201
|
Xing Z, Ryan MA, Daria D, Nattamai KJ, Van Zant G, Wang L, Zheng Y, Geiger H. Increased hematopoietic stem cell mobilization in aged mice. Blood 2006; 108:2190-7. [PMID: 16741255 PMCID: PMC1895568 DOI: 10.1182/blood-2005-12-010272] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are located in the bone marrow in close association with a highly organized 3-dimensional structure formed by stroma cells, referred to as the niche. Mobilization of HSPCs from bone marrow to peripheral blood in response to granulocyte colony-stimulating factor (G-CSF) requires de-adhesion of HSPCs from the niche. The influence of aging of HSPCs on cell-stroma interactions has not been determined in detail. Using a mouse model of G-CSF-induced mobilization, we demonstrated that the ability to mobilize hematopoietic stem cells is approximately 5-fold greater in aged mice. Competitive mobilization experiments confirmed that enhanced mobilization ability was intrinsic to the stem cell. Enhanced mobilization efficiency of primitive hematopoietic cells from aged mice correlated with reduced adhesion of hematopoietic progenitor cells to stroma and with elevated levels of GTP-bound Cdc42. These results might indicate that stroma-stem cell interactions are dynamic over a lifetime and result in physiologically relevant changes in the biology of primitive hematopoietic cells with age.
Collapse
Affiliation(s)
- Zhenlan Xing
- Division of Experimental Hematology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Ghiaur G, Lee A, Bailey J, Cancelas JA, Zheng Y, Williams DA. Inhibition of RhoA GTPase activity enhances hematopoietic stem and progenitor cell proliferation and engraftment. Blood 2006; 108:2087-94. [PMID: 16709932 DOI: 10.1182/blood-2006-02-001560] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ras-related Rho GTPases regulate actin cytoskeletal organization, adhesion, gene transcription, and cell-cycle progression. The Rac subfamily of Rho GTPases and Cdc42 has been shown to play essential roles in hematopoietic stem cell (HSC) engraftment and mobilization. Here, we study the role of RhoA, a related Rho GTPase, in HSC functions. Using retrovirus-mediated gene transfer of a dominant-negative (DN) mutant of RhoA (RhoAN19), we demonstrate that down-regulation of RhoA activity resulted in increased HSC engraftment and self-renewal as measured by competitive repopulation and serial transplantation assays. However, overexpression of RhoAN19 resulted in decreased migration toward SDF-1alpha and alpha(4)beta(1)- and alpha(5)beta(2)-integrin-mediated adhesion of hematopoietic progenitor cells in vitro. Low RhoA activity was associated with higher proliferation rate of hematopoietic progenitor cells and increased cells in active phases of cell cycle, most likely via decreasing p21Cip/Waf expression and increasing cyclin D1 levels. Thus, reducing RhoA activity by optimizing the balance between adhesion/migration and proliferation/self-renewal results in a net increase in HSC engraftment. This mechanism could provide a novel therapeutic target to enhance HSC therapies.
Collapse
Affiliation(s)
- Gabriel Ghiaur
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7013, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
203
|
Lee G, Lo A, Short SA, Mankelow TJ, Spring F, Parsons SF, Yazdanbakhsh K, Mohandas N, Anstee DJ, Chasis JA. Targeted gene deletion demonstrates that the cell adhesion molecule ICAM-4 is critical for erythroblastic island formation. Blood 2006; 108:2064-71. [PMID: 16690966 PMCID: PMC1895542 DOI: 10.1182/blood-2006-03-006759] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythroid progenitors differentiate in erythroblastic islands, bone marrow niches composed of erythroblasts surrounding a central macrophage. Evidence suggests that within islands adhesive interactions regulate erythropoiesis and apoptosis. We are exploring whether erythroid intercellular adhesion molecule 4 (ICAM-4), an immunoglobulin superfamily member, participates in island formation. Earlier, we identified alpha(V) integrins as ICAM-4 counterreceptors. Because macrophages express alpha(V), ICAM-4 potentially mediates island attachments. To test this, we generated ICAM-4 knock-out mice and developed quantitative, live cell techniques for harvesting intact islands and for re-forming islands in vitro. We observed a 47% decrease in islands reconstituted from ICAM-4 null marrow compared to wild-type marrow. We also found a striking decrease in islands formed in vivo in knock-out mice. Further, peptides that block ICAM-4/alpha(V) adhesion produced a 53% to 57% decrease in reconstituted islands, strongly suggesting that ICAM-4 binding to macrophage alpha(V) functions in island integrity. Importantly, we documented that alpha(V) integrin is expressed in macrophages isolated from erythroblastic islands. Collectively, these data provide convincing evidence that ICAM-4 is critical in erythroblastic island formation via ICAM-4/alpha(V) adhesion and also demonstrate that the novel experimental strategies we developed will be valuable in exploring molecular mechanisms of erythroblastic island formation and their functional role in regulating erythropoiesis.
Collapse
Affiliation(s)
- Gloria Lee
- Life Sciences Division, University of California, Lawrence Berkeley National Laboratory, Bldg 74, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Bonig H, Chang KH, Nakamoto B, Papayannopoulou T. The p67 laminin receptor identifies human erythroid progenitor and precursor cells and is functionally important for their bone marrow lodgment. Blood 2006; 108:1230-3. [PMID: 16609068 PMCID: PMC1895871 DOI: 10.1182/blood-2005-12-013508] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The laminins are a group of extracellular matrix proteins with constitutive expression in all tissues, including bone marrow stroma. A functional role for the nonintegrin laminin receptor p67 has been described for cancer metastasis and lymphocyte trafficking. Expression of p67 was also reported for other subsets of mature leukocytes and for malignant hematopoietic or nonhematopoietic cells. We explored p67 expression on normal hematopoietic progenitor cells (HPCs) and its putative role in bone marrow retention of transplanted HPCs. We found p67 expression on a subset of primary human CD34(+) cells coexpressing erythroid markers. Of importance, p67 recognizes early erythroid progenitors, since sorted p67(+) cells were significantly enriched for burst-forming units-erythroid (BFU-Es) and depleted of colony-forming units--granulocyte/macrophage (CFU-GMs). Blockade of p67 binding of donor cells, using antifunctional antibody, reduced bone marrow homing of BFU-Es. These studies identify p67 as a novel phenotypic marker for erythroid HPCs of functional importance for lineage-specific homing/retention among adult transplanted HPCs.
Collapse
Affiliation(s)
- Halvard Bonig
- University of Washington, Departmen of Medicine/Hematology, Seattle, WA 98195-7720, USA.
| | | | | | | |
Collapse
|
205
|
Nilsson SK, Simmons PJ, Bertoncello I. Hemopoietic stem cell engraftment. Exp Hematol 2006; 34:123-9. [PMID: 16459179 DOI: 10.1016/j.exphem.2005.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 08/16/2005] [Accepted: 08/16/2005] [Indexed: 11/20/2022]
Affiliation(s)
- Susan K Nilsson
- Stem Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
206
|
Suzuki M, Ohneda K, Hosoya-Ohmura S, Tsukamoto S, Ohneda O, Philipsen S, Yamamoto M. Real-time monitoring of stress erythropoiesis in vivo using Gata1 and beta-globin LCR luciferase transgenic mice. Blood 2006; 108:726-33. [PMID: 16537808 DOI: 10.1182/blood-2005-10-4064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Erythroid progenitors have the potential to proliferate rapidly in response to environmental stimuli. This process is referred to as stress erythropoiesis, with erythropoietin (EPO) playing central roles in its promotion. In this study, we wanted to elucidate the molecular mechanisms governing the regulation of stress erythropoiesis and the maintenance of red-cell homeostasis. This was achieved by our development of a noninvasive real-time monitoring system for erythropoiesis using transgenic mouse lines expressing luciferase under the control of the mouse Gata1 hematopoietic regulatory domain (G1-HRD-luc) or human beta-globin locus control region (Hbb-LCR-luc). Optical bioluminescence images revealed that the luciferase was specifically expressed in spleen and bone marrow and was induced rapidly in response to anemia and hypoxia stimuli. The G1-HRD-luc activity tracked the emergence and disappearance of proerythroblast-stage progenitors, whereas the Hbb-LCR-luc activity tracked erythroblasts and later stage erythroid cells. Increased plasma EPO concentration preceded an increase in G1-HRD-luc, supporting our contention that EPO acts as the key upstream signal in stress erythropoiesis. Hence, we conclude that G1-HRD-luc and Hbb-LCR-luc reporters are differentially activated during stress erythropoiesis and that the transgenic mouse lines used serve as an important means for understanding the homeostatic regulation of erythropoiesis.
Collapse
Affiliation(s)
- Mikiko Suzuki
- Graduate School of Comprehensive Human Sciences, the Center for Tsukuba Advanced Research Alliance (TARA), Japan Science and Technology Corporation, University of Tsukuba
| | | | | | | | | | | | | |
Collapse
|
207
|
Féral CC, Rose DM, Han J, Fox N, Silverman GJ, Kaushansky K, Ginsberg MH. Blocking the alpha 4 integrin-paxillin interaction selectively impairs mononuclear leukocyte recruitment to an inflammatory site. J Clin Invest 2006; 116:715-23. [PMID: 16470243 PMCID: PMC1361348 DOI: 10.1172/jci26091] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Accepted: 12/13/2005] [Indexed: 11/17/2022] Open
Abstract
Antagonists to alpha4 integrin show promise for several autoimmune and inflammatory diseases but may exhibit mechanism-based toxicities. We tested the capacity of blockade of alpha4 integrin signaling to perturb functions involved in inflammation, while limiting potential adverse effects. We generated and characterized mice bearing a Y991A mutation in alpha4 integrin [alpha4(Y991A) mice], which blocks paxillin binding and inhibits alpha4 integrin signals that support leukocyte migration. In contrast to the embryonic-lethal phenotype of alpha4 integrin-null mice, mice bearing the alpha4(Y991A) mutation were viable and fertile; however, they exhibited defective recruitment of mononuclear leukocytes into thioglycollate-induced peritonitis. Alpha4 integrins are essential for definitive hematopoiesis; however, the alpha4(Y991A) mice had intact lymphohematopoiesis and, with the exception of reduced Peyer's patches, normal architecture and cellularity of secondary lymphoid tissues. We conclude that interference with alpha4 integrin signaling can selectively impair mononuclear leukocyte recruitment to sites of inflammation while sparing vital functions of alpha4 integrins in development and hematopoiesis.
Collapse
Affiliation(s)
- Chloé C Féral
- Department of Medicine, University of California San Diego, La Jolla, California 92093-0726, USA
| | | | | | | | | | | | | |
Collapse
|
208
|
Zhang CC, Steele AD, Lindquist S, Lodish HF. Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc Natl Acad Sci U S A 2006; 103:2184-9. [PMID: 16467153 PMCID: PMC1413720 DOI: 10.1073/pnas.0510577103] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although the wild-type prion protein (PrP) is abundant and widely expressed in various types of tissues and cells, its physiological function(s) remain unknown, and PrP knockout mice do not exhibit overt and undisputed phenotypes. Here we showed that PrP is expressed on the surface of several bone marrow cell populations successively enriched in long-term (LT) hematopoietic stem cells (HSCs) using flow cytometry analysis. Affinity purification of the PrP-positive and -negative fractions from these populations, followed by competitive bone marrow reconstitution assays, shows that all LT HSCs express PrP. HSCs from PrP-null bone marrow exhibited impaired self-renewal in serial transplantation of lethally irradiated mouse recipients both in the presence and absence of competitors. When treated with a cell cycle-specific myelotoxic agent, the animals reconstituted with PrP-null HSCs exhibit increased sensitivity to hematopoietic cell depletion. Ectopic expression of PrP in PrP-null bone marrow cells by retroviral infection rescued the defective hematopoietic engraftment during serial transplantation. Therefore, PrP is a marker for HSCs and supports their self-renewal.
Collapse
Affiliation(s)
- Cheng Cheng Zhang
- *Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142; and
| | - Andrew D. Steele
- *Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142; and
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Susan Lindquist
- *Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142; and
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
- To whom correspondence may be addressed. E-mail:
or
| | - Harvey F. Lodish
- *Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142; and
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
209
|
Abstract
T-cell development in the thymus requires periodic importation of hematopoietic progenitors from the bone marrow. Such thymus settling progenitors arise from hematopoietic stem cells (HSCs) that are retained in a specific bone marrow microenvironmental niche. Vacation of this niche is required for HSC proliferation and differentiation into downstream progenitors. In order to reach the thymus, progenitors must then be mobilized from bone marrow to blood. Finally, progenitors in blood must settle in the thymus. Here we review signals and molecular interactions that are likely to play a role in trafficking from the bone marrow to the thymus, focusing on how these interactions may regulate which progenitors physiologically contribute to thymopoiesis.
Collapse
Affiliation(s)
- Benjamin A Schwarz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6082, USA
| | | |
Collapse
|
210
|
Qian H, Tryggvason K, Jacobsen SE, Ekblom M. Contribution of alpha6 integrins to hematopoietic stem and progenitor cell homing to bone marrow and collaboration with alpha4 integrins. Blood 2006; 107:3503-10. [PMID: 16439681 DOI: 10.1182/blood-2005-10-3932] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The laminin receptor integrin alpha6 chain is ubiquitously expressed in human and mouse hematopoietic stem and progenitor cells. We have studied its role for homing of stem and progenitor cells to mouse hematopoietic tissues in vivo. A function-blocking anti-integrin alpha6 antibody significantly reduced progenitor cell homing to bone marrow (BM) of lethally irradiated mice, with a corresponding retention of progenitors in blood. Remarkably, the anti-integrin alpha6 antibody profoundly inhibited BM homing of long-term multilineage engrafting stem cells, studied by competitive repopulation assay and analysis of donor-derived lymphocytes and myeloid cells in blood 16 weeks after transplantation. A similar profound inhibition of long-term stem cell homing was obtained by using a function-blocking antibody against alpha4 integrin, studied in parallel. Furthermore, the anti-integrin alpha6 and alpha4 antibodies synergistically inhibited homing of short-term repopulating stem cells. Intravenous injection of anti-integrin alpha6 antibodies, in contrast to antibodies against alpha4 integrin, did not mobilize progenitors or enhance cytokine-induced mobilization by G-CSF. Our results provide the first evidence for a distinct functional role of integrin alpha6 receptor during hematopoietic stem and progenitor cell homing and collaboration of alpha6 integrin with alpha4 integrin receptors during homing of short-term stem cells.
Collapse
Affiliation(s)
- Hong Qian
- Hematopoietic Stem Cell Laboratory, BMC B12, Lund University, 221 84 Lund, Sweden
| | | | | | | |
Collapse
|
211
|
Gangemi RMR, Daga A, Muzio L, Marubbi D, Cocozza S, Perera M, Verardo S, Bordo D, Griffero F, Capra MC, Mallamaci A, Corte G. Effects of Emx2 inactivation on the gene expression profile of neural precursors. Eur J Neurosci 2006; 23:325-34. [PMID: 16420441 DOI: 10.1111/j.1460-9568.2005.04559.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Emx2 plays a crucial role in the development of the diencephalon and dorsal telencephalon. Thus, Emx2-null mutants have abnormal cortical lamination and a reduction in size of the caudal and medial areas of the prosencephalon. Emx2 is expressed in neural precursors of the subventricular zone in vivo and in cultured neurospheres in vitro where it controls the size of the transit-amplifying population, affecting proliferation and clonal efficiency of neural stem cells. To identify the cellular processes mastered by Emx2, and possibly the molecular mechanisms by which the gene exerts its action, we compared the expression profile of cultured neurospheres derived from wild-type and Emx2-null mouse embryos. The differential expression of several genes was also confirmed by semiquantitative RT-PCR, real-time PCR and cytofluorimetric analysis in different preparations of neurospheres, and by in situ hybridization. The gene expression profile suggested a role for Emx2 in regulating the differentiation and migration properties of neural precursor cells. This involvement was confirmed in vitro, where the altered clonogenicity and impaired migration of Emx2-null cells were partially corrected by transduction of the Emx2 gene. Taken together, our results indicate that Emx2 is indeed involved in the transition between resident early progenitors (perhaps stem cells) and more mature precursors capable of migrating out of the ventricular zone, becoming postmitotic and differentiating into the appropriate cell type, and help explain the alterations observed in the brains of knock-out mice.
Collapse
|
212
|
Qin G, Ii M, Silver M, Wecker A, Bord E, Ma H, Gavin M, Goukassian DA, Yoon YS, Papayannopoulou T, Asahara T, Kearney M, Thorne T, Curry C, Eaton L, Heyd L, Dinesh D, Kishore R, Zhu Y, Losordo DW. Functional disruption of alpha4 integrin mobilizes bone marrow-derived endothelial progenitors and augments ischemic neovascularization. ACTA ACUST UNITED AC 2006; 203:153-63. [PMID: 16401693 PMCID: PMC2118065 DOI: 10.1084/jem.20050459] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cell surface receptor α4 integrin plays a critical role in the homing, engraftment, and maintenance of hematopoietic progenitor cells (HPCs) in the bone marrow (BM). Down-regulation or functional blockade of α4 integrin or its ligand vascular cell adhesion molecule-1 mobilizes long-term HPCs. We investigated the role of α4 integrin in the mobilization and homing of BM endothelial progenitor cells (EPCs). EPCs with endothelial colony-forming activity in the BM are exclusively α4 integrin–expressing cells. In vivo, a single dose of anti–α4 integrin antibody resulted in increased circulating EPC counts for 3 d. In hindlimb ischemia and myocardial infarction, systemically administered anti–α4 integrin antibody increased recruitment and incorporation of BM EPCs in newly formed vasculature and improved functional blood flow recovery and tissue preservation. Interestingly, BM EPCs that had been preblocked with anti–α4 integrin ex vivo or collected from α4 integrin–deficient mice incorporated as well as control cells into the neovasculature in ischemic sites, suggesting that α4 integrin may be dispensable or play a redundant role in EPC homing to ischemic tissue. These data indicate that functional disruption of α4 integrin may represent a potential angiogenic therapy for ischemic disease by increasing the available circulating supply of EPCs.
Collapse
Affiliation(s)
- Gangjian Qin
- Cardiovascular Research, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Hsia DA, Lim ST, Bernard-Trifilo JA, Mitra SK, Tanaka S, den Hertog J, Streblow DN, Ilic D, Ginsberg MH, Schlaepfer DD. Integrin alpha4beta1 promotes focal adhesion kinase-independent cell motility via alpha4 cytoplasmic domain-specific activation of c-Src. Mol Cell Biol 2005; 25:9700-12. [PMID: 16227616 PMCID: PMC1265817 DOI: 10.1128/mcb.25.21.9700-9712.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fibronectin binding integrins alpha5beta1 and alpha4beta1 generate signals pivotal for cell migration through distinct yet undefined mechanisms. For alpha5beta1, beta1-mediated activation of focal adhesion kinase (FAK) promotes c-Src recruitment to FAK and the formation of a FAK-Src signaling complex. Herein, we show that FAK expression is essential for alpha5beta1-stimulated cell motility and that exogenous expression of human alpha4 in FAK-null fibroblasts forms a functional alpha4beta1 receptor that promotes robust cell motility equal to the alpha5beta1 stimulation of wild-type and FAK-reconstituted fibroblasts. alpha4beta1-stimulated FAK-null cell spreading and motility were dependent on the integrity of the alpha4 cytoplasmic domain, independent of direct paxillin binding to alpha4, and were not affected by PRNK expression, a dominant-negative inhibitor of Pyk2. alpha4 cytoplasmic domain-initiated signaling led to a approximately 4-fold activation of c-Src which did not require paxillin binding to alpha4. Notably, alpha4-stimulated cell motility was inhibited by catalytically inactive receptor protein-tyrosine phosphatase alpha overexpression and blocked by the p50Csk phosphorylation of c-Src at Tyr-529. alpha4beta1-stimulated cell motility of triple-null Src(-/-), c-Yes(-/-), and Fyn(-/-) fibroblasts was dependent on c-Src reexpression that resulted in p130Cas tyrosine phosphorylation and Rac GTPase loading. As p130Cas phosphorylation and Rac activation are common downstream targets for alpha5beta1-stimulated FAK activation, our results support the existence of a novel alpha4 cytoplasmic domain connection leading to c-Src activation which functions as a FAK-independent linkage to a common motility-promoting signaling pathway.
Collapse
Affiliation(s)
- Datsun A Hsia
- The Scripps Research Institute, Department of Immunology, IMM21, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Priestley GV, Scott LM, Ulyanova T, Papayannopoulou T. Lack of alpha4 integrin expression in stem cells restricts competitive function and self-renewal activity. Blood 2005; 107:2959-67. [PMID: 16357327 PMCID: PMC1895392 DOI: 10.1182/blood-2005-07-2670] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alpha4 integrin or VLA4 (CD49d/CD29) is a multitask molecule with wide expression within and outside the hematopoietic system. Because targeted ablation of alpha4 integrin leads to embryonic lethality, to study its effects on adult hematopoiesis, we used animals with conditional excision of alpha4 integrin (alpha4Delta/Delta) in hematopoietic cells. In such animals, we previously documented weakened bone marrow retention of progenitor cells during homeostasis and impaired homing and short-term engraftment after transplantation. In the present study we show that long-term repopulating cells lacking alpha4 integrins display a competitive disadvantage in hematopoietic reconstitution compared to normal competitors. Although initial dominance of alpha4+ competitors is due to their better homing and proliferative expansion early after transplantation, a progressive decline in contribution of alpha4Delta/Delta hematopoiesis is compatible with neither normal homing nor normal function of alpha4Delta/Delta hematopoietic stem cells (HSCs) in post-homing hematopoiesis. In the absence of alpha4+ competitor cells, alpha4Delta/Delta HSCs can establish long-term hematopoiesis in primary recipients, however, some resurgence of host hematopoiesis is evident, and it becomes dominant in secondary transplants, so that no survivors with exclusively alpha4Delta/Delta cells are seen in tertiary transplants. Collectively, our data provide compelling evidence that under regenerative stress alpha4 integrin assumes a greater importance than for maintenance of steady-state hematopoiesis.
Collapse
Affiliation(s)
- Gregory V Priestley
- University of Washington, Department of Medicine/Division of Hematology, Box 357710, Seattle, WA 98195-7710.
| | | | | | | |
Collapse
|
215
|
Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438:820-7. [PMID: 16341007 PMCID: PMC2945882 DOI: 10.1038/nature04186] [Citation(s) in RCA: 2378] [Impact Index Per Article: 118.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 08/19/2005] [Indexed: 11/09/2022]
Abstract
The cellular and molecular mechanisms by which a tumour cell undergoes metastasis to a predetermined location are largely unknown. Here we demonstrate that bone marrow-derived haematopoietic progenitor cells that express vascular endothelial growth factor receptor 1 (VEGFR1; also known as Flt1) home to tumour-specific pre-metastatic sites and form cellular clusters before the arrival of tumour cells. Preventing VEGFR1 function using antibodies or by the removal of VEGFR1(+) cells from the bone marrow of wild-type mice abrogates the formation of these pre-metastatic clusters and prevents tumour metastasis, whereas reconstitution with selected Id3 (inhibitor of differentiation 3)-competent VEGFR1+ cells establishes cluster formation and tumour metastasis in Id3 knockout mice. We also show that VEGFR1+ cells express VLA-4 (also known as integrin alpha4beta1), and that tumour-specific growth factors upregulate fibronectin--a VLA-4 ligand--in resident fibroblasts, providing a permissive niche for incoming tumour cells. Conditioned media obtained from distinct tumour types with unique patterns of metastatic spread redirected fibronectin expression and cluster formation, thereby transforming the metastatic profile. These findings demonstrate a requirement for VEGFR1+ haematopoietic progenitors in the regulation of metastasis, and suggest that expression patterns of fibronectin and VEGFR1+VLA-4+ clusters dictate organ-specific tumour spread.
Collapse
Affiliation(s)
- Rosandra N Kaplan
- Department of Pediatrics and the Children's Blood Foundation Laboratories, Weill Cornell Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
|
217
|
Takizawa H, Kubo-Akashi C, Nobuhisa I, Kwon SM, Iseki M, Taga T, Takatsu K, Takaki S. Enhanced engraftment of hematopoietic stem/progenitor cells by the transient inhibition of an adaptor protein, Lnk. Blood 2005; 107:2968-75. [PMID: 16332975 DOI: 10.1182/blood-2005-05-2138] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are the key elements responsible for maintaining blood-cell production throughout life and for lymphohematopoietic reconstitution following bone marrow (BM) transplantation. Enhancement of the engrafting potential and expansion capabilities of HSCs as well as hematopoietic progenitor cells (HPCs) has been a long-time desire as a means of reducing the risks and difficulties that accompany BM transplantation. The ability of HSCs/HPCs to reconstitute the hematopoietic system of irradiated hosts is negatively regulated by an intracellular adaptor protein, Lnk. Here we have identified the functional domains of Lnk and developed a dominant-negative (DN) Lnk mutant that inhibits the functions of Lnk endogenously expressed in the HSCs/HPCs and thereby potentiates the HSCs/HPCs for engraftment. Importantly, even transient expression of DN-Lnk in HSCs/HPCs facilitated their engraftment under nonmyeloablative conditions and fully reconstituted the lymphoid compartments of immunodeficient host animals. HPCs expressing DN-Lnk were efficiently trapped by immobilized vascular cell adhesion molecule-1 (VCAM-1) in a transwell migration assay, suggesting involvement of Lnk in the regulation of cell mobility or cellular interaction in microenvironments. Transient inhibition of Lnk or Lnk-mediated pathways could be a potent approach to augment engraftment of HSCs/HPCs without obvious side effects.
Collapse
Affiliation(s)
- Hitoshi Takizawa
- Division of Immunology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Bonig H, Priestley GV, Papayannopoulou T. Hierarchy of molecular-pathway usage in bone marrow homing and its shift by cytokines. Blood 2005; 107:79-86. [PMID: 16141352 PMCID: PMC1895342 DOI: 10.1182/blood-2005-05-2023] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Efficient bone marrow (BM) homing is a prerequisite for successful engraftment of transplanted hematopoietic cells (HPCs). Contradictory conclusions about the contribution of SDF-1/CXCR4 have clouded our understanding of its role within the molecular pathway cooperation needed for BM homing, particularly with the well-defined hierarchic network of adhesion molecules. In the present study we sought to unravel cooperative and compensatory molecular pathways guiding BM homing. Fresh BM-HPCs, rendered either SDF-1 unresponsive or Gi-signaling refractory, homed quite efficiently, because of compensation by alpha4-integrin interacting with VCAM-1. The contribution of SDF-1/CXCR4- or Gi-protein-mediated signals to BM homing became apparent after their blockade was combined with deletion of alpha4-integrin, leading to dramatic reduction in BM homing. Similar conclusions were revealed when VCAM-1-deficient hosts were used. Cytokine incubation changed the functional properties of BM-HPCs and hierarchy of molecular pathway usage in homing, by shifting the dominance among the homing mediators: loss of CXCR4 or Gi-signaling now significantly reduced BM homing, with only partial compensation through alpha4/VCAM-1 and endothelial selectins. These studies depict a flexible hierarchy of cooperating homing pathways, in which dominant players are repositioned with changing cytokine milieu, and possibly source of HPCs.
Collapse
Affiliation(s)
- Halvard Bonig
- Department of Medicine/Hematology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7720, USA.
| | | | | |
Collapse
|
219
|
Caplice NM, Doyle B. Vascular progenitor cells: origin and mechanisms of mobilization, differentiation, integration, and vasculogenesis. Stem Cells Dev 2005; 14:122-39. [PMID: 15910239 DOI: 10.1089/scd.2005.14.122] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The recent discovery of progenitor cells in peripheral blood that can differentiate into endothelial or vascular smooth muscle cells has led to the re-evaluation of many traditionally held beliefs about vascular biology. Most notably, concepts of vascular regeneration and repair, previously considered limited to the proliferation of existing differentiated cells within vascular tissue, have been expanded to include the potential for postnatal vasculogenesis. These cells have since been identified in the bone marrow, heart, skeletal muscle, and other peripheral tissues, including the vasculature itself. The significance of these cells lies not only in developing our understanding of normal vascular biology, but also in the insights they may provide into vascular diseases such as atherosclerosis. In addition, a potential role in therapeutics has already been explored in early clinical trials in humans. The mechanisms underlying the mobilization, target tissue integration, differentiation, and the observed therapeutic benefits of these cells are now being elucidated. It is these mechanisms, and the current understanding of the lineage of these cells, that constitutes the focus of this review.
Collapse
Affiliation(s)
- Noel M Caplice
- Division of Cardiovascular Diseases, Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
220
|
Cancelas JA, Lee AW, Prabhakar R, Stringer KF, Zheng Y, Williams DA. Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nat Med 2005; 11:886-91. [PMID: 16025125 DOI: 10.1038/nm1274] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 06/20/2005] [Indexed: 11/08/2022]
Abstract
The molecular events that regulate engraftment and mobilization of hematopoietic stem cells and progenitors (HSC/Ps) are still incompletely defined. We have examined the role of the Rho GTPases Rac1 and Rac2 in HSC engraftment and mobilization. Rac1, but not the hematopoietic-specific Rac2, is required for the engraftment phase of hematopoietic reconstitution, because Rac1(-/-) HSCs did not rescue in vivo hematopoiesis after transplantation, but deletion of Rac1 after engraftment did not impair steady-state hematopoiesis. Rac1(-/-) HSC/Ps showed impaired spatial localization to the endosteum but near-normal homing to the medullary cavity in vivo. Interaction with the bone marrow microenvironment in vitro was markedly altered. Whereas post-engraftment deletion of Rac1 alone did not impair hematopoiesis, deficiency of both Rac1 and Rac2 led to massive mobilization of HSCs from the marrow associated with ineffective hematopoiesis and intense selection for Rac-expressing HSCs. This mobilization was reversible by re-expression of Rac1. In addition, a rationally designed, reversible small-molecule inhibitor of Rac activation led to transient mobilization of engraftable HSC/Ps. Rac proteins thus differentially regulate engraftment and mobilization phenotypes, suggesting that these biological processes and steady-state hematopoiesis are biochemically separable and that Rac proteins may be important molecular targets for stem cell modification.
Collapse
Affiliation(s)
- Jose A Cancelas
- Hoxworth Blood Center, University of Cincinnati Medical Center, 3130 Highland Avenue, Cincinnati, Ohio, 45267, USA
| | | | | | | | | | | |
Collapse
|
221
|
Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grünewald E, Cheng T, Dombkowski D, Calvi LM, Rittling SR, Scadden DT. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. ACTA ACUST UNITED AC 2005; 201:1781-91. [PMID: 15928197 PMCID: PMC2213260 DOI: 10.1084/jem.20041992] [Citation(s) in RCA: 495] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Stem cells reside in a specialized niche that regulates their abundance and fate. Components of the niche have generally been defined in terms of cells and signaling pathways. We define a role for a matrix glycoprotein, osteopontin (OPN), as a constraining factor on hematopoietic stem cells within the bone marrow microenvironment. Osteoblasts that participate in the niche produce varying amounts of OPN in response to stimulation. Using studies that combine OPN-deficient mice and exogenous OPN, we demonstrate that OPN modifies primitive hematopoietic cell number and function in a stem cell–nonautonomous manner. The OPN-null microenvironment was sufficient to increase the number of stem cells associated with increased stromal Jagged1 and Angiopoietin-1 expression and reduced primitive hematopoietic cell apoptosis. The activation of the stem cell microenvironment with parathyroid hormone induced a superphysiologic increase in stem cells in the absence of OPN. Therefore, OPN is a negative regulatory element of the stem cell niche that limits the size of the stem cell pool and may provide a mechanism for restricting excess stem cell expansion under conditions of niche stimulation.
Collapse
Affiliation(s)
- Sebastian Stier
- Center for Regenerative Medicine and Technology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Giovino MA, Wang H, Sykes M, Yang YG. Role of VLA-4 and VLA-5 in ex vivo maintenance of human and pig hematopoiesis in human stroma-supported long-term cultures. Exp Hematol 2005; 33:363-70. [PMID: 15730860 DOI: 10.1016/j.exphem.2004.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 10/08/2004] [Accepted: 11/18/2004] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The advantage of recipient hematopoiesis over that of xenogeneic donors poses a fundamental obstacle to the induction of xenograft tolerance through mixed hematopoietic chimerism. Here we explore the role of beta1 integrins in maintenance of human vs porcine hematopoiesis within a human hematopoietic environment. METHODS Porcine and human c-kit+ bone marrow cells were purified and cultured on human bone marrow stroma for 6 weeks. The role of VLA-4 and VLA-5 in the maintenance of porcine vs human hematopoiesis in this human stroma-supported long-term bone marrow culture (LTBMC) system was evaluated by using blocking mAbs that bind to both species. RESULTS Blocking VLA-4 with HP2/1 inhibited both human and porcine hematopoiesis, whereas anti-VLA-5 (SAM-1) suppressed the function of human, but not porcine, hematopoietic cells. In mixed LTBMC of porcine and human cells on a human stroma, porcine hematopoietic cells were at a competitive disadvantage, as seen by a rapid decline in cellularity, including clonogenic progenitors. This disadvantage was substantially overcome by the addition of SAM-1. Furthermore, human, but not porcine, cell adhesion to human fibronectin was inhibited by arginine-glycine-aspartic acid (RGD) peptides. CONCLUSION Taken together, these results indicate that VLA-4 plays critical role for porcine hematopoiesis in a human hematopoietic environment, and raise the possibility that porcine VLA-5 might be unable to bind the respective human ligand and/or to initiate adequate post-ligand-binding signaling. Thus, VLA-5 may provide a potential target for developing approaches to improve porcine hematopoiesis in human recipients.
Collapse
|
223
|
Winkler IG, Hendy J, Coughlin P, Horvath A, Lévesque JP. Serine protease inhibitors serpina1 and serpina3 are down-regulated in bone marrow during hematopoietic progenitor mobilization. ACTA ACUST UNITED AC 2005; 201:1077-88. [PMID: 15795238 PMCID: PMC2213124 DOI: 10.1084/jem.20042299] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mobilization of hematopoietic progenitor cells into the blood involves a massive release of neutrophil serine proteases in the bone marrow. We hypothesize that the activity of these neutrophil serine proteases is regulated by the expression of naturally occurring inhibitors (serpina1 and serpina3) produced locally within the bone marrow. We found that serpina1 and serpina3 were transcribed in the bone marrow by many different hematopoietic cell populations and that a strong reduction in expression occurred both at the protein and mRNA levels during mobilization induced by granulocyte colony-stimulating factor or chemotherapy. This decreased expression was restricted to the bone marrow as serpina1 expression was maintained in the liver, leading to no change in plasma concentrations during mobilization. The down-regulation of serpina1 and serpina3 during mobilization may contribute to a shift in the balance between serine proteases and their inhibitors, and an accumulation of active neutrophil serine proteases in bone marrow extravascular fluids that cleave and inactivate molecules essential to the retention of hematopoietic progenitor cells within the bone marrow. These data suggest an unexpected role for serpina1 and serpina3 in regulating the bone marrow hematopoietic microenvironment as well as influencing the migratory behavior of hematopoietic precursors.
Collapse
Affiliation(s)
- Ingrid G Winkler
- Haematopoietic Stem Cell Laboratory, Mater Medical Research Institute, South Brisbane, Queensland 4101, Australia.
| | | | | | | | | |
Collapse
|
224
|
Ulyanova T, Scott LM, Priestley GV, Jiang Y, Nakamoto B, Koni PA, Papayannopoulou T. VCAM-1 expression in adult hematopoietic and nonhematopoietic cells is controlled by tissue-inductive signals and reflects their developmental origin. Blood 2005; 106:86-94. [PMID: 15769895 PMCID: PMC1895134 DOI: 10.1182/blood-2004-09-3417] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although expression of vascular cell adhesion molecule 1 (VCAM-1) in endothelial cells and its functional implications have been previously appreciated, VCAM-1 expression in other than endothelial cells, especially hematopoietic cells, has been recently recognized and has not been explored in detail. Using normal mice and mice with a conditional ablation of VCAM-1 through a Tie2-driven cre transgene, we have studied the biodistribution and the pattern of VCAM-1 expression in circulating versus tissue-residing cells before and after their enforced mobilization. In the normal mouse, both at basal hematopoiesis or following mobilization, VCAM-1 expression is confined to myeloid cells residing in hematopoietic tissues, whereas free cells in circulation or in body cavities are devoid of VCAM-1 messenger RNA (mRNA) and protein. However, following culture, proliferating myeloid cells, but not lymphoid cells, express VCAM-1. In the VCAM-1-ablated mouse, there is an increase in circulating progenitors as a consequence of their ongoing release from bone marrow, a process enhanced by splenectomy. We postulate that the main mechanism leading to their release is the ablation of VCAM-1 by fibroblastic and by endothelial cells. Ablation of VCAM-1 in fibroblasts by Tie2-driven cre is a novel finding and likely denotes their developmental ancestry by Tie2-expressing (mesenchymal?) progenitor cells during development.
Collapse
Affiliation(s)
- Tatiana Ulyanova
- Division of Hematology, University of Washington, Box 357 710, Seattle, WA 98195-7710, USA
| | | | | | | | | | | | | |
Collapse
|
225
|
Abstract
Infusion of different hematopoietic stem cell populations and ex vivo expanded endothelial progenitor cells augments neovascularization of tissue after ischemia and contributes to reendothelialization after endothelial injury, thereby, providing a novel therapeutic option. However, controversy exists with respect to the identification and the origin of endothelial progenitor cells. Overall, there is consensus that endothelial progenitor cells can derive from the bone marrow and that CD133/VEGFR2 cells represent a population with endothelial progenitor capacity. However, increasing evidence suggests that there are additional bone marrow-derived cell populations (eg, myeloid cells, "side population" cells, and mesenchymal cells) and non-bone marrow-derived cells, which also can give rise to endothelial cells. The characterization of the different progenitor cell populations and their functional properties are discussed. Mobilization and endothelial progenitor cell-mediated neovascularization is critically regulated. Stimulatory (eg, statins and exercise) or inhibitory factors (risk factors for coronary artery disease) modulate progenitor cell levels and, thereby, affect the vascular repair capacity. Moreover, recruitment and incorporation of endothelial progenitor cells requires a coordinated sequence of multistep adhesive and signaling events including adhesion and migration (eg, by integrins), chemoattraction (eg, by SDF-1/CXCR4), and finally the differentiation to endothelial cells. This review summarizes the mechanisms regulating endothelial progenitor cell-mediated neovascularization and reendothelialization.
Collapse
Affiliation(s)
- Carmen Urbich
- Molecular Cardiology, Department of Internal Medicine IV, University of Frankfurt, Frankfurt, Germany
| | | |
Collapse
|
226
|
Angelin-Duclos C, Domenget C, Kolbus A, Beug H, Jurdic P, Samarut J. Thyroid hormone T3 acting through the thyroid hormone α receptor is necessary for implementation of erythropoiesis in the neonatal spleen environment in the mouse. Development 2005; 132:925-34. [PMID: 15673575 DOI: 10.1242/dev.01648] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thyroid hormones (THs) mediate many physiological and developmental functions in vertebrates. All these functions are mediated by binding of the active form of the TH T3 to the specific nuclear receptors TRα and TRβ, which are transcription factors. Using mutant mice lacking TRs or deficient for TH production, we show that T3 influences neonatal erythropoiesis through TRα. The effect of T3 and TRα is restricted to this developmental window and is specific for the spleen but not for other erythropoietic organs. We show that T3 via TRα affects late steps of erythrocytic development, promoting the proliferation of late basophilic erythroblasts. In vitro, this effect is exerted directly on erythrocytic cells. In vivo, the action of T3 is also intrinsic to spleen erythrocytic progenitors, as shown by grafting experiments of splenocytes derived from wildtype and TRα knockout (TRα0/0) mice into wild-type and TRα0/0 irradiated recipients. Our results indicate that defective spleen erythropoiesis in hypothyroid and TRα0/0mice results from impaired recognition of the spleen environment by the mutant erythrocytic progenitors. The data presented support a model in which T3 signaling through TRα is essential for the implementation of the transient spleen erythropoiesis at birth.
Collapse
Affiliation(s)
- Cristina Angelin-Duclos
- Ecole Normale Supérieure de Lyon, UMR CNRS 5161, INRA 1237, IFR128 Biosciences Lyon-Gerland, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | | | |
Collapse
|
227
|
Jansen M, Yang FC, Cancelas JA, Bailey JR, Williams DA. Rac2-deficient hematopoietic stem cells show defective interaction with the hematopoietic microenvironment and long-term engraftment failure. Stem Cells 2005; 23:335-46. [PMID: 15749928 DOI: 10.1634/stemcells.2004-0216] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hematopoietic-specific Rho GTPase, Rac2, regulates a variety of cellular functions including cell shape changes, motility, integrin-dependent adhesion, and apoptosis. In the study reported here, we demonstrate that wild-type (WT) hematopoietic stem cells/progenitors (HSC/P) preferentially engraft in nonablated Rac2(-/-) bone marrow. In addition, primitive Rac2(-/-) HSC/P transplanted into lethally irradiated WT recipients showed a significant competitive defect compared with WT cells. These defects appeared to be related to HSC/P-intrinsic defective microenvironment interactions, since Rac2(-/-) cells showed less adhesion to the femur bone marrow density 1 (FBMD-1) stromal cell line, a lower frequency of cobblestone area-forming cells, and lower performance in long-term marrow cultures in vitro when compared with WT cells. In contrast, primitive Rac2(-/-) hematopoietic cells exhibited normal progenitor colony formation in semisolid medium in vitro and normal proliferation in the steady state in vivo when compared with WT cells. Taken together, these data suggest that Rac2(-/-) stem/progenitor cells exhibit abnormal interaction with the hematopoietic microenvironment, which leads to defective long-term engraftment.
Collapse
Affiliation(s)
- Michael Jansen
- Division of Experimental Hematology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45215, USA
| | | | | | | | | |
Collapse
|
228
|
Zhang CC, Lodish HF. Murine hematopoietic stem cells change their surface phenotype during ex vivo expansion. Blood 2005; 105:4314-20. [PMID: 15701724 PMCID: PMC1895041 DOI: 10.1182/blood-2004-11-4418] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ex vivo expansion of hematopoietic stem cells (HSCs) is important for many clinical applications, and knowledge of the surface phenotype of ex vivo-expanded HSCs will be critical to their purification and analysis. Here, we developed a simple culture system for bone marrow (BM) HSCs using low levels of stem cell factor (SCF), thrombopoietin (TPO), insulin-like growth factor 2 (IGF-2), and fibroblast growth factor-1 (FGF-1) in serum-free medium. As measured by competitive repopulation analyses, there was a more than 20-fold increase in numbers of long-term (LT)-HSCs after a 10-day culture of total BM cells. Culture of BM "side population" (SP) cells, a highly enriched stem cell population, for 10 days resulted in an approximate 8-fold expansion of repopulating HSCs. Similar to freshly isolated HSCs, repopulating HSCs after culture were positive for the stem cell markers Sca-1, Kit, and CD31 and receptors for IGF-2. Surprisingly, prion protein and Tie-2, which are present on freshly isolated HSCs, were not on cultured HSCs. Two other HSC markers, Endoglin and Mpl, were expressed only on a portion of cultured HSCs. Therefore, the surface phenotype of ex vivo-expanded HSCs is different from that of freshly isolated HSCs, but this plasticity of surface phenotype does not significantly alter their repopulation capability.
Collapse
Affiliation(s)
- Cheng Cheng Zhang
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
229
|
Abstract
In recent years, it has become generally accepted that the corneal epithelial stem cells are localized in the basal cell layer of the limbal epithelium. However, a number of questions remain regarding the number, markers, generation, and maintenance of the corneal epithelial stem cells. One of the key questions concerns what makes up the microenvironment or niche that is responsible for allowing the stem cells to remain and function throughout the life of the tissue. This review will consider the unique aspects of the limbus and compare these to what is known about other stem cell niches.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Cell Biology, George Washington University Medical Center, Washington, DC 20037, USA
| | | |
Collapse
|
230
|
Abstract
As our understanding of integrins as multifunctional adhesion and signaling molecules has grown, so has their recognition as potential therapeutic targets in human diseases. Leukocyte integrins are of particular interest in this regard, as they are key molecules in immune-mediated and inflammatory processes and are thus critically involved in diverse clinical disorders, ranging from asthma to atherosclerosis. Antagonists that interfere with integrin-dependent leukocyte trafficking and/or post-trafficking events have shown efficacy in multiple preclinical models, but these have not always predicted success in subsequent clinical trials (e.g., ischemia-reperfusion disorders and transplantation). However, recent successes of integrin antagonists in psoriasis, inflammatory bowel disease, and multiple sclerosis demonstrate the tremendous potential of antiadhesion therapy directed at leukocyte integrins. This article will review the role of the leukocyte integrins in the inflammatory process, approaches to targeting leukocyte integrins and their ligands, and the results of completed clinical trials.
Collapse
Affiliation(s)
- Karyn Yonekawa
- Division of Nephrology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
231
|
Bonig H, Priestley GV, Nilsson LM, Jiang Y, Papayannopoulou T. PTX-sensitive signals in bone marrow homing of fetal and adult hematopoietic progenitor cells. Blood 2004; 104:2299-306. [PMID: 15217839 DOI: 10.1182/blood-2004-04-1605] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractSeveral examples suggest a relationship between in vitro migratory capacity and bone marrow (BM) homing. Pertussis toxin (PTX) is a potent inhibitor of serpentine receptor–associated inhibitory trimeric guanidine nucleotide binding (Gi) protein signals. As such, it blocks hematopoietic progenitor cell migration in vitro, but contrary to expectation, no effects on BM homing were observed in previous studies. We therefore re-examined the effect of PTX on homing of murine BM and fetal liver (FL). We found that BM homing of PTX-incubated progenitor cells (colony-forming cells in culture [CFU-Cs]) from BM or FL in irradiated and nonirradiated recipients was reduced by more than 75%, with a concomitant increase in circulating CFU-Cs in peripheral blood. Additional studies confirmed the functional significance of this reduction in homing: PTX-treated cells did not provide radioprotection, and their short-term engraftment in BM and spleen was drastically reduced. Furthermore, several approaches show that cell-intrinsic rather than host-derived mechanisms are responsible for the PTX-induced homing defect. In summary, we show that Gi protein signals are required for BM homing and, as such, provide a new example of the association between BM homing and in vitro migration. Moreover, our data suggest that the behavior of hematopoietic progenitors in obeying Gi signaling does not diverge from that of mature leukocytes.
Collapse
Affiliation(s)
- Halvard Bonig
- Department of Medicine, Division of Hematology, 1959 NE Pacific St, Box 357710, HSB-K257, Seattle, WA 98195-7710, USA
| | | | | | | | | |
Collapse
|
232
|
Venezia TA, Merchant AA, Ramos CA, Whitehouse NL, Young AS, Shaw CA, Goodell MA. Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol 2004; 2:e301. [PMID: 15459755 PMCID: PMC520599 DOI: 10.1371/journal.pbio.0020301] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Accepted: 07/13/2004] [Indexed: 12/05/2022] Open
Abstract
Stem cells resident in adult tissues are principally quiescent, yet harbor enormous capacity for proliferation to achieve self renewal and to replenish their tissue constituents. Although a single hematopoietic stem cell (HSC) can generate sufficient primitive progeny to repopulate many recipients, little is known about the molecular mechanisms that maintain their potency or regulate their self renewal. Here we have examined the gene expression changes that occur over a time course when HSCs are induced to proliferate and return to quiescence in vivo. These data were compared to data representing differences between naturally proliferating fetal HSCs and their quiescent adult counterparts. Bioinformatic strategies were used to group time-ordered gene expression profiles generated from microarrays into signatures of quiescent and dividing stem cells. A novel method for calculating statistically significant enrichments in Gene Ontology groupings for our gene lists revealed elemental subgroups within the signatures that underlie HSC behavior, and allowed us to build a molecular model of the HSC activation cycle. Initially, quiescent HSCs evince a state of readiness. The proliferative signal induces a preparative state, which is followed by active proliferation divisible into early and late phases. Re-induction of quiescence involves changes in migratory molecule expression, prior to reestablishment of homeostasis. We also identified two genes that increase in both gene and protein expression during activation, and potentially represent new markers for proliferating stem cells. These data will be of use in attempts to recapitulate the HSC self renewal process for therapeutic expansion of stem cells, and our model may correlate with acquisition of self renewal characteristics by cancer stem cells. This comprehensive study of gene expression in hematopoietic stem cells reveals some key cellular changes that occur when the stem cells transition from quiescence to proliferation and back again
Collapse
Affiliation(s)
- Teresa A Venezia
- 1Cell and Molecular Biology Program, Baylor College of MedicineHouston, TexasUnited States of America
- 2Center for Cell and Gene Therapy, Baylor College of MedicineHouston, TexasUnited States of America
| | - Akil A Merchant
- 2Center for Cell and Gene Therapy, Baylor College of MedicineHouston, TexasUnited States of America
- 3Department of Medicine, Baylor College of MedicineHouston, TexasUnited States of America
| | - Carlos A Ramos
- 2Center for Cell and Gene Therapy, Baylor College of MedicineHouston, TexasUnited States of America
- 3Department of Medicine, Baylor College of MedicineHouston, TexasUnited States of America
| | - Nathan L Whitehouse
- 4Department of Human and Molecular Genetics, Baylor College of MedicineHouston, TexasUnited States of America
| | - Andrew S Young
- 4Department of Human and Molecular Genetics, Baylor College of MedicineHouston, TexasUnited States of America
| | - Chad A Shaw
- 4Department of Human and Molecular Genetics, Baylor College of MedicineHouston, TexasUnited States of America
| | - Margaret A Goodell
- 1Cell and Molecular Biology Program, Baylor College of MedicineHouston, TexasUnited States of America
- 2Center for Cell and Gene Therapy, Baylor College of MedicineHouston, TexasUnited States of America
- 4Department of Human and Molecular Genetics, Baylor College of MedicineHouston, TexasUnited States of America
- 5Department of Pediatrics, Baylor College of MedicineHouston, TexasUnited States of America
| |
Collapse
|
233
|
Levesque JP, Liu F, Simmons PJ, Betsuyaku T, Senior RM, Pham C, Link DC. Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 2004; 104:65-72. [PMID: 15010367 DOI: 10.1182/blood-2003-05-1589] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
Recent evidence suggests that protease release by neutrophils in the bone marrow may contribute to hematopoietic progenitor cell (HPC) mobilization. Matrix metalloproteinase-9 (MMP-9), neutrophil elastase (NE), and cathepsin G (CG) accumulate in the bone marrow during granulocyte colony-stimulating factor (G-CSF) treatment, where they are thought to degrade key substrates including vascular cell adhesion molecule-1 (VCAM-1) and CXCL12. To test this hypothesis, HPC mobilization was characterized in transgenic mice deficient in one or more hematopoietic proteases. Surprisingly, HPC mobilization by G-CSF was normal in MMP-9–deficient mice, NE × CG-deficient mice, or mice lacking dipeptidyl peptidase I, an enzyme required for the functional activation of many hematopoietic serine proteases. Moreover, combined inhibition of neutrophil serine proteases and metalloproteinases had no significant effect on HPC mobilization. VCAM-1 expression on bone marrow stromal cells decreased during G-CSF treatment of wild-type mice but not NE × CG-deficient mice, indicating that VCAM-1 cleavage is not required for efficient HPC mobilization. G-CSF induced a significant decrease in CXCL12α protein expression in the bone marrow of Ne × CG-deficient mice, indicating that these proteases are not required to down-regulate CXCL12 expression. Collectively, these data suggest a complex model in which both protease-dependent and -independent pathways may contribute to HPC mobilization.
Collapse
Affiliation(s)
- Jean-Pierre Levesque
- Stem Cell Biology Laboratory, Peter MacCallum Cancer Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
234
|
Abstract
Abstract
Uncovering the molecular mechanisms governing the exit of stem/progenitor cells from bone marrow to peripheral blood at steady state or after their enforced migration has been an ongoing challenge. Recently, however, several new avenues or paradigms in mobilization have emerged from ever-expanding work in humans subjected to granulocyte colony-stimulating factor (G-CSF) mobilization, as well as from studies in normal and gene-deficient mouse models. Although these developments represent notable advances that met with considerable excitement, they have been quenched by surprising vacillations in subsequent research. This perspective highlights recent developments in mobilization along with their controversies. A full understanding of the directional cues that control the migratory behavior and the fate of stem/progenitor cells once they migrate out of bone marrow will await further experimentation, aiming to bridge our current gaps in knowledge.
Collapse
|
235
|
Abstract
PURPOSE OF REVIEW Although the concept of engraftment and clinical reconstitution of the bone marrow was described several decades ago, the analysis of individual steps within this process remains a major focus of much current research in stem cell biology. In particular, this extends to the identification and characterization of the specific stem cell niche first proposed by Schofield in 1978. It is appropriate, therefore, that on the 25th anniversary of this publication, that we review recent progress in our understanding of the location and composition of the bone marrow stem cell niche and of the mechanisms involved in the initial phases of hematopoietic stem cell engraftment. RECENT FINDINGS During the past 12 months there have been significant advancements in our understanding of the interplay of molecules involved in the homing of hematopoietic stem cells to the bone marrow. In addition, innovative methodologies have become available for the visualization of hematopoietic stem cells within the bone marrow in situ. In an important development in this area, studies our now focusing on events after transendothelial migration into the marrow cords, including mechanisms involved in hematopoietic stem cell migration to and lodgment within the hematopoietic stem cell niche. Furthermore, there have been numerous new reports analyzing the molecular regulation of hematopoietic stem cells within the bone marrow niche in situ. SUMMARY Overall, recent advancements in our understanding of hematopoietic stem cell biology and, in particular, the interaction of hematopoietic stem cells with the hematopoietic microenvironment paves the way for expanded use in regenerative medicine.
Collapse
Affiliation(s)
- Susan K Nilsson
- Stem Cell Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | |
Collapse
|