201
|
Munster VJ, Flagg M, Singh M, Williamson BN, Feldmann F, Pérez-Pérez L, Brumbaugh B, Holbrook MG, Adney DR, Okumura A, Hanley PW, Smith BJ, Lovaglio J, Anzick SL, Martens C, van Doremalen N, Saturday G, de Wit E. Subtle differences in the pathogenicity of SARS-CoV-2 variants of concern B.1.1.7 and B.1.351 in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.07.443115. [PMID: 34382034 PMCID: PMC8357058 DOI: 10.1101/2021.05.07.443115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The emergence of several SARS-CoV-2 variants has caused global concerns about increased transmissibility, increased pathogenicity, and decreased efficacy of medical countermeasures. Animal models can be used to assess phenotypical changes in the absence of confounding factors that affect observed pathogenicity and transmissibility data in the human population. Here, we studied the pathogenicity of variants of concern (VOC) B.1.1.7 and B.1.351 in rhesus macaques and compared it to a recent clade B.1 SARS-CoV-2 isolate containing the D614G substitution in the spike protein. The B.1.1.7 VOC behaved similarly to the D614G with respect to clinical disease, virus shedding and virus replication in the respiratory tract. Inoculation with the B.1.351 isolate resulted in lower clinical scores in rhesus macaques that correlated with lower virus titers in the lungs, less severe histologic lung lesions and less viral antigen detected in the lungs. We observed differences in the local innate immune response to infection. In bronchoalveolar lavages, cytokines and chemokines were upregulated on day 4 in animals inoculated with D614G and B.1.1.7 but not in those inoculated with B.1.351. In nasal samples, we did not detect upregulation of cytokines and chemokines in D614G or B.1.351-inoculated animals. However, cytokines and chemokines were upregulated in the noses of B.1.1.7-inoculated animals. Taken together, our comparative pathogenicity study suggests that ongoing circulation under diverse evolutionary pressure favors transmissibility and immune evasion rather than an increase in intrinsic pathogenicity.
Collapse
Affiliation(s)
- Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Meaghan Flagg
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Manmeet Singh
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Brandi N. Williamson
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Lizzette Pérez-Pérez
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Beniah Brumbaugh
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Myndi G. Holbrook
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Danielle R. Adney
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Atsushi Okumura
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Patrick W. Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Brian J. Smith
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Sarah L. Anzick
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Craig Martens
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| |
Collapse
|
202
|
Sánchez-Montalvá A, Fernández-Naval C, Antón A, Durà X, Vimes A, Silgado A, Velásquez-Orozco F, Espinosa-Pereiro J, Salvador F, Pumarola T, Almirante B, Esperalba J. Risk of SARS-CoV-2 Infection in Previously Infected and Non-Infected Cohorts of Health Workers at High Risk of Exposure. J Clin Med 2021; 10:jcm10091968. [PMID: 34064314 PMCID: PMC8124281 DOI: 10.3390/jcm10091968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/14/2023] Open
Abstract
The objective of this study is to assess the risk of newly acquired RNA detection-proven SARS-CoV-2 infection after previous SARS-CoV-2 infection. This is a prospective study conducted from March to September 2020 in Barcelona, Spain. Healthcare workers caring for SARS-CoV-2 infected patients were divided in two cohorts: (a) previously RNA-proven SARS-CoV-2 infected cohort with mild symptoms (IC) and (b) healthy cohort (HC). Weekly SARS-CoV-2 RNA detection assays from nasopharyngeal swabs were performed. Serology status was assessed at the beginning and at the end of the study. Twenty participants were included in each group. The median age was 30 (IQR 27–34.75) years, and 55% were female. The median time of follow up was 49 (IQR 49–51) days. Fifteen out of 246 (6%) nasopharyngeal swab samples were positive for SARS-CoV-2, all in the IC. The percentage of participants in the IC with a probable newly acquired SARS-CoV-2 RNA-proven infection was 20% (95% IC 5.7–43.6%) at the end of the 7-week follow up period. The incidence reinfection rate was 28.6 (95% IC 7.8–73.2) cases per 1000 person-week. Despite detectable IgG antibodies against SARS-CoV-2 participants highly exposed to SARS-CoV-2 may develop a newly acquired SARS-CoV-2 RNA detection episode during the first months after the initial infection.
Collapse
Affiliation(s)
- Adrián Sánchez-Montalvá
- Infectious Diseases Department, Vall d’Hebron University Hospital, International Health Program of the Catalan Insitute of Health (PROSICS), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (X.D.); (J.E.-P.); (F.S.); (B.A.)
- Correspondence: ; Tel.: +34-932746090
| | - Candela Fernández-Naval
- Microbiology Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (C.F.-N.); (A.A.); (A.S.); (F.V.-O.); (T.P.); (J.E.)
| | - Andrés Antón
- Microbiology Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (C.F.-N.); (A.A.); (A.S.); (F.V.-O.); (T.P.); (J.E.)
| | - Xavier Durà
- Infectious Diseases Department, Vall d’Hebron University Hospital, International Health Program of the Catalan Insitute of Health (PROSICS), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (X.D.); (J.E.-P.); (F.S.); (B.A.)
| | - Alba Vimes
- Clinical Pharmacology Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
| | - Aroa Silgado
- Microbiology Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (C.F.-N.); (A.A.); (A.S.); (F.V.-O.); (T.P.); (J.E.)
| | - Fernando Velásquez-Orozco
- Microbiology Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (C.F.-N.); (A.A.); (A.S.); (F.V.-O.); (T.P.); (J.E.)
| | - Juan Espinosa-Pereiro
- Infectious Diseases Department, Vall d’Hebron University Hospital, International Health Program of the Catalan Insitute of Health (PROSICS), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (X.D.); (J.E.-P.); (F.S.); (B.A.)
| | - Fernando Salvador
- Infectious Diseases Department, Vall d’Hebron University Hospital, International Health Program of the Catalan Insitute of Health (PROSICS), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (X.D.); (J.E.-P.); (F.S.); (B.A.)
| | - Tomás Pumarola
- Microbiology Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (C.F.-N.); (A.A.); (A.S.); (F.V.-O.); (T.P.); (J.E.)
| | - Benito Almirante
- Infectious Diseases Department, Vall d’Hebron University Hospital, International Health Program of the Catalan Insitute of Health (PROSICS), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (X.D.); (J.E.-P.); (F.S.); (B.A.)
| | - Juliana Esperalba
- Microbiology Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (C.F.-N.); (A.A.); (A.S.); (F.V.-O.); (T.P.); (J.E.)
| |
Collapse
|
203
|
Degauque N, Haziot A, Brouard S, Mooney N. Endothelial cell, myeloid, and adaptive immune responses in SARS-CoV-2 infection. FASEB J 2021; 35:e21577. [PMID: 33831263 PMCID: PMC8250117 DOI: 10.1096/fj.202100024r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is an emerging respiratory pathogen that has rapidly spread in human populations. Severe forms of infection associate cytokine release syndrome and acute lung injury due to hyperinflammatory responses even though virus clearance is achieved. Key components of inflammation include immune cell recruitment in infected tissues, a step which is under the control of endothelial cells. Here, we review endothelial cell responses in inflammation and infection due to SARS-CoV-2 together with phenotypic and functional alterations of monocytes, T and B lymphocytes with which they interact. We surmise that endothelial cells function as an integrative and active platform for the various cells recruited, where fine tuning of immune responses takes place and which provides opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Nicolas Degauque
- Centre De Recherche En Transplantation Et ImmunologieUMR1064, INSERM, Université De NantesNantesFrance
- Institut De Transplantation Urologie Néphrologie (ITUN)CHU NantesNantesFrance
- Laboratoire d’ImmunologieCHU NantesNantesFrance
| | - Alain Haziot
- INSERM U976Institut de Recherche Saint LouisParisFrance
- Institut de Recherche Saint‐LouisUniversité de ParisParisFrance
| | - Sophie Brouard
- Centre De Recherche En Transplantation Et ImmunologieUMR1064, INSERM, Université De NantesNantesFrance
- Institut De Transplantation Urologie Néphrologie (ITUN)CHU NantesNantesFrance
- Laboratoire d’ImmunologieCHU NantesNantesFrance
| | - Nuala Mooney
- INSERM U976Institut de Recherche Saint LouisParisFrance
- Institut de Recherche Saint‐LouisUniversité de ParisParisFrance
| |
Collapse
|
204
|
Nambulli S, Xiang Y, Tilston-Lunel NL, Rennick LJ, Sang Z, Klimstra WB, Reed DS, Crossland NA, Shi Y, Duprex WP. Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. SCIENCE ADVANCES 2021; 7:eabh0319. [PMID: 34039613 PMCID: PMC8153718 DOI: 10.1126/sciadv.abh0319] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/05/2021] [Indexed: 05/18/2023]
Abstract
Globally, there is an urgency to develop effective, low-cost therapeutic interventions for coronavirus disease 2019 (COVID-19). We previously generated the stable and ultrapotent homotrimeric Pittsburgh inhalable Nanobody 21 (PiN-21). Using Syrian hamsters that model moderate to severe COVID-19 disease, we demonstrate the high efficacy of PiN-21 to prevent and treat SARS-CoV-2 infection. Intranasal delivery of PiN-21 at 0.6 mg/kg protects infected animals from weight loss and substantially reduces viral burdens in both lower and upper airways compared to control. Aerosol delivery of PiN-21 facilitates deposition throughout the respiratory tract and dose minimization to 0.2 mg/kg. Inhalation treatment quickly reverses animals' weight loss after infection, decreases lung viral titers by 6 logs leading to drastically mitigated lung pathology, and prevents viral pneumonia. Combined with the marked stability and low production cost, this innovative therapy may provide a convenient and cost-effective option to mitigate the ongoing pandemic.
Collapse
Affiliation(s)
- Sham Nambulli
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Natasha L Tilston-Lunel
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Linda J Rennick
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhe Sang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh-Carnegie Mellon University Program in Computational Biology, Pittsburgh, PA, USA
| | - William B Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Douglas S Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas A Crossland
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- University of Pittsburgh-Carnegie Mellon University Program in Computational Biology, Pittsburgh, PA, USA
| | - W Paul Duprex
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
205
|
Bao L, Song Z, Xue J, Gao H, Liu J, Wang J, Guo Q, Zhao B, Qu Y, Qi F, Gong S, Liu M, Lv Q, Li D, Han Y, Zhao W, Deng S, Liu Y, Xiang Z, Yang B, Deng W, Yu H, Cong Z, Wei Q, Xu J, Gao GF, Qin C. Susceptibility and Attenuated Transmissibility of SARS-CoV-2 in Domestic Cats. J Infect Dis 2021; 223:1313-1321. [PMID: 33605423 PMCID: PMC7928776 DOI: 10.1093/infdis/jiab104] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/17/2021] [Indexed: 12/04/2022] Open
Abstract
Domestic cats, an important companion animal, can be infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This has aroused concern regarding the ability of domestic cats to spread the virus that causes coronavirus disease 2019. We systematically demonstrated the pathogenesis and transmissibility of SARS-CoV-2 in cats. Serial passaging of the virus between cats dramatically attenuated the viral transmissibility, likely owing to variations of the amino acids in the receptor-binding domain sites of angiotensin-converting enzyme 2 between humans and cats. These findings provide insight into the transmissibility of SARS-CoV-2 in cats and provide information for protecting the health of humans and cats. Article Summary Line: Domestic cats are susceptible to SARS-CoV-2 and have attenuated transmissibility after serial passaging.
Collapse
Affiliation(s)
- Linlin Bao
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Zhiqi Song
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jing Xue
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Hong Gao
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jiangning Liu
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jie Wang
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Qian Guo
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Binbin Zhao
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yajin Qu
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Feifei Qi
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Shuran Gong
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Mingya Liu
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Qi Lv
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Dan Li
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yunlin Han
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Wenjie Zhao
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Shoulong Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yunpeng Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Zhiguang Xiang
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Bochao Yang
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Wei Deng
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Haisheng Yu
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Zhe Cong
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Qiang Wei
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jianguo Xu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - George F Gao
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chuan Qin
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
206
|
Rhee C, Kanjilal S, Baker M, Klompas M. Duration of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infectivity: When Is It Safe to Discontinue Isolation? Clin Infect Dis 2021; 72:1467-1474. [PMID: 33029620 PMCID: PMC7499497 DOI: 10.1093/cid/ciaa1249] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/20/2020] [Indexed: 01/08/2023] Open
Abstract
Defining the duration of infectivity of SARS-CoV-2 has major implications for public health and infection control practice in healthcare facilities. Early in the pandemic, most hospitals required two negative RT-PCR tests before discontinuing isolation in patients with Covid-19. Many patients, however, have persistently positive RT-PCR tests for weeks to months following clinical recovery and multiple studies now indicate that persistently positive RT-PCRs generally do not reflect replication-competent virus. SARS-CoV-2 appears to be most contagious around the time of symptom onset and infectivity rapidly decreases thereafter to near-zero after about 10 days in mild-moderately ill patients and 15 days in severely-critically ill and immunocompromised patients. The longest interval associated with replication-competent virus thus far is 20 days from symptom onset. This review summarizes evidence-to-date on the duration of infectivity of SARS-CoV-2 and how this has informed evolving public health recommendations on when it is safe to discontinue isolation precautions.
Collapse
Affiliation(s)
- Chanu Rhee
- Department of Population Medicine, Harvard Medical School/Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Infection Control Department, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sanjat Kanjilal
- Department of Population Medicine, Harvard Medical School/Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Meghan Baker
- Department of Population Medicine, Harvard Medical School/Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Infection Control Department, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Michael Klompas
- Department of Population Medicine, Harvard Medical School/Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Infection Control Department, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
207
|
Papasavas P, Olugbile S, Wu U, Robinson K, Roberts AL, O'Sullivan DM, McLaughlin T, Mather JF, Steinberg AC, Orlando R, Kumar A. Seroprevalence of SARS-CoV-2 antibodies, associated epidemiological factors and antibody kinetics among healthcare workers in Connecticut. J Hosp Infect 2021; 114:117-125. [PMID: 33930487 PMCID: PMC8076763 DOI: 10.1016/j.jhin.2021.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Healthcare workers (HCWs) are at the front line of the ongoing coronavirus 2019 (COVID-19) pandemic. Comprehensive evaluation of the seroprevalence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) among HCWs in a large healthcare system could help to identify the impact of epidemiological factors and the presence of symptoms on the immune response to the infection over time. AIM To determine the seroprevalence of SARS-CoV-2-specific antibodies among HCWs, identify associated epidemiological factors and study antibody kinetics. METHODS A longitudinal evaluation of the seroprevalence and epidemiology of SARS-CoV-2-specific antibodies was undertaken in approximately 30,000 HCWs in the largest healthcare system in Connecticut, USA. FINDINGS At baseline, the prevalence of SARS-CoV-2 antibody among 6863 HCWs was 6.3% [95% confidence interval (CI) 5.7-6.9%], and was highest among patient care support (16.7%), medical assistants (9.1%) and nurses (8.2%), and lower for physicians (3.8%) and advanced practice providers (4.5%). Seroprevalence was significantly higher among African Americans [odds ratio (OR) 3.26 compared with Caucasians, 95% CI 1.77-5.99], in participants with at least one symptom of COVID-19 (OR 3.00, 95% CI 1.92-4.68), and in those reporting prior quarantine (OR 3.83, 95% CI 2.57-5.70). No symptoms were reported in 24% of seropositive participants. Among the 47% of participants who returned for a follow-up serological test, the seroreversion rate was 39.5% and the seroconversion rate was 2.2%. The incidence of re-infection in the seropositive group was zero. CONCLUSION Although there is a decline in the immunoglobulin G antibody signal over time, 60.5% of seropositive HCWs had maintained their seroconversion status after a median of 5.5 months.
Collapse
Affiliation(s)
- P Papasavas
- Department of Surgery, Hartford Hospital, Hartford, CT, USA.
| | - S Olugbile
- Cancer Institute, Hartford HealthCare, Hartford, CT, USA
| | - U Wu
- Administration, Hartford HealthCare, Hartford, CT, USA
| | - K Robinson
- Department of Emergency Medicine, Hartford Hospital, Hartford, CT, USA
| | - A L Roberts
- Department of Clinical Laboratory Services: Microbiology, Hartford HealthCare, Hartford, CT, USA
| | | | - T McLaughlin
- Department of Surgery, Hartford Hospital, Hartford, CT, USA
| | - J F Mather
- Hartford Healthcare Research Program, Hartford, CT, USA
| | - A C Steinberg
- Department of Medical Affairs, Hartford HealthCare, Hartford, CT, USA
| | - R Orlando
- Department of Academic Affairs, Hartford HealthCare, Hartford, CT, USA
| | - A Kumar
- Clinical Affairs, Hartford HealthCare, Hartford, CT, USA
| |
Collapse
|
208
|
Gallagher T, McCray PB. The first few days of a SARS-CoV-2 infection viewed at single-cell resolution. PLoS Biol 2021; 19:e3001217. [PMID: 33901166 PMCID: PMC8101996 DOI: 10.1371/journal.pbio.3001217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/06/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
- * E-mail:
| | - Paul B. McCray
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
209
|
Schallier A, De Baets S, De Bruyne D, Dauwe K, Herpol M, Couck P. Assay dependence of long-term kinetics of SARS-CoV-2 antibodies. Diagn Microbiol Infect Dis 2021; 100:115403. [PMID: 34058541 PMCID: PMC8061083 DOI: 10.1016/j.diagmicrobio.2021.115403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022]
Abstract
Since the worldwide outbreak of the novel coronavirus (SARS-CoV-2), the question raised whether infected patients would elicit long-lasting protective immunity. Several companies developed serological assays for the detection of SARS-CoV-2 antibodies. In this study, we compared 4 different serology assays in convalescents up to 7 months post-infection. Both Abbott assays showed a significative decrease of IgG antibodies over time. Whereas the Elecsys Anti‑SARS‑CoV‑2 N assay (Roche) initially showed a significant increase, antibody titers significantly decreased at the latest timepoint. Although not significant, the Elecsys Anti‑SARS‑CoV‑2 S assay (Roche) showed tendency towards increasing titers overtime. Our data showed that results of SARS-CoV-2 serology should be interpreted with caution.
Collapse
Affiliation(s)
| | | | | | - Kenny Dauwe
- Cerba Healthcare Belgium, CRI, Zwijnaarde, Belgium
| | | | - Pedro Couck
- Cerba Healthcare Belgium, CRI, Zwijnaarde, Belgium
| |
Collapse
|
210
|
Maurin M, Fenollar F, Mediannikov O, Davoust B, Devaux C, Raoult D. Current Status of Putative Animal Sources of SARS-CoV-2 Infection in Humans: Wildlife, Domestic Animals and Pets. Microorganisms 2021; 9:868. [PMID: 33920724 PMCID: PMC8072559 DOI: 10.3390/microorganisms9040868] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 is currently considered to have emerged from a bat coronavirus reservoir. However, the real natural cycle of this virus remains to be elucidated. Moreover, the COVID-19 pandemic has led to novel opportunities for SARS-CoV-2 transmission between humans and susceptible animal species. In silico and in vitro evaluation of the interactions between the SARS-CoV-2 spike protein and eucaryotic angiotensin-converting enzyme 2 (ACE2) receptor have tentatively predicted susceptibility to SARS-CoV-2 infection of several animal species. Although useful, these data do not always correlate with in vivo data obtained in experimental models or during natural infections. Other host biological properties may intervene such as the body temperature, level of receptor expression, co-receptor, restriction factors, and genetic background. The spread of SARS-CoV-2 also depends on the extent and duration of viral shedding in the infected host as well as population density and behaviour (group living and grooming). Overall, current data indicate that the most at-risk interactions between humans and animals for COVID-19 infection are those involving certain mustelids (such as minks and ferrets), rodents (such as hamsters), lagomorphs (especially rabbits), and felines (including cats). Therefore, special attention should be paid to the risk of SARS-CoV-2 infection associated with pets.
Collapse
Affiliation(s)
- Max Maurin
- University Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, 38000 Grenoble, France;
| | - Florence Fenollar
- IHU-Méditerranée Infection, 13005 Marseille, France; (F.F.); (O.M.); (B.D.); (C.D.)
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France
| | - Oleg Mediannikov
- IHU-Méditerranée Infection, 13005 Marseille, France; (F.F.); (O.M.); (B.D.); (C.D.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| | - Bernard Davoust
- IHU-Méditerranée Infection, 13005 Marseille, France; (F.F.); (O.M.); (B.D.); (C.D.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| | - Christian Devaux
- IHU-Méditerranée Infection, 13005 Marseille, France; (F.F.); (O.M.); (B.D.); (C.D.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
- Centre National de la Recherche Scientifique, 13005 Marseille, France
| | - Didier Raoult
- IHU-Méditerranée Infection, 13005 Marseille, France; (F.F.); (O.M.); (B.D.); (C.D.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| |
Collapse
|
211
|
Affiliation(s)
- Florian Krammer
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
212
|
Munshi I, Khandvilkar A, Chavan SM, Sachdeva G, Mahale SD, Chaudhari UK. An overview of preclinical animal models for SARS-CoV-2 pathogenicity. Indian J Med Res 2021; 153:17-25. [PMID: 33818465 PMCID: PMC8184076 DOI: 10.4103/ijmr.ijmr_3215_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 01/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of fatalities globally since its origin in November 2019. The SARS-CoV-2 shares 79 and 50 per cent genome similarity with its predecessors, severe SARS-CoV and Middle East respiratory syndrome (MERS) coronavirus, all belonging to the same genus, Betacoronavirus. This relatively new virus has stymied the effective control of COVID-19 pandemic and caused huge social and economic impact worldwide. The FDA-approved drugs were re-purposed to reduce the number of fatalities caused by SARS-CoV-2. However, controversy surrounds about the efficacy of these re-purposed antiviral drugs against SARS-CoV-2.This necessitates the identification of new drug targets for SARS-CoV-2. Hence, the development of pre-clinical animal model is warranted. Such animal models may help us gain better understanding of the pathophysiology of SARS-CoV-2 infection and will be effective tools for the evaluation and licensure of therapeutic strategies against SARS-CoV-2. This review provides a summary of the attempts made till to develop a suitable animal model to understand pathophysiology and effectiveness of therapeutic agents against SARS-CoV-2.
Collapse
Affiliation(s)
- Itti Munshi
- Department of Primate Biology, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Aditya Khandvilkar
- Department of Primate Biology, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Shrinivas M. Chavan
- Department of Primate Biology, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Geetanjali Sachdeva
- Department of Primate Biology, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Smita D. Mahale
- Department of Structural Biology, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Uddhav K. Chaudhari
- Department of Primate Biology, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| |
Collapse
|
213
|
Ogega CO, Skinner NE, Blair PW, Park HS, Littlefield K, Ganesan A, Dhakal S, Ladiwala P, Antar AA, Ray SC, Betenbaugh MJ, Pekosz A, Klein SL, Manabe YC, Cox AL, Bailey JR. Durable SARS-CoV-2 B cell immunity after mild or severe disease. J Clin Invest 2021; 131:145516. [PMID: 33571162 DOI: 10.1172/jci145516] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/10/2021] [Indexed: 12/26/2022] Open
Abstract
Multiple studies have shown loss of severe acute respiratory syndrome coronavirus 2-specific (SARS-CoV-2-specific) antibodies over time after infection, raising concern that humoral immunity against the virus is not durable. If immunity wanes quickly, millions of people may be at risk for reinfection after recovery from coronavirus disease 2019 (COVID-19). However, memory B cells (MBCs) could provide durable humoral immunity even if serum neutralizing antibody titers decline. We performed multidimensional flow cytometric analysis of S protein receptor binding domain-specific (S-RBD-specific) MBCs in cohorts of ambulatory patients with COVID-19 with mild disease (n = 7), and hospitalized patients with moderate to severe disease (n = 7), at a median of 54 days (range, 39-104 days) after symptom onset. We detected S-RBD-specific class-switched MBCs in 13 of 14 participants, failing only in the individual with the lowest plasma levels of anti-S-RBD IgG and neutralizing antibodies. Resting MBCs (rMBCs) made up the largest proportion of S-RBD-specific MBCs in both cohorts. FCRL5, a marker of functional memory on rMBCs, was more dramatically upregulated on S-RBD-specific rMBCs after mild infection than after severe infection. These data indicate that most SARS-CoV-2-infected individuals develop S-RBD-specific, class-switched rMBCs that resemble germinal center-derived B cells induced by effective vaccination against other pathogens, providing evidence for durable B cell-mediated immunity against SARS-CoV-2 after mild or severe disease.
Collapse
Affiliation(s)
- Clinton O Ogega
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole E Skinner
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul W Blair
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Han-Sol Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kirsten Littlefield
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Abhinaya Ganesan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Pranay Ladiwala
- Advanced Mammalian Biomanufacturing Innovation Center, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Annukka Ar Antar
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stuart C Ray
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael J Betenbaugh
- Advanced Mammalian Biomanufacturing Innovation Center, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea L Cox
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Justin R Bailey
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
214
|
Levi-Schaffer F, de Marco A. Coronavirus disease 2019 and the revival of passive immunization: Antibody therapy for inhibiting severe acute respiratory syndrome coronavirus 2 and preventing host cell infection: IUPHAR review: 31. Br J Pharmacol 2021; 178:3359-3372. [PMID: 33401333 DOI: 10.1111/bph.15359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/26/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic stimulated both the scientific community and healthcare companies to undertake an unprecedented effort with the aim of understanding the molecular mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and developing effective therapeutic solutions. The peculiar immune response triggered by this virus, which seems to last only few months, led to a search for alternatives such as passive immunization in addition to conventional vaccinations. Convalescent sera, monoclonal antibodies selected from the most potent neutralizing binders induced by the virus infection, recombinant human single-domain antibodies, and binders of variable scaffold and different origin have been tested alone or in combination exploiting monovalent, multivalent and multispecific formats. In this review, we analyse the state of the research in this field and present a summary of the ongoing projects finalized to identify suitable molecules for therapies based on passive immunization.
Collapse
Affiliation(s)
- Francesca Levi-Schaffer
- Pharmacology & Experimental Therapeutics Unit, School of Pharmacy, Faculty of Medicine, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| |
Collapse
|
215
|
Yuen RR, Steiner D, Pihl RMF, Chavez E, Olson A, Smith EL, Baird LA, Korkmaz F, Urick P, Sagar M, Berrigan JL, Gummuluru S, Corley RB, Quillen K, Belkina AC, Mostoslavsky G, Rifkin IR, Kataria Y, Cappione AJ, Gao W, Lin NH, Bhadelia N, Snyder-Cappione JE. Novel ELISA Protocol Links Pre-Existing SARS-CoV-2 Reactive Antibodies With Endemic Coronavirus Immunity and Age and Reveals Improved Serologic Identification of Acute COVID-19 via Multi-Parameter Detection. Front Immunol 2021; 12:614676. [PMID: 33897682 PMCID: PMC8062931 DOI: 10.3389/fimmu.2021.614676] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
The COVID-19 pandemic has drastically impacted work, economy, and way of life. Sensitive measurement of SARS-CoV-2 specific antibodies would provide new insight into pre-existing immunity, virus transmission dynamics, and the nuances of SARS-CoV-2 pathogenesis. To date, existing SARS-CoV-2 serology tests have limited utility due to insufficient reliable detection of antibody levels lower than what is typically present after several days of symptoms. To measure lower quantities of SARS-CoV-2 IgM, IgG, and IgA with higher resolution than existing assays, we developed a new ELISA protocol with a distinct plate washing procedure and timed plate development via use of a standard curve. Very low optical densities from samples added to buffer coated wells at as low as a 1:5 dilution are reported using this 'BU ELISA' method. Use of this method revealed circulating SARS-CoV-2 receptor binding domain (RBD) and nucleocapsid protein (N) reactive antibodies (IgG, IgM, and/or IgA) in 44 and 100 percent of pre-pandemic subjects, respectively, and the magnitude of these antibodies tracked with antibody levels of analogous viral proteins from endemic coronavirus (eCoV) strains. The disease status (HIV, SLE) of unexposed subjects was not linked with SARS-CoV-2 reactive antibody levels; however, quantities were significantly lower in subjects over 70 years of age compared with younger counterparts. Also, we measured SARS-CoV-2 RBD- and N- specific IgM, IgG, and IgA antibodies from 29 SARS-CoV-2 infected individuals at varying disease states, including 10 acute COVID-19 hospitalized subjects with negative serology results by the EUA approved Abbott IgG chemiluminescent microparticle immunoassay. Measurements of SARS-CoV-2 RBD- and N- specific IgM, IgG, IgA levels measured by the BU ELISA revealed higher signal from 9 of the 10 Abbott test negative COVID-19 subjects than all pre-pandemic samples for at least one antibody specificity/isotype, implicating improved serologic identification of SARS-CoV-2 infection via multi-parameter, high sensitive antibody detection. We propose that this improved ELISA protocol, which is straightforward to perform, low cost, and uses readily available commercial reagents, is a useful tool to elucidate new information about SARS-CoV-2 infection and immunity and has promising implications for improved detection of all analytes measurable by this platform.
Collapse
Affiliation(s)
- Rachel R Yuen
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Dylan Steiner
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Riley M F Pihl
- PiBS Program, Boston University School of Medicine, Boston, MA, United States
| | - Elizabeth Chavez
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Alex Olson
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center, Boston, MA, United States
| | - Erika L Smith
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Lillia A Baird
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Filiz Korkmaz
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Patricia Urick
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Manish Sagar
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,Department of Medicine, Boston University School of Medicine, Boston, MA, United States.,Section of Infectious Diseases, Department of Medicine, Boston Medical Center, Boston, MA, United States
| | - Jacob L Berrigan
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Ronald B Corley
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, United States
| | - Karen Quillen
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Anna C Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, United States.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Ian R Rifkin
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States.,Renal Section, Department of Medicine, VA Boston Healthcare System, Boston, MA, United States
| | - Yachana Kataria
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | | | - Wenda Gao
- Antagen Pharmaceuticals, Boston, MA, United States
| | - Nina H Lin
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center, Boston, MA, United States
| | - Nahid Bhadelia
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, United States
| | | |
Collapse
|
216
|
Michelitsch A, Wernike K, Ulrich L, Mettenleiter TC, Beer M. SARS-CoV-2 in animals: From potential hosts to animal models. Adv Virus Res 2021; 110:59-102. [PMID: 34353482 PMCID: PMC8025072 DOI: 10.1016/bs.aivir.2021.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Within only one year after the first detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), nearly 100 million infections were reported in the human population globally, with more than two million fatal cases. While SARS-CoV-2 most likely originated from a natural wildlife reservoir, neither the immediate viral precursor nor the reservoir or intermediate hosts have been identified conclusively. Due to its zoonotic origin, SARS-CoV-2 may also be relevant to animals. Thus, to evaluate the host range of the virus and to assess the risk to act as potential animal reservoir, a large number of different animal species were experimentally infected with SARS-CoV-2 or monitored in the field in the last months. In this review, we provide an update on studies describing permissive and resistant animal species. Using a scoring system based on viral genome detection subsequent to SARS-CoV-2 inoculation, seroconversion, the development of clinical signs and transmission to conspecifics or humans, the susceptibility of diverse animal species was classified on a semi-quantitative scale. While major livestock species such as pigs, cattle and poultry are mostly resistant, companion animals appear moderately susceptible, while several model animal species used in research, including several Cricetidae species and non-human primates, are highly susceptible to SARS-CoV-2 infection. By natural infections, it became obvious that American minks (Neovison vison) in fur farms, e.g., in the Netherlands and Denmark are highly susceptible resulting in local epidemics in these animals.
Collapse
Affiliation(s)
| | - Kerstin Wernike
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Lorenz Ulrich
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | | | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
217
|
Abstract
INTRODUCTION Antibodies mediate pathogen neutralization in addition to several cytotoxic Fc functions through engaging cellular receptors and recruiting effector cells. Fc effector functions have been well described in disease control and protection against infectious diseases including HIV, Ebola, malaria, influenza and tuberculosis, making them attractive targets for vaccine design. AREAS COVERED We briefly summarize the role of Fc effector functions in disease control and protection in viral, bacterial and parasitic infectious diseases. We review Fc effector function in passive immunization and vaccination, and primarily focus on strategies to elicit and modulate these functions as part of a robust vaccine strategy. EXPERT OPINION Despite their known correlation with vaccine efficacy for several diseases, only recently have seminal studies addressed how these Fc effector functions can be elicited and modulated in vaccination. However, gaps remain in assay standardization and the precise mechanisms of diverse functional assays. Furthermore, there are inherent difficulties in the translation of findings from animal models to humans, given the difference in sequence, expression and function of Fc receptors and Fc portions of antibodies. However, overall it is clear that vaccine development to elicit Fc effector function is an important goal for optimal prevention against infectious disease.
Collapse
Affiliation(s)
- Simone I Richardson
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, KwaZulu-Natal, South Africa
| |
Collapse
|
218
|
Hasenkrug KJ, Feldmann F, Myers L, Santiago ML, Guo K, Barrett BS, Mickens KL, Carmody A, Okumura A, Rao D, Collins MM, Messer RJ, Lovaglio J, Shaia C, Rosenke R, van Doremalen N, Clancy C, Saturday G, Hanley P, Smith B, Meade-White K, Shupert WL, Hawman DW, Feldmann H. Recovery from acute SARS-CoV-2 infection and development of anamnestic immune responses in T cell-depleted rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.02.438262. [PMID: 33821272 PMCID: PMC8020972 DOI: 10.1101/2021.04.02.438262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Severe COVID-19 has been associated with T cell lymphopenia 1,2, but no causal effect of T cell deficiency on disease severity has been established. To investigate the specific role of T cells in recovery from SARS-CoV-2 infections we studied rhesus macaques that were depleted of either CD4+, CD8+ or both T cell subsets prior to infection. Peak virus loads were similar in all groups, but the resolution of virus in the T cell-depleted animals was slightly delayed compared to controls. The T cell-depleted groups developed virus-neutralizing antibody responses and also class-switched to IgG. When re-infected six weeks later, the T cell-depleted animals showed anamnestic immune responses characterized by rapid induction of high-titer virus-neutralizing antibodies, faster control of virus loads and reduced clinical signs. These results indicate that while T cells play a role in the recovery of rhesus macaques from acute SARS-CoV-2 infections, their depletion does not induce severe disease, and T cells do not account for the natural resistance of rhesus macaques to severe COVID-19. Neither primed CD4+ or CD8+ T cells appeared critical for immunoglobulin class switching, the development of immunological memory or protection from a second infection.
Collapse
Affiliation(s)
- Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lara Myers
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Mario L. Santiago
- Departments of Medicine, Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Kejun Guo
- Departments of Medicine, Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Bradley S. Barrett
- Departments of Medicine, Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Kaylee L. Mickens
- Departments of Medicine, Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Aaron Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Atsushi Okumura
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Deepashri Rao
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Madison M. Collins
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ronald J. Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Chad Clancy
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Patrick Hanley
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Brian Smith
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - W. Lesley Shupert
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - David W. Hawman
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
219
|
Guo M, Tao W, Flavell RA, Zhu S. Potential intestinal infection and faecal-oral transmission of SARS-CoV-2. Nat Rev Gastroenterol Hepatol 2021; 18:269-283. [PMID: 33589829 PMCID: PMC7883337 DOI: 10.1038/s41575-021-00416-6] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to more than 200 countries and regions globally. SARS-CoV-2 is thought to spread mainly through respiratory droplets and close contact. However, reports have shown that a notable proportion of patients with coronavirus disease 2019 (COVID-19) develop gastrointestinal symptoms and nearly half of patients confirmed to have COVID-19 have shown detectable SARS-CoV-2 RNA in their faecal samples. Moreover, SARS-CoV-2 infection reportedly alters intestinal microbiota, which correlated with the expression of inflammatory factors. Furthermore, multiple in vitro and in vivo animal studies have provided direct evidence of intestinal infection by SARS-CoV-2. These lines of evidence highlight the nature of SARS-CoV-2 gastrointestinal infection and its potential faecal-oral transmission. Here, we summarize the current findings on the gastrointestinal manifestations of COVID-19 and its possible mechanisms. We also discuss how SARS-CoV-2 gastrointestinal infection might occur and the current evidence and future studies needed to establish the occurrence of faecal-oral transmission.
Collapse
Affiliation(s)
- Meng Guo
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wanyin Tao
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- School of Data Science, University of Science and Technology of China, Hefei, China.
- CAS Centre for Excellence in Cell and Molecular Biology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
220
|
BNT162b2 Vaccine Encoding the SARS-CoV-2 P2 S Protects Transgenic hACE2 Mice against COVID-19. Vaccines (Basel) 2021; 9:vaccines9040324. [PMID: 33915773 PMCID: PMC8066210 DOI: 10.3390/vaccines9040324] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
BNT162b2 is a highly efficacious mRNA vaccine approved to prevent COVID-19. This brief report describes the immunogenicity and anti-viral protective effect of BNT162b2 in hACE2 transgenic mice. Prime-boost immunization with BNT162b2 elicited high titers in neutralizing antibodies against SARS-CoV-2, which correlated with viral clearance and alleviated lung lesions in these mice after viral challenge.
Collapse
|
221
|
Hanrath AT, Payne BAI, Duncan CJA. Prior SARS-CoV-2 infection is associated with protection against symptomatic reinfection. J Infect 2021; 82:e29-e30. [PMID: 33373652 PMCID: PMC7832116 DOI: 10.1016/j.jinf.2020.12.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022]
Abstract
•Whether SARS-CoV-2 infection confers immunity to reinfection is uncertain. •The ‘second wave’ of transmission offered an opportunity to examine this. •We observed no symptomatic reinfections in a cohort of healthcare workers. •This apparent immunity to re-infection was maintained for at least 6 months. •Further studies are required to define immunological mechanism(s) and durability.
Collapse
Affiliation(s)
- Aidan T Hanrath
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; National Institute for Health Research (NIHR) Newcastle Biomedical Research Centre, Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Brendan A I Payne
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United KingdomThe Newcastle Hospitals HCW Testing Group(1)
| | - Christopher J A Duncan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United KingdomThe Newcastle Hospitals HCW Testing Group(1).
| |
Collapse
|
222
|
Niess H, Börner N, Muenchhoff M, Khatamzas E, Stangl M, Graf A, Girl P, Georgi E, Koliogiannis D, Denk G, Irlbeck M, Werner J, Guba M. Liver transplantation in a patient after COVID-19 - Rapid loss of antibodies and prolonged viral RNA shedding. Am J Transplant 2021; 21:1629-1632. [PMID: 33047475 PMCID: PMC7675727 DOI: 10.1111/ajt.16349] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/17/2020] [Accepted: 09/26/2020] [Indexed: 01/25/2023]
Abstract
To date, little is known about the duration and effectiveness of immunity as well as possible adverse late effects after an infection with SARS-CoV-2. Thus it is unclear, when and if liver transplantation can be safely offered to patients who suffered from COVID-19. Here, we report on a successful liver transplantation shortly after convalescence from COVID-19 with subsequent partial seroreversion as well as recurrence and prolonged shedding of viral RNA.
Collapse
Affiliation(s)
- Hanno Niess
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany,Correspondence Hanno Niess
| | - Nikolaus Börner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Maximilian Muenchhoff
- Virology, Max von Pettenkofer Institute, Ludwig-Maximilian-University, Munich, Germany,German Center for Infection Research (DZIF, Partner Site Munich, Munich, Germany
| | - Elham Khatamzas
- Department of Internal Medicine III, Ludwig-Maximilians-University, Munich, Germany
| | - Manfred Stangl
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Alex Graf
- Laboratory for Functional Genome Analysis, Gene-Center, Ludwig-Maximilians-University, Munich, Germany
| | - Philipp Girl
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Enrico Georgi
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Dionysios Koliogiannis
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Gerald Denk
- Department of Internal Medicine II, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Irlbeck
- Department of Anesthesiology, Ludwig-Maximilians-University, Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Markus Guba
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
223
|
Dos Santos WG. Impact of virus genetic variability and host immunity for the success of COVID-19 vaccines. Biomed Pharmacother 2021; 136:111272. [PMID: 33486212 PMCID: PMC7802525 DOI: 10.1016/j.biopha.2021.111272] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/09/2020] [Accepted: 12/26/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 19 (COVID-19) continues to challenge most scientists in the search of an effective way to either prevent infection or to avoid spreading of the disease. As result of global efforts some advances have been reached and we are more prepared today than we were at the beginning of the pandemic, however not enough to stop the transmission, and many questions remain unanswered. The possibility of reinfection of recovered individuals, the duration of the immunity, the impact of SARS-CoV-2 mutations in the spreading of the disease as well as the degree of protection that a potential vaccine could have are some of the issues under debate. A number of vaccines are under development using different platforms and clinical trials are ongoing in different countries, but even if they are licensed it will need time until reach a definite conclusion about their real safety and efficacy. Herein we discuss the different strategies used in the development of COVID-19 vaccines, the questions underlying the type of immune response they may elicit, the consequences that new mutations may have in the generation of sub-strains of SARS-CoV-2 and their impact and challenges for the efficacy of potential vaccines in a scenario postpandemic.
Collapse
Affiliation(s)
- Wagner Gouvêa Dos Santos
- Laboratory of Genetics and Molecular Biology, Department of Biomedicine, Academic Unit of Health Sciences, Federal University of Jataí-UFJ, BR 364, km 195, nº 3800, CEP 75801-615, Jataí, GO, Brazil.
| |
Collapse
|
224
|
Gryseels S, De Bruyn L, Gyselings R, Calvignac‐Spencer S, Leendertz FH, Leirs H. Risk of human-to-wildlife transmission of SARS-CoV-2. Mamm Rev 2021; 51:272-292. [PMID: 33230363 PMCID: PMC7675675 DOI: 10.1111/mam.12225] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
Abstract
It has been a long time since the world has experienced a pandemic with such a rapid devastating impact as the current COVID-19 pandemic. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is unusual in that it appears capable of infecting many different mammal species. As a significant proportion of people worldwide are infected with SARS-CoV-2 and may spread the infection unknowingly before symptoms occur or without any symptoms ever occurring, there is a non-negligible risk of humans spreading SARS-CoV-2 to wildlife, in particular to wild non-human mammals. Because of SARS-CoV-2's apparent evolutionary origins in bats and reports of humans transmitting the virus to pets and zoo animals, regulations for the prevention of human-to-animal transmission have so far focused mostly on these animal groups. We summarise recent studies and reports that show that a wide range of distantly related mammals are likely to be susceptible to SARS-CoV-2, and that susceptibility or resistance to the virus is, in general, not predictable, or only predictable to some extent, from phylogenetic proximity to known susceptible or resistant hosts. In the absence of solid evidence on the susceptibility and resistance to SARS-CoV-2 for each of the >6500 mammal species, we argue that sanitary precautions should be taken by humans interacting with any other mammal species in the wild. Preventing human-to-wildlife SARS-CoV-2 transmission is important to protect these animals (some of which are classed as threatened) from disease, but also to avoid establishment of novel SARS-CoV-2 reservoirs in wild mammals. The risk of repeated re-infection of humans from such a wildlife reservoir could severely hamper SARS-CoV-2 control efforts. Activities during which direct or indirect interaction with wild mammals may occur include wildlife research, conservation activities, forestry work, pest control, management of feral populations, ecological consultancy work, management of protected areas and natural environments, wildlife tourism and wildlife rehabilitation in animal shelters. During such activities, we recommend sanitary precautions, such as physical distancing, wearing face masks and gloves, and frequent decontamination, which are very similar to regulations currently imposed to prevent transmission among humans. We further recommend active surveillance of domestic and feral animals that could act as SARS-CoV-2 intermediate hosts between humans and wild mammals.
Collapse
Affiliation(s)
- Sophie Gryseels
- Department of Microbiology, Immunology and TransplantationRega Institute, KU LeuvenHerestraat 49Leuven3000Belgium
- Department of Ecology and Evolutionary BiologyUniversity of Arizona1041 E. Lowell St.TucsonAZ85721USA
- Department of BiologyUniversity of AntwerpUniversiteitsplein 1Antwerp2610Belgium
| | - Luc De Bruyn
- Department of BiologyUniversity of AntwerpUniversiteitsplein 1Antwerp2610Belgium
- Research Institute for Nature and Forest (INBO)Havenlaan 88Brussels1000Belgium
| | - Ralf Gyselings
- Research Institute for Nature and Forest (INBO)Havenlaan 88Brussels1000Belgium
| | | | | | - Herwig Leirs
- Department of BiologyUniversity of AntwerpUniversiteitsplein 1Antwerp2610Belgium
| |
Collapse
|
225
|
Carvalho T, Krammer F, Iwasaki A. The first 12 months of COVID-19: a timeline of immunological insights. Nat Rev Immunol 2021; 21:245-256. [PMID: 33723416 PMCID: PMC7958099 DOI: 10.1038/s41577-021-00522-1] [Citation(s) in RCA: 281] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 12/15/2022]
Abstract
Since the initial reports of a cluster of pneumonia cases of unidentified origin in Wuhan, China, in December 2019, the novel coronavirus that causes this disease - severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - has spread throughout the world, igniting the twenty-first century's deadliest pandemic. Over the past 12 months, a dizzying array of information has emerged from numerous laboratories, covering everything from the putative origin of SARS-CoV-2 to the development of numerous candidate vaccines. Many immunologists quickly pivoted from their existing research to focus on coronavirus disease 2019 (COVID-19) and, owing to this unprecedented convergence of efforts on one viral infection, a remarkable body of work has been produced and disseminated, through both preprint servers and peer-reviewed journals. Here, we take readers through the timeline of key discoveries during the first year of the pandemic, which showcases the extraordinary leaps in our understanding of the immune response to SARS-CoV-2 and highlights gaps in our knowledge as well as areas for future investigations.
Collapse
Affiliation(s)
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
226
|
Prendecki M, Clarke C, Brown J, Cox A, Gleeson S, Guckian M, Randell P, Pria AD, Lightstone L, Xu XN, Barclay W, McAdoo SP, Kelleher P, Willicombe M. Effect of previous SARS-CoV-2 infection on humoral and T-cell responses to single-dose BNT162b2 vaccine. Lancet 2021; 397:1178-1181. [PMID: 33640037 PMCID: PMC7993933 DOI: 10.1016/s0140-6736(21)00502-x] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Maria Prendecki
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK.
| | - Candice Clarke
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Jonathan Brown
- Department of Infectious Diseases, Imperial College London, London W12 0NN, UK
| | - Alison Cox
- Department of Infection and Immunity North West London Pathology NHS Trust, London, UK
| | - Sarah Gleeson
- Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Mary Guckian
- Department of Infection and Immunity North West London Pathology NHS Trust, London, UK
| | - Paul Randell
- Department of Infection and Immunity North West London Pathology NHS Trust, London, UK
| | - Alessia Dalla Pria
- Department of Infectious Diseases, Imperial College London, London W12 0NN, UK; Department of HIV and Genitourinary Medicine, Chelsea and Westminster Hospital, London, UK
| | - Liz Lightstone
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Xiao-Ning Xu
- Department of Infectious Diseases, Imperial College London, London W12 0NN, UK
| | - Wendy Barclay
- Department of Infectious Diseases, Imperial College London, London W12 0NN, UK
| | - Stephen P McAdoo
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Peter Kelleher
- Department of Infectious Diseases, Imperial College London, London W12 0NN, UK; Department of Infection and Immunity North West London Pathology NHS Trust, London, UK; Department of HIV and Genitourinary Medicine, Chelsea and Westminster Hospital, London, UK
| | - Michelle Willicombe
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| |
Collapse
|
227
|
Parolin C, Virtuoso S, Giovanetti M, Angeletti S, Ciccozzi M, Borsetti A. Animal Hosts and Experimental Models of SARS-CoV-2 Infection. Chemotherapy 2021; 66:8-16. [PMID: 33774628 PMCID: PMC8089426 DOI: 10.1159/000515341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/28/2021] [Indexed: 11/19/2022]
Abstract
Viruses arise through cross-species transmission and can cause potentially fatal diseases in humans. This is the case of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which recently appeared in Wuhan, China, and rapidly spread worldwide, causing the outbreak of coronavirus disease 2019 (COVID-19) and posing a global health emergency. Sequence analysis and epidemiological investigations suggest that the most likely original source of SARS-CoV-2 is a spillover from an animal reservoir, probably bats, that infected humans either directly or through intermediate animal hosts. The role of animals as reservoirs and natural hosts in SARS-CoV-2 has to be explored, and animal models for COVID-19 are needed as well to be evaluated for countermeasures against SARS-CoV-2 infection. Experimental cells, tissues, and animal models that are currently being used and developed in COVID-19 research will be presented.
Collapse
Affiliation(s)
- Cristina Parolin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Sara Virtuoso
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Marta Giovanetti
- Reference Laboratory of Flavivirus, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Massimo Ciccozzi
- Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
228
|
Villena J, Li C, Vizoso-Pinto MG, Sacur J, Ren L, Kitazawa H. Lactiplantibacillus plantarum as a Potential Adjuvant and Delivery System for the Development of SARS-CoV-2 Oral Vaccines. Microorganisms 2021; 9:683. [PMID: 33810287 PMCID: PMC8067309 DOI: 10.3390/microorganisms9040683] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
The most important characteristics regarding the mucosal infection and immune responses against the Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) as well as the current vaccines against coronavirus disease 2019 (COVID-19) in development or use are revised to emphasize the opportunity for lactic acid bacteria (LAB)-based vaccines to offer a valid alternative in the fight against this disease. In addition, this article revises the knowledge on: (a) the cellular and molecular mechanisms involved in the improvement of mucosal antiviral defenses by beneficial Lactiplantibacillus plantarum strains, (b) the systems for the expression of heterologous proteins in L. plantarum and (c) the successful expressions of viral antigens in L. plantarum that were capable of inducing protective immune responses in the gut and the respiratory tract after their oral administration. The ability of L. plantarum to express viral antigens, including the spike protein of SARS-CoV-2 and its capacity to differentially modulate the innate and adaptive immune responses in both the intestinal and respiratory mucosa after its oral administration, indicates the potential of this LAB to be used in the development of a mucosal COVID-19 vaccine.
Collapse
Affiliation(s)
- Julio Villena
- Reference Centre for Lactobacilli (CERELA-CONICET), Laboratory of Immunobiotechnology, Tucuman CP4000, Argentina
- Laboratory of Animal Products Chemistry, Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130122, China;
| | - Maria Guadalupe Vizoso-Pinto
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucuman CP4000, Argentina; (M.G.V.-P.); (J.S.)
| | - Jacinto Sacur
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucuman CP4000, Argentina; (M.G.V.-P.); (J.S.)
| | - Linzhu Ren
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Haruki Kitazawa
- Laboratory of Animal Products Chemistry, Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- International Education and Research Center for Food Agricultural Immunology, Livestock Immunology Unit, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
229
|
Stamatatos L, Czartoski J, Wan YH, Homad LJ, Rubin V, Glantz H, Neradilek M, Seydoux E, Jennewein MF, MacCamy AJ, Feng J, Mize G, De Rosa SC, Finzi A, Lemos MP, Cohen KW, Moodie Z, McElrath MJ, McGuire AT. mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science 2021; 372:eabg9175. [PMID: 33766944 PMCID: PMC8139425 DOI: 10.1126/science.abg9175] [Citation(s) in RCA: 408] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
Emerging SARS-CoV-2 variants have raised concerns about resistance to neutralizing antibodies elicited by previous infection or vaccination. We examined whether sera from recovered and naïve donors collected prior to, and following immunizations with existing mRNA vaccines, could neutralize the Wuhan-Hu-1 and B.1.351 variants. Pre-vaccination sera from recovered donors neutralized Wuhan-Hu-1 and sporadically neutralized B.1.351, but a single immunization boosted neutralizing titers against all variants and SARS-CoV-1 by up to 1000-fold. Neutralization was due to antibodies targeting the receptor binding domain and was not boosted by a second immunization. Immunization of naïve donors also elicited cross-neutralizing responses, but at lower titers. Our study highlights the importance of vaccinating both uninfected and previously infected persons to elicit cross-variant neutralizing antibodies.
Collapse
Affiliation(s)
- Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Julie Czartoski
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Yu-Hsin Wan
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Leah J Homad
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Vanessa Rubin
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Hayley Glantz
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Moni Neradilek
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Emilie Seydoux
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Madeleine F Jennewein
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Anna J MacCamy
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Junli Feng
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Gregory Mize
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Stephen C De Rosa
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Maria P Lemos
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Kristen W Cohen
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Zoe Moodie
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - M Juliana McElrath
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew T McGuire
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
230
|
Chu J. A statistical analysis of the novel coronavirus (COVID-19) in Italy and Spain. PLoS One 2021; 16:e0249037. [PMID: 33765088 PMCID: PMC7993852 DOI: 10.1371/journal.pone.0249037] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/09/2021] [Indexed: 12/23/2022] Open
Abstract
The novel coronavirus (COVID-19) that was first reported at the end of 2019 has impacted almost every aspect of life as we know it. This paper focuses on the incidence of the disease in Italy and Spain-two of the first and most affected European countries. Using two simple mathematical epidemiological models-the Susceptible-Infectious-Recovered model and the log-linear regression model, we model the daily and cumulative incidence of COVID-19 in the two countries during the early stage of the outbreak, and compute estimates for basic measures of the infectiousness of the disease including the basic reproduction number, growth rate, and doubling time. Estimates of the basic reproduction number were found to be larger than 1 in both countries, with values being between 2 and 3 for Italy, and 2.5 and 4 for Spain. Estimates were also computed for the more dynamic effective reproduction number, which showed that since the first cases were confirmed in the respective countries the severity has generally been decreasing. The predictive ability of the log-linear regression model was found to give a better fit and simple estimates of the daily incidence for both countries were computed.
Collapse
Affiliation(s)
- Jeffrey Chu
- School of Statistics, Renmin University of China, Beijing, China
| |
Collapse
|
231
|
Yang S, Jerome KR, Greninger AL, Schiffer JT, Goyal A. Endogenously Produced SARS-CoV-2 Specific IgG Antibodies May Have a Limited Impact on Clearing Nasal Shedding of Virus during Primary Infection in Humans. Viruses 2021; 13:516. [PMID: 33804667 PMCID: PMC8003723 DOI: 10.3390/v13030516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/23/2022] Open
Abstract
While SARS-CoV-2 specific neutralizing antibodies have been developed for therapeutic purposes, the specific viral triggers that drive the generation of SARS-CoV-2 specific IgG and IgM antibodies remain only partially characterized. Moreover, it is unknown whether endogenously derived antibodies drive viral clearance that might result in mitigation of clinical severity during natural infection. We developed a series of non-linear mathematical models to investigate whether SARS-CoV-2 viral and antibody kinetics are coupled or governed by separate processes. Patients with severe disease had a higher production rate of IgG but not IgM antibodies. Maximal levels of both isotypes were governed by their production rate rather than different saturation levels between people. Our results suggest that an exponential surge in IgG levels occurs approximately 5-10 days after symptom onset with no requirement for continual antigenic stimulation. SARS-CoV-2 specific IgG antibodies appear to have limited to no effect on viral dynamics but may enhance viral clearance late during primary infection resulting from the binding effect of antibody to virus, rather than neutralization. In conclusion, SARS-CoV-2 specific IgG antibodies may play only a limited role in clearing infection from the nasal passages despite providing long-term immunity against infection following vaccination or prior infection.
Collapse
Affiliation(s)
- Shuyi Yang
- Department of Data Science, University of California San Diego, La Jolla, CA 92093, USA;
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (K.R.J.); (A.L.G.)
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (K.R.J.); (A.L.G.)
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Alexander L. Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (K.R.J.); (A.L.G.)
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (K.R.J.); (A.L.G.)
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98910, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ashish Goyal
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (K.R.J.); (A.L.G.)
| |
Collapse
|
232
|
Sokol H, Contreras V, Maisonnasse P, Desmons A, Delache B, Sencio V, Machelart A, Brisebarre A, Humbert L, Deryuter L, Gauliard E, Heumel S, Rainteau D, Dereuddre-Bosquet N, Menu E, Ho Tsong Fang R, Lamaziere A, Brot L, Wahl C, Oeuvray C, Rolhion N, Van Der Werf S, Ferreira S, Le Grand R, Trottein F. SARS-CoV-2 infection in nonhuman primates alters the composition and functional activity of the gut microbiota. Gut Microbes 2021; 13:1-19. [PMID: 33685349 PMCID: PMC7951961 DOI: 10.1080/19490976.2021.1893113] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The current pandemic of coronavirus disease (COVID) 2019 constitutes a global public health issue. Regarding the emerging importance of the gut-lung axis in viral respiratory infections, analysis of the gut microbiota's composition and functional activity during a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection might be instrumental in understanding and controling COVID 19. We used a nonhuman primate model (the macaque), that recapitulates mild COVID-19 symptoms, to analyze the effects of a SARS-CoV-2 infection on dynamic changes of the gut microbiota. 16S rRNA gene profiling and analysis of β diversity indicated significant changes in the composition of the gut microbiota with a peak at 10-13 days post-infection (dpi). Analysis of bacterial abundance correlation networks confirmed disruption of the bacterial community at 10-13 dpi. Some alterations in microbiota persisted after the resolution of the infection until day 26. Some changes in the relative bacterial taxon abundance associated with infectious parameters. Interestingly, the relative abundance of Acinetobacter (Proteobacteria) and some genera of the Ruminococcaceae family (Firmicutes) was positively correlated with the presence of SARS-CoV-2 in the upper respiratory tract. Targeted quantitative metabolomics indicated a drop in short-chain fatty acids (SCFAs) and changes in several bile acids and tryptophan metabolites in infected animals. The relative abundance of several taxa known to be SCFA producers (mostly from the Ruminococcaceae family) was negatively correlated with systemic inflammatory markers while the opposite correlation was seen with several members of the genus Streptococcus. Collectively, SARS-CoV-2 infection in a nonhuman primate is associated with changes in the gut microbiota's composition and functional activity.
Collapse
Affiliation(s)
- Harry Sokol
- Sorbonne Université, INSERM, Centre De Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France,INRAE, UMR1319 Micalis & AgroParisTech, Jouy En Josas, France,Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France,CONTACT Harry Sokol Sorbonne Université, INSERM, Centre De Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France
| | - Vanessa Contreras
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (Infectious Diseases Models for Innovative therapies/IDMIT), Paris, France
| | - Pauline Maisonnasse
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (Infectious Diseases Models for Innovative therapies/IDMIT), Paris, France
| | - Aurore Desmons
- Sorbonne Université, INSERM, Centre De Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France,Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Benoit Delache
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (Infectious Diseases Models for Innovative therapies/IDMIT), Paris, France
| | - Valentin Sencio
- Univ. Lille, US 41 - UMS 2014 - PLBS, U1019 - UMR 9017 - CIIL - Centre d’Infection Et d’Immunité De Lille, Lille, France,Centre National De La Recherche Scientifique, Lille, France,Institut National De La Santé Et De La Recherche Médicale U1019, Lille, France,Centre Hospitalier Universitaire De Lille, Lille, France,Institut Pasteur De Lille, Lille, France
| | - Arnaud Machelart
- Univ. Lille, US 41 - UMS 2014 - PLBS, U1019 - UMR 9017 - CIIL - Centre d’Infection Et d’Immunité De Lille, Lille, France,Centre National De La Recherche Scientifique, Lille, France,Institut National De La Santé Et De La Recherche Médicale U1019, Lille, France,Centre Hospitalier Universitaire De Lille, Lille, France,Institut Pasteur De Lille, Lille, France
| | - Angela Brisebarre
- Centre National De Référence Virus Des Infections Respiratoires, Unité De Génétique Moléculaire Des Virus À ARN, GMVR, F75015, Institut Pasteur, UMR CNRS 3569, Université De Paris, Paris, France
| | - Lydie Humbert
- Sorbonne Université, INSERM, Centre De Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France,Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Lucie Deryuter
- Univ. Lille, US 41 - UMS 2014 - PLBS, U1019 - UMR 9017 - CIIL - Centre d’Infection Et d’Immunité De Lille, Lille, France,Centre National De La Recherche Scientifique, Lille, France,Institut National De La Santé Et De La Recherche Médicale U1019, Lille, France,Centre Hospitalier Universitaire De Lille, Lille, France,Institut Pasteur De Lille, Lille, France
| | - Emilie Gauliard
- Sorbonne Université, INSERM, Centre De Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France,Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Severine Heumel
- Univ. Lille, US 41 - UMS 2014 - PLBS, U1019 - UMR 9017 - CIIL - Centre d’Infection Et d’Immunité De Lille, Lille, France,Centre National De La Recherche Scientifique, Lille, France,Institut National De La Santé Et De La Recherche Médicale U1019, Lille, France,Centre Hospitalier Universitaire De Lille, Lille, France,Institut Pasteur De Lille, Lille, France
| | - Dominique Rainteau
- Sorbonne Université, INSERM, Centre De Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France,Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (Infectious Diseases Models for Innovative therapies/IDMIT), Paris, France
| | - Elisabeth Menu
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (Infectious Diseases Models for Innovative therapies/IDMIT), Paris, France
| | - Raphael Ho Tsong Fang
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (Infectious Diseases Models for Innovative therapies/IDMIT), Paris, France
| | - Antonin Lamaziere
- Sorbonne Université, INSERM, Centre De Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France,INRAE, UMR1319 Micalis & AgroParisTech, Jouy En Josas, France,Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Loic Brot
- Sorbonne Université, INSERM, Centre De Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France,INRAE, UMR1319 Micalis & AgroParisTech, Jouy En Josas, France,Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | | | - Cyriane Oeuvray
- Sorbonne Université, INSERM, Centre De Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France,Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Nathalie Rolhion
- Sorbonne Université, INSERM, Centre De Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France,Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Sylvie Van Der Werf
- Centre National De Référence Virus Des Infections Respiratoires, Unité De Génétique Moléculaire Des Virus À ARN, GMVR, F75015, Institut Pasteur, UMR CNRS 3569, Université De Paris, Paris, France
| | | | - Roger Le Grand
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (Infectious Diseases Models for Innovative therapies/IDMIT), Paris, France
| | - François Trottein
- Univ. Lille, US 41 - UMS 2014 - PLBS, U1019 - UMR 9017 - CIIL - Centre d’Infection Et d’Immunité De Lille, Lille, France,Centre National De La Recherche Scientifique, Lille, France,Institut National De La Santé Et De La Recherche Médicale U1019, Lille, France,Centre Hospitalier Universitaire De Lille, Lille, France,Institut Pasteur De Lille, Lille, France,François trottein Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, 1 rue du Professeur Calmette, F-59000 Lille, France
| |
Collapse
|
233
|
Stamatatos L, Czartoski J, Wan YH, Homad LJ, Rubin V, Glantz H, Neradilek M, Seydoux E, Jennewein MF, MacCamy AJ, Feng J, Mize G, De Rosa SC, Finzi A, Lemos MP, Cohen KW, Moodie Z, McElrath MJ, McGuire AT. A single mRNA immunization boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.02.05.21251182. [PMID: 33758873 PMCID: PMC7987032 DOI: 10.1101/2021.02.05.21251182] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Emerging SARS-CoV-2 variants have raised concerns about resistance to neutralizing antibodies elicited by previous infection or vaccination. We examined whether sera from recovered and naive donors collected prior to, and following immunizations with existing mRNA vaccines, could neutralize the Wuhan-Hu-1 and B.1.351 variants. Pre-vaccination sera from recovered donors neutralized Wuhan-Hu-1 and sporadically neutralized B.1.351, but a single immunization boosted neutralizing titers against all variants and SARS-CoV-1 by up to 1000-fold. Neutralization was due to antibodies targeting the receptor binding domain and was not boosted by a second immunization. Immunization of naïve donors also elicited cross-neutralizing responses, but at lower titers. Our study highlights the importance of vaccinating both uninfected and previously infected persons to elicit cross-variant neutralizing antibodies.
Collapse
Affiliation(s)
- Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Julie Czartoski
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Yu-Hsin Wan
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Leah J. Homad
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Vanessa Rubin
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Hayley Glantz
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Moni Neradilek
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Emilie Seydoux
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Madeleine F. Jennewein
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Anna J. MacCamy
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Junli Feng
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Gregory Mize
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Stephen C. De Rosa
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Maria P. Lemos
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Kristen W. Cohen
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Zoe Moodie
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - M. Juliana McElrath
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew T. McGuire
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
234
|
Koch T, Mellinghoff SC, Shamsrizi P, Addo MM, Dahlke C. Correlates of Vaccine-Induced Protection against SARS-CoV-2. Vaccines (Basel) 2021; 9:238. [PMID: 33801831 PMCID: PMC8035658 DOI: 10.3390/vaccines9030238] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
We are in the midst of a pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19). SARS-CoV-2 has caused more than two million deaths after one year of the pandemic. The world is experiencing a deep economic recession. Safe and effective vaccines are needed to prevent further morbidity and mortality. Vaccine candidates against COVID-19 have been developed at an unprecedented speed, with more than 200 vaccine candidates currently under investigation. Among those, 20 candidates have entered the clinical Phase 3 to evaluate efficacy, and three have been approved by the European Medicines Agency. The aim of immunization is to act against infection, disease and/or transmission. However, the measurement of vaccine efficacy is challenging, as efficacy trials need to include large cohorts with verum and placebo cohorts. In the future, this will be even more challenging as further vaccine candidates will receive approval, an increasing number of humans will receive vaccinations and incidence might decrease. To evaluate novel and second-generation vaccine candidates, randomized placebo-controlled trials might not be appropriate anymore. Correlates of protection (CoP) could be an important tool to evaluate novel vaccine candidates, but vaccine-induced CoP have not been clearly defined for SARS-CoV-2 vaccines. In this review, we report on immunogenicity against natural SARS-CoV-2 infection, vaccine-induced immune responses and discuss immunological markers that can be linked to protection. By discussing the immunogenicity and efficacy of forerunner vaccines, we aim to give a comprehensive overview of possible efficacy measures and CoP.
Collapse
Affiliation(s)
- Till Koch
- Division of Infectious Diseases, 1st Department of Medicine, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany; (T.K.); (S.C.M.); (P.S.); (M.M.A.)
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Sibylle C. Mellinghoff
- Division of Infectious Diseases, 1st Department of Medicine, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany; (T.K.); (S.C.M.); (P.S.); (M.M.A.)
- Excellence Centre for Medical Mycology (ECMM), 1st Department of Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Translational Research, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 50937 Cologne, Germany
| | - Parichehr Shamsrizi
- Division of Infectious Diseases, 1st Department of Medicine, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany; (T.K.); (S.C.M.); (P.S.); (M.M.A.)
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Marylyn M. Addo
- Division of Infectious Diseases, 1st Department of Medicine, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany; (T.K.); (S.C.M.); (P.S.); (M.M.A.)
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Christine Dahlke
- Division of Infectious Diseases, 1st Department of Medicine, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany; (T.K.); (S.C.M.); (P.S.); (M.M.A.)
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| |
Collapse
|
235
|
Trieu MC, Bansal A, Madsen A, Zhou F, Sævik M, Vahokoski J, Brokstad KA, Krammer F, Tøndel C, Mohn KGI, Blomberg B, Langeland N, Cox RJ. SARS-CoV-2-Specific Neutralizing Antibody Responses in Norwegian Health Care Workers After the First Wave of COVID-19 Pandemic: A Prospective Cohort Study. J Infect Dis 2021; 223:589-599. [PMID: 33247924 PMCID: PMC7798943 DOI: 10.1093/infdis/jiaa737] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND During the coronavirus disease 2019 (COVID-19) pandemic, many countries experienced infection in health care workers (HCW) due to overburdened health care systems. Whether infected HCW acquire protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. METHODS In a Norwegian prospective cohort study, we enrolled 607 HCW before and after the first COVID-19 wave. Exposure history, COVID-19-like symptoms, and serum samples were collected. SARS-CoV-2-specific antibodies were characterized by spike-protein IgG/IgM/IgA enzyme-linked immunosorbent and live-virus neutralization assays. RESULTS Spike-specific IgG/IgM/IgA antibodies increased after the first wave in HCW with, but not in HCW without, COVID-19 patient exposure. Thirty-two HCW (5.3%) had spike-specific antibodies (11 seroconverted with ≥4-fold increase, 21 were seropositive at baseline). Neutralizing antibodies were found in 11 HCW that seroconverted, of whom 4 (36.4%) were asymptomatic. Ninety-seven HCW were tested by reverse transcriptase polymerase chain reaction (RT-PCR) during follow-up; 8 were positive (7 seroconverted, 1 had undetectable antibodies). CONCLUSIONS We found increases in SARS-CoV-2 neutralizing antibodies in infected HCW, especially after COVID-19 patient exposure. Our data show a low number of SARS-CoV-2-seropositive HCW in a low-prevalence setting; however, the proportion of seropositivity was higher than RT-PCR positivity, highlighting the importance of antibody testing.
Collapse
Affiliation(s)
- Mai-Chi Trieu
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway
| | - Amit Bansal
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway
| | - Anders Madsen
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway
| | - Fan Zhou
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway
| | - Marianne Sævik
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Juha Vahokoski
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karl Albert Brokstad
- Broeglemann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Camilla Tøndel
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Kristin G I Mohn
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway.,Emergency Care Clinic, Haukeland University Hospital, Bergen, Norway
| | - Bjørn Blomberg
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway.,National Centre for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| | - Nina Langeland
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway.,National Centre for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| | - Rebecca J Cox
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
236
|
Tan HX, Juno JA, Lee WS, Barber-Axthelm I, Kelly HG, Wragg KM, Esterbauer R, Amarasena T, Mordant FL, Subbarao K, Kent SJ, Wheatley AK. Immunogenicity of prime-boost protein subunit vaccine strategies against SARS-CoV-2 in mice and macaques. Nat Commun 2021; 12:1403. [PMID: 33658497 PMCID: PMC7930087 DOI: 10.1038/s41467-021-21665-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/04/2021] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 vaccines are advancing into human clinical trials, with emphasis on eliciting high titres of neutralising antibodies against the viral spike (S). However, the merits of broadly targeting S versus focusing antibody onto the smaller receptor binding domain (RBD) are unclear. Here we assess prototypic S and RBD subunit vaccines in homologous or heterologous prime-boost regimens in mice and non-human primates. We find S is highly immunogenic in mice, while the comparatively poor immunogenicity of RBD is associated with limiting germinal centre and T follicular helper cell activity. Boosting S-primed mice with either S or RBD significantly augments neutralising titres, with RBD-focussing driving moderate improvement in serum neutralisation. In contrast, both S and RBD vaccines are comparably immunogenic in macaques, eliciting serological neutralising activity that generally exceed levels in convalescent humans. These studies confirm recombinant S proteins as promising vaccine candidates and highlight multiple pathways to achieving potent serological neutralisation.
Collapse
Affiliation(s)
- Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Isaac Barber-Axthelm
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hannah G Kelly
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Kathleen M Wragg
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Francesca L Mordant
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia.
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
237
|
Pushparajah D, Jimenez S, Wong S, Alattas H, Nafissi N, Slavcev RA. Advances in gene-based vaccine platforms to address the COVID-19 pandemic. Adv Drug Deliv Rev 2021; 170:113-141. [PMID: 33422546 PMCID: PMC7789827 DOI: 10.1016/j.addr.2021.01.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 01/07/2023]
Abstract
The novel betacoronavirus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has spread across the globe at an unprecedented rate since its first emergence in Wuhan City, China in December 2019. Scientific communities around the world have been rigorously working to develop a potent vaccine to combat COVID-19 (coronavirus disease 2019), employing conventional and novel vaccine strategies. Gene-based vaccine platforms based on viral vectors, DNA, and RNA, have shown promising results encompassing both humoral and cell-mediated immune responses in previous studies, supporting their implementation for COVID-19 vaccine development. In fact, the U.S. Food and Drug Administration (FDA) recently authorized the emergency use of two RNA-based COVID-19 vaccines. We review current gene-based vaccine candidates proceeding through clinical trials, including their antigenic targets, delivery vehicles, and route of administration. Important features of previous gene-based vaccine developments against other infectious diseases are discussed in guiding the design and development of effective vaccines against COVID-19 and future derivatives.
Collapse
Affiliation(s)
- Deborah Pushparajah
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Salma Jimenez
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada
| | - Shirley Wong
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Hibah Alattas
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Nafiseh Nafissi
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Roderick A Slavcev
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada; Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada.
| |
Collapse
|
238
|
Jaworski JP. Neutralizing monoclonal antibodies for COVID-19 treatment and prevention. Biomed J 2021; 44:7-17. [PMID: 33589377 PMCID: PMC7685954 DOI: 10.1016/j.bj.2020.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/06/2020] [Accepted: 11/22/2020] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 pandemic has caused unprecedented global health and economic crises. Several vaccine approaches and repurposed drugs are currently under evaluation for safety and efficacy. However, none of them have been approved for COVID-19 yet. Meanwhile, several nMAbs targeting SARS-CoV-2 spike glycoprotein are in different stages of development and clinical testing. Preclinical studies have shown that cocktails of potent nMAbs targeting the receptor binding site of SARS-CoV-2, as well as broad-nMAbs targeting conserved regions within the virus spike, might be effective for the treatment and prophylaxis of COVID-19. Currently, several clinical trials have started to test safety, tolerability, PKs and efficacy of these nMAbs. One paramount limitation for the use of nMAbs in clinical settings is the production of large amounts of MAbs and the high costs related to it. Cooperation among public and private institutions coupled with speed of development, rapid safety evaluation and efficacy, and early planning for scale-up and manufacture will be critical for the control of COVID-19 pandemic.
Collapse
Affiliation(s)
- Juan Pablo Jaworski
- National Scientific and Technical Research Council, Buenos Aires, Argentina; National Agricultural Technology Institute, Buenos Aires, Argentina.
| |
Collapse
|
239
|
Singh R, Kang A, Luo X, Jeyanathan M, Gillgrass A, Afkhami S, Xing Z. COVID-19: Current knowledge in clinical features, immunological responses, and vaccine development. FASEB J 2021; 35:e21409. [PMID: 33577115 PMCID: PMC7898934 DOI: 10.1096/fj.202002662r] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic has unfolded to be the most challenging global health crisis in a century. In 11 months since its first emergence, according to WHO, the causative infectious agent SARS-CoV-2 has infected more than 100 million people and claimed more than 2.15 million lives worldwide. Moreover, the world has raced to understand the virus and natural immunity and to develop vaccines. Thus, within a short 11 months a number of highly promising COVID-19 vaccines were developed at an unprecedented speed and are now being deployed via emergency use authorization for immunization. Although a considerable number of review contributions are being published, all of them attempt to capture only a specific aspect of COVID-19 or its therapeutic approaches based on ever-expanding information. Here, we provide a comprehensive overview to conceptually thread together the latest information on global epidemiology and mitigation strategies, clinical features, viral pathogenesis and immune responses, and the current state of vaccine development.
Collapse
Affiliation(s)
- Ramandeep Singh
- McMaster Immunology Research CentreM. G. DeGroote Institute for Infectious Disease Research & Department of MedicineMcMaster UniversityHamiltonONCanada
| | - Alisha Kang
- McMaster Immunology Research CentreM. G. DeGroote Institute for Infectious Disease Research & Department of MedicineMcMaster UniversityHamiltonONCanada
| | - Xiangqian Luo
- McMaster Immunology Research CentreM. G. DeGroote Institute for Infectious Disease Research & Department of MedicineMcMaster UniversityHamiltonONCanada
- Department of Pediatric OtolaryngologyShenzhen HospitalSouthern Medical UniversityShenzhenChina
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research CentreM. G. DeGroote Institute for Infectious Disease Research & Department of MedicineMcMaster UniversityHamiltonONCanada
| | - Amy Gillgrass
- McMaster Immunology Research CentreM. G. DeGroote Institute for Infectious Disease Research & Department of MedicineMcMaster UniversityHamiltonONCanada
| | - Sam Afkhami
- McMaster Immunology Research CentreM. G. DeGroote Institute for Infectious Disease Research & Department of MedicineMcMaster UniversityHamiltonONCanada
| | - Zhou Xing
- McMaster Immunology Research CentreM. G. DeGroote Institute for Infectious Disease Research & Department of MedicineMcMaster UniversityHamiltonONCanada
| |
Collapse
|
240
|
|
241
|
Hwang JK, Zhang T, Wang AZ, Li Z. COVID-19 vaccines for patients with cancer: benefits likely outweigh risks. J Hematol Oncol 2021; 14:38. [PMID: 33640005 PMCID: PMC7910769 DOI: 10.1186/s13045-021-01046-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/07/2021] [Indexed: 02/08/2023] Open
Abstract
Less than a year since the start of the COVID-19 pandemic, ten vaccines against SARS-CoV-2 have been approved for at least limited use, with over sixty others in clinical trials. This swift achievement has generated excitement and arrives at a time of great need, as the number of COVID-19 cases worldwide continues to rapidly increase. Two vaccines are currently approved for full use, both built on mRNA and lipid nanotechnology platforms, a success story of mRNA technology 20 years in the making. For patients with cancer, questions arise around the safety and efficacy of these vaccines in the setting of immune alterations engendered by their malignancy and/or therapies. We summarize the current data on leading COVID-19 vaccine candidates and vaccination of patients undergoing immunomodulatory cancer treatments. Most current cancer therapeutics should not prevent the generation of protective immunity. We call for more research in this area and recommend that the majority of patients with cancer receive COVID vaccinations when possible.
Collapse
Affiliation(s)
| | - Tian Zhang
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, DUMC Box 103861, Durham, NC, 27710, USA.
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA.
| | - Andrew Z Wang
- Department of Radiation Oncology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The OH State University Comprehensive Cancer Center - James, Columbus, OH, USA
| |
Collapse
|
242
|
Abstract
Less than a year since the start of the COVID-19 pandemic, ten vaccines against SARS-CoV-2 have been approved for at least limited use, with over sixty others in clinical trials. This swift achievement has generated excitement and arrives at a time of great need, as the number of COVID-19 cases worldwide continues to rapidly increase. Two vaccines are currently approved for full use, both built on mRNA and lipid nanotechnology platforms, a success story of mRNA technology 20 years in the making. For patients with cancer, questions arise around the safety and efficacy of these vaccines in the setting of immune alterations engendered by their malignancy and/or therapies. We summarize the current data on leading COVID-19 vaccine candidates and vaccination of patients undergoing immunomodulatory cancer treatments. Most current cancer therapeutics should not prevent the generation of protective immunity. We call for more research in this area and recommend that the majority of patients with cancer receive COVID vaccinations when possible.
Collapse
|
243
|
Rosa RB, Dantas WM, do Nascimento JCF, da Silva MV, de Oliveira RN, Pena LJ. In Vitro and In Vivo Models for Studying SARS-CoV-2, the Etiological Agent Responsible for COVID-19 Pandemic. Viruses 2021; 13:379. [PMID: 33673614 PMCID: PMC7997194 DOI: 10.3390/v13030379] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/19/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023] Open
Abstract
The emergence and rapid worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has prompted the scientific community to rapidly develop in vitro and in vivo models that could be applied in COVID-19 research. In vitro models include two-dimensional (2D) cultures of immortalized cell lines or primary cells and three-dimensional (3D) cultures derived from lung, alveoli, bronchi, and other organs. Although cell-based systems are economic and allow strict control of experimental variables, they do not always resemble physiological conditions. Thus, several in vivo models are being developed, including different strains of mice, hamsters, ferrets, dogs, cats, and non-human primates. In this review, we summarize the main models of SARS-CoV-2 infection developed so far and discuss their advantages, drawbacks and main uses.
Collapse
Affiliation(s)
- Rafael B. Rosa
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50740-465, Brazil; (R.B.R.); (J.C.F.d.N.)
- Rodents Animal Facilities Complex, Federal University of Uberlandia, Uberlandia 38400-902, Brazil;
| | - Willyenne M. Dantas
- Department of Chemistry, Federal Rural University of Pernambuco (UFRPE), Recife 52171-900, Brazil; (W.M.D.); (R.N.d.O.)
| | - Jessica C. F. do Nascimento
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50740-465, Brazil; (R.B.R.); (J.C.F.d.N.)
| | - Murilo V. da Silva
- Rodents Animal Facilities Complex, Federal University of Uberlandia, Uberlandia 38400-902, Brazil;
| | - Ronaldo N. de Oliveira
- Department of Chemistry, Federal Rural University of Pernambuco (UFRPE), Recife 52171-900, Brazil; (W.M.D.); (R.N.d.O.)
| | - Lindomar J. Pena
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50740-465, Brazil; (R.B.R.); (J.C.F.d.N.)
| |
Collapse
|
244
|
Nambulli S, Xiang Y, Tilston-Lunel NL, Rennick LJ, Sang Z, Klimstra WB, Reed DS, Crossland NA, Shi Y, Duprex WP. Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33655253 DOI: 10.1101/2021.02.23.432569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Globally there is an urgency to develop effective, low-cost therapeutic interventions for coronavirus disease 2019 (COVID-19). We previously generated the stable and ultrapotent homotrimeric Pittsburgh inhalable Nanobody 21 (PiN-21). Using Syrian hamsters that model moderate to severe COVID-19 disease, we demonstrate the high efficacy of PiN-21 to prevent and treat SARS-CoV-2 infection. Intranasal delivery of PiN-21 at 0.6 mg/kg protects infected animals from weight loss and substantially reduces viral burdens in both lower and upper airways compared to control. Aerosol delivery of PiN-21 facilitates deposition throughout the respiratory tract and dose minimization to 0.2 mg/kg. Inhalation treatment quickly reverses animals' weight loss post-infection and decreases lung viral titers by 6 logs leading to drastically mitigated lung pathology and prevents viral pneumonia. Combined with the marked stability and low production cost, this novel therapy may provide a convenient and cost-effective option to mitigate the ongoing pandemic.
Collapse
|
245
|
Wheatley AK, Juno JA, Wang JJ, Selva KJ, Reynaldi A, Tan HX, Lee WS, Wragg KM, Kelly HG, Esterbauer R, Davis SK, Kent HE, Mordant FL, Schlub TE, Gordon DL, Khoury DS, Subbarao K, Cromer D, Gordon TP, Chung AW, Davenport MP, Kent SJ. Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19. Nat Commun 2021; 12:1162. [PMID: 33608522 PMCID: PMC7896046 DOI: 10.1038/s41467-021-21444-5] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/19/2021] [Indexed: 01/05/2023] Open
Abstract
The durability of infection-induced SARS-CoV-2 immunity has major implications for reinfection and vaccine development. Here, we show a comprehensive profile of antibody, B cell and T cell dynamics over time in a cohort of patients who have recovered from mild-moderate COVID-19. Binding and neutralising antibody responses, together with individual serum clonotypes, decay over the first 4 months post-infection. A similar decline in Spike-specific CD4+ and circulating T follicular helper frequencies occurs. By contrast, S-specific IgG+ memory B cells consistently accumulate over time, eventually comprising a substantial fraction of circulating the memory B cell pool. Modelling of the concomitant immune kinetics predicts maintenance of serological neutralising activity above a titre of 1:40 in 50% of convalescent participants to 74 days, although there is probably additive protection from B cell and T cell immunity. This study indicates that SARS-CoV-2 immunity after infection might be transiently protective at a population level. Therefore, SARS-CoV-2 vaccines might require greater immunogenicity and durability than natural infection to drive long-term protection.
Collapse
Affiliation(s)
- Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jing J Wang
- Department of Immunology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Kevin J Selva
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kathleen M Wragg
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hannah G Kelly
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Samantha K Davis
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Helen E Kent
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Francesca L Mordant
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Timothy E Schlub
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - David L Gordon
- Department of Microbiology and Infectious Diseases, Flinders University and SA Pathology, Flinders Medical Centre, Adelaide, SA, Australia
| | - David S Khoury
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Deborah Cromer
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Tom P Gordon
- Department of Immunology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Immunology, SA Pathology, Flinders Medical Centre, Adelaide, SA, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia.
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
246
|
Pandamooz S, Jurek B, Meinung CP, Baharvand Z, Shahem-Abadi AS, Haerteis S, Miyan JA, Downing J, Dianatpour M, Borhani-Haghighi A, Salehi MS. Experimental Models of SARS-CoV-2 Infection: Possible Platforms to Study COVID-19 Pathogenesis and Potential Treatments. Annu Rev Pharmacol Toxicol 2021; 62:25-53. [PMID: 33606962 DOI: 10.1146/annurev-pharmtox-121120-012309] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In December 2019, a novel coronavirus crossed species barriers to infect humans and was effectively transmitted from person to person, leading including vaccines and antiviral drugs that could prevent or limit the burden or transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global health priority. It is thus of utmost importance to assess possible therapeutic strategies against SARS-CoV-2 using experimental models that recapitulate aspects of the human disease. Here, we review available models currently being developed and used to study SARS-CoV-2 infection and highlight their application to screen potential therapeutic approaches, including repurposed antiviral drugs and vaccines. Each identified model provides a valuable insight into SARS-CoV-2 cellular tropism, replication kinetics, and cell damage that could ultimately enhance understanding of SARS-CoV-2 pathogenesis and protective immunity. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Benjamin Jurek
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg 93053, Germany
| | - Carl-Philipp Meinung
- Department of Molecular and Behavioural Neurobiology, University of Regensburg, Regensburg 93053, Germany
| | - Zahra Baharvand
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg 93053, Germany
| | - Jaleel A Miyan
- Faculty of Biology, Medicine & Health, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - James Downing
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L2 2QP, United Kingdom
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran;
| | | | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran;
| |
Collapse
|
247
|
Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 2021; 184:861-880. [PMID: 33497610 PMCID: PMC7803150 DOI: 10.1016/j.cell.2021.01.007] [Citation(s) in RCA: 1274] [Impact Index Per Article: 318.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
Abstract
The adaptive immune system is important for control of most viral infections. The three fundamental components of the adaptive immune system are B cells (the source of antibodies), CD4+ T cells, and CD8+ T cells. The armamentarium of B cells, CD4+ T cells, and CD8+ T cells has differing roles in different viral infections and in vaccines, and thus it is critical to directly study adaptive immunity to SARS-CoV-2 to understand COVID-19. Knowledge is now available on relationships between antigen-specific immune responses and SARS-CoV-2 infection. Although more studies are needed, a picture has begun to emerge that reveals that CD4+ T cells, CD8+ T cells, and neutralizing antibodies all contribute to control of SARS-CoV-2 in both non-hospitalized and hospitalized cases of COVID-19. The specific functions and kinetics of these adaptive immune responses are discussed, as well as their interplay with innate immunity and implications for COVID-19 vaccines and immune memory against re-infection.
Collapse
Affiliation(s)
- Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| |
Collapse
|
248
|
Davies S, White GRT, Samuel A, Martin H. Dialectics and dilemmas arising from Covid-19 immunity testing: presenting a workforce management paradox. JOURNAL OF WORK-APPLIED MANAGEMENT 2021. [DOI: 10.1108/jwam-11-2020-0052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeCovid-19 has caused many businesses to rethink their short- and potentially long-term workforce operations. The use of lateral flow serology can provide a clinically convenient approach for the assessment of prior infection with Covid-19. However, its widespread adoption in organisations seeking to use it to test for workforce immunity is controversial and confusing. This paper aims to explore the paradoxical dilemmas and dialectics immunity workforce testing creates.Design/methodology/approachThis study involved capturing the ethnographical participation of a chief executive officer (CEO) dealing with the experience of managing the outcomes of Covid-19 workforce immunity testing. The aim was to take a snapshot in time of the CEO's empirical world, capturing their lived experiences to explore how management actions resulting from Covid-19 immunity testing can played out.FindingsProviding staff with immunity tests at first glance appears sensible, decent and a caring action to take. Nevertheless, once such knowledge is personalised by employees, they can, through dialectic dialogue, feel disadvantaged and harbour feelings of unfairness. Subsequently, this paper suggests that immunity testing may only serve to raise awareness and deepen the original management dilemma of whether testing is a worthwhile activity.Originality/valueThis paper aims to be amongst the first works to empirically explore the workforce management challenges that arise within small businesses within the service sector following the completion of Covid-19 immunity testing of their staff. It seeks to achieve this via utilising the robust theoretical framework of the paradox theory to examine Covid-19's impact upon small business workforce management thinking and practice.
Collapse
|
249
|
Koff WC, Schenkelberg T, Williams T, Baric RS, McDermott A, Cameron CM, Cameron MJ, Friemann MB, Neumann G, Kawaoka Y, Kelvin AA, Ross TM, Schultz-Cherry S, Mastro TD, Priddy FH, Moore KA, Ostrowsky JT, Osterholm MT, Goudsmit J. Development and deployment of COVID-19 vaccines for those most vulnerable. Sci Transl Med 2021; 13:13/579/eabd1525. [PMID: 33536277 DOI: 10.1126/scitranslmed.abd1525] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/15/2021] [Indexed: 12/20/2022]
Abstract
Development of safe and effective COVID-19 vaccines is a global priority and the best hope for ending the COVID-19 pandemic. Remarkably, in less than 1 year, vaccines have been developed and shown to be efficacious and are already being deployed worldwide. Yet, many challenges remain. Immune senescence and comorbidities in aging populations and immune dysregulation in populations living in low-resource settings may impede vaccine effectiveness. Distribution of vaccines among these populations where vaccine access is historically low remains challenging. In this Review, we address these challenges and provide strategies for ensuring that vaccines are developed and deployed for those most vulnerable.
Collapse
Affiliation(s)
- Wayne C Koff
- Human Vaccines Project, New York, NY 10119, USA. .,Human Immunomics Initiative, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Theodore Schenkelberg
- Human Vaccines Project, New York, NY 10119, USA.,Human Immunomics Initiative, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Tere Williams
- Department of Pathology, Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Adrian McDermott
- Vaccine Immunology Program, Vaccine Research Center, National Institutes of Health, Bethesda, MD 20814, USA
| | - Cheryl M Cameron
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mark J Cameron
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Matthew B Friemann
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD School of Medicine, Baltimore, MD 21201, USA
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.,Institute of Medical Science, University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan
| | - Alyson A Kelvin
- Departments of Pediatrics, Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Ted M Ross
- Animal Health Research Center, Center for Vaccines, Immunology and Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Stacey Schultz-Cherry
- Infectious Diseases Research, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Frances H Priddy
- Vaccine Alliance Aotearoa New Zealand, Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Kristine A Moore
- Center for Infectious Disease Research and Policy (CIDRAP), University of Minnesota, Minneapolis MN 55455, USA
| | - Julia T Ostrowsky
- Center for Infectious Disease Research and Policy (CIDRAP), University of Minnesota, Minneapolis MN 55455, USA
| | - Michael T Osterholm
- Center for Infectious Disease Research and Policy (CIDRAP), University of Minnesota, Minneapolis MN 55455, USA
| | - Jaap Goudsmit
- Human Vaccines Project, New York, NY 10119, USA.,Human Immunomics Initiative, Departments of Epidemiology, Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
250
|
Abstract
Reliable antibody testing against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has the potential to uncover the population-wide spread of coronavirus disease 2019 (COVID-19), which is critical for making informed healthcare and economic decisions. Here we review different types of antibody tests available for SARS-CoV-2 and their application for population-scale testing. Biases because of varying test accuracy, results of ongoing large-scale serological studies, and use of antibody testing for monitoring development of herd immunity are summarized. Although current SARS-CoV-2 antibody testing efforts have generated valuable insights, the accuracy of serological tests and the selection criteria for the tested cohorts need to be evaluated carefully.
Collapse
Affiliation(s)
- Thomas Vogl
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sigal Leviatan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|