs
- Gene Center - Laboratory for Functional Genome Analysis, Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University, 35390, Giessen, Germany.
| |
Collapse
|
208
|
Yan G, Ma X, Huang W, Wang C, Han Y, Wang S, Liu H, Zhang M. Decoding the complexity of coding and non-coding RNAs across maize anther development at the isoform level. J Genet Genomics 2025:S1673-8527(25)00149-3. [PMID: 40383373 DOI: 10.1016/j.jgg.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2025] [Revised: 05/10/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
Anther is a key male reproductive organ that is essential for the plant life cycle, from the sporophyte to the gametophyte generation. To explore isoform-level transcriptional landscape of developing anthers in maize (Zea mays L.), we analyzed Iso-Seq data from anthers collected at 10 developmental stages, together with strand-specific RNA-seq, CAGE-seq, and PAS-seq data. Of the 152,026 high-confidence full-length isoforms identified, 68.8% have not been described; these include 22,365 isoforms that originate from previously unannotated loci and 82,167 novel isoforms that originate from annotated protein-coding genes. Using our newly developed strategy to detect dynamic expression patterns of isoforms, we identified 13,899 differentially variable regions (DVRs); surprisingly, 1,275 genes contain more than two DVRs, revealing highly efficient utilization of limited genic regions. We identified 7,876 long non-coding RNAs (lncRNAs) from 4,098 loci, most of which were preferentially expressed during cell differentiation and meiosis. We also detected 371 long-range interactions involving intergenic lncRNAs (lincRNAs); interestingly, 243 were lincRNA-gene ones, and the interacting genes were highly expressed in anthers, suggesting that many potential lncRNA regulators of key genes are required for anther development. This study provides valuable resources and fundamental information for studying the essential transcripts of key genes during anther development.
Collapse
Affiliation(s)
- Ge Yan
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuxu Ma
- Key Laboratory of Forage Breeding-by-Design and Utilization, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Chunyu Wang
- Key Laboratory of Forage Breeding-by-Design and Utilization, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjia Han
- Key Laboratory of Forage Breeding-by-Design and Utilization, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Shufang Wang
- Key Laboratory of Forage Breeding-by-Design and Utilization, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Han Liu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| | - Mei Zhang
- Key Laboratory of Forage Breeding-by-Design and Utilization, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
209
|
Ben-Simon Y, Hooper M, Narayan S, Daigle TL, Dwivedi D, Way SW, Oster A, Stafford DA, Mich JK, Taormina MJ, Martinez RA, Opitz-Araya X, Roth JR, Alexander JR, Allen S, Amster A, Arbuckle J, Ayala A, Baker PM, Bakken TE, Barcelli T, Barta S, Bendrick J, Bertagnolli D, Bielstein C, Bishwakarma P, Bowlus J, Boyer G, Brouner K, Casian B, Casper T, Chakka AB, Chakrabarty R, Chance RK, Chavan S, Clark M, Colbert K, Collman F, Daniel S, Departee M, DiValentin P, Donadio N, Dotson N, Egdorf T, Fliss T, Gabitto M, Garcia J, Gary A, Gasperini M, Gloe J, Goldy J, Gore BB, Graybuck L, Greisman N, Haeseleer F, Halterman C, Haradon Z, Hastings SD, Helback O, Ho W, Hockemeyer D, Huang C, Huff S, Hunker A, Johansen N, Jones D, Juneau Z, Kalmbach B, Kannan M, Khem S, Kussick E, Kutsal R, Larsen R, Lee C, Lee AY, Leibly M, Lenz GH, Li S, Liang E, Lusk N, Madigan Z, Malloy J, Malone J, McCue R, Melchor J, Mollenkopf T, Moosman S, Morin E, Newman D, Ng L, Ngo K, Omstead V, Otto S, Oyama A, Pena N, Pham T, Phillips E, Pom CA, Potekhina L, Ransford S, et alBen-Simon Y, Hooper M, Narayan S, Daigle TL, Dwivedi D, Way SW, Oster A, Stafford DA, Mich JK, Taormina MJ, Martinez RA, Opitz-Araya X, Roth JR, Alexander JR, Allen S, Amster A, Arbuckle J, Ayala A, Baker PM, Bakken TE, Barcelli T, Barta S, Bendrick J, Bertagnolli D, Bielstein C, Bishwakarma P, Bowlus J, Boyer G, Brouner K, Casian B, Casper T, Chakka AB, Chakrabarty R, Chance RK, Chavan S, Clark M, Colbert K, Collman F, Daniel S, Departee M, DiValentin P, Donadio N, Dotson N, Egdorf T, Fliss T, Gabitto M, Garcia J, Gary A, Gasperini M, Gloe J, Goldy J, Gore BB, Graybuck L, Greisman N, Haeseleer F, Halterman C, Haradon Z, Hastings SD, Helback O, Ho W, Hockemeyer D, Huang C, Huff S, Hunker A, Johansen N, Jones D, Juneau Z, Kalmbach B, Kannan M, Khem S, Kussick E, Kutsal R, Larsen R, Lee C, Lee AY, Leibly M, Lenz GH, Li S, Liang E, Lusk N, Madigan Z, Malloy J, Malone J, McCue R, Melchor J, Mollenkopf T, Moosman S, Morin E, Newman D, Ng L, Ngo K, Omstead V, Otto S, Oyama A, Pena N, Pham T, Phillips E, Pom CA, Potekhina L, Ransford S, Ray PL, Rette D, Reynoldson C, Rimorin C, Rocha D, Ruiz A, Sanchez REA, Sawyer L, Sedeno-Cortes A, Sevigny JP, Shapovalova N, Shepard N, Shulga L, Sigler AR, Siverts L, Soliman S, Somasundaram S, Staats B, Stewart K, Szelenyi E, Tieu M, Trader C, Tran A, van Velthoven CTJ, Walker M, Wang Y, Weed N, Wirthlin M, Wood T, Wynalda B, Yao Z, Zhou T, Ariza J, Dee N, Reding M, Ronellenfitch K, Mufti S, Sunkin SM, Smith KA, Esposito L, Waters J, Thyagarajan B, Yao S, Lein ES, Zeng H, Levi BP, Ngai J, Ting JT, Tasic B. A suite of enhancer AAVs and transgenic mouse lines for genetic access to cortical cell types. Cell 2025:S0092-8674(25)00513-6. [PMID: 40403729 DOI: 10.1016/j.cell.2025.05.002] [Show More Authors] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/25/2025] [Accepted: 05/01/2025] [Indexed: 05/24/2025]
Abstract
The mammalian cortex is comprised of cells classified into types according to shared properties. Defining the contribution of each cell type to the processes guided by the cortex is essential for understanding its function in health and disease. We use transcriptomic and epigenomic cortical cell-type taxonomies from mouse and human to define marker genes and putative enhancers and create a large toolkit of transgenic lines and enhancer adeno-associated viruses (AAVs) for selective targeting of cortical cell populations. We report creation and evaluation of fifteen transgenic driver lines, two reporter lines, and >1,000 different enhancer AAV vectors covering most subclasses of cortical cells. The tools reported here have been made publicly available, and along with the scaled process of tool creation, evaluation, and modification, they will enable diverse experimental strategies toward understanding mammalian cortex and brain function.
Collapse
Affiliation(s)
- Yoav Ben-Simon
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Marcus Hooper
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Tanya L Daigle
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Sharon W Way
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Aaron Oster
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - John K Mich
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Jada R Roth
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Shona Allen
- University of California, Berkeley, Berkeley, CA 94720, USA
| | - Adam Amster
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Joel Arbuckle
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Angela Ayala
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Pamela M Baker
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Tyler Barcelli
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Stuard Barta
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | | | - Jessica Bowlus
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Krissy Brouner
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Brittny Casian
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Tamara Casper
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Anish B Chakka
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Sakshi Chavan
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Michael Clark
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Kaity Colbert
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Scott Daniel
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | | | - Tom Egdorf
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Tim Fliss
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Jazmin Garcia
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Amanda Gary
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Bryan B Gore
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Lucas Graybuck
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Noah Greisman
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Zeb Haradon
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Olivia Helback
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Cindy Huang
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Sydney Huff
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Avery Hunker
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Danielle Jones
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Zoe Juneau
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Brian Kalmbach
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Madhav Kannan
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Shannon Khem
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Emily Kussick
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Rana Kutsal
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Rachael Larsen
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Angus Y Lee
- University of California, Berkeley, Berkeley, CA 94720, USA
| | - Madison Leibly
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Garreck H Lenz
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Su Li
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Nicholas Lusk
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Jessica Malloy
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jocelin Malone
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Rachel McCue
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jose Melchor
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Skyler Moosman
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Elyse Morin
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Dakota Newman
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Kiet Ngo
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Sven Otto
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Alana Oyama
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Nick Pena
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | | | - Shea Ransford
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Patrick L Ray
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Dean Rette
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Dana Rocha
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Augustin Ruiz
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Lane Sawyer
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Noah Shepard
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Ana R Sigler
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Sherif Soliman
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Brian Staats
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Kaiya Stewart
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Eric Szelenyi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Cameron Trader
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Alex Tran
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Miranda Walker
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Yimin Wang
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Natalie Weed
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Toren Wood
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Brooke Wynalda
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Thomas Zhou
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jeanelle Ariza
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Melissa Reding
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Shoaib Mufti
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Susan M Sunkin
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Luke Esposito
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Shenqin Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - John Ngai
- University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
210
|
Nash A, Lee IN, Fox G, Phillips J, White LJ, Marlow M. An evaluation of spraying as a delivery method for human mesenchymal stem cells suspended in low-methyl pectin solutions. Stem Cell Res Ther 2025; 16:246. [PMID: 40380251 DOI: 10.1186/s13287-025-04331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/10/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Mesenchymal stem cells have shown promise in many areas of regenerative medicine due to the anti-inflammatory and pro-regenerative effects of the secreted factors. However, successful delivery remains problematic, particularly for delivery to areas such as the brain. Spray delivery is a method investigated in wound care and lung injury, which may be applicable for brain delivery to patients already requiring surgery. To retain therapeutic mesenchymal stem cells at the delivery site, biomaterials can be employed; pectin is a biocompatible, sprayable, and mucoadhesive material, which could prove suitable for spray delivery of cells for therapeutic uses. METHODS The biocompatibility of four grades of low-methyl pectin gelled by addition of calcium was assessed using SH-SY5Y cells. After, mesenchymal stem cells were suspended within the four different grades of low-methyl pectin solutions and sprayed using a syringe-driven spray device. The suitability was then assessed by cell viability testing, flow cytometry to test for surface markers, and differential gene expression studies to understand the effects of both the pectin and the spraying process on the gene expression of the cells. RESULTS All four grades of low-methyl pectin were biocompatible with SH-SY5Y cells. The syringe-driven spray device delivered human mesenchymal stem cells to well plates with high viability, and suspending these cells in pectin solutions for spraying did not negatively affect the viability. The grade of pectin named CU-701 was the best grade based on results of the flow cytometry, whereby the surface marker expression was not altered from the control cells. The RNA sequencing showing the differential expression showed that the process of spraying the cells did not alter gene expression compared to the control, however the pectin, and the presence of calcium used to induce gelation of the pectin, did lead to altered gene expression in cells. CONCLUSION Spraying is a suitable delivery method for the mesenchymal stem cells, showing no detrimental effect on the cells. Pectin shows little effect on the viability of the cells, however the use of calcium to gel the pectin appears to affect the expression of several genes.
Collapse
Affiliation(s)
- Ami Nash
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - I-Ning Lee
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Graeme Fox
- Deep Seq, Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - James Phillips
- Department of Pharmacology, School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Lisa J White
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Maria Marlow
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
211
|
Lago Solis B, Koch R, Nagoshi E. Circadian clock-independent ultradian rhythms in lipid metabolism in the Drosophila fat body. J Biol Chem 2025:110245. [PMID: 40383146 DOI: 10.1016/j.jbc.2025.110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/19/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025] Open
Abstract
The role of circadian clocks in regulating metabolic processes is well known; however, their impact on metabolic states across species and life stages remains largely unexplored. This study investigates the relationship between circadian rhythms and metabolic regulation in the Drosophila larval fat body, a metabolic hub analogous to the mammalian liver and adipose tissue. Surprisingly, the fat body of period null mutants, which lack a functional circadian clock in all tissues, exhibited 12-hour rhythms in gene expression, particularly those involved in peroxisome function, lipid metabolism, and oxidative stress response. These transcriptomic rhythms were aligned with 12-hour oscillations in peroxisome biogenesis and activity, reactive oxygen species levels, and lipid peroxidation. Furthermore, period mutants exhibited 12-hour rhythms in body fat storage, ultimately leading to a net reduction in body fat levels. Collectively, our results identify clock-independent ultradian rhythms in lipid metabolism that are essential for larval survival and development.
Collapse
Affiliation(s)
- Blanca Lago Solis
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1205, Geneva, Switzerland
| | - Rafael Koch
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1205, Geneva, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1205, Geneva, Switzerland.
| |
Collapse
|
212
|
Kang SW, Tran HT, Lee G, Ng JT, Lim SB, Kim EY. Drosophila peptidyl-prolyl cis/trans isomerase-like 4 regulates circadian rhythm by supporting high-amplitude oscillations of PERIOD. iScience 2025; 28:112457. [PMID: 40384934 PMCID: PMC12084006 DOI: 10.1016/j.isci.2025.112457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/03/2025] [Accepted: 04/11/2025] [Indexed: 05/20/2025] Open
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases) accelerate proline peptide bond isomerization, affecting substrate protein function. In this study, through RNAi-based behavioral screening of PPIases in Drosophila melanogaster, we identified CG5808, termed Drosophila peptidyl-prolyl cis/trans isomerase-like 4 (dPPIL4), as crucial for circadian rhythm regulation. Knockdown of dppil4 in clock cells lengthened the circadian rhythm period and decreased rhythmicity, accompanied by a significant reduction of core clock protein PERIOD (PER). d ppil4 knockdown downregulated per transcription and reduced phosphorylation at Ser5 in the RNA polymerase II C-terminal domain, critical for transcription elongation. In addition, dPPIL4 stabilized Cullin1 of the Skp1-Cullin1-F-box protein complex, a key regulator of PER degradation. Our findings suggest that dPPIL4 supports high-amplitude PER oscillation by enhancing both synthesis and degradation processes in a timely manner. In conclusion, our study underscores the importance of high-amplitude PER oscillations in PER for robust circadian rhythms and highlights the critical role of dPPIL4 in this process.
Collapse
Affiliation(s)
- So Who Kang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Hong Thuan Tran
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Gaeun Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Jestlin Tianthing Ng
- Department of Biochemistry, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Su Bin Lim
- Department of Biochemistry, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Eun Young Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
| |
Collapse
|
213
|
Zhao Y, Fernández-Montoro A, Peeters G, Jatsenko T, De Coster T, Angel-Velez D, Lefevre T, Voet T, Tšuiko O, Kurg A, Smits K, Van Soom A, Vermeesch JR. Origin and development of uniparental and polyploid blastomeres. iScience 2025; 28:112337. [PMID: 40276758 PMCID: PMC12020880 DOI: 10.1016/j.isci.2025.112337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/03/2024] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
Whole-genome (WG) abnormalities, such as uniparental diploidy and triploidy, cause fetal death. Occasionally, they coexist with biparental diploid cells in live births. Understanding the origin and early development of WG abnormal blastomeres is crucial for explaining the formation of androgenotes, gynogenotes, triploidy, chimerism, and mixoploidy. By haplotyping 118 bovine blastomeres from the first cleavages, we identified that heterogoneic division occurs in both multipolar and bipolar cleaving zygotes. During heterogoneic division, parental genomes segregate into distinct blastomeres, resulting in the coexistence of uniparental and biparental diploid or polyploid cells. After culturing the totipotent blastomeres to three preimplantation stages and exploring transcriptomes of 446 cells, we discovered that stress responses contribute to developmental impairment in WG abnormal cells, resulting in either cell arrest or blastocyst formation. Their dominance in preimplantation embryos represents an overlooked cause of abnormal development. Haplotype-based screening could improve in vitro fertilization outcomes.
Collapse
Affiliation(s)
- Yan Zhao
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | - Andrea Fernández-Montoro
- Department of Internal Medicine, Reproduction, and Population Medicine - Ghent University, 9820 Merelbeke, Belgium
| | - Greet Peeters
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Tatjana Jatsenko
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Tine De Coster
- Department of Internal Medicine, Reproduction, and Population Medicine - Ghent University, 9820 Merelbeke, Belgium
| | - Daniel Angel-Velez
- Department of Internal Medicine, Reproduction, and Population Medicine - Ghent University, 9820 Merelbeke, Belgium
- Research Group in Animal Sciences – INCA-CES, Universidad CES, Medellin 050021, Colombia
| | - Thomas Lefevre
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
| | - Olga Tšuiko
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Ants Kurg
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | - Katrien Smits
- Department of Internal Medicine, Reproduction, and Population Medicine - Ghent University, 9820 Merelbeke, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction, and Population Medicine - Ghent University, 9820 Merelbeke, Belgium
| | - Joris Robert Vermeesch
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
214
|
Cho J, Bae S, Jeon J, Transfeld J, Lee C, Nott A, Gao F, Seo J. Enhanced differentiation of neural progenitor cells in Alzheimer's disease into vulnerable immature neurons. iScience 2025; 28:112446. [PMID: 40384927 PMCID: PMC12084003 DOI: 10.1016/j.isci.2025.112446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/26/2025] [Accepted: 04/11/2025] [Indexed: 05/20/2025] Open
Abstract
Focusing on the early stages of Alzheimer's disease (AD) holds great promise. However, the specific events in neural cells preceding AD onset remain elusive. To address this, we utilized human-induced pluripotent stem cells carrying APPswe mutation to explore the initial changes associated with AD progression. We observed enhanced neural activity and early neuronal differentiation in APPswe cerebral organoids cultured for one month. This phenomenon was also evident when neural progenitor cells (NPCs) were differentiated into neurons. Furthermore, transcriptomic analyses of NPCs and neurons confirmed altered expression of neurogenesis-related genes in APPswe NPCs. We also found that the upregulation of reactive oxygen species (ROS) is crucial for early neuronal differentiation in these cells. In addition, APPswe neurons remained immature after initial differentiation with increased susceptibility to toxicity, providing valuable insights into the premature exit from the neural progenitor state and the increased vulnerability of neural cells in AD.
Collapse
Affiliation(s)
- Joonho Cho
- Department of Brain Sciences, DGIST, Daegu 42988, South Korea
| | - Simsung Bae
- Department of Brain Sciences, DGIST, Daegu 42988, South Korea
| | - Juyeong Jeon
- Department of Brain Sciences, DGIST, Daegu 42988, South Korea
| | - Janis Transfeld
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Changyeob Lee
- Department of Brain Sciences, DGIST, Daegu 42988, South Korea
| | - Alexi Nott
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Fan Gao
- Bioinformatics Resource Center, Beckman Institute of Caltech, Pasadena, CA 91125, USA
| | - Jinsoo Seo
- Department of Brain Sciences, DGIST, Daegu 42988, South Korea
- Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, South Korea
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
215
|
Romano F, Persico C, Barra A, Pinto G, Illiano A, Amoresano A, Aiello I, Abate S, D'Auria L, Martello V, D'Agostino N, Giustiniano M, Russo C, Izzo L, Merlino F, Brancaccio D, Pagano B, Amato J, Marzano S, D'Aria F, Amente S, Bro R, Rasmussen MA, Cassese M, Ammendola R, Cattaneo F, De Tito S, Iaccarino N, Di Porzio A, Randazzo A. Unveiling the biological effects of DNA G-quadruplex ligands through multi-omics data integration. Int J Biol Macromol 2025; 313:144325. [PMID: 40383348 DOI: 10.1016/j.ijbiomac.2025.144325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 05/08/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
G-quadruplexes (G4s) are non-canonical DNA structures that have proved to play a pivotal role in various biological processes, including telomere maintenance and gene expression regulation. Owing to their prevalence in tumor cells, G4s have emerged as promising targets for cancer therapy, with a substantial body of research demonstrating the potential of G4 ligands as anti-cancer tools. Nonetheless, a comprehensive multi-omics study to fully elucidate the mode of action of G-quadruplex ligands is still lacking. Such an investigation would be crucial for advancing the development of potent G4-based therapies against cancer. Herein, we employed a multi-omics approach, integrating transcriptomics, proteomics, and metabolomics, to identify key signaling pathways that mediate the anti-cancer effects of well-characterized G4-binding agents (berberine, pyridostatin and RHPS4) on human cervical adenocarcinoma (HeLa) cells. Particularly, we analyzed gene expression changes using RNA sequencing, quantified proteins by liquid-chromatography tandem mass spectrometry and examined metabolite levels via nuclear magnetic resonance. Our results revealed that, under the investigated experimental conditions, berberine treatment had only negligible cellular effects. In contrast, pyridostatin induced significant changes at the transcriptomic, proteomic, and metabolomic levels, decreasing the abundance of enzymes involved in cellular energy production, reducing the availability of precursors for lipid and nucleotide biosynthesis, and depleting essential cofactors and enzymes required for redox balance. Notably, RHPS4 could selectively disrupt mitochondrial activity, possibly through the specific stabilization of mitochondrial G-quadruplex structures. Overall, our findings provide a valuable multi-omics perspective on the cellular changes driven by G-quadruplex binders, that may accelerate the development of effective anti-cancer G4-targeted therapies.
Collapse
Affiliation(s)
- Francesca Romano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Carolina Persico
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Alessandra Barra
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Immacolata Aiello
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Sara Abate
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Ludovica D'Auria
- CEINGE - Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| | - Verdiana Martello
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, 20139 Milan, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences University of Naples Federico II, piazza Carlo di Borbone 1, 80055, Portici, Naples, Italy
| | - Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Camilla Russo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Simona Marzano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Rasmus Bro
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten Arendt Rasmussen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark; COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Myrhiam Cassese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Stefano De Tito
- The Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London NW11AT, United Kingdom
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
216
|
Zitta K, Berndt R, Hess K, Fändrich F, Gurvich O, Sirviö K, Kekarainen T, Hummitzsch L, Wong YL, Sattler O, Braem S, Krebs M, Fudickar A, Engels S, Flack N, Steinfath M, Albrecht M. Transcriptomic characterization of GMP-compliant regulatory macrophages (TRI-001) under inflammatory and hypoxic conditions: a comparative analysis across macrophage subtypes. J Transl Med 2025; 23:551. [PMID: 40380234 DOI: 10.1186/s12967-025-06548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/29/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Regulatory macrophages (Mreg) represent a unique subset of macrophages known for their angiogenic and anti-inflammatory properties, positioning them as promising candidates for cell-based therapies. Recently, we have differentiated and characterized a distinct Mreg subtype (TRI-001), which is currently being produced in accordance with good manufacturing practice (GMP) for a multicenter study aimed at treating patients with peripheral arterial occlusive disease (PAOD). AIM OF THE STUDY To compare the transcriptome of TRI-001 with various in vitro differentiated macrophage subtypes to provide a comprehensive context for TRI-001 within the macrophage landscape. Additionally, we aimed to develop a detailed transcriptome profile of TRI-001 under transient hypoxic and inflammatory conditions, mimicking the microenvironment in PAOD patients. METHODS Mreg were differentiated from human CD14 + monocytes using a GMP-compliant protocol and identified as TRI-001 by flow cytometry. Hypoxia was induced via an enzymatic model, while LPS treatment of TRI-001 was employed as inflammatory stimulus. Transcriptomic profiling was conducted using the Illumina HiSeq 4000 platform. In vitro cell migration assays (Oris assays) were conducted using human umbilical vein endothelial cells (HUVEC) cultured with supernatants derived from normoxia and hypoxia treated TRI-001. RESULTS TRI-001 demonstrated significant transcriptomic similarities with Mreg and Mreg_UKR but were different from M0, M1, M2a, and PCMO subtypes. Under hypoxic conditions and LPS stimulation, TRI-001 displayed distinct gene expression profiles compared to TRI-001 under control conditions, with hypoxic and LPS-stimulated profiles showing notable overlap. Pathway enrichment analysis suggested the activation of chemotaxis and migration-associated pathways especially under hypoxic conditions. Findings from functional in vitro cell migration assays were inconclusive, as the secretome of TRI-001, whether cultured under hypoxic or normoxic conditions, did not elicit a significant effect on endothelial cell migration. CONCLUSION TRI-001 represents a novel type of regulatory macrophages (Mreg). The distinctive transcriptional responses to hypoxia and inflammatory stimuli highlight its potential as a cell therapy for the treatment of PAOD patients.
Collapse
Affiliation(s)
- Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig- Holstein, Schwanenweg 21, Kiel, Germany
| | - Rouven Berndt
- Clinic of Vascular Medicine, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Vascular Research Center, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Katharina Hess
- ICRSM Institute for Clinical Research and Systems Medicine, HMU Health and Medical University, Potsdam, Germany
| | - Fred Fändrich
- Department for Applied Cell Therapy, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | | | | | - Lars Hummitzsch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig- Holstein, Schwanenweg 21, Kiel, Germany
| | - Yuk Lung Wong
- Vascular Research Center, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Ole Sattler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig- Holstein, Schwanenweg 21, Kiel, Germany
| | | | - Mark Krebs
- 3D-PharmXchange, Tilburg, The Netherlands
| | - Axel Fudickar
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig- Holstein, Schwanenweg 21, Kiel, Germany
| | | | | | - Markus Steinfath
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig- Holstein, Schwanenweg 21, Kiel, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig- Holstein, Schwanenweg 21, Kiel, Germany.
| |
Collapse
|
217
|
Engelenburg HJ, van den Bosch AM, Chen JA, Hsiao CC, Melief MJ, Harroud A, Huitinga I, Hamann J, Smolders J. Multiple sclerosis severity variant in DYSF-ZNF638 locus associates with neuronal loss and inflammation. iScience 2025; 28:112430. [PMID: 40352730 PMCID: PMC12063138 DOI: 10.1016/j.isci.2025.112430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/23/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Abstract
The genetic variant rs10191329AA has been identified to associate with faster disability accrual in multiple sclerosis (MS). We investigated the impact of rs10191329AA carriership on MS pathology and flanking genes dysferlin (DYSF) and zinc finger protein 638 (ZNF638) in the Netherlands Brain Bank cohort (n = 290) by comparing rs10191329AA (n = 6) to matched rs10191329CC carriers (n = 12). rs10191329AA carriership associated with more acute axonal stress, reduced layer 2 neuronal density, and a higher proportion of lesions with foamy microglia. In rs10191329AA donors, normal appearing white matter was characterized by a higher proportion of ZNF638+ oligodendrocytes, and normal appearing gray matter showed more DYSF+ cells. Nuclear RNA sequencing showed an upregulation of mitochondrial genes in rs10191329AA carriers. These data suggest that MS severity associates with an increased susceptibility to neurodegeneration and chronic inflammation. Understanding the role of DYSF, ZNF638, and mitochondrial pathways may reveal new therapeutic targets to attenuate MS progression.
Collapse
Affiliation(s)
- Hendrik J. Engelenburg
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Aletta M.R. van den Bosch
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - J.Q. Alida Chen
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Cheng-Chih Hsiao
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Marie-José Melief
- MS Center ErasMS, Departments of Neurology and Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 CN Rotterdam, the Netherlands
| | - Adil Harroud
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montréal, QC H3A 2B4, Canada
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1054 BE Amsterdam, the Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
- Department of Experimental Immunology, Amsterdam institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Joost Smolders
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
- MS Center ErasMS, Departments of Neurology and Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 CN Rotterdam, the Netherlands
| |
Collapse
|
218
|
Shen Y, Liu Y, Guo M, Mao S, Chen R, Wang M, Li Z, Li Y, Chen W, Chen F, Wu B, Wang C, Chen W, Cui H, Yuan K, Huang H. DEK-nucleosome structure shows DEK modulates H3K27me3 and stem cell fate. Nat Struct Mol Biol 2025:10.1038/s41594-025-01559-9. [PMID: 40379883 DOI: 10.1038/s41594-025-01559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/11/2025] [Indexed: 05/19/2025]
Abstract
DEK is a highly conserved chromatin-associated oncoprotein that has important roles in regulating chromatin dynamics and stem cell fate. Dysregulation of DEK is associated with stem cell dysfunction and cancers, including acute myeloid leukemia. Despite its importance in chromatin regulation, the structural mechanisms underlying DEK's interaction with chromatin and its influence on gene regulation remain poorly understood. Here we combined cryogenic electron microscopy (cryo-EM), biochemical and cellular approaches to investigate the molecular mechanisms and functional importance of DEK's interaction with chromatin. Our cryo-EM structures reveal the structural basis of the DEK-nucleosome interaction. Biochemical and cellular results demonstrate that this interaction is crucial for DEK deposition onto chromatin. Furthermore, our results reveal that DEK safeguards mouse embryonic stem cells from acquiring primitive endoderm fates by modulating the repressive histone mark H3K27me3. Together, our study provides crucial molecular insights into the structure and function of DEK, establishing a framework for understanding its roles in chromatin biology and cell fate determination.
Collapse
Affiliation(s)
- Yunfan Shen
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanhong Liu
- Institute for Biological Electron Microscopy, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Maochao Guo
- Institute for Biological Electron Microscopy, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Song Mao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Mengran Wang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhengbo Li
- Institute for Biological Electron Microscopy, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yue Li
- Institute for Biological Electron Microscopy, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wan Chen
- Institute for Biological Electron Microscopy, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Fang Chen
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Baixing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chongyuan Wang
- Center for Human Tissues and Organs Degeneration, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Huanhuan Cui
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Kai Yuan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Hongda Huang
- Institute for Biological Electron Microscopy, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
219
|
Kinsella RL, Sur Chowdhury C, Smirnov A, Mreyoud Y, Kimmey JM, Esaulova E, McKee SR, Pride A, Kreamalmeyer D, Artyomov MN, Stallings CL. ATG5 suppresses type I IFN-dependent neutrophil effector functions during Mycobacterium tuberculosis infection in mice. Nat Microbiol 2025:10.1038/s41564-025-01988-8. [PMID: 40374743 DOI: 10.1038/s41564-025-01988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/19/2025] [Indexed: 05/18/2025]
Abstract
Inflammation is critical for controlling infections but can cause disease when unchecked. During Mycobacterium tuberculosis (Mtb) infection, neutrophil-dominated inflammation is associated with exacerbated disease. ATG5 expression by neutrophils mediates autophagy-independent control of infection but mechanistic understanding of how this regulates protective neutrophil function is lacking. Using genetic mouse models along with in vivo and in vitro infection systems, we report herein that ATG5 is required in neutrophils to suppress type I interferon-induced PAD4-mediated histone citrullination and neutrophil extracellular trap (NET) release. In addition, ATG5 suppresses type I interferon-induced CXCL2 secretion and neutrophil swarming during Mtb infection. Elevated type I IFN signalling and NET release contribute to the early susceptibility of Atg5fl/fl-LysM-Cre mice during infection. These findings identify ATG5 as a master regulator of how type I interferon influences neutrophil responses during infection, revealing a potential target for host-directed therapies.
Collapse
Affiliation(s)
- Rachel L Kinsella
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA.
- Department of Medicine, Division of Infectious Diseases and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| | - Chanchal Sur Chowdhury
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| | - Yassin Mreyoud
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| | - Jacqueline M Kimmey
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA, USA
| | - Ekaterina Esaulova
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Samuel R McKee
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| | - Aaron Pride
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| | - Darren Kreamalmeyer
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
220
|
Ojo OA, Shen H, Ingram JT, Bonner JA, Welner RS, Lacaud G, Zajac AJ, Shi LZ. Gfi1 controls the formation of effector-like CD8 + T cells during chronic infection and cancer. Nat Commun 2025; 16:4542. [PMID: 40374625 PMCID: PMC12081725 DOI: 10.1038/s41467-025-59784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/02/2025] [Indexed: 05/17/2025] Open
Abstract
During chronic infection and tumor progression, CD8+ T cells lose their effector functions and become exhausted. These exhausted CD8+ T cells are heterogeneous and comprised of progenitors that give rise to effector-like or terminally-exhausted cells. The precise cues and mechanisms directing subset formation are incompletely understood. Here, we show that growth factor independent-1 (Gfi1) is dynamically regulated in exhausted CD8+ T cells. During chronic LCMV Clone 13 infection, a previously under-described Ly108+CX3CR1+ subset expresses low levels of Gfi1 while other established subsets have high expression. Ly108+CX3CR1+ cells possess distinct chromatin profiles and represent a transitory subset that develops to effector-like and terminally-exhausted cells, a process dependent on Gfi1. Similarly, Gfi1 in tumor-infiltrating CD8+ T cells is required for the formation of terminally differentiated cells and endogenous as well as anti-CTLA-induced anti-tumor responses. Taken together, Gfi1 is a key regulator of the subset formation of exhausted CD8+ T cells.
Collapse
Affiliation(s)
- Oluwagbemiga A Ojo
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hongxing Shen
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer T Ingram
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James A Bonner
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert S Welner
- Department of Hematology & Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Immunology Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Georges Lacaud
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Allan J Zajac
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Immunology Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lewis Z Shi
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Immunology Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Pharmacology and Toxicology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
221
|
Schmid S, Mirchia K, Tietze A, Liu I, Siewert C, Nückles J, Schittenhelm J, Behling F, Snuderl M, Hartmann C, Brandner S, Paine SML, Korshunov A, Hasselblatt M, Coras R, Epari S, Stadelmann C, Zechel S, Simon M, Wilson Y, Gianno F, Lucas CHG, Zherebitskiy V, Kaimaktchiev VB, Robinson L, Aldape K, Hoving EW, Tops BBJ, Perera AA, Göller P, Hernáiz Driever P, Wesseling P, Koch A, Perry A, Sahm F, Jones DTW, Capper D. VGLL fusions define a new class of intraparenchymal central nervous system schwannoma. Neuro Oncol 2025; 27:1031-1045. [PMID: 39713960 PMCID: PMC12083230 DOI: 10.1093/neuonc/noae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Intracerebral schwannomas are rare tumors resembling their peripheral nerve sheath counterparts but localized in the central nervous system (CNS). They are not classified as a separate tumor type in the 2021 World Health Organization classification. This study aimed to compile and characterize these rare neoplasms morphologically and molecularly. METHODS We analyzed 20 tumor samples by histology, RNA next-generation sequencing, DNA-methylation profiling, copy number analyses, and single-nucleus RNA sequencing (snRNA-seq). Clinical data, including age, sex, and disease progression, were collected. Magnetic resonance imaging (MRI) series were included when available. RESULTS All cases with tissue available for histology review (n = 13) were morphologically consistent with intracerebral schwannoma, but differed in their extent of glial fibrillary acidic protein staining. All (n = 20) shared DNA-methylation profiles distinct from other CNS tumors, as well as from Vestigial-like family (VGLL)-altered peripheral nerve sheath tumors. Most cases (n = 14/17) harbored fusions of either Vestigial-like family member 3 (VGLL3) or Vestigial-like Family member 1 (VGLL1) (CHD7::VGLL3 [n = 9/17] and EWSR1::VGLL1 [n = 5/17]). In 2 cases, the presence of a VGLL3 fusion was also confirmed by copy number analyses (n = 2/17). MRI (n = 4) showed well-defined, nodular tumors with strong, homogeneous enhancement and no diffusion restriction. Tumors were located throughout the neuroaxis (supratentorial [n = 15], infratentorial [n = 4], and spinal [n = 1]). snRNA-seq of a VGLL1-fused tumor indicated VGLL1 upregulation in 28.6% of tumor cells (n = 1). During a median follow-up of 1.8 years (range 3 months-9 years), none of the tumors recurred (n = 10). CONCLUSIONS We identify and define a new benign tumor class, designated VGLL-altered intraparenchymal CNS schwannomas. These tumors feature VGLL alterations and a specific DNA-methylation profile, with schwannoma-like histopathology and CNS localization, akin to previously classified intracerebral schwannomas.
Collapse
Affiliation(s)
- Simone Schmid
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Neuropathologie, Berlin, Germany
| | - Kanish Mirchia
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Anna Tietze
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Neuroradioloie, Berlin, Germany
| | - Ilon Liu
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Neurology, Berlin, Germany
| | - Christin Siewert
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Neuropathologie, Berlin, Germany
| | - Jakob Nückles
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Neuropathologie, Berlin, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tübingen, Germany
| | - Felix Behling
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Department of Neurosurgery and Neurotechnology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center, Tübingen-Stuttgart, University Hospital Tübingen, Eberhard-Karls University Tübingen, Germany
| | - Matija Snuderl
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, USA
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Simon M L Paine
- Nottingham University Hospitals NHS Trust, Queen’s Medical Centre, Nottingham, UK
- Children’s Brain Tumour Research Centre, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumour Diseases (NCT), Heidelberg, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Roland Coras
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Sridhar Epari
- Neurooncology Disease Management Group, Tata Memorial Centre, Dr Ernest Borges Marg and Homi Bhabha National Institute, Mumbai, India
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Goettingen, Goettingen, Germany
| | - Sabrina Zechel
- Institute of Neuropathology, University Medical Center Goettingen, Goettingen, Germany
| | - Michèle Simon
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, German HIT-LOGGIC-Registry for pLGG in children and adolescents, Department of Pediatric Oncology and Hematology, Berlin, Germany
| | - Yelena Wilson
- Department of Pathology, Akron Children’s, Ohio, USA
| | - Francesca Gianno
- Department of Radiological, Oncological and Anatomic Pathology, Sapienza University, Rome, Italy
- Department of Laboratory Medicine and Pathobiology–Neuropathology, Hospital for Sick Children (SickKids), Toronto, Ontario, Canada
| | - Calixto-Hope G Lucas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Viktor Zherebitskiy
- Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Vassil B Kaimaktchiev
- Providence Hood River Memorial Hospital, Hood River, Oregon, USA
- Department of Pathology, The Dalles, Oregon, USA
| | - Lorraina Robinson
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Centre for Cancer Research, Bethesda, Maryland, USA
| | - Eelco W Hoving
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Bastiaan B J Tops
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ashwyn Augustine Perera
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Pauline Göller
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Pablo Hernáiz Driever
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Berlin, Germany
- German HIT-LOGGIC-Registry of low-grade glioma in children and adolescents
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Arend Koch
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Neuropathologie, Berlin, Germany
| | - Arie Perry
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - David T W Jones
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Germany
| | - David Capper
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
222
|
Gonzales S, Zhao JZ, Choi NY, Acharya P, Jeong S, Wang X, Lee MY. SOX7: Autism associated gene identified by analysis of multi-Omics data. PLoS One 2025; 20:e0320096. [PMID: 40373085 PMCID: PMC12080844 DOI: 10.1371/journal.pone.0320096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/12/2025] [Indexed: 05/17/2025] Open
Abstract
Genome-wide association studies and next generation sequencing data analyses based on DNA information have identified thousands of mutations associated with autism spectrum disorder (ASD). However, more than 99% of identified mutations are non-coding. Thus, it is unclear which of these mutations might be functional and thus potentially causal variants. Transcriptomic profiling using total RNA-sequencing has been one of the most utilized approaches to link protein levels to genetic information at the molecular level. The transcriptome captures molecular genomic complexity that the DNA sequence solely does not. Some mutations alter a gene's DNA sequence but do not necessarily change expression and/or protein function. To date, few common variants reliably associated with the diagnosis status of ASD despite consistently high estimates of heritability. In addition, reliable biomarkers used to diagnose ASD or molecular mechanisms to define the severity of ASD do not exist. Therefore, it is necessary to integrate DNA and RNA testing together to identify true causal genes and propose useful biomarkers for ASD. We performed gene-based association studies with adaptive test using genome-wide association studies' (GWAS) summary statistics with two large GWAS datasets (ASD 2019 data: 18,382 ASD cases and 27,969 controls [discovery data]; ASD 2017 data: 6,197 ASD cases and 7,377 controls [replication data]) which were obtained from the Psychiatric Genomics Consortium (PGC). In addition, we investigated differential expression between ASD cases and controls for genes identified in gene-based GWAS with two RNA-seq datasets (GSE211154: 20 cases and 19 controls; GSE30573: 3 cases and 3 controls). We identified 5 genes significantly associated with ASD in ASD 2019 data (KIZ-AS1, p = 8.67 × 10-10; KIZ, p = 1.16 × 10-9; XRN2, p = 7.73 × 10-9; SOX7, p = 2.22 × 10-7; LOC101929229 also known as PINX1-DT, p = 2.14 × 10-6). Among these 5 genes, gene SOX7 (p = 0.00087) and LOC101929229 (p = 0.009) were replicated in ASD 2017 data. KIZ-AS1 (p = 0.059) and KIZ (p = 0.06) were close to the boundary of replication in ASD 2017 data. Genes SOX7 (p = 0.036 in all samples; p = 0.044 in white samples) indicated significant expression differences between cases and controls in the GSE211154 RNA-seq data. Furthermore, gene SOX7 was upregulated in cases than in controls in the GSE30573 RNA-seq data (p = 0.0017; Benjamini-Hochberg adjusted p = 0.0085). SOX7 encodes a member of the SOX (SRY-related HMG-box) family of transcription factors pivotally contributing to determining of the cell fate and identity in many lineages. The encoded protein may act as a transcriptional regulator after forming a protein complex with other proteins leading to autism. Gene SOX7 in the transcription factor family could be associated with ASD. This finding may provide new diagnostic and therapeutic strategies for ASD.
Collapse
Affiliation(s)
- Samantha Gonzales
- Department of Biostatistics, Florida International University, Miami, Florida, United States of America
| | - Jane Zizhen Zhao
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Na Young Choi
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, United States of America
| | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, United States of America
| | - Sehoon Jeong
- Department of Artificial Intelligence and Data Science, Sejong University, Seoul, South Korea
| | - Xuexia Wang
- Department of Biostatistics, Florida International University, Miami, Florida, United States of America
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, United States of America
| |
Collapse
|
223
|
Soma S, Hayatsu N, Nomura K, Sherwood MW, Murakami T, Sugiyama Y, Suematsu N, Aoki T, Yamada Y, Asayama M, Kaneko M, Ohbayashi K, Arizono M, Ohtsuka M, Hamada S, Matsumoto I, Iwasaki Y, Ohno N, Okazaki Y, Taruno A. Channel synapse mediates neurotransmission of airway protective chemoreflexes. Cell 2025; 188:2687-2704.e29. [PMID: 40187347 DOI: 10.1016/j.cell.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 12/05/2024] [Accepted: 03/05/2025] [Indexed: 04/07/2025]
Abstract
Neural reflexes to chemicals in the throat protect the airway from aspiration and infection. Mechanistic understanding of these reflexes remains premature, exemplified by chronic cough-a sensitized cough reflex-being a prevalent unmet clinical need. Here, in mice, a whole-body search for channel synapses-featuring CALHM1/3 channel-mediated neurotransmitter release-and single-cell transcriptomics uncovered subclasses of the Pou2f3+ chemosensory cell family in the throat communicating with vagal neurons via this synapse. They express G protein-coupled receptors (GPCRs) for noxious chemicals, T2Rs, which upon stimulation trigger swallow and cough-like expulsive reflexes in the hypopharynx and larynx, respectively. These reflexes were abolished by Calhm3 and Pou2f3 knockout and could be triggered by targeted optogenetic stimulation. Furthermore, aeroallergen exposure augmented CALHM3-dependent expulsive reflex. This study identifies Pou2f3+ epithelial cells with channel synapses as chemosensory end organs of airway protective reflexes and sites of their hyperresponsiveness, advancing mechanistic understanding of airway defense programs with distinct therapeutic potential.
Collapse
Affiliation(s)
- Shogo Soma
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Norihito Hayatsu
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kengo Nomura
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Mark W Sherwood
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Tatsuro Murakami
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan; Department of Otolaryngology-Head and Neck Surgery, Saga University, Saga 849-8501, Japan
| | - Naofumi Suematsu
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Takanori Aoki
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Yu Yamada
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Moe Asayama
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Mami Kaneko
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Kyoto 606-8522, Japan
| | - Misa Arizono
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto 606-8501, Japan; The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Shun Hamada
- International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8529, Japan
| | | | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Kyoto 606-8522, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan; Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yasushi Okazaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Akiyuki Taruno
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan.
| |
Collapse
|
224
|
Shah Z, Wang C, Ullah H, You H, Philonenko ES, Regan OV, Volchkov P, Dai Y, Yu J, Samokhvalov IM. RUNX1 is a key inducer of human hematopoiesis controlling non-hematopoietic mesodermal development. Stem Cells 2025; 43:sxaf019. [PMID: 40220285 DOI: 10.1093/stmcls/sxaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/21/2025] [Indexed: 04/14/2025]
Abstract
The RUNX1/AML1 transcription factor is one of the key regulators of definitive hematopoietic development in mice. However, its role in early human hematopoiesis remains poorly investigated. In this study, we integrated a tdTomato reporter cassette into the RUNX1 locus of human pluripotent stem cells (hPSCs) to monitor and block the expression of the gene during hPSC differentiation. This approach demonstrated that expression of RUNX1 starts early in mesodermal specification focusing later on hemogenic endothelium (HE) and nascent hematopoietic cells. Lack of RUNX1 halted the development of CD43+ and CD235-CD45+ hematopoietic cells, preventing the production of clonogenic hematopoietic progenitors including the multilineage ones. The abrogation of RUNX1 resulted in the failure of definitive lineages, specifically T and NK cells. Remarkably, we instead observed the accumulation of RUNX1-null HE cells at the stage of blood cell generation. Moreover, the loss of the gene biased the development toward the lineage of CD43-CD146+CD90+CD73+ mesenchymal cells. RNA-seq analysis of RUNX1-null cells revealed the downregulation of top-level hematopoietic transcription factor genes and the reciprocal upregulation of genes associated with non-hematopoietic cells of mesodermal origin. Forced expression of RUNX1c in differentiating RUNX1-null hPSCs effectively rescued the development of CD45+ myeloid cells and megakaryocytes. Our data demonstrate that RUNX1 is a top hematopoietic inducer that simultaneously controls the expansion of non-hematopoietic lineages.
Collapse
Affiliation(s)
- Zahir Shah
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, United States
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, United States
| | - Cuihua Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Hanif Ullah
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, United States
| | - Hao You
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Elena S Philonenko
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Olga V Regan
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel Volchkov
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Yong Dai
- The first affiliated hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, People's Republic of China
| | - Jianhua Yu
- Division of Hematology and Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92697, United States
| | - Igor M Samokhvalov
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| |
Collapse
|
225
|
Jacobsen SB, Tfelt-Hansen J, Smerup MH, Morling N, Andersen JD. RNA degradation patterns in cardiac tissues kept at different time intervals and temperatures before RNA sequencing. PLoS One 2025; 20:e0323786. [PMID: 40373069 PMCID: PMC12080774 DOI: 10.1371/journal.pone.0323786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 04/15/2025] [Indexed: 05/17/2025] Open
Abstract
Vast repositories of tissues are available in biobanks worldwide. For these tissues to be used for molecular investigations, such as gene expression analysis, it is important to understand the limitations of pre-analytical variables. Storage times and temperature may influence the integrity of the tissue and thereby affect the results of gene expression analyses. To evaluate the effect of storage time at different temperatures, we performed whole transcriptome sequencing of human right atrial appendage tissues stored at either 4°C or 22°C for zero, one, seven, 14, or 28 days. We observed a temperature-dependent RNA degradation with time, as RNA was more stable at 4°C than 22°C. We found that nuclear protein-coding RNAs appear to degrade faster than RNAs encoded by the mitochondrial genome. The global gene expression profiles were relatively stable for up to 24 hours. However, more than seven days of storage induced widespread changes in the gene expression profiles. These changes may, though, be counteracted by including the RNA integrity number as a covariate in the differential expression analyses. We recommend storing tissues at temperatures below 4°C or limiting storage time at temperatures above 4°C in order to produce reliable gene expression profiles.
Collapse
Affiliation(s)
- Stine Bøttcher Jacobsen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Holdgaard Smerup
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe Dyrberg Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
226
|
Pea A, Bevere M, Gkountakos A, Pasini D, Fiorini D, Mafficini A, Golovco S, Simbolo M, Pedron S, Sciammarella C, Mattiolo P, Mombello A, Villanova M, Franzina C, Masetto F, Ciulla C, Sperandio N, Fujikura K, Ahadi MS, Samra JS, Johns AL, Verheij J, Stommel MWJ, van Santvoort H, Schubert Santana L, Malleo G, Milella M, Brosens LAA, Wood LD, Chang DK, De Robertis R, D'Onofrio M, Gill AJ, Salvia R, Corbo V, Lawlor RT, Scarpa A, Luchini C. Mucinous cystic neoplasms and simple mucinous cysts are two distinct precursors of pancreatic cancer: clinicopathological, genomic, and transcriptomic characterization. J Pathol 2025. [PMID: 40371932 DOI: 10.1002/path.6437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/15/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025]
Abstract
Mucinous cystic neoplasms (MCNs) of the pancreas are macroscopic precursors of pancreatic cancer. A similar cystic lesion but lacking the ovarian-type subepithelial stroma has been recently defined as a simple mucinous cyst (SMC); however, its nature remains unclear. This study aims to define the clinicopathological and molecular profiles of a cohort of MCNs and SMCs of the pancreas and their associated invasive carcinoma. Overall, 23 cases were identified, comprising 19 MCNs and 4 SMCs with co-occurring invasive carcinoma. A multiregional (two samples from each cystic lesion and one from the adenocarcinoma) DNA and RNA sequencing approach was used. The key findings can be summarized as follows: (1) Molecular association: In 22/23 cases (95.7%), the concomitant mucinous cyst and invasive carcinoma shared specific genomic alterations, establishing for the first time that SMC is a true precursor of pancreatic cancer. (2) Clinical behavior: carcinomas arising from SMC appeared to be more aggressive than those arising from MCN. (3) Mutational profile: both cyst types showed significant similarities to conventional pancreatic ductal adenocarcinoma (PDAC), with KRAS and TP53 the most commonly altered genes. (4) Intracystic heterogeneity: while most molecular alterations were present in both analyzed cystic areas, RNF43 showed the highest heterogeneity. (5) CDKN2A: its alterations were predominantly restricted to the invasive component, suggesting a role in driving the invasion in a subset of cases. CNKN2A may also serve as a potential biomarker for identifying high-risk cysts. (6) RNAseq: most cases showed a switch from the classical to the basal transcriptome subtype during the progression from cystic neoplasms to invasive cancers. These findings establish SMCs as new precursors of pancreatic cancer and provide critical insights into the tumorigenesis of MCNs, with potential immediate implications for tumor taxonomy and clinical management. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Antonio Pea
- Department of General and Pancreatic Surgery-The Pancreas Institute, Verona University Hospital Trust, Verona, Italy
| | - Michele Bevere
- ARC-Net Research Center, University of Verona, Verona, Italy
| | | | - Davide Pasini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
- Department of Medicine, University of Verona, Verona, Italy
| | - Denise Fiorini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Andrea Mafficini
- ARC-Net Research Center, University of Verona, Verona, Italy
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Stela Golovco
- ARC-Net Research Center, University of Verona, Verona, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Serena Pedron
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Concetta Sciammarella
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Paola Mattiolo
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Aldo Mombello
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Manuela Villanova
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Carlotta Franzina
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | | | - Calogero Ciulla
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | | | - Kohei Fujikura
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Masha S Ahadi
- Royal North Shore Hospital, St Leonards, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, and Department of Anatomical Pathology, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Jaswinder S Samra
- Royal North Shore Hospital, St Leonards, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Amber L Johns
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Joanne Verheij
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn W J Stommel
- Department of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hjalmar van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht and St Antonius Hospital, Utrecht, Netherlands
| | - Leonor Schubert Santana
- Wolfson Wohl Cancer Research Centre, Research Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Giuseppe Malleo
- Department of General and Pancreatic Surgery-The Pancreas Institute, Verona University Hospital Trust, Verona, Italy
| | - Michele Milella
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Lodewijk A A Brosens
- Department of Pathology, UMC Utrecht, Utrecht University, Utrecht, and Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Research Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Riccardo De Robertis
- Department of Diagnostics and Public Health, Section of Radiology, University of Verona, Verona, Italy
| | - Mirko D'Onofrio
- Department of Diagnostics and Public Health, Section of Radiology, University of Verona, Verona, Italy
| | - Anthony J Gill
- Royal North Shore Hospital, St Leonards, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, and Department of Anatomical Pathology, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Roberto Salvia
- Department of General and Pancreatic Surgery-The Pancreas Institute, Verona University Hospital Trust, Verona, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Rita T Lawlor
- ARC-Net Research Center, University of Verona, Verona, Italy
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Research Center, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Claudio Luchini
- ARC-Net Research Center, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| |
Collapse
|
227
|
Koenig L, Juglair L, Tao TP, Fischer S, Clausen I, Imhof-Jung S, Janssen N, Mader R, Marbach D, Niewoehner J, Winter A, Schubert D. A microfluidic bone marrow chip for the safety profiling of biologics in pre-clinical drug development. Commun Biol 2025; 8:754. [PMID: 40374778 PMCID: PMC12081850 DOI: 10.1038/s42003-025-08137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/27/2025] [Indexed: 05/18/2025] Open
Abstract
Hematologic adverse events are common dose-limiting toxicities in drug development. Classical animal models for preclinical safety assessment of immunotherapies are often limited due to insufficient cross-reactivity with non-human homologous proteins, immune system differences, and ethical considerations. Therefore, we evaluate a human bone marrow (BM) microphysiological system (MPS) for its ability to predict expected hematopoietic liabilities of immunotherapeutics. The BM-MPS consists of a closed microfluidic circuit containing a ceramic scaffold covered with human mesenchymal stromal cells and populated with human BM-derived CD34+ cells in chemically defined growth factor-enriched media. The model supports on-chip differentiation of erythroid, myeloid and NK cells from CD34+ cells over 31 days. The hematopoietic lineage balance and output is responsive to pro-inflammatory factors and cytokines. Treatment with a transferrin receptor-targeting IgG1 antibody results in inhibition of on-chip erythropoiesis. The immunocompetence of the chip is established by the addition of peripheral blood T cells in a fully autologous setup. Treatment with T cell bispecific antibodies induces T cell activation and target cell killing consistent with expected on-target off-tumor toxicities. In conclusion, this study provides a proof-of-concept that this BM-MPS is applicable for in vitro hematopoietic safety profiling of immunotherapeutics.
Collapse
Affiliation(s)
| | - Laurent Juglair
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Susanne Fischer
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Inga Clausen
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Sabine Imhof-Jung
- Roche Pharma Research and Early Development, Therapeutic Modalities Large Molecule Research, Penzberg, Germany
| | - Niels Janssen
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Robert Mader
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Daniel Marbach
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jens Niewoehner
- Roche Pharma Research and Early Development, Therapeutic Modalities Large Molecule Research, Penzberg, Germany
| | | | - Desirée Schubert
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
228
|
Kim G, Carroll CL, Wakefield ZP, Tuncay M, Fiszbein A. U1 snRNP regulates alternative promoter activity by inhibiting premature polyadenylation. Mol Cell 2025; 85:1968-1981.e7. [PMID: 40378830 DOI: 10.1016/j.molcel.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 01/21/2025] [Accepted: 04/16/2025] [Indexed: 05/19/2025]
Abstract
Emerging evidence indicates that splicing factors mediate the close link between transcription and splicing. However, the mechanisms underlying this coupling remain unclear. U1 small nuclear ribonucleoprotein particle (U1 snRNP) not only initiates splicing but also plays a crucial role in preventing premature cleavage and polyadenylation, facilitating long-distance transcriptional elongation. Here, we show that U1 snRNP regulates alternative promoter activity in human cells by inhibiting premature polyadenylation. In genes carrying premature polyadenylation sites between two promoters, U1 snRNP inhibition with antisense oligonucleotides leads to a significant decrease in downstream promoter activity. Conversely, restoring U1 snRNP activity or inhibiting premature polyadenylation rescues downstream promoter activity. Mechanistically, U1 snRNP inhibition correlates with reduced chromatin accessibility, decreased RNA polymerase II serine 5 phosphorylation, and increased promoter-proximal pause at downstream promoters. Our findings support a model in which U1 snRNP favors productive elongation from upstream promoters, triggering downstream promoter activation by destabilizing nucleosomes and promoting promoter escape.
Collapse
Affiliation(s)
- GyeungYun Kim
- Biology Department, Boston University, Boston 02215, USA; Graduate Program in Molecular Biology, Cell Biology & Biochemistry, Boston University, Boston 02215, USA
| | - Christine L Carroll
- Biology Department, Boston University, Boston 02215, USA; Graduate Program in Cell and Molecular Biology, Boston University, Boston 02215, USA
| | - Zachary Peters Wakefield
- Biology Department, Boston University, Boston 02215, USA; Bioinformatics Program, Faculty of Computing and Data Science, Boston University, Boston 02215, USA
| | - Mustafa Tuncay
- Biology Department, Boston University, Boston 02215, USA; Graduate Program in Cell and Molecular Biology, Boston University, Boston 02215, USA
| | - Ana Fiszbein
- Biology Department, Boston University, Boston 02215, USA; Graduate Program in Molecular Biology, Cell Biology & Biochemistry, Boston University, Boston 02215, USA; Graduate Program in Cell and Molecular Biology, Boston University, Boston 02215, USA; Bioinformatics Program, Faculty of Computing and Data Science, Boston University, Boston 02215, USA; Center for Computing & Data Sciences, Boston University, Boston 02215, USA.
| |
Collapse
|
229
|
Shalaginova I, Pavlova M, Dyuzhikova N. Аmygdala DEGs are associated with the immune system function: A comparative transcriptomic study of high- and low-excitability rat strains. PLoS One 2025; 20:e0323325. [PMID: 40373086 PMCID: PMC12080833 DOI: 10.1371/journal.pone.0323325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/05/2025] [Indexed: 05/17/2025] Open
Abstract
The aim of this study was to investigate differentially expressed genes (DEGs) in the amygdala of Rattus norvegicus with contrasting levels of nervous system excitability (high- and low-excitability). Each group consisted of 5 intact rats (n = 5). RNA sequencing was performed at on a HiSeq1500 (Illumina) generating at least 20 million paired-end reads per sample. A total of 257 DEGs were identified: 152 genes were upregulated in high-excitability rats and 105 genes up-regulated in low-excitability rats. Gene Ontology (GO) and KEGG pathway analyses revealed that the differences in gene expression were associated with immune processes such as antigen presentation and regulation of inflammation. It is also discussed, in conjunction with previous findings, that high-excitability rats may exhibit a predisposition to increased neuroinflammatory activity even without stressor exposure, potentially contributing to varying behavioral responses to stress.
Collapse
Affiliation(s)
- Irina Shalaginova
- Educational and Scientific Cluster “Institute of Medicine and Life Sciences (MEDBIO)”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Marina Pavlova
- Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Natalia Dyuzhikova
- Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
230
|
Ameku T, Laddach A, Beckwith H, Milona A, Rogers LS, Schwayer C, Nye E, Tough IR, Thoumas JL, Gautam UK, Wang YF, Jha S, Castano-Medina A, Amourda C, Vaelli PM, Gevers S, Irvine EE, Meyer L, Andrew I, Choi KL, Patel B, Francis AJ, Studd C, Game L, Young G, Murphy KG, Owen B, Withers DJ, Rodriguez-Colman M, Cox HM, Liberali P, Schwarzer M, Leulier F, Pachnis V, Bellono NW, Miguel-Aliaga I. Growth of the maternal intestine during reproduction. Cell 2025; 188:2738-2756.e22. [PMID: 40112802 DOI: 10.1016/j.cell.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/12/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
The organs of many female animals are remodeled by reproduction. Using the mouse intestine, a striking and tractable model of organ resizing, we find that reproductive remodeling is anticipatory and distinct from diet- or microbiota-induced resizing. Reproductive remodeling involves partially irreversible elongation of the small intestine and fully reversible growth of its epithelial villi, associated with an expansion of isthmus progenitors and accelerated enterocyte migration. We identify induction of the SGLT3a transporter in a subset of enterocytes as an early reproductive hallmark. Electrophysiological and genetic interrogations indicate that SGLT3a does not sustain digestive functions or enterocyte health; rather, it detects protons and sodium to extrinsically support the expansion of adjacent Fgfbp1-positive isthmus progenitors, promoting villus growth. Our findings reveal unanticipated specificity to physiological organ remodeling. We suggest that organ- and state-specific growth programs could be leveraged to improve pregnancy outcomes or prevent maladaptive consequences of such growth.
Collapse
Affiliation(s)
- Tomotsune Ameku
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Anna Laddach
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Hannah Beckwith
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Alexandra Milona
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Loranzie S Rogers
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cornelia Schwayer
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland; ETH Zürich, Department for Biosystems Science and Engineering (D-BSSE), Basel, Switzerland
| | - Emma Nye
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Iain R Tough
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK
| | - Jean-Louis Thoumas
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, 69007 Lyon, France
| | - Umesh Kumar Gautam
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922 Novy Hradek, Czech Republic
| | - Yi-Fang Wang
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Shreya Jha
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Alvaro Castano-Medina
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Christopher Amourda
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Patric M Vaelli
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sira Gevers
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Elaine E Irvine
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Leah Meyer
- Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Ivan Andrew
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Ka Lok Choi
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Bhavik Patel
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Alice J Francis
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Chris Studd
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Laurence Game
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - George Young
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Kevin G Murphy
- Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Bryn Owen
- Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Dominic J Withers
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Maria Rodriguez-Colman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Helen M Cox
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland; ETH Zürich, Department for Biosystems Science and Engineering (D-BSSE), Basel, Switzerland
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922 Novy Hradek, Czech Republic
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, 69007 Lyon, France
| | | | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Irene Miguel-Aliaga
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
231
|
Ivan V, Tatiana U, Alexandra P, Mikhail N, Artem I, Valeriia P, Elena G, Irina S, Valentina M, Maria S, Yurii P, Sofya P, Petr S. Transcriptomic analysis of differential expression between surviving and nonsurviving patients infected by the SARS-CoV-2 Delta variant. Sci Rep 2025; 15:16844. [PMID: 40374692 DOI: 10.1038/s41598-025-00280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 04/28/2025] [Indexed: 05/17/2025] Open
Abstract
For a more precise understanding of the course of the pathological process in patients with severe COVID-19, it is necessary to continue the search for factors that affect the course of the pathological process and the possibility of a favorable outcome in critically ill patients. Comparative RNA-seq analysis of the transcriptome of peripheral blood mononuclear cell (PBMCs) in patients with a severe clinical course of COVID-19 caused by the SARS-CoV-2 Delta strain revealed a number of differentially expressed genes that distinguish patients with different clinical outcomes (survivors vs. nonsurvivors) in the period of 30 days after admission to the hospital. Most of them are associated with the "negative regulation of viral process" and "negative regulation of immune response" clusters. Moreover, in surviving patients, there is increased expression of the key genes C1QB, C1QA, ISG15, SERPING1, VSIG4, KLRD1, TRPM4, and HFE incorporated in these clusters. Among these key genes, the ISG15 gene, which links several clusters of gene ontology enrichments and encodes an interferon-induced ubiquitin-like protein, deserves special attention. Its product, ISG15, is known to be a primary substrate for SARS-CoV-2 protease PLpro, which plays a role in counteracting hosts' antiviral mechanisms.
Collapse
Affiliation(s)
- Vlasov Ivan
- National Research Center «Kurchatov Institute», Moscow, Russian Federation.
| | - Usenko Tatiana
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russian Federation
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Saint-Petersburg, Russian Federation
| | - Panteleeva Alexandra
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russian Federation
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Saint-Petersburg, Russian Federation
| | - Nikolaev Mikhail
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russian Federation
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Saint-Petersburg, Russian Federation
| | - Izumchenko Artem
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russian Federation
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Saint-Petersburg, Russian Federation
| | - Panafidina Valeriia
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Gavrilova Elena
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Shlyk Irina
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Miroshnikova Valentina
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russian Federation
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Saint-Petersburg, Russian Federation
| | - Shadrina Maria
- National Research Center «Kurchatov Institute», Moscow, Russian Federation
| | - Polushin Yurii
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Pchelina Sofya
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russian Federation
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Saint-Petersburg, Russian Federation
- Kurchatov Genome Center-PNPI, Saint-Petersburg, Russian Federation
| | - Slominsky Petr
- National Research Center «Kurchatov Institute», Moscow, Russian Federation
| |
Collapse
|
232
|
Zhang Y, Nersisyan L, Fürst E, Alexopoulos I, Santolaria C, Huch S, Bassot C, Garre E, Sunnerhagen P, Piazza I, Pelechano V. Ribosomes modulate transcriptome abundance via generalized frameshift and out-of-frame mRNA decay. Mol Cell 2025; 85:2017-2031.e7. [PMID: 40378831 DOI: 10.1016/j.molcel.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/17/2024] [Accepted: 04/16/2025] [Indexed: 05/19/2025]
Abstract
Cells need to adapt their transcriptome to quickly match cellular needs in changing environments. mRNA abundance can be controlled by altering both its synthesis and decay. Here, we show how, in response to poor nutritional conditions, the bulk of the S. cerevisiae transcriptome undergoes -1 ribosome frameshifts and experiences an accelerated out-of-frame co-translational mRNA decay. Using RNA metabolic labeling, we demonstrate that in poor nutritional conditions, nonsense-mediated mRNA decay (NMD)-dependent degradation represents at least one-third of the total mRNA decay. We further characterize this mechanism and identify low codon optimality as a key factor for ribosomes to induce out-of-frame mRNA decay. Finally, we show that this phenomenon is conserved from bacteria to humans. Our work provides evidence for a direct regulatory feedback mechanism coupling protein demand with the control of mRNA abundance to limit cellular growth and broadens the functional landscape of mRNA quality control.
Collapse
Affiliation(s)
- Yujie Zhang
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden
| | - Lilit Nersisyan
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden; Armenian Bioinformatics Institute, Yerevan, Armenia; Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, Armenia
| | - Eliska Fürst
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC Berlin), Berlin, Germany
| | - Ioannis Alexopoulos
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden
| | - Carlos Santolaria
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden
| | - Susanne Huch
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden
| | - Claudio Bassot
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC Berlin), Berlin, Germany
| | - Elena Garre
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg 40530 Gothenburg, Sweden
| | - Ilaria Piazza
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC Berlin), Berlin, Germany
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden.
| |
Collapse
|
233
|
Chaudhry MZ, Chen E, Man HO, Jones A, Denman R, Yu H, Huang Q, Ilich A, Schreuder J, Navarro S, Tuong ZK, Belz GT. GFI1-driven transcriptional and epigenetic programs maintain CD8 + T cell stemness and persistence. Nat Immunol 2025:10.1038/s41590-025-02151-5. [PMID: 40374731 DOI: 10.1038/s41590-025-02151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 04/03/2025] [Indexed: 05/18/2025]
Abstract
Long-lived memory CD8+ T cells are essential for the control of persistent viral infections. The mechanisms that preserve memory cells are poorly understood. Fate mapping of the transcriptional repressor GFI1 identified that GFI1 was differentially regulated in virus-specific CD8+ T cells and was selectively expressed in stem cell memory and central memory cells. Deletion of GFI1 led to reduced proliferation and progressive loss of memory T cells, which in turn resulted in failure to maintain antigen-specific CD8+ T cell populations following infection with chronic lymphocytic choriomeningitis virus or murine cytomegalovirus. Ablation of GFI1 resulted in downregulation of the transcription factors EOMES and BCL-2 in memory CD8+ T cells. Ectopic expression of EOMES rescued the expression of BCL-2, but the persistence of memory CD8+ T cells was only partially rescued. These findings highlight the critical role of GFI1 in the long-term maintenance of memory CD8+ T cells in persistent infections by sustaining their proliferative potential.
Collapse
Affiliation(s)
- M Zeeshan Chaudhry
- The University of Queensland Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia.
| | - Evelyn Chen
- The University of Queensland Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Hiu On Man
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Aneesha Jones
- The University of Queensland Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Renae Denman
- The University of Queensland Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Huiyang Yu
- The University of Queensland Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Qiutong Huang
- The University of Queensland Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Adrian Ilich
- QIMR Berghofer Medical Research, Herston, Brisbane, Queensland, Australia
| | - Jaring Schreuder
- The University of Queensland Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Severine Navarro
- QIMR Berghofer Medical Research, Herston, Brisbane, Queensland, Australia
| | - Zewen K Tuong
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Gabrielle T Belz
- The University of Queensland Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
234
|
Sun Z, Li Z, Wei Y, Xu L, Hang X, Kang Y. SMARCA4 Inhibits Breast Cancer Progression and Metastasis through RHOA Suppression. Cancer Res 2025; 85:1803-1818. [PMID: 39992701 PMCID: PMC12081196 DOI: 10.1158/0008-5472.can-24-2801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/07/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Triple-negative breast cancer (TNBC) is the most challenging subtype of the disease due to its aggressive nature and lack of targeted therapy options. To identify regulators of TNBC, we conducted a genome-wide CRISPR knockout screen in both three-dimensional (3D) tumor spheroid and two-dimensional cell culture models. The 3D spheroid model displayed unique potential in identifying putative tumor suppressors because of its closer mimicry of in vivo tumor growth conditions. Notably, the chromatin remodeling SWI/SNF complex emerged as a potent suppressor of tumor spheroid growth. Specifically, loss of the SWI/SNF ATPase subunit SMARCA4 promoted tumor spheroid growth with reduced compactness and enhanced primary tumor growth and metastasis across multiple TNBC models. SMARCA4 was required for the transcription of the Rho GTPase-activating factor ARHGAP29 by enhancing DNA accessibility through direct binding to its promoter. SMARCA4 loss resulted in reduced ARHGAP29 levels and hyperactive RHOA signaling, subsequently disrupting cell adhesion, facilitating the formation of a loose spheroid structure in vitro, and enhancing breast cancer growth and metastasis in vivo. These results establish SMARCA4 and SWI/SNF as tumor suppressors of TNBC through suppression of RHOA activity. Significance: CRISPR-knockout screen in 3D tumor spheroid revealed that SMARCA4, a SWI/SNF ATPase subunit, suppresses triple-negative breast cancer growth and metastasis by increasing ARHGAP29 transcription and inhibiting the RHOA signaling pathway.
Collapse
Affiliation(s)
- Zheng Sun
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Zhuo Li
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
- Present address: BeiGene Global Research, Shanghai, P.R. China
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ 08544
| | - Lillian Xu
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
- Present address: Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Xiang Hang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ 08544
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ 08544
| |
Collapse
|
235
|
Wang J, Deng X, Jian T, Yin S, Chen L, Vergnes L, Li Z, Liu H, Lee R, Lim SY, Bahn JH, Xiao X, Zhu X, Hu G, Reue K, Liu Y, Fan G. DNA methyltransferase 1 modulates mitochondrial function through bridging m 5C RNA methylation. Mol Cell 2025; 85:1999-2016.e11. [PMID: 40328247 DOI: 10.1016/j.molcel.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/25/2024] [Accepted: 04/15/2025] [Indexed: 05/08/2025]
Abstract
DNA methyltransferase 1 (DNMT1) is an enzyme known for DNA methylation maintenance. Point mutations in its replication focus targeting sequence (RFTS) domain lead to late-onset neurodegeneration, such as autosomal dominant cerebellar ataxia-deafness and narcolepsy (ADCA-DN) disorder. Here, we demonstrated that DNMT1 has the capability to bind to mRNA transcripts and facilitate 5-methylcytosine (m5C) RNA methylation by recruiting NOP2/Sun RNA methyltransferase 2 (NSUN2). RNA m5C methylation, in turn, promotes RNA stability for those genes modulating mitochondrial function. When the DNMT1 RFTS domain is mutated in mice, it triggers aberrant DNMT1-RNA interaction and significantly elevated m5C RNA methylation and RNA stability for a portion of metabolic genes. Consequently, increased levels of metabolic RNA transcripts contribute to cumulative oxidative stress, mitochondrial dysfunction, and neurological symptoms. Collectively, our results reveal a dual role of DNMT1 in regulating both DNA and RNA methylation, which further modulates mitochondrial function, shedding light on the pathogenic mechanism of DNMT1 mutation-induced neurodegeneration.
Collapse
Affiliation(s)
- Jing Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Xiaoqian Deng
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Tianshen Jian
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Shanshan Yin
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linzhi Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhehao Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Huoyuan Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Ryan Lee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sin Yee Lim
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Xianmin Zhu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Ganlu Hu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; The Scintillon Institute, 6868 Nancy Ridge Drive, San Diego, CA 92121.
| |
Collapse
|
236
|
Castellano M, Blanco V, Li Calzi M, Costa B, Witwer K, Hill M, Cayota A, Segovia M, Tosar JP. Ribonuclease activity undermines immune sensing of naked extracellular RNA. CELL GENOMICS 2025; 5:100874. [PMID: 40334662 DOI: 10.1016/j.xgen.2025.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 02/26/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
Cell membranes are thought of as barriers to extracellular RNA (exRNA) uptake. While naked exRNAs can be spontaneously internalized by certain cells, functional cytosolic delivery has been rarely observed. Here, we show that extracellular ribonucleases (RNases)-primarily from cell culture supplements-have obscured the study of exRNA functionality. When ribonuclease inhibitor (RI) is added to cell cultures, naked exRNAs can trigger pro-inflammatory responses in dendritic cells and macrophages, largely via endosomal Toll-like receptors (TLRs). Moreover, naked exRNAs can escape endosomes, engaging cytosolic RNA sensors. In addition, naked extracellular mRNAs can be spontaneously internalized and translated by various cell types in an RI-dependent manner. In vivo, RI co-injection amplifies naked-RNA-induced activation of splenic lymphocytes and myeloid leukocytes. Furthermore, naked RNA is inherently pro-inflammatory in RNase-poor compartments like the peritoneal cavity. These findings demonstrate that naked RNA is bioactive without requiring vesicular encapsulation, making a case for nonvesicular-exRNA-mediated intercellular communication.
Collapse
Affiliation(s)
- Mauricio Castellano
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Immunoregulation and Inflammation Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Analytical Biochemistry Unit, School of Science, Universidad de la República, Montevideo 11400, Uruguay
| | - Valentina Blanco
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Marco Li Calzi
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Bruno Costa
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Analytical Biochemistry Unit, School of Science, Universidad de la República, Montevideo 11400, Uruguay
| | - Kenneth Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; EV Core Facility "EXCEL," Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marcelo Hill
- Immunoregulation and Inflammation Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Academic Unit of Immunobiology, School of Medicine, Universidad de la República, Montevideo 11800, Uruguay
| | - Alfonso Cayota
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Hospital de Clínicas, Universidad de la República, Montevideo 11600, Uruguay
| | - Mercedes Segovia
- Immunoregulation and Inflammation Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Academic Unit of Immunobiology, School of Medicine, Universidad de la República, Montevideo 11800, Uruguay.
| | - Juan Pablo Tosar
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Analytical Biochemistry Unit, School of Science, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
237
|
Rodrigues FM, Majeres LE, Dilger AC, McCann JC, Cassady CJ, Shike DW, Beever JE. Characterizing differences in the muscle transcriptome between cattle with alternative LCORL-NCAPG haplotypes. BMC Genomics 2025; 26:479. [PMID: 40369436 PMCID: PMC12076881 DOI: 10.1186/s12864-025-11665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 05/02/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND The LCORL-NCAPG locus is a major quantitative trait locus (QTL) on bovine chromosome 6 (BTA6) that influences growth and carcass composition in cattle. To further understand the molecular mechanism responsible for the phenotypic changes associated with this locus, twenty-four Charolais-sired calves were selected for muscle transcriptome analysis based on alternative homozygous LCORL-NCAPG haplotypes (i.e., 12 "QQ" and 12 "qq", where "Q" is a haplotype harboring variation associated with increased growth). At 300 days of age, a biopsy of the longissimus dorsi muscle was collected from each animal for RNA sequencing. RESULTS Gene expression analysis identified 733 genes as differentially expressed between QQ and qq animals (q-value < 0.05). Notably, LCORL and genes known to be important regulators of growth such as IGF2 were upregulated in QQ individuals, while genes associated with adiposity such as FASN and LEP were downregulated, reflecting the increase in lean growth associated with this locus. Gene set enrichment analysis demonstrated QQ individuals had downregulation of pathways associated with adipogenesis, alongside upregulation of transcripts for cellular machinery essential for protein synthesis and energy metabolism, particularly ribosomal and mitochondrial components. CONCLUSIONS The differences in the muscle transcriptome between QQ and qq animals imply that muscle hypertrophy may be metabolically favored over accumulation of fat in animals with the QQ haplotype. Our findings also suggest this haplotype could be linked to a difference in LCORL expression that potentially influences the downstream transcriptional effects observed, though further research will be needed to confirm the molecular mechanisms underlying the associated changes in phenotype.
Collapse
Affiliation(s)
- Fernanda Martins Rodrigues
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Biological and Biomedical Sciences, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Leif E Majeres
- Department of Animal Science and Large Animal Clinical Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Anna C Dilger
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joshua C McCann
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher J Cassady
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Dan W Shike
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan E Beever
- Department of Animal Science and Large Animal Clinical Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.
| |
Collapse
|
238
|
Guo S, Bourova-Flin E, Rousseaux S, Chuffart F, Peng L, Jing D, Mi JQ, Khochbin S, Wang J. Mitochondrial dysfunction fuels drug resistance in adult T-cell acute lymphoblastic leukemia. J Transl Med 2025; 23:542. [PMID: 40369632 PMCID: PMC12079967 DOI: 10.1186/s12967-025-06423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/25/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND T-cell acute lymphoblastic leukemia (T-ALL) is a relatively rare hematological malignancy, characterized by the uncontrolled proliferation of immature T lymphoblasts and associated with a generally unfavorable prognosis. Our previous research has demonstrated that decreased mitochondrial activity is associated with the aggressiveness of T-ALL tumors. However, the mechanisms underlying this phenomenon and its contribution to treatment resistance remain largely elusive. METHODS We have built up the largest known T-ALL tumor bank, with a median follow-up of 32 months, including our transcriptomic data from 79 newly sequenced tumors that adds to the 54 publicly accessible samples. Computational analyses and a series of functional assays were performed to investigate the molecular links between altered mitochondrial activity and drug resistance. RESULTS The transcriptomic analysis revealed that down-regulation of mitochondrial activity is a potent driver of ABCB1 activation, a gene strongly associated with multidrug resistance. In tumors with low mitochondrial activity, the impaired fatty acids β-oxidation leads to intracellular lipid accumulation, which is directly involved in ABCB1 activation. Indeed, our data show that lipid neo-synthesis and accumulation promotes the activation of lipogenic transcription factors, liver X receptors (LXRs), which act as drivers of ABCB1 expression. Tumor data analyses confirmed that high ABCB1 expression in tumour samples is indeed associated with reduced mitochondrial gene expression, lipid droplet enrichment, increased tumour aggressiveness, and significantly shorter patient survival. CONCLUSIONS Our study demonstrates that reduced mitochondrial activity drives multidrug resistance in adult T-ALL via lipid-mediated activation of ABCB1. These findings enhance our understanding of the biology of aggressive T-ALL and provide insight into mechanisms of resistance to conventional chemotherapy. Consequently, we propose that targeting de novo lipogenesis and restricting dietary fats, such as caprylic acid, may help overcome treatment resistance in patients with T-ALL exhibiting low mitochondrial activity. TRIAL REGISTRATION The clinical trial was registered under the identifiers ChiCTR-ONRC-14004968 and ChiCTR2000031553 at ClinicalTrials.gov.
Collapse
Affiliation(s)
- Shanshan Guo
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Univ. Grenoble Alpes, CNRS UMR 5309 and INSERM U1209, Institute for Advanced Biosciences, 38706, La Tronche, France
- Pôle Franco-Chinois de Recherche en Sciences du Vivant Et Génomique, Shanghai, 200025, China
| | - Ekaterina Bourova-Flin
- Univ. Grenoble Alpes, CNRS UMR 5309 and INSERM U1209, Institute for Advanced Biosciences, 38706, La Tronche, France
- Pôle Franco-Chinois de Recherche en Sciences du Vivant Et Génomique, Shanghai, 200025, China
| | - Sophie Rousseaux
- Univ. Grenoble Alpes, CNRS UMR 5309 and INSERM U1209, Institute for Advanced Biosciences, 38706, La Tronche, France
- Pôle Franco-Chinois de Recherche en Sciences du Vivant Et Génomique, Shanghai, 200025, China
| | - Florent Chuffart
- Univ. Grenoble Alpes, CNRS UMR 5309 and INSERM U1209, Institute for Advanced Biosciences, 38706, La Tronche, France
- Pôle Franco-Chinois de Recherche en Sciences du Vivant Et Génomique, Shanghai, 200025, China
| | - Lijun Peng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Pôle Franco-Chinois de Recherche en Sciences du Vivant Et Génomique, Shanghai, 200025, China
| | - Duohui Jing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Pôle Franco-Chinois de Recherche en Sciences du Vivant Et Génomique, Shanghai, 200025, China
| | - Saadi Khochbin
- Univ. Grenoble Alpes, CNRS UMR 5309 and INSERM U1209, Institute for Advanced Biosciences, 38706, La Tronche, France.
- Pôle Franco-Chinois de Recherche en Sciences du Vivant Et Génomique, Shanghai, 200025, China.
| | - Jin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Pôle Franco-Chinois de Recherche en Sciences du Vivant Et Génomique, Shanghai, 200025, China.
| |
Collapse
|
239
|
Ahmad ST, Li Y, Garcia-Lopez J, Gudenas BL, Hadley J, Paul L, Wu SC, Refaat A, Kojic M, Batts M, Soliman T, Pitre A, Arnskötter F, Zindy F, Jones A, Twarog NR, Mayasundari A, Bianski B, Tinkle C, Shirinifard A, Janke L, Lu M, Lewis SA, Onar-Thomas A, Pfister SM, Gajjar A, Baker SJ, Roussel MF, Rankovic Z, Robinson GW, Orr BA, Wainwright B, Shelat AA, Waszak SM, Kutscher LM, Lin H, Northcott PA. Genetic modeling of ELP1-associated Sonic hedgehog medulloblastoma identifies MDM2 as a selective therapeutic target. Cancer Cell 2025:S1535-6108(25)00173-4. [PMID: 40378836 DOI: 10.1016/j.ccell.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 02/23/2025] [Accepted: 04/28/2025] [Indexed: 05/19/2025]
Abstract
Germline loss-of-function (LOF) variants in Elongator acetyltransferase complex subunit 1 (ELP1) are the most prevalent predisposing genetic events in childhood medulloblastoma (MB), accounting for ∼30% of the Sonic hedgehog (SHH) 3 subtype. The mechanism(s) by which germline ELP1 deficiency provokes SHH-MB pathogenesis remain unknown. Genetically engineered mice mimicking heterozygous Elp1 LOF (Elp1HET) seen in affected germline carriers exhibit hallmark features of premalignancy in cerebellar granule neuron progenitors (GNPs), including increased DNA replication stress, genomic instability, accelerated cell cycle, and stalled differentiation. Orthotopic transplantation of Elp1HET GNPs harboring somatic Ptch1 inactivation yields SHH-MB-like tumors with compromised p53 signaling, providing a plausible explanation for the exclusivity of ELP1-associated MBs in the SHH-3 subtype. Preclinical treatment of ELP1-mutant patient-derived xenografts with an FDA-approved MDM2 inhibitor reactivates p53-dependent apoptosis and extends survival. Our findings functionally substantiate the role of ELP1 deficiency in SHH-MB predisposition and nominate therapeutics targeting MDM2 as a rational treatment option.
Collapse
Affiliation(s)
- Shiekh Tanveer Ahmad
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yiran Li
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jesus Garcia-Lopez
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brian L Gudenas
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jennifer Hadley
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Leena Paul
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephanie C Wu
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alaa Refaat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marija Kojic
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Melissa Batts
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taha Soliman
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Aaron Pitre
- Cell and Tissue Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Frederik Arnskötter
- Hopp Children's Cancer Center Heidelberg (KiTZ), JRG Developmental Origins of Pediatric Cancers, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Frederique Zindy
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Nathaniel R Twarog
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anand Mayasundari
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brandon Bianski
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christopher Tinkle
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Laura Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Meifen Lu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sara A Lewis
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Division Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Amar Gajjar
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Suzanne J Baker
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Giles W Robinson
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brandon Wainwright
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Anang A Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sebastian M Waszak
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA
| | - Lena M Kutscher
- Hopp Children's Cancer Center Heidelberg (KiTZ), JRG Developmental Origins of Pediatric Cancers, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hong Lin
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul A Northcott
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
240
|
Weiss ME, Parrales PE, Datta M, Fleishaker M, Gvoriantchikova G, Ivanov D, Hackam AS. Identifying a role for oxytosis/ferroptosis in Pde6b-associated retinitis pigmentosa. Exp Eye Res 2025; 257:110424. [PMID: 40379200 DOI: 10.1016/j.exer.2025.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/31/2025] [Accepted: 05/14/2025] [Indexed: 05/19/2025]
Abstract
Inherited retinal diseases (IRDs) are a large heterogeneous group of diseases that lead to visual impairment and complete vision loss. Retinitis pigmentosa (RP) is an IRD with progressive degeneration of photoreceptors and has been associated with mutations in over 80 genes. In this study, we investigated the mechanism of retinal degeneration caused by an inherited mutation in the Pde6b gene in the rd10 mouse model of RP, with a focus on alternative programmed cell death pathways. RNA-seq analysis was used to identify changes in gene expression in rd10 mice, using C57BL/6J mice as non-degenerating genetic background controls. The functional role of differentially expressed genes was investigated using pharmacological treatments and visual acuity was assessed using optomotor kinetic tracking assay. We found increased expression of genes involved in inflammatory response, while expression of genes involved in photoreceptor function and homeostasis were decreased. We also demonstrated increased expression of genes that regulate oxytosis/ferroptosis, a type of regulated necrosis that can promote inflammatory responses. We found no significant changes in expression of genes controlling other types of regulated necrosis. Treating rd10 mice with oxytosis/ferroptosis inhibitors led to significant improvements in visual acuity. Therefore, these findings suggest that disruption of Pde6b activity results in photoreceptor death via oxytosis/ferroptosis, contributing to inflammatory responses in the retina. Our results identify for the first time a possible role of oxytosis/ferroptosis in a model of inherited retinal degeneration and provide a foundation for further studies exploring oxytosis/ferroptosis inhibitors as a potential therapeutic strategy for RP.
Collapse
Affiliation(s)
- Madison E Weiss
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; New York Medical College School of Medicine, Valhalla, NY, 10595, USA
| | - Paola E Parrales
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Maumita Datta
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Michelle Fleishaker
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Galina Gvoriantchikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Dmitry Ivanov
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
241
|
Crétin P, Mahoudeau L, Joublin-Delavat A, Paulhan N, Labrune E, Verdon J, Louvet I, Maguer JF, Delavat F. High metabolic versatility and phenotypic heterogeneity in a marine non-cyanobacterial diazotroph. Curr Biol 2025:S0960-9822(25)00568-8. [PMID: 40409254 DOI: 10.1016/j.cub.2025.04.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/01/2025] [Accepted: 04/28/2025] [Indexed: 05/25/2025]
Abstract
Marine non-cyanobacterial diazotrophs (NCDs) are widespread in the oceans, but the processes controlling nitrogen fixation in cell populations remain understudied. In this study, we combined high-throughput sequencing, genetic and physiological characterization, and single-cell quantification of nitrogenase expression to investigate the growth strategies of the marine NCD Vibrio diazotrophicus. We demonstrate that this marine NCD is highly versatile, capable of utilizing a broad range of organic and inorganic nitrogen sources. Quantitative fluorescence microscopy revealed intense posttranscriptional regulation of nitrogenase expression and that V. diazotrophicus regulates both the proportion of cells and their nitrogenase expression levels based on ammonium concentration in an NtrC-dependent manner. We also found that this phenotypic heterogeneity in nitrogenase expression is more widespread among marine NCDs, suggesting it is a conserved trait. These findings help explain their high abundance in the oceans and deepen our understanding of their ecological importance.
Collapse
Affiliation(s)
- Pauline Crétin
- Nantes Université, CNRS, US2B, UMR6286, 44322 Nantes, France; Université Bretagne Occidentale, CNRS, IRD, Ifremer, UMR6539, LEMAR, 29280 Plouzané, France
| | | | | | - Nicolas Paulhan
- Nantes Université, CNRS, US2B, UMR6286, 44322 Nantes, France
| | - Elise Labrune
- Nantes Université, CNRS, US2B, UMR6286, 44322 Nantes, France
| | - Julien Verdon
- Université de Poitiers, CNRS, EBI, UMR7267, 86000 Poitiers, France
| | - Isabelle Louvet
- Nantes Université, CNRS, CEISAM, UMR6230, 44322 Nantes, France
| | - Jean-François Maguer
- Université Bretagne Occidentale, CNRS, IRD, Ifremer, UMR6539, LEMAR, 29280 Plouzané, France
| | | |
Collapse
|
242
|
Barroux M, Househam J, Lakatos E, Ronel T, Baker AM, Salié H, Mossner M, Smith K, Kimberley C, Nowinski S, Berner A, Gunasri V, Borgmann M, Liffers S, Jansen M, Caravagna G, Steiger K, Slotta-Huspenina J, Weichert W, Zapata L, Giota E, Lorenzen S, Alberstmeier M, Chain B, Friess H, Bengsch B, Schmid RM, Siveke JT, Quante M, Graham TA. Evolutionary and immune microenvironment dynamics during neoadjuvant treatment of esophageal adenocarcinoma. NATURE CANCER 2025:10.1038/s43018-025-00955-w. [PMID: 40369175 DOI: 10.1038/s43018-025-00955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 03/21/2025] [Indexed: 05/16/2025]
Abstract
Locally advanced esophageal adenocarcinoma remains difficult to treat and the ecological and evolutionary dynamics responsible for resistance and recurrence are incompletely understood. Here, we performed longitudinal multiomic analysis of patients with esophageal adenocarcinoma in the MEMORI trial. Multi-region multi-timepoint whole-exome and paired transcriptome sequencing was performed on 27 patients before, during and after neoadjuvant treatment. We found major transcriptomic changes during treatment with upregulation of immune, stromal and oncogenic pathways. Genetic data revealed that clonal sweeps through treatment were rare. Imaging mass cytometry and T cell receptor sequencing revealed remodeling of the tumor microenvironment during treatment. The presence of genetic immune escape, a less-cytotoxic T cell phenotype and a lack of clonal T cell expansions were linked to poor treatment response. In summary, there were widespread transcriptional and environmental changes through treatment, with limited clonal replacement, suggestive of phenotypic plasticity.
Collapse
Affiliation(s)
- Melissa Barroux
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
- Medical Clinic and Polyclinic II, TUM University Hospital, Klinikum rechts der Isar, Munich, Germany.
- German Cancer Consortium (DKTK) Heidelberg, Germany, Partner Site Munich, Munich, Germany.
| | - Jacob Househam
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Data Science Team, The Institute of Cancer Research, London, UK
| | - Eszter Lakatos
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Tahel Ronel
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Infection and Immunity, University College London, London, UK
| | - Ann-Marie Baker
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Henrike Salié
- Clinic for Internal Medicine II, University Medical Center Freiburg, Freiburg, Germany
| | - Maximilian Mossner
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Kane Smith
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Chris Kimberley
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Salpie Nowinski
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Alison Berner
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Vinaya Gunasri
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Martin Borgmann
- Clinic for Internal Medicine II, University Medical Center Freiburg, Freiburg, Germany
| | - Sven Liffers
- Bridge Institute of Experimental Tumor Therapy (BIT), Division of Solid Tumor Translational Oncology (DKTK) and Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
| | - Marnix Jansen
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Giulio Caravagna
- Department of Mathematics, Informatics and Geosciences, University of Triest, Triest, Italy
| | - Katja Steiger
- iBioTUM - Tissue, Institute of Pathology, School of Medicine, TUM, Munich, Germany
| | - Julia Slotta-Huspenina
- Institute of Pathology, Technical University of Munich, Munich, Germany
- Department of Nephrology, School of Medicine, Technical University Munich, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Luis Zapata
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Eleftheria Giota
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Sylvie Lorenzen
- Department of Internal Medicine III (Haematology/Medical Oncology), Technical University of Munich Hospital Rechts der Isar, Munich, Germany
| | - Markus Alberstmeier
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Benny Chain
- Division of Infection and Immunity, University College London, London, UK
| | - Helmut Friess
- Department of Surgery, TUM University Hospital, rechts der Isar, School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, University Medical Center Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Heidelberg, Germany, Partner Site Freiburg, Freiburg, Germany
| | - Roland M Schmid
- Medical Clinic and Polyclinic II, TUM University Hospital, Klinikum rechts der Isar, Munich, Germany
- German Cancer Consortium (DKTK) Heidelberg, Germany, Partner Site Munich, Munich, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy (BIT), Division of Solid Tumor Translational Oncology (DKTK) and Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
| | - Michael Quante
- Medical Clinic and Polyclinic II, TUM University Hospital, Klinikum rechts der Isar, Munich, Germany
- Clinic for Internal Medicine II, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Heidelberg, Germany, Partner Site Freiburg, Freiburg, Germany
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
243
|
Moldovan A, Wagner F, Schumacher F, Wigger D, Kessie DK, Rühling M, Stelzner K, Tschertok R, Kersting L, Fink J, Seibel J, Kleuser B, Rudel T. Chlamydia trachomatis exploits sphingolipid metabolic pathways during infection of phagocytes. mBio 2025; 16:e0398124. [PMID: 40249190 PMCID: PMC12077188 DOI: 10.1128/mbio.03981-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 04/19/2025] Open
Abstract
Chlamydiae are obligate intracellular pathogens that utilize host cell metabolites for catabolic and anabolic processes. The bacteria replicate in epithelial cells from which they take up sphingolipids (SL) and incorporate them into the chlamydial membrane and the vacuole (termed inclusion). SL uptake is essential for Chlamydia trachomatis (Ctr) in epithelial cells; however, they can also infect phagocytes, but the consequences for the SL metabolism have not yet been investigated in these cells. We performed a quantitative sphingolipidome analysis of infected primary neutrophils, macrophages, and immortalized fallopian tube epithelial cells. Sphingosine (Sph) levels are elevated in primary M2-like macrophages and human neutrophils infected with C. trachomatis. Human neutrophils respond to the pathogen by markedly upregulating sphingosine kinase 1 (SPHK1). We show in M2-like macrophages, by RNAseq, that two counteracting pathways involving upregulation of SPHK1, but also sphingosine-1-phosphate phosphatases 1 and 2 (SGPP1 and SGPP2) and sphingosine-1-phosphate lyase (SGPL1), maintain a steady pool of S1P. Using click chemistry, we show that exogenously added sphingomyelin (SM) and ceramide (Cer) are efficiently taken up into the chlamydial inclusion and are integrated into bacterial membranes in infected M2-like macrophages. Exogenous Sph reduces chlamydial infectivity, is transported into the inclusion lumen, and integrates into chlamydial membranes, suggesting that this particular SL species could represent a host defense mechanism. Taken together, our data indicate an important role for Sph/Sph kinase vs S1P/S1P phosphatase balance in infected phagocytes and a previously unrecognized role for sphingosine in the immune defense against chlamydial infection.IMPORTANCEChlamydia trachomatis (Ctr) is the leading cause of sexually transmitted diseases worldwide. Left untreated, it can cause severe complications such as blindness, pelvic inflammatory disease, or infertility. To date, no vaccines are available, and antibiotic treatment represents the only therapeutic approach to cure the infection. Limited access to antibiotics and displaced antibiotic intake increase the risk of developing recurring infections. Immune cells which fail to clear the infection and serve as a niche for chlamydial survival and replication, favor this outcome. Our research aims to elucidate the influence of sphingolipids (SL) during chlamydial infection, especially of phagocytic cells. Identifying relevant targets offers new strategies to develop alternative treatment methods.
Collapse
Affiliation(s)
- Adriana Moldovan
- Department of Microbiology, University of Würzburg, Würzburg, Bavaria, Germany
| | - Fabienne Wagner
- Department of Microbiology, University of Würzburg, Würzburg, Bavaria, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Berlin, Germany
| | - Dominik Wigger
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Berlin, Germany
| | - David Komla Kessie
- Department of Microbiology, University of Würzburg, Würzburg, Bavaria, Germany
| | - Marcel Rühling
- Department of Microbiology, University of Würzburg, Würzburg, Bavaria, Germany
| | - Kathrin Stelzner
- Department of Microbiology, University of Würzburg, Würzburg, Bavaria, Germany
| | - Regina Tschertok
- Department of Microbiology, University of Würzburg, Würzburg, Bavaria, Germany
| | - Louise Kersting
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Bavaria, Germany
| | - Julian Fink
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Bavaria, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Bavaria, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Berlin, Germany
| | - Thomas Rudel
- Department of Microbiology, University of Würzburg, Würzburg, Bavaria, Germany
| |
Collapse
|
244
|
Gromova A, Cha B, Nguyen N, Garg D, Coscolluela C, Strickland LM, Luong D, Longo F, Sopher BL, ElMallah MK, La Spada AR. Neuromuscular junction transcriptome analysis of spinal and bulbar muscular atrophy mice implicates sarcomere gene expression and calcium flux dysregulation in disease pathogenesis. Hum Mol Genet 2025:ddaf074. [PMID: 40366765 DOI: 10.1093/hmg/ddaf074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/25/2025] [Accepted: 04/24/2025] [Indexed: 05/16/2025] Open
Abstract
X-linked Spinal and Bulbar Muscular Atrophy (SBMA) is a rare, late-onset neuromuscular disease caused by a CAG repeat expansion mutation in the androgen receptor (AR) gene. SBMA is characterized by progressive muscle atrophy of both neurogenic and myopathic etiologies. Previous work has established that mutant AR expression in skeletal muscle could be a significant contributor to neuromuscular decline, yet the mechanisms involved remain ill-defined. As AR is a nuclear hormone receptor transcription factor, we sought to define early changes in gene expression in skeletal muscle of pre-symptomatic SBMA mice, with a focus on transcriptional changes at the neuromuscular junction (NMJ). We describe loss of key NMJ-specific genes in synaptic muscle regions of pre-symptomatic SBMA mice, while extrasynaptic muscle features a coordinated loss of sarcomere genes that coincides with ectopic re-expression of certain NMJ genes. Furthermore, SBMA muscle prominently features dysregulated calcium flux, likely stemming from a compensatory response to early atrophy that greatly exacerbates over time. The SERCA activator CDN1163 conferred a mild rescue in function and muscle size in SBMA mice, while genetic deletion of the gene encoding Myf6/MRF4, a negative regulator of sarcomere gene expression and predicted AR interactor, did not ameliorate muscle atrophy. These studies suggest that modulation of calcium flux could be a promising pharmacological target in SBMA.
Collapse
Affiliation(s)
- Anastasia Gromova
- Department of Pathology and Laboratory Medicine, University of California Irvine, 1001 Health Sciences Road, Irvine, CA 92697, United States
- Muscle Biology and Disease Research Center, University of California Irvine, 1001 Health Sciences Road, Irvine, CA 92697, United States
| | - Byeonggu Cha
- Department of Pathology and Laboratory Medicine, University of California Irvine, 1001 Health Sciences Road, Irvine, CA 92697, United States
| | - Nhat Nguyen
- Department of Pathology and Laboratory Medicine, University of California Irvine, 1001 Health Sciences Road, Irvine, CA 92697, United States
| | - Diya Garg
- Department of Pathology and Laboratory Medicine, University of California Irvine, 1001 Health Sciences Road, Irvine, CA 92697, United States
| | - Connor Coscolluela
- Department of Pathology and Laboratory Medicine, University of California Irvine, 1001 Health Sciences Road, Irvine, CA 92697, United States
| | - Laura M Strickland
- Department of Neurosurgery, Duke University, 40 Duke Medicine Circle, Durham, NC 27710, United States
| | - David Luong
- Department of Pathology and Laboratory Medicine, University of California Irvine, 1001 Health Sciences Road, Irvine, CA 92697, United States
- Muscle Biology and Disease Research Center, University of California Irvine, 1001 Health Sciences Road, Irvine, CA 92697, United States
| | - Fabiana Longo
- Department of Pathology and Laboratory Medicine, University of California Irvine, 1001 Health Sciences Road, Irvine, CA 92697, United States
| | - Bryce L Sopher
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, 9750 3rd Ave NE, Seattle, WA, 98115, United States
| | - Mai K ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University, 2301 Erwin Road, Durham, NC 27710, United States
| | - Albert R La Spada
- Department of Pathology and Laboratory Medicine, University of California Irvine, 1001 Health Sciences Road, Irvine, CA 92697, United States
- Muscle Biology and Disease Research Center, University of California Irvine, 1001 Health Sciences Road, Irvine, CA 92697, United States
- Department of Neurosurgery, Duke University, 40 Duke Medicine Circle, Durham, NC 27710, United States
- Department of Neurology, University of California Irvine, 1001 Health Sciences Road, Irvine, CA 92697, United States
- Department of Biological Chemistry, University of California Irvine, 825 Health Sciences Road, Irvine, CA 92697, United States
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697, United States
- UCI Center for Neurotherapeutics, University of California Irvine, 1001 Health Sciences Road, Irvine, CA 92697, United States
| |
Collapse
|
245
|
Gao Y, Dong Q, Arachchilage KH, Risgaard RD, Syed M, Sheng J, Schmidt DK, Jin T, Liu S, Sandoval SO, Knaack S, Eckholm MT, Chen RJ, Guo Y, Doherty D, Glass I, Levine JE, Wang D, Chang Q, Zhao X, Sousa AMM. Multimodal analyses reveal genes driving electrophysiological maturation of neurons in the primate prefrontal cortex. Neuron 2025:S0896-6273(25)00308-3. [PMID: 40398411 DOI: 10.1016/j.neuron.2025.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/21/2024] [Accepted: 04/25/2025] [Indexed: 05/23/2025]
Abstract
The prefrontal cortex (PFC) is critical for myriad high-cognitive functions and is associated with several neuropsychiatric disorders. Here, using Patch-seq and single-nucleus multiomic analyses, we identified genes and regulatory networks governing the maturation of distinct neuronal populations in the PFC of rhesus macaque. We discovered that specific electrophysiological properties exhibited distinct maturational kinetics and identified key genes underlying these properties. We unveiled that RAPGEF4 is important for the maturation of resting membrane potential and inward sodium current in both macaque and human. We demonstrated that knockdown of CHD8, a high-confidence autism risk gene, in human and macaque organotypic slices led to impaired maturation, via downregulation of key genes, including RAPGEF4. Restoring the expression of RAPGEF4 rescued the proper electrophysiological maturation of CHD8-deficient neurons. Our study revealed regulators of neuronal maturation during a critical period of PFC development in primates and implicated such regulators in molecular processes underlying autism.
Collapse
Affiliation(s)
- Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Qiping Dong
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Ryan D Risgaard
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Moosa Syed
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jie Sheng
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Danielle K Schmidt
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ting Jin
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Shuang Liu
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Soraya O Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sara Knaack
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Magnus T Eckholm
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rachel J Chen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Guo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dan Doherty
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Ian Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jon E Levine
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Qiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Andre M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
246
|
Feng Y, de Jong SE, Oliveira APBN, Samaha H, Yang F, Hu M, Wang Y, Beydoun N, Xie X, Zhang H, Kazmin D, Fang Z, Zou J, Gewirtz AT, Boyd SD, Hagan T, Rouphael N, Pulendran B. Antibiotic-induced gut microbiome perturbation alters the immune responses to the rabies vaccine. Cell Host Microbe 2025; 33:705-718.e5. [PMID: 40252648 DOI: 10.1016/j.chom.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/12/2025] [Accepted: 03/27/2025] [Indexed: 04/21/2025]
Abstract
The gut microbiome plays a crucial role in modulating human immunity. Previously, we reported that antibiotic-induced microbiome perturbation affects influenza vaccine responses, depending on pre-existing immunity levels. Here, we employed a systems biology approach to analyze the impact of antibiotic administration on both primary and secondary immune responses to the rabies vaccine in humans. Antibiotic administration reduced the gut bacterial load, with a long-lasting reduction in commensal diversity. This alteration was associated with reduced rabies-specific humoral responses. Multi-omics profiling revealed that antibiotic administration induced (1) an enhanced pro-inflammatory signature early after vaccination, (2) a shift in the balance of vaccine-specific T-helper 1 (Th1) to T-follicular-helper response toward Th1 phenotype, and (3) profound alterations in metabolites, particularly in secondary bile acids in the blood. By integrating multi-omics datasets, we generated a multiscale, multi-response network that revealed key regulatory nodes, including the microbiota, secondary bile acids, and humoral immunity to vaccination.
Collapse
Affiliation(s)
- Yupeng Feng
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510440, China; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sanne E de Jong
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ana Paula B N Oliveira
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Hady Samaha
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Fan Yang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yanli Wang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nour Beydoun
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Xia Xie
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Haibo Zhang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Dmitri Kazmin
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Zhuoqing Fang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jun Zou
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Scott D Boyd
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; Sean N. Parker Center for Allergy and Immunology Research, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Thomas Hagan
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
247
|
Liu J, Mosti F, Zhao HT, Lollis D, Sotelo-Fonseca JE, Escobar-Tomlienovich CF, Musso CM, Mao Y, Massri AJ, Doll HM, Moss ND, Sousa AMM, Wray GA, Schmidt ERE, Silver DL. A human-specific enhancer fine-tunes radial glia potency and corticogenesis. Nature 2025:10.1038/s41586-025-09002-1. [PMID: 40369080 DOI: 10.1038/s41586-025-09002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Humans have evolved an extraordinarily expanded and complex cerebral cortex associated with developmental and gene regulatory modifications1-3. Human accelerated regions (HARs) are highly conserved DNA sequences with human-specific nucleotide substitutions. Although there are thousands of annotated HARs, their functional contribution to species-specific cortical development remains largely unknown4,5. HARE5 is a HAR transcriptional enhancer of the WNT signalling receptor Frizzled8 that is active during brain development6. Here, using genome-edited mouse (Mus musculus, Mm) and primate models, we demonstrated that human (Homo sapiens, Hs) HARE5 fine-tunes cortical development and connectivity by controlling the proliferative and neurogenic capacities of neural progenitor cells. Hs-HARE5 knock-in mice have significantly enlarged neocortices, containing more excitatory neurons. By measuring neural dynamics in vivo, we showed that these anatomical features result in increased functional independence between cortical regions. We assessed underlying developmental mechanisms using fixed and live imaging, lineage analysis and single-cell RNA sequencing. We discovered that Hs-HARE5 modifies radial glial cell behaviour, with increased self-renewal at early developmental stages, followed by expanded neurogenic potential. Using genome-edited human and chimpanzee (Pan troglodytes, Pt) neural progenitor cells and cortical organoids, we showed that four human-specific variants of Hs-HARE5 drive increased enhancer activity that promotes progenitor proliferation. Finally, we showed that Hs-HARE5 increased progenitor proliferation by amplifying canonical WNT signalling. These findings illustrate how small changes in regulatory DNA can directly affect critical signalling pathways to modulate brain development. Our study uncovered new functions of HARs as key regulatory elements crucial for the expansion and complexity of the human cerebral cortex.
Collapse
Affiliation(s)
- Jing Liu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Federica Mosti
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Hanzhi T Zhao
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Davoneshia Lollis
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | | | | | - Camila M Musso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Yiwei Mao
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | | | - Hannah M Doll
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicole D Moss
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Andre M M Sousa
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Ewoud R E Schmidt
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
248
|
Kourakis S, Timpani CA, Bagaric RM, Qi B, Ali BA, Boyer R, Spiesberger G, Kandhari N, Yan X, Kuang J, Tulangekar A, de Haan JB, Deveson-Lucas D, Stupka N, Fischer D, Rybalka E. Repurposed Nrf2 activator dimethyl fumarate rescues muscle inflammation and fibrosis in an aggravated mdx mouse model of Duchenne muscular dystrophy. Redox Biol 2025; 84:103676. [PMID: 40381228 DOI: 10.1016/j.redox.2025.103676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025] Open
Abstract
In inherited neuromuscular disease, Duchenne muscular dystrophy (DMD), glucocorticoids significantly slow disease progression yet impart side effects severe enough to preclude use in a significant proportion of patients. Extending our findings that acute treatment with FDA approved multiple sclerosis drug, dimethyl fumarate (DMF), rescues muscle pathology in juvenile mdx mice, we aimed to conduct tiered pre-clinical testing toward translation. To aggravate disease phenotype in adult mdx muscles that usually lack human equivalent muscle pathology, we used bi-weekly treadmill running for 4 weeks which increased plasma DMD biomarker, creatine kinase, by 2-fold and quadriceps fibrosis by ∼30 %. Using this model, we screened DMF for 5 weeks in a head-to-head comparison, and in combination, with standard-of-care prednisone (PRED), to model the most likely clinical trial scenario. We show comparable efficacy between DMF and PRED at reducing inflammation via NF-κB suppression and CD68+ macrophage infiltration. Moderate term DMF monotherapy had additional anti-fibrotic and anti-lipogenic effects on skeletal and cardiac muscle beyond those seen with PRED treatment, although combination therapy exacerbated fibrosis in quadriceps. Our study supports DMF as a repurposing candidate for DMD, especially for patients who cannot tolerate chronic glucocorticoid treatment. We also highlight the importance of evaluating combination therapy to identify potential off-target effects between emerging therapeutics and glucocorticoids towards better designed clinical trials.
Collapse
Affiliation(s)
- Stephanie Kourakis
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia; Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
| | - Cara A Timpani
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia; Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia; Department of Medicine - Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Victoria, Australia
| | - Ryan M Bagaric
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia; Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
| | - Bo Qi
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia; Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
| | - Benazir A Ali
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia; Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
| | - Rebecca Boyer
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
| | - Guinevere Spiesberger
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia; Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
| | - Nitika Kandhari
- Monash Genomics and Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Xu Yan
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia; Sarcopenia Research Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
| | - Jujiao Kuang
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
| | - Ankita Tulangekar
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia; Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
| | - Judy B de Haan
- Basic Science Domain, Oxidative Stress Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
| | - Deanna Deveson-Lucas
- Monash Genomics and Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Nicole Stupka
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia; Department of Medicine - Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Victoria, Australia
| | - Dirk Fischer
- Division of Neuropediatric and Developmental Medicine, University Children's Hospital of Basel (UKBB), Basel, Switzerland
| | - Emma Rybalka
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia; Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia.
| |
Collapse
|
249
|
Weijers DD, Hinić S, Kroeze E, Gorris MA, Schreibelt G, Middelkamp S, Mensenkamp AR, Bladergroen R, Verrijp K, Hoogerbrugge N, Wesseling P, van der Post RS, Loeffen JL, Gidding CE, van Kouwen MC, de Vries IJM, van Boxtel R, de Voer RM, Jongmans MC, Kuiper RP. Unraveling mutagenic processes influencing the tumor mutational patterns of individuals with constitutional mismatch repair deficiency. Nat Commun 2025; 16:4459. [PMID: 40368937 PMCID: PMC12078508 DOI: 10.1038/s41467-025-59775-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/05/2025] [Indexed: 05/16/2025] Open
Abstract
Constitutional mismatch repair deficiency (CMMRD), caused by bi-allelic germline variants in mismatch repair (MMR) genes, is associated with high cancer incidence early in life. A better understanding of mutational processes driving sequential CMMRD tumors can advance optimal treatment. Here, we describe a genomic characterization on a representative collection of CMMRD-associated tumors consisting of 41 tumors from 17 individuals. Mutational patterns in these tumors appear to be influenced by multiple factors, including the affected MMR gene and tumor type. Somatic polymerase proofreading mutations, commonly present in brain tumors, are also found in a T-cell lymphoblastic lymphoma displaying associated mutational patterns. We show prominent mutational patterns in two second primary hematological malignancies after temozolomide treatment. Furthermore, an indel signature, characterized by one-base pair cytosine insertions in cytosine homopolymers, is found in 54% of tumors. In conclusion, analysis of sequential CMMRD tumors reveals diverse mutational patterns influenced by the affected MMR gene, tumor type and treatment history.
Collapse
Affiliation(s)
- Dilys D Weijers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Snežana Hinić
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Emma Kroeze
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mark Aj Gorris
- Department of Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
- Division of Immunotherapy, Oncode Institute, Radboud university medical center, Nijmegen, The Netherlands
| | - Gerty Schreibelt
- Department of Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Sjors Middelkamp
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Reno Bladergroen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Kiek Verrijp
- Department of Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
- Division of Immunotherapy, Oncode Institute, Radboud university medical center, Nijmegen, The Netherlands
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands
| | - Rachel S van der Post
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Jan Lc Loeffen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Corrie Em Gidding
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mariëtte Ca van Kouwen
- Department of Gastroenterology and Hepatology, Radboud university medical center, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Department of Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Richarda M de Voer
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolijn Cj Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
250
|
Ana DP, O SJ, Flavia T, Zhang Y, Jorge FL. Longitudinal host-microbiome dynamics of metatranscription identify hallmarks of progression in periodontitis. MICROBIOME 2025; 13:119. [PMID: 40369640 PMCID: PMC12077055 DOI: 10.1186/s40168-025-02108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/08/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND In periodontitis, the interplay between the host and microbiome generates a self-perpetuating cycle of inflammation of tooth-supporting tissues, potentially leading to tooth loss. Despite increasing knowledge of the phylogenetic compositional changes of the periodontal microbiome, the current understanding of in situ activities of the oral microbiome and the interactions among community members and with the host is still limited. Prior studies on the subgingival plaque metatranscriptome have been cross-sectional, allowing for only a snapshot of a highly variable microbiome, and do not include the transcriptome profiles from the host, a critical element in the progression of the disease. RESULTS To identify the host-microbiome interactions in the subgingival milieu that lead to periodontitis progression, we conducted a longitudinal analysis of the host-microbiome metatranscriptome from clinically stable and progressing sites in 15 participants over 1 year. Our research uncovered a distinct timeline of activities of microbial and host responses linked to disease progression, revealing a significant clinical and metabolic change point (the moment in time when the statistical properties of a time series change) at the 6-month mark of the study, with 1722 genes differentially expressed (DE) in the host and 111,705 in the subgingival microbiome. Genes associated with immune response, especially antigen presentation genes, were highly up-regulated in stable sites before the 6-month change point but not in the progressing sites. Activation of cobalamin, porphyrin, and motility in the microbiome contribute to the progression of the disease. Conversely, inhibition of lipopolysaccharide and glycosphingolipid biosynthesis in stable sites coincided with increased immune response. Correlation delay analysis revealed that the positive feedback loop of activities leading to progression consists of immune regulation and response activation in the host that leads to an increase in potassium ion transport and cobalamin biosynthesis in the microbiome, which in turn induces the immune response. Causality analysis identified two clusters of microbiome genes whose progression can accurately predict the outcomes at specific sites with high confidence (AUC = 0.98095 and 0.97619). CONCLUSIONS A specific timeline of host-microbiome activities characterizes the progression of the disease. The metabolic activities of the dysbiotic microbiome and the host are responsible for the positive feedback loop of reciprocally reinforced interactions leading to progression and tissue destruction. Video Abstract.
Collapse
Affiliation(s)
- Duran-Pinedo Ana
- Department of Oral Biology, University of Florida, College of Dentistry, 1395 Center Drive Gainesville, Gainesville, FL, 32610 - 0424, USA
| | - Solbiati Jose O
- Department of Oral Biology, University of Florida, College of Dentistry, 1395 Center Drive Gainesville, Gainesville, FL, 32610 - 0424, USA
| | - Teles Flavia
- Department of Basic & Translational Sciences, University of Pennsylvania, School of Dental Medicine, 240 South 40 Street, Philadelphia, PA, 19104 - 6030, USA
- Center for Innovation and Precision Dentistry (CiPD), University of Pennsylvania, School of Dental Medicine, 240 South 40 Street, Philadelphia, PA, 19104 - 6030, USA
| | - Yanping Zhang
- Gene Expression & Genotyping Core, Interdisciplinary Center for Biotechnology Research, University of Florida, 178 B CGRC, 2033 Mowry Road, Gainesville, FL, 32610, USA
| | - Frias-Lopez Jorge
- Department of Oral Biology, University of Florida, College of Dentistry, 1395 Center Drive Gainesville, Gainesville, FL, 32610 - 0424, USA.
| |
Collapse
|