201
|
Abstract
The intrinsic plasticity of RNA viruses can facilitate host range changes that lead to epidemics. However, evolutionary processes promoting cross-species transfers are poorly defined, especially for arthropod-borne viruses (arboviruses). In theory, cross species transfers by arboviruses may be constrained by their alternating infection of disparate hosts, where optimal replication in one host involves a fitness tradeoff for the other. Accordingly, freeing arboviruses from alternate replication via specialization in a single host should accelerate adaptation. This hypothesis has been tested by using cell culture model systems with inconclusive results. Therefore, we tested it using an in vivo system with Venezuelan equine encephalitis virus (VEEV), an emerging alphavirus of the Americas. VEEV serially passaged in mosquitoes exhibited increased mosquito infectivity and vertebrate-specialized strains produced higher viremias. Conversely, alternately passaged VEEV experienced no detectable fitness gains in either host. These results suggest that arbovirus adaptation and evolution is limited by obligate host alternation and predict that arboviral emergence via host range changes may be less frequent than that of single host animal RNA viruses.
Collapse
|
202
|
Nagao Y, Koelle K. Decreases in dengue transmission may act to increase the incidence of dengue hemorrhagic fever. Proc Natl Acad Sci U S A 2008; 105:2238-43. [PMID: 18250338 PMCID: PMC2538904 DOI: 10.1073/pnas.0709029105] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Indexed: 11/18/2022] Open
Abstract
Dengue hemorrhagic fever (DHF) is a potentially fatal manifestation of an infection with the mosquito-borne dengue virus. Because of the social and economic costs of DHF, many countries in Asia and South America have initiated public health measures aimed at vector control. Despite these measures, DHF incidence rates do not appear to be declining. The effectiveness of vector control in reducing dengue transmissibility has thereby been questioned. Here, we revisit this conclusion using epidemiological data from Thailand. We first show, with age incidence data, that dengue transmission rates have fallen since 1981; surprisingly, however, these declines are not associated with decreases in DHF incidence. Instead, district-level analyses indicate a nonmonotonic relationship between the basic reproductive number R0 and DHF incidence. To understand this relationship, we formulated three mathematical models, which differ in their assumptions of transient between-serotype cross-protection. Unlike the first two models, the previously unconsidered third model with clinical cross-protection can reproduce this nonmonotonic relationship. Simulation of this model with nonstationary R0 reproduces several previously unexplained patterns of dengue dynamics, including a transition from a approximately 2-year cycle to a approximately 4-year cycle and a transient trough in DHF incidence in provinces with rapid R0 declines. These results imply that DHF incidence can be effectively controlled with a sufficiently large reduction in R0 but that moderate reductions may be counterproductive. More broadly, these results show that assuming parameter stationarity in systems with approximate stationarity in disease incidence is unjustified and may result in missed opportunities to understand the drivers of disease variability.
Collapse
Affiliation(s)
- Yoshiro Nagao
- *Osaka University Graduate School of Medicine, 2-2 Yamadaoka Suita, Osaka 565-0871, Japan; and
| | - Katia Koelle
- Department of Biology, Duke University, Box 90338, Durham, NC 27708
| |
Collapse
|
203
|
The Chikungunya threat: an ecological and evolutionary perspective. Trends Microbiol 2008; 16:80-8. [PMID: 18191569 DOI: 10.1016/j.tim.2007.12.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 12/06/2007] [Accepted: 12/06/2007] [Indexed: 01/10/2023]
Abstract
Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus. Although primarily African and zoonotic, it is known chiefly for its non-African large urban outbreaks during which it is transmitted by the same vectors as those of Dengue viruses. Unlike Dengue viruses, CHIKV displays a re-emergence pattern that closely depends on long-distance migrations including recent re-immigrations from African (putatively zoonotic) sources. Genus-based differences also emerged when comparing the evolution of Dengue-related (Flaviviruses) and of CHIKV-related (Alphaviruses) arboviruses. In this review, we discuss current information on CHIKV genetics, ecology and human infection. Further investigations on African CHIKV ecology and the differences between Flavivirus and Alphavirus members in adaptive changes and evolutionary constraints are likely to help delineate the potential of further CHIKV (re-)emergence.
Collapse
|
204
|
Abstract
The mosquito Aedes aegypti is more widely dispersed now than at any time in the past, placing billions of humans at risk of infection with one or more of the four dengue viruses. This review presents and discusses information on mosquito-dengue infection dynamics and describes the prominent role that temperature and rainfall play in controlling dengue viral transmission including discussions of the effect of interannual climate variations and the predicted effect of global warming. Complementary human determinants of dengue epidemiology include viremia titer, variation in viremic period, enhanced viremias, and threshold viremia. Topics covered include epidemiological phenomena such as traveling waves, the generation of genetic diversity of dengue viruses following virgin soil introductions and in hyperendemic settings, and evidence for and against viral virulence as a determinant of the severity of dengue infections. Also described is the crucial role of monotypic and heterotypic herd immunity in shaping dengue epidemic behavior.
Collapse
|
205
|
|
206
|
Abstract
The four dengue viruses are transmitted in tropical countries that circle the globe. All can cause syndromes that are self-limited or severe. The common severe syndrome--dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS)--is characterised by sudden vascular permeability generated by cytokines released when T cells attack dengue-infected cells. Dengue 1 virus became prevalent in Hawaii where it was transmitted by Aedes albopictus, producing a classic virgin soil epidemic, with clinical disease seen largely in adults. In Cuba and Singapore, sequential dengue infections at long intervals produced unusually severe disease in adults. Evidence suggests that enhancing and cross-reactive neutralising antibodies regulate dengue epidemics and disease severity. Classic DHF/DSS arises during initial dengue infections in infants with low circulating amounts of maternal dengue antibodies, an observation that precludes an exclusive causal role for secondary T-cell responses. Here, I review and discuss data on clinical diagnosis and pathophysiology of vascular permeability and coagulopathy, parenteral treatment of DHF/DSS, and new laboratory tests.
Collapse
Affiliation(s)
- Scott B Halstead
- Supportive Research and Development, Pediatric Dengue Vaccine Initiative, Internal Vaccine Institute, Seoul, South Korea.
| |
Collapse
|
207
|
Vasilakis N, Holmes EC, Fokam EB, Faye O, Diallo M, Sall AA, Weaver SC. Evolutionary processes among sylvatic dengue type 2 viruses. J Virol 2007; 81:9591-5. [PMID: 17553878 PMCID: PMC1951459 DOI: 10.1128/jvi.02776-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 06/12/2007] [Indexed: 11/20/2022] Open
Abstract
Sylvatic dengue viruses (DENV) are transmitted in an enzootic cycle between nonhuman primates and arboreal Aedes mosquitoes in Southeast Asia and West Africa. Although previous analyses have revealed the evolutionary processes among endemic (human) DENV, little is known about viral evolution in the sylvatic cycle. Through an analysis of 14 complete coding regions of sylvatic Dengue type 2 virus sampled over a 33-year period, we show that both the rate of evolutionary change and the pattern of natural selection are similar among endemic and sylvatic DENV, although the latter have a uniquely high frequency of positive selection in the NS4B protein gene. Our findings support a recent cross-species transmission event and suggest the possibility of future DENV reemergence from the sylvatic cycle.
Collapse
Affiliation(s)
- Nikos Vasilakis
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | | | | | | | | | |
Collapse
|
208
|
Günther J, Martínez-Muñoz JP, Pérez-Ishiwara DG, Salas-Benito J. Evidence of vertical transmission of dengue virus in two endemic localities in the state of Oaxaca, Mexico. Intervirology 2007; 50:347-52. [PMID: 17700030 DOI: 10.1159/000107272] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 06/05/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dengue virus is spread in tropical areas of the world and is the causative agent of dengue fever and dengue hemorrhagic fever. It is horizontally transmitted to humans by infected Aedes mosquitoes, but it is also able to be vertically or transovarially transmitted to insect progeny. OBJECTIVE In this work, we analyzed the vertical transmission of dengue virus in Aedes aegypti mosquitoes collected in two endemic localities in the state of Oaxaca, Mexico. METHODS The collected larvae were grown in the laboratory and transovarial transmission of dengue virus, either in larvae or newly emerged mosquitoes, was investigated using a semi-nested reverse transcription-polymerase chain reaction method. RESULTS Although the presence of dengue virus in larvae could not be demonstrated, the viral genome was amplified in 4 out of 43 pools of in-cage born mosquitoes: DEN 2, 3 and 4 serotypes were detected in 2 pools from Tuxtepec and two from Juchitán. CONCLUSION The results presented here strongly suggest that dengue virus can be vertically transmitted in mosquitoes from Oaxaca, but more studies will be necessary to analyze the epidemiological impact of this mechanism of transmission.
Collapse
Affiliation(s)
- Jeannette Günther
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | | |
Collapse
|
209
|
Volk DE, Lee YC, Li X, Thiviyanathan V, Gromowski GD, Li L, R.Lamb A, Beasley DWC, Barrett ADT, Gorenstein DG. Solution structure of the envelope protein domain III of dengue-4 virus. Virology 2007; 364:147-54. [PMID: 17395234 PMCID: PMC1950219 DOI: 10.1016/j.virol.2007.02.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 01/09/2007] [Accepted: 02/07/2007] [Indexed: 11/15/2022]
Abstract
The disease dengue (DEN) is caused by four serologically related viruses termed DEN1, DEN2, DEN3 and DEN4. The structure of the ectodomain of the envelope protein has been determined previously for DEN2 and DEN3 viruses. Using NMR spectroscopic methods, we solved the solution structure of domain III (ED3), the receptor-binding domain, of the envelope protein of DEN4 virus, human strain 703-4. The structure shows that the nine amino acid changes in ED3 that separate the sylvatic and human DEN4 strains are surface exposed. Important structural differences between DEN4-rED3 and ED3 domains of DEN2, DEN3 and other flaviviruses are discussed.
Collapse
Affiliation(s)
- David E. Volk
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1157
| | - Yi-Chien Lee
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1157
| | - Xin Li
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1157
| | - Varatharasa Thiviyanathan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1157
| | - Gregory D. Gromowski
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-1157
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-1157
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1157
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555-1157
| | - Li Li
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-1157
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-1157
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1157
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555-1157
| | - Ashley R.Lamb
- School of Natural Sciences, University of Texas at Austin, Austin, TX
| | - David W. C. Beasley
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555-1157
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-1157
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1157
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555-1157
| | - Alan D. T. Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-1157
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-1157
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1157
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555-1157
| | - David G. Gorenstein
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1157
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1157
| |
Collapse
|
210
|
Ito M, Yamada KI, Takasaki T, Pandey B, Nerome R, Tajima S, Morita K, Kurane I. Phylogenetic analysis of dengue viruses isolated from imported dengue patients: possible aid for determining the countries where infections occurred. J Travel Med 2007; 14:233-44. [PMID: 17617845 DOI: 10.1111/j.1708-8305.2007.00130.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Molecular epidemiology of dengue viruses in endemic countries have been reported, but few were reported on the imported dengue cases among travelers. We analyzed dengue viruses isolated from imported dengue cases in Japan who were infected while traveling in endemic regions of the world. METHOD We sequenced the complete envelope (E) gene of 33 dengue virus strains isolated from patients returning from Asia, Oceania, South Pacific islands, and South America to Japan where no domestic dengue virus infection occurs. We then performed phylogenetic analysis to define the geographic origin of isolated viruses. Moreover, we compared the genomes of isolated dengue viruses with those of the strains already deposited in the GenBank database. RESULT The isolates are clustered into expected genotypes, confirming that the viruses originated from the visited countries. When patients visited more than one country during a single trip, the countries where the infection occurred were also determined for four of the six patients. There were three isolates, which were different genotypes from those previously isolated in visited countries. CONCLUSIONS The study demonstrates that many dengue virus strains are introduced into Japan and that phylogenic analysis of isolated dengue viruses is a unique technique to determine the countries where infection occurred. Travelers carry viruses and provide important and unique information for clarifying dengue virus trait and its dissemination.
Collapse
Affiliation(s)
- Mikako Ito
- Department of Virology 1, National Institute of Infectious Disease, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Dunham EJ, Holmes EC. Inferring the timescale of dengue virus evolution under realistic models of DNA substitution. J Mol Evol 2007; 64:656-61. [PMID: 17541679 DOI: 10.1007/s00239-006-0278-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 02/28/2007] [Indexed: 10/23/2022]
Abstract
Dengue virus (DENV) is the agent of the most widespread vector-borne viral disease of humans. To infer the timescale of DENV evolution with as much accuracy as possible, we compared, within a Bayesian Markov Chain Monte Carlo (MCMC) framework, estimates of phylogenetic tree length using both covarion and noncovarion models of molecular evolution, the latter also incorporating lineage-specific rate variation through a "relaxed" molecular clock. Using a data set of 32 complete genome sequences representing all four viral serotypes, we found evidence for covarion-like evolution at second codon positions in specific DENV genes, although rarely at the level of complete gene or genomes. Further, the covarion model had little effect on estimates of tree length and hence time to the Most Recent Common Ancestor (MRCA). We conclude that although covarion models can improve descriptions of the dynamics of amino acid substitution, they have little effect on estimates of the timescale of viral evolution, which in the case of DENV covers a period of no more than 2000 years.
Collapse
Affiliation(s)
- Eleca J Dunham
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
212
|
Abstract
Despite the wealth of data describing the ecological factors that underpin viral emergence, little is known about the evolutionary processes that allow viruses to jump species barriers and establish productive infections in new hosts. Understanding the evolutionary basis to virus emergence is therefore a key research goal and many of the debates in this area can be considered within the rigorous theoretical framework established by evolutionary genetics. In particular, the respective roles played by natural selection and genetic drift in shaping genetic diversity are also of fundamental importance for understanding the nature of viral emergence. Herein, we discuss whether there are evolutionary rules to viral emergence, and especially whether certain types of virus, or those that infect a particular type of host species, are more likely to emerge than others. We stress the complex interplay between rates of viral evolution and the ability to recognize cell receptors from phylogenetically divergent host species. We also emphasize the current lack of convincing data as to whether viral emergence requires adaptation to the new host species during the early stages of infection, or whether it is largely a chance process involving the transmission of a viral strain with the necessary genetic characteristics.
Collapse
Affiliation(s)
- James E. Childs
- Department of Epidemiology and Public Health and Center for Eco-Epidemiolog, Yale University School of Medicine, 60 College St, 208034, 06520-8034 New Haven, CT USA
| | - John S. Mackenzie
- Centre for Emerging Infectious Diseases, Australian Biosecurity Cooperative Research Centre, Curtin University of Technology, U1987, 6845 Perth, WA Australia
| | - Jürgen A. Richt
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center USDA, 2300 Dayton Ave Ames, 50010 IA USA
| |
Collapse
|
213
|
Vasilakis N, Shell EJ, Fokam EB, Mason PW, Hanley KA, Estes DM, Weaver SC. Potential of ancestral sylvatic dengue-2 viruses to re-emerge. Virology 2006; 358:402-12. [PMID: 17014880 PMCID: PMC3608925 DOI: 10.1016/j.virol.2006.08.049] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2006] [Revised: 08/10/2006] [Accepted: 08/30/2006] [Indexed: 12/31/2022]
Abstract
Dengue viruses (DENV) are the most important arboviral pathogens in tropical and subtropical regions throughout the world. DENV transmission includes both a sylvatic, enzootic cycle between nonhuman primates and arboreal mosquitoes of the genus Aedes, and an urban, endemic/epidemic cycle between Aedes aegypti, a mosquito with larval development in peridomestic water containers, and human reservoir hosts. All 4 serotypes of endemic DENV evolved independently from ancestral sylvatic viruses and have become both ecologically and evolutionarily distinct; this process may have involved adaptation to (i) peridomestic mosquito vectors and/or (ii) human reservoir hosts. To test the latter hypothesis, we assessed the ability of sylvatic and endemic DENV-2 strains, representing major genotypes from Southeast Asia, West Africa and the Americas, to replicate in two surrogate human model hosts: monocyte-derived, human dendritic cells (moDCs), and mice engrafted with human hepatoma cells. Although the various DENV-2 strains showed significant inter-strain variation in mean replication titers in both models, no overall difference between sylvatic and endemic strains was detected in either model. Our findings suggest that emergence of endemic DENV strains from ancestral sylvatic strains may not have required adaptation to replicate more efficiently in human reservoir hosts, implying that the potential for re-emergence of sylvatic dengue strains into the endemic cycle is high. The shared replication profiles of the American endemic and sylvatic strains suggest that American strains have maintained or regained the ancestral phenotype.
Collapse
Affiliation(s)
- Nikos Vasilakis
- Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Keiller Bldg, Rm 3.135, 301 University Blvd., Galveston, TX 77555-0609, USA
| | - Elisabeth J. Shell
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555-0372, USA
| | - Eric B. Fokam
- Department of Zoology and Botany, University of Buea, Buea, Cameroon, USA
| | - Peter W. Mason
- Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Keiller Bldg, Rm 3.135, 301 University Blvd., Galveston, TX 77555-0609, USA
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - D. Mark Estes
- Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Keiller Bldg, Rm 3.135, 301 University Blvd., Galveston, TX 77555-0609, USA
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Scott C. Weaver
- Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Keiller Bldg, Rm 3.135, 301 University Blvd., Galveston, TX 77555-0609, USA
- Corresponding author. Fax: +1 409 747 2455.
| |
Collapse
|
214
|
Pierro DJ, Salazar MI, Beaty BJ, Olson KE. Infectious clone construction of dengue virus type 2, strain Jamaican 1409, and characterization of a conditional E6 mutation. J Gen Virol 2006; 87:2263-2268. [PMID: 16847122 DOI: 10.1099/vir.0.81958-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A full-length infectious cDNA clone (ic) was constructed from the genome of the dengue virus type 2 (DENV-2) Jamaica83 1409 strain, pBAC1409ic, by using a bacterial artifical chromosome plasmid system. Infectious virus was generated and characterized for growth in cell culture and for infection in Aedes aegypti mosquitoes. During construction, an isoleucine to methionine (Ile-->Met) change was found at position 6 in the envelope glycoprotein sequence between low- and high-passage DENV-2 1409 strains. In vitro-transcribed genomic RNA of 1409ic with E6-Ile produced infectious virions following electroporation in mosquito cells, but not mammalian cells, while 1409ic RNA with an E6-Met mutation produced virus in both cell types. Moreover, DENV-2 1409 with the E6-Ile residue produced syncytia in C6/36 cell culture, whereas viruses with E6-Met did not. However, in vitro cell culture-derived growth-curve data and in vivo mosquito-infection rates revealed that none of the analysed DENV-2 strains differed from each other.
Collapse
Affiliation(s)
- Dennis J Pierro
- Arthropod-borne and Infectious Disease Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Foothills Research Campus, Fort Collins, CO 80523, USA
| | - Ma Isabel Salazar
- Arthropod-borne and Infectious Disease Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Foothills Research Campus, Fort Collins, CO 80523, USA
| | - Barry J Beaty
- Arthropod-borne and Infectious Disease Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Foothills Research Campus, Fort Collins, CO 80523, USA
| | - Ken E Olson
- Arthropod-borne and Infectious Disease Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Foothills Research Campus, Fort Collins, CO 80523, USA
| |
Collapse
|
215
|
Díaz FJ, Black WC, Farfán-Ale JA, Loroño-Pino MA, Olson KE, Beaty BJ. Dengue virus circulation and evolution in Mexico: a phylogenetic perspective. Arch Med Res 2006; 37:760-73. [PMID: 16824937 DOI: 10.1016/j.arcmed.2006.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 02/10/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Dengue is the most important arthropod-borne viral infection in the Americas. In the last decades a progressive increment in dengue severity has been observed in Mexico and other countries of the region. METHODS Molecular epidemiological studies were conducted to investigate the viral determinants of the emergence of epidemic dengue, dengue hemorrhagic fever and dengue shock syndrome as major public health problems in Mexico. Bayesian phylogenetic analyses were conducted to determine the origin, persistence and geographical dispersion of the four serotypes of dengue virus (DENV) isolated in Mexico between 1980 and 2002. Tests for natural selection were also conducted. RESULTS The origin of some, but not all, strains circulating in Mexico could be inferred. Frequent lineage replacements were observed and were likely due to stochastic events. In situ evolution was detected but not associated with natural selection. Recent changes in the incidence and severity of dengue were temporally associated with the introduction and circulation of different serotypes and genotypes of DENV. CONCLUSIONS Introduction of new DENV genotypes and serotypes is a major risk factor for epidemic dengue and severe disease. Increased surveillance for such introductions is critical to allow public health authorities to intervene in impending epidemics.
Collapse
Affiliation(s)
- Francisco J Díaz
- Arthropod-Borne and Infectious Disease Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1692, USA
| | | | | | | | | | | |
Collapse
|
216
|
Weaver SC. Host range, amplification and arboviral disease emergence. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 2006:33-44. [PMID: 16358422 DOI: 10.1007/3-211-29981-5_4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Etiologic agents of arboviral diseases are primarily zoonotic pathogens that are maintained in nature in cycles involving arthropod transmission among a variety of susceptible reservoir hosts. In the simplest form of human exposure, spillover occurs from the enzootic cycle when humans enter zoonotic foci and/or enzootic amplification increases circulation near humans. Examples include Eastern (EEEV) and Western equine encephalitis viruses (WEEV), as well as West Nile (WNV), St. Louis encephalitis (SLEV) and Yellow fever viruses. Spillover can involve direct transmission to humans by primary enzootic vectors (e.g. WNV, SLEV and WEEV) and/or bridge vectors with more catholic feeding preferences that include humans (e.g. EEEV). Some viruses, such as Rift Valley fever, Japanese encephalitis and Venezuelan equine encephalitis viruses (VEEV) undergo secondary amplification involving replication in livestock animals, resulting in greater levels of spillover to humans in rural settings. In the case of VEEV, secondary amplification involves equines and requires adaptive mutations in enzootic strains that allow for efficient viremia production. Two of the most important human arboviral pathogens, Yellow fever and dengue viruses (DENV), have gone one step further and adopted humans as their amplification hosts, allowing for urban disease. The ancestral forms of DENV, sylvatic viruses transmitted among nonhuman primate reservoir hosts by arboreal mosquitoes, adapted to efficiently infect the urban mosquito vectors Aedes aegypti and Ae. albopictus during the past few thousand years as civilizations arose. Comparative studies of the sylvatic and urban forms of DENV may elucidate the evolution of arboviral virulence and the prospects for DENV eradication should effective vaccines be implemented.
Collapse
Affiliation(s)
- S C Weaver
- Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA.
| |
Collapse
|
217
|
Bennett SN, Holmes EC, Chirivella M, Rodriguez DM, Beltran M, Vorndam V, Gubler DJ, McMillan WO. Molecular evolution of dengue 2 virus in Puerto Rico: positive selection in the viral envelope accompanies clade reintroduction. J Gen Virol 2006; 87:885-893. [PMID: 16528038 DOI: 10.1099/vir.0.81309-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dengue virusis a circumtropical, mosquito-borne flavivirus that infects 50–100 million people each year and is expanding in both range and prevalence. Of the four co-circulating viral serotypes (DENV-1 to DENV-4) that cause mild to severe febrile disease, DENV-2 has been implicated in the onset of dengue haemorrhagic fever (DHF) in the Americas in the early 1980s. To identify patterns of genetic change since DENV-2's reintroduction into the region, molecular evolution in DENV-2 from Puerto Rico (PR) and surrounding countries was examined over a 20 year period of fluctuating disease incidence. Structural genes (over 20 % of the viral genome), which affect viral packaging, host-cell entry and immune response, were sequenced for 91 DENV-2 isolates derived from both low- and high-prevalence years. Phylogenetic analyses indicated that DENV-2 outbreaks in PR have been caused by viruses assigned to subtype IIIb, originally from Asia. Variation amongst DENV-2 viruses in PR has since largely arisenin situ, except for a lineage-replacement event in 1994 that appears to have non-PR New World origins. Although most structural genes have remained relatively conserved since the 1980s, strong evidence was found for positive selection acting on a number of amino acid sites in the envelope gene, which have also been important in defining phylogenetic structure. Some of these changes are exhibited by the multiple lineages present in 1994, during the largest Puerto Rican outbreak of dengue, suggesting that they may have altered disease dynamics, although their functional significance will require further investigation.
Collapse
Affiliation(s)
- Shannon N Bennett
- Department of Biology, University of Puerto Rico - Rio Piedras, San Juan, PR, USA
| | - Edward C Holmes
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA
| | - Maritza Chirivella
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, PR, USA
| | - Dania M Rodriguez
- Department of Biology, University of Puerto Rico - Rio Piedras, San Juan, PR, USA
| | - Manuela Beltran
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, PR, USA
| | - Vance Vorndam
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, PR, USA
| | - Duane J Gubler
- Asia-Pacific Institute of Tropical Medicine and Infectious Diseases, Honolulu, HI, USA
| | - W Owen McMillan
- Department of Biology, University of Puerto Rico - Rio Piedras, San Juan, PR, USA
| |
Collapse
|
218
|
Anishchenko M, Bowen RA, Paessler S, Austgen L, Greene IP, Weaver SC. Venezuelan encephalitis emergence mediated by a phylogenetically predicted viral mutation. Proc Natl Acad Sci U S A 2006; 103:4994-9. [PMID: 16549790 PMCID: PMC1458783 DOI: 10.1073/pnas.0509961103] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RNA viruses are notorious for their genetic plasticity and propensity to exploit new host-range opportunities, which can lead to the emergence of human disease epidemics such as severe acute respiratory syndrome, AIDS, dengue, and influenza. However, the mechanisms of host-range change involved in most of these viral emergences, particularly the genetic mechanisms of adaptation to new hosts, remain poorly understood. We studied the emergence of Venezuelan equine encephalitis virus (VEEV), an alphavirus pathogen of people and equines that has had severe health and economic effects in the Americas since the early 20th century. Between epidemics, VEE disappears for periods up to decades, and the viral source of outbreaks has remained enigmatic. Combined with phylogenetic analyses to predict mutations associated with a 1992-1993 epidemic, we used reverse genetic studies to identify an envelope glycoprotein gene mutation that mediated emergence. This mutation allowed an enzootic, equine-avirulent VEEV strain, which circulates among rodents in nearby forests to adapt for equine amplification. RNA viruses including alphaviruses exhibit high mutation frequencies. Therefore, ecological and epidemiological factors probably constrain the frequency of VEE epidemics more than the generation, via mutation, of amplification-competent (high equine viremia) virus strains. These results underscore the ability of RNA viruses to alter their host range, virulence, and epidemic potential via minor genetic changes. VEE also demonstrates the unpredictable risks to human health of anthropogenic changes such as the introduction of equines and humans into habitats that harbor zoonotic RNA viruses.
Collapse
Affiliation(s)
- Michael Anishchenko
- *Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609; and
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Slobodan Paessler
- *Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609; and
| | - Laura Austgen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Ivorlyne P. Greene
- *Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609; and
| | - Scott C. Weaver
- *Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
219
|
Zhang C, Mammen MP, Chinnawirotpisan P, Klungthong C, Rodpradit P, Monkongdee P, Nimmannitya S, Kalayanarooj S, Holmes EC. Clade replacements in dengue virus serotypes 1 and 3 are associated with changing serotype prevalence. J Virol 2006; 79:15123-30. [PMID: 16306584 PMCID: PMC1316048 DOI: 10.1128/jvi.79.24.15123-15130.2005] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The evolution of dengue virus (DENV) is characterized by phylogenetic trees that have a strong temporal structure punctuated by dramatic changes in clade frequency. To determine the cause of these large-scale phylogenetic patterns, we examined the evolutionary history of DENV serotype 1 (DENV-1) and DENV-3 in Thailand, where gene sequence and epidemiological data are relatively abundant over a 30-year period. We found evidence for the turnover of viral clades in both serotypes, most notably in DENV-1, where a major clade replacement event took place in genotype I during the mid-1990s. Further, when this clade replacement event was placed in the context of changes in serotype prevalence in Thailand, a striking pattern emerged; an increase in DENV-1 clade diversity was associated with an increase in the abundance of this serotype and a concomitant decrease in DENV-4 prevalence, while clade replacement was associated with a decline in DENV-1 prevalence and a rise of DENV-4. We postulate that intraserotypic genetic diversification proceeds at times of relative serotype abundance and that replacement events can result from differential susceptibility to cross-reactive immune responses.
Collapse
Affiliation(s)
- Chunlin Zhang
- Department of Virology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Joshi V, Sharma RC, Sharma Y, Adha S, Sharma K, Singh H, Purohit A, Singhi M. Importance of socioeconomic status and tree holes in distribution of Aedes mosquitoes (Diptera: Culicidae) in Jodhpur, Rajasthan, India. JOURNAL OF MEDICAL ENTOMOLOGY 2006; 43:330-6. [PMID: 16619619 DOI: 10.1603/0022-2585(2006)043[0330:iossat]2.0.co;2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Immature Aedes mosquitoes were found in domestic, peridomestic, and tree hole habitats within three socioeconomic strata of Jodhpur, a city within an arid area of Rajasthan, India, endemic for dengue. Peridomestic habitats served as a persistent source of Aedes vectors, especially those used for watering cows for religious reasons that were located within high socioeconomic areas. Domestic (indoor) containers within low socioeconomic strata showed a higher container index (27.0%) than periurban areas with cattle sheds (14.3%) or high socioeconomic areas (18.1%). Mosquitoes were collected in tree holes at zoos and gardens supporting several species of monkeys. Six of 67 Aedes albopictus Skuse reared from immatures collected in tree holes tested positive for dengue antigen acquired through vertical transmission, possibly indicating a persistence mechanism for dengue virus within an urban environment.
Collapse
Affiliation(s)
- Vinod Joshi
- Desert Medicine Research Centre, Indian Council of Medical Research, New Pali Road-Jodhpur-342 005, India
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Abstract
Arthropod-borne viruses (arboviruses) generally require horizontal transmission by arthropod vectors among vertebrate hosts for their natural maintenance. This requirement for alternate replication in disparate hosts places unusual evolutionary constraints on these viruses, which have probably limited the evolution of arboviruses to only a few families of RNA viruses (Togaviridae, Flaviviridae, Bunyaviridae, Rhabdoviridae, Reoviridae, and Orthomyxoviridae) and a single DNA virus. Phylogenetic studies have suggested the dominance of purifying selection in the evolution of arboviruses, consistent with constraints imposed by differing replication environments and requirements in arthropod and vertebrate hosts. Molecular genetic studies of alphaviruses and flaviviruses have also identified several mutations that effect differentially the replication in vertebrate and mosquito cells, consistent with the view that arboviruses must adopt compromise fitness characteristics for each host. More recently, evidence of positive selection has also been obtained from these studies. However, experimental model systems employing arthropod and vertebrate cell cultures have yielded conflicting conclusions on the effect of alternating host infections, with host specialization inconsistently resulting in fitness gains or losses in the bypassed host cells. Further studies using in vivo systems to study experimental arbovirus evolution are critical to understanding and predicting disease emergence, which often results from virus adaptation to new vectors or amplification hosts. Reverse genetic technologies that are now available for most arbovirus groups should be exploited to test assumptions and hypotheses derived from retrospective phylogenetic approaches.
Collapse
Affiliation(s)
- S C Weaver
- Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA.
| |
Collapse
|
222
|
Abstract
The need for models of dengue disease has reached a pinnacle as the transmission of this mosquito-borne virus has increased dramatically. Little is known about the mechanisms that lead to dengue fever and its more severe form, dengue hemorrhagic fever; this is owing to the fact that only humans show signs of disease. In the past 5 years, research has better identified the initial target cells of infection, and this has led to the development of models of infection in primary human cell cultures. Mouse-human chimeras, containing these target cells, have also led to progress in developing animal models. These advances should soon end the stalemate in testing antivirals and vaccine preparations that had necessarily been done in incomplete or irrelevant models.
Collapse
Affiliation(s)
- Dennis A. Bente
- Southwest Foundation for Biomedical Research, 7620 NW Loop 410, San Antonio, TX 78227, USA
| | - Rebeca Rico-Hesse
- Southwest Foundation for Biomedical Research, 7620 NW Loop 410, San Antonio, TX 78227, USA
| |
Collapse
|
223
|
Kuno G, Chang GJJ. Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev 2005; 18:608-37. [PMID: 16223950 PMCID: PMC1265912 DOI: 10.1128/cmr.18.4.608-637.2005] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Among animal viruses, arboviruses are unique in that they depend on arthropod vectors for transmission. Field research and laboratory investigations related to the three components of this unique mode of transmission, virus, vector, and vertebrate host, have produced an enormous amount of valuable information that may be found in numerous publications. However, despite many reviews on specific viruses, diseases, or interests, a systematic approach to organizing the available information on all facets of biological transmission and then to interpret it in the context of the evolutionary process has not been attempted before. Such an attempt in this review clearly demonstrates tremendous progress made worldwide to characterize the viruses, to comprehend disease transmission and pathogenesis, and to understand the biology of vectors and their role in transmission. The rapid progress in molecular biologic techniques also helped resolve many virologic puzzles and yielded highly valuable data hitherto unavailable, such as characterization of virus receptors, the genetic basis of vertebrate resistance to viral infection, and phylogenetic evidence of the history of host range shifts in arboviruses. However, glaring gaps in knowledge of many critical subjects, such as the mechanism of viral persistence and the existence of vertebrate reservoirs, are still evident. Furthermore, with the accumulated data, new questions were raised, such as evolutionary directions of virus virulence and of host range. Although many fundamental questions on the evolution of this unique mode of transmission remained unresolved in the absence of a fossil record, available observations for arboviruses and the information derived from studies in other fields of the biological sciences suggested convergent evolution as a plausible process. Overall, discussion of the diverse range of theories proposed and observations made by many investigators was found to be highly valuable for sorting out the possible mechanism(s) of the emergence of arboviral diseases.
Collapse
Affiliation(s)
- Goro Kuno
- Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA.
| | | |
Collapse
|
224
|
Pires Neto RJ, Lima DM, de Paula SO, Lima CM, Rocco IM, Fonseca BAL. Molecular epidemiology of type 1 and 2 dengue viruses in Brazil from 1988 to 2001. Braz J Med Biol Res 2005; 38:843-52. [PMID: 15933777 DOI: 10.1590/s0100-879x2005000600005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dengue is a mosquito-borne viral infection that in recent decades has become a major international public health concern. Epidemic dengue fever reemerged in Brazil in 1981. Since 1990 more than one dengue virus serotype has been circulating in this tropical country and increasing rates of dengue hemorrhagic fever and dengue shock syndrome have been detected every year. Some evidence supports the association between the introduction of a new serotype and/or genotype in a region and the appearance of dengue hemorrhagic fever. In order to study the evolutionary relationships and possible detection of the introduction of new dengue virus genotypes in Brazil in the last years, we analyzed partial nucleotide sequences of 52 Brazilian samples of both dengue type 1 and dengue type 2 isolated from 1988 to 2001 from highly endemic regions. A 240-nucleotide-long sequence from the envelope/nonstructural protein 1 gene junction was used for phylogenetic analysis. After comparing the nucleotide sequences originally obtained in this study to those previously studied by others, and analyzing the phylogenetic trees, we conclude that, after the initial introduction of the currently circulating dengue-1 and dengue-2 genotypes in Brazil, there has been no evidence of introduction of new genotypes since 1988. The increasing number of dengue hemorrhagic fever cases seen in Brazil in the last years is probably associated with secondary infections or with the introduction of new serotypes but not with the introduction of new genotypes.
Collapse
Affiliation(s)
- R J Pires Neto
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | | | | | | | |
Collapse
|
225
|
Mota J, Acosta M, Argotte R, Figueroa R, Méndez A, Ramos C. Induction of protective antibodies against dengue virus by tetravalent DNA immunization of mice with domain III of the envelope protein. Vaccine 2005; 23:3469-76. [PMID: 15837370 DOI: 10.1016/j.vaccine.2004.12.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 12/20/2004] [Accepted: 12/21/2004] [Indexed: 11/30/2022]
Abstract
Dengue fever is a growing public health concern around the world and despite vaccine development efforts, there are currently no effective dengue vaccines. In the present study we report the induction of protective antibodies against dengue virus by DNA immunization with domain III (DIII) region of the envelope protein (E) in a mouse model. The DIII region of all four dengue virus serotypes were cloned separately into pcDNA 3 plasmid. Protein expression was tested in COS-7 cells. Each plasmid, or a tetravalent combination, were used to immunize BALB/c mice by intramuscular route. Presence of specific antibodies was evaluated by ELISA, and neutralizing antibodies were tested using a cytopathogenic effect (CPE) inhibition assay in BHK-21 cells, as well as in newborn mice challenged intracranially with dengue 2 virus. Mice immunized with individual DIII constructs or the tetravalent formulation developed antibodies against each corresponding dengue serotype. Antibody titers by ELISA were similar for all serotypes and no significant differences were observed when boosters were administered, although antibody responses were dose-dependent. CPE inhibition assays using Den-2 virus showed neutralization titers of 1:10 in mice immunized with individual DIII plasmid or those immunized with the tetravalent formulations. 43% of newborn mice challenged with Den-2 in combination with sera from mice immunized with Den-2 DIII plasmid were protected, whereas sera from mice immunized with the tetravalent formulation conferred 87% protection. Our results suggest that DIII can be used as a tetravalent DNA formulation to induce neutralizing and protective antibodies against dengue virus.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Dengue/immunology
- Dengue/prevention & control
- Dengue Virus/drug effects
- Dengue Virus/genetics
- Dengue Virus/immunology
- Enzyme-Linked Immunosorbent Assay
- Gene Products, env/genetics
- Gene Products, env/immunology
- Immunization
- Mice
- Vaccines, Combined/administration & dosage
- Vaccines, Combined/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/classification
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Javier Mota
- Departamento de Arbovirus, Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa María Ahuacatitlán, CP 62508 Cuernavaca Morelos, México.
| | | | | | | | | | | |
Collapse
|
226
|
Halstead SB, Heinz FX, Barrett ADT, Roehrig JT. Dengue virus: molecular basis of cell entry and pathogenesis, 25-27 June 2003, Vienna, Austria. Vaccine 2005; 23:849-56. [PMID: 15603884 DOI: 10.1016/j.vaccine.2004.03.069] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 03/15/2004] [Accepted: 03/16/2004] [Indexed: 12/01/2022]
Abstract
Multivalent dengue vaccines now in late stage development pose unique vaccine safety challenges in that primary or secondary vaccine failures might place vaccines at risk to antibody-dependent enhanced (ADE) wild-type dengue infections. This conference was organized to address this unique vaccine safety issue. New data were presented on the structure of dengue and other flaviviruses, the cellular receptors of dengue virus for biologically relevant cells, dengue viral cell entry mechanisms and mechanisms underlying in vivo protection, neutralization and enhancement of dengue virus infection. It was concluded that a targeted research program should aim to develop an in vitro test to characterize persons immunized with dengue vaccines as completely or partially protected. Achievement of this aim will require a better understanding of the basic mechanisms by which dengue viruses recognize, attach, enter and infect relevant human cells and how antibodies protect against dengue infections.
Collapse
Affiliation(s)
- Scott B Halstead
- Pediatric Dengue Vaccine Initiative, 5824 Edson Lane, Rockville, MD 20852, USA.
| | | | | | | |
Collapse
|
227
|
Ito M, Takasaki T, Yamada KI, Nerome R, Tajima S, Kurane I. Development and evaluation of fluorogenic TaqMan reverse transcriptase PCR assays for detection of dengue virus types 1 to 4. J Clin Microbiol 2005; 42:5935-7. [PMID: 15583346 PMCID: PMC535301 DOI: 10.1128/jcm.42.12.5935-5937.2004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fluorogenic TaqMan reverse transcriptase PCR (RT-PCR) assay was developed for detecting each of the dengue virus (DV) types 1 to 4. DV genome was detected in all the 35 serum samples from confirmed dengue cases by the TaqMan RT-PCR, although it was not detected in 13 and 21% by conventional type-specific and cross-reactive RT-PCR, respectively.
Collapse
Affiliation(s)
- Mikako Ito
- Department of Virology 1, National Institute of Infectious Disease, 1-23-1 Toyama, Shinjyuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | |
Collapse
|
228
|
Moncayo AC, Fernandez Z, Ortiz D, Diallo M, Sall A, Hartman S, Davis CT, Coffey L, Mathiot CC, Tesh RB, Weaver SC. Dengue emergence and adaptation to peridomestic mosquitoes. Emerg Infect Dis 2004; 10:1790-6. [PMID: 15504265 PMCID: PMC3323252 DOI: 10.3201/eid1010.030846] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phylogenetic evidence suggests that endemic and epidemic dengue viruses (DENV), transmitted among humans by the anthropophilic mosquitoes Aedes aegypti and Ae. albopictus, emerged when ancestral, sylvatic DENV transmitted among nonhuman primates by sylvatic Aedes mosquitoes adapted to these peridomestic vectors. We tested this hypothesis by retrospectively examining evidence for adaptation of epidemic and endemic versus sylvatic strains of DENV-2 to Ae. albopictus and Ae. aegypti. First and second-generation offspring of mosquitoes from different geographic regions in the Americas and Southeast Asia were tested for their susceptibility to epidemic/endemic and sylvatic DENV-2 isolates from West Africa, Southeast Asia, and Oceania. Both Aedes species were highly susceptible (up to 100% infected) to endemic/epidemic DENV-2 strains after ingesting artificial blood meals but significantly less susceptible (as low as 0%) to sylvatic DENV-2 strains. Our findings support the hypothesis that adaptation to peridomestic mosquito vectors mediated dengue emergence from sylvatic progenitor viruses.
Collapse
|
229
|
Klungthong C, Zhang C, Mammen MP, Ubol S, Holmes EC. The molecular epidemiology of dengue virus serotype 4 in Bangkok, Thailand. Virology 2004; 329:168-79. [PMID: 15476884 DOI: 10.1016/j.virol.2004.08.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 07/08/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
Dengue represents a major public health problem in Thailand, with all four viral serotypes co-circulating. Dengue virus serotype 4 (DENV-4) is the least frequently sampled serotype, although one that is often associated with hemorrhagic fever during secondary infection. To determine the evolutionary forces shaping the genetic diversity of DENV-4, and particularly whether its changing prevalence could be attributed to instances of adaptive evolution in the viral genome, we undertook a large-scale molecular epidemiological analysis of DENV-4 in Bangkok, Thailand, using both E gene and complete coding region sequences. This analysis revealed extensive genetic diversity within a single locality at a single time, including the discovery of a new and divergent genotype of DENV-4, as well as a pattern of continual lineage turnover. We also recorded the highest average rate of evolutionary change for this serotype, at 1.072 x 10(-3) nucleotide substitutions per site, per year. However, despite this abundant genetic variation, there was no evidence for adaptive evolution in any gene, codon, or lineage of DENV-4, with the highest rate of nonsynonymous substitution observed in NS2A. Consequently, the rapid turnover of DENV-4 lineages through time is most likely the consequence of a high rate of deleterious mutation in the viral genome coupled to seasonal fluctuations in the size of the vector population.
Collapse
Affiliation(s)
- Chonticha Klungthong
- Department of Virology, U.S. Army Medical Component-Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
230
|
Abstract
Many pandemics have been attributed to the ability of some RNA viruses to change their host range to include humans. Here, we review the mechanisms of disease emergence that are related to the host-range specificity of selected mosquito-borne alphaviruses and flaviviruses. We discuss viruses of medical importance, including Venezuelan equine and Japanese encephalitis viruses, dengue viruses and West Nile viruses.
Collapse
Affiliation(s)
- Scott C Weaver
- Department of Pathology, Microbiology and Immunology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA.
| | | |
Collapse
|
231
|
Foster JE, Bennett SN, Carrington CVF, Vaughan H, McMillan WO. Phylogeography and molecular evolution of dengue 2 in the Caribbean basin, 1981-2000. Virology 2004; 324:48-59. [PMID: 15183052 DOI: 10.1016/j.virol.2004.03.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 01/04/2004] [Accepted: 03/09/2004] [Indexed: 11/19/2022]
Abstract
We sequenced the envelope (E) genes of 59 DEN-2 isolates collected from ten Caribbean islands, six South American countries, and two Central American countries between 1981 and 2000, a period characterized by hyperendemicity and increased incidence of severe dengue. Fifty-two isolates belonged to "American/Asian" subtype IIIb, possessing a characteristic polar residue at envelope aa position 390 (N [n = 48] or S [n = 4]) common to that group. Six isolates from Trinidad (1981), Honduras (1991 [4]), and El Salvador (1987) fell into the "Native American" subtype V (D at aa 390), and one from Honduras (1986) belonged to "Asian" subtype I. The data suggest that after its first isolation in the Caribbean in 1981, genotype IIIb spread throughout the Americas and effectively replaced subtype V throughout the Caribbean basin. The strain also evolved into several distinct lineages, based on substitutions in the E glycoprotein (amino acids 91 and 131), two of which were still in circulation in 2000. Interestingly, a molecular clock did not fit the data well, suggesting that other sources of rate variation, such as differential selection or differences in effective population sizes, may exist among lineages. Our results indicate the importance of large temporal- and geographical-scale phylogenetic studies in understanding disease dynamics, particularly where replacements between regions can occur.
Collapse
Affiliation(s)
- Jerome E Foster
- Department of Preclinical Sciences, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | | | | | | | | |
Collapse
|
232
|
Santos CLS, Sallum MAM, Foster PG, Rocco IM. Molecular analysis of the dengue virus type 1 and 2 in Brazil based on sequences of the genomic envelope-nonstructural protein 1 junction region. Rev Inst Med Trop Sao Paulo 2004; 46:145-52. [PMID: 15286818 DOI: 10.1590/s0036-46652004000300005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The genomic sequences of the Envelope-Non-Structural protein 1 junction region (E/NS1) of 84 DEN-1 and 22 DEN-2 isolates from Brazil were determined. Most of these strains were isolated in the period from 1995 to 2001 in endemic and regions of recent dengue transmission in São Paulo State. Sequence data for DEN-1 and DEN-2 utilized in phylogenetic and split decomposition analyses also include sequences deposited in GenBank from different regions of Brazil and of the world. Phylogenetic analyses were done using both maximum likelihood and Bayesian approaches. Results for both DEN-1 and DEN-2 data are ambiguous, and support for most tree bipartitions are generally poor, suggesting that E/NS1 region does not contain enough information for recovering phylogenetic relationships among DEN-1 and DEN-2 sequences used in this study. The network graph generated in the split decomposition analysis of DEN-1 does not show evidence of grouping sequences according to country, region and clades. While the network for DEN-2 also shows ambiguities among DEN-2 sequences, it suggests that Brazilian sequences may belong to distinct subtypes of genotype III.
Collapse
|
233
|
Affiliation(s)
- Hiroshi Ushijima
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|
234
|
Gould EA, de Lamballerie X, Zanotto PM, Holmes EC. Origins, evolution, and vector/host coadaptations within the genus Flavivirus. Adv Virus Res 2004; 59:277-314. [PMID: 14696332 DOI: 10.1016/s0065-3527(03)59008-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Although viruses in the genus Flavivirus share complex antigenic interrelationships, they can be divided into four phylogenetic/ecological groups: two mosquito-borne groups, a tick-borne group, and nonvectored viruses. These divisions largely reflect the selective constraints imposed on the viruses by the vertebrate hosts, the invertebrate vectors, and the associated ecologies. Phylogenetic trees based on the flavivirus genetic sequence show characteristic branching patterns that reflect these groupings. This review describes the evolution and possible origins of individual flaviviruses, correlating ecological and epidemiological characteristics with their phylogenies and geographic dispersal. It will also become apparent that many of the phylogenetic lineages that define species diverged relatively recently, and the subsequent dispersal and epidemiology of these viruses have therefore been significantly influenced by increasing human population densities and activities such as recreation, urbanization, land reclamation, transportation, and deforestation. This review also considers some of the likely implications of persistent/chronic infections in relation to virus dispersal and recombination between related flaviviruses on phylogenetic analysis and vaccine development strategies.
Collapse
Affiliation(s)
- Ernest A Gould
- Institute of Virology and Environmental Microbiology, Oxford University, Oxford, OX1 3SR, United Kingdom
| | | | | | | |
Collapse
|
235
|
Abstract
The evolution of dengue viruses has had a major impact on their virulence for humans and on the epidemiology of dengue disease around the world. Although antigenic and genetic differences in virus strains had become evident, it is mainly due to the lack of animal models of disease that has made it difficult to detect differences in virulence of dengue viruses. However, phylogenetic studies of many different dengue virus samples have led to the association between specific genotypes (within serotypes) and the presentation of more or less severe disease. Currently, dengue viruses can be classified as being of epidemiologically low, medium, or high impact; i.e., some viruses may remain in sylvatic cycles of little or low transmissibility to humans, others produce dengue fever (DF) only, and some genotypes have been associated with the potential to cause the more severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) in addition to DF. Although the factors that contribute to dengue virus epidemiology are complex, studies have suggested that specific viral structures may contribute to increased replication in human target cells and to increased transmission by the mosquito vector; however, the immune status and possibly the genetic background of the host are also determinants of virulence or disease presentation. As to the question of whether dengue viruses are evolving toward virulence as they continue to spread throughout the world, phylogenetic and epidemiological analyses suggest that the more virulent genotypes are now displacing those that have lower epidemiological impact; there is no evidence for the transmission of antigenically aberrant, new strains.
Collapse
Affiliation(s)
- Rebeca Rico-Hesse
- Southwest Foundation for Biomedical Research, San Antonio, Texas 78227, USA
| |
Collapse
|
236
|
Thomas SJ, Strickman D, Vaughn DW. Dengue epidemiology: virus epidemiology, ecology, and emergence. Adv Virus Res 2004; 61:235-89. [PMID: 14714434 DOI: 10.1016/s0065-3527(03)61006-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stephen J Thomas
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | |
Collapse
|
237
|
Affiliation(s)
- Scott B Halstead
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| |
Collapse
|
238
|
Affiliation(s)
- Christine Chevillon
- Evolution des Systèmes Symbiotiques (CEPM, UMR CNRS-IRD 9926), 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France.
| | | |
Collapse
|
239
|
Vázquez S, Lemos G, Pupo M, Ganzón O, Palenzuela D, Indart A, Guzmán MG. Diagnosis of dengue virus infection by the visual and simple AuBioDOT immunoglobulin M capture system. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2003; 10:1074-7. [PMID: 14607869 PMCID: PMC262456 DOI: 10.1128/cdli.10.6.1074-1077.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Revised: 12/03/2002] [Accepted: 08/12/2003] [Indexed: 11/20/2022]
Abstract
The Dengue IgM Capture ELISA (MAC-ELISA) is the immunoenzymatic system recommended by the Pan American Health Organization and the World Health Organization for the serological diagnosis of dengue virus infection due to its high sensitivity, ease of performance, and use of a single acute-phase serum sample. However, tests with this enzyme-linked immunosorbent assay (ELISA) system are time-consuming and require equipment for washing, incubation, and reading of the results. AuBioDOT is a multistep visual diagnostic immunoassay that uses technology based on the immunoglobulin M (IgM) capture ELISA principle. This system uses white polyethylene opaque plates as the solid phase, colloidal gold as the marker, and silver ion amplification. It does not require special equipment, it is totally manually operated, and it can be performed in less than 1 h. The sensitivity and specificity of AuBioDOT for the detection of anti-dengue virus IgM antibodies were studied with a panel of 336 serum samples (150 serum samples from patients with suspected or serologically confirmed dengue virus infection, 186 serum samples from healthy blood donors and patients without dengue virus infection). The results were compared with those obtained by the MAC-ELISA. A sensitivity of 97.7% and a specificity of 97.1% were obtained. The concordance of the two tests was 97.3%, with a kappa index of 0.94. The application of AuBioDOT for the detection of anti-dengue virus IgM antibodies is recommended as an alternative method for the diagnosis of dengue virus infection, both for clinical diagnosis and for seroepidemiological surveillance. The system is useful under field conditions and in laboratories and requires little equipment.
Collapse
Affiliation(s)
- Susana Vázquez
- Pedro Kourí Institute, PAHO/WHO Collaborating Center for Viral Diseases, Havana City, Cuba.
| | | | | | | | | | | | | |
Collapse
|
240
|
Messer WB, Gubler DJ, Harris E, Sivananthan K, de Silva AM. Emergence and global spread of a dengue serotype 3, subtype III virus. Emerg Infect Dis 2003; 9:800-9. [PMID: 12899133 PMCID: PMC3023445 DOI: 10.3201/eid0907.030038] [Citation(s) in RCA: 313] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Over the past two decades, dengue virus serotype 3 (DENV-3) has caused unexpected epidemics of dengue hemorrhagic fever (DHF) in Sri Lanka, East Africa, and Latin America. We used a phylogenetic approach to evaluate the roles of virus evolution and transport in the emergence of these outbreaks. Isolates from these geographically distant epidemics are closely related and belong to DENV-3, subtype III, which originated in the Indian subcontinent. The emergence of DHF in Sri Lanka in 1989 correlated with the appearance there of a new DENV-3, subtype III variant. This variant likely spread from the Indian subcontinent into Africa in the 1980s and from Africa into Latin America in the mid-1990s. DENV-3, subtype III isolates from mild and severe disease outbreaks formed genetically distinct groups, which suggests a role for viral genetics in DHF.
Collapse
|
241
|
Twiddy SS, Pybus OG, Holmes EC. Comparative population dynamics of mosquito-borne flaviviruses. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2003; 3:87-95. [PMID: 12809802 DOI: 10.1016/s1567-1348(02)00153-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Among the members of the genus Flavivirus are several important human pathogens, including the dengue (DEN) and Japanese encephalitis (JE) viruses. From the analysis of gene sequence data of samples of these virus populations it is possible to infer phylogenetic relationships, which in turn can yield important epidemiological information, including their demographic history in humans. In this study, we use a recently developed method, based on coalescent theory, to infer the population dynamics of a variety of mosquito-borne flaviviruses. Our study involves the testing of alternative hypotheses, the estimation of confidence intervals around demographic model parameter values, and the placing of the maximum likelihood (ML) demographic model into a "real time" epidemiological history. We reveal that all the Flavivirus populations studied are growing at an exponential rate, with the rates of population growth of dengue virus serotypes 2 and 3 increasing rapidly in the recent past, and that of Japanese encephalitis virus changing from constant population size to exponential growth within the last century. We therefore demonstrate that the use of these coalescent methods may be extremely valuable in monitoring responses to interventions such as vaccination or vector control.
Collapse
Affiliation(s)
- S Susanna Twiddy
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | | | | |
Collapse
|
242
|
Armstrong PM, Rico-Hesse R. Efficiency of dengue serotype 2 virus strains to infect and disseminate in Aedes aegypti. Am J Trop Med Hyg 2003; 68:539-44. [PMID: 12812340 PMCID: PMC3050023 DOI: 10.4269/ajtmh.2003.68.539] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Dengue serotype 2 (DEN-2) viruses with the potential to cause dengue hemorrhagic fever have been shown to belong to the Southeast (SE) Asian genotype. These viruses appear to be rapidly displacing the American genotype of DEN-2 in the Western Hemisphere. To determine whether distinct genotypes of DEN-2 virus are better adapted to mosquito transmission, we classified 15 viral strains of DEN-2 phylogenetically and compared their ability to infect and disseminate in different populations of Aedes aegypti mosquitoes. Envelope gene nucleotide sequence analysis confirmed that six strains belonged to the American genotype and nine strains were of the SE Asian genotype. The overall rate of disseminated infection in mosquitoes from Texas was 27% for the SE Asian genotype versus 9% for the American genotype. This pattern of infection was similar in another population of mosquitoes sampled from southern Mexico (30% versus 13%). Together, these findings suggest that Ae. aegypti tends to be more susceptible to infection by DEN-2 viruses of the SE Asian genotype than to those of the American genotype, and this may have epidemiologic implications.
Collapse
Affiliation(s)
- Philip M Armstrong
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas 78245-0549, USA.
| | | |
Collapse
|
243
|
Solomon T, Ni H, Beasley DWC, Ekkelenkamp M, Cardosa MJ, Barrett ADT. Origin and evolution of Japanese encephalitis virus in southeast Asia. J Virol 2003; 77:3091-8. [PMID: 12584335 PMCID: PMC149749 DOI: 10.1128/jvi.77.5.3091-3098.2003] [Citation(s) in RCA: 335] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since it emerged in Japan in the 1870s, Japanese encephalitis has spread across Asia and has become the most important cause of epidemic encephalitis worldwide. Four genotypes of Japanese encephalitis virus (JEV) are presently recognized (representatives of genotypes I to III have been fully sequenced), but its origin is not known. We have determined the complete nucleotide and amino acid sequence of a genotype IV Indonesian isolate (JKT6468) which represents the oldest lineage, compared it with other fully sequenced genomes, and examined the geographical distribution of all known isolates. JKT6468 was the least similar, with nucleotide divergence ranging from 17.4 to 19.6% and amino acid divergence ranging from 4.7 to 6.5%. It included an unusual series of amino acids at the carboxy terminus of the core protein unlike that seen in other JEV strains. Three signature amino acids in the envelope protein (including E327 Leu-->Thr/Ser on the exposed lateral surface of the putative receptor binding domain) distinguished genotype IV strains from more recent genotypes. Analysis of all 290 JEV isolates for which sequence data are available showed that the Indonesia-Malaysia region has all genotypes of JEV circulating, whereas only more recent genotypes circulate in other areas (P < 0.0001). These results suggest that JEV originated from its ancestral virus in the Indonesia-Malaysia region and evolved there into the different genotypes which then spread across Asia. Our data, together with recent evidence on the origins of other emerging viruses, including dengue virus and Nipah virus, imply that tropical southeast Asia may be an important zone for emerging pathogens.
Collapse
Affiliation(s)
- Tom Solomon
- Department of Neurological Science, University of Liverpool, Liverpool L9 7LJ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
244
|
Foster JE, Bennett SN, Vaughan H, Vorndam V, McMillan WO, Carrington CVF. Molecular evolution and phylogeny of dengue type 4 virus in the Caribbean. Virology 2003; 306:126-34. [PMID: 12620805 DOI: 10.1016/s0042-6822(02)00033-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sequenced the E gene and adjacent prM/M and NS1 junctions (1940 bp) of 48 Dengue-4 (DEN-4) isolates collected between 1981 and 1999 from 8 Caribbean islands and from 7 South and Central American countries. Phylogenetic analysis confirms a single introduction in the early 1980s and a high degree of gene flow resulting in a pattern of evolution defined more by time period than geographic origin, especially within the Caribbean basin. A modern Caribbean clade consisting of four distinct lineages has arisen, comprised of isolates from Caribbean islands and nearby regions of South America. This clade is defined by three amino acid substitutions in the E (aa 163 and 351) and NS1 (aa 52) proteins. These findings highlight the importance of migration and gene flow in dengue viral change and suggest that efforts to understand disease dynamics in the Caribbean basin need to focus at regional, rather than local scales.
Collapse
Affiliation(s)
- Jerome E Foster
- Department of Pre-Clinical Sciences, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad
| | | | | | | | | | | |
Collapse
|
245
|
Affiliation(s)
- Alan D Barrett
- Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA
| | | |
Collapse
|
246
|
Twiddy SS, Holmes EC, Rambaut A. Inferring the rate and time-scale of dengue virus evolution. Mol Biol Evol 2003; 20:122-9. [PMID: 12519914 DOI: 10.1093/molbev/msg010] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dengue is often referred to as an emerging disease because of the rapid increases in incidence and prevalence that have been observed in recent decades. To understand the rate at which genetic diversification occurs in dengue virus and to infer the time-scale of its evolution, we employed a maximum likelihood method that uses information about times of virus sampling to estimate the rate of molecular evolution in a large number of viral envelope (E) gene sequences and to place bounds around the dates of appearance of all serotypes and specific genotypes. Our analysis reveals that dengue virus generally evolves according to a molecular clock, although some serotype-specific and genotype-specific rate differences were observed, and that its origin is more recent than previously suggested, with the virus appearing approximately 1,000 years ago. Furthermore, we estimate that the zoonotic transfer of dengue from sylvatic (monkey) to sustained human transmission occurred between 125 and 320 years ago, that the current global genetic diversity in the four serotypes of dengue virus only appeared during the past century, and that the recent rise in genetic diversity can be loosely correlated both to human activities such as population growth, urbanization, and mass transport and to the emergence of dengue hemorrhagic fever as a major disease problem.
Collapse
Affiliation(s)
- S Susanna Twiddy
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | | | | |
Collapse
|
247
|
dos Santos CND, Rocha CFS, Cordeiro M, Fragoso SP, Rey F, Deubel V, Desprès P. Genome analysis of dengue type-1 virus isolated between 1990 and 2001 in Brazil reveals a remarkable conservation of the structural proteins but amino acid differences in the non-structural proteins. Virus Res 2002; 90:197-205. [PMID: 12457974 DOI: 10.1016/s0168-1702(02)00180-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have investigated the genetic diversity of dengue type-1 (DEN-1) virus in Brazil. The full nucleotide sequences of three DEN-1 virus isolated from DEN fever (DF) and DEN hemorrhagic fever patients in northeastern Brazil in 1997 (BR/97) and one from a DF patient in the south of Brazil in 2001 (BR/01) were compared to that of the reference strain BR/90 obtained in the city of Rio de Janeiro in 1990. Sequence analysis showed that the structural proteins were remarkably conserved between all isolates. A total of 27 amino acid changes occurred throughout the non-structural proteins. Among them, nine amino acid substitutions were specific of BR/97 and BR/01 isolates, indicating that in situ evolution of these strains had occurred. Within the BR/97 and BR/01 samples, some amino acid substitutions have been previously identified in DEN-1 virus strains sequenced so far, suggesting that recombination events might have occurred.
Collapse
|
248
|
Goncalvez AP, Escalante AA, Pujol FH, Ludert JE, Tovar D, Salas RA, Liprandi F. Diversity and evolution of the envelope gene of dengue virus type 1. Virology 2002; 303:110-9. [PMID: 12482662 DOI: 10.1006/viro.2002.1686] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genetic diversity and phylogenetic relationships of a collection of strains of dengue virus type 1 (DV-1), isolated from different parts of the world, were investigated. Phylogenetic trees derived from the complete sequence of the E gene of 44 strains suggested the existence of five genetic types defined by a maximum nucleotide divergence within each group of 6%. The 22 strains from America were classified into a single genetic type that included strains associated either with classical dengue or hemorrhagic dengue episodes. Using a maximum likelihood procedure based on a single rate with dated tips model and substitution rates calculated at the third codon position, evolution of the five DV-1 genotypes was shown to conform to a molecular clock. The average rate of evolution was estimated to be approximately 16.2 x 10(-4) substitutions/third codon position site/year. Using this estimate, divergence among the DV-1 genotypes was calculated to have occurred approximately 100 years ago. Very low average value of the ratio of nonsynonymous-to-synonymous nucleotide substitutions, relative to the respective sites (0.046), indicated that the evolution of the E gene of the DV-1 is subject mostly to purifying selection.
Collapse
Affiliation(s)
- Ana P Goncalvez
- Instituto Venezolano de Investigaciones Cienti;ficas, Caracas, Venezuela
| | | | | | | | | | | | | |
Collapse
|
249
|
Abstract
Phylogenetic analyses of the envelope (E) gene sequence of five recently isolated dengue virus type 4 (DENV-4) suggested the emergence of a distinct geographical and temporal DENV-4 subgenotype IIA in Malaysia. Four of the isolates had direct ancestral lineage with DENV-4 Indonesia 1973 and showed evidence of intra-serotypic recombination with the other recently isolated DENV-4, MY01-22713. The E gene of isolate MY01-22713 had strong evidence of an earlier recombination involving DENV-4 genotype II Indonesia 1976 and genotype I Malaysia 1969. These results suggest that intra-serotypic recombination amongst DENV-4 from independent ancestral lineages may have contributed to the emergence of DENV-4 subgenotype IIA in Malaysia.
Collapse
Affiliation(s)
- Sazaly AbuBakar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia1
| | - Pooi-Fong Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia1
| | - Yoke-Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia1
| |
Collapse
|
250
|
Guirakhoo F, Pugachev K, Arroyo J, Miller C, Zhang ZX, Weltzin R, Georgakopoulos K, Catalan J, Ocran S, Draper K, Monath TP. Viremia and immunogenicity in nonhuman primates of a tetravalent yellow fever-dengue chimeric vaccine: genetic reconstructions, dose adjustment, and antibody responses against wild-type dengue virus isolates. Virology 2002; 298:146-59. [PMID: 12093182 DOI: 10.1006/viro.2002.1462] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chimeric yellow fever (YF)-dengue (DEN) viruses (ChimeriVax-DEN) were reconstructed to correct amino acid substitutions within the envelope genes of original constructs described by Guirakhoo et al. (2001, J. Virol. 75, 7290-7304). Viruses were analyzed and compared to the previous constructs containing mutations in terms of their growth kinetics in Vero cells, neurovirulence in mice, and immunogenicity in monkeys as monovalent or tetravalent formulations. All chimeras grew to high titers [ approximately 7 to 8 log(10), plaque-forming units (PFU)/ml] in Vero cells and were less neurovirulent than YF 17D vaccine in mice. For monkey experiments, the dose of DEN2 chimera was lowered to 3 log(10) PFU in the tetravalent mixture in an effort to reduce its dominant immunogenicity. The magnitude of viremia in ChimeriVax-DEN immunized monkeys was similar to that of YF-VAX, but significantly lower than those induced by wild-type DEN viruses. All monkeys developed high levels of neutralizing antibodies against homologous (chimeras) or heterologous (wild-type DEN viruses isolated from different geographical regions) viruses after a single dose of monovalent or tetravalent vaccine. Administration of a second dose of tetravalent vaccine 2 months later increased titers to both homologous and heterologous viruses. A dose adjustment for dengue 2 chimera resulted in a more balanced response against dengue 1, 2, and 3 viruses, but a somewhat higher response against chimeric dengue 4 virus. This indicates that further formulations for dose adjustments need to be tested in monkeys to identify an optimal formulation for humans.
Collapse
Affiliation(s)
- F Guirakhoo
- Acambis Inc., Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|