201
|
Abstract
A vast number of studies indicate the presence of stem/progenitor cells virtually in all tissues in adult organs, particularly in bone marrow. Recent studies, however, cast doubt about the existence of true stem cells in adult tissue. The complex integrity of several cells with distinct morphologic and functional properties in the mature pancreas confers an appropriate status for stem cell research. Several different types of cells residing in the islets or in the ductal epithelium have been proposed as adult pancreatic stem cells or progenitor cells. However, these reports do not provide conceivable proof for the presence of true pancreatic stem cells. On the other hand, there is considerable evidence indicating transdifferentiation of all adult pancreatic cells into each other, and under proper conditions, to nonpancreatic cells including oncocytes and hepatocytes. Observations pertaining to the putative pancreatic stem cells, transdifferentiation ability of the differentiated mature pancreatic cells in the normal and diseased pancreas will be discussed, and our own findings supporting the transdifferentiation pathway are presented in this article.
Collapse
Affiliation(s)
- Mehmet Yalniz
- UNMC Eppley Cancer Center, University of Nebraska Medical Center, Omaha 68198-6805, USA
| | | |
Collapse
|
202
|
Jetton TL, Lausier J, LaRock K, Trotman WE, Larmie B, Habibovic A, Peshavaria M, Leahy JL. Mechanisms of compensatory beta-cell growth in insulin-resistant rats: roles of Akt kinase. Diabetes 2005; 54:2294-304. [PMID: 16046294 DOI: 10.2337/diabetes.54.8.2294] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The physiological mechanisms underlying the compensatory growth of beta-cell mass in insulin-resistant states are poorly understood. Using the insulin-resistant Zucker fatty (fa/fa) (ZF) rat and the corresponding Zucker lean control (ZLC) rat, we investigated the factors contributing to the age-/obesity-related enhancement of beta-cell mass. A 3.8-fold beta-cell mass increase was observed in ZF rats as early as 5 weeks of age, an age that precedes severe insulin resistance by several weeks. Closer investigation showed that ZF rat pups were not born with heightened beta-cell mass but developed a modest increase over ZLC rats by 20 days that preceded weight gain or hyperinsulinemia that first developed at 24 days of age. In these ZF pups, an augmented survival potential of beta-cells of ZF pups was observed by enhanced activated (phospho-) Akt, phospho-BAD, and Bcl-2 immunoreactivity in the postweaning period. However, increased beta-cell proliferation in the ZF rats was only detected at 31 days of age, a period preceding massive beta-cell growth. During this phase, we also detected an increase in the numbers of small beta-cell clusters among ducts and acini, increased duct pancreatic/duodenal homeobox-1 (PDX-1) immunoreactivity, and an increase in islet number in the ZF rats suggesting duct- and acini-mediated heightened beta-cell neogenesis. Interestingly, in young ZF rats, specific cells associated with ducts, acini, and islets exhibited an increased frequency of PDX-1+/phospho-Akt+ staining, indicating a potential role for Akt in beta-cell differentiation. Thus, several adaptive mechanisms account for the compensatory growth of beta-cells in ZF rats, a combination of enhanced survival and neogenesis with a transient rise in proliferation before 5 weeks of age, with Akt serving as a potential mediator in these processes.
Collapse
Affiliation(s)
- Thomas L Jetton
- Division of Endocrinology, Diabetes and Metabolism, University of Vermont College of Medicine, Department of Medicine, Given C331, Burlington, VT 05405, USA. thomas.jetton@.uvm.edu
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Neureiter D, Zopf S, Dimmler A, Stintzing S, Hahn EG, Kirchner T, Herold C, Ocker M. Different capabilities of morphological pattern formation and its association with the expression of differentiation markers in a xenograft model of human pancreatic cancer cell lines. Pancreatology 2005; 5:387-397. [PMID: 15980667 DOI: 10.1159/000086539] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 03/28/2005] [Indexed: 12/11/2022]
Abstract
AIMS New concepts of tumorigenesis favor an unregulated process recapitulating different stages of embryogenic development with dysregulation of transition states. The aim of our study was to investigate the possibility of differentiation pathways of human pancreatic cancer cell lines in vivo. MATERIAL AND METHODS Different human pancreatic cancer cell lines (YAPC, DAN-G, CAPAN-1, PANC-1 and MIA PaCa-2) were implanted subcutaneously (3 x 10(6) cells) for 28 days in nude mice. Xenotransplants were characterized with histochemistry (HE, PAS), immunohistochemistry (cytokeratin (CK)7, CK8, CK18, CK19, CK20, vimentin, chromogranin A (Chr-A), alpha1-antichymotrypsin (alpha1-chym), beta-catenin, laminin-5, pancreatic and duodenal homeobox gene 1 (pdx-1), sonic hedgehog protein (shh), Patched (ptc)), Western blotting and real-time PCR (CK7, CK8, CK20, Chr-A, pdx-1, shh, ptc). RESULTS Depending on three major morphologic phenotypes of tumor cell xenotransplants (ductal (YAPC), ductal/solid (DAN-G, CAPAN-1), solid (PANC-1, MIA PaCa-2)), a decrease of CK7/CK19 was found, accompanied by an increase of CK8/18 and vimentin. Predominantly the CK7-positive ductal phenotype (YAPC and DAN-G) was associated with pdx-1 expression, whereas the CK8-positive solid phenotype was associated with shh/ptc expression on protein and mRNA level. Additionally, CK-20 expression was mainly linked to the ductal phenotype, co-localized with nuclear beta-catenin. The endocrine-exocrine transdifferentiation, as assessed by Chr-A and alpha1-chym, was on a constant low to moderate level in all xenotransplants. Finally, an intensive epithelial-mesenchymal interaction was observed by overexpression of laminin-5 at the invasion front. CONCLUSION The observed patterns of morphology and molecular differentiation in human pancreatic cancer xenografts indicate that these cancer cell lines have different capabilities of pattern formation in vivo associated with molecular differentiation markers, especially of embryonic pancreatic development.
Collapse
Affiliation(s)
- Daniel Neureiter
- Department of Pathology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Ku HT, Zhang N, Kubo A, O'Connor R, Mao M, Keller G, Bromberg JS. Committing embryonic stem cells to early endocrine pancreas in vitro. Stem Cells 2005; 22:1205-17. [PMID: 15579640 DOI: 10.1634/stemcells.2004-0027] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A panel of genetic markers was used to assess the in vitro commitment of murine embryonic stem (ES) cells toward the endoderm-derived pancreas and to distinguish insulin-expressing cells of this lineage from other lineages such as neuron, liver, and yolk sac. There are two nonallelic insulin genes in mice. Neuronal cells express only insulin II, whereas the pancreas expresses both insulin I and II. Yolk sac and fetal liver express predominately insulin II, small amounts of insulin I, and no glucagon. We found that ES-derived embryoid bodies cultured in the presence of stage-specific concentrations of monothio-glycerol and 15% fetal calf serum, followed by serum-free conditions, give rise to a population that expresses insulin I, insulin II, pdx-1 (a pancreas marker), and Sox17 (an endoderm marker). Immunohistochemical staining shows intracellular insulin particles, and its de novo production was confirmed by staining for C-peptide. Most, but not all, of the insulin+ or C-peptide+ cells coexpress glucagon, demonstrating a differentiation pathway to pancreas rather than yolk sac or fetal liver. Addition of beta-cell specification and differentiation factors activin beta B, nicotinamide, and exendin-4 to later-stage culture increased insulin-positive cells to 2.73% of the total population, compared with the control culture, which gave rise to less than 1% insulin-staining cells. These findings suggest that stepwise culture manipulations can direct ES cells to become early endocrine pancreas.
Collapse
Affiliation(s)
- Hsun Teresa Ku
- Department of Gene and Cell Medicine, Recanati/Miller Transplantation Institute, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| | | | | | | | | | | | | |
Collapse
|
205
|
Nomura S, Settle SH, Leys CM, Means AL, Peek RM, Leach SD, Wright CV, Coffey RJ, Goldenring JR. Evidence for repatterning of the gastric fundic epithelium associated with Ménétrier's disease and TGFalpha overexpression. Gastroenterology 2005; 128:1292-305. [PMID: 15887112 DOI: 10.1053/j.gastro.2005.03.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Increase of intramucosal transforming growth factor alpha (TGFalpha) levels in the gastric fundus leads to oxyntic atrophy and massive foveolar hyperplasia in both metallothionein (MT)-TGFalpha mice and patients with Ménétrier's disease. We have evaluated the hypothesis that increased levels of TGFalpha in the fundus induces an antral pattern of cell differentiation in fundic glands by studying Pdx1, a transcription factor whose expression normally is confined to the gastric antrum. METHODS Induction of Pdx1 expression was evaluated in Pdx1(lacZ/+)/MT-TGFalpha bigenic mice treated with zinc. The distribution of Pdx1 in MT-TGFalpha mice and Ménétrier's disease patients was evaluated with anti-Pdx1 antibodies. Transcript levels were evaluated by quantitative polymerase chain reaction in mouse and human tissues and AGS cells. RESULTS In Pdx1(lacZ/+) mice, Pdx1 was expressed in antral mucosal cells including gastrin cells and TFF2-expressing deep glandular mucous cells. Zinc treatment for 2 to 8 weeks in Pdx1(lacZ/+)/MT-TGFalpha transgenic mice resulted in expression of Pdx1 throughout the fundus. No ectopic fundic Pdx1 expression was observed in either H. felis-infected or DMP777-treated mice. In MT-TGFalpha mice, 8 weeks of zinc treatment elicited nuclear Pdx1 staining throughout the fundic mucosa. TGFalpha treatment in AGS cells led to increases in Pdx1 and gastrin messenger RNA expression. Fundic sections from Ménétrier's disease patients showed nuclear Pdx1 staining throughout the fundic glands. Treatment of a Ménétrier's disease patient with an anti-epidermal growth factor receptor monoclonal antibody reduced fundic expression of both Pdx1 and gastrin. CONCLUSIONS Overexpression of TGFalpha in MT-TGFalpha mice and Ménétrier's disease patients elicits ectopic expression in the fundus of Pdx1, consistent with the phenotype of antralization.
Collapse
Affiliation(s)
- Sachiyo Nomura
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2733, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Lee CS, Sund NJ, Behr R, Herrera PL, Kaestner KH. Foxa2 is required for the differentiation of pancreatic alpha-cells. Dev Biol 2005; 278:484-95. [PMID: 15680365 DOI: 10.1016/j.ydbio.2004.10.012] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 09/08/2004] [Accepted: 10/21/2004] [Indexed: 11/30/2022]
Abstract
The differentiation of insulin-producing beta-cells has been investigated in great detail; however, little is known about the factors that delineate the second-most abundant endocrine lineage, the glucagon-producing alpha-cell. Here we utilize a novel YAC-based Foxa3Cre transgene to delete the winged helix transcription factor Foxa2 (formerly HNF-3beta) in the pancreatic primordium during midgestation. The resulting Foxa2(loxP/loxP); Foxa3Cre mice are severely hypoglycemic and die within the first week of life. Mutant mice are hypoglucagonemic secondary to a 90% reduction of glucagon expression. While the number of mature glucagon-positive alpha-cells is dramatically reduced, specification of alpha-cell progenitors is not affected by Foxa2 deficiency. By marker gene analysis, we show that the expression of the alpha-cell transcription factors Arx, Pax6, and Brn4 does not require Foxa2 in the transcriptional hierarchy governing alpha-cell differentiation.
Collapse
Affiliation(s)
- Catherine S Lee
- Department of Genetics and Penn Diabetes Center, University of Pennsylvania School of Medicine, 415 Curie Boulevard, CRB 560 Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
207
|
Iwakura H, Hosoda K, Son C, Fujikura J, Tomita T, Noguchi M, Ariyasu H, Takaya K, Masuzaki H, Ogawa Y, Hayashi T, Inoue G, Akamizu T, Hosoda H, Kojima M, Itoh H, Toyokuni S, Kangawa K, Nakao K. Analysis of rat insulin II promoter-ghrelin transgenic mice and rat glucagon promoter-ghrelin transgenic mice. J Biol Chem 2005; 280:15247-56. [PMID: 15701644 DOI: 10.1074/jbc.m411358200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We developed and analyzed two types of transgenic mice: rat insulin II promoter-ghrelin transgenic (RIP-G Tg) and rat glucagon promoter-ghrelin transgenic mice (RGP-G Tg). The pancreatic tissue ghrelin concentration measured by C-terminal radioimmunoassay (RIA) and plasma desacyl ghrelin concentration of RIP-G Tg were about 1000 and 3.4 times higher than those of nontransgenic littermates, respectively. The pancreatic tissue n-octanoylated ghrelin concentration measured by N-terminal RIA and plasma n-octanoylated ghrelin concentration of RIP-G Tg were not distinguishable from those of nontransgenic littermates. RIP-G Tg showed suppression of glucose-stimulated insulin secretion. Arginine-stimulated insulin secretion, pancreatic insulin mRNA and peptide levels, beta cell mass, islet architecture, and GLUT2 and PDX-1 immunoreactivity in RIP-G Tg pancreas were not significantly different from those of nontransgenic littermates. Islet batch incubation study did not show suppression of insulin secretion of RIP-G Tg in vitro. The insulin tolerance test showed lower tendency of blood glucose levels in RIP-G Tg. Taking lower tendency of triglyceride level of RIP-G Tg into consideration, these results may indicate that the suppression of insulin secretion is likely due to the effect of desacyl ghrelin on insulin sensitivity. RGP-G Tg, in which the pancreatic tissue ghrelin concentration measured by C-RIA was about 50 times higher than that of nontransgenic littermates, showed no significant changes in insulin secretion, glucose metabolism, islet mass, and islet architecture. The present study raises the possibility that desacyl ghrelin may have influence on glucose metabolism.
Collapse
Affiliation(s)
- Hiroshi Iwakura
- Department of Medicine and Clinical Science, Endocrinology and Metabolism, Kyoto University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Jamal AM, Lipsett M, Sladek R, Laganière S, Hanley S, Rosenberg L. Morphogenetic plasticity of adult human pancreatic islets of Langerhans. Cell Death Differ 2005; 12:702-12. [PMID: 15818398 DOI: 10.1038/sj.cdd.4401617] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the phenotypic plasticity of pancreatic islets of Langerhans. Quiescent adult human islets were induced to undergo a phenotypic switch to highly proliferative duct-like structures in a process characterized by a loss of expression of islet-specific hormones and transcription factors as well as a temporally related rise in the expression of markers of both duct epithelial and progenitor cells. Short-term treatment of these primitive duct-like structures with the neogenic factor islet neogenesis-associated protein (INGAP104-118) induced their reconversion back to islet-like structures in a PI3-kinase-dependent manner. These neoislets resembled freshly isolated human islets with respect to the presence and topological arrangement of the four endocrine cell types, islet gene expression and hormone production, insulin content and glucose-responsive insulin secretion. Our results suggest that adult human islets possess a remarkable degree of morphogenetic plasticity. This novel observation may have important implications for understanding pancreatic carcinogenesis and islet neogenesis.
Collapse
Affiliation(s)
- A-M Jamal
- Department of Surgery, McGill University, Montréal, Canada
| | | | | | | | | | | |
Collapse
|
209
|
Kaneto H, Nakatani Y, Miyatsuka T, Matsuoka TA, Matsuhisa M, Hori M, Yamasaki Y. PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes 2005; 54:1009-22. [PMID: 15793239 DOI: 10.2337/diabetes.54.4.1009] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetes is the most prevalent and serious metabolic disease, and the number of diabetic patients worldwide is increasing. The reduction of insulin biosynthesis in pancreatic beta-cells is closely associated with the onset and progression of diabetes, and thus it is important to search for ways to induce insulin-producing cells in non-beta-cells. In this study, we showed that a modified form of the pancreatic and duodenal homeobox factor 1 (PDX-1) carrying the VP16 transcriptional activation domain (PDX-1/VP16) markedly increases insulin biosynthesis and induces various pancreas-related factors in the liver, especially in the presence of NeuroD or neurogenin 3 (Ngn3). Furthermore, in streptozotocin-induced diabetic mice, PDX-1/VP16 overexpression, together with NeuroD or Ngn3, drastically ameliorated glucose tolerance. Thus PDX-1/VP16 expression, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. This approach warrants further investigation and may have utility in the treatment of diabetes.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
210
|
Taguchi M, Otsuki M. Co-localization of nestin and PDX-1 in small evaginations of the main pancreatic duct in adult rats. J Mol Histol 2005; 35:785-9. [PMID: 15609091 DOI: 10.1007/s10735-004-0948-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Revised: 05/16/2004] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIMS Pancreatic stem cells are powerful tools for future gene/cell therapy for diabetes, pancreatic carcinoma and chronic pancreatitis. However, it is unclear where the pancreatic stem cells exist in adult pancreas. To identify the pancreatic stem cells, we have focused on a homeodomain-containing transcription factor, pancreatic/duodenal homeobox-1 (PDX-1), and an intermediate filament protein, nestin, which are important candidates of pancreatic stem cell markers. METHODS AND RESULTS We investigated the immunohistological localization for PDX-1 and nestin in adult rat pancreas. PDX-1 staining was detected in small evaginations of the main pancreatic duct and in nuclei of islet cells. Nestin staining was also detected in small evaginations of the main duct, islets and spindle-shaped cells in the connective tissue around the main duct. These spindle-shaped cells were also positive for alpha-smooth muscle actin, the marker of myofibroblasts. Confocal laser microscopy study showed that nestin and PDX-1 are co-localized not only in a subset of cells in small evaginations of the main duct but also in a few cells in the islets. These cells of the main duct were also positive for the ductal cell marker, cytokeratin 19. CONCLUSION Our results suggest that the double positive cells for PDX-1 and nestin might be important candidates for pancreatic stem cells in adult rats.
Collapse
Affiliation(s)
- Masashi Taguchi
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Japan 5 School of Medicine, Kitakyushu 807-8555, Japan
| | | |
Collapse
|
211
|
Yamamoto M, Yasuda M, Hori A, Arishima K, Eguchi Y. Recovery in the fetal pancreatic islet following fetal administration of streptozotocin in the rat in vivo and in vitro. ACTA ACUST UNITED AC 2005; 281:1319-25. [PMID: 15515161 DOI: 10.1002/ar.a.20132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In our previous study, after direct administration of streptozotocin (STZ; 400 microg/g) to fetuses on day 19 of gestation, the B-cell volume in fetal pancreatic islets showed a marked decrease, but gradually recovered with electron microscopic confirmation of B-cell regeneration. However, STZ at this dose often caused fetal death. In this study, therefore, we determined whether B-cells are newly generated after treatment with STZ at a smaller dose in vivo and in vitro. For in vivo experiment, fetuses were administered STZ at 40 microg/g on day 19 of gestation. The B-cell volume in pancreatic islets decreased markedly 3 hr after the administration of STZ, but it began to increase after 6 hr. The fetal plasma insulin concentration decreased from 6 to 12 hr after the administration, but recovered after 48 hr. The cell division index in fetal pancreatic islets of the STZ-treated group began to be significantly larger after 6 hr. For in vitro experiment, fetal pancreases on day 18 of gestation were pretreated with 10 mM STZ for 6 hr and cultured for 98 hr. B-cells were completely destroyed with STZ treatment; however, as these pancreases were cultured in a medium free of STZ, B-cells began to appear and insulin secretion was detected after 48 hr. After 72 hr, the cell division index was significantly greater. These results suggest that the fetal pancreas treated with STZ has the ability to regenerate B-cells both in vivo and in vitro.
Collapse
Affiliation(s)
- Masako Yamamoto
- Department of Anatomy II, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 229-8501, Japan.
| | | | | | | | | |
Collapse
|
212
|
Sahin F, Qiu W, Wilentz RE, Iacobuzio-Donahue CA, Grosmark A, Su GH. RPL38, FOSL1, and UPP1 are predominantly expressed in the pancreatic ductal epithelium. Pancreas 2005; 30:158-67. [PMID: 15714138 PMCID: PMC1373783 DOI: 10.1097/01.mpa.0000151581.45156.e4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Establishing more effective treatment of pancreatic cancer requires an understanding of the molecular events leading to the onset and progression of this disease. The biology of tumorigenesis may be better understood if cell type-specific genes in the pancreas are more recognized. This recognition may be as important as discovering a disease-responsible gene. Identification of a ductal epithelium-specific gene can contribute not only to our knowledge of pancreatic tumorigenesis, tumor marker discovery, and effective drug targeting but also is crucial for making a reliable animal model. METHODS We used the x-Profiler engine online to compare the SAGE (Serial Analysis of Gene Expression) libraries derived from 2 short-term cultures of normal human ductal epithelial cells from the pancreas against 34 other SAGE libraries generated from other normal human tissues to identify the best candidate gene specific for the ductal epithelium of the pancreas. RESULTS We identified 3 genes, ribosomal protein L38 (RPL38), uridine phosphorylase (UPP1), and FOS-like antigen-1 (FOSL1), predominantly expressed in the pancreatic ductal epithelium. The expression patterns of these 3 genes were confirmed by virtual Northern analysis, semi-quantitative RT-PCR, and in situ hybridization. CONCLUSION Although the expressions of these 3 genes are not completely restricted to the ductal epithelium of the pancreas, we showed that they have more specific expression patterns than CK19 and MUC1. We also demonstrated that all 3 genes are highly expressed in a panel of pancreatic cancer cell lines and can potentially be useful in tumor targeting or as tumor markers.
Collapse
Affiliation(s)
- Fikret Sahin
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
213
|
Abstract
Considerable progress has been made in the understanding of the sequential activation of signal transduction pathways and the expression of transcription factors during pancreas development. Much of this understanding has been obtained by analyses of the phenotypes of mice in which the expression of key genes has been disrupted (knockout mice). Knockout of the genes for Pdx1, Hlxb9, Isl1, or Hex results in an arrest of pancreas development at a very early stage (embryonic d 8-9). Disruption of genes encoding components of the Notch signaling pathway, e.g. Hes1 or neurogenin-3, abrogates development of the endocrine pancreas (islets of Langerhans). Disruption of transcription factor genes expressed more downstream in the developmental cascade (Beta2/NeuroD, Pax4, NKx2.2, and Nkx6.1) curtails the formation of insulin-producing beta-cells. An understanding of the importance of transcription factor genes during pancreas development has provided insights into the pathogenesis of diabetes, in which the mass of insulin-producing beta-cells is reduced.
Collapse
Affiliation(s)
- Joel F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Howard Hughes Medical Institute, Harvard Medical School, 55 Fruit Street, WEL320, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
214
|
Wang XP, Li ZJ, Magnusson J, Brunicardi FC. Tissue MicroArray Analyses of Pancreatic Duodenal Homeobox-1 in Human Cancers. World J Surg 2005; 29:334-8. [PMID: 15706433 DOI: 10.1007/s00268-004-7823-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In previous studies, we demonstrated that rat insulin promoter (RIP)-driven gene therapy successfully targeted human pancreatic tumor PANC-1 cells and mouse insulinoma NIT-1 cells, which are both pancreatic duodenal homeobox-1 (PDX-1)-positive. The purpose of this study was to perform a human tissue array analysis to determine potential targets for RIP-driven gene therapy. A custom-designed tissue MicroArray analysis of various human cancer specimens was performed using a PDX-1 polyclonal antibody generated in our laboratory. The custom-designed Tissue MicroArray of human tumor specimens consists of human cancer specimens from different origins, such as the pancreas, breast, colon, prostate, kidney, liver, lung, and ovary. A panel of normal human specimens from 20 organs or tissues was used as a control. All tissues were fixed in formalin and embedded in paraffin. The immunohistochemistry studies of the cytoplasm and the nuclear expression levels were compared using the Loda method and blind reviews. Data are presented as the mean +/- SEM (p < 0.05 was considered significant by the unpaired student t-test). PDX-1 expression intensity was elevated in both benign and malignant tissues from the same patient with pancreas, breast, colon, prostate, and kidney cancers, whereas normal human tissues from control subjects without cancer did not express PDX-1. These results suggest that PDX-1 is an early marker for these cancers and could be potentially used as a diagnostic parameter and perhaps could be targeted by PDX-1-activated gene therapies, such as RIP-TK.
Collapse
Affiliation(s)
- Xiao-Ping Wang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, 6550 Fannin Street, Suite 1661, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
215
|
Li Y, Cao X, Li LX, Brubaker PL, Edlund H, Drucker DJ. beta-Cell Pdx1 expression is essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1. Diabetes 2005; 54:482-91. [PMID: 15677506 DOI: 10.2337/diabetes.54.2.482] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) regulates energy intake, gastrointestinal motility, and nutrient disposal. The relative importance of the islet beta-cell for GLP-1 actions remains unclear. We determined the role of the islet beta-cell and the pancreatic duodenal homeobox-1 (Pdx1) transcription factor for GLP-1 receptor (GLP-1R)-dependent actions through analysis of mice with beta-cell-specific inactivation of the Pdx1 gene (beta-cell(Pdx1-/-) mice). The GLP-1R agonist exendin-4 (Ex-4) reduced glycemic excursion following intraperitoneal (i.p.) glucose challenge in control littermates (beta-cell(Pdx1+/+) mice) but not in beta-cell(Pdx1-/-) mice. Similarly, Ex-4 failed to increase levels of plasma insulin, pancreatic insulin content, and pancreatic insulin mRNA transcripts in beta-cell(Pdx1-/-) mice. Furthermore, Ex-4 significantly increased beta-cell proliferation and reduced beta-cell apoptosis in beta-cell(Pdx1+/+) mice but not in beta-cell(Pdx1-/-) mice. Moreover, Ex-4 increased the levels of insulin and amylin mRNA transcripts and augmented glucose-stimulated insulin secretion in islets from beta-cell(Pdx1+/+) mice but not in beta-cell(Pdx1-/-) islets. Surprisingly, Ex-4 failed to reduce levels of plasma glucagon in beta-cell(Pdx1-/-) mice. These findings demonstrate that Pdx1 expression is essential for integrating GLP-1R-dependent signals regulating alpha-cell glucagon secretion and for the growth, differentiated function, and survival of islet beta-cells.
Collapse
Affiliation(s)
- Yazhou Li
- Department of Medicine, University of Toronto, Banting and Best Diabetes Centre, Toronto General Hospital, 200 Elizabeth St., MBRW 4R402-2, Toronto, Canada M5G 2C4
| | | | | | | | | | | |
Collapse
|
216
|
Maier EA, Dusing MR, Wiginton DA. Cdx binding determines the timing of enhancer activation in postnatal duodenum. J Biol Chem 2005; 280:13195-202. [PMID: 15677472 DOI: 10.1074/jbc.m413158200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian intestine, adenosine deaminase (ADA) is expressed at high levels only along the villi of the duodenal epithelium. A duodenum-specific enhancer identified in the second intron of the human ADA gene controls this pattern of expression. This enhancer faithfully recapitulates this expression pattern in transgenic mice, when included in CAT reporter gene constructions. Multiple binding sites for PDX-1 and GATA factors were previously identified within the approximately 300-bp region that encompasses the enhancer. Mutation analyses demonstrated that binding of PDX-1 and of GATA-4 was absolutely essential for enhancer function. In the present study, we have identified additional enhancer binding sites for Cdx factors, for YY1, and for NFI family members. Detailed EMSA studies were used to confirm binding at these sites. This brings the number of confirmed binding sites within the enhancer to thirteen, with five different factors or family of factors contributing to the putative enhanceosome complex. Mutation analysis was utilized to examine the specific roles of the newly identified sites. Two sites were identified that bound both Cdx1 and Cdx2. Mutations were identified in these two sites that completely and specifically eliminated Cdx binding. In transgenic mice, these enhancer mutations dramatically changed the developmental timing of enhancer activation (delaying it by 2-3 weeks) without affecting other aspects of enhancer function. In the chromatin context of certain transgenic insertion sites, mutation of the two YY1 sites to specifically ablate binding caused a delay in enhancer activation similar to that observed with the Cdx mutations. No overt changes were observed from mutation of the NFI site.
Collapse
Affiliation(s)
- Elizabeth A Maier
- Department of Pediatrics, Division of Developmental Biology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
217
|
Zhao L, Guo M, Matsuoka TA, Hagman DK, Parazzoli SD, Poitout V, Stein R. The islet beta cell-enriched MafA activator is a key regulator of insulin gene transcription. J Biol Chem 2005; 280:11887-94. [PMID: 15665000 DOI: 10.1074/jbc.m409475200] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The islet-enriched MafA, PDX-1, and BETA2 activators contribute to both beta cell-specific and glucose-responsive insulin gene transcription. To investigate how these factors impart activation, their combined impact upon insulin enhancer-driven expression was first examined in non-beta cell line transfection assays. Individual expression of PDX-1 and BETA2 led to little or no activation, whereas MafA alone did so modestly. MafA together with PDX-1 or BETA2 produced synergistic activation, with even higher insulin promoter activity found when all three proteins were present. Stimulation was attenuated upon compromising either MafA transactivation or DNA-binding activity. MafA interacted with endogenous PDX-1 and BETA2 in coimmunoprecipitation and in vitro GST pull-down assays, suggesting that regulation involved direct binding. Dominant-negative acting and small interfering RNAs of MafA also profoundly reduced insulin promoter activity in beta cell lines. In addition, MafA was induced in parallel with insulin mRNA expression in glucose-stimulated rat islets. Insulin mRNA levels were also elevated in rat islets by adenoviral-mediated expression of MafA. Collectively, these results suggest that MafA plays a key role in coordinating and controlling the level of insulin gene expression in islet beta cells.
Collapse
Affiliation(s)
- Li Zhao
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
218
|
Flock G, Cao X, Drucker DJ. Pdx-1 is not sufficient for repression of proglucagon gene transcription in islet or enteroendocrine cells. Endocrinology 2005; 146:441-9. [PMID: 15471960 DOI: 10.1210/en.2004-0495] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pdx-1 plays a key role in the development of the pancreas and the control of islet gene transcription and has also been proposed as a dominant regulator of the alpha- vs. beta-cell phenotype via extinction of proglucagon expression. To ascertain the relationship between Pdx-1 and proglucagon gene expression, we examined the effect of enhanced pdx-1 expression on proglucagon gene expression in murine islet alphaTC-1 and GLUTag enteroendocrine cells. Although adenoviral transduction increased the levels of pdx-1 mRNA transcripts and nuclear Pdx-1 protein, overexpression of pdx-1 did not repress endogenous proglucagon gene expression in alphaTC-1 or GLUTag cells or murine islets. Immunohistochemical analysis of cells transduced with Ad-pdx-1 demonstrated multiple individual islet or enteroendocrine cells exhibiting both nuclear Pdx-1 and cytoplasmic glucagon-like peptide-1 immunopositivity. The failure of pdx-1 to inhibit endogenous proglucagon gene expression was not attributable to defects in Pdx-1 nuclear translocation or DNA binding as demonstrated using Western blotting and EMSA analyses. Furthermore, Ad-pdx-1 transduction did not repress proglucagon promoter activity in alphaTC-1 or GLUTag cells. Taken together, these findings demonstrate that pdx-1 alone is not sufficient for specification of the hormonal phenotype or extinction of proglucagon gene expression in islet or enteroendocrine cells.
Collapse
Affiliation(s)
- Grace Flock
- Department of Medicine, Toronto General Hospital, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
219
|
Jepeal LI, Fujitani Y, Boylan MO, Wilson CN, Wright CV, Wolfe MM. Cell-specific expression of glucose-dependent-insulinotropic polypeptide is regulated by the transcription factor PDX-1. Endocrinology 2005; 146:383-91. [PMID: 15486225 DOI: 10.1210/en.2004-0223] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a potent stimulator of insulin secretion and comprises an important component of the enteroinsular axis. GIP is synthesized in enteroendocrine K-cells located principally in the upper small intestine. The homeobox-containing gene PDX-1 is also expressed in the small intestine and plays a critical role in pancreatic development and in the expression of pancreatic-specific genes. Previous studies determined that the transcription factors GATA-4 and ISL-1 are important for GIP expression. In this study, we demonstrate that PDX-1 is also involved in regulating GIP expression in K-cells. Using immunohistochemistry, we verified the expression of PDX-1 protein in the nucleus of GIP-expressing mouse K-cells and evaluated the expression of PDX-1, serotonin, and GIP in wild-type and PDX-1(-/-) mice at 18.5 d after conception. Although we demonstrated a 97.8% reduction in the number of GIP-expressing cells in PDX-1(-/-) mice; there was no statistical difference in the number of serotonin-positive cells. Additionally, PDX-1 transcripts and protein were detected in a GIP-expressing neuroendocrine cell line, STC-1. Electromobility shift assays using STC-1 nuclear extracts demonstrated the specific binding of PDX-1 protein to a specific regulatory region in the GIP promoter. Using chromatin immunoprecipitation analysis, we demonstrated binding of PDX-1 to this same region of the GIP promoter in intact cells. Lastly, overexpression of PDX-1 in transient transfection assays led to a specific increase in the activity of GIP/Luc reporter constructs. The results of these studies indicate that the transcription factor PDX-1 plays a critical role in the cell-specific expression of the GIP gene.
Collapse
Affiliation(s)
- Lisa I Jepeal
- Section of Gastroenterology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
220
|
Lee CS, Kaestner KH. Clinical endocrinology and metabolism. Development of gut endocrine cells. Best Pract Res Clin Endocrinol Metab 2004; 18:453-62. [PMID: 15533769 DOI: 10.1016/j.beem.2004.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During development, the definitive endoderm differentiates into several gastrointestinal epithelial lineages, including enteroendocrine cells. The enteroendocrine lineage consists of at least 15 different cell types that are categorized based on their morphology, location and peptide hormone expression. The mechanisms regulating enteroendocrine cell differentiation are likely to be critical not only in embryonic development, but also during the constant renewal of gut epithelia in the adult. The identification of transcription factors and regulatory DNA elements required for cell type-specific gene expression in various endocrine cell types has broadened our understanding of the regulatory networks controlling the spatial and temporal activation of enteroendocrine differentiation programs. This chapter will review recent studies of transcription factors during enteroendocrine cell differentiation, with a focus on the central role for the Notch signaling pathway in enteroendocrine cell fate decisions.
Collapse
Affiliation(s)
- Catherine S Lee
- Department of Genetics and Penn Diabetes Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
221
|
Nielsen K, Kruhøffer M, Orntoft T, Sparre T, Wang H, Wollheim C, Jørgensen MC, Nerup J, Karlsen AE. Gene expression profiles during beta cell maturation and after IL-1beta exposure reveal important roles of Pdx-1 and Nkx6.1 for IL-1beta sensitivity. Diabetologia 2004; 47:2185-99. [PMID: 15605246 DOI: 10.1007/s00125-004-1578-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
AIM/HYPOTHESIS Maturation of the beta cells in the islets of Langerhans is dependent upon sequential activation of different transcription factors such as Pdx-1 and Nkx6.1. This maturation is associated with an acquired sensitivity to cytokines and may eventually lead to type 1 diabetes. The aims of this study were to characterise changes in mRNA expression during beta cell maturation as well as after interleukin-1beta (IL-1beta) exposure. METHODS Transcriptome analyses were performed on two phenotypes characterised as a glucagon-producing pre-beta-cell phenotype (NHI-glu), which matures to an IL-1beta-sensitive insulin-producing beta cell phenotype (NHI-ins). Beta cell lines over-expressing Pdx-1 or Nkx6.1, respectively, were used for functional characterisation of acquired IL-1beta sensitivity. RESULTS During beta cell maturation 98 fully annotated mRNAs changed expression levels. Of these, 50 were also changed after 24 h of IL-1beta exposure. In addition, 522 and 197 fully annotated mRNAs, not affected by maturation, also changed expression levels following IL-1beta exposure of the beta cell and the pre-beta-cell phenotype, respectively. Beta cell maturation was associated with an increased expression of Nkx6.1, whereas both Pdx-1 and Nkx6.1 expression were decreased following IL-1beta exposure. Over-expression of Nkx6.1 or Pdx-1 in cell lines resulted in a significantly increased sensitivity to IL-1beta. CONCLUSIONS/INTERPRETATION These results suggest that the final beta cell maturation accompanied by increased IL-1beta sensitivity is, in part, dependent upon the expression of genes regulated by Pdx-1 and Nkx6.1. Future classification of the genes regulated by these transcription factors and changed during beta cell maturation should elucidate their role in the acquired sensitivity to IL-1beta and may be helpful in identifying new targets for intervention/prevention strategies.
Collapse
Affiliation(s)
- K Nielsen
- Steno Diabetes Center, Niels Steensensvej 2, 2820, Gentofte, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Abstract
The pancreatic beta-cell has a pivotal role in the regulation of glucose homeostasis; its death leads to type I diabetes. Neogenesis of beta-cells, the differentiation of beta-cells from non-beta-cells, could be an important mechanism of islet cell repopulation. To examine the ability of the adult pancreas to generate new beta-cells, we characterized the phenotype of beta precursor cells in embryos and then determined that cells expressing embryonic traits appeared in islets of adult mouse pancreas following deletion of preexisting insulin cells by streptozotocin, a specific beta-cell toxin. These precursor cells generated new beta-cells (NBCs) that repopulated the islets. The number of NBCs increased dramatically after restoration of normoglycemia by insulin therapy. Future studies will seek to identify the source of the NBCs and to examine the mechanisms that lead to their differentiation.
Collapse
Affiliation(s)
- Gladys Teitelman
- Department of Anatomy and Cell Biology, State University of New York, Health Science Center at Brooklyn, Brooklyn, NY, USA.
| |
Collapse
|
223
|
van Wering HM, Bosse T, Musters A, de Jong E, de Jong N, Hogen Esch CE, Boudreau F, Swain GP, Dowling LN, Montgomery RK, Grand RJ, Krasinski SD. Complex regulation of the lactase-phlorizin hydrolase promoter by GATA-4. Am J Physiol Gastrointest Liver Physiol 2004; 287:G899-909. [PMID: 15178553 DOI: 10.1152/ajpgi.00150.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lactase-phlorizin hydrolase (LPH), a marker of intestinal differentiation, is expressed in absorptive enterocytes on small intestinal villi in a tightly regulated pattern along the proximal-distal axis. The LPH promoter contains binding sites that mediate activation by members of the GATA-4, -5, and -6 subfamily, but little is known about their individual contribution to LPH regulation in vivo. Here, we show that GATA-4 is the principal GATA factor from adult mouse intestinal epithelial cells that binds to the mouse LPH promoter, and its expression is highly correlated with that of LPH mRNA in jejunum and ileum. GATA-4 cooperates with hepatocyte nuclear factor (HNF)-1alpha to synergistically activate the LPH promoter by a mechanism identical to that previously characterized for GATA-5/HNF-1alpha, requiring physical association between GATA-4 and HNF-1alpha and intact HNF-1 binding sites on the LPH promoter. GATA-4 also activates the LPH promoter independently of HNF-1alpha, in contrast to GATA-5, which is unable to activate the LPH promoter in the absence of HNF-1alpha. GATA-4-specific activation requires intact GATA binding sites on the LPH promoter and was mapped by domain-swapping experiments to the zinc finger and basic regions. However, the difference in the capacity between GATA-4 and GATA-5 to activate the LPH promoter was not due to a difference in affinity for binding to GATA binding sites on the LPH promoter. These data indicate that GATA-4 is a key regulator of LPH gene expression that may function through an evolutionarily conserved mechanism involving cooperativity with an HNF-1alpha and/or a GATA-specific pathway independent of HNF-1alpha.
Collapse
|
224
|
Linning KD, Tai MH, Madhukar BV, Chang CC, Reed DN, Ferber S, Trosko JE, Olson LK. Redox-mediated enrichment of self-renewing adult human pancreatic cells that possess endocrine differentiation potential. Pancreas 2004; 29:e64-76. [PMID: 15367896 DOI: 10.1097/00006676-200410000-00015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The limited availability of transplantable human islets has stimulated the development of methods needed to isolate adult pancreatic stem/progenitor cells capable of self-renewal and endocrine differentiation. The objective of this study was to determine whether modulation of intracellular redox state with N-acetyl-L-cysteine (NAC) would allow for the propagation of pancreatic stem/progenitor cells from adult human pancreatic tissue. METHODS Cells were propagated from human pancreatic tissue using a serum-free, low-calcium medium supplemented with NAC and tested for their ability to differentiate when cultured under different growth conditions. RESULTS Human pancreatic cell (HPC) cultures coexpressed alpha-amylase, albumin, vimentin, and nestin. The HPC cultures, however, did not express other genes associated with differentiated pancreatic exocrine, duct, or endocrine cells. A number of transcription factors involved in endocrine cell development including Beta 2, Islet-1, Nkx6.1, Pax4, and Pax6 were expressed at variable levels in HPC cultures. In contrast, pancreatic duodenal homeobox factor 1 (Pdx-1) expression was extremely low and at times undetectable. Overexpression of Pdx-1 in HPC cultures stimulated somatostatin, glucagon, and carbonic anhydrase expression but had no effect on insulin gene expression. HPC cultures could form 3-dimensional islet-like cell aggregates, and this was associated with expression of somatostatin and glucagon but not insulin. Cultivation of HPCs in a differentiation medium supplemented with nicotinamide, exendin-4, and/or LY294002, an inhibitor of phosphatidylinositol-3 kinase, stimulated expression of insulin mRNA and protein. CONCLUSION These data support the use of intracellular redox modulation for the enrichment of pancreatic stem/progenitor cells capable of self-renewal and endocrine differentiation.
Collapse
Affiliation(s)
- Katrina D Linning
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Wang Z, Fang R, Olds LC, Sibley E. Transcriptional regulation of the lactase-phlorizin hydrolase promoter by PDX-1. Am J Physiol Gastrointest Liver Physiol 2004; 287:G555-61. [PMID: 15107297 DOI: 10.1152/ajpgi.00011.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lactase-phlorizin hydrolase gene expression is spatially restricted along the anterior-posterior gut axis. Lactase gene transcription is maximal in the distal duodenum and jejunum in adult mammals and is barely detectable in the proximal duodenum. By contrast, pancreatic duodenal homeobox-1 (PDX-1) protein is expressed maximally in the proximal duodenum. This study aimed to determine the role of PDX-1 in regulating lactase gene promoter activity in intestinal epithelial cells. Caco-2 cells were cotransfected with lactase promoter-reporter constructs in the presence of a PDX-1 expression vector and assayed for luciferase activity. PDX-1 cotransfection results in repression of lactase promoter activity. Sequence analysis of the lactase promoter revealed a putative PDX-1 DNA binding site in the proximal 100-bp lactase gene promoter. EMSAs demonstrated that PDX-1 can interact with the lactase promoter binding site but not with a site in which the core PDX-1 binding sequence TAAT is mutated. Site-directed mutagenesis of the PDX-1 core binding site in the lactase promoter-reporter construct suggests that PDX-1 can function independently of DNA binding to its consensus binding site. Stable overexpression of PDX-1 results in repression of the endogenous human lactase gene in differentiated Caco-2 cells. Given the contrasting spatial expression pattern, PDX-1 may function to specify the anterior boundary of lactase expression in the small intestine and is thus a candidate regulator of anterior spatial restriction in the gut.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94304, USA
| | | | | | | |
Collapse
|
226
|
Moates JM, Magnuson MA. The Pal elements in the upstream glucokinase promoter exhibit dyad symmetry and display cell-specific enhancer activity when multimerised. Diabetologia 2004; 47:1632-40. [PMID: 15365616 DOI: 10.1007/s00125-004-1497-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 06/02/2004] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS The upstream glucokinase (betaGK) promoter has previously been shown to contain two 9-bp sequences, termed the Pal motifs, that are conserved in humans, rats and mice. These motifs are necessary for expression of the betaGK promoter in pancreatic beta cell lines and pituitary corticotrope cell lines. DNA probes containing the Pal motifs bind cell-type-specific protein complexes, but these motifs have not been completely characterised. METHODS Methylation interference and ultraviolet-crosslinking analysis were utilised to characterise, at the single nucleotide level, sites of protein binding within the elements themselves. To determine the function of these elements, mutational analysis of the betaGK promoter and of multimerised GK promoter sequences was performed. RESULTS Both Pal elements are 14 bp in length and have dyad symmetry. However, while the Pal-1 element is a perfect inverted repeat (GTCACCA-TGGTGAC), the Pal-2 element (GTCACCA-TAGAAAC) is an imperfect repeat. Ultraviolet-crosslinking analysis using nuclear extracts prepared from hamster insulinoma tumour (HIT) cells revealed that the three resolvable complexes that bind to the Pal-1 and Pal-2 elements contain different ratios of three proteins of different size (approximately 90, 110 and 150 M(r)). Mutation of a single nucleotide binding site abrogates betaGK promoter activity. Multimerised repeats of the Pal-1 element augment transcription in HIT cells, but not in baby hamster kidney (BHK) cells. CONCLUSIONS/INTERPRETATION These results suggest that different combinations of three proteins of different size bind to the Pal elements, probably as homodimers and heterodimers. Together, these results indicate that the betaGK promoter contains two novel 14-bp elements that, when multimerised, exhibit enhancer activity specific to neuroendocrine cells.
Collapse
Affiliation(s)
- J M Moates
- Department of Medicine, Vanderbilt University School of Medicine and The Nashville Veterans' Affairs Medical Center, Nashville, Tennessee, USA.
| | | |
Collapse
|
227
|
Koizumi M, Doi R, Toyoda E, Tulachan SS, Kami K, Mori T, Ito D, Kawaguchi Y, Fujimoto K, Gittes GK, Imamura M. Hepatic regeneration and enforced PDX-1 expression accelerate transdifferentiation in liver. Surgery 2004; 136:449-57. [PMID: 15300214 DOI: 10.1016/j.surg.2004.05.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Pancreatic duodenal homeobox gene-1 (PDX-1) has a dual task as a key regulator in pancreatic organogenesis and in functional maintenance of beta cells in adults. Recent studies have shown a close lineage relationship between the liver and the pancreas. In this study, we analyzed the plasticity of the liver by enforced expression of PDX-1 in streptozotocin (STZ)-treated mice under the condition of hepatic regeneration. METHODS Replication-deficient adenoviruses were constructed by the cosmid-adenoviral DNA terminal protein complex method. Mice were treated with STZ (200 mg/kg ip), and a 40% partial hepatectomy was performed at day 0. After 24 hours, Ad-pdx-1 or Ad-lacZ 2.0 x 10(9) PFU/body was injected via the tail vain into nontreated (control), STZ-treated, or STZ plus partial hepatectomy (Hx)-treated ICR mice. After 7 and 14 days, expression of PDX-1 and islet hormones was examined by immunohistologic and reverse transcription-polymerase chain reaction analysis. Blood glucose concentrations were measured every 2 days. Immunoreactive insulin (IRI) of serum and liver extract was measured by ELISA. RESULTS Most hepatocytes of Ad-pdx-1-infected mice were positive for PDX-1 expression by immunohistochemistry. In nontreated mice, very few cells expressed insulin and other hormones. In contrast, insulin and somatostatin were expressed in STZ-treated mice, and more cells were expressed in STZ plus Hx-treated mice. In addition, other beta-cell markers like GLUT2 and glucokinase were observed. Hyperglycemia was improved in STZ-treated mice and STZ plus Hx-treated mice. IRI of serum and liver extract was increased in STZ-treated mice and STZ plus Hx-treated mice. The insulin positive area of the liver in STZ plus Hx-treated mice was larger than that in nontreated and STZ-treated mice. CONCLUSIONS Ectopic PDX-1 expression alone may be insufficient to induce insulin-producing cells in the liver. STZ-induced hyperglycemia plus partial hepatectomy that leads to diabetic state and hepatic regeneration may stimulate the transdifferentiation of liver cells into insulin-producing cells.
Collapse
Affiliation(s)
- Masayuki Koizumi
- Department of Surgery and Surgical Basic Science, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Seaberg RM, Smukler SR, Kieffer TJ, Enikolopov G, Asghar Z, Wheeler MB, Korbutt G, van der Kooy D. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 2004; 22:1115-24. [PMID: 15322557 DOI: 10.1038/nbt1004] [Citation(s) in RCA: 362] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 06/07/2004] [Indexed: 12/11/2022]
Abstract
The clonal isolation of putative adult pancreatic precursors has been an elusive goal of researchers seeking to develop cell replacement strategies for diabetes. We report the clonal identification of multipotent precursor cells from the adult mouse pancreas. The application of a serum-free, colony-forming assay to pancreatic cells enabled the identification of precursors from pancreatic islet and ductal populations. These cells proliferate in vitro to form clonal colonies that coexpress neural and pancreatic precursor markers. Upon differentiation, individual clonal colonies produce distinct populations of neurons and glial cells, pancreatic endocrine beta-, alpha- and delta-cells, and pancreatic exocrine and stellate cells. Moreover, the newly generated beta-like cells demonstrate glucose-dependent Ca(2+) responsiveness and insulin release. Pancreas colonies do not express markers of embryonic stem cells, nor genes suggestive of mesodermal or neural crest origins. These cells represent a previously unidentified adult intrinsic pancreatic precursor population and are a promising candidate for cell-based therapeutic strategies.
Collapse
Affiliation(s)
- Raewyn M Seaberg
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto M5S 1A8, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Suzuki T, Kadoya Y, Sato Y, Handa K, Takahashi T, Kakita A, Yamashina S. The expression of pancreatic endocrine markers in centroacinar cells of the normal and regenerating rat pancreas: their possible transformation to endocrine cells. ACTA ACUST UNITED AC 2004; 66:347-58. [PMID: 14692690 DOI: 10.1679/aohc.66.347] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
To determine the progenitor nature of centroacinar cells (CACs), we attempted to compare the expression pattern of endocrine cell markers and PDX-1 (pancreatic duodenal homeobox gene 1) in CACs of both the quiescent and the regenerating rat pancreas. In the normal pancreas, most CACs were relatively small cells with sparse cytoplasm and oval or elongated nuclei. In addition, we noticed a distinct population of a small number of large cells with round nuclei in the centroacinar region. By immunohistochemistry, 0.21% and 0.3% of CACs in normal rat pancreas were respectively found positive for glucagon and insulin, being large CACs and designated as GL-CAC and IL-CAC. They also exhibited the mRNA of each hormone by in situ hybridization (ISH). The ISH signal for glucagon but not insulin was also detected in a subset of small CACs (designated GS-CAC). The expression of PDX-1 was also observed in subsets of small and large CACs (PS-CAC and PL-CAC, respectively). After a 90% pancreatectomy, the relative frequency for GS-CACs, but not those for other CACs, was significantly reduced in two days after surgery. On day 7 after surgery, the number of GS-CACs recovered to preoperative levels, whereas GL-CACs, IL-CACs, PS-CAC, and PL-CAC gradually increased to about double in number. From these results, a portion of CACs was suggested to differentiated into endocrine cells. A possible cell lineage is discussed for endocrine neogenesis during pancreatic regeneration.
Collapse
Affiliation(s)
- Tetsutaro Suzuki
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
230
|
Yoshida T, Tokunaga A, Nakao K, Okano H. Distinct expression patterns of splicing isoforms of mNumb in the endocrine lineage of developing pancreas. Differentiation 2004; 71:486-95. [PMID: 14641329 DOI: 10.1046/j.1432-0436.2003.7108006.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The pancreas is composed of three tissues: endocrine, exocrine, and duct. The endocrine/exocrine lineages diverge from the ductal lineage before E12.5 in mice, and then further separate into endocrine and exocrine precursors. These processes are regulated by differential activation of Notch1-mediated signaling, which is required to repress the expression of the pro-endocrine gene neurogenin3 (ngn3) in the exocrine lineage. Mammalian Numb (mNumb) is an ortholog of Drosophila Numb (dNumb), which is likely to be an intracellular inhibitor of Notch signaling, and has four splicing isoforms: PTBS-PRRS, PTBL-PRRS, PTBS-PRRL, and PTBL-PRRL. Here we developed an anti-PRRL antibody, which recognizes only the PRRL forms of mNumb. We then performed immunohistochemical analyses using anti-PRRL together with anti-pan Numb, which recognizes all the isoforms of mNumb, antibodies that determine the spatio-temporal expression pattern of mNumb in the mouse fetal pancreas. mNumb PRRS and PRRL were first expressed in identical cells in the early stage of pancreatic development (i.e., E10.5), but gradually became biased. At the stage of endocrine and exocrine divergence, mNumb PRRS continued to be expressed in endocrine lineage cells, whereas PRRL was down-regulated during endocrine differentiation. Even after the endocrine/exocrine divergence, notch1 expression was sustained in endocrine lineage, where ngn3 was expressed. These results agree with the notion that mNumb PRRS has an inhibitory effect on Notch signaling, indicating its potential roles in the differentiation of pancreatic endocrine lineage. In addition, islet cells, which are produced from ductal tissue, were immunostained by the anti-panNb antibody. Our present results will contribute to the understanding of the mechanisms of islet development from ductal tissue.
Collapse
Affiliation(s)
- Tetsu Yoshida
- Department of Physiology Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku Tokyo 160-8582, Japan
| | | | | | | |
Collapse
|
231
|
Stimulation of pancreatic islet neogenesis: a possible treatment for type 1 and type 2 diabetes. ACTA ACUST UNITED AC 2004. [DOI: 10.1097/01.med.0000125482.65536.0a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
232
|
Zecchin E, Mavropoulos A, Devos N, Filippi A, Tiso N, Meyer D, Peers B, Bortolussi M, Argenton F. Evolutionary conserved role of ptf1a in the specification of exocrine pancreatic fates. Dev Biol 2004; 268:174-84. [PMID: 15031114 DOI: 10.1016/j.ydbio.2003.12.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 12/02/2003] [Accepted: 12/03/2003] [Indexed: 11/18/2022]
Abstract
We have characterized and mapped the zebrafish ptf1a gene, analyzed its embryonic expression, and studied its role in pancreas development. In situ hybridization experiments show that from the 12-somite stage to 48 hpf, ptf1a is dynamically expressed in the spinal cord, hindbrain, cerebellum, retina, and pancreas of zebrafish embryos. Within the endoderm, ptf1a is initially expressed at 32 hpf in the ventral portion of the pdx1 expression domain; ptf1a is expressed in a subset of cells located on the left side of the embryo posteriorly to the liver primordium and anteriorly to the endocrine islet that arises from the posterodorsal pancreatic anlage. Then the ptf1a expression domain buds giving rise to the anteroventral pancreatic anlage that grows posteriorly to eventually engulf the endocrine islet. By 72 hpf, ptf1a continues to be expressed in the exocrine compartment derived from the anteroventral anlage. Morpholino-induced ptf1a loss of function suppresses the expression of the exocrine markers, while the endocrine markers in the islet are unaffected. In mind bomb (mib) mutants, in which delta-mediated notch signalling is defective [Dev. Cell 4 (2003) 67], ptf1a is normally expressed. In addition, the slow-muscle-omitted (smu) mutants that lack expression of endocrine markers because of a defective hedgehog signalling [Curr. Biol. 11(2001) 1358] exhibit normal levels of ptf1a. This indicates that hedgehog signaling plays a different genetic role in the specification of the anteroventral (mostly exocrine) and posterodorsal (endocrine) pancreatic anlagen.
Collapse
Affiliation(s)
- Elisabetta Zecchin
- Dipartimento di Biologia, Universita' degli Studi di Padova, Padova I-35131, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Hosotani R, Ida J, Kogire M, Fujimoto K, Doi R, Imamura M. Expression of pancreatic duodenal hoemobox-1 in pancreatic islet neogenesis after surgical wrapping in rats. Surgery 2004; 135:297-306. [PMID: 14976480 DOI: 10.1016/s0039-6060(03)00394-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Surgical wrapping (SW) of the pancreas causes islet neogenesis in rodents. Pancreatic duodenal hoemobox-1 (PDX-1) is one of the transcriptional factors needed by pancreatic stem cells to develop a mature pancreas. The purpose of this study was to determine whether islet neogenesis arises from ductal cells and whether PDX-1 is involved in this process. METHODS SW consisted of nonocclusive wrapping of the pancreas in rats. The wrapped pancreas was then harvested, insulin content was measured, and immunohistochemical analysis for insulin, cytokeratin, and PDX-1 was performed. RESULTS The endocrine area of the wrapped pancreas significantly increased after SW. Double immunostaining identified cells positive for both insulin and cytokeratin in or along the epithelial cell lining of the ductal structures and in the centroacinar cells. PDX-1-positive cells were detected in both control islets and islets examined after SW, but these cells were observed in the exocrine area only after SW. Double staining also showed that cells positive for PDX-1 but negative for insulin were present in the exocrine area 1 day after SW and that cells positive for both PDX-1 and insulin had developed 3 days after SW. CONCLUSIONS In the process of adult islet neogenesis after SW, cells in the acini and ductal structures developed into PDX-1-expressing cells, supposedly progenitor cells, which in turn became insulin-producing cells and thus might be the origin of small islets.
Collapse
Affiliation(s)
- Ryo Hosotani
- Department of Surgery and Surgical Basic Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
234
|
Melloul D. Transcription Factors in Islet Development and Physiology: Role of PDX-1 in Beta-Cell Function. Ann N Y Acad Sci 2004; 1014:28-37. [PMID: 15153417 DOI: 10.1196/annals.1294.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Differentiation of early foregut endoderm into pancreatic endocrine and exocrine cells depends on a cascade of gene activation events controlled by various transcription factors. The first molecular marker identified that specifies the early pancreatic epithelium is the homeodomain-containing transcription factor PDX-1. Its absence in mice and humans during development leads to agenesis of the pancreas. Later, it becomes restricted primarily to beta cells where it regulates the expression of beta cell-specific genes, and, most importantly, mediates the glucose effect on insulin gene transcription. Although exposure of beta cells to high glucose concentrations for relatively short periods stimulates insulin gene expression, chronic exposure has adverse effects on many beta-cell functions, including insulin gene transcription. These events appear to correlate with pdx-1 gene expression and its ability to bind the insulin gene. We consider that loss of PDX-1 function or altered pdx-1 gene expression due to mutations or functional impairment of transcription factors controlling its expression can lead to diabetes.
Collapse
Affiliation(s)
- Danielle Melloul
- Department of Endocrinology and Metabolism, The Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
235
|
Wang J, Elghazi L, Parker SE, Kizilocak H, Asano M, Sussel L, Sosa-Pineda B. The concerted activities of Pax4 and Nkx2.2 are essential to initiate pancreatic beta-cell differentiation. Dev Biol 2004; 266:178-89. [PMID: 14729487 DOI: 10.1016/j.ydbio.2003.10.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pancreatic beta cells play a central role in maintaining glucose homeostasis because they secrete insulin in response to increased level of blood glucose; failure of this capacity constitutes a major component of the pathogenesis of diabetes. The identification of key regulators of pancreatic beta-cell differentiation is relevant for the overall understanding of this process and for future experiments aimed at regenerating insulin-producing beta cells from pancreatic or embryonic stem cells. Several studies using transgenic or knockout mice have established that the development and function of pancreatic beta cells are controlled by several genes encoding specific transcription factors. By inactivating the homeobox gene Pax4, we previously demonstrated that its function is required for the formation of mature insulin-producing cells. Here, we show that during pancreas ontogeny, Pax4 is expressed in differentiating endocrine cells, including beta cells. Pax4 activity appears essential for appropriate initiation of beta-cell differentiation because loss of Pax4 prevents the expression of Pdx1, HB9 and insulin in beta-cell precursors. This role of Pax4 appears to be accomplished via its genetic interaction with another homeobox gene, Nkx2.2.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
236
|
Li L, Yi Z, Seno M, Kojima I. Activin A and betacellulin: effect on regeneration of pancreatic beta-cells in neonatal streptozotocin-treated rats. Diabetes 2004; 53:608-15. [PMID: 14988244 DOI: 10.2337/diabetes.53.3.608] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Activin A and betacellulin (BTC) are thought to regulate differentiation of pancreatic beta-cells during development and regeneration of beta-cells in adults. In the present study, we used neonatal rats treated with streptozotocin (STZ) to investigate the effects of activin A and BTC on regeneration of pancreatic beta-cells. One-day-old Sprague-Dawley rats were injected with STZ (85 micro g/g) and then administered for 7 days with activin A and/or BTC. Treatment with activin A and BTC significantly reduced the plasma glucose concentration and the plasma glucose response to intraperitoneal glucose loading. The pancreatic insulin content and beta-cell mass in rats treated with activin A and BTC were significantly increased compared with the control group on day 8 and at 2 months. Treatment with activin A and BTC significantly increased the DNA synthesis in preexisting beta-cells, ductal cells, and delta-cells. The number of islet cell-like clusters (ICCs) and islets was significantly increased by treatment with activin A and BTC. In addition, the number of insulin/somatostatin-positive cells and pancreatic duodenal homeobox-1/somatostatin-positive cells was significantly increased. These results indicate that, in neonatal STZ-treated rats, a combination of activin A and BTC promoted regeneration of pancreatic beta-cells and improved glucose metabolism in adults.
Collapse
Affiliation(s)
- Lei Li
- Department of Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | | | | | | |
Collapse
|
237
|
Ko SH, Suh SH, Kim BJ, Ahn YB, Song KH, Yoo SJ, Son HS, Cha BY, Lee KW, Son HY, Kang SK, Bonner-Weir S, Weir GC, Yoon KH, Park CG. Expression of the intermediate filament vimentin in proliferating duct cells as a marker of pancreatic precursor cells. Pancreas 2004; 28:121-8. [PMID: 15028943 DOI: 10.1097/00006676-200403000-00002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES The expression of the intermediate filament (IF) vimentin, usually considered a marker of mesenchymal cells, has been observed in the epithelial cells during embryogenesis, carcinogenesis, and dedifferentiation, suggesting that it might be useful as a marker of proliferating precursor cells in the pancreas. METHODS Rat pancreata at E18 and at different time points after partial pancreatectomy (Px) and human and neonatal pig pancreatic tissue sections and monolayer cultured pancreatic duct cells were observed. All tissues were simultaneously immunostained with pancytokeratin and vimentin antibodies. In costained duct cells, PDX-1 or PCNA expression was also analyzed using confocal microscope images. RESULTS In the rat embryonic pancreas at E18, all epithelial cells that formed ductlike structures expressed both cytokeratin and vimentin IF, whereas no duct cells costained for IF in the adult rat or neonatal pig pancreas. Such costaining reappeared in the following order: common pancreatic duct, main ducts, foci of regeneration and then disappeared completely at 30 days after Px. In humans, costaining was found in only 1 diabetic patient's pancreatic section, which was accompanied by massive duct cell proliferation. In monolayer culture, most of the duct cells of human and neonatal pigs coexpressed both IF proteins. Only a few costained duct cells also expressed PDX-1, and most of those cells were also stained with PCNA in rat embryonic pancreas and regenerating foci after partial Px. CONCLUSIONS Vimentin IF expression might be a useful marker for pancreatic precursor cells and could be used to investigate the concept of the dedifferentiation of fully matured duct cells during the process of the beta-cell neogenesis.
Collapse
Affiliation(s)
- S H Ko
- Division of Endocrinology and Metabolism, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Abstract
Many transcription factors are critical for ensuring proper embryonic development of the endocrine pancreas and normal islet function. The transcription factor pancreatic duodenal homeobox 1 (PDX-1) is uniformly expressed in early pancreatic buds of embryos as well as the beta and delta cells of the islets of Langerhans. PDX-1 has also been found in dispersed endocrine cells of the duodenum in adults and plays a key role in pancreas formation. It has been reported that null mutation of PDX-1 in mice results in a failure of the pancreatic bud to expand; thus, the mice die 2-3 days after birth from hyperglycemia and dehydration. Heterozygous PDX-1 mice developed a pancreas but were diabetic. It has been shown that PDX-1 is required for maintaining the pancreatic islet functions by activating gene transcriptions including insulin, somatostatin (SST), islet amyloid polypeptide, glucose transporter type 2, and glucokinase. PDX-1 serves a dual role in pancreatic development. It initially contributes to pancreatic formation during embryogenesis and subsequently regulates the pancreatic islet cell physiology in mature islet cells. Understanding the underlying molecular mechanisms of pancreas formation, especially the function of PDX-1, may contribute to the enhanced treatment and prevention of debilitating diseases such as diabetes, insulinomas, and pancreatic carcinomas.
Collapse
Affiliation(s)
- Satoshi Ashizawa
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
239
|
Doyle MJ, Sussel L. Engineering islets: lessons from stem cells and embryonic development. Endocrinol Metab Clin North Am 2004; 33:149-62, x. [PMID: 15053900 DOI: 10.1016/s0889-8529(03)00100-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Michelle J Doyle
- Departments of Pediatrics and Cellular and Developmental Biology, Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Box B140, Denver, CO 80262, USA
| | | |
Collapse
|
240
|
Abstract
The diagnostic criteria for chronic pancreatitis proposed by the Japan Pancreas Society (JPS) classified chronic pancreatitis into (i) definite; (ii) probable, and (iii) possible chronic pancreatitis, excluding obstructive, inflammatory (autoimmune) and tumor-forming pancreatitis from the definition of chronic pancreatitis. In the JPS Criteria, imaging studies, pancreatic function tests, and histological findings are independent of each other, and thus the diagnosis of chronic pancreatitis is made if one of the criteria is satisfied, regardless of the etiology of the chronic pancreatitis. The current diagnostic criteria for chronic pancreatitis depend on abnormalities of the duct system, such as low bicarbonate output, dilation of main pancreatic duct and duct branches, and calculi in the ducts by imaging studies. We revealed that the difference between reversible and irreversible pancreatitis in experimental animals is dependent on the degree of damage of the duct epithelium where pancreas progenitor cells exist. Thus, chronic pancreatitis diagnosed by the current criteria based on abnormalities of the duct system is irreversible. In contrast, the epithelium of the ducts is usually preserved in obstructive and autoimmune pancreatitis in that both structural and functional changes recover almost completely when the obstruction is removed or the inflammatory changes disappear following steroid administration. Even in chronic pancreatitis defined as irreversible, there must be a reversible stage during its clinical course. There is a need to develop biological markers and/or imaging procedure to detect chronic pancreatitis at its reversible stage.
Collapse
Affiliation(s)
- Makoto Otsuki
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| |
Collapse
|
241
|
Norgaard GA, Jensen JN, Jensen J. FGF10 signaling maintains the pancreatic progenitor cell state revealing a novel role of Notch in organ development. Dev Biol 2004; 264:323-38. [PMID: 14651921 DOI: 10.1016/j.ydbio.2003.08.013] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FGF10 plays an important role in the morphogenesis of several tissues by control of mesenchymal-to-epithelial signaling. In the pancreas, mesenchymal FGF10 is required to maintain the Pdx1-expressing epithelial progenitor cell population, and in the absence of FGF10 signaling, these cells fail to proliferate. Ectopic expression of FGF10 in the pancreatic epithelium caused increased proliferation of pancreatic progenitor cells and abrogation of pancreatic cell differentiation of all cell types. A hyperplastic pancreas consisting of undifferentiated cells expressing Pdx1, Nkx6.1, and cell adhesion markers normally characterizing early pancreatic progenitor cells resulted. Differentiation was attenuated even as proliferation of the pancreatic cells slowed during late gestation, suggesting that the trophic effect of FGF10 was independent of its effects upon cell differentiation. The FGF10-positive pancreatic cells expressed Notch1 and Notch2, the Notch-ligand genes Jagged1 and Jagged2, as well as the Notch target gene Hes1. This activation of Notch is distinct from the previously recognized mechanism of lateral inhibition. These data suggest that FGF10 signaling serves to integrate cell growth and terminal differentiation at the level of Notch activation, revealing a novel second role of this key signaling system during pancreatic development.
Collapse
Affiliation(s)
- Gitte Anker Norgaard
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
242
|
Islet-derived multipotential cells/progenitor cells. Cell Biochem Biophys 2004. [DOI: 10.1007/bf02739015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
243
|
Abstract
The "engineering" of a tissue implies that it can be constructed by assembling the necessary components. However, tissues are formed through an evolving, interactive process, not through a collection of parts. This chapter focuses on the biology of the progenitor cell, the native precursor to new tissue, and its role in neogenesis, or the de novo generation of functional tissue. We present a working hypothesis for the generation of parenchymal cell populations and use this hypothesis as a basis for analysis of three parenchymal populations, epidermal cells, hepatocytes of the liver, and pancreatic islets, with a view toward what impact this information will have on the development of cell therapies. By comparing developmental processes, response to injury and disease, and behavior in vitro, we conclude that the adult progenitor cell retains the potential for substantial growth and organ neogenesis and that its biological properties make it the cell of first choice for the engineering of tissues.
Collapse
|
244
|
Gerrish K, Van Velkinburgh JC, Stein R. Conserved transcriptional regulatory domains of the pdx-1 gene. Mol Endocrinol 2003; 18:533-48. [PMID: 14701942 DOI: 10.1210/me.2003-0371] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The pancreas and duodenum homeobox protein 1 (PDX-1) homeodomain-containing transcription factor affects both pancreatic endocrine cell development and adult islet beta-cell function. Cell-type-specific expression is controlled by sequences 5' flanking the pdx-1 gene transcription start site. One principal control region is located roughly between -2800 and -1600 bp and spans three conserved, distinct, and functionally important subdomains, termed areas I, II, and III. In this study, we found that an upstream control region in the rat pdx-1 gene located between -6200 and -5670 bp is also present in the mouse, chicken, and human genes. This region is capable of independently directing pancreatic beta-cell-selective reporter gene expression and potentiating area I/II-driven activity. This newly recognized conserved subdomain has been termed area IV. The islet-enriched forkhead box A2 (FoxA2), NK2 homeobox 2.2 (Nkx2.2), and pancreas and duodenum homeobox protein 1 (PDX-1) transcription factors have been shown to activate area IV-driven reporter gene expression as well as bind to this region of the endogenous gene in beta-cells. Analysis of the histone H3 and H4 acetylation level also indicated that areas I-IV are within transcriptionally active chromatin in beta-cells. Our data suggests that pdx-1 transcription is also regulated by factors acting upon conserved area IV sequences.
Collapse
Affiliation(s)
- Kevin Gerrish
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 723 Light Hall, Nashville, Tennessee 37215, USA
| | | | | |
Collapse
|
245
|
Murtaugh LC, Stanger BZ, Kwan KM, Melton DA. Notch signaling controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci U S A 2003; 100:14920-5. [PMID: 14657333 PMCID: PMC299853 DOI: 10.1073/pnas.2436557100] [Citation(s) in RCA: 628] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Multiple cell types of the pancreas appear asynchronously during embryogenesis, which requires that pancreatic progenitor cell potential changes over time. Loss-of-function studies have shown that Notch signaling modulates the differentiation of these progenitors, but it remains unclear how and when the Notch pathway acts. We established a modular transgenic system to heritably activate mouse Notch1 in multiple types of progenitors and differentiated cells. We find that misexpression of activated Notch in Pdx1-expressing progenitor cells prevents differentiation of both exocrine and endocrine lineages. Progenitors remain trapped in an undifferentiated state even if Notch activation occurs long after the pancreas has been specified. Furthermore, endocrine differentiation is associated with escape from this activity, because Ngn3-expressing endocrine precursors are susceptible to Notch inhibition, whereas fully differentiated endocrine cells are resistant.
Collapse
Affiliation(s)
- L Charles Murtaugh
- Howard Hughes Medical Institute and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
246
|
Montuenga LM, Guembe L, Burrell MA, Bodegas ME, Calvo A, Sola JJ, Sesma P, Villaro AC. The diffuse endocrine system: from embryogenesis to carcinogenesis. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 2003; 38:155-272. [PMID: 12756892 DOI: 10.1016/s0079-6336(03)80004-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the present review we will summarise the current knowledge about the cells comprising the Diffuse Endocrine System (DES) in mammalian organs. We will describe the morphological, histochemical and functional traits of these cells in three major systems gastrointestinal, respiratory and prostatic. We will also focus on some aspects of their ontogeny and differentiation, as well as to their relevance in carcinogenesis, especially in neuroendocrine tumors. The first chapter describes the characteristics of DES cells and some of their specific biological and biochemical traits. The second chapter deals with DES in the gastrointestinal organs, with special reference to the new data on the differentiation mechanisms that leads to the appearance of endocrine cells from an undifferentiated stem cell. The third chapter is devoted to DES of the respiratory system and some aspects of its biological role, both, during development and adulthood. Neuroendocrine hyperplasia and neuroendocrine lung tumors are also addressed. Finally, the last chapter deals with the prostatic DES, discussing its probable functional role and its relevance in hormone-resistant prostatic carcinomas.
Collapse
Affiliation(s)
- Luis M Montuenga
- Department of Histology and Pathology, Schools of Science and Medicine, University of Navarra, 31080 Pamplona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
247
|
Miyatsuka T, Kaneto H, Kajimoto Y, Hirota S, Arakawa Y, Fujitani Y, Umayahara Y, Watada H, Yamasaki Y, Magnuson MA, Miyazaki J, Hori M. Ectopically expressed PDX-1 in liver initiates endocrine and exocrine pancreas differentiation but causes dysmorphogenesis. Biochem Biophys Res Commun 2003; 310:1017-25. [PMID: 14550306 DOI: 10.1016/j.bbrc.2003.09.108] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To date, the potency of pancreatic and duodenal homeobox gene 1 (PDX-1) in inducing differentiation into insulin-producing cells has been demonstrated in some cells and tissues. In order to carry out efficient screening of somatic tissues and cells that can transdifferentiate into beta-cell-like cells in response to PDX-1, we generated CAG-CAT-PDX1 transgenic mice carrying a transgene cassette composed of the chicken beta-actin gene (CAG) promoter and a floxed stuffer DNA sequence (CAT) linked to PDX-1 cDNA. When the mice were crossed with Alb-Cre mice, which express the Cre recombinase driven by the rat albumin gene promoter, PDX-1 was expressed in more than 50% of hepatocytes and cholangiocytes. The PDX-1 (+) livers expressed a variety of endocrine hormone genes such as insulin, glucagon, somatostatin, and pancreatic polypeptide. In addition, they expressed exocrine genes such as elastase-1 and chymotrypsinogen 1B. However, the mice exhibited marked jaundice due to conjugated hyperbilirubinemia, and the liver tissue displayed abnormal lobe structures and multiple cystic lesions. Thus, the in vivo ectopic expression of PDX-1 in albumin-producing cells was able to initiate but not complete the differentiation of liver cells into pancreatic cells. The conditional PDX-1 transgenic mouse system developed in this study appeared to be useful for efficient screening of PDX-1 responsive somatic tissues and cells.
Collapse
Affiliation(s)
- T Miyatsuka
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Collombat P, Mansouri A, Hecksher-Sorensen J, Serup P, Krull J, Gradwohl G, Gruss P. Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev 2003; 17:2591-603. [PMID: 14561778 PMCID: PMC218152 DOI: 10.1101/gad.269003] [Citation(s) in RCA: 412] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genes encoding homeodomain-containing proteins potentially involved in endocrine pancreas development were isolated by combined in silico and nested-PCR approaches. One such transcription factor, Arx, exhibits Ngn3-dependent expression throughout endocrine pancreas development in alpha, beta-precursor, and delta cells. We have used gene targeting in mouse embryonic stem cells to generate Arx loss-of-function mice. Arx-deficient animals are born at the expected Mendelian frequency, but develop early-onset hypoglycemia, dehydration, and weakness, and die 2 d after birth. Immunohistological analysis of pancreas from Arx mutants reveals an early-onset loss of mature endocrine alpha cells with a concomitant increase in beta-and delta-cell numbers, whereas islet morphology remains intact. Our study indicates a requirement of Arx for alpha-cell fate acquisition and a repressive action on beta-and delta-cell destiny, which is exactly the opposite of the action of Pax4 in endocrine commitment. Using multiplex reverse transcriptase PCR (RT-PCR), we demonstrate an accumulation of Pax4 and Arx transcripts in Arx and Pax4 mutant mice, respectively. We propose that the antagonistic functions of Arx and Pax4 for proper islet cell specification are related to the pancreatic levels of the respective transcripts.
Collapse
Affiliation(s)
- Patrick Collombat
- Department of Molecular Cell Biology, Max-Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
249
|
Abstract
Type I diabetes results from the autoimmune-mediated destruction of pancreatic beta cells, which regulate blood sugar levels by secretion of insulin. Recent clinical data suggest that the disease could be cured if an adequate supply of new beta-cells were available, and one goal of pancreatic developmental biology is to understand how endogenous beta-cells are made, with the hope of making them exogenously. Much is now known about the transcriptional regulation of pancreatic organ specification, growth, and lineage allocation; less is known about intercellular signals that regulate this process, but candidates continue to emerge. Additional insights, often contradicting older models, have come from the application of new lineage-tracing techniques. Altogether, these studies also shed light on the still-elusive pancreatic stem cell, which may participate in normal organ maintenance as well as recovery from injury. A rigorous proof of the existence of such a cell, whether in vivo or in vitro, would offer real hope for the prospect of controlled beta-cell generation in a clinical setting.
Collapse
Affiliation(s)
- L Charles Murtaugh
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
250
|
Vincent M, Guz Y, Rozenberg M, Webb G, Furuta M, Steiner D, Teitelman G. Abrogation of protein convertase 2 activity results in delayed islet cell differentiation and maturation, increased alpha-cell proliferation, and islet neogenesis. Endocrinology 2003; 144:4061-9. [PMID: 12933680 DOI: 10.1210/en.2003-0088] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To date, the role of pancreatic hormones in pancreatic islet growth and differentiation is poorly understood. To address this issue, we examined mice with a disruption in the gene encoding prohormone convertase 2 (PC2). These mice are unable to process proglucagon, prosomatostatin, and other neuroendocrine precursors into mature hormones. Initiation of insulin (IN) expression during development was delayed in PC2 mutant mice. Cells containing IN were first detected in knockout embryos on d 15 of development, 5 d later than in wild-type littermates. However, the IN(+) cells of d 15 PC2 mutant mice coexpressed glucagon, as did the first appearing beta-cells of controls. In addition, lack of PC2 perturbed the pattern of expression of transcription factors presumed to be involved in the determination of the mature alpha-cell phenotype. Thus, in contrast to controls, alpha-cells of mutant mice had protracted expression of Nkx 6.1 and Pdx-1, but did not express Brn-4. Islets of adult mutant mice also contained cells coexpressing insulin and somatostatin, an immature cell type found only in islets of the wild-type strain during development. In addition to the effects on islet cell differentiation, the absence of PC2 activity resulted in a 3-fold increase in the rate of proliferation of proglucagon cells during the perinatal period. This increase contributed to the development of alpha-cell hyperplasia during postnatal life. Furthermore, the total beta-cell volume was increased 2-fold in adult mutants compared with controls. This increase was due to islet neogenesis, as the number of islets per section was significantly higher in knockout mice compared with wild-type mice, whereas both strains had similar rates of IN cell proliferation. These results indicate that hormones processed by PC2 affected processes that regulate islet cell differentiation and maturation in embryos and adults.
Collapse
Affiliation(s)
- M Vincent
- Department of Anatomy and Cell Biology, State University of New York, Brooklyn, New York 11203, USA
| | | | | | | | | | | | | |
Collapse
|