201
|
Kotas ME, Moore CM, Gurrola JG, Pletcher SD, Goldberg AN, Alvarez R, Yamato S, Bratcher PE, Shaughnessy CA, Zeitlin PL, Zhang IH, Li Y, Montgomery MT, Lee K, Cope EK, Locksley RM, Seibold MA, Gordon ED. IL-13-programmed airway tuft cells produce PGE2, which promotes CFTR-dependent mucociliary function. JCI Insight 2022; 7:e159832. [PMID: 35608904 PMCID: PMC9310525 DOI: 10.1172/jci.insight.159832] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic type 2 (T2) inflammatory diseases of the respiratory tract are characterized by mucus overproduction and disordered mucociliary function, which are largely attributed to the effects of IL-13 on common epithelial cell types (mucus secretory and ciliated cells). The role of rare cells in airway T2 inflammation is less clear, though tuft cells have been shown to be critical in the initiation of T2 immunity in the intestine. Using bulk and single-cell RNA sequencing of airway epithelium and mouse modeling, we found that IL-13 expanded and programmed airway tuft cells toward eicosanoid metabolism and that tuft cell deficiency led to a reduction in airway prostaglandin E2 (PGE2) concentration. Allergic airway epithelia bore a signature of PGE2 activation, and PGE2 activation led to cystic fibrosis transmembrane receptor-dependent ion and fluid secretion and accelerated mucociliary transport. These data reveal a role for tuft cells in regulating epithelial mucociliary function in the allergic airway.
Collapse
Affiliation(s)
- Maya E. Kotas
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Camille M. Moore
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
- Department of Biostatistics and Informatics, University of Colorado, Aurora, Colorado, USA
| | - Jose G. Gurrola
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Steven D. Pletcher
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, California, USA
- Surgical Service, ENT Section, San Francisco VA Medical Center, San Francisco, California, USA
| | - Andrew N. Goldberg
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Raquel Alvarez
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Sheyla Yamato
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Preston E. Bratcher
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | | | - Pamela L. Zeitlin
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Irene H. Zhang
- Center for Applied Microbiome Sciences, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Yingchun Li
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| | - Michael T. Montgomery
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| | - Keehoon Lee
- Center for Applied Microbiome Sciences, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Emily K. Cope
- Center for Applied Microbiome Sciences, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Richard M. Locksley
- Howard Hughes Medical Institute and
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Max A. Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Erin D. Gordon
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
202
|
Rahimi RA, Cho JL, Jakubzick CV, Khader SA, Lambrecht BN, Lloyd CM, Molofsky AB, Talbot S, Bonham CA, Drake WP, Sperling AI, Singer BD. Advancing Lung Immunology Research: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2022; 67:e1-18. [PMID: 35776495 PMCID: PMC9273224 DOI: 10.1165/rcmb.2022-0167st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The mammalian airways and lungs are exposed to a myriad of inhaled particulate matter, allergens, and pathogens. The immune system plays an essential role in protecting the host from respiratory pathogens, but a dysregulated immune response during respiratory infection can impair pathogen clearance and lead to immunopathology. Furthermore, inappropriate immunity to inhaled antigens can lead to pulmonary diseases. A complex network of epithelial, neural, stromal, and immune cells has evolved to sense and respond to inhaled antigens, including the decision to promote tolerance versus a rapid, robust, and targeted immune response. Although there has been great progress in understanding the mechanisms governing immunity to respiratory pathogens and aeroantigens, we are only beginning to develop an integrated understanding of the cellular networks governing tissue immunity within the lungs and how it changes after inflammation and over the human life course. An integrated model of airway and lung immunity will be necessary to improve mucosal vaccine design as well as prevent and treat acute and chronic inflammatory pulmonary diseases. Given the importance of immunology in pulmonary research, the American Thoracic Society convened a working group to highlight central areas of investigation to advance the science of lung immunology and improve human health.
Collapse
|
203
|
Elmentaite R, Domínguez Conde C, Yang L, Teichmann SA. Single-cell atlases: shared and tissue-specific cell types across human organs. Nat Rev Genet 2022; 23:395-410. [PMID: 35217821 DOI: 10.1038/s41576-022-00449-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
The development of single-cell and spatial transcriptomics methods was instrumental in the conception of the Human Cell Atlas initiative, which aims to generate an integrated map of all cells across the human body. These technology advances are bringing increasing depth and resolution to maps of human organs and tissues, as well as our understanding of individual human cell types. Commonalities as well as tissue-specific features of primary and supportive cell types across human organs are beginning to emerge from these human tissue maps. In this Review, we highlight key biological insights obtained from cross-tissue studies into epithelial, fibroblast, vascular and immune cells based on single-cell gene expression data in humans and contrast it with mechanisms reported in mice.
Collapse
Affiliation(s)
- Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Lu Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
204
|
Klimov V, Cherevko N, Klimov A, Novikov P. Neuronal-Immune Cell Units in Allergic Inflammation in the Nose. Int J Mol Sci 2022; 23:6938. [PMID: 35805946 PMCID: PMC9266453 DOI: 10.3390/ijms23136938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Immune cells and immune-derived molecules, endocrine glands and hormones, the nervous system and neuro molecules form the combined tridirectional neuroimmune network, which plays a significant role in the communication pathways and regulation at the level of the whole organism and local levels, in both healthy persons and patients with allergic rhinitis based on an allergic inflammatory process. This review focuses on a new research paradigm devoted to neuronal-immune cell units, which are involved in allergic inflammation in the nose and neuroimmune control of the nasal mucociliary immunologically active epithelial barrier. The categorization, cellular sources of neurotransmitters and neuropeptides, and their prevalent profiles in constituting allergen tolerance maintenance or its breakdown are discussed. Novel data on the functional structure of the nasal epithelium based on a transcriptomic technology, single-cell RNA-sequencing results, are considered in terms of neuroimmune regulation. Notably, the research of pathogenesis and therapy for atopic allergic diseases, including recently identified local forms, from the viewpoint of the tridirectional interaction of the neuroimmune network and discrete neuronal-immune cell units is at the cutting-edge.
Collapse
Affiliation(s)
- Vladimir Klimov
- Immunology & Allergy Dept, Siberian State Medical University, 634041 Tomsk, Russia; (N.C.); (A.K.); (P.N.)
| | - Natalia Cherevko
- Immunology & Allergy Dept, Siberian State Medical University, 634041 Tomsk, Russia; (N.C.); (A.K.); (P.N.)
| | - Andrew Klimov
- Immunology & Allergy Dept, Siberian State Medical University, 634041 Tomsk, Russia; (N.C.); (A.K.); (P.N.)
| | - Pavel Novikov
- Immunology & Allergy Dept, Siberian State Medical University, 634041 Tomsk, Russia; (N.C.); (A.K.); (P.N.)
- Medical Association “Center for Family Medicine”, 634050 Tomsk, Russia
| |
Collapse
|
205
|
Uthaya Kumar DB, Motakis E, Yurieva M, Kohar V, Martinek J, Wu TC, Khoury J, Grassmann J, Lu M, Palucka K, Kaminski N, Koff JL, Williams A. Bronchial epithelium epithelial-mesenchymal plasticity forms aberrant basaloid-like cells in vitro. Am J Physiol Lung Cell Mol Physiol 2022; 322:L822-L841. [PMID: 35438006 PMCID: PMC9142163 DOI: 10.1152/ajplung.00254.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022] Open
Abstract
Although epithelial-mesenchymal transition (EMT) is a common feature of fibrotic lung disease, its role in fibrogenesis is controversial. Recently, aberrant basaloid cells were identified in fibrotic lung tissue as a novel epithelial cell type displaying a partial EMT phenotype. The developmental origin of these cells remains unknown. To elucidate the role of EMT in the development of aberrant basaloid cells from the bronchial epithelium, we mapped EMT-induced transcriptional changes at the population and single-cell levels. Human bronchial epithelial cells grown as submerged or air-liquid interface (ALI) cultures with or without EMT induction were analyzed by bulk and single-cell RNA-Sequencing. Comparison of submerged and ALI cultures revealed differential expression of 8,247 protein coding (PC) and 1,621 long noncoding RNA (lncRNA) genes and revealed epithelial cell-type-specific lncRNAs. Similarly, EMT induction in ALI cultures resulted in robust transcriptional reprogramming of 6,020 PC and 907 lncRNA genes. Although there was no evidence for fibroblast/myofibroblast conversion following EMT induction, cells displayed a partial EMT gene signature and an aberrant basaloid-like cell phenotype. The substantial transcriptional differences between submerged and ALI cultures highlight that care must be taken when interpreting data from submerged cultures. This work supports that lung epithelial EMT does not generate fibroblasts/myofibroblasts and confirms ALI cultures provide a physiologically relevant system to study aberrant basaloid-like cells and mechanisms of EMT. We provide a catalog of PC and lncRNA genes and an interactive browser (https://bronc-epi-in-vitro.cells.ucsc.edu/) of single-cell RNA-Seq data for further exploration of potential roles in the lung epithelium in health and lung disease.
Collapse
Affiliation(s)
- Dinesh Babu Uthaya Kumar
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut
| | - Efthymios Motakis
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | | | - Jan Martinek
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Te-Chia Wu
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Johad Khoury
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jessica Grassmann
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Mingyang Lu
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jonathan L Koff
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
206
|
Heinzelmann K, Hu Q, Hu Y, Dobrinskikh E, Ansari M, Melo-Narváez MC, Ulke HM, Leavitt C, Mirita C, Trudeau T, Saal ML, Rice P, Gao B, Janssen WJ, Yang IV, Schiller HB, Vladar EK, Lehmann M, Königshoff M. Single-cell RNA sequencing identifies G-protein coupled receptor 87 as a basal cell marker expressed in distal honeycomb cysts in idiopathic pulmonary fibrosis. Eur Respir J 2022; 59:2102373. [PMID: 35604813 PMCID: PMC9203838 DOI: 10.1183/13993003.02373-2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/02/2022] [Indexed: 11/15/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating and life-threatening lung disease characterised by epithelial reprogramming and increased extracellular matrix deposition leading to loss of lung function. Prominent histopathological structures in the distal IPF lung include honeycomb cysts in the alveolar space [1]. These are heterogeneous bronchiolised areas that feature clusters of simple epithelium with keratin (KRT)5+ basal-like cells interspersed with pseudostratified epithelium containing differentiated, hyperplastic epithelial cells, as well as aberrant ciliated cells [2–5]. Recent single-cell RNA sequencing studies of whole lungs from IPF and donor tissue revealed cellular subtypes unique to IPF, including basaloid KRT5−/KRT17+ cells present in the distal lung [6–10]. Bronchiolisation and honeycombing are features of IPF. ScRNA sequencing identified GPR87 as a novel marker of basal cells in IPF, enriched in honeycomb cysts. GPR87 overexpression resulted in aberrant airway cell differentiation. https://bit.ly/3i4dXeT
Collapse
Affiliation(s)
- Katharina Heinzelmann
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center Munich, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- K. Heinzelmann and Q. Hu contributed equally
| | - Qianjiang Hu
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center Munich, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- K. Heinzelmann and Q. Hu contributed equally
| | - Yan Hu
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Evgenia Dobrinskikh
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Meshal Ansari
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center Munich, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - M Camila Melo-Narváez
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center Munich, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Henrik M Ulke
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center Munich, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Colton Leavitt
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Carol Mirita
- Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Tammy Trudeau
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maxwell L Saal
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Pamela Rice
- Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Bifeng Gao
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - William J Janssen
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Dept of Medicine, National Jewish Health, Denver, CO, USA
| | - Ivana V Yang
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Herbert B Schiller
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center Munich, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Eszter K Vladar
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Dept of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mareike Lehmann
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center Munich, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- M. Lehmann and M. Königshoff contributed equally to this article as lead authors and supervised the work
| | - Melanie Königshoff
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- M. Lehmann and M. Königshoff contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
207
|
Yang YY, Liu J, Liu YT, Ong HH, Chen QM, Chen CB, Thong M, Xu X, Zhou SZ, Qiu QH, Wang DY. Moderate Dose Irradiation Induces DNA Damage and Impairments of Barrier and Host Defense in Nasal Epithelial Cells in vitro. J Inflamm Res 2022; 15:3661-3675. [PMID: 35783248 PMCID: PMC9242583 DOI: 10.2147/jir.s369385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Radiotherapy (RT) is the mainstay treatment for head and neck cancers. However, chronic and recurrent upper respiratory tract infections and inflammation have been commonly reported in patients post-RT. The underlying mechanisms remain poorly understood. Method and Materials We used a well-established model of human nasal epithelial cells (hNECs) that forms a pseudostratified layer in the air-liquid interface (ALI) and exposed it to single or repeated moderate dose γ-irradiation (1Gy). We assessed the DNA damage and evaluated the biological properties of hNECs at different time points post-RT. Further, we explored the host immunity alterations in irradiated hNECs with polyinosinic-polycytidylic acid sodium salt (poly [I:C]) and lipopolysaccharides (LPS). Results IR induced DNA double strand breaks (DSBs) and triggered DNA damage response in hNECs. Repeated IR significantly reduced basal cell proliferation with low expression of p63/KRT5 and Ki67, induced cilia loss and inhibited mucus secretion. In addition, IR decreased ZO-1 expression and caused a significant decline in the transepithelial electrical resistance (TEER). Moreover, hyperreactive response against pathogen invasion and disrupted epithelial host defense can be observed in hNECs exposed to repeated IR. Conclusion Our study suggests that IR induced prolonged structural and functional impairments of hNECs may contribute to patients post-RT with increased risk of developing chronic and recurrent upper respiratory tract infection and inflammation.
Collapse
Affiliation(s)
- Yue-Ying Yang
- Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yi-Tong Liu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Hsiao-Hui Ong
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Qian-Min Chen
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Ce-Belle Chen
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore
| | - Mark Thong
- Department of Otolaryngology-Head and Neck Surgery, National University Hospital, National University Health System, Singapore
| | - Xinni Xu
- Department of Otolaryngology-Head and Neck Surgery, National University Hospital, National University Health System, Singapore
| | - Sui-Zi Zhou
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Qian-Hui Qiu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Correspondence: Qian-Hui Qiu, Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, No. 106 Zhongshan Road II, Guangzhou, 510080, People’s Republic of China, Tel +86 20 83827812, Email
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- De-Yun Wang, Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, NUHS Tower Block, 1E Kent Ridge Road, 119228, Singapore, Tel + 65 6772 5373/5370/5371, Fax +65 6775 3820, Email
| |
Collapse
|
208
|
Analyzing single cell transcriptome data from severe COVID-19 patients. STAR Protoc 2022; 3:101379. [PMID: 35582459 PMCID: PMC9021126 DOI: 10.1016/j.xpro.2022.101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We describe the protocol for identifying COVID-19 severity specific cell types and their regulatory marker genes using single-cell transcriptomics data. We construct COVID-19 comorbid disease-associated gene list using multiple databases and literature resources. Next, we identify specific cell type where comorbid genes are upregulated. We further characterize the identified cell type using gene enrichment analysis. We detect upregulation of marker gene restricted to severe COVID-19 cell type and validate our findings using in silico, in vivo, and in vitro cellular models. For complete details on the use and execution of this protocol, please refer to Nassir et al. (2021b). Step-by-step protocol for single cell transcriptome data clustering and analysis Customized cell type marker identification pipeline Identification of clusters with enrichment of COVID-19 comorbidity associated genes Gene expression studies from nasopharyngeal swabs and spike protein simulated cells
Collapse
|
209
|
Paranjapye A, NandyMazumdar M, Harris A. Krüppel-Like Factor 5 Regulates CFTR Expression Through Repression by Maintaining Chromatin Architecture Coupled with Direct Enhancer Activation. J Mol Biol 2022; 434:167561. [PMID: 35341742 PMCID: PMC9086126 DOI: 10.1016/j.jmb.2022.167561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023]
Abstract
Single cell RNA-sequencing has accurately identified cell types within the human airway that express the Cystic Fibrosis Transmembrane Conductance regulator (CFTR) gene. Low abundance CFTR transcripts are seen in many secretory cells, while high levels are restricted to rare pulmonary ionocytes. Here we focus on the mechanisms coordinating basal CFTR expression in the secretory compartment. Cell-selective regulation of CFTR is achieved within its invariant topologically associating domain by the recruitment of cis-regulatory elements (CREs). CRE activity is coordinated by cell-type-selective transcription factors. One such factor, Krüppel-Like Factor 5 (KLF5), profoundly represses CFTR transcript and protein in primary human airway epithelial cells and airway cell lines. Here we reveal the mechanism of action of KLF5 upon the CFTR gene. We find that depletion or ablation of KLF5 from airway epithelial cells changes higher order chromatin structure at the CFTR locus. Critical looping interactions that are required for normal gene expression are altered, the H3K27ac active chromatin mark is redistributed, and CTCF occupancy is modified. However, mutation of a single KLF5 binding site within a pivotal airway cell CRE abolishes CFTR expression. Hence, KLF5 has both direct activating and indirect repressive effects, which together coordinate CFTR expression in the airway.
Collapse
Affiliation(s)
- Alekh Paranjapye
- Department of Genetics and Genome Sciences, and Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Monali NandyMazumdar
- Department of Genetics and Genome Sciences, and Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, and Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
210
|
Tang XY, Wu S, Wang D, Chu C, Hong Y, Tao M, Hu H, Xu M, Guo X, Liu Y. Human organoids in basic research and clinical applications. Signal Transduct Target Ther 2022; 7:168. [PMID: 35610212 PMCID: PMC9127490 DOI: 10.1038/s41392-022-01024-9] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Organoids are three-dimensional (3D) miniature structures cultured in vitro produced from either human pluripotent stem cells (hPSCs) or adult stem cells (AdSCs) derived from healthy individuals or patients that recapitulate the cellular heterogeneity, structure, and functions of human organs. The advent of human 3D organoid systems is now possible to allow remarkably detailed observation of stem cell morphogens, maintenance and differentiation resemble primary tissues, enhancing the potential to study both human physiology and developmental stage. As they are similar to their original organs and carry human genetic information, organoids derived from patient hold great promise for biomedical research and preclinical drug testing and is currently used for personalized, regenerative medicine, gene repair and transplantation therapy. In recent decades, researchers have succeeded in generating various types of organoids mimicking in vivo organs. Herein, we provide an update on current in vitro differentiation technologies of brain, retinal, kidney, liver, lung, gastrointestinal, cardiac, vascularized and multi-lineage organoids, discuss the differences between PSC- and AdSC-derived organoids, summarize the potential applications of stem cell-derived organoids systems in the laboratory and clinic, and outline the current challenges for the application of organoids, which would deepen the understanding of mechanisms of human development and enhance further utility of organoids in basic research and clinical studies.
Collapse
Affiliation(s)
- Xiao-Yan Tang
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Shanshan Wu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Da Wang
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Chu Chu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Yuan Hong
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Mengdan Tao
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Min Xu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Xing Guo
- Department of Neurobiology, School of Basic Medical Sciences; Nanjing Medical University, Nanjing, China.
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China.
| |
Collapse
|
211
|
Carraro G, Stripp BR. Insights gained in the pathology of lung disease through single cell transcriptomics. J Pathol 2022; 257:494-500. [PMID: 35608561 DOI: 10.1002/path.5971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/17/2022] [Indexed: 11/07/2022]
Abstract
The human lung is a relatively quiescent organ in the normal healthy state but contains stem/progenitor cells that contribute to normal tissue maintenance and either repair or remodeling in response to injury and disease. Maintenance or repair lead to proper restoration of functional lung tissue and maintenance of physiological functions, with remodeling resulting in altered structure and function that is typically associated with disease. Knowledge of cell types contributing to lung tissue maintenance and repair/remodeling have largely relied on mouse models of injury-repair and lineage tracing of local progenitors. Therefore, many of the functional alterations underlying remodeling in human lung disease, have remained poorly defined. However, the advent of advanced genomics approaches to define the molecular phenotype of lung cells at single cell resolution has paved the way for rapid advances in our understanding of cell types present within the normal human lung and changes that accompany disease. Here we summarize recent advances in our understanding of disease-related changes in the molecular phenotype of human lung epithelium that have emerged from single-cell transcriptomic studies. We focus attention on emerging concepts of epithelial transitional states that characterize the pathological remodeling that accompanies chronic lung diseases, including idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, cystic fibrosis, and asthma. Concepts arising from these studies are actively evolving and require corroborative studies to improve our understanding of disease mechanisms. Whenever possible we highlight opportunities for providing a unified nomenclature in this rapidly advancing field of research. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gianni Carraro
- Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Barry R Stripp
- Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
212
|
Paranjapye A, Leir SH, Huang F, Kerschner JL, Harris A. Cell function and identity revealed by comparative scRNA-seq analysis in human nasal, bronchial and epididymis epithelia. Eur J Cell Biol 2022; 101:151231. [PMID: 35597096 PMCID: PMC9357053 DOI: 10.1016/j.ejcb.2022.151231] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/19/2022] [Accepted: 04/30/2022] [Indexed: 11/07/2022] Open
Abstract
The evolutionary relationship of cells within tissues having a similar function but located in different anatomical sites is of considerable biological interest. The development of single-cell RNA sequencing (scRNA-seq) protocols has greatly enhanced opportunities to address this topic. Here we focus on cells in the epithelium which lines two regions of the human respiratory tract and the male genital ducts to delineate the shared, differentiated functions of the different cell populations. Transcriptomic data were used to assess the gene expression profiles of human bronchial, nasal, and epididymal epithelium (HBE, HNE, and HEE). Bulk RNA-seq showed many shared genes expressed in cells from the nasal and bronchial epithelium and highlighted their divergence from the epididymal epithelium. ScRNA-seq in HBE and HNE cells demonstrated overlapping gene expression patterns within basal and secretory cell populations. Moreover, the distribution of cell types was altered in HNE cells derived from donors with cystic fibrosis (CF) when compared to cells from healthy donors. Next, the HBE and HNE datasets were merged and confirmed intersection of cell type gene expression profiles from the two sites. However, secretory and ciliated cells were the most abundant types in the HBE samples, while more basal cells were seen in the HNE populations. We then merged single-cell data from the epididymis to determine if overlapping functions of these cells corresponded to those in the airway. Of note, only the pulmonary ionocytes/epididymis clear cells showed a strongly conserved identity, which was confirmed by imputation in bulk RNA-seq datasets from the same cells.
Collapse
Affiliation(s)
- Alekh Paranjapye
- Department of Genetics and Genome Sciences, and Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Shih-Hsing Leir
- Department of Genetics and Genome Sciences, and Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Felix Huang
- Department of Genetics and Genome Sciences, and Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jenny L Kerschner
- Department of Genetics and Genome Sciences, and Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, and Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
213
|
Wu M, Zhang X, Lin Y, Zeng Y. Roles of airway basal stem cells in lung homeostasis and regenerative medicine. Respir Res 2022; 23:122. [PMID: 35562719 PMCID: PMC9102684 DOI: 10.1186/s12931-022-02042-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/01/2022] [Indexed: 11/10/2022] Open
Abstract
Airway basal stem cells (BSCs) in the proximal airways are recognized as resident stem cells capable of self-renewing and differentiating to virtually every pseudostratified epithelium cell type under steady-state and after acute injury. In homeostasis, BSCs typically maintain a quiescent state. However, when exposed to acute injuries by either physical insults, chemical damage, or pathogen infection, the remaining BSCs increase their proliferation rate apace within the first 24 h and differentiate to restore lung homeostasis. Given the progenitor property of airway BSCs, it is attractive to research their biological characteristics and how they maintain homeostatic airway structure and respond to injury. In this review, we focus on the roles of BSCs in lung homeostasis and regeneration, detail the research progress in the characteristics of airway BSCs, the cellular and molecular signaling communications involved in BSCs-related airway repair and regeneration, and further discuss the in vitro models for airway BSC propagation and their applications in lung regenerative medicine therapy.
Collapse
Affiliation(s)
- Meirong Wu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China
| | - Xiaojing Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China
| | - Yijian Lin
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China
| | - Yiming Zeng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China. .,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China. .,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China.
| |
Collapse
|
214
|
Mettelman RC, Allen EK, Thomas PG. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 2022; 55:749-780. [PMID: 35545027 PMCID: PMC9087965 DOI: 10.1016/j.immuni.2022.04.013] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023]
Abstract
The lungs are constantly exposed to inhaled debris, allergens, pollutants, commensal or pathogenic microorganisms, and respiratory viruses. As a result, innate and adaptive immune responses in the respiratory tract are tightly regulated and are in continual flux between states of enhanced pathogen clearance, immune-modulation, and tissue repair. New single-cell-sequencing techniques are expanding our knowledge of airway cellular complexity and the nuanced connections between structural and immune cell compartments. Understanding these varied interactions is critical in treatment of human pulmonary disease and infections and in next-generation vaccine design. Here, we review the innate and adaptive immune responses in the lung and airways following infection and vaccination, with particular focus on influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ongoing SARS-CoV-2 pandemic has put pulmonary research firmly into the global spotlight, challenging previously held notions of respiratory immunity and helping identify new populations at high risk for respiratory distress.
Collapse
Affiliation(s)
- Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
215
|
Zhang Z, Peng H, Lai J, Jiang L, Wang L, Jin S, Fan K, Zhang Z, Zhao C, Deng D, Zhao P, Gao Z, Yu S. Differential susceptibility to SARS-CoV-2 in the normal nasal mucosa and in chronic sinusitis. Eur J Immunol 2022; 52:1308-1320. [PMID: 35524548 PMCID: PMC9347577 DOI: 10.1002/eji.202249805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022]
Abstract
Human nasal mucosa is susceptible to severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection and serves as a reservoir for viral replication before spreading to other organs (e.g. the lung and brain) and transmission to other individuals. Chronic rhinosinusitis (CRS) is a common respiratory tract disease and there is evidence suggesting that susceptibility to SARS‐CoV‐2 infection differs between the two known subtypes, eosinophilic CRS and non‐ECRS (NECRS). However, the mechanism of SARS‐CoV‐2 infection in the human nasal mucosa and its association with CRS has not been experimentally validated. In this study, we investigated whether the human nasal mucosa is susceptible to SARS‐CoV‐2 infection and how different endotypes of CRS impact on viral infection and progression. Primary human nasal mucosa tissue culture revealed highly efficient SARS‐CoV‐2 viral infection and production, with particularly high susceptibility in the NECRS group. The gene expression differences suggested that human nasal mucosa is highly susceptible to SARS‐CoV‐2 infection, presumably due to an increase in ACE2‐expressing cells and a deficiency in antiviral immune response, especially for NECRS. Importantly, patients with NECRS may be at a particularly high risk of viral infection and transmission, and therefore, close monitoring should be considered.
Collapse
Affiliation(s)
- Zhili Zhang
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.,Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China.,Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China.,Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
| | - Haoran Peng
- Department of microbiology, Second Military Medical University, Shanghai, China
| | - Ju Lai
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.,Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
| | - Liangliang Jiang
- Department of microbiology, Second Military Medical University, Shanghai, China
| | - Liefu Wang
- Xinyang Vocational and Technical College, Xinyang, Henan, China
| | - Shengkai Jin
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China.,Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China.,Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China.,Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kai Fan
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zimu Zhang
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chuanliang Zhao
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dan Deng
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Zhao
- Department of microbiology, Second Military Medical University, Shanghai, China
| | - Zhengliang Gao
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China.,Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China.,Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China.,Xinyang Vocational and Technical College, Xinyang, Henan, China
| | - Shaoqing Yu
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
216
|
Morrison CB, Edwards CE, Shaffer KM, Araba KC, Wykoff JA, Williams DR, Asakura T, Dang H, Morton LC, Gilmore RC, O’Neal WK, Boucher RC, Baric RS, Ehre C. SARS-CoV-2 infection of airway cells causes intense viral and cell shedding, two spreading mechanisms affected by IL-13. Proc Natl Acad Sci U S A 2022; 119:e2119680119. [PMID: 35353667 PMCID: PMC9169748 DOI: 10.1073/pnas.2119680119] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
Muco-obstructive lung diseases are typically associated with high risks of COVID-19 severity; however, allergic asthma showed reduced susceptibility. To investigate viral spread, primary human airway epithelial (HAE) cell cultures were infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and host–virus interactions were examined via electron microscopy, immunohistochemistry, RNA in situ hybridization, and gene expression analyses. In HAE cell cultures, angiotensin-converting enzyme 2 (ACE2) expression governed cell tropism and viral load and was up-regulated by infection. Electron microscopy identified intense viral egress from infected ciliated cells and severe cytopathogenesis, culminating in the shedding of ciliated cells packed with virions, providing a large viral reservoir for spread and transmission. Intracellular stores of MUC5AC, a major airway mucin involved in asthma, were rapidly depleted, likely to trap viruses. To mimic asthmatic airways, HAE cells were treated with interleukin-13 (IL-13), which reduced viral titers, viral messenger RNA, and cell shedding, and significantly diminished the number of infected cells. Although mucus hyperproduction played a shielding role, IL-13–treated cells maintained a degree of protection despite the removal of mucus. Using Gene Expression Omnibus databases, bulk RNA-sequencing analyses revealed that IL-13 up-regulated genes controlling glycoprotein synthesis, ion transport, and antiviral processes (albeit not the typical interferon-induced genes) and down-regulated genes involved in cilial function and ribosomal processing. More precisely, we showed that IL-13 reduced ACE2 expression, intracellular viral load, and cell-to-cell transmission while increasing the cilial keratan sulfate coating. In conclusion, intense viral and cell shedding caused by SARS-CoV-2 infection was attenuated by IL-13, which affected viral entry, replication, and spread.
Collapse
Affiliation(s)
- Cameron B. Morrison
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Caitlin E. Edwards
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kendall M. Shaffer
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kenza C. Araba
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jason A. Wykoff
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Danielle R. Williams
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Takanori Asakura
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Hong Dang
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Lisa C. Morton
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Rodney C. Gilmore
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Wanda K. O’Neal
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Richard C. Boucher
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ralph S. Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Camille Ehre
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pediatrics/Pediatric Pulmonology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
217
|
Noureddine N, Chalubinski M, Wawrzyniak P. The Role of Defective Epithelial Barriers in Allergic Lung Disease and Asthma Development. J Asthma Allergy 2022; 15:487-504. [PMID: 35463205 PMCID: PMC9030405 DOI: 10.2147/jaa.s324080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
The respiratory epithelium constitutes the physical barrier between the human body and the environment, thus providing functional and immunological protection. It is often exposed to allergens, microbial substances, pathogens, pollutants, and environmental toxins, which lead to dysregulation of the epithelial barrier and result in the chronic inflammation seen in allergic diseases and asthma. This epithelial barrier dysfunction results from the disturbed tight junction formation, which are multi-protein subunits that promote cell-cell adhesion and barrier integrity. The increasing interest and evidence of the role of impaired epithelial barrier function in allergy and asthma highlight the need for innovative approaches that can provide new knowledge in this area. Here, we review and discuss the current role and mechanism of epithelial barrier dysfunction in developing allergic diseases and the effect of current allergy therapies on epithelial barrier restoration.
Collapse
Affiliation(s)
- Nazek Noureddine
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Maciej Chalubinski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
218
|
Kadur Lakshminarasimha Murthy P, Sontake V, Tata A, Kobayashi Y, Macadlo L, Okuda K, Conchola AS, Nakano S, Gregory S, Miller LA, Spence JR, Engelhardt JF, Boucher RC, Rock JR, Randell SH, Tata PR. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature 2022; 604:111-119. [PMID: 35355018 PMCID: PMC9169066 DOI: 10.1038/s41586-022-04541-3] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 02/09/2022] [Indexed: 12/22/2022]
Abstract
Mapping the spatial distribution and molecular identity of constituent cells is essential for understanding tissue dynamics in health and disease. We lack a comprehensive map of human distal airways, including the terminal and respiratory bronchioles (TRBs), which are implicated in respiratory diseases1-4. Here, using spatial transcriptomics and single-cell profiling of microdissected distal airways, we identify molecularly distinct TRB cell types that have not-to our knowledge-been previously characterized. These include airway-associated LGR5+ fibroblasts and TRB-specific alveolar type-0 (AT0) cells and TRB secretory cells (TRB-SCs). Connectome maps and organoid-based co-cultures reveal that LGR5+ fibroblasts form a signalling hub in the airway niche. AT0 cells and TRB-SCs are conserved in primates and emerge dynamically during human lung development. Using a non-human primate model of lung injury, together with human organoids and tissue specimens, we show that alveolar type-2 cells in regenerating lungs transiently acquire an AT0 state from which they can differentiate into either alveolar type-1 cells or TRB-SCs. This differentiation programme is distinct from that identified in the mouse lung5-7. Our study also reveals mechanisms that drive the differentiation of the bipotent AT0 cell state into normal or pathological states. In sum, our findings revise human lung cell maps and lineage trajectories, and implicate an epithelial transitional state in primate lung regeneration and disease.
Collapse
Affiliation(s)
| | - Vishwaraj Sontake
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yoshihiko Kobayashi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Lauren Macadlo
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ansley S Conchola
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Satoko Nakano
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Simon Gregory
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Lisa A Miller
- California National Primate Research Center, Davis, CA, USA
- Department of Anatomy, Physiology and Cell biology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John F Engelhardt
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason R Rock
- Department of Immunology Discovery, Genentech, South San Francisco, CA, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.
- Duke Regeneration Center, Duke University School of Medicine, Durham, NC, USA.
- Division of Pulmonary Critical Care, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA.
| |
Collapse
|
219
|
Barnes MVC, Openshaw PJM, Thwaites RS. Mucosal Immune Responses to Respiratory Syncytial Virus. Cells 2022; 11:cells11071153. [PMID: 35406717 PMCID: PMC8997753 DOI: 10.3390/cells11071153] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Despite over half a century of research, respiratory syncytial virus (RSV)-induced bronchiolitis remains a major cause of hospitalisation in infancy, while vaccines and specific therapies still await development. Our understanding of mucosal immune responses to RSV continues to evolve, but recent studies again highlight the role of Type-2 immune responses in RSV disease and hint at the possibility that it dampens Type-1 antiviral immunity. Other immunoregulatory pathways implicated in RSV disease highlight the importance of focussing on localised mucosal responses in the respiratory mucosa, as befits a virus that is essentially confined to the ciliated respiratory epithelium. In this review, we discuss studies of mucosal immune cell infiltration and production of inflammatory mediators in RSV bronchiolitis and relate these studies to observations from peripheral blood. We also discuss the advantages and limitations of studying the nasal mucosa in a disease that is most severe in the lower airway. A fresh focus on studies of RSV pathogenesis in the airway mucosa is set to revolutionise our understanding of this common and important infection.
Collapse
|
220
|
Using intracellular SCGB1A1-sorted, formalin-fixed club cells for successful transcriptomic analysis. Biochem Biophys Res Commun 2022; 604:151-157. [PMID: 35305419 DOI: 10.1016/j.bbrc.2022.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/20/2022]
Abstract
As opposed to surface marker staining, certain cell types can only be recognized by intracellular markers. Intracellular staining for use in cell sorting remains challenging. Fixation and permeabilization steps for intracellular staining and the presence of RNases notably affect preservation of high-quality mRNA. We report the work required for the optimization of a successful protocol for microarray analysis of intracellular target-sorted, formalin-fixed human bronchial club cells. Cells obtained from differentiated air-liquid interface cultures were stained with the most characteristic intracellular markers for club cell (SCGB1A1+) sorting. A benchmarked intracellular staining protocol was carried out before flow cytometry. The primary outcome was the extraction of RNA sufficient quality for microarray analysis as assessed by Bioanalyzer System. Fixation with 4% paraformaldehyde coupled with 0.1% Triton/0.1% saponin permeabilization obtained optimal results for SCGB1A1 staining. Addition of RNase inhibitors throughout the protocol and within the appropriate RNA extraction kit (Formalin-Fixed-Paraffin-Embedded) dramatically improved RNA quality, resulting in samples eligible for microarray analysis. The protocol resulted in successful cell sorting according to specific club cell intracellular marker without using cell surface marker. The protocol also preserved RNA of sufficient quality for subsequent microarray transcriptomic analysis, and we were able to generate transcriptomic signature of club cells.
Collapse
|
221
|
Balázs A, Millar-Büchner P, Mülleder M, Farztdinov V, Szyrwiel L, Addante A, Kuppe A, Rubil T, Drescher M, Seidel K, Stricker S, Eils R, Lehmann I, Sawitzki B, Röhmel J, Ralser M, Mall MA. Age-Related Differences in Structure and Function of Nasal Epithelial Cultures From Healthy Children and Elderly People. Front Immunol 2022; 13:822437. [PMID: 35296085 PMCID: PMC8918506 DOI: 10.3389/fimmu.2022.822437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
The nasal epithelium represents the first line of defense against inhaled pathogens, allergens, and irritants and plays a key role in the pathogenesis of a spectrum of acute and chronic airways diseases. Despite age-dependent clinical phenotypes triggered by these noxious stimuli, little is known about how aging affects the structure and function of the airway epithelium that is crucial for lung homeostasis and host defense. The aim of this study was therefore to determine age-related differences in structural and functional properties of primary nasal epithelial cultures from healthy children and non-smoking elderly people. To achieve this goal, highly differentiated nasal epithelial cultures were established from nasal brushes at air–liquid interface and used to study epithelial cell type composition, mucin (MUC5AC and MUC5B) expression, and ion transport properties. Furthermore, we determined age-dependent molecular signatures using global proteomic analysis. We found lower numeric densities of ciliated cells and higher levels of MUC5AC expression in cultures from children vs. elderly people. Bioelectric studies showed no differences in basal ion transport properties, ENaC-mediated sodium absorption, or CFTR-mediated chloride transport, but detected decreased calcium-activated TMEM16A-mediated chloride secretory responses in cultures from children vs. elderly people. Proteome analysis identified distinct age-dependent molecular signatures associated with ciliation and mucin biosynthesis, as well as other pathways implicated in aging. Our data identified intrinsic, age-related differences in structure and function of the nasal epithelium and provide a basis for further studies on the role of these findings in age-dependent airways disease phenotypes observed with a spectrum of respiratory infections and other noxious stimuli.
Collapse
Affiliation(s)
- Anita Balázs
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- *Correspondence: Anita Balázs, ; Marcus A. Mall,
| | - Pamela Millar-Büchner
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Michael Mülleder
- Charité - Universitätsmedizin Berlin, Core Facility - High-Throughput Mass Spectrometry, Berlin, Germany
| | - Vadim Farztdinov
- Charité - Universitätsmedizin Berlin, Core Facility - High-Throughput Mass Spectrometry, Berlin, Germany
| | - Lukasz Szyrwiel
- Charité - Universitätsmedizin Berlin, Core Facility - High-Throughput Mass Spectrometry, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Annalisa Addante
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Aditi Kuppe
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Tihomir Rubil
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Marika Drescher
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
| | - Kathrin Seidel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
| | - Sebastian Stricker
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
| | - Roland Eils
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Center for Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Irina Lehmann
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Molecular Epidemiology Unit, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
| | - Markus Ralser
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Berlin, Germany
- *Correspondence: Anita Balázs, ; Marcus A. Mall,
| |
Collapse
|
222
|
Ortega-Peña S, Rodríguez-Martínez S, Cancino-Diaz ME, Cancino-Diaz JC. Staphylococcus epidermidis Controls Opportunistic Pathogens in the Nose, Could It Help to Regulate SARS-CoV-2 (COVID-19) Infection? Life (Basel) 2022; 12:341. [PMID: 35330092 PMCID: PMC8954679 DOI: 10.3390/life12030341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus epidermidis is more abundant in the anterior nares than internal parts of the nose, but its relative abundance changes along with age; it is more abundant in adolescents than in children and adults. Various studies have shown that S. epidermidis is the guardian of the nasal cavity because it prevents the colonization and infection of respiratory pathogens (bacteria and viruses) through the secretion of antimicrobial molecules and inhibitors of biofilm formation, occupying the space of the membrane mucosa and through the stimulation of the host's innate and adaptive immunity. There is a strong relationship between the low number of S. epidermidis in the nasal cavity and the increased risk of serious respiratory infections. The direct application of S. epidermidis into the nasal cavity could be an effective therapeutic strategy to prevent respiratory infections and to restore nasal cavity homeostasis. This review shows the mechanisms that S. epidermidis uses to eliminate respiratory pathogens from the nasal cavity, also S. epidermidis is proposed to be used as a probiotic to prevent the development of COVID-19 because S. epidermidis induces the production of interferon type I and III and decreases the expression of the entry receptors of SARS-CoV-2 (ACE2 and TMPRSS2) in the nasal epithelial cells.
Collapse
Affiliation(s)
- Silvestre Ortega-Peña
- Laboratorio Tejido Conjuntivo, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación “Luís Guillermo Ibarra Ibarra”, Ciudad de México 14389, Mexico
| | - Sandra Rodríguez-Martínez
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (S.R.-M.); (M.E.C.-D.)
| | - Mario E. Cancino-Diaz
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (S.R.-M.); (M.E.C.-D.)
| | - Juan C. Cancino-Diaz
- Laboratorio de Inmunomicrobiología, Departamento Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| |
Collapse
|
223
|
Male Lower Urinary Tract Dysfunction: An Underrepresented Endpoint in Toxicology Research. TOXICS 2022; 10:toxics10020089. [PMID: 35202275 PMCID: PMC8880407 DOI: 10.3390/toxics10020089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023]
Abstract
Lower urinary tract dysfunction (LUTD) is nearly ubiquitous in men of advancing age and exerts substantial physical, mental, social, and financial costs to society. While a large body of research is focused on the molecular, genetic, and epigenetic underpinnings of the disease, little research has been dedicated to the influence of environmental chemicals on disease initiation, progression, or severity. Despite a few recent studies indicating a potential developmental origin of male LUTD linked to chemical exposures in the womb, it remains a grossly understudied endpoint in toxicology research. Therefore, we direct this review to toxicologists who are considering male LUTD as a new aspect of chemical toxicity studies. We focus on the LUTD disease process in men, as well as in the male mouse as a leading research model. To introduce the disease process, we describe the physiology of the male lower urinary tract and the cellular composition of lower urinary tract tissues. We discuss known and suspected mechanisms of male LUTD and examples of environmental chemicals acting through these mechanisms to contribute to LUTD. We also describe mouse models of LUTD and endpoints to diagnose, characterize, and quantify LUTD in men and mice.
Collapse
|
224
|
Oliva AD, Gupta R, Issa K, Abi Hachem R, Jang DW, Wellford SA, Moseman EA, Matsunami H, Goldstein BJ. Aging-related olfactory loss is associated with olfactory stem cell transcriptional alterations in humans. J Clin Invest 2022; 132:155506. [PMID: 34990409 PMCID: PMC8843745 DOI: 10.1172/jci155506] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/04/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUNDPresbyosmia, or aging-related olfactory loss, occurs in a majority of humans over age 65 years, yet remains poorly understood, with no specific treatment options. The olfactory epithelium (OE) is the peripheral organ for olfaction and is subject to acquired damage, suggesting a likely site of pathology in aging. Adult stem cells reconstitute the neuroepithelium in response to cell loss under normal conditions. In aged OE, patches of respiratory-like metaplasia have been observed histologically, consistent with a failure in normal neuroepithelial homeostasis.MethodsAccordingly, we have focused on identifying cellular and molecular changes in presbyosmic OE. The study combined psychophysical testing with olfactory mucosa biopsy analysis, single-cell RNA-Sequencing (scRNA-Seq), and culture studies.ResultsWe identified evidence for inflammation-associated changes in the OE stem cells of presbyosmic patients. The presbyosmic basal stem cells exhibited increased expression of genes involved in response to cytokines or stress or the regulation of proliferation and differentiation. Using a culture model, we found that cytokine exposure drove increased TP63, a transcription factor acting to prevent OE stem cell differentiation.ConclusionsOur data suggest aging-related inflammatory changes in OE stem cells may contribute to presbyosmia via the disruption of normal epithelial homeostasis. OE stem cells may represent a therapeutic target for restoration of olfaction.FundingNIH grants DC018371, NS121067, DC016224; Office of Physician-Scientist Development, Burroughs-Wellcome Fund Research Fellowship for Medical Students Award, Duke University School of Medicine.
Collapse
Affiliation(s)
- Allison D. Oliva
- Department of Head and Neck Surgery & Communication Sciences and
| | - Rupali Gupta
- Department of Head and Neck Surgery & Communication Sciences and
| | - Khalil Issa
- Department of Head and Neck Surgery & Communication Sciences and
| | - Ralph Abi Hachem
- Department of Head and Neck Surgery & Communication Sciences and
| | - David W. Jang
- Department of Head and Neck Surgery & Communication Sciences and
| | | | | | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology,,Duke Institute for Brain Sciences,,Department of Neurobiology, and
| | - Bradley J. Goldstein
- Department of Head and Neck Surgery & Communication Sciences and,Department of Neurobiology, and,Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
225
|
Koch CM, Prigge AD, Anekalla KR, Shukla A, Do Umehara HC, Setar L, Chavez J, Abdala-Valencia H, Politanska Y, Markov NS, Hahn GR, Heald-Sargent T, Sanchez- Pinto LN, Muller WJ, Singer BD, Misharin AV, Ridge KM, Coates BM. Age-related Differences in the Nasal Mucosal Immune Response to SARS-CoV-2. Am J Respir Cell Mol Biol 2022; 66:206-222. [PMID: 34731594 PMCID: PMC8845137 DOI: 10.1165/rcmb.2021-0292oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 180 million people since the onset of the pandemic. Despite similar viral load and infectivity rates between children and adults, children rarely develop severe illness. Differences in the host response to the virus at the primary infection site are among the mechanisms proposed to account for this disparity. Our objective was to investigate the host response to SARS-CoV-2 in the nasal mucosa in children and adults and compare it with the host response to respiratory syncytial virus (RSV) and influenza virus. We analyzed clinical outcomes and gene expression in the nasal mucosa of 36 children with SARS-CoV-2, 24 children with RSV, 9 children with influenza virus, 16 adults with SARS-CoV-2, and 7 healthy pediatric and 13 healthy adult controls. In both children and adults, infection with SARS-CoV-2 led to an IFN response in the nasal mucosa. The magnitude of the IFN response correlated with the abundance of viral reads, not the severity of illness, and was comparable between children and adults infected with SARS-CoV-2 and children with severe RSV infection. Expression of ACE2 and TMPRSS2 did not correlate with age or presence of viral infection. SARS-CoV-2-infected adults had increased expression of genes involved in neutrophil activation and T-cell receptor signaling pathways compared with SARS-CoV-2-infected children, despite similar severity of illness and viral reads. Age-related differences in the immune response to SARS-CoV-2 may place adults at increased risk of developing severe illness.
Collapse
Affiliation(s)
| | - Andrew D. Prigge
- Department of Pediatrics
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | | | - Avani Shukla
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | | | - Leah Setar
- Department of Pediatrics
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Jairo Chavez
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | | | | | | | - Grant R. Hahn
- Department of Pediatrics
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Taylor Heald-Sargent
- Department of Pediatrics
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - L. Nelson Sanchez- Pinto
- Department of Pediatrics
- Department of Preventive Medicine
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - William J. Muller
- Department of Pediatrics
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Benjamin D. Singer
- Department of Medicine
- Department of Biochemistry and Molecular Genetics, and
| | | | - Karen M. Ridge
- Department of Medicine
- Department of Cell and Developmental Biology, Northwestern University, Evanston, Illinois; and
| | - Bria M. Coates
- Department of Pediatrics
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| |
Collapse
|
226
|
Yoshida M, Worlock KB, Huang N, Lindeboom RGH, Butler CR, Kumasaka N, Dominguez Conde C, Mamanova L, Bolt L, Richardson L, Polanski K, Madissoon E, Barnes JL, Allen-Hyttinen J, Kilich E, Jones BC, de Wilton A, Wilbrey-Clark A, Sungnak W, Pett JP, Weller J, Prigmore E, Yung H, Mehta P, Saleh A, Saigal A, Chu V, Cohen JM, Cane C, Iordanidou A, Shibuya S, Reuschl AK, Herczeg IT, Argento AC, Wunderink RG, Smith SB, Poor TA, Gao CA, Dematte JE, Reynolds G, Haniffa M, Bowyer GS, Coates M, Clatworthy MR, Calero-Nieto FJ, Göttgens B, O'Callaghan C, Sebire NJ, Jolly C, De Coppi P, Smith CM, Misharin AV, Janes SM, Teichmann SA, Nikolić MZ, Meyer KB. Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature 2022; 602:321-327. [PMID: 34937051 PMCID: PMC8828466 DOI: 10.1038/s41586-021-04345-x] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023]
Abstract
It is not fully understood why COVID-19 is typically milder in children1-3. Here, to examine the differences between children and adults in their response to SARS-CoV-2 infection, we analysed paediatric and adult patients with COVID-19 as well as healthy control individuals (total n = 93) using single-cell multi-omic profiling of matched nasal, tracheal, bronchial and blood samples. In the airways of healthy paediatric individuals, we observed cells that were already in an interferon-activated state, which after SARS-CoV-2 infection was further induced especially in airway immune cells. We postulate that higher paediatric innate interferon responses restrict viral replication and disease progression. The systemic response in children was characterized by increases in naive lymphocytes and a depletion of natural killer cells, whereas, in adults, cytotoxic T cells and interferon-stimulated subpopulations were significantly increased. We provide evidence that dendritic cells initiate interferon signalling in early infection, and identify epithelial cell states associated with COVID-19 and age. Our matching nasal and blood data show a strong interferon response in the airways with the induction of systemic interferon-stimulated populations, which were substantially reduced in paediatric patients. Together, we provide several mechanisms that explain the milder clinical syndrome observed in children.
Collapse
Affiliation(s)
- Masahiro Yoshida
- UCL Respiratory, Division of Medicine, University College London, London, UK
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Kaylee B Worlock
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Ni Huang
- Wellcome Sanger Institute, Cambridge, UK
| | | | - Colin R Butler
- NIHR Great Ormond Street BRC and UCL Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | | | | | - Liam Bolt
- Wellcome Sanger Institute, Cambridge, UK
| | | | | | - Elo Madissoon
- Wellcome Sanger Institute, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Josephine L Barnes
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | | | - Eliz Kilich
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Brendan C Jones
- NIHR Great Ormond Street BRC and UCL Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Angus de Wilton
- University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | | | | | | | - Henry Yung
- UCL Respiratory, Division of Medicine, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Puja Mehta
- UCL Respiratory, Division of Medicine, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Aarash Saleh
- Royal Free Hospital NHS Foundation Trust, London, UK
| | - Anita Saigal
- Royal Free Hospital NHS Foundation Trust, London, UK
| | - Vivian Chu
- Royal Free Hospital NHS Foundation Trust, London, UK
| | - Jonathan M Cohen
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Clare Cane
- Royal Free Hospital NHS Foundation Trust, London, UK
| | | | - Soichi Shibuya
- NIHR Great Ormond Street BRC and UCL Institute of Child Health, London, UK
| | - Ann-Kathrin Reuschl
- UCL Division of Infection and Immunity, University College London, London, UK
| | - Iván T Herczeg
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - A Christine Argento
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sean B Smith
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Taylor A Poor
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Catherine A Gao
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jane E Dematte
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gary Reynolds
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Cambridge, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Matthew Coates
- Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Berthold Göttgens
- Wellcome, MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Christopher O'Callaghan
- NIHR Great Ormond Street BRC and UCL Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Neil J Sebire
- NIHR Great Ormond Street BRC and UCL Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Clare Jolly
- UCL Division of Infection and Immunity, University College London, London, UK
| | - Paolo De Coppi
- NIHR Great Ormond Street BRC and UCL Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Claire M Smith
- NIHR Great Ormond Street BRC and UCL Institute of Child Health, London, UK
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sam M Janes
- UCL Respiratory, Division of Medicine, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cambridge, UK
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine, University College London, London, UK.
- University College London Hospitals NHS Foundation Trust, London, UK.
| | | |
Collapse
|
227
|
de Steenhuijsen Piters WAA, Watson RL, de Koff EM, Hasrat R, Arp K, Chu MLJN, de Groot PCM, van Houten MA, Sanders EAM, Bogaert D. Early-life viral infections are associated with disadvantageous immune and microbiota profiles and recurrent respiratory infections. Nat Microbiol 2022; 7:224-237. [PMID: 35058634 DOI: 10.1038/s41564-021-01043-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
The respiratory tract is populated by a specialized microbial ecosystem, which is seeded during and directly following birth. Perturbed development of the respiratory microbial community in early-life has been associated with higher susceptibility to respiratory tract infections (RTIs). Given a consistent gap in time between first signs of aberrant microbial maturation and the observation of the first RTIs, we hypothesized that early-life host-microbe cross-talk plays a role in this process. We therefore investigated viral presence, gene expression profiles and nasopharyngeal microbiota from birth until 12 months of age in 114 healthy infants. We show that the strongest dynamics in gene expression profiles occurred within the first days of life, mostly involving Toll-like receptor (TLR) and inflammasome signalling. These gene expression dynamics coincided with rapid microbial niche differentiation. Early asymptomatic viral infection co-occurred with stronger interferon activity, which was related to specific microbiota dynamics following, including early enrichment of Moraxella and Haemophilus spp. These microbial trajectories were in turn related to a higher number of subsequent (viral) RTIs over the first year of life. Using a multi-omic approach, we found evidence for species-specific host-microbe interactions related to consecutive susceptibility to RTIs. Although further work will be needed to confirm causality of our findings, together these data indicate that early-life viral encounters could impact subsequent host-microbe cross-talk, which is linked to later-life infections.
Collapse
Affiliation(s)
- Wouter A A de Steenhuijsen Piters
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Rebecca L Watson
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Emma M de Koff
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Spaarne Gasthuis Academy, Hoofddorp and Haarlem, the Netherlands
| | - Raiza Hasrat
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Kayleigh Arp
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Mei Ling J N Chu
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Pieter C M de Groot
- Department of Obstetrics and Gynaecology, Spaarne Gasthuis, Hoofddorp and Haarlem, the Netherlands
| | - Marlies A van Houten
- Spaarne Gasthuis Academy, Hoofddorp and Haarlem, the Netherlands
- Department of Paediatrics, Spaarne Gasthuis, Hoofddorp and Haarlem, the Netherlands
| | - Elisabeth A M Sanders
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands.
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
228
|
Morgan R, Manfredi C, Easley KF, Watkins LD, Hunt WR, Goudy SL, Sorscher EJ, Koval M, Molina SA. A medium composition containing normal resting glucose that supports differentiation of primary human airway cells. Sci Rep 2022; 12:1540. [PMID: 35087167 PMCID: PMC8795386 DOI: 10.1038/s41598-022-05446-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
Primary cells isolated from the human respiratory tract are the state-of-the-art for in vitro airway epithelial cell research. Airway cell isolates require media that support expansion of cells in a basal state to maintain the capacity for differentiation as well as proper cellular function. By contrast, airway cell differentiation at an air-liquid interface (ALI) requires a distinct medium formulation that typically contains high levels of glucose. Here, we expanded and differentiated human basal cells isolated from the nasal and conducting airway to a mature mucociliary epithelial cell layer at ALI using a medium formulation containing normal resting glucose levels. Of note, bronchial epithelial cells expanded and differentiated in normal resting glucose medium showed insulin-stimulated glucose uptake which was inhibited by high glucose concentrations. Normal glucose containing ALI also enabled differentiation of nasal and tracheal cells that showed comparable electrophysiological profiles when assessed for cystic fibrosis transmembrane conductance regulator (CFTR) function and that remained responsive for up to 7 weeks in culture. These data demonstrate that normal glucose containing medium supports differentiation of primary nasal and lung epithelial cells at ALI, is well suited for metabolic studies, and avoids pitfalls associated with exposure to high glucose.
Collapse
Affiliation(s)
- Rachel Morgan
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Candela Manfredi
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Kristen F Easley
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Lionel D Watkins
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| | - William R Hunt
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Steven L Goudy
- Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eric J Sorscher
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Michael Koval
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Samuel A Molina
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| |
Collapse
|
229
|
Luecken MD, Zaragozi LE, Madissoon E, Sikkema L, Firsova AB, De Domenico E, Kümmerle L, Saglam A, Berg M, Gay ACA, Schniering J, Mayr CH, Abalo XM, Larsson L, Sountoulidis A, Teichmann S, van Eunen K, Koppelman GH, Saeb-Parsy K, Leroy S, Powell P, Sarkans U, Timens W, Lundeberg J, van den Berge M, Nilsson M, Horváth P, Denning J, Papatheodorou I, Schultze J, Schiller HB, Barbry P, Petoukhov I, Misharin AV, Adcock I, von Papen M, Theis FJ, Samakovlis C, Meyer KB, Nawijn MC. The discovAIR project: a roadmap towards the Human Lung Cell Atlas. Eur Respir J 2022; 60:13993003.02057-2021. [PMID: 35086829 PMCID: PMC9386332 DOI: 10.1183/13993003.02057-2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/23/2021] [Indexed: 12/01/2022]
Abstract
The Human Cell Atlas (HCA) consortium aims to establish an atlas of all organs in the healthy human body at single-cell resolution to increase our understanding of basic biological processes that govern development, physiology and anatomy, and to accelerate diagnosis and treatment of disease. The Lung Biological Network of the HCA aims to generate the Human Lung Cell Atlas as a reference for the cellular repertoire, molecular cell states and phenotypes, and cell–cell interactions that characterise normal lung homeostasis in healthy lung tissue. Such a reference atlas of the healthy human lung will facilitate mapping the changes in the cellular landscape in disease. The discovAIR project is one of six pilot actions for the HCA funded by the European Commission in the context of the H2020 framework programme. discovAIR aims to establish the first draft of an integrated Human Lung Cell Atlas, combining single-cell transcriptional and epigenetic profiling with spatially resolving techniques on matched tissue samples, as well as including a number of chronic and infectious diseases of the lung. The integrated Human Lung Cell Atlas will be available as a resource for the wider respiratory community, including basic and translational scientists, clinical medicine, and the private sector, as well as for patients with lung disease and the interested lay public. We anticipate that the Human Lung Cell Atlas will be the founding stone for a more detailed understanding of the pathogenesis of lung diseases, guiding the design of novel diagnostics and preventive or curative interventions. The discovAIR project contributes to the Human Cell Atlas Lung Biological Network by establishing a first draft of the Human Lung Cell Atlas, advancing our insight into the cellular complexity and spatial organisation of the lung in health and diseasehttps://bit.ly/3zX4cad
Collapse
Affiliation(s)
- Malte D Luecken
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany.,These authors made an equal contribution to this manuscript
| | - Laure-Emmanuelle Zaragozi
- Université Côte d'Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, France.,These authors made an equal contribution to this manuscript
| | - Elo Madissoon
- Wellcome Sanger Institute, Cambridge, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK.,These authors made an equal contribution to this manuscript
| | - Lisa Sikkema
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany.,These authors made an equal contribution to this manuscript
| | - Alexandra B Firsova
- Science for Life Laboratory, Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,These authors made an equal contribution to this manuscript
| | - Elena De Domenico
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,These authors made an equal contribution to this manuscript
| | - Louis Kümmerle
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany.,These authors made an equal contribution to this manuscript
| | - Adem Saglam
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,These authors made an equal contribution to this manuscript
| | - Marijn Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,GRIAC research institute at the University Medical Center Groningen, Groningen, the Netherlands.,These authors made an equal contribution to this manuscript
| | - Aurore C A Gay
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,GRIAC research institute at the University Medical Center Groningen, Groningen, the Netherlands.,These authors made an equal contribution to this manuscript
| | - Janine Schniering
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany.,These authors made an equal contribution to this manuscript
| | - Christoph H Mayr
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany.,These authors made an equal contribution to this manuscript
| | - Xesús M Abalo
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.,These authors made an equal contribution to this manuscript
| | - Ludvig Larsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.,These authors made an equal contribution to this manuscript
| | - Alexandros Sountoulidis
- Science for Life Laboratory, Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,These authors made an equal contribution to this manuscript
| | - Sarah Teichmann
- Wellcome Sanger Institute, Cambridge, UK.,Theory of Condensed Matter, Cavendish Laboratory, Cambridge, UK
| | - Karen van Eunen
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,UMCG Research BV, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerard H Koppelman
- GRIAC research institute at the University Medical Center Groningen, Groningen, the Netherlands.,Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, and Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Sylvie Leroy
- Département de Pneumologie, Université Côte d'Azur and CHU Nice, FHU-OncoAge, Nice, France
| | | | - Ugis Sarkans
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,GRIAC research institute at the University Medical Center Groningen, Groningen, the Netherlands
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden
| | - Maarten van den Berge
- GRIAC research institute at the University Medical Center Groningen, Groningen, the Netherlands.,Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Peter Horváth
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | | | - Irene Papatheodorou
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Joachim Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,PRECISE Platform for Single Cell Genomics and Epigenomics, Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and the University of Bonn, Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Herbert B Schiller
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Pascal Barbry
- Université Côte d'Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, France
| | - Ilya Petoukhov
- A Beta World (former Principal at MIcompany), Amsterdam, the Netherlands
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Ian Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | | | - Fabian J Theis
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany.,Institute of Computational Biology, Helmholtz Center Munich (HMGU), Neuherberg, Germany
| | - Christos Samakovlis
- Science for Life Laboratory, Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Martijn C Nawijn
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands .,GRIAC research institute at the University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
230
|
Xu X, Liu X, Dong X, Qiu H, Yang Y, Liu L. Secretory Autophagosomes from Alveolar Macrophages Exacerbate Acute Respiratory Distress Syndrome by Releasing IL-1β. J Inflamm Res 2022; 15:127-140. [PMID: 35027836 PMCID: PMC8752069 DOI: 10.2147/jir.s344857] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Activated alveolar macrophages (AMs) secrete extracellular vesicles and particles to mediate the inflammatory response in the acute respiratory distress syndrome (ARDS) although the underlying mechanisms are poorly understood. This study investigated whether secretory autophagosomes (SAPs) from AMs contribute to the inflammation-mediated lung injury of ARDS. Methods We first isolated SAPs from cell culture supernatants of RAW264.7 cells and AMs and quantified Interleukin (IL)-1β levels in SAPs. Next, we employed a lipopolysaccharide (LPS)-induced ARDS model to investigate whether SAP-derived IL-1β could exacerbate lung injury. Finally, we used siRNA to knockdown Rab8a, both in vitro and in vivo, to investigate the effect of Rab8a on SAP secretion and lung injury in ARDS. Results We found that AMs play an important role in ARDS by releasing a novel type of proinflammatory vesicles called SAPs that could exacerbate lung injury. SAPs are characterized as double-membrane vesicles (diameter ~200 nm) with the expression of light chain 3 (LC3). IL-1β in SAPs is the key factor that contributes to the inflammation and lung injury in ARDS. We found that Rab8a is necessary for AMs to release SAPs with IL-1β, and Rab8a knockdown alleviated lung injury in ARDS. Conclusion This study showed the novel finding that SAPs released from AMs play a vital role in ARDS by promoting an inflammatory response and the underlying mechanism was associated with IL-1β secretion.
Collapse
Affiliation(s)
- Xinyi Xu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xu Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xuecheng Dong
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
231
|
Sun X, Perl AK, Li R, Bell SM, Sajti E, Kalinichenko VV, Kalin TV, Misra RS, Deshmukh H, Clair G, Kyle J, Crotty Alexander LE, Masso-Silva JA, Kitzmiller JA, Wikenheiser-Brokamp KA, Deutsch G, Guo M, Du Y, Morley MP, Valdez MJ, Yu HV, Jin K, Bardes EE, Zepp JA, Neithamer T, Basil MC, Zacharias WJ, Verheyden J, Young R, Bandyopadhyay G, Lin S, Ansong C, Adkins J, Salomonis N, Aronow BJ, Xu Y, Pryhuber G, Whitsett J, Morrisey EE. A census of the lung: CellCards from LungMAP. Dev Cell 2022; 57:112-145.e2. [PMID: 34936882 PMCID: PMC9202574 DOI: 10.1016/j.devcel.2021.11.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/19/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023]
Abstract
The human lung plays vital roles in respiration, host defense, and basic physiology. Recent technological advancements such as single-cell RNA sequencing and genetic lineage tracing have revealed novel cell types and enriched functional properties of existing cell types in lung. The time has come to take a new census. Initiated by members of the NHLBI-funded LungMAP Consortium and aided by experts in the lung biology community, we synthesized current data into a comprehensive and practical cellular census of the lung. Identities of cell types in the normal lung are captured in individual cell cards with delineation of function, markers, developmental lineages, heterogeneity, regenerative potential, disease links, and key experimental tools. This publication will serve as the starting point of a live, up-to-date guide for lung research at https://www.lungmap.net/cell-cards/. We hope that Lung CellCards will promote the community-wide effort to establish, maintain, and restore respiratory health.
Collapse
Affiliation(s)
- Xin Sun
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Anne-Karina Perl
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Rongbo Li
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sheila M Bell
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Eniko Sajti
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Vladimir V Kalinichenko
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Ravi S Misra
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hitesh Deshmukh
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jennifer Kyle
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Laura E Crotty Alexander
- Deparment of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jorge A Masso-Silva
- Deparment of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph A Kitzmiller
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Gail Deutsch
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA; Department of Laboratories, Seattle Children's Hospital, OC.8.720, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA
| | - Minzhe Guo
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Yina Du
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Michael P Morley
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Valdez
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Haoze V Yu
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kang Jin
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eric E Bardes
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jarod A Zepp
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Terren Neithamer
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria C Basil
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William J Zacharias
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Internal Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Jamie Verheyden
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Randee Young
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Gautam Bandyopadhyay
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sara Lin
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles Ansong
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Joshua Adkins
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bruce J Aronow
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yan Xu
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Gloria Pryhuber
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeff Whitsett
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Edward E Morrisey
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
232
|
Brasier AR, Qiao D, Zhao Y. The Hexosamine Biosynthetic Pathway Links Innate Inflammation With Epithelial-Mesenchymal Plasticity in Airway Remodeling. Front Pharmacol 2021; 12:808735. [PMID: 35002741 PMCID: PMC8727908 DOI: 10.3389/fphar.2021.808735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/07/2021] [Indexed: 01/15/2023] Open
Abstract
Disruption of the lower airway epithelial barrier plays a major role in the initiation and progression of chronic lung disease. Here, repetitive environmental insults produced by viral and allergens triggers metabolic adaptations, epithelial-mesenchymal plasticity (EMP) and airway remodeling. Epithelial plasticity disrupts epithelial barrier function, stimulates release of fibroblastic growth factors, and remodels the extracellular matrix (ECM). This review will focus on recent work demonstrating how the hexosamine biosynthetic pathway (HBP) links innate inflammation to airway remodeling. The HBP is a core metabolic pathway of the unfolded protein response (UPR) responsible for protein N-glycosylation, relief of proteotoxic stress and secretion of ECM modifiers. We will overview findings that the IκB kinase (IKK)-NFκB pathway directly activates expression of the SNAI-ZEB1 mesenchymal transcription factor module through regulation of the Bromodomain Containing Protein 4 (BRD4) chromatin modifier. BRD4 mediates transcriptional elongation of SNAI1-ZEB as well as enhancing chromatin accessibility and transcription of fibroblast growth factors, ECM and matrix metalloproteinases (MMPs). In addition, recent exciting findings that IKK cross-talks with the UPR by controlling phosphorylation and nuclear translocation of the autoregulatory XBP1s transcription factor are presented. HBP is required for N glycosylation and secretion of ECM components that play an important signaling role in airway remodeling. This interplay between innate inflammation, metabolic reprogramming and lower airway plasticity expands a population of subepithelial myofibroblasts by secreting fibroblastic growth factors, producing changes in ECM tensile strength, and fibroblast stimulation by MMP binding. Through these actions on myofibroblasts, EMP in lower airway cells produces expansion of the lamina reticularis and promotes airway remodeling. In this manner, metabolic reprogramming by the HBP mediates environmental insult-induced inflammation with remodeling in chronic airway diseases.
Collapse
Affiliation(s)
- Allan R. Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| | - Dianhua Qiao
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch Galveston, Galveston, TX, United States
| |
Collapse
|
233
|
Costa-Martins AG, Mane K, Lindsey BB, Ogava RL, Castro Í, Jagne YJ, Sallah HJ, Armitage EP, Jarju S, Ahadzie B, Ellis-Watson R, Tregoning JS, Bingle CD, Bogaert D, Clarke E, Ordovas-Montanes J, Jeffries D, Kampmann B, Nakaya HI, de Silva TI. Prior upregulation of interferon pathways in the nasopharynx impacts viral shedding following live attenuated influenza vaccine challenge in children. Cell Rep Med 2021; 2:100465. [PMID: 35028607 PMCID: PMC8714852 DOI: 10.1016/j.xcrm.2021.100465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/28/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
In children lacking influenza-specific adaptive immunity, upper respiratory tract innate immune responses may influence viral replication and disease outcome. We use trivalent live attenuated influenza vaccine (LAIV) as a surrogate challenge model in children aged 24-59 months to identify pre-infection mucosal transcriptomic signatures associated with subsequent viral shedding. Upregulation of interferon signaling pathways prior to LAIV is significantly associated with lower strain-specific viral loads (VLs) at days 2 and 7. Several interferon-stimulated genes are differentially expressed in children with pre-LAIV asymptomatic respiratory viral infections and negatively correlated with LAIV VLs. Upregulation of genes enriched in macrophages, neutrophils, and eosinophils is associated with lower VLs and found more commonly in children with asymptomatic viral infections. Variability in pre-infection mucosal interferon gene expression in children may impact the course of subsequent influenza infections. This variability may be due to frequent respiratory viral infections, demonstrating the potential importance of mucosal virus-virus interactions in children.
Collapse
Affiliation(s)
- André G. Costa-Martins
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Scientific Platform Pasteur, University of São Paulo, São Paulo, Brazil
| | - Karim Mane
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
| | - Benjamin B. Lindsey
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield S10 2RX, UK
| | - Rodrigo L.T. Ogava
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ícaro Castro
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ya Jankey Jagne
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
| | - Hadijatou J. Sallah
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
| | - Edwin P. Armitage
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
| | - Sheikh Jarju
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
| | - Bankole Ahadzie
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
| | - Rebecca Ellis-Watson
- The University of Edinburgh/MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - John S. Tregoning
- Department of Infectious Disease, Imperial College London, London W2 1NY, UK
| | - Colin D. Bingle
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield S10 2RX, UK
| | - Debby Bogaert
- The University of Edinburgh/MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Ed Clarke
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - David Jeffries
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
| | - Beate Kampmann
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
- The Vaccine Centre, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Scientific Platform Pasteur, University of São Paulo, São Paulo, Brazil
- Corresponding author
| | - Thushan I. de Silva
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield S10 2RX, UK
- Corresponding author
| |
Collapse
|
234
|
Skibba ME, Xu X, Weiss K, Huisken J, Brasier AR. Role of Secretoglobin + (club cell) NFκB/RelA-TGFβ signaling in aero-allergen-induced epithelial plasticity and subepithelial myofibroblast transdifferentiation. Respir Res 2021; 22:315. [PMID: 34930252 PMCID: PMC8690490 DOI: 10.1186/s12931-021-01910-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023] Open
Abstract
Repetitive aeroallergen exposure is linked to sensitization and airway remodeling through incompletely understood mechanisms. In this study, we examine the dynamic mucosal response to cat dander extract (CDE), a ubiquitous aero-allergen linked to remodeling, sensitization and asthma. We find that daily exposure of CDE in naïve C57BL/6 mice activates innate neutrophilic inflammation followed by transition to a lymphocytic response associated with waves of mucosal transforming growth factor (TGF) isoform expression. In parallel, enhanced bronchiolar Smad3 expression and accumulation of phospho-SMAD3 was observed, indicating paracrine activation of canonical TGFβR signaling. CDE exposure similarly triggered epithelial cell plasticity, associated with expression of mesenchymal regulatory factors (Snai1 and Zeb1), reduction of epithelial markers (Cdh1) and activation of the NFκB/RelA transcriptional activator. To determine whether NFκB functionally mediates CDE-induced growth factor response, mice were stimulated with CDE in the absence or presence of a selective IKK inhibitor. IKK inhibition substantially reduced the level of CDE-induced TGFβ1 expression, pSMAD3 accumulation, Snai1 and Zeb1 expression. Activation of epithelial plasticity was demonstrated by flow cytometry in whole lung homogenates, where CDE induces accumulation of SMA+Epcam+ population. Club cells are important sources of cytokine and growth factor production. To determine whether Club cell innate signaling through NFκB/RelA mediated CDE induced TGFβ signaling, we depleted RelA in Secretoglobin (Scgb1a1)-expressing bronchiolar cells. Immunofluorescence-optical clearing light sheet microscopy showed a punctate distribution of Scgb1a1 progenitors throughout the small airway. We found that RelA depletion in Secretoglobin+ cells results in inhibition of the mucosal TGFβ response, blockade of EMT and reduced subepithelial myofibroblast expansion. We conclude that the Secretoglobin—derived bronchiolar cell is central to coordinating the innate response required for mucosal TGFβ1 response, EMT and myofibroblast expansion. These data have important mechanistic implications for how aero-allergens trigger mucosal injury response and remodeling in the small airway.
Collapse
Affiliation(s)
- Melissa E Skibba
- School of Medicine and Public Health, University of Wisconsin Madison, 4248 Health Sciences Learning Center, Madison, WI, 53705, USA
| | - Xiaofang Xu
- School of Medicine and Public Health, University of Wisconsin Madison, 4248 Health Sciences Learning Center, Madison, WI, 53705, USA
| | - Kurt Weiss
- Morgridge Institute for Research, Madison, WI, USA
| | - Jan Huisken
- Morgridge Institute for Research, Madison, WI, USA.,Dept. of Integrative Biology, University of Wisconsin, Madison, WI, USA
| | - Allan R Brasier
- School of Medicine and Public Health, University of Wisconsin Madison, 4248 Health Sciences Learning Center, Madison, WI, 53705, USA. .,Institute for Clinical and Translational Research, Madison, WI, USA.
| |
Collapse
|
235
|
Bukowy-Bieryłło Z, Daca-Roszak P, Jurczak J, Przystałowska-Macioła H, Jaksik R, Witt M, Ziętkiewicz E. In vitro differentiation of ciliated cells in ALI-cultured human airway epithelium - The framework for functional studies on airway differentiation in ciliopathies. Eur J Cell Biol 2021; 101:151189. [PMID: 34896770 DOI: 10.1016/j.ejcb.2021.151189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/22/2022] Open
Abstract
Primary cultures of the human airway epithelium (AE) cells are an indispensable tool in studies of pathophysiology of genetic and environmental pulmonary diseases, including cystic fibrosis (CF), primary ciliary dyskinesia (PCD) and chronic obstructive pulmonary disease (COPD). Air-liquid interface (ALI) culture is the best method to follow the differentiation of ciliated cells, whose dysfunction forms the basis of PCD. Here, we used custom-designed Taqman Low Density Array (TLDA), qRT-PCR-based assay, to analyze expression of 14 AE genes in cells from healthy donors, cultured in ALI settings using Pneumacult medium, with the focus on genes involved in cilia differentiation and in PCD pathogenesis. The results of TLDA assay were compared with the bulk RNAseq analysis, and placed in the cellular context using immunofluorescent staining (IF) of ALI cultured cells. Expression analysis revealed culture time-related upregulation of the majority of cilia-related genes, followed by the appearance of respective protein signals visualized by IF. Strong correlation of TLDA with RNAseq results indicated that TLDA assay is a reliable and scalable approach to analyze expression of selected genes specific for different AE cell types. Characterization of temporal and inter-donor changes in the expression of these genes, performed in healthy donors and in well-defined ALI/Pnemacult culture conditions, provides a useful reference relevant for a broad spectrum of functional studies where the in vitro AE differentiation is in focus.
Collapse
Affiliation(s)
| | | | - Joanna Jurczak
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Roman Jaksik
- Systems Biology Group, Faculty of Automatic Control, Electronics and Informatics, Silesian University of Technology, Gliwice, Poland
| | - Michał Witt
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Ewa Ziętkiewicz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
236
|
Gao L, Wang K, Cheng M, Zeng Z, Wang T, Wen F, Chen J. Circadian clock dysfunction of epithelial cells in pulmonary diseases. Int J Biochem Cell Biol 2021; 141:106110. [PMID: 34699979 DOI: 10.1016/j.biocel.2021.106110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023]
Abstract
Highly-differentiated pulmonary epithelial cells are essential for maintaining lung homeostasis by exerting various physiological functions, which are regulated by circadian clock consisted of an autoregulatory feedback loop of clock genes, including Brain-Muscle Aryl-hydrocarbon Receptor Nuclear Translocator-Like 1 (BMAL1) and Nuclear Heme Receptor Reverse Erythroblastosis Virus α (REV-ERB-α). The circadian clock dysfunction of epithelial cells has been increasingly associated with the pulmonary diseases: BMAL1 and REV-ERB-α regulates inflammatory response of club cells induced by lipopolysaccharide and cigarette smoke (CS) respectively; the clock disfunction in alveolar epithelial type2 cells (AEC-II) has been implicated in CS-induced airway inflammation and early-life hyperoxia-related susceptibility to influenza infection; the ciliary beat frequency of ciliated cells also shows circadian rhythms. Here, we review the current knowledge on the circadian regulation of different epithelial-cell subtypes, attempting to provide insights into how clock dysfunction contributes to pulmonary diseases, and explore possible pharmacological therapies and future directions for fundamental studies.
Collapse
Affiliation(s)
- Lijuan Gao
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ke Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengxin Cheng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zijian Zeng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jun Chen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
237
|
Gao KM, Derr AG, Guo Z, Nündel K, Marshak-Rothstein A, Finberg RW, Wang JP. Human nasal wash RNA-Seq reveals distinct cell-specific innate immune responses in influenza versus SARS-CoV-2. JCI Insight 2021; 6:152288. [PMID: 34618691 PMCID: PMC8663782 DOI: 10.1172/jci.insight.152288] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Influenza A virus (IAV) and SARS-CoV-2 are pandemic viruses causing millions of deaths, yet their clinical manifestations are distinctly different. METHODS With the hypothesis that upper airway immune and epithelial cell responses are also distinct, we performed single-cell RNA sequencing (scRNA-Seq) on nasal wash cells freshly collected from adults with either acute COVID-19 or influenza or from healthy controls. We focused on major cell types and subtypes in a subset of donor samples. Results Nasal wash cells were enriched for macrophages and neutrophils for both individuals with influenza and those with COVID-19 compared with healthy controls. Hillock-like epithelial cells, M2-like macrophages, and age-dependent B cells were enriched in COVID-19 samples. A global decrease in IFN-associated transcripts in neutrophils, macrophages, and epithelial cells was apparent in COVID-19 samples compared with influenza samples. The innate immune response to SARS-CoV-2 appears to be maintained in macrophages, despite evidence for limited epithelial cell immune sensing. Cell-to-cell interaction analyses revealed a decrease in epithelial cell interactions in COVID-19 and highlighted differences in macrophage-macrophage interactions for COVID-19 and influenza. Conclusions Our study demonstrates that scRNA-Seq can define host and viral transcriptional activity at the site of infection and reveal distinct local epithelial and immune cell responses for COVID-19 and influenza that may contribute to their divergent disease courses. Funding Massachusetts Consortium on Pathogen Readiness, the Mathers Foundation, and the Department of Defense (W81XWH2110029) “COVID-19 Expansion for AIRe Program.”
Collapse
Affiliation(s)
| | - Alan G Derr
- Department of Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
238
|
A new platform for high-throughput therapy testing on iPSC-derived lung progenitor cells from cystic fibrosis patients. Stem Cell Reports 2021; 16:2825-2837. [PMID: 34678210 PMCID: PMC8581165 DOI: 10.1016/j.stemcr.2021.09.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
For those people with cystic fibrosis carrying rare CFTR mutations not responding to currently available therapies, there is an unmet need for relevant tissue models for therapy development. Here, we describe a new testing platform that employs patient-specific induced pluripotent stem cells (iPSCs) differentiated to lung progenitor cells that can be studied using a dynamic, high-throughput fluorescence-based assay of CFTR channel activity. Our proof-of-concept studies support the potential use of this platform, together with a Canadian bioresource that contains iPSC lines and matched nasal cultures from people with rare mutations, to advance patient-oriented therapy development. Interventions identified in the high-throughput, stem cell-based model and validated in primary nasal cultures from the same person have the potential to be advanced as therapies. A Canadian resource (CFIT) has CF donor-matched iPSCs and nasal epithelial cells Lung progenitor cells (LPCs) differentiated from iPSCs express CFTR LPCs from people with rare CFTR mutations enable high-throughput therapy testing Matching nasal cultures can validate patient-specific drug responses in LPCs
Collapse
|
239
|
Börner K, Teichmann SA, Quardokus EM, Gee JC, Browne K, Osumi-Sutherland D, Herr BW, Bueckle A, Paul H, Haniffa M, Jardine L, Bernard A, Ding SL, Miller JA, Lin S, Halushka MK, Boppana A, Longacre TA, Hickey J, Lin Y, Valerius MT, He Y, Pryhuber G, Sun X, Jorgensen M, Radtke AJ, Wasserfall C, Ginty F, Ho J, Sunshine J, Beuschel RT, Brusko M, Lee S, Malhotra R, Jain S, Weber G. Anatomical structures, cell types and biomarkers of the Human Reference Atlas. Nat Cell Biol 2021; 23:1117-1128. [PMID: 34750582 PMCID: PMC10079270 DOI: 10.1038/s41556-021-00788-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 09/29/2021] [Indexed: 02/05/2023]
Abstract
The Human Reference Atlas (HRA) aims to map all of the cells of the human body to advance biomedical research and clinical practice. This Perspective presents collaborative work by members of 16 international consortia on two essential and interlinked parts of the HRA: (1) three-dimensional representations of anatomy that are linked to (2) tables that name and interlink major anatomical structures, cell types, plus biomarkers (ASCT+B). We discuss four examples that demonstrate the practical utility of the HRA.
Collapse
Affiliation(s)
- Katy Börner
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ellen M Quardokus
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - James C Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen Browne
- Department of Health and Human Services, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Osumi-Sutherland
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK
| | - Bruce W Herr
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Andreas Bueckle
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Hrishikesh Paul
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | - Shin Lin
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Avinash Boppana
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Teri A Longacre
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - John Hickey
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yiing Lin
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA
| | - M Todd Valerius
- Harvard Institute of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yongqun He
- Department of Microbiology and Immunology, and Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gloria Pryhuber
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Xin Sun
- Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Marda Jorgensen
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Andrea J Radtke
- Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Clive Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Fiona Ginty
- Biology and Applied Physics, General Electric Research, Niskayuna, NY, USA
| | - Jonhan Ho
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joel Sunshine
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rebecca T Beuschel
- Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Maigan Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Sujin Lee
- Division of Vascular Surgery and Endovascular Therapy, Massachusetts General Hospital, Boston, MA, USA
| | - Rajeev Malhotra
- Harvard Institute of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Vascular Surgery and Endovascular Therapy, Massachusetts General Hospital, Boston, MA, USA
| | - Sanjay Jain
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Griffin Weber
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
240
|
Lokken-Toyli KL, de Steenhuijsen Piters WAA, Zangari T, Martel R, Kuipers K, Shopsin B, Loomis C, Bogaert D, Weiser JN. Decreased production of epithelial-derived antimicrobial molecules at mucosal barriers during early life. Mucosal Immunol 2021; 14:1358-1368. [PMID: 34465896 PMCID: PMC8542637 DOI: 10.1038/s41385-021-00438-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/12/2021] [Accepted: 08/01/2021] [Indexed: 02/04/2023]
Abstract
Young age is a risk factor for respiratory and gastrointestinal infections. Here, we compared infant and adult mice to identify age-dependent mechanisms that drive susceptibility to mucosal infections during early life. Transcriptional profiling of the upper respiratory tract (URT) epithelium revealed significant dampening of early life innate mucosal defenses. Epithelial-mediated production of the most abundant antimicrobial molecules, lysozyme, and lactoferrin, and the polymeric immunoglobulin receptor (pIgR), responsible for IgA transcytosis, was expressed in an age-dependent manner. This was attributed to delayed functional development of serous cells. Absence of epithelial-derived lysozyme and the pIgR was also observed in the small intestine during early life. Infection of infant mice with lysozyme-susceptible strains of Streptococcus pneumoniae or Staphylococcus aureus in the URT or gastrointestinal tract, respectively, demonstrated an age-dependent regulation of lysozyme enzymatic activity. Lysozyme derived from maternal milk partially compensated for the reduction in URT lysozyme activity of infant mice. Similar to our observations in mice, expression of lysozyme and the pIgR in nasopharyngeal samples collected from healthy human infants during the first year of life followed an age-dependent regulation. Thus, a global pattern of reduced antimicrobial and IgA-mediated defenses may contribute to increased susceptibility of young children to mucosal infections.
Collapse
Affiliation(s)
- Kristen L. Lokken-Toyli
- Department of Microbiology, New York University School of Medicine, New York, New York USA.,for correspondence: Kristen L. Lokken-Toyli, PhD, New York University School of Medicine, Alexandria Center for Life Sciences - West Tower, 430 East 29th Street, Room 560, New York, NY 10016, Tel: (212) 263-1080, Fax: (646) 501-4645,
| | - Wouter A. A. de Steenhuijsen Piters
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital/University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
| | - Tonia Zangari
- Department of Microbiology, New York University School of Medicine, New York, New York USA
| | - Rachel Martel
- Department of Microbiology, New York University School of Medicine, New York, New York USA
| | - Kirsten Kuipers
- Department of Microbiology, New York University School of Medicine, New York, New York USA
| | - Bo Shopsin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; Division of Infectious Diseases, Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Cynthia Loomis
- Department of Pathology, New York University School of Medicine, New York, New York USA
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital/University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York USA
| |
Collapse
|
241
|
Fransen LFH, Leonard MO. Small Airway Susceptibility to Chemical and Particle Injury. Respiration 2021; 101:321-333. [PMID: 34649249 DOI: 10.1159/000519344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
Small airways (SA) in humans are commonly defined as those conducting airways <2 mm in diameter. They are susceptible to particle- and chemical-induced injury and play a major role in the development of airway disease such as COPD and asthma. Susceptibility to injury can be attributed in part to structural features including airflow dynamics and tissue architecture, but recent evidence may indicate a more prominent role for cellular composition in directing toxicological responses. Animal studies support the hypothesis that inherent cellular differences across the tracheobronchial tree, including metabolic CYP450 expression in the distal conducting airways, can influence SA susceptibility to injury. Currently, there is insufficient information in humans to make similar conclusions, prompting further necessary work in this area. An understanding of why the SA are more susceptible to certain chemical and particle exposures than other airway regions is fundamental to our ability to identify hazardous materials, their properties, and accompanying exposure scenarios that compromise lung function. It is also important for the ability to develop appropriate models for toxicity testing. Moreover, it is central to our understanding of SA disease aetiology and how interventional strategies for treatment may be developed. In this review, we will document the structural and cellular airway regional differences that are likely to influence airway susceptibility to injury, including the role of secretory club cells. We will also describe recent advances in single-cell sequencing of human airways, which have provided unprecedented details of cell phenotype, likely to impact airway chemical and particle injury.
Collapse
Affiliation(s)
| | - Martin Oliver Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, United Kingdom
| |
Collapse
|
242
|
Boutros J, Benzaquen J, Marquette CH, Ilié M, Labaky M, Benchetrit D, Lavrut T, Leroy S, Chemla R, Carles M, Tanga V, Maniel C, Bordone O, Allégra M, Lespinet V, Fayada J, Griffonnet J, Hofman V, Hofman P. Salivary detection of COVID-19: clinical performance of oral sponge sampling for SARS-CoV-2 testing. ERJ Open Res 2021; 7:00396-2021. [PMID: 34877351 PMCID: PMC8474486 DOI: 10.1183/23120541.00396-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/17/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The current diagnostic standard for coronavirus disease 2019 (COVID-19) is reverse transcriptase-polymerase chain reaction (RT-PCR) testing with nasopharyngeal (NP) swabs. The invasiveness and need for trained personnel make the NP technique unsuited for repeated community-based mass screening. We developed a technique to collect saliva in a simple and easy way with the sponges that are usually used for tamponade of epistaxis. This study was carried out to validate the clinical performance of oral sponge (OS) sampling for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing. METHODS Over a period of 22 weeks, we collected prospectively 409 paired NP and OS samples from consecutive subjects presenting to a public community-based free screening centre. Subjects were referred by their attending physician because of recent COVID-19 symptoms (n = 147) or by the contact tracing staff of the French public health insurance because they were considered as close contacts of a laboratory-confirmed COVID-19 case (n = 262). RESULTS In symptomatic subjects, RT-PCR SARS-CoV-2 testing with OS showed a 96.5% (95% CI: 89.6-94.8) concordance with NP testing, and a 93.2% (95% CI: 89.1-97.3) sensitivity when using the IdyllaTM platform and a sensitivity of 76.3% (95% CI: 69.4-83.2) on the Synlab Barla laboratory platform. In close contacts the NP-OS concordance (93.8%, 95% CI: 90.9-96.7) and OS sensitivity (71.9%, 95% CI: 66.5-77.3) were slightly lower. CONCLUSION These results strongly suggest that OS testing is a straightforward, low-cost and high-throughput sampling method that can be used for frequent RT-PCR testing of COVID-19 patients and mass screening of populations.
Collapse
Affiliation(s)
- Jacques Boutros
- Dept of Pulmonary Medicine and Thoracic Oncology, Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Nice, France
| | - Jonathan Benzaquen
- Dept of Pulmonary Medicine and Thoracic Oncology, Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Nice, France
- Université Côte d'Azur, CNRS, INSERM, Institute of Research on Cancer and Aging, Nice, France
| | - Charles Hugo Marquette
- Dept of Pulmonary Medicine and Thoracic Oncology, Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Nice, France
- Université Côte d'Azur, CNRS, INSERM, Institute of Research on Cancer and Aging, Nice, France
| | - Marius Ilié
- Université Côte d'Azur, CNRS, INSERM, Institute of Research on Cancer and Aging, Nice, France
- Laboratory of Clinical and Experimental Pathology (LPCE), Université Côte d'Azur, FHU OncoAge, Centre Hospitalier Universitaire de Nice, Biobank (BB-0033-00025), Nice, France
| | | | | | - Thibaut Lavrut
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Laboratoire de Virologie, CHU de Nice, Nice, France
| | - Sylvie Leroy
- Dept of Pulmonary Medicine and Thoracic Oncology, Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Nice, France
- CNRS UMR 7275 – Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Nice, France
| | | | - Michel Carles
- Dept of Infectious Diseases, Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Virginie Tanga
- Laboratory of Clinical and Experimental Pathology (LPCE), Université Côte d'Azur, FHU OncoAge, Centre Hospitalier Universitaire de Nice, Biobank (BB-0033-00025), Nice, France
| | - Charlotte Maniel
- Dept of Pulmonary Medicine and Thoracic Oncology, Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Nice, France
| | - Olivier Bordone
- Laboratory of Clinical and Experimental Pathology (LPCE), Université Côte d'Azur, FHU OncoAge, Centre Hospitalier Universitaire de Nice, Biobank (BB-0033-00025), Nice, France
| | - Maryline Allégra
- Laboratory of Clinical and Experimental Pathology (LPCE), Université Côte d'Azur, FHU OncoAge, Centre Hospitalier Universitaire de Nice, Biobank (BB-0033-00025), Nice, France
| | - Virginie Lespinet
- Laboratory of Clinical and Experimental Pathology (LPCE), Université Côte d'Azur, FHU OncoAge, Centre Hospitalier Universitaire de Nice, Biobank (BB-0033-00025), Nice, France
| | - Julien Fayada
- Laboratory of Clinical and Experimental Pathology (LPCE), Université Côte d'Azur, FHU OncoAge, Centre Hospitalier Universitaire de Nice, Biobank (BB-0033-00025), Nice, France
| | - Jennifer Griffonnet
- Dept of Pulmonary Medicine and Thoracic Oncology, Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Nice, France
| | - Véronique Hofman
- Université Côte d'Azur, CNRS, INSERM, Institute of Research on Cancer and Aging, Nice, France
- Laboratory of Clinical and Experimental Pathology (LPCE), Université Côte d'Azur, FHU OncoAge, Centre Hospitalier Universitaire de Nice, Biobank (BB-0033-00025), Nice, France
| | - Paul Hofman
- Université Côte d'Azur, CNRS, INSERM, Institute of Research on Cancer and Aging, Nice, France
- Laboratory of Clinical and Experimental Pathology (LPCE), Université Côte d'Azur, FHU OncoAge, Centre Hospitalier Universitaire de Nice, Biobank (BB-0033-00025), Nice, France
| |
Collapse
|
243
|
Reed ER, Monti S. Multi-resolution characterization of molecular taxonomies in bulk and single-cell transcriptomics data. Nucleic Acids Res 2021; 49:e98. [PMID: 34226941 PMCID: PMC8464061 DOI: 10.1093/nar/gkab552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
As high-throughput genomics assays become more efficient and cost effective, their utilization has become standard in large-scale biomedical projects. These studies are often explorative, in that relationships between samples are not explicitly defined a priori, but rather emerge from data-driven discovery and annotation of molecular subtypes, thereby informing hypotheses and independent evaluation. Here, we present K2Taxonomer, a novel unsupervised recursive partitioning algorithm and associated R package that utilize ensemble learning to identify robust subgroups in a 'taxonomy-like' structure. K2Taxonomer was devised to accommodate different data paradigms, and is suitable for the analysis of both bulk and single-cell transcriptomics, and other '-omics', data. For each of these data types, we demonstrate the power of K2Taxonomer to discover known relationships in both simulated and human tissue data. We conclude with a practical application on breast cancer tumor infiltrating lymphocyte (TIL) single-cell profiles, in which we identified co-expression of translational machinery genes as a dominant transcriptional program shared by T cells subtypes, associated with better prognosis in breast cancer tissue bulk expression data.
Collapse
Affiliation(s)
- Eric R Reed
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118, USA
- Bioinformatics Program, College of Engineering, Boston University, Boston, MA 02118, USA
| | - Stefano Monti
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118, USA
- Bioinformatics Program, College of Engineering, Boston University, Boston, MA 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| |
Collapse
|
244
|
Nassir N, Tambi R, Bankapur A, Al Heialy S, Karuvantevida N, Khansaheb HH, Zehra B, Begum G, Hameid RA, Ahmed A, Deesi Z, Alkhajeh A, Uddin KF, Akter H, Safizadeh Shabestari SA, Almidani O, Islam A, Gaudet M, Kandasamy RK, Loney T, Tayoun AA, Nowotny N, Woodbury-Smith M, Rahman P, Kuebler WM, Yaseen Hachim M, Casanova JL, Berdiev BK, Alsheikh-Ali A, Uddin M. Single-cell transcriptome identifies FCGR3B upregulated subtype of alveolar macrophages in patients with critical COVID-19. iScience 2021; 24:103030. [PMID: 34458692 PMCID: PMC8384759 DOI: 10.1016/j.isci.2021.103030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/16/2021] [Accepted: 08/20/2021] [Indexed: 01/08/2023] Open
Abstract
Understanding host cell heterogeneity is critical for unraveling disease mechanism. Utilizing large-scale single-cell transcriptomics, we analyzed multiple tissue specimens from patients with life-threatening COVID-19 pneumonia, compared with healthy controls. We identified a subtype of monocyte-derived alveolar macrophages (MoAMs) where genes associated with severe COVID-19 comorbidities are significantly upregulated in bronchoalveolar lavage fluid of critical cases. FCGR3B consistently demarcated MoAM subset in different samples from severe COVID-19 cohorts and in CCL3L1-upregulated cells from nasopharyngeal swabs. In silico findings were validated by upregulation of FCGR3B in nasopharyngeal swabs of severe ICU COVID-19 cases, particularly in older patients and those with comorbidities. Additional lines of evidence from transcriptomic data and in vivo of severe COVID-19 cases suggest that FCGR3B may identify a specific subtype of MoAM in patients with severe COVID-19 that may present a novel biomarker for screening and prognosis, as well as a potential therapeutic target. Association of MoAM subtype with severe COVID-19 cases presented with comorbidities Upregulated FCGR3B in CCL3L1 positive MoAM cells in severe COVID-19 cases Upregulated FCGR3B within MoAM subtype as a potential marker for COVID-19 severity
Collapse
Affiliation(s)
- Nasna Nassir
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Richa Tambi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Asma Bankapur
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Noushad Karuvantevida
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Hamda Hassan Khansaheb
- Dubai Health Authority, Microbiology and Infection Control Unit, Pathology and Genetics Department, Latifa Women and Children Hospital, Dubai, UAE
| | - Binte Zehra
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Ghausia Begum
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Reem Abdel Hameid
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Awab Ahmed
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Zulfa Deesi
- Dubai Health Authority, Microbiology and Infection Control Unit, Pathology and Genetics Department, Latifa Women and Children Hospital, Dubai, UAE
| | | | - K.M. Furkan Uddin
- Genetics and Genomic Medicine Centre, NeuroGen Children’s Healthcare, Dhaka, Bangladesh
| | - Hosneara Akter
- Genetics and Genomic Medicine Centre, NeuroGen Children’s Healthcare, Dhaka, Bangladesh
| | | | - Omar Almidani
- Nuffield Department of Surgical Science, University of Oxford, Oxford, UK
| | - Amirul Islam
- Genetics and Genomic Medicine Centre, NeuroGen Children’s Healthcare, Dhaka, Bangladesh
- Cellular Intelligence (Ci) Lab, GenomeArc Inc., Toronto, ON, Canada
| | - Mellissa Gaudet
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | | | - Tom Loney
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Ahmad Abou Tayoun
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
- Al Jalila Genomics Center, Al Jalila Children’s Hospital, Dubai, UAE
| | - Norbert Nowotny
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Proton Rahman
- Department of Rheumatology, Memorial University of Newfoundland, St Johns, NL, Canada
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin Germany
| | - Mahmood Yaseen Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Bakhrom K. Berdiev
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
- Dubai Health Authority, Dubai, UAE
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
- Cellular Intelligence (Ci) Lab, GenomeArc Inc., Toronto, ON, Canada
- Corresponding author
| |
Collapse
|
245
|
Smoking shifts human small airway epithelium club cells toward a lesser differentiated population. NPJ Genom Med 2021; 6:73. [PMID: 34497273 PMCID: PMC8426481 DOI: 10.1038/s41525-021-00237-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
The club cell, a small airway epithelial (SAE) cell, plays a central role in human lung host defense. We hypothesized that subpopulations of club cells with distinct functions may exist. The SAE of healthy nonsmokers and healthy cigarette smokers were evaluated by single-cell RNA sequencing, and unsupervised clustering revealed subpopulations of SCGCB1A1+KRT5loMUC5AC- club cells. Club cell heterogeneity was supported by evaluations of SAE tissue sections, brushed SAE cells, and in vitro air-liquid interface cultures. Three subpopulations included: (1) progenitor; (2) proliferating; and (3) effector club cells. The progenitor club cell population expressed high levels of mitochondrial, ribosomal proteins, and KRT5 relative to other club cell populations and included a differentiation branch point leading to mucous cell production. The small proliferating population expressed high levels of cyclins and proliferation markers. The effector club cell cluster expressed genes related to host defense, xenobiotic metabolism, and barrier functions associated with club cell function. Comparison of smokers vs. nonsmokers demonstrated that smoking limited the extent of differentiation of all three subclusters and altered SAM pointed domain-containing Ets transcription factor (SPDEF)-regulated transcription in the effector cell population leading to a change in the location of the branch point for mucous cell production, a potential explanation for the concomitant reduction in effector club cells and increase in mucous cells in smokers. These observations provide insights into both the makeup of human SAE club cell subpopulations and the smoking-induced changes in club cell biology.
Collapse
|
246
|
Ziegler CGK, Miao VN, Owings AH, Navia AW, Tang Y, Bromley JD, Lotfy P, Sloan M, Laird H, Williams HB, George M, Drake RS, Christian T, Parker A, Sindel CB, Burger MW, Pride Y, Hasan M, Abraham GE, Senitko M, Robinson TO, Shalek AK, Glover SC, Horwitz BH, Ordovas-Montanes J. Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19. Cell 2021; 184:4713-4733.e22. [PMID: 34352228 PMCID: PMC8299217 DOI: 10.1016/j.cell.2021.07.023] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/24/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
SARS-CoV-2 infection can cause severe respiratory COVID-19. However, many individuals present with isolated upper respiratory symptoms, suggesting potential to constrain viral pathology to the nasopharynx. Which cells SARS-CoV-2 primarily targets and how infection influences the respiratory epithelium remains incompletely understood. We performed scRNA-seq on nasopharyngeal swabs from 58 healthy and COVID-19 participants. During COVID-19, we observe expansion of secretory, loss of ciliated, and epithelial cell repopulation via deuterosomal cell expansion. In mild and moderate COVID-19, epithelial cells express anti-viral/interferon-responsive genes, while cells in severe COVID-19 have muted anti-viral responses despite equivalent viral loads. SARS-CoV-2 RNA+ host-target cells are highly heterogenous, including developing ciliated, interferon-responsive ciliated, AZGP1high goblet, and KRT13+ "hillock"-like cells, and we identify genes associated with susceptibility, resistance, or infection response. Our study defines protective and detrimental responses to SARS-CoV-2, the direct viral targets of infection, and suggests that failed nasal epithelial anti-viral immunity may underlie and precede severe COVID-19.
Collapse
Affiliation(s)
- Carly G K Ziegler
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vincent N Miao
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna H Owings
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Andrew W Navia
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ying Tang
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA
| | - Joshua D Bromley
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Microbiology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter Lotfy
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA
| | - Meredith Sloan
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Hannah Laird
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Haley B Williams
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Micayla George
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Riley S Drake
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Taylor Christian
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Adam Parker
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Campbell B Sindel
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Molly W Burger
- Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yilianys Pride
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Mohammad Hasan
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - George E Abraham
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Michal Senitko
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Tanya O Robinson
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Alex K Shalek
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Sarah C Glover
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Bruce H Horwitz
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Division of Emergency Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA.
| | - Jose Ordovas-Montanes
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
247
|
Chen N, Wu H, Deng Z, Liao Z, Feng S, Luo Z, Chu Y, Qiu G, Li X, Jin Y, Rong S, Wang F, Gan L, Chen R, Zhao L. [An optimized protocol of meniscus cell extraction for single-cell RNA sequencing]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1310-1318. [PMID: 34658344 DOI: 10.12122/j.issn.1673-4254.2021.09.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To optimize the protocol of meniscus cell extraction to enhance the efficiency of cell suspension preparation and maintain a high cell viability for single-cell RNA sequencing. METHODS We compared the efficiency of the routine cell extraction methods (short-time digestion and long-time digestion) and the optimized protocol for obtaining meniscus cell suspensions by evaluating the cell number obtained and the cell viability. Single-cell RNA sequencing datasets were analyzed to evaluate the stability of the cell suspension prepared using the optimized protocol. The reliability of the optimized protocol was assessed by comparing the single-cell RNA sequencing dataset obtained by the optimized protocol with published single-cell RNA sequencing datasets of the meniscus. RESULTS The optimized protocol harvested a greater number of cells (over 1×105) than the routine protocols. The cell suspension prepared with the optimized protocol showed a cell viability higher than 80%, the highest among the 3 methods. Analysis of single-cell RNA sequencing datasets showed that the ratio of the mitochondrial genes was below 20% in over 80% of the cells. CD34+ cells, MCAM+ cells and COL1A1+ cells were identified in the datasets. Comparison with the publish datasets showed that the optimized protocol was capable of harvesting COL3A1+, COL1A1+, MYLK+, BMP2+, CD93+ and CDK1+ cells. CONCLUSION Single-cell suspension prepared from the meniscus can be stably obtained using the optimized protocol for single-cell RNA sequencing using the 10× Genomics platform.
Collapse
Affiliation(s)
- N Chen
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - H Wu
- Zhujiang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Z Deng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Z Liao
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - S Feng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Z Luo
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Y Chu
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - G Qiu
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - X Li
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Y Jin
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - S Rong
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - F Wang
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - L Gan
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - R Chen
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - L Zhao
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
248
|
Abstract
Remdesivir (RDV; GS-5734, Veklury), the first FDA-approved antiviral to treat COVID-19, is a single-diastereomer monophosphoramidate prodrug of an adenosine analogue. RDV is taken up in the target cells and metabolized in multiple steps to form the active nucleoside triphosphate (TP) (GS-443902), which, in turn, acts as a potent and selective inhibitor of multiple viral RNA polymerases. In this report, we profiled the key enzymes involved in the RDV metabolic pathway with multiple parallel approaches: (i) bioinformatic analysis of nucleoside/nucleotide metabolic enzyme mRNA expression using public human tissue and lung single-cell bulk mRNA sequence (RNA-seq) data sets, (ii) protein and mRNA quantification of enzymes in human lung tissue and primary lung cells, (iii) biochemical studies on the catalytic rate of key enzymes, (iv) effects of specific enzyme inhibitors on the GS-443902 formation, and (v) the effects of these inhibitors on RDV antiviral activity against SARS-CoV-2 in cell culture. Our data collectively demonstrated that carboxylesterase 1 (CES1) and cathepsin A (CatA) are enzymes involved in hydrolyzing RDV to its alanine intermediate MetX, which is further hydrolyzed to the monophosphate form by histidine triad nucleotide-binding protein 1 (HINT1). The monophosphate is then consecutively phosphorylated to diphosphate and triphosphate by cellular phosphotransferases. Our data support the hypothesis that the unique properties of RDV prodrug not only allow lung-specific accumulation critical for the treatment of respiratory viral infection such as COVID-19 but also enable efficient intracellular metabolism of RDV and its MetX to monophosphate and successive phosphorylation to form the active TP in disease-relevant cells.
Collapse
|
249
|
Winkley K, Banerjee D, Bradley T, Koseva B, Cheung WA, Selvarangan R, Pastinen T, Grundberg E. Immune cell residency in the nasal mucosa may partially explain respiratory disease severity across the age range. Sci Rep 2021; 11:15927. [PMID: 34354210 PMCID: PMC8342554 DOI: 10.1038/s41598-021-95532-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 12/26/2022] Open
Abstract
Previous studies focusing on the age disparity in COVID-19 severity have suggested that younger individuals mount a more robust innate immune response in the nasal mucosa after infection with SARS-CoV-2. However, it is unclear if this reflects increased immune activation or increased immune residence in the nasal mucosa. We hypothesized that immune residency in the nasal mucosa of healthy individuals may differ across the age range. We applied single-cell RNA-sequencing and measured the cellular composition and transcriptional profile of the nasal mucosa in 35 SARS-CoV-2 negative children and adults, ranging in age from 4 months to 65 years. We analyzed in total of ~ 30,000 immune and epithelial cells and found that age and immune cell proportion in the nasal mucosa are inversely correlated, with little evidence for structural changes in the transcriptional state of a given cell type across the age range. Orthogonal validation by epigenome sequencing indicate that it is especially cells of the innate immune system that underlie the age-association. Additionally, we characterize the predominate immune cell type in the nasal mucosa: a resident T cell like population with potent antiviral properties. These results demonstrate fundamental changes in the immune cell makeup of the uninfected nasal mucosa over the lifespan. The resource we generate here is an asset for future studies focusing on respiratory infection and immunization strategies.
Collapse
Affiliation(s)
- Konner Winkley
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Dithi Banerjee
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Todd Bradley
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Boryana Koseva
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Warren A Cheung
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Rangaraj Selvarangan
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
| | - Elin Grundberg
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
| |
Collapse
|
250
|
Forno E, Abman SH, Singh J, Robbins ME, Selvadurai H, Schumacker PT, Robinson PD. Update in Pediatrics 2020. Am J Respir Crit Care Med 2021; 204:274-284. [PMID: 34126039 DOI: 10.1164/rccm.202103-0605up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Erick Forno
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Steven H Abman
- Department of Pediatrics, Children's Hospital Colorado, Denver, Colorado.,University of Colorado Anschutz School of Medicine, Denver, Colorado
| | - Jagdev Singh
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mary E Robbins
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hiran Selvadurai
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Paul T Schumacker
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paul D Robinson
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|