201
|
Yang Y, Wang L, Gaviria A, Yuan Z, Berry C. Proteolytic stability of insecticidal toxins expressed in recombinant bacilli. Appl Environ Microbiol 2006; 73:218-25. [PMID: 17098916 PMCID: PMC1797119 DOI: 10.1128/aem.01100-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The production of the vegetative mosquitocidal toxin Mtx1 from Bacillus sphaericus was redirected to the sporulation phase by replacement of its weak, native promoter with the strong sporulation promoter of the bin genes. Recombinant bacilli developed toxicity during early sporulation, but this declined rapidly in later stages, indicating the proteolytic instability of the toxin. Inhibition studies indicated the action of a serine proteinase, and similar degradation was also seen with the purified B. sphaericus enzyme sphericase. Following the identification of the initial cleavage site involved in this degradation, mutant Mtx1 proteins were expressed in an attempt to overcome destructive cleavage while remaining capable of proteolytic activation. However, the apparently broad specificity of sphericase seems to make this impossible. The stability of a further vegetative toxin, Mtx2, was also found to be low when it was exposed to sphericase or conditioned medium. Random mutation of the receptor binding loops of the Bacillus thuringiensis Cry1Aa toxin did, in contrast, allow production of significant levels of spore-associated protein in the form of parasporal crystals. The exploitation of vegetative toxins may, therefore, be greatly limited by their susceptibility to proteinases produced by the host bacteria, whereas the sequestration of sporulation-associated toxins into crystals may make them more amenable to use in strain improvement.
Collapse
Affiliation(s)
- Yankun Yang
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, United Kingdom
| | | | | | | | | |
Collapse
|
202
|
Aguiar RWS, Martins ES, Valicente FH, Carneiro NP, Batista AC, Melatti VM, Monnerat RG, Ribeiro BM. A recombinant truncated Cry1Ca protein is toxic to lepidopteran insects and forms large cuboidal crystals in insect cells. Curr Microbiol 2006; 53:287-92. [PMID: 16972133 DOI: 10.1007/s00284-005-0502-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
A truncated version of the cry1Ca gene from Bacillus thuringiensis was introduced into the genome of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) under the control of two promoters. A recombinant virus (vSyncry1c) was isolated and used to infect insect cells in culture and insect larvae. Structural and ultrastructural analysis of insects infected with vSyncry1C showed the formation of large cuboidal crystals inside the cytoplasm of insect cells in culture and in insect cadavers late in infection. Infected insect cell extracts were analyzed by SDS-PAGE and Western blot and showed the presence of a 65-kDa polypeptide probably corresponding to the protease processed form of the toxin. Bioassays using purified recombinant toxin crystals showed a CL(50) of 19.49 ng/ml for 2(nd) instar A. gemmatalis larvae and 114.1 ng/ml for S. frugiperda.
Collapse
Affiliation(s)
- Raimundo W S Aguiar
- Cell Biology Department, University of Brasília, 70910-900, Brasília, DF, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Hajaij-Ellouze M, Fedhila S, Lereclus D, Nielsen-LeRoux C. The enhancin-like metalloprotease from the Bacillus cereus group is regulated by the pleiotropic transcriptional activator PlcR but is not essential for larvicidal activity. FEMS Microbiol Lett 2006; 260:9-16. [PMID: 16790012 DOI: 10.1111/j.1574-6968.2006.00289.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacillus cereus group bacteria produce virulence factors. Many of these are regulated by the pleiotropic transcriptional activator PlcR, which is implicated in insect virulence. In silico analysis of the B. cereus strain ATCC14579 genome showed an enhancin-like gene preceded by a typical PlcR binding sequence. The gene is predicted to encode a polypeptide showing 23-25% identity with enhancins from several baculoviruses and 31% with that of Yersinia pestis. Viral enhancin acts after oral infection and degrades the peritrophic matrix of various Lepidopteran larvae. To rule out a possible implication of Bacillus enhancin in insect virulence, we sequenced the enhancin gene from the Bacillus thuringiensis 407-crystal minus strain and investigated its gene regulation and larvicidal activity. A typical metalloprotease zinc-binding domain (HEIAH) was detected and the gene was named mpbE (metalloprotease bacillus enhancin). An mpbE'-lacZ transcriptional fusion demonstrated that mpbE belongs to the PlcR regulon. The mpbE mutant was fed to Galleria mellonella larvae, and no significant reduction in virulence was observed. However, this may not exclude MpbE from a role in pathogenesis.
Collapse
Affiliation(s)
- Myriam Hajaij-Ellouze
- Unité Génétique Microbienne et Environnement, I.N.R.A., La Minière, Guyancourt, France
| | | | | | | |
Collapse
|
204
|
Aimanova KG, Zhuang M, Gill SS. Expression of Cry1Ac cadherin receptors in insect midgut and cell lines. J Invertebr Pathol 2006; 92:178-87. [PMID: 16797582 DOI: 10.1016/j.jip.2006.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 02/06/2006] [Indexed: 01/26/2023]
Abstract
Cadherin-like proteins have been identified as putative receptors for the Bacillus thuringiensis Cry1A proteins in Heliothis virescens and Manduca sexta. Immunohistochemistry showed the cadherin-like proteins are present in the insect midgut apical membrane, which is the target site of Cry toxins. This subcellular localization is distinct from that of classical cadherins, which are usually present in cell-cell junctions. Immunoreactivity of the cadherin-like protein in the insect midgut was enhanced by Cry1Ac ingestion. We also generated a stable cell line Flp-InT-REX-293/Full-CAD (CAD/293) that expressed the H. virescens cadherin. As expected, the cadherin-like protein was mainly localized in the cell membrane. Interestingly, toxin treatment of CAD/293 cells caused this protein to relocalize to cell membrane subdomains. In addition, expression of H. virescens cadherin-like protein affects cell-cell contact and cell membrane integrity when the cells are exposed to activated Cry1Ab/Cry1Ac.
Collapse
Affiliation(s)
- Karlygash G Aimanova
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
205
|
Vachon V, Schwartz JL, Laprade R. Influence of the biophysical and biochemical environment on the kinetics of pore formation by Cry toxins. J Invertebr Pathol 2006; 92:160-5. [PMID: 16831627 DOI: 10.1016/j.jip.2006.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Accepted: 03/07/2006] [Indexed: 11/26/2022]
Abstract
The effect of Bacillus thuringiensis toxins on the permeability of the luminal membrane of Manduca sexta midgut columnar epithelial cells is strongly influenced by several biophysical and biochemical factors, including pH, ionic strength, and divalent cations, suggesting an important role for electrostatic interactions. The influence of these factors can differ greatly, however, depending on the toxin being studied, even for closely related toxins such as Cry1Ac and Cry1Ca. In the present study, the possibility of using temperature changes as a tool for controlling the rate and extent of pore formation in midgut brush border membrane vesicles was evaluated. Lowering temperature gradually decreased the rate of pore formation, but had little effect on the permeability of vesicles previously incubated with toxin at room temperature. The formation of new pores, following incubation of the vesicles with toxin, could thus be almost abolished by rapidly cooling the vesicles to 2 degrees C. Using this approach, changes in the rate of pore formation could be more easily distinguished from alterations in the properties of the pores formed, thus allowing a more detailed analysis of the kinetics and mechanism of pore formation.
Collapse
Affiliation(s)
- Vincent Vachon
- Groupe d'étude des protéines membranaires and Biocontrol Network, Université de Montréal, P.O. Box 6128, Centre Ville Station, Montreal, Quebec, Canada H3C 3J7.
| | | | | |
Collapse
|
206
|
Andow DA, Lövei GL, Arpaia S. Ecological risk assessment for Bt crops. Nat Biotechnol 2006; 24:749-51; author reply 751-3. [PMID: 16841050 DOI: 10.1038/nbt0706-749] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
207
|
Zhang X, Candas M, Griko NB, Taussig R, Bulla LA. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci U S A 2006; 103:9897-902. [PMID: 16788061 PMCID: PMC1502550 DOI: 10.1073/pnas.0604017103] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many pathogenic organisms and their toxins target host cell receptors, the consequence of which is altered signaling events that lead to aberrant activity or cell death. A significant body of literature describes various molecular and cellular aspects of toxins associated with bacterial invasion, colonization, and host cell disruption. However, there is little information on the molecular and cellular mechanisms associated with the insecticidal action of Bacillus thuringiensis (Bt) Cry toxins. Recently, we reported that the Cry1Ab toxin produced by Bt kills insect cells by activating a Mg(2+)-dependent cytotoxic event upon binding of the toxin to its receptor BT-R(1). Here we show that binding of Cry toxin to BT-R(1) provokes cell death by activating a previously undescribed signaling pathway involving stimulation of G protein (G(alphas)) and adenylyl cyclase, increased cAMP levels, and activation of protein kinase A. Induction of the adenylyl cyclase/protein kinase A pathway is manifested by sequential cytological changes that include membrane blebbing, appearance of ghost nuclei, cell swelling, and lysis. The discovery of a toxin-induced cell death pathway specifically linked to BT-R(1) in insect cells should provide insights into how insects evolve resistance to Bt and into the development of new, safer insecticides.
Collapse
Affiliation(s)
- Xuebin Zhang
- *Biological Targets, Inc., Dallas, TX 75235
- Center for Biotechnology and Bioinformatics and Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083; and
| | - Mehmet Candas
- *Biological Targets, Inc., Dallas, TX 75235
- Center for Biotechnology and Bioinformatics and Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083; and
| | - Natalya B. Griko
- *Biological Targets, Inc., Dallas, TX 75235
- Center for Biotechnology and Bioinformatics and Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083; and
| | - Ronald Taussig
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041
| | - Lee A. Bulla
- *Biological Targets, Inc., Dallas, TX 75235
- Center for Biotechnology and Bioinformatics and Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083; and
- To whom correspondence should be addressed at:
Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688. E-mail:
| |
Collapse
|
208
|
Christou P, Capell T, Kohli A, Gatehouse JA, Gatehouse AMR. Recent developments and future prospects in insect pest control in transgenic crops. TRENDS IN PLANT SCIENCE 2006; 11:302-8. [PMID: 16690346 DOI: 10.1016/j.tplants.2006.04.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 03/22/2006] [Accepted: 04/25/2006] [Indexed: 05/03/2023]
Abstract
The adoption of insect-resistant transgenic crops has been increasing annually at double-digit rates since the commercial release of first-generation maize and cotton expressing a single modified Bacillus thuringiensis toxin (Bt) nine years ago. Studies have shown that these Bt crops can be successfully deployed in agriculture, which has led to a decrease in pesticide usage, and that they are environmentally benign. However, the sustainability and durability of pest resistance continues to be discussed. In this review, we focus on the science that underpins second- and third-generation insect-resistant transgenic plants and examine the appropriateness and relevance of models that are currently being used to determine deployment strategies to maximize sustainability and durability. We also review strategies that are being developed for novel approaches to transgenic insect pest control.
Collapse
Affiliation(s)
- Paul Christou
- ICREA, Universitat de Lleida, PVCF, Av Alcalde Rovira Roure, 191, E-25198, Lleida, Spain.
| | | | | | | | | |
Collapse
|
209
|
Abstract
Although microorganisms are extremely good in presenting us with an amazing array of valuable products, they usually produce them only in amounts that they need for their own benefit; thus, they tend not to overproduce their metabolites. In strain improvement programs, a strain producing a high titer is usually the desired goal. Genetics has had a long history of contributing to the production of microbial products. The tremendous increases in fermentation productivity and the resulting decreases in costs have come about mainly by mutagenesis and screening/selection for higher producing microbial strains and the application of recombinant DNA technology.
Collapse
Affiliation(s)
- Jose L Adrio
- Department of Biotechnology, Puleva Biotech, S.A., Granada, Spain.
| | | |
Collapse
|
210
|
Rodrigo-Simón A, de Maagd RA, Avilla C, Bakker PL, Molthoff J, González-Zamora JE, Ferré J. Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis. Appl Environ Microbiol 2006; 72:1595-603. [PMID: 16461715 PMCID: PMC1392962 DOI: 10.1128/aem.72.2.1595-1603.2006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of Cry proteins of Bacillus thuringiensis on the green lacewing (Chrysoperla carnea) was studied by using a holistic approach which consisted of independent, complementary experimental strategies. Tritrophic experiments were performed, in which lacewing larvae were fed Helicoverpa armigera larvae reared on Cry1Ac, Cry1Ab, or Cry2Ab toxins. In complementary experiments, a predetermined amount of purified Cry1Ac was directly fed to lacewing larvae. In both experiments no effects on prey utilization or fitness parameters were found. Since binding to the midgut is an indispensable step for toxicity of Cry proteins to known target insects, we hypothesized that specific binding of the Cry1A proteins should be found if the proteins were toxic to the green lacewing. In control experiments, Cry1Ac was detected bound to the midgut epithelium of intoxicated H. armigera larvae, and cell damage was observed. However, no binding or histopathological effects of the toxin were found in tissue sections of lacewing larvae. Similarly, Cry1Ab or Cry1Ac bound in a specific manner to brush border membrane vesicles from Spodoptera exigua but not to similar fractions from green lacewing larvae. The in vivo and in vitro binding results strongly suggest that the lacewing larval midgut lacks specific receptors for Cry1Ab or Cry1Ac. These results agree with those obtained in bioassays, and we concluded that the Cry toxins tested, even at concentrations higher than those expected in real-life situations, do not have a detrimental effect on the green lacewing when they are ingested either directly or through the prey.
Collapse
Affiliation(s)
- Ana Rodrigo-Simón
- Department of Genetics, University of Valencia, 46100-Burjassot (Valencia), Spain
| | | | | | | | | | | | | |
Collapse
|
211
|
Peña G, Miranda-Rios J, de la Riva G, Pardo-López L, Soberón M, Bravo A. A Bacillus thuringiensis S-layer protein involved in toxicity against Epilachna varivestis (Coleoptera: Coccinellidae). Appl Environ Microbiol 2006; 72:353-60. [PMID: 16391064 PMCID: PMC1352243 DOI: 10.1128/aem.72.1.353-360.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of Bacillus thuringiensis as a biopesticide is a viable alternative for insect control since the insecticidal Cry proteins produced by these bacteria are highly specific; harmless to humans, vertebrates, and plants; and completely biodegradable. In addition to Cry proteins, B. thuringiensis produces a number of extracellular compounds, including S-layer proteins (SLP), that contribute to virulence. The S layer is an ordered structure representing a proteinaceous paracrystalline array which completely covers the surfaces of many pathogenic bacteria. In this work, we report the identification of an S-layer protein by the screening of B. thuringiensis strains for activity against the coleopteran pest Epilachna varivestis (Mexican bean beetle; Coleoptera: Coccinellidae). We screened two B. thuringiensis strain collections containing unidentified Cry proteins and also strains isolated from dead insects. Some of the B. thuringiensis strains assayed against E. varivestis showed moderate toxicity. However, a B. thuringiensis strain (GP1) that was isolated from a dead insect showed a remarkably high insecticidal activity. The parasporal crystal produced by the GP1 strain was purified and shown to have insecticidal activity against E. varivestis but not against the lepidopteran Manduca sexta or Spodoptera frugiperda or against the dipteran Aedes aegypti. The gene encoding this protein was cloned and sequenced. It corresponded to an S-layer protein highly similar to previously described SLP in Bacillus anthracis (EA1) and Bacillus licheniformis (OlpA). The phylogenetic relationships among SLP from different bacteria showed that these proteins from Bacillus cereus, Bacillus sphaericus, B. anthracis, B. licheniformis, and B. thuringiensis are arranged in the same main group, suggesting similar origins. This is the first report that demonstrates that an S-layer protein is directly involved in toxicity to a coleopteran pest.
Collapse
Affiliation(s)
- Guadalupe Peña
- Instituto de Biotecnología, UNAM, Ap. Postal 510-3, Cuernavaca 62250, Morelos, México
| | | | | | | | | | | |
Collapse
|
212
|
Donovan WP, Engleman JT, Donovan JC, Baum JA, Bunkers GJ, Chi DJ, Clinton WP, English L, Heck GR, Ilagan OM, Krasomil-Osterfeld KC, Pitkin JW, Roberts JK, Walters MR. Discovery and characterization of Sip1A: a novel secreted protein from Bacillus thuringiensis with activity against coleopteran larvae. Appl Microbiol Biotechnol 2006; 72:713-9. [PMID: 16489451 DOI: 10.1007/s00253-006-0332-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 01/06/2006] [Accepted: 01/08/2006] [Indexed: 10/25/2022]
Abstract
Bioassay screening of Bacillus thuringiensis culture supernatants identified strain EG2158 as having larvicidal activity against Colorado potato beetle (Leptinotarsa decemlineata) larvae. Ion-exchange fractionation of the EG2158 culture supernatant resulted in the identification of a protein designated Sip1A (secreted insecticidal protein) of approximately 38 kDa having activity against Colorado potato beetle (CPB). An oligonucleotide probe based on the N-terminal sequence of the purified Sip1A protein was used to isolate the sip1A gene. The sequence of the Sip1A protein, as deduced from the sequence of the cloned sip1A gene, contained 367 residues (41,492 Da). Recombinant B. thuringiensis and Escherichia coli harboring cloned sip1A produced Sip1A protein which had insecticidal activity against larvae of CPB, southern corn rootworm (Diabrotica undecimpunctata howardi), and western corn rootworm (Diabrotica virgifera virgifera).
Collapse
|
213
|
Castle LA, Wu G, McElroy D. Agricultural input traits: past, present and future. Curr Opin Biotechnol 2006; 17:105-12. [PMID: 16483761 DOI: 10.1016/j.copbio.2006.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Revised: 11/25/2005] [Accepted: 01/06/2006] [Indexed: 10/25/2022]
Abstract
For thousands of years farm practices have evolved as new innovations have become available. Farmers want more value per unit of land, clean fields, and high yields with less input. Plants with incorporated pest resistance and herbicide resistance help meet these needs through increased yield, reduced chemical use, and reduced soil impacts. Although researchers have developed useful traits for a wide variety of plant species, only a few traits are available commercially; however, global adoption of these traits has and continues to increase rapidly. Availability of future traits will be dependent on input not only from researchers, but from governments, interest groups, processors, distributors and ultimately consumers, in addition to the farmers that drive demand for transgenic seed.
Collapse
Affiliation(s)
- Linda A Castle
- Pioneer Hi-Bred International, Inc., 700A Bay Road, Redwood City, CA 94063, USA.
| | | | | |
Collapse
|
214
|
Akiba T, Higuchi K, Mizuki E, Ekino K, Shin T, Ohba M, Kanai R, Harata K. Nontoxic crystal protein from Bacillus thuringiensis demonstrates a remarkable structural similarity to β-pore-forming toxins. Proteins 2006; 63:243-8. [PMID: 16400649 DOI: 10.1002/prot.20843] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Toshihiko Akiba
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Molecular approaches for identification and construction of novel insecticidal genes for crop protection. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-005-9027-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
216
|
Itsko M, Manasherob R, Zaritsky A. Partial restoration of antibacterial activity of the protein encoded by a cryptic open reading frame (cyt1Ca) from Bacillus thuringiensis subsp. israelensis by site-directed mutagenesis. J Bacteriol 2005; 187:6379-85. [PMID: 16159771 PMCID: PMC1236619 DOI: 10.1128/jb.187.18.6379-6385.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Accepted: 05/09/2005] [Indexed: 11/20/2022] Open
Abstract
Insecticidal crystal proteins of Bacillus thuringiensis belong to two unrelated toxin families: receptor-specific Cry toxins against insects and Cyt toxins that lyse a broad range of cells, including bacteria, via direct binding to phospholipids. A new cyt-like open reading frame (cyt1Ca) encoding a 60-kDa protein, has recently been discovered (C. Berry et al., Appl. Environ. Microbiol. 68:5082-5095, 2002). Cyt1Ca displays the structure of a two-domain fusion protein: the N-terminal moiety resembles the full-length Cyt toxins, and the C-terminal moiety is similar to the receptor-binding domains of several ricin-like toxins, such as Mtx1. Neither the larvicidal activity of cyt1Ca expressed in Escherichia coli nor the hemolytic effect of His-tagged purified Cyt1Ca has been observed (R. Manasherob et al., unpublished). This was attributed to five amino acid differences between the sequences of its N-terminal moiety and Cyt1Aa. The 3' end of cyt1Ca was truncated (removing the ricin-binding domain of Cyt1Ca), and six single bases were appropriately changed by site-directed mutagenesis, sequentially replacing the non-charged amino acids by charged ones, according to Cyt1Aa, to form several versions. Expression of these mutated cyt1Ca versions caused loss of the colony-forming ability of the corresponding E. coli cells to different extents compared with the original gene. In some mutants this antibacterial effect was associated by significant distortion of cell morphology and in others by generation of multiple inclusion bodies spread along the cell envelope. The described deleterious effects of mutated cyt1Ca versions against E. coli may reflect an evolutionary relationship between Cyt1Aa and Cyt1Ca.
Collapse
Affiliation(s)
- Mark Itsko
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Be'er-Sheva 84105, Israel
| | | | | |
Collapse
|
217
|
Adamson RH, Ly JC, Fernandez-Miyakawa M, Ochi S, Sakurai J, Uzal F, Curry FE. Clostridium perfringens epsilon-toxin increases permeability of single perfused microvessels of rat mesentery. Infect Immun 2005; 73:4879-87. [PMID: 16041001 PMCID: PMC1201274 DOI: 10.1128/iai.73.8.4879-4887.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epsilon-toxin, the primary virulence factor of Clostridium perfringens type D, causes mortality in livestock, particularly sheep and goats, in which it induces an often-fatal enterotoxemia. It is believed to compromise the intestinal barrier and then enter the gut vasculature, from which it is carried systemically, causing widespread vascular endothelial damage and edema. Here we used single perfused venular microvessels in rat mesentery, which enabled direct observation of permeability properties of the in situ vascular wall during exposure to toxin. We determined the hydraulic conductivity (L(p)) of microvessels as a measure of the response to epsilon-toxin. We found that microvessels were highly sensitive to toxin. At 10 microg ml(-1) the L(p) increased irreversibly to more than 15 times the control value by 10 min. At 0.3 microg ml(-1) no increase in L(p) was observed for up to 90 min. The toxin-induced increase in L(p) was consistent with changes in ultrastructure of microvessels exposed to the toxin. Those microvessels exhibited gaps either between or through endothelial cells where perfusate had direct access to the basement membrane. Many endothelial cells appeared necrotic, highly attenuated, and with dense cytoplasm. We showed that epsilon-toxin, in a time- and dose-dependent manner, rapidly and irreversibly compromised the barrier function of venular microvessel endothelium. The results conformed to the hypothesis that epsilon-toxin interacts with vascular endothelial cells and increases the vessel wall permeability by direct damage of the endothelium.
Collapse
Affiliation(s)
- R H Adamson
- Department of Physiology and Membrane Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
218
|
Plomp M, Leighton TJ, Wheeler KE, Malkin AJ. Architecture and high-resolution structure of Bacillus thuringiensis and Bacillus cereus spore coat surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:7892-8. [PMID: 16089397 DOI: 10.1021/la050412r] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have utilized atomic force microscopy (AFM) to visualize the native surface topography and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereus was approximately 8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to approximately 200 nm. The lattice constant of the honeycomb structures was approximately 9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing "fingerprints" of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.
Collapse
Affiliation(s)
- Marco Plomp
- BioSecurity and NanoSciences Laboratory, Department of Chemistry and Materials Science, Lawrence Livermore National Laboratory, L-234, Livermore, California 94551, USA
| | | | | | | |
Collapse
|
219
|
Schnepf HE, Lee S, Dojillo J, Burmeister P, Fencil K, Morera L, Nygaard L, Narva KE, Wolt JD. Characterization of Cry34/Cry35 binary insecticidal proteins from diverse Bacillus thuringiensis strain collections. Appl Environ Microbiol 2005; 71:1765-74. [PMID: 15811999 PMCID: PMC1082557 DOI: 10.1128/aem.71.4.1765-1774.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus thuringiensis crystal proteins of the Cry34 and Cry35 classes function as binary toxins showing activity on the western corn rootworm, Diabrotica virgifera virgifera LeConte. We surveyed 6,499 B. thuringiensis isolates by hybridization for sequences related to cry35A genes, identifying 78 strains. Proteins of the appropriate molecular mass (ca. 44 kDa) for Cry35 were observed in 42 of the strains. Full-length, or nearly full-length, sequences of 34 cry34 genes and 16 cry35 genes were also obtained from cloning, PCR analysis, and DNA sequencing. These included representatives of all known Cry34A, Cry34B, Cry35A, and Cry35B classes, as well as a novel Cry34A/Cry35A-like pair. Bioassay analysis indicated that cry35-hybridizing strains not producing a ca. 14-kDa protein, indicative of Cry34, were not active on corn rootworms, and that the previously identified Cry34A/Cry35A pairs were more active than the Cry34B/Cry35B pairs. The cry35-hybridizing B. thuringiensis strains were found in locales and materials typical for other B. thuringiensis strains. Comparison of the sequences with the geographic origins of the strains showed that identical, or nearly identical, sequences were found in strains from both Australasia and the Americas. Sequence similarity searches revealed that Cry34 proteins are similar to predicted proteins in Photorhabdus luminescens and Dictyostelium discoidium, and that Cry35Ab1 contains a segment similar to beta-trefoil domains that may be a binding motif. The binary Cry34/Cry35 B. thuringiensis crystal proteins thus appear closely related to each other, are environmentally ubiquitous, and share sequence similarities consistent with activity through membrane disruption in target organisms.
Collapse
Affiliation(s)
- H Ernest Schnepf
- Research and Development Laboratories, Dow AgroSciences, Indianapolis, Indiana, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Dufourmantel N, Tissot G, Goutorbe F, Garçon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M. Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. PLANT MOLECULAR BIOLOGY 2005; 58:659-68. [PMID: 16158241 DOI: 10.1007/s11103-005-7405-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 05/16/2005] [Indexed: 05/03/2023]
Abstract
We describe the generation of fertile and homoplasmic soybean plastid transformants, expressing the Bacillus thuringiensis insecticidal protoxin Cry1Ab. Transgenes were targeted in the intergenic region of Glycine max plastome, between the rps12/7 and trnV genes and selection was carried out using the aadA gene encoding spectinomycin resistance. Molecular analysis confirmed the integration of the cry1Ab and aadA expression cassettes at the expected location in the soybean plastome, and the transmission of the transgenes to the next generation. Western blot analyses showed that the Cry1Ab protoxin is highly expressed in leaves, stems and seeds, but not in roots. Its expression confers strong insecticidal activity to the generated transgenic soybean, as exemplified with velvetbean caterpillar (Anticarsia gemmatalis).
Collapse
Affiliation(s)
- N Dufourmantel
- Bayer BioScience, 14-20 rue Pierre Baizet, BP9163, 69263, Lyon Cedex 09, France,
| | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Griffitts JS, Haslam SM, Yang T, Garczynski SF, Mulloy B, Morris H, Cremer PS, Dell A, Adang MJ, Aroian RV. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 2005; 307:922-5. [PMID: 15705852 DOI: 10.1126/science.1104444] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The development of pest resistance threatens the effectiveness of Bacillus thuringiensis (Bt) toxins used in transgenic and organic farming. Here, we demonstrate that (i) the major mechanism for Bt toxin resistance in Caenorhabditis elegans entails a loss of glycolipid carbohydrates; (ii) Bt toxin directly and specifically binds glycolipids; and (iii) this binding is carbohydrate-dependent and relevant for toxin action in vivo. These carbohydrates contain the arthroseries core conserved in insects and nematodes but lacking in vertebrates. We present evidence that insect glycolipids are also receptors for Bt toxin.
Collapse
Affiliation(s)
- Joel S Griffitts
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Abstract
The Cry family of Bacillus thuringiensis insecticidal and nematicidal proteins constitutes a valuable source of environmentally benign compounds for the control of insect pests and disease agents. An understanding of Cry toxin resistance at a molecular level will be critical to the long-term utility of this technology; it may also shed light on basic mechanisms used by other bacterial toxins that target specific organisms or cell types. Selection and cross-resistance studies have confirmed that genetic adaptation can elicit varying patterns of Cry toxin resistance, which has been associated with deficient protoxin activation by host proteases, and defective Cry toxin-binding cell surface molecules, such as cadherins, aminopeptidases and glycolipids. Recent work also suggests Cry toxin resistance may be induced in invertebrates as an active immune response. The use of model invertebrates, such as Caenorhabditis elegans and Drosophila melanogaster, as well as advances in insect genomics, are likely to accelerate efforts to clone Cry toxin resistance genes and come to a detailed and broad understanding of Cry toxin resistance.
Collapse
Affiliation(s)
- Joel S Griffitts
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | | |
Collapse
|
223
|
Thurlow LR, Gillock ET. Characterization of two environmental bacterial isolates by 16S rRNA sequence analysis, fatty acid methyl ester analysis, and scanning electron microscopy. ACTA ACUST UNITED AC 2005. [DOI: 10.1660/0022-8443(2005)108[0022:cotebi]2.0.co;2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
224
|
Huffman DL, Abrami L, Sasik R, Corbeil J, van der Goot FG, Aroian RV. Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc Natl Acad Sci U S A 2004; 101:10995-1000. [PMID: 15256590 PMCID: PMC503732 DOI: 10.1073/pnas.0404073101] [Citation(s) in RCA: 259] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytolytic pore-forming toxins are important for the virulence of many disease-causing bacteria. How target cells molecularly respond to these toxins and whether or not they can mount a defense are poorly understood. By using microarrays, we demonstrate that the nematode Caenorhabditis elegans responds robustly to Cry5B, a member of the pore-forming Crystal toxin family made by Bacillus thuringiensis. This genomic response is distinct from that seen with a different stressor, the heavy metal cadmium. A p38 mitogen-activated protein kinase (MAPK) kinase and a c-Jun N-terminal-like MAPK are both transcriptionally up-regulated by Cry5B. Moreover, both MAPK pathways are functionally important because elimination of either leads to animals that are (i) hypersensitive to a low, chronic dose of toxin and (ii) hypersensitive to a high, brief dose of toxin such that the animal might naturally encounter in the wild. These results extend to mammalian cells because inhibition of p38 results in the hypersensitivity of baby hamster kidney cells to aerolysin, a pore-forming toxin that targets humans. Furthermore, we identify two downstream transcriptional targets of the p38 MAPK pathway, ttm-1 and ttm-2, that are required for defense against Cry5B. Our data demonstrate that cells defend against pore-forming toxins by means of conserved MAPK pathways.
Collapse
Affiliation(s)
- Danielle L Huffman
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, 92093, USA
| | | | | | | | | | | |
Collapse
|
225
|
Vazquez-Padron RI, de la Riva G, Agüero G, Silva Y, Pham SM, Soberón M, Bravo A, Aïtouche A. Cryptic endotoxic nature ofBacillus thuringiensisCry1Ab insecticidal crystal protein. FEBS Lett 2004; 570:30-6. [PMID: 15251434 DOI: 10.1016/j.febslet.2004.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 06/07/2004] [Accepted: 06/07/2004] [Indexed: 11/29/2022]
Abstract
Cry1Ab is one of the most studied insecticidal proteins produced by Bacillus thuringiensis during sporulation. Structurally, this protoxin has been divided in two domains: the N-terminal toxin core and the C-terminal portion. Although many studies have addressed the biochemical characteristics of the active toxin that corresponds to the N-terminal portion, there are just few reports studying the importance of the C-terminal part of the protoxin. Herein, we show that Cry1Ab protoxin has a unique natural cryptic endotoxic property that is evident when their halves are expressed individually. This toxic effect of the separate protoxin domains was found against its original host B. thuringiensis, as well as to two other bacteria, Escherichia coli and Agrobacterium tumefaciens. Interestingly, either the fusion of the C-terminal portion with the insecticidal domain-III or the whole N-terminal region reduced or neutralized such a toxic effect, while a non-Cry1A peptide such as maltose binding protein did not neutralize the toxic effect. Furthermore, the C-terminal domain, in addition to being essential for crystal formation and solubility, plays a crucial role in neutralizing the toxicity caused by a separate expression of the insecticidal domain much like a dot/anti-dot system.
Collapse
Affiliation(s)
- Roberto I Vazquez-Padron
- Department of Surgery and the Vascular Biology Institute, University of Miami, R104, P.O. Box 019132, Miami, FL 33101, USA.
| | | | | | | | | | | | | | | |
Collapse
|