201
|
Jerzmanowski A. SWI/SNF chromatin remodeling and linker histones in plants. ACTA ACUST UNITED AC 2007; 1769:330-45. [PMID: 17292979 DOI: 10.1016/j.bbaexp.2006.12.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Revised: 12/15/2006] [Accepted: 12/31/2006] [Indexed: 12/13/2022]
Abstract
In yeast and mammals, ATP-dependent chromatin remodeling complexes belonging to the SWI/SNF family play critical roles in the regulation of transcription, cell proliferation, differentiation and development. Homologs of conserved subunits of SWI/SNF-type complexes, including several putative ATPases and other core subunits, have been identified in plants. Here I summarize recent insights in structural organization and functional diversification of putative plant SWI/SNF-type chromatin remodeling complexes and discuss in a broader evolutionary perspective the similarities and differences between plant and yeast/animal SWI/SNF remodeling. I also summarize the current view of localization in nucleosome and dynamic behaviour in chromatin of linker (H1) histones and discuss significance of recent findings indicating that in both plants and mammals histone H1 is involved in determining patterns of DNA methylation at selected loci.
Collapse
Affiliation(s)
- Andrzej Jerzmanowski
- Laboratory of Plant Molecular Biology, Warsaw University and Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
202
|
Abd El All H. Smooth muscle actin and s100p on non germinal centre diffuse large B cell lymphoma are adverse prognostic factors: pilot study. Diagn Pathol 2007; 2:9. [PMID: 17335572 PMCID: PMC1828714 DOI: 10.1186/1746-1596-2-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Accepted: 03/02/2007] [Indexed: 11/30/2022] Open
Abstract
Introduction The expression of smooth muscle actin (SMA) and s100p has been identified on an aggressive retro-orbital diffuse large B cell lymphoma (DLBCL) [1]. Aim To assess the prognostic significance of immunohistochemical (IHC) expression of SMA and s100p on DLBCL. Materials and methods Twenty nine cases diagnosed as DLBCL were first classified into germinal centre (GC) B cell like and non GC origin either activated B cells (ABC) or type 3 based on their immunoreactivity for CD10, bcl-6 and Mum-1. Bcl-2 and MIB-1 as adverse prognostic factors were assessed. SMA and s100p were evaluated and correlated with patients' clinicopathological characteristics. Results Eleven cases (37.93%) positive for CD10 and/or bcl-6 were classified as GC B cell like subtype, 7 cases positive only for Mum-1 as ABC subtype (24.14%), and 11 cases double positive or negative for bcl-6 and Mum-1 were considered as type 3 (37.93%). Nuclear and cytoplasmic SMA and s100p were expressed in 58.62% and 51.72% of cases respectively and were strongly associated with the non GC like phenotype (p < 0.001 for SMA and p < 0.01 for s100p). SMA and s100p were strongly related to each other (p < 0.001). SMA was closely associated with bcl-2 and MIB-1 (p < 0.01 and p < 0.025 respectively), while s100p was only associated with bcl-2 (p < 0.05). Conclusion SMA and s100p are expressed on non GC DLBCL and appear to be adverse prognostic factors. Future large studies evaluating their significance will be valuable to assess the different subgroups in clinical context. Lastly, this expression may lead to misdiagnosis of non hematopoeitic neoplasm if lymphoid markers are not included in the IHC panel.
Collapse
Affiliation(s)
- Howayda Abd El All
- Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailiya, Egypt.
| |
Collapse
|
203
|
Keskin O, Nussinov R. Similar Binding Sites and Different Partners: Implications to Shared Proteins in Cellular Pathways. Structure 2007; 15:341-54. [PMID: 17355869 DOI: 10.1016/j.str.2007.01.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 01/04/2007] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
We studied a data set of structurally similar interfaces that bind to proteins with different binding-site structures and different functions. Our multipartner protein interface clusters enable us to address questions like: What makes a given site bind different proteins? How similar/different are the interactions? And, what drives the apparently less-specific association? We find that proteins with common binding-site motifs preferentially use conserved interactions at similar interface locations, despite the different partners. Helices are major vehicles for binding different partners, allowing alternate ways to achieve favorable association. The binding sites are characterized by imperfect packing, planar architectures, bridging water molecules, and, on average, smaller size. Interestingly, analysis of the connectivity of these proteins illustrates that they have more interactions with other proteins. These findings are important in predicting "date hubs," if we assume that "date hubs" are shared proteins with binding sites capable of transient binding to multipartners, linking higher-order networks.
Collapse
Affiliation(s)
- Ozlem Keskin
- Koc University, Center for Computational Biology and Bioinformatics and College of Engineering, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | | |
Collapse
|
204
|
Wang H, Bash R, Lohr D. Two-component atomic force microscopy recognition imaging of complex samples. Anal Biochem 2007; 361:273-9. [PMID: 17196924 PMCID: PMC2071926 DOI: 10.1016/j.ab.2006.11.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 11/17/2006] [Accepted: 11/29/2006] [Indexed: 11/25/2022]
Abstract
Biological complexes are typically multisubunit in nature and the processes in which they participate often involve protein compositional changes in themselves and/or their target substrates. Being able to identify more than one type of protein in complex samples and to track compositional changes during processes would thus be very useful. Toward this goal, we describe here a single-molecule technique that can simultaneously identify two types of proteins in compositionally complex samples. It is an adaptation of the recently developed atomic force microscopy (AFM) recognition imaging technique but involves the tethering of two different types of antibodies to the AFM tip and sequential blocking with appropriate antigenic peptides to distinguish the recognition from each antibody. The approach is shown to be capable of simultaneously identifying in a single AFM image two specific components, BRG1 and beta-actin, of the human Swi-Snf ATP-dependent nucleosome remodeling complex and two types of histones, H2A and H3, in chromatin samples.
Collapse
Affiliation(s)
- H. Wang
- Biodesign Institute, Arizona State Univ., Tempe, AZ 85287-1604
| | - R. Bash
- Biodesign Institute, Arizona State Univ., Tempe, AZ 85287-1604
- Department of Chemistry and Biochemistry, Arizona State Univ., Tempe, AZ 85287-1604
| | - D. Lohr
- Department of Chemistry and Biochemistry, Arizona State Univ., Tempe, AZ 85287-1604
| |
Collapse
|
205
|
Farah ME, Amberg DC. Conserved actin cysteine residues are oxidative stress sensors that can regulate cell death in yeast. Mol Biol Cell 2007; 18:1359-65. [PMID: 17287397 PMCID: PMC1838977 DOI: 10.1091/mbc.e06-08-0718] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Actin's functional complexity makes it a likely target of oxidative stress but also places it in a prime position to coordinate the response to oxidative stress. We have previously shown that the NADPH oxidoreductase Oye2p protects the actin cytoskeleton from oxidative stress. Here we demonstrate that the physiological consequence of actin oxidation is to accelerate cell death in yeast. Loss of Oye2p leads to reactive oxygen species accumulation, activation of the oxidative stress response, nuclear fragmentation and DNA degradation, and premature chronological aging of yeast cells. The oye2Delta phenotype can be completely suppressed by removing the potential for formation of the actin C285-C374 disulfide bond, the likely substrate of the Oye2p enzyme or by treating the cells with the clinically important reductant N-acetylcysteine. Because these two cysteines are coconserved in all actin isoforms, we theorize that we have uncovered a universal mechanism whereby actin helps to coordinate the cellular response to oxidative stress by both sensing and responding to oxidative load.
Collapse
Affiliation(s)
- Michelle E Farah
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
206
|
Hogan C, Varga-Weisz P. The regulation of ATP-dependent nucleosome remodelling factors. Mutat Res 2007; 618:41-51. [PMID: 17306842 DOI: 10.1016/j.mrfmmm.2006.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 07/18/2006] [Indexed: 11/17/2022]
Abstract
The plasticity of chromatin is governed by multi-subunit protein complexes that enzymatically regulate chromosomal structure and activity. Such complexes include ATP-dependent chromatin remodelling factors that are involved in many fundamental processes such as transcription, DNA repair, replication and chromosome structure maintenance. Because ATP-dependent chromatin remodelling factors play important roles, it is not surprising to find that their functions are regulated in a plethora of ways, including post-translational modifications of their subunits and subunit composition changes. The activity of these enzymes is modulated by many factors, including linker histones, histone variants, histone chaperones, non-histone chromatin constituents such as HMG-proteins and secondary messengers, such as inositolpolyphosphates. Additionally, specific histone modifications and interaction with site-specific transcriptional regulators direct the targeting of these activities. Understanding the network of mechanisms that control ATP-dependent chromatin remodelling will constitute an important challenge towards our understanding of chromatin dynamics.
Collapse
|
207
|
Osley MA, Tsukuda T, Nickoloff JA. ATP-dependent chromatin remodeling factors and DNA damage repair. Mutat Res 2007; 618:65-80. [PMID: 17291544 PMCID: PMC1904433 DOI: 10.1016/j.mrfmmm.2006.07.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 07/31/2006] [Indexed: 02/08/2023]
Abstract
The organization of eukaryotic DNA into chromatin poses a barrier to all processes that require access of enzymes and regulatory factors to their sites of action. While the majority of studies in this area have concentrated on the role of chromatin in the regulation of transcription, there has been a recent emphasis on the relationship of chromatin to DNA damage repair. In this review, we focus on the role of chromatin in nucleotide excision repair (NER) and double-strand break (DSB) repair. NER and DSB repair use very different enzymatic machineries, and these two modes of DNA damage repair are also differentially affected by chromatin. Only a small number of nucleosomes are likely to be involved in NER, while a more extensive region of chromatin is involved in DSB repair. However, a key feature of both NER and DSB repair pathways is the participation of ATP-dependent chromatin remodeling factors at various points in the repair process. We discuss recent data that have identified roles for SWI/SNF-related chromatin remodeling factors in the two repair pathways.
Collapse
Affiliation(s)
- Mary Ann Osley
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | | | |
Collapse
|
208
|
Cameron RS, Liu C, Mixon AS, Pihkala JPS, Rahn RJ, Cameron PL. Myosin16b: The COOH-tail region directs localization to the nucleus and overexpression delays S-phase progression. ACTA ACUST UNITED AC 2007; 64:19-48. [PMID: 17029291 DOI: 10.1002/cm.20162] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Rat Myo16a and Myo16b comprise the founding members of class XVI myosin and are characterized by an N-terminal ankyrin repeat domain thought to mediate an association with protein phosphatase 1 catalytic subunits 1alpha and 1gamma. Myo16b is the principal isoform and reveals predominant expression in developing neural tissue. Here, we use COS-7 cells as a model system to develop an understanding of Myo16b function. We find that Myo16b displays predominant localization in the nucleus of cells transitioning through interphase, but is not associated with processes of mitosis. Using a panel of EGFP-Myo16b-expression plasmids in transient transfection studies, we identified the COOH-terminal residues 1616-1912 as necessary and solely sufficient to target Myo16b to the nucleus. We show that the Myo16b-tail region directs localization to a nuclear compartment containing profilin and polymerized actin, which appears to form a three-dimensional meshwork through the depth of the nucleus. Further, we demonstrate that this compartment localizes within euchromatic regions of the genome and contains proliferating cell nuclear antigen (PCNA) and cyclin A, both markers of S-phase of the cell cycle. Cells transiently expressing Myo16b or Myo16b-tail region show limited incorporation of BrdU, delayed progression through S-phase of the cell cycle, and curtailed cellular proliferation.
Collapse
Affiliation(s)
- Richard S Cameron
- Program in Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | | | | | |
Collapse
|
209
|
Yoo Y, Wu X, Guan JL. A novel role of the actin-nucleating Arp2/3 complex in the regulation of RNA polymerase II-dependent transcription. J Biol Chem 2007; 282:7616-23. [PMID: 17220302 DOI: 10.1074/jbc.m607596200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It has been well documented that actin is present in the nucleus and involved in numerous nuclear functions including regulation of transcription. The actin-nucleating Arp2/3 complex is an essential, evolutionarily conserved seven-subunit protein complex that promotes actin cytoskeleton assembly in the cytoplasm upon stimulation by WASP family proteins. Our recent study indicates that the nuclear localized neural Wiskott-Aldrich syndrome protein (N-WASP) can induce de novo actin polymerization in the nucleus, and this function is important for the role of N-WASP in the regulation of RNA polymerase II-dependent transcription. Here, we have presented evidence to show that the Arp2/3 complex is also localized in the nucleus and plays an essential role in mediating nuclear actin polymerization induced by N-WASP. We have also demonstrated that the Arp2/3 complex physically associates with RNA polymerase II and is involved in the RNA polymerase II-dependent transcriptional regulation both in vivo and in vitro. Together, these data provide strong support for the hypothesis that N-WASP and the Arp2/3 complex regulate transcription, at least in part, through the regulation of nuclear actin polymerization in a manner similar to their function in the cytoplasm.
Collapse
Affiliation(s)
- Youngdong Yoo
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
210
|
Takeuchi JK, Lickert H, Bisgrove BW, Sun X, Yamamoto M, Chawengsaksophak K, Hamada H, Yost HJ, Rossant J, Bruneau BG. Baf60c is a nuclear Notch signaling component required for the establishment of left-right asymmetry. Proc Natl Acad Sci U S A 2007; 104:846-51. [PMID: 17210915 PMCID: PMC1783402 DOI: 10.1073/pnas.0608118104] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Notch-mediated induction of Nodal at the vertebrate node is a critical step in initiating left-right (LR) asymmetry. In mice and zebrafish we show that Baf60c, a subunit of the Swi/Snf-like BAF chromatin remodeling complex, is essential for establishment of LR asymmetry. Baf60c knockdown mouse embryos fail to activate Nodal at the node and also have abnormal node morphology with mixing of crown and pit cells. In cell culture, Baf60c is required for Notch-dependent transcriptional activation and functions to stabilize interactions between activated Notch and its DNA-binding partner, RBP-J. Brg1 is also required for these processes, suggesting that BAF complexes are key components of nuclear Notch signaling. We propose a critical role for Baf60c in Notch-dependent transcription and LR asymmetry.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Body Patterning
- Cell Nucleus/metabolism
- Chromosomal Proteins, Non-Histone/deficiency
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Embryo, Nonmammalian
- Gene Expression Regulation, Developmental
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mice
- Muscle Proteins/deficiency
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Nodal Protein
- Receptors, Notch/metabolism
- Signal Transduction
- Transcription, Genetic/genetics
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Jun K. Takeuchi
- Departments of *Cardiovascular Research and
- Developmental Biology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8
| | - Heiko Lickert
- National Research Center for Environment and Health, Institute of Stem Cell Research, Neuherberg 85764, Germany
| | - Brent W. Bisgrove
- Huntsman Cancer Institute, Center for Children, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112; and
| | - Xin Sun
- Departments of *Cardiovascular Research and
- Developmental Biology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Masamichi Yamamoto
- **Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | - Hiroshi Hamada
- **Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - H. Joseph Yost
- Huntsman Cancer Institute, Center for Children, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112; and
| | - Janet Rossant
- Developmental Biology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Benoit G. Bruneau
- Departments of *Cardiovascular Research and
- Developmental Biology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8
- To whom correspondence should be sent at the present address:
Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158. E-mail:
| |
Collapse
|
211
|
Hizume K, Yoshimura SH, Kumeta M, Takeyasu K. Structural organization of dynamic chromatin. Subcell Biochem 2007; 41:3-28. [PMID: 17484121 DOI: 10.1007/1-4020-5466-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Affiliation(s)
- Kohji Hizume
- Laboratory of Plasma Membrane and Nuclear Signaling, Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | |
Collapse
|
212
|
Larsson LI, Holck S. Occurrence of thymosin β4 in human breast cancer cells and in other cell types of the tumor microenvironment. Hum Pathol 2007; 38:114-9. [PMID: 16949646 DOI: 10.1016/j.humpath.2006.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 06/16/2006] [Accepted: 06/16/2006] [Indexed: 11/23/2022]
Abstract
Previous studies have shown that the G-actin sequestering polypeptide thymosin beta4 frequently is overexpressed in cancers and that such overexpression correlates to malignant progression. However, the localization of thymosin beta4 in human cancers has not been determined. We now demonstrate that there is a considerable heterogeneity in the cellular distribution of thymosin beta4 in breast cancer. In most tumors examined, cancer cells showed low or intermediate reactivity for thymosin beta4, whereas leukocytes and macrophages showed intense reactivity. In addition, endothelial cells showed variable reactivity to thymosin beta4, whereas myofibroblasts were negative. There was no correlation between the intensity of tumor cell staining and histological grade, whereas there was a tendency toward a correlation between endothelial cell staining and grade. These results demonstrate that multiple cell types within the tumor microenvironment produce thymosin beta4 and that such expression varies from tumor to tumor. Such heterogeneity of expression should be taken into account when the role of thymosin beta4 in tumor biology is assessed.
Collapse
Affiliation(s)
- Lars-Inge Larsson
- Anatomy and Cell Biology, Institute for Basic Animal and Veterinary Science, The Royal Veterinary and Agricultural University, DK-1870 Frederiksberg C, Copenhagen, Denmark.
| | | |
Collapse
|
213
|
Abstract
Actin is a key protein in numerous cellular functions. One recent study has identified a large set of genes, associated with the actin cytoskeleton, which could be grouped into a wide spectrum of cytoplasmic and nuclear functions, such as protein biosynthesis and gene transcription. Deletions of many of the identified genes affected cellular actin organization, suggesting a functional link between different actin fractions probably regulated through changes in actin dynamics. The data are very exciting; speculations on the crosstalk between cytoplasmic and nuclear actin fractions in different cellular contexts may help placing the results in perspective to further understand how actin-mediated signalling affects cellular functions, such as gene expression.
Collapse
Affiliation(s)
- Piergiorgio Percipalle
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, Box 285, Stockholm SE-171 77, Sweden.
| |
Collapse
|
214
|
Ono S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:1-82. [PMID: 17338919 DOI: 10.1016/s0074-7696(07)58001-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The actin cytoskeleton is one of the major structural components of the cell. It often undergoes rapid reorganization and plays crucial roles in a number of dynamic cellular processes, including cell migration, cytokinesis, membrane trafficking, and morphogenesis. Actin monomers are polymerized into filaments under physiological conditions, but spontaneous depolymerization is too slow to maintain the fast actin filament dynamics observed in vivo. Gelsolin, actin-depolymerizing factor (ADF)/cofilin, and several other actin-severing/depolymerizing proteins can enhance disassembly of actin filaments and promote reorganization of the actin cytoskeleton. This review presents advances as well as a historical overview of studies on the biochemical activities and cellular functions of actin-severing/depolymerizing proteins.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
215
|
Wang IF, Chang HY, Shen CKJ. Actin-based modeling of a transcriptionally competent nuclear substructure induced by transcription inhibition. Exp Cell Res 2006; 312:3796-807. [PMID: 17022973 DOI: 10.1016/j.yexcr.2006.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 07/23/2006] [Accepted: 07/26/2006] [Indexed: 12/21/2022]
Abstract
During transcription inactivation, the nuclear bodies in the mammalian cells often undergo reorganization. In particular, the interchromatin granule clusters, or IGCs, become colocalized with RNA polymerase II (RNAP II) upon treatment with transcription inhibitors. This colocalization has also been observed in untreated but transcriptionally inactive cells. We report here that the reorganized IGC domains are unique substructure consisting of outer shells made of SC35, ERK2, SF2/ASF, and actin. The apparently hollow holes of these domains contain clusters of RNAP II, mostly phosphorylated, and the splicing regulator SMN. This class of complexes are also the sites where prominent transcription activities are detected once the inhibitors are removed. Furthermore, actin polymerization is required for reorganization of the IGCs. In connection with this, immunoprecipitation and immunostaining experiments showed that nuclear actin is associated with IGCs and the reorganized IGC domains. The study thus provides further evidence for the existence of an actin-based nuclear skeleton structure in association with the dynamic reorganization processes in the nucleus. Overall, our data suggest that mammalian cells have adapted to utilize the reorganized, uniquely shaped IGC domains as the temporary storage sites of RNAP II transcription machineries in response to certain transient states of transcription inactivation.
Collapse
Affiliation(s)
- I-Fan Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | | | | |
Collapse
|
216
|
Posern G, Treisman R. Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 2006; 16:588-96. [DOI: 10.1016/j.tcb.2006.09.008] [Citation(s) in RCA: 416] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 08/29/2006] [Accepted: 09/25/2006] [Indexed: 11/30/2022]
|
217
|
Fuentes-Mera L, Rodríguez-Muñoz R, González-Ramírez R, García-Sierra F, González E, Mornet D, Cisneros B. Characterization of a novel Dp71 dystrophin-associated protein complex (DAPC) present in the nucleus of HeLa cells: members of the nuclear DAPC associate with the nuclear matrix. Exp Cell Res 2006; 312:3023-35. [PMID: 16824516 DOI: 10.1016/j.yexcr.2006.06.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 05/06/2006] [Accepted: 06/02/2006] [Indexed: 11/26/2022]
Abstract
Dystrophin is an essential component in the assembly and maintenance of the dystrophin-associated protein complex (DAPC), which includes members of the dystroglycan, syntrophin, sarcoglycan and dystrobrevin protein families. Distinctive complexes have been described in the cell membrane of different tissues and cultured cells. In this work, we report the identification and characterization of a novel DAPC present in the nuclei of HeLa cells, which contains dystrophin Dp71 as a key component. Using confocal microscopy and cell fractionation analyses, we found the presence of Dp71, beta-sarcoglycan, beta-dystroglycan, alpha- and beta-syntrophin, alpha1- and beta-dystrobrevin and nNOS in the nuclei of HeLa cells. Furthermore, we demonstrated by co-immunoprecipitation experiments that most of these proteins form a complex in the nuclear compartment. Next, we analyze the possible association of the nuclear DAPC with the nuclear matrix. We found the presence of Dp71, beta-dystroglycan, nNOS, beta-sarcoglycan, alpha/beta syntrophin, alpha1-dystrobrevin and beta-dystrobrevin in the nuclear matrix protein fractions and in situ nuclear matrix preparations from HeLa cells. Moreover, we found that Dp71, beta-dystroglycan and beta-dystrobrevin co-immunoprecipitated with the nuclear matrix proteins lamin B1 and actin. The association of members of the nuclear DAPC with the nuclear matrix indicates that they may work as scaffolding proteins involved in nuclear architecture.
Collapse
Affiliation(s)
- Lizeth Fuentes-Mera
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Avenida Instituto Politécnico Nacional 2508, Apartado Postal 14-740, C.P. 07000, México D.F., México
| | | | | | | | | | | | | |
Collapse
|
218
|
Abstract
Meiosis creates haploid cells from diploid progenitors. Homologous chromosomes are moved, paired and segregated from each other in a specialized meiosis I division. A second division that lacks a preceding S-phase produces haploid cells. In prophase I, chromosomes attach with their telomeres to the nuclear envelope and undergo oscillating movements that become restricted to a limited nuclear sector during the widely conserved bouquet stage. Recent observations in budding yeast meiosis suggest that telomere clustering depends on actin, whereas exit from the bouquet stage requires meiotic cohesin. Telomere clustering may also be modulated by progression in recombination. These observations suggest that the unique meiotic nuclear topology and telomere dynamics are regulated at different levels.
Collapse
Affiliation(s)
- H Scherthan
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
219
|
Vatsyayan J, Lin CT, Peng HL, Chang HY. Identification of a cis-acting element responsible for negative regulation of the human UDP-glucose dehydrogenase gene expression. Biosci Biotechnol Biochem 2006; 70:401-10. [PMID: 16495656 DOI: 10.1271/bbb.70.401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The enzyme UDP-glucose dehydrogenase (UGDH) catalyzes the conversion of UDP-glucose to UDP-glucuronic acid, which is essential for the biosynthesis of complex carbohydrates such as hyaluronan in many cell types, and is required for detoxification of toxic compounds in the liver. We previously defined the 714 bp 5'-flanking region of the UGDH gene as the core promoter, with putative negative regulatory elements residing in the region upstream of it. In the present study, we delineated the region from nucleotide positions -1057 to -957 on the UGDH promoter to be responsible for the repression of promoter activity. A mutation at nucleotide -1003, which is contained within a motif predicted to be the response element for peroxisome proliferator receptor alpha (PPARalpha), abolished the suppression effect. DNA-protein interaction was observed at this motif by electrophoretic mobility shift assay. The proteins interacting with the PPRE-like repressor motif were purified by biotin-labeled DNA affinity chromatography. Subsequently, MALDI-TOF identified the purified proteins as a 62-kDa zinc finger and a 42-kDa beta-actin protein. Hence in this study we report the presence of an inhibitory cis-element in the distal region of the UGDH promoter that interacts with putative transcriptional repressors for the negative regulation of the UGDH gene.
Collapse
Affiliation(s)
- Jaya Vatsyayan
- Institute of Molecular Medicine, National Tsing Hua University, Japan
| | | | | | | |
Collapse
|
220
|
Abstract
The Wnt signaling pathway controls cell proliferation and body patterning throughout development. A surprising number of cytoplasmic Wnt regulators (e.g., beta-catenin, Bcl-9/Lgs, APC, Axin) also appear, often transiently, in the nucleus. beta-Catenin is an integral component of E-cadherin complexes at intercellular adherens junctions, but also recruits chromatin remodeling complexes to activate transcription in the nucleus. The APC tumor suppressor is a part of the cytoplasmic beta-catenin destruction complex, yet also counteracts beta-catenin transactivation and histone H3K4 methylation at Wnt target genes. Furthermore, APC coordinates the cyclic exchange of Wnt coregulator complexes at the DNA. These opposing roles of APC and beta-catenin enable a rapid coordination of gene expression and cytoskeletal organization throughout the cell in response to signaling.
Collapse
Affiliation(s)
- Karl Willert
- Department of Molecular and Cellular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
221
|
Mahmoudi T, Parra M, Vries RGJ, Kauder SE, Verrijzer CP, Ott M, Verdin E. The SWI/SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter. J Biol Chem 2006; 281:19960-8. [PMID: 16687403 DOI: 10.1074/jbc.m603336200] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tat is a critical viral transactivator essential for human immunodeficiency virus (HIV) gene expression. Activation involves binding to an RNA stem-loop structure and recruitment of the positive transcription elongation factor b. Tat also induces the remodeling of a single nucleosome in the HIV promoter. However, the mechanism of this remodeling has remained unclear. Knockdown of INI-1 and BRG-1, two components of the SWI/SNF chromatin-remodeling complex, suppressed Tat-mediated transactivation. Cells lacking INI-1 (G401 and MON) or BRG-1 (C33A) exhibited defective transactivation by Tat that was restored upon INI-1 and BRG-1 expression, respectively. Tat was co-immunoprecipitated with several SWI/SNF subunits, including INI-1, BRG-1, and beta-actin. The SWI/SNF complex interacted with the integrated HIV promoter in a Tat-dependent manner. We also found that INI-1 and BRG-1 synergized with the p300 acetyltransferase to activate the HIV promoter. This synergism depended on the acetyltransferase activity of p300 and on Tat Lys(50) and Lys(51). In conclusion, Tat-mediated activation of the HIV promoter requires the SWI/SNF complex in synergy with the coactivator p300.
Collapse
Affiliation(s)
- Tokameh Mahmoudi
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | | | |
Collapse
|
222
|
Miralles F, Visa N. Actin in transcription and transcription regulation. Curr Opin Cell Biol 2006; 18:261-6. [PMID: 16687246 DOI: 10.1016/j.ceb.2006.04.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
Recent research has provided convincing evidence that actin plays several important roles in gene transcription. First, actin can bind transcription factors and determine their subcellular localization. Second, actin is a component of chromatin remodeling complexes involved in transcriptional activation. Third, actin binds directly to the RNA polymerases I, II and III, and is required for their full transcriptional activity. Fourth, actin associates with nascent mRNPs and participates in the recruitment of histone modifiers to transcribed genes. We do not know yet whether these functions are general, or restricted to certain subsets of genes.
Collapse
Affiliation(s)
- Francesc Miralles
- Transcription Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | |
Collapse
|
223
|
McDonald D, Carrero G, Andrin C, de Vries G, Hendzel MJ. Nucleoplasmic beta-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. ACTA ACUST UNITED AC 2006; 172:541-52. [PMID: 16476775 PMCID: PMC2063674 DOI: 10.1083/jcb.200507101] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
β-Actin, once thought to be an exclusively cytoplasmic protein, is now known to have important functions within the nucleus. Nuclear β-actin associates with and functions in chromatin remodeling complexes, ribonucleic acid polymerase complexes, and at least some ribonucleoproteins. Proteins involved in regulating actin polymerization are also found in the interphase nucleus. We define the dynamic properties of nuclear actin molecules using fluorescence recovery after photobleaching. Our results indicate that actin and actin-containing complexes are reduced in their mobility through the nucleoplasm diffusing at ∼0.5 μm2 s−1. We also observed that ∼20% of the total nuclear actin pool has properties of polymeric actin that turns over rapidly. This pool could be detected in endogenous nuclear actin by using fluorescent polymeric actin binding proteins and was sensitive to drugs that alter actin polymerization. Our results validate previous reports of polymeric forms of nuclear actin observed in fixed specimens and reveal that these polymeric forms are very dynamic.
Collapse
Affiliation(s)
- Darin McDonald
- Department of Oncology and 2Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
| | | | | | | | | |
Collapse
|
224
|
Enari M, Ohmori K, Kitabayashi I, Taya Y. Requirement of clathrin heavy chain for p53-mediated transcription. Genes Dev 2006; 20:1087-99. [PMID: 16618797 PMCID: PMC1472469 DOI: 10.1101/gad.1381906] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The p53 protein is a transcription factor that activates various genes responsible for growth arrest and/or apoptosis in response to DNA damage. Here, we report that clathrin heavy chain (CHC) binds to p53 and contributes to p53-mediated transcription. CHC is known to be a cytosolic protein that functions as a vesicle transporter. We found, however, that CHC exists not only in cytosol but also in nuclei. CHC expression enhances p53-dependent transactivation, whereas the reduction of CHC expression by RNA interference (RNAi) attenuates its transcriptional activity. Moreover, CHC binds to the p53-responsive promoter in vivo and stabilizes p53-p300 interaction to promote p53-mediated transcription. Thus, nuclear CHC is required for the transactivation of p53 target genes and plays a distinct role from clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Masato Enari
- Radiobiology Division, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | |
Collapse
|
225
|
Varga-Weisz PD, Becker PB. Regulation of higher-order chromatin structures by nucleosome-remodelling factors. Curr Opin Genet Dev 2006; 16:151-6. [PMID: 16503135 DOI: 10.1016/j.gde.2006.02.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 02/13/2006] [Indexed: 02/06/2023]
Abstract
Nucleosome-remodelling factors are key facilitators of chromatin dynamics. At the level of single nucleosomes, they are involved in nucleosome-repositioning, altering histone-DNA interactions, disassembly of nucleosomes, and the exchange of histones with variants of different properties. The fundamental nature of chromatin dictates that nucleosome-remodelling affects all aspects of eukaryotic DNA metabolism, but much less is known about the functional interactions of nucleosome-remodelling factors with folded chromatin fibres. Because remodelling machines are abundant constituents of eukaryotic nuclei and, therefore, have ample potential to interact with chromatin, they might also affect higher-order chromatin architecture. Recent observations support roles for nucleosome-remodelling factors at the supra-nucleosomal level.
Collapse
|
226
|
Steinboeck F, Krupanska L, Bogusch A, Kaufmann A, Heidenreich E. Novel Regulatory Properties of Saccharomyces cerevisiae Arp4. ACTA ACUST UNITED AC 2006; 139:741-51. [PMID: 16672275 DOI: 10.1093/jb/mvj080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ARP4, an essential gene of Saccharomyces cerevisiae, codes for a nuclear actin-related protein. Arp4 is a subunit of several chromatin-modifying complexes and is known to be involved in the transcriptional regulation in yeast. We used a mutant strain with a single amino acid substitution (G161D) in the conserved actin fold domain to investigate the influence of Arp4 on stress and nitrogen catabolite repression genes. The deficiency of functional Arp4 caused a highly increased sensitivity towards nitrogen starvation and to the macrolide antibiotic rapamycin. We show the changes of mRNA levels of selected genes under these conditions. The upregulation of stress genes as a consequence of treatment with rapamycin was largely Msn2p/Msn4p-dependent. The sensitivity towards rapamycin indicates a participation of Arp4 in the regulation of the TOR pathway. Consistently, arp4G161D cells exhibited an affected cell cycle. Long-term cultivation, which leads to a G1 arrest in wild-type cells, provoked arrest in G2/M (more than 60%) in the mutant strain. The same effect was observed upon treatment with rapamycin, indicating an unexpected relationship of Arp4 to TOR-mediated cell cycle arrest.
Collapse
Affiliation(s)
- Ferdinand Steinboeck
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
227
|
Martin-Trillo M, Lázaro A, Poethig RS, Gómez-Mena C, Piñeiro MA, Martinez-Zapater JM, Jarillo JA. EARLY IN SHORT DAYS 1(ESD1) encodes ACTIN-RELATED PROTEIN 6 (AtARP6), a putative component of chromatin remodelling complexes that positively regulatesFLCaccumulation inArabidopsis. Development 2006; 133:1241-52. [PMID: 16495307 DOI: 10.1242/dev.02301] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have characterized Arabidopsis esd1 mutations, which cause early flowering independently of photoperiod, moderate increase of hypocotyl length, shortened inflorescence internodes, and altered leaf and flower development. Phenotypic analyses of double mutants with mutations at different loci of the flowering inductive pathways suggest that esd1 abolishes the FLC-mediated late flowering phenotype of plants carrying active alleles of FRI and of mutants of the autonomous pathway. We found that ESD1 is required for the expression of the FLCrepressor to levels that inhibit flowering. However, the effect of esd1 in a flc-3 null genetic background and the downregulation of other members of the FLC-like/MAF gene family in esd1 mutants suggest that flowering inhibition mediated by ESD1 occurs through both FLC-and FLC-like gene-dependent pathways. The ESD1 locus was identified through a map-based cloning approach. ESD1 encodes ARP6, a homolog of the actin-related protein family that shares moderate sequence homology with conventional actins. Using chromatin immunoprecipitation (ChIP) experiments,we have determined that ARP6 is required for both histone acetylation and methylation of the FLC chromatin in Arabidopsis.
Collapse
Affiliation(s)
- Mar Martin-Trillo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, C/ Darwin 3, Madrid 28049, Spain
| | | | | | | | | | | | | |
Collapse
|
228
|
Abstract
Actin is not only a major cytoskeletal component in all eukaryotic cells but also a nuclear protein that plays a role in gene transcription. We put together data from in vitro and in vivo experiments that begin to provide insights into the molecular mechanisms by which actin functions in transcription. Recent studies performed in vitro have suggested that actin, in direct contact with the transcription apparatus, is required in an early step of transcription that is common to all three eukaryotic RNA polymerases. In addition, there is evidence from in vivo studies that actin is involved in the transcription elongation of class II genes. In this case, actin is bound to a specific subset of premessenger RNA binding proteins, and the actin–messenger RNP complex may constitute a molecular platform for recruitment of histone-modifying enzymes. We discuss a general model for actin in RNA polymerase II transcription whereby actin works as a conformational switch in conjunction with specific adaptors to facilitate the remodeling of large macromolecular assemblies at the promoter and along the active gene.
Collapse
Affiliation(s)
- Piergiorgio Percipalle
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-117 77 Stockholm, Sweden.
| | | |
Collapse
|
229
|
Marcus WD, Wang H, Lohr D, Sierks MR, Lindsay SM. Isolation of an scFv targeting BRG1 using phage display with characterization by AFM. Biochem Biophys Res Commun 2006; 342:1123-9. [PMID: 16513088 DOI: 10.1016/j.bbrc.2006.02.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 02/13/2006] [Indexed: 11/20/2022]
Abstract
Remodeling of chromatin is a vitally important event in processes such as transcription and replication. Brahma-related gene 1 (BRG1) protein is the major ATPase subunit in the human Swi/Snf complex (hSwi/Snf), an important example of the family of enzymes that carry out such remodeling events. We have used a recently developed technique, recognition imaging, to better understand the role of BRG1 in remodeling chromatin. In such experiments, a specific antibody against BRG1 is needed. However, we have found that the commercially available polyclonal (CAP) antibodies interact non-specifically with nucleosomes, making it impossible to identify hSwi/Snf (BRG1) in their presence. Here antibody phage display technology is employed for development of an antibody specifically targeting BRG1. The Tomlinson I and J single chain variable fragment (scFv) libraries were used for successful isolation of an anti-BRG1 scFv. We demonstrate that the scFv binds more strongly and with less nonspecific interactions than the CAP antibody. This work lays the groundwork for future studies involving chromatin remodeling.
Collapse
Affiliation(s)
- W D Marcus
- Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287, USA.
| | | | | | | | | |
Collapse
|
230
|
Bala S, Kumar A, Soni S, Sinha S, Hanspal M. Emp is a component of the nuclear matrix of mammalian cells and undergoes dynamic rearrangements during cell division. Biochem Biophys Res Commun 2006; 342:1040-8. [PMID: 16510120 DOI: 10.1016/j.bbrc.2006.02.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 02/10/2006] [Indexed: 11/29/2022]
Abstract
Emp, originally detected in erythroblastic islands, is expressed in numerous cell types and tissues suggesting a functionality not limited to hematopoiesis. To study the function of Emp in non-hematopoietic cells, an epitope-tagged recombinant human Emp was expressed in HEK cells. Preliminary studies revealed that Emp partitioned into both the nuclear and Triton X-100-insoluble cytoskeletal fractions in approximately a 4:1 ratio. In this study, we report investigations of Emp in the nucleus. Sequential extractions of interphase nuclei showed that recombinant Emp was present predominantly in the nuclear matrix. Immunofluorescence microscopy showed that Emp was present in typical nuclear speckles enriched with the spliceosome assembly factor SC35 and partially co-localized with actin staining. Coimmunoprecipitation and GST-pull-down assays confirmed the apparent close association of Emp with nuclear actin. During mitosis, Emp was detected at the mitotic spindle/spindle poles, as well as in the contractile ring during cytokinesis. These results suggest that Emp undergoes dynamic rearrangements within the nuclear architecture that are correlated with cell division.
Collapse
Affiliation(s)
- Shashi Bala
- Center of Cell Biology, Department of Medicine, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | | | | | | | | |
Collapse
|
231
|
Grummt I. Actin and myosin as transcription factors. Curr Opin Genet Dev 2006; 16:191-6. [PMID: 16495046 DOI: 10.1016/j.gde.2006.02.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 02/10/2006] [Indexed: 12/26/2022]
Abstract
The proteins actin and myosin have a firm place in the muscles, where they are responsible for contraction. Although recent investigations have shown that they are found in the nucleus, it has been unclear as to what they are doing there. The discovery of actin as a component of the transcription apparatus, chromatin-remodeling complexes, as well as RNA processing machines, implies important roles for actin in the readout of genetic information. Actin is associated with all three nuclear RNA polymerases and acts in concert with nuclear myosin 1 (NM1) to drive transcription. Actin-NMI interactions are involved in the transition of the initiation complex into the elongation complex, presumably by triggering a structural change of the transcription apparatus or by generating force that supports RNA polymerase movement.
Collapse
Affiliation(s)
- Ingrid Grummt
- German Cancer Research Center, Division of Molecular Biology of the Cell II, D-69120 Heidelberg, Germany.
| |
Collapse
|
232
|
Ohfuchi E, Kato M, Sasaki M, Sugimoto K, Oma Y, Harata M. Vertebrate Arp6, a novel nuclear actin-related protein, interacts with heterochromatin protein 1. Eur J Cell Biol 2006; 85:411-21. [PMID: 16487625 DOI: 10.1016/j.ejcb.2005.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Revised: 12/04/2005] [Accepted: 12/09/2005] [Indexed: 11/16/2022] Open
Abstract
Actin-related proteins (Arps) were recently shown to contribute to the organization and regulation of chromatin structures. The nuclear functions of Arps have been investigated principally in budding yeast in which six of the ten Arp subfamilies are localized in the nucleus. In vertebrates, only two isoforms of Arp4 have so far been identified as showing localization to the nucleus. Here we show the predominant nuclear localization of another Arp subfamily, Arp6, in vertebrate cells. Vertebrate Arp6 directly interacted with heterochromatin protein 1 (HP1) orthologs and the two proteins colocalized in pericentric heterochromatin. Yeast Arp6 is involved in telomere silencing, while Drosophila Arp6 is localized in the pericentric heterochromatin. Our data strongly suggest that Arp6 has an evolutionarily conserved role in heterochromatin formation and also provide new insights into the molecular organization of heterochromatin.
Collapse
Affiliation(s)
- Eri Ohfuchi
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | | | |
Collapse
|
233
|
Abstract
Actin participates in many important biological processes. Currently, intensive investigation is being carried out in a number of laboratories concerning the function of actin in these processes and the molecular basis of its functions. We present a glimpse into four of these areas: actin-like proteins in bacterial cells, actin in the eukaryotic nucleus, the conformational plasticity of the actin filament, and finally, Arp2/3-dependent regulation of actin filament branching and creation of new filament barbed ends.
Collapse
Affiliation(s)
- Peter A Rubenstein
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
234
|
Cocco L, Martelli AM, Fiume R, Faenza I, Billi AM, Manzoli FA. Signal transduction within the nucleus: Revisiting phosphoinositide inositide–specific phospholipase Cβ1. ACTA ACUST UNITED AC 2006; 46:2-11. [PMID: 16846636 DOI: 10.1016/j.advenzreg.2006.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Lucio Cocco
- Cellular Signaling Laboratory, Department of Anatomical Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
235
|
Djagaeva I, Doronkin S, Beckendorf SK. Src64 is involved in fusome development and karyosome formation during Drosophila oogenesis. Dev Biol 2005; 284:143-56. [PMID: 15979065 DOI: 10.1016/j.ydbio.2005.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 03/01/2005] [Accepted: 05/06/2005] [Indexed: 11/21/2022]
Abstract
Src family tyrosine kinases respond to a variety of signals by regulating the organization of the actin cytoskeleton. Here, we show that during early oogenesis Src64 mutations lead to uneven accumulation of cortical actin, defects in fusome formation, mislocalization of septins, defective transport of Orb protein into the oocyte, and possible defects in cell division. Similar mutant phenotypes suggest that Src64, the Tec29 tyrosine kinase, and the actin crosslinking protein Kelch act together to regulate actin crosslinking, much as they do later during ring canal growth. Condensation of the oocyte chromatin into a compact karyosome is also defective in Src64, Tec29, and kelch mutants and in mutants for spire and chickadee (profilin), genes that regulate actin polymerization. These data, along with changes in G-actin accumulation in the oocyte nucleus, suggest that Src64 is involved in a nuclear actin function during karyosome condensation. Our results indicate that Src64 regulates actin dynamics at multiple stages of oogenesis.
Collapse
Affiliation(s)
- Inna Djagaeva
- Department of Molecular and Cell Biology, 16 Barker Hall, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
236
|
Martelli AM, Follo MY, Evangelisti C, Falà F, Fiume R, Billi AM, Cocco L. Nuclear inositol lipid metabolism: more than just second messenger generation? J Cell Biochem 2005; 96:285-92. [PMID: 16088939 DOI: 10.1002/jcb.20527] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A distinct polyphosphoinositide cycle is present in the nucleus, and growing evidence suggests its importance in DNA replication, gene transcription, and apoptosis. Even though it was initially thought that nuclear inositol lipids would function as a source for second messengers, recent findings strongly indicate that lipids present in the nucleus also fulfil other roles. The scope of this review is to highlight the most intriguing advances made in the field over the last few years, such as the possibility that nuclear phosphatidylinositol (4,5) bisphosphate is involved in maintaining chromatin in a transcriptionally active conformation, the new emerging roles for intranuclear phosphatidylinositol (3,4,5) trisphosphate and phosphoinositide 3-kinase, and the evidence which suggests a tight relationship between a decreased level of nuclear phosphoinositide specific phospholipase C-beta1 and the evolution of myelodisplastic syndrome into acute myeloid leukemia.
Collapse
Affiliation(s)
- Alberto M Martelli
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Sezione di Anatomia Umana, Cell Signalling Laboratory, Università di Bologna, 40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
237
|
Gordon JL, Sibley LD. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites. BMC Genomics 2005; 6:179. [PMID: 16343347 PMCID: PMC1334187 DOI: 10.1186/1471-2164-6-179] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 12/12/2005] [Indexed: 01/24/2023] Open
Abstract
Background The phylum Apicomplexa is an early-branching eukaryotic lineage that contains a number of important human and animal pathogens. Their complex life cycles and unique cytoskeletal features distinguish them from other model eukaryotes. Apicomplexans rely on actin-based motility for cell invasion, yet the regulation of this system remains largely unknown. Consequently, we focused our efforts on identifying actin-related proteins in the recently completed genomes of Toxoplasma gondii, Plasmodium spp., Cryptosporidium spp., and Theileria spp. Results Comparative genomic and phylogenetic studies of apicomplexan genomes reveals that most contain only a single conventional actin and yet they each have 8–10 additional actin-related proteins. Among these are a highly conserved Arp1 protein (likely part of a conserved dynactin complex), and Arp4 and Arp6 homologues (subunits of the chromatin-remodeling machinery). In contrast, apicomplexans lack canonical Arp2 or Arp3 proteins, suggesting they lost the Arp2/3 actin polymerization complex on their evolutionary path towards intracellular parasitism. Seven of these actin-like proteins (ALPs) are novel to apicomplexans. They show no phylogenetic associations to the known Arp groups and likely serve functions specific to this important group of intracellular parasites. Conclusion The large diversity of actin-like proteins in apicomplexans suggests that the actin protein family has diverged to fulfill various roles in the unique biology of intracellular parasites. Conserved Arps likely participate in vesicular transport and gene expression, while apicomplexan-specific ALPs may control unique biological traits such as actin-based gliding motility.
Collapse
Affiliation(s)
- Jennifer L Gordon
- Department of Molecular Microbiology, Washington University, School of Medicine, 660 S. Euclid Ave. St, Louis, MO, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University, School of Medicine, 660 S. Euclid Ave. St, Louis, MO, USA
| |
Collapse
|
238
|
Lim DA, Suárez-Fariñas M, Naef F, Hacker CR, Menn B, Takebayashi H, Magnasco M, Patil N, Alvarez-Buylla A. In vivo transcriptional profile analysis reveals RNA splicing and chromatin remodeling as prominent processes for adult neurogenesis. Mol Cell Neurosci 2005; 31:131-48. [PMID: 16330219 DOI: 10.1016/j.mcn.2005.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 08/21/2005] [Accepted: 10/04/2005] [Indexed: 10/25/2022] Open
Abstract
Neural stem cells and neurogenesis persist in the adult mammalian brain subventricular zone (SVZ). Cells born in the rodent SVZ migrate to the olfactory bulb (Ob) where they differentiate into interneurons. To determine the gene expression and functional profile of SVZ neurogenesis, we performed three complementary sets of transcriptional analysis experiments using Affymetrix GeneChips: (1) comparison of adult mouse SVZ and Ob gene expression profiles with those of the striatum, cerebral cortex, and hippocampus; (2) profiling of SVZ stem cells and ependyma isolated by fluorescent-activated cell sorting (FACS); and (3) analysis of gene expression changes during in vivo SVZ regeneration after anti-mitotic treatment. Gene Ontology (GO) analysis of data from these three separate approaches showed that in adult SVZ neurogenesis, RNA splicing and chromatin remodeling are biological processes as statistically significant as cell proliferation, transcription, and neurogenesis. In non-neurogenic brain regions, RNA splicing and chromatin remodeling were not prominent processes. Fourteen mRNA splicing factors including Sf3b1, Sfrs2, Lsm4, and Khdrbs1/Sam68 were detected along with 9 chromatin remodeling genes including Mll, Bmi1, Smarcad1, Baf53a, and Hat1. We validated the transcriptional profile data with Northern blot analysis and in situ hybridization. The data greatly expand the catalogue of cell cycle components, transcription factors, and migration genes for adult SVZ neurogenesis and reveal RNA splicing and chromatin remodeling as prominent biological processes for these germinal cells.
Collapse
Affiliation(s)
- Daniel A Lim
- Department of Neurological Surgery and Developmental and Stem Cell Biology Program, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Meagher RB, Deal RB, Kandasamy MK, McKinney EC. Nuclear actin-related proteins as epigenetic regulators of development. PLANT PHYSIOLOGY 2005; 139:1576-85. [PMID: 16339804 PMCID: PMC1310543 DOI: 10.1104/pp.105.072447] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Richard B Meagher
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA.
| | | | | | | |
Collapse
|
240
|
Johnson CN, Adkins NL, Georgel P. Chromatin remodeling complexes: ATP-dependent machines in action. Biochem Cell Biol 2005; 83:405-17. [PMID: 16094444 DOI: 10.1139/o05-115] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Since the initial characterization of chromatin remodeling as an ATP-dependent process, many studies have given us insight into how nucleosome-remodeling complexes can affect various nuclear functions. However, the multistep DNA-histone remodeling process has not been completely elucidated. Although new studies are published on a nearly weekly basis, the nature and roles of interactions of the individual SWI/SNF- and ISWI-based remodeling complexes and DNA, core histones, and other chromatin-associated proteins are not fully understood. In addition, the potential changes associated with ATP recruitment and its subsequent hydrolysis have not been fully characterized. This review explores possible mechanisms by which chromatin-remodeling complexes are recruited to specific loci, use ATP hydrolysis to achieve actual remodeling through disruption of DNA-histone interactions, and are released from their chromatin template. We propose possible roles for ATP hydrolysis in a chromatin-release/target-scanning process that offer an alternative to or complement the often overlooked function of delivering the energy required for sliding or dislodging specific subsets of core histones.
Collapse
Affiliation(s)
- Cotteka N Johnson
- Division of Biological Sciences, Marshall University, Huntington, WV 25755, USA
| | | | | |
Collapse
|
241
|
Gettemans J, Van Impe K, Delanote V, Hubert T, Vandekerckhove J, De Corte V. Nuclear actin-binding proteins as modulators of gene transcription. Traffic 2005; 6:847-57. [PMID: 16138899 DOI: 10.1111/j.1600-0854.2005.00326.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dynamic transformations in the organization of the cellular microfilament system are the driving force behind fundamental biological processes such as cellular motility, cytokinesis, wound healing and secretion. Eukaryotic cells express a plethora of actin-binding proteins (ABPs) allowing cells to control the organization of the actin cytoskeleton in a flexible manner. These structural proteins were, not surprisingly, originally described as (major) constituents of the cytoplasm. However, in recent years, there has been a steady flow of reports detailing not only translocation of ABPs into and out of the nucleus but also describing their role in the nuclear compartment. This review focuses on recent developments pertaining to nucleocytoplasmic transport of ABPs, including their mode of translocation and nuclear function. In particular, evidence that structurally and functionally unrelated cytoplasmic ABPs regulate transcription activation by various nuclear (steroid hormone) receptors is steadily accruing. Furthermore, the recent finding that actin is a necessary component of the RNA polymerase II-containing preinitiation complex opens up new opportunities for nuclear ABPs in gene transcription regulation.
Collapse
Affiliation(s)
- Jan Gettemans
- Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
242
|
Schoenenberger CA, Buchmeier S, Boerries M, Sütterlin R, Aebi U, Jockusch BM. Conformation-specific antibodies reveal distinct actin structures in the nucleus and the cytoplasm. J Struct Biol 2005; 152:157-68. [PMID: 16297639 DOI: 10.1016/j.jsb.2005.09.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 09/02/2005] [Accepted: 09/20/2005] [Indexed: 11/22/2022]
Abstract
For many years the existence of actin in the nucleus has been doubted because of the lack of phalloidin staining as well as the failure to document nuclear actin filaments by electron microscopy. More recent findings reveal actin to be a component of chromatin remodeling complexes and of the machinery involved in RNA synthesis and transport. With distinct functions for nuclear actin emerging, the quest for its conformation and oligomeric/polymeric structure in the nucleus has resumed importance. We used chemically cross-linked 'lower dimer' (LD) to generate mouse monoclonal antibodies specific for different actin conformations. One of the resulting antibodies, termed 1C7, recognizes an epitope that is buried in the F-actin filament, but is surface-exposed in G-actin as well as in the LD. In immunofluorescence studies with different cell lines, 1C7 selectively reacts with non-filamentous actin in the cytoplasm. In addition, it detects a discrete form of actin in the nucleus, which is different from the nuclear actin revealed by the previously described 2G2 [Gonsior, S.M., Platz, S., Buchmeier, S., Scheer, U., Jockusch, B.M., Hinssen, H., 1999. J. Cell Sci. 112, 797]. Upon latrunculin-induced disassembly of the filamentous cytoskeleton in Rat2 fibroblasts, we observed a perinuclear accumulation of the 1C7-reactive actin conformation. In addition, latrunculin treatment led to the assembly of phalloidin-staining actin structures in chromatin-free regions of the nucleus in these cells. Our results indicate that distinct actin conformations and/or structures are present in the nucleus and the cytoplasm of different cell types and that their distribution varies in response to external signals.
Collapse
Affiliation(s)
- C-A Schoenenberger
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
243
|
Deal RB, Kandasamy MK, McKinney EC, Meagher RB. The nuclear actin-related protein ARP6 is a pleiotropic developmental regulator required for the maintenance of FLOWERING LOCUS C expression and repression of flowering in Arabidopsis. THE PLANT CELL 2005; 17:2633-46. [PMID: 16141450 PMCID: PMC1242262 DOI: 10.1105/tpc.105.035196] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Actin-related proteins (ARPs) are found in the nuclei of all eukaryotic cells, but their functions are generally understood only in the context of their presence in various yeast and animal chromatin-modifying complexes. Arabidopsis thaliana ARP6 is a clear homolog of other eukaryotic ARP6s, including Saccharomyces cerevisiae ARP6, which was identified as a component of the SWR1 chromatin remodeling complex. We examined the subcellular localization, expression patterns, and loss-of-function phenotypes for this protein and found that Arabidopsis ARP6 is localized to the nucleus during interphase but dispersed away from the chromosomes during cell division. ARP6 expression was observed in all vegetative tissues as well as in a subset of reproductive tissues. Null mutations in ARP6 caused numerous defects, including altered development of the leaf, inflorescence, and flower as well as reduced female fertility and early flowering in both long- and short-day photoperiods. The early flowering of arp6 mutants was associated with reduced expression of the central floral repressor gene FLOWERING LOCUS C (FLC) as well as MADS AFFECTING FLOWERING 4 (MAF4) and MAF5. In addition, arp6 mutations suppress the FLC-mediated late flowering of a FRIGIDA-expressing line, indicating that ARP6 is required for the activation of FLC expression to levels that inhibit flowering. These results indicate that ARP6 acts in the nucleus to regulate plant development, and we propose that it does so through modulation of chromatin structure and the control of gene expression.
Collapse
Affiliation(s)
- Roger B Deal
- Department of Genetics, Davison Life Sciences Complex, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
244
|
Muller J, Oma Y, Vallar L, Friederich E, Poch O, Winsor B. Sequence and comparative genomic analysis of actin-related proteins. Mol Biol Cell 2005; 16:5736-48. [PMID: 16195354 PMCID: PMC1289417 DOI: 10.1091/mbc.e05-06-0508] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Actin-related proteins (ARPs) are key players in cytoskeleton activities and nuclear functions. Two complexes, ARP2/3 and ARP1/11, also known as dynactin, are implicated in actin dynamics and in microtubule-based trafficking, respectively. ARP4 to ARP9 are components of many chromatin-modulating complexes. Conventional actins and ARPs codefine a large family of homologous proteins, the actin superfamily, with a tertiary structure known as the actin fold. Because ARPs and actin share high sequence conservation, clear family definition requires distinct features to easily and systematically identify each subfamily. In this study we performed an in depth sequence and comparative genomic analysis of ARP subfamilies. A high-quality multiple alignment of approximately 700 complete protein sequences homologous to actin, including 148 ARP sequences, allowed us to extend the ARP classification to new organisms. Sequence alignments revealed conserved residues, motifs, and inserted sequence signatures to define each ARP subfamily. These discriminative characteristics allowed us to develop ARPAnno (http://bips.u-strasbg.fr/ARPAnno), a new web server dedicated to the annotation of ARP sequences. Analyses of sequence conservation among actins and ARPs highlight part of the actin fold and suggest interactions between ARPs and actin-binding proteins. Finally, analysis of ARP distribution across eukaryotic phyla emphasizes the central importance of nuclear ARPs, particularly the multifunctional ARP4.
Collapse
Affiliation(s)
- Jean Muller
- Laboratoire de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, France.
| | | | | | | | | | | |
Collapse
|
245
|
Sunada R, Görzer I, Oma Y, Yoshida T, Suka N, Wintersberger U, Harata M. The nuclear actin-related protein Act3p/Arp4p is involved in the dynamics of chromatin-modulating complexes. Yeast 2005; 22:753-68. [PMID: 16088870 DOI: 10.1002/yea.1239] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Chromatin remodelling and histone-modifying complexes govern the modulation of chromatin structure. While components of these complexes are diverse, nuclear actin-related proteins (Arps) have been repeatedly found in these complexes from yeast to mammals. In most cases, Arps are required for functioning of the complexes, but the molecular mechanisms of nuclear Arps have as yet been largely unknown. The Arps and actin, sharing a common ancestor, are supposed to be highly similar in the three-dimensional structure of their core regions, including the ATP-binding pocket. The Arp Act3p/Arp4p of Saccharomyces cerevisiae exists within the nucleus, partly as a component of several high molecular mass complexes, including the NuA4 histone acetyltransferase (HAT) complex, and partly as uncomplexed molecules. We observed that mutations in the putative ATP-binding pocket of Act3p/Arp4p increased its concentration in the high molecular mass complexes and, conversely, that an excess of ATP or ATPgammaS led to the release of wild-type Act3p/Arp4p from the complexes. These results suggest a requirement of ATP binding by Act3p/Arp4p for its dissociation from the complexes. In accordance, a mutation in the putative ATP binding site of Act3p/Arp4p inhibited the conversion of the NuA4 complex into the smaller piccoloNuA4, which does not contain Act3p/Arp4p and exhibits HAT activity distinct from that of NuA4. Although the in vitro binding activity of ATP by recombinant Act3p/Arp4p was found to be rather weak, our observations, taken together, suggest that the ATP-binding pocket of Act3p/Arp4p is involved in the function of chromatin modulating complexes by regulating their dynamics.
Collapse
Affiliation(s)
- Rie Sunada
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
246
|
Sjölinder M, Björk P, Söderberg E, Sabri N, Farrants AKO, Visa N. The growing pre-mRNA recruits actin and chromatin-modifying factors to transcriptionally active genes. Genes Dev 2005; 19:1871-84. [PMID: 16103215 PMCID: PMC1186187 DOI: 10.1101/gad.339405] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the dipteran Chironomus tentans, actin binds to hrp65, a nuclear protein associated with mRNP complexes. Disruption of the actin-hrp65 interaction in vivo by the competing peptide 65-2CTS reduces transcription drastically, which suggests that the actin-hrp65 interaction is required for transcription. We show that the inhibitory effect of the 65-2CTS peptide on transcription is counteracted by trichostatin A, a drug that inhibits histone deacetylation. We also show that actin and hrp65 are associated in vivo with p2D10, an evolutionarily conserved protein with histone acetyltransferase activity that acts on histone H3. p2D10 is recruited to class II genes in a transcription-dependent manner. We show, using the Balbiani ring genes of C. tentans as a model system, that p2D10 is cotranscriptionally associated with the growing pre-mRNA. We also show that experimental disruption of the actin-hrp65 interaction by the 65-2CTS peptide in vivo results in the release of p2D10 from the transcribed genes, reduced histone H3 acetylation, and a lower level of transcription activity. Furthermore, antibodies against p2D10 inhibit run-on elongation. Our results suggest that actin, hrp65, and p2D10 are parts of a positive feedback mechanism that contributes to maintaining the active transcription state of a gene by recruiting HATs at the RNA level.
Collapse
Affiliation(s)
- Mikael Sjölinder
- Department of Molecular Biology and Functional Genomics, The Wenner-Gren Institute, Stockholm University, Sweden
| | | | | | | | | | | |
Collapse
|
247
|
Abstract
Within the past two years, actin has been implicated in eukaryotic gene transcription by all three classes of RNA polymerase. Moreover, within just the past year, actin has been identified as a constituent of filaments attached to the nuclear pore complexes and extending into the nucleus. This review summarizes these and other very recent advances in the nuclear actin field and emphasizes the key present issues. On the one hand, we are confronted with a body of evidence for a role of actin in gene transcription but with no known structural basis; on the other hand, there is now evidence for polymeric actin--not likely in the classical F-actin conformation--in the nuclear periphery with no known function. In addition, numerous proteins that interact with either G- or F-actin are increasingly being detected in the nucleus, suggesting that both monomeric and oligomeric or polymeric forms of actin are at play and raising the possibility that the equilibrium between them, perhaps differentially regulated at various intranuclear sites, may be a major determinant of nuclear function.
Collapse
Affiliation(s)
- Thoru Pederson
- Department of Biochemistry and Molecular Pharmacology and Program in Cell Dynamics, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
248
|
Abstract
Most human cancers are initiated by chronic injuries that repeatedly kill cells and must, therefore, repeatedly raise cell calcium within nearby survivors. They may also raise calcium in distant cells via calcium waves. Here it is argued that these calcium increases initiate oncogenesis by breaking gap junctions and thus disorganizing tissues and by activating proto-oncogenes. It is also argued that these calcium increases become self-perpetuating in part through the development of an ability of cells to divide in reduced extracellular calcium, i.e., habituation to reduced extracellular calcium. I propose to test these calcium-based theories by using aequorinated mice.
Collapse
Affiliation(s)
- Lionel F Jaffe
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
249
|
de Lanerolle P, Johnson T, Hofmann WA. Actin and myosin I in the nucleus: what next? Nat Struct Mol Biol 2005; 12:742-6. [PMID: 16142228 DOI: 10.1038/nsmb983] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 08/04/2005] [Indexed: 11/09/2022]
Abstract
Several recent publications have demonstrated the importance of nuclear actin and nuclear myosin I in transcription. Here we review these publications and their implications. In addition, we discuss some important issues that should be addressed to gain a more comprehensive understanding of how these traditionally 'cytoplasmic' proteins are involved in transcription. We propose highly speculative models and mechanisms solely to stimulate thought and experimentation in this area.
Collapse
Affiliation(s)
- Primal de Lanerolle
- the Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
250
|
Chhabra D, dos Remedios CG. Cofilin, actin and their complex observed in vivo using fluorescence resonance energy transfer. Biophys J 2005; 89:1902-8. [PMID: 15994898 PMCID: PMC1366693 DOI: 10.1529/biophysj.105.062083] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 06/20/2005] [Indexed: 01/10/2023] Open
Abstract
Actin is the principal component of microfilaments. Its assembly/disassembly is essential for cell motility, cytokinesis, and a range of other functions. Recent evidence suggests that actin is present in the nucleus where it may be involved in the regulation of gene expression and that cofilin binds actin and can translocate into the nucleus during times of stress. In this report, we combine fluorescence resonance energy transfer and confocal microscopy to analyze the interactions of cofilin and G-actin within the nucleus and cytoplasm. By measuring the rate of photobleaching of fluorescein-labeled actin in the presence and absence of Cy5-labeled cofilin, we determined that almost all G-actin in the nucleus is bound to cofilin, whereas approximately (1/2) is bound in the cytoplasm. Using fluorescence resonance energy transfer imaging techniques we observed that a significant proportion of fluorescein-labeled cofilin in both the nucleus and cytoplasm binds added tetramethylrhodamine-labeled G-actin. Our data suggest there is significantly more cofilin-G-actin complex and less free cofilin in the nucleus than in the cytoplasm.
Collapse
Affiliation(s)
- D Chhabra
- Muscle Research Unit, School of Medical Sciences, Institute for Biomedical Research, University of Sydney, Sydney, New South Wales, Australia.
| | | |
Collapse
|