201
|
Opasawatchai A, Amornsupawat P, Jiravejchakul N, Chan-In W, Spoerk NJ, Manopwisedjaroen K, Singhasivanon P, Yingtaweesak T, Suraamornkul S, Mongkolsapaya J, Sakuntabhai A, Matangkasombut P, Loison F. Neutrophil Activation and Early Features of NET Formation Are Associated With Dengue Virus Infection in Human. Front Immunol 2019; 9:3007. [PMID: 30687301 PMCID: PMC6336714 DOI: 10.3389/fimmu.2018.03007] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/05/2018] [Indexed: 12/26/2022] Open
Abstract
The involvement of the immune system in the protection and pathology of natural dengue virus (DENV) has been extensively studied. However, despite studies that have referred to activation of neutrophils in DENV infections, the exact roles of neutrophils remain elusive. Here, we explored the phenotypic and functional responses of neutrophils in a cohort of adult dengue patients. Results indicated that during an acute DENV infection, neutrophils up-regulate CD66b expression, and produce a more robust respiratory response as compared with that in convalescent or healthy individuals; this confirmed in vivo neutrophil activation during DENV infection. Spontaneous decondensation of nuclei, an early event of neutrophil extracellular trap (NET) formation, was also markedly increased in cells isolated from DENV-infected patients during the acute phase of the infection. In vitro incubation of NETs with DENV-2 virus significantly decreased DENV infectivity. Interestingly, increased levels of NET components were found in the serum of patients with more severe disease form-dengue hemorrhagic fever (DHF), but not uncomplicated dengue fever, during the acute phase of the infection. Levels of pro-inflammatory cytokines IL-8 and TNFα were also increased in DHF patients as compared with those in healthy and DF subjects. This suggested that NETs may play dual roles during DENV infection. The increased ability for NET formation during acute DENV infection appeared to be independent of PAD4-mediated histone H3 hyper-citrullination. Our study suggests that neutrophils are involved in immunological responses to DENV infection.
Collapse
Affiliation(s)
- Anunya Opasawatchai
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Faculty of Dentistry, Mahidol University, Bangkok, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Panicha Amornsupawat
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Wilawan Chan-In
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Nicholas J Spoerk
- Department of Bacteriology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Pratap Singhasivanon
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Juthathip Mongkolsapaya
- Department of Medicine, Imperial College London, London, United Kingdom.,Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anavaj Sakuntabhai
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique (CNRS), URA3012, Paris, France
| | - Ponpan Matangkasombut
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Fabien Loison
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
202
|
Neutrophil Function in an Inflammatory Milieu of Rheumatoid Arthritis. J Immunol Res 2018; 2018:8549329. [PMID: 30622982 PMCID: PMC6304923 DOI: 10.1155/2018/8549329] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/31/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by the presence of autoantibodies against citrullinated protein antigens and proinflammatory cytokines which cause chronic synovitis, bone erosion, and eventual deformity; however, the precise etiology of RA is unclear. In the early stage of RA, neutrophils migrate into the articular cavity, become activated, and exert their function in an inflammatory process, suggesting an essential role of neutrophils in the initial events contributing to the pathogenesis of RA. Solid evidence exists that supports the contribution of neutrophil extracellular traps (NETs) to the production of autoantibodies against citrullinated proteins which can trigger the immune reaction in RA. Concurrently, proinflammatory cytokines regulate the neutrophil migration, apoptosis, and NET formation. As a result, the inflammatory neutrophils produce more cytokines and influence other immune cells thereby perpetuating the inflammatory condition in RA. In this review, we summarize the advances made in improving our understanding of neutrophil migration, apoptosis, and NET formation in the presence of an RA inflammatory milieu. We will also discuss the most recent strategies in modulating the inflammatory microenvironment that have an impact on neutrophil function which may provide alternative novel therapies for RA.
Collapse
|
203
|
Tohme S, Yazdani HO, Sud V, Loughran P, Huang H, Zamora R, Simmons RL, Vodovotz Y, Tsung A. Computational Analysis Supports IL-17A as a Central Driver of Neutrophil Extracellular Trap-Mediated Injury in Liver Ischemia Reperfusion. THE JOURNAL OF IMMUNOLOGY 2018; 202:268-277. [PMID: 30504418 DOI: 10.4049/jimmunol.1800454] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
Hepatic ischemia reperfusion (I/R) is a clinically relevant model of acute sterile inflammation leading to a reverberating, self-sustaining inflammatory response with resultant necrosis. We hypothesized that computerized dynamic network analysis (DyNA) of 20 inflammatory mediators could help dissect the sequence of post-I/R mediator interactions that induce injury. Although the majority of measured inflammatory mediators become elevated in the first 24 h, we predicted that only a few would be secreted early in the process and serve as organizational centers of downstream intermediator complexity. In support of this hypothesis, DyNA inferred a central organizing role for IL-17A during the first 3 h of reperfusion. After that, DyNA revealed connections among almost all the inflammatory mediators, representing an ongoing cytokine storm. Blocking IL-17A immediately after reperfusion disassembled the inflammatory networks and protected the liver from injury. Disassembly of the networks was not achieved if IL-17A blockage was delayed two or more hours postreperfusion. Network disassembly was accompanied by decrease in neutrophil infiltration and neutrophil extracellular trap (NET) formation. By contrast, administration of recombinant IL-17A increased neutrophil infiltration, NET formation, and liver necrosis. The administration of DNase, a NET inhibitor, significantly reduced hepatic damage despite prior administration of IL-17A, and DNase also disassembled the inflammatory networks. In vitro, IL-17A was a potent promoter of NET formation. Therefore, computational analysis identified IL-17A's early, central organizing role in the rapid evolution of a network of inflammatory mediators that induce neutrophil infiltration and NET formation responsible for hepatic damage after liver I/R.
Collapse
Affiliation(s)
- Samer Tohme
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213;
| | - Hamza O Yazdani
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Vikas Sud
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213.,Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213; and
| | - Hai Huang
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219
| | - Richard L Simmons
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| |
Collapse
|
204
|
Li RHL, Tablin F. A Comparative Review of Neutrophil Extracellular Traps in Sepsis. Front Vet Sci 2018; 5:291. [PMID: 30547040 PMCID: PMC6280561 DOI: 10.3389/fvets.2018.00291] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/31/2018] [Indexed: 01/03/2023] Open
Abstract
Sepsis is the leading cause of critical illness and mortality in human beings and animals. Neutrophils are the primary effector cells of innate immunity during sepsis. Besides degranulation and phagocytosis, neutrophils also release neutrophil extracellular traps (NETs), composed of cell-free DNA, histones, and antimicrobial proteins. Although NETs have protective roles in the initial stages of sepsis, excessive NET formation has been found to induce thrombosis and multiple organ failure in murine sepsis models. Since the discovery of NETs nearly a decade ago, many investigators have identified NETs in various species. However, many questions remain regarding the exact mechanisms and fate of neutrophils following NET formation. In humans and mice, platelet-neutrophil interactions via direct binding or soluble mediators seem to play an important role in mediating NET formation during sepsis. Preliminary data suggest that these interactions may be species dependent. Regardless of these differences, there is increasing evidence in human and veterinary medicine suggesting that NETs play a crucial role in the pathogenesis of intravascular thrombosis and multiple organ failure in sepsis. Because the outcome of sepsis is highly dependent on early recognition and intervention, detection of NETs or NET components can aid in the diagnosis of sepsis in humans and veterinary species. In addition, the use of novel therapies such as deoxyribonuclease and non-anticoagulant heparin to target NET components shows promising results in murine septic models. Much work is needed in translating these NET-targeting therapies to clinical practice.
Collapse
Affiliation(s)
- Ronald H L Li
- Department of Radiological and Surgical Sciences, School of Veterinary Medicine, University of California, Davis Davis, CA, United States
| | - Fern Tablin
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis Davis, CA, United States
| |
Collapse
|
205
|
Hu Y, Li H, Yan R, Wang C, Wang Y, Zhang C, Liu M, Zhou T, Zhu W, Zhang H, Dong N, Wu Q. Increased Neutrophil Activation and Plasma DNA Levels in Patients with Pre-Eclampsia. Thromb Haemost 2018; 118:2064-2073. [PMID: 30453347 DOI: 10.1055/s-0038-1675788] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pre-eclampsia (PE) is a chronic inflammatory disease in pregnancy, which is associated with enhanced blood coagulation and high thrombotic risk. To date, the mechanisms underlying such an association are not fully understood. Previous studies reported high levels of plasma deoxyribonucleic acid (DNA) in PE women, but the cellular source of the circulation DNA remains unknown. In this study, we tested the hypothesis that activated neutrophils undergoing cell death, also called NETosis, may be responsible for the elevated plasma DNA levels in PE women. We analysed plasma samples from non-pregnant, normal pregnant and PE women and found high levels of double-stranded DNA, myeloperoxidase (an abundant neutrophil granular enzyme) and histones (the major nucleosome proteins) in PE-derived samples, indicating increased NETosis in the maternal circulation. The high plasma DNA levels positively correlated with enhanced blood coagulation in PE women. When isolated neutrophils from normal individuals were incubated with PE-derived plasma, an elevated NETosis-stimulating activity was detected. Further experiments showed that endothelial micro-particles, but not soluble proteins, in the plasma were primarily responsible for the NETosis-stimulating activity in PE women. These results indicate that circulating micro-particles from damaged maternal endothelium are a potent stimulator for neutrophil activation and NETosis in PE women. Given the pro-coagulant and pro-thrombotic nature of granular and nuclear contents from neutrophils, enhanced systemic NETosis may represent an important mechanism underlying the hyper-coagulability and increased thrombotic risk in PE.
Collapse
Affiliation(s)
- Yae Hu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,Department of Pathophysiology, Medical School of Nantong University, Nantong University, Nantong, China
| | - Hui Li
- Central Laboratory, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Ruhong Yan
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Can Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Yun Wang
- Department of Obstetrics and Gynecology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Ce Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Weipei Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Medical College, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
206
|
Kundert F, Platen L, Iwakura T, Zhao Z, Marschner JA, Anders HJ. Immune mechanisms in the different phases of acute tubular necrosis. Kidney Res Clin Pract 2018; 37:185-196. [PMID: 30254843 PMCID: PMC6147180 DOI: 10.23876/j.krcp.2018.37.3.185] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022] Open
Abstract
Acute kidney injury is a clinical syndrome that can be caused by numerous diseases including acute tubular necrosis (ATN). ATN evolves in several phases, all of which are accompanied by different immune mechanisms as an integral component of the disease process. In the early injury phase, regulated necrosis, damage-associated molecular patterns, danger sensing, and neutrophil-driven sterile inflammation enhance each other and contribute to the crescendo of necroinflammation and tissue injury. In the late injury phase, renal dysfunction becomes clinically apparent, and M1 macrophage-driven sterile inflammation contributes to ongoing necroinflammation and renal dysfunction. In the recovery phase, M2-macrophages and anti-inflammatory mediators counteract the inflammatory process, and compensatory remnant nephron and cell hypertrophy promote an early functional recovery of renal function, while some tubules are still badly injured and necrotic material is removed by phagocytes. The resolution of inflammation is required to promote the intrinsic regenerative capacity of tubules to replace at least some of the necrotic cells. Several immune mechanisms support this wound-healing-like re-epithelialization process. Similar to wound healing, this response is associated with mesenchymal healing, with a profound immune cell contribution in terms of collagen production and secretion of profibrotic mediators. These and numerous other factors determine whether, in the chronic phase, persistent loss of nephrons and hyperfunction of remnant nephrons will result in stable renal function or progress to decline of renal function such as progressive chronic kidney disease.
Collapse
Affiliation(s)
- Fedor Kundert
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Louise Platen
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Takamasa Iwakura
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Zhibo Zhao
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Julian A Marschner
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
207
|
Monti M, De Rosa V, Iommelli F, Carriero MV, Terlizzi C, Camerlingo R, Belli S, Fonti R, Di Minno G, Del Vecchio S. Neutrophil Extracellular Traps as an Adhesion Substrate for Different Tumor Cells Expressing RGD-Binding Integrins. Int J Mol Sci 2018; 19:ijms19082350. [PMID: 30096958 PMCID: PMC6121671 DOI: 10.3390/ijms19082350] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 11/16/2022] Open
Abstract
Neutrophil extracellular traps (NETs), in addition to their function as a host defense mechanism, play a relevant role in thrombus formation and metastatic dissemination of cancer cells. Here we screened different cancer cell lines endogenously expressing a variety of integrins for their ability to bind to NETs. To this end, we used NETs isolated from neutrophil-like cells as a substrate for adhesion assays of HT1080, U-87 MG, H1975, DU 145, PC-3 and A-431 cells. Levels of α5, αIIb, αv, β1, β3 and β5 chains were determined by western blot analysis in all cell lines and levels of whole integrins on the plasma membrane were assessed by fluorescence-activated cell sorting (FACS) analysis. We found that high levels of α5β1, αvβ3 and αvβ5 enhance cell adhesion to NETs, whereas low expression of α5β1 prevents cell attachment to NETs. Excess of cyclic RGD peptide inhibited cell adhesion to NETs by competing with fibronectin within NETs. The maximal reduction of such adhesion was similar to that obtained by DNase 1 treatment causing DNA degradation. Our findings indicate that NETs from neutrophil-like cells may be used as a substrate for large screening of the adhesion properties of cancer cells expressing a variety of RGD-binding integrins.
Collapse
Affiliation(s)
- Marcello Monti
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Via S. Pansini 5, 80131 Naples, Italy.
| | - Viviana De Rosa
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, 80145 Naples, Italy.
| | - Francesca Iommelli
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, 80145 Naples, Italy.
| | - Maria Vincenza Carriero
- Dipartimento di Oncologia Sperimentale, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80145 Naples, Italy.
| | - Cristina Terlizzi
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli "Federico II", Via S. Pansini 5, 80145 Naples, Italy.
| | - Rosa Camerlingo
- Dipartimento di Oncologia Sperimentale, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80145 Naples, Italy.
| | - Stefania Belli
- Istituto di Genetica e Biofisica, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy.
| | - Rosa Fonti
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, 80145 Naples, Italy.
| | - Giovanni Di Minno
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Via S. Pansini 5, 80131 Naples, Italy.
| | - Silvana Del Vecchio
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, 80145 Naples, Italy.
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli "Federico II", Via S. Pansini 5, 80145 Naples, Italy.
| |
Collapse
|
208
|
Cooper PR, Chicca IJ, Holder MJ, Milward MR. Inflammation and Regeneration in the Dentin-pulp Complex: Net Gain or Net Loss? J Endod 2018; 43:S87-S94. [PMID: 28844308 DOI: 10.1016/j.joen.2017.06.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The balance between the immune/inflammatory and regenerative responses in the diseased pulp is central to the clinical outcome, and this response is unique within the body because of its tissue site. Cariogenic bacteria invade the dentin and pulp tissues, triggering molecular and cellular events dependent on the disease stage. At the early onset, odontoblasts respond to bacterial components in an attempt to protect the tooth's hard and soft tissues and limit disease progression. However, as disease advances, the odontoblasts die, and cells central to the pulp core, including resident immune cells, pulpal fibroblasts, endothelial cells, and stem cells, respond to the bacterial challenge via their expression of a range of pattern recognition receptors that identify pathogen-associated molecular patterns. Subsequently, recruitment and activation occurs of a range of immune cell types, including neutrophils, macrophages, and T and B cells, which are attracted to the diseased site by cytokine/chemokine chemotactic gradients initially generated by resident pulpal cells. Although these cells aim to disinfect the tooth, their extravasation, migration, and antibacterial activity (eg, release of reactive oxygen species [ROS]) along with the bacterial toxins cause pulp damage and impede tissue regeneration processes. Recently, a novel bacterial killing mechanism termed neutrophil extracellular traps (NETs) has also been described that uses ROS signaling and results in cellular DNA extrusion. The NETs are decorated with antimicrobial peptides (AMPs), and their interaction with bacteria results in microbial entrapment and death. Recent data show that NETs can be stimulated by bacteria associated with endodontic infections, and they may be present in inflamed pulp tissue. Interestingly, some bacteria associated with pulpal infections express deoxyribonuclease enzymes, which may enable their evasion of NETs. Furthermore, although NETs aim to localize and kill invading bacteria using AMPs and histones, limiting the spread of the infection, data also indicate that NETs can exacerbate inflammation and their components are cytotoxic. This review considers the potential role of NETs within pulpal infections and how these structures may influence the pulp's vitality and regenerative responses.
Collapse
Affiliation(s)
- Paul R Cooper
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK.
| | - Ilaria J Chicca
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK
| | - Michael J Holder
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK
| | - Michael R Milward
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK
| |
Collapse
|
209
|
Maruchi Y, Tsuda M, Mori H, Takenaka N, Gocho T, Huq MA, Takeyama N. Plasma myeloperoxidase-conjugated DNA level predicts outcomes and organ dysfunction in patients with septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:176. [PMID: 30005596 PMCID: PMC6045839 DOI: 10.1186/s13054-018-2109-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
Abstract
Background Recent studies have suggested that excessive formation of neutrophil extracellular traps (NETs) plays a critical role in the pathogenesis of sepsis. Although elevation of the plasma level of cell-free DNA (cf-DNA) has been reported in sepsis patients, there has been little direct measurement of circulating free NETs such as myeloperoxidase-conjugated DNA (MPO-DNA). The objectives of this study were to detect NETs in the bloodstream of patients with septic shock, and to assess the correlations of circulating NET levels with organ dysfunction, disease severity, and mortality. Methods Fifty-five patients with septic shock admitted to the intensive care units (ICUs) of 35 Japanese hospitals were studied. Septic shock was diagnosed according to the 1997 definition of the American College of Chest Physicians/Society of Critical Care Medicine. To detect circulating NETs, plasma levels of MPO-DNA and cf-DNA were measured by sandwich enzyme-linked immunosorbent assay and by fluorometric assay on days 1, 3, and 7 after the onset of septic shock. Physiological and mortality data were collected from the clinical database. Results On days 1, 3, and 7, the patients showed a marked increase in plasma MPO-DNA levels compared with healthy volunteers, whereas the plasma cf-DNA level was only increased significantly on day 1 and then decreased rapidly. A high MPO-DNA level on days 3 and 7 were associated with 28-day mortality. On days 3 and 7, the MPO-DNA levels were inversely correlated with both the mean arterial pressure and the PaO2/FIO2 ratio, whereas the cf-DNA level was not correlated with either parameter. There was a positive correlation between the plasma MPO-DNA level and the sepsis-related organ failure assessment score on days 3 and 7. Neither cf-DNA nor MPO-DNA levels were correlated with the disseminated intravascular coagulation (DIC) score or the platelet count. Conclusion The increase in circulating MPO-DNA in patients with septic shock indicates acceleration of NET formation in the early stages of sepsis. High MPO-DNA levels are associated with the severity of organ dysfunction and 28-day mortality due to septic shock, but not with the DIC score. These results suggest that excessive NET formation contributes to the pathogenesis of septic shock. Electronic supplementary material The online version of this article (10.1186/s13054-018-2109-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuki Maruchi
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Masanobu Tsuda
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Hisatake Mori
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Nobuyoshi Takenaka
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Takayoshi Gocho
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Muhammad A Huq
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Naoshi Takeyama
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan.
| |
Collapse
|
210
|
Li Y, Cao X, Liu Y, Zhao Y, Herrmann M. Neutrophil Extracellular Traps Formation and Aggregation Orchestrate Induction and Resolution of Sterile Crystal-Mediated Inflammation. Front Immunol 2018; 9:1559. [PMID: 30034398 PMCID: PMC6043642 DOI: 10.3389/fimmu.2018.01559] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/25/2018] [Indexed: 02/05/2023] Open
Abstract
The formation of neutrophil extracellular traps (NETs) to immobilize pathogens represents a novel antimicrobial strategy of the immune system. The microcrystals related to human diseases are classified into endogenous microcrystals, including monosodium urate (MSU), calcium pyrophosphate dihydrate, calcium carbonate, calcium phosphate, calcium oxalate, cholesterol, and exogenous material like crystals from silica. Although microcrystals possess distinct compositions and shapes, they have a common characteristic: they stimulate neutrophils to release NETs. In low and high densities, neutrophils form NETs and aggregated NETs (aggNETs) that reportedly orchestrate the initiation and resolution of sterile crystal-mediated inflammation, respectively. Here, we summarize the different roles of NETs and aggNETs stimulated by the crystals mentioned above in related inflammatory reactions. The NETosis-derived products may represent a potential therapeutic target in crystal-mediated diseases.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Cao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
211
|
Meher AK, Spinosa M, Davis JP, Pope N, Laubach VE, Su G, Serbulea V, Leitinger N, Ailawadi G, Upchurch GR. Novel Role of IL (Interleukin)-1β in Neutrophil Extracellular Trap Formation and Abdominal Aortic Aneurysms. Arterioscler Thromb Vasc Biol 2018; 38:843-853. [PMID: 29472233 PMCID: PMC5864548 DOI: 10.1161/atvbaha.117.309897] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 02/12/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Neutrophils promote experimental abdominal aortic aneurysm (AAA) formation via a mechanism that is independent from MMPs (matrix metalloproteinases). Recently, we reported a dominant role of IL (interleukin)-1β in the formation of murine experimental AAAs. Here, the hypothesis that IL-1β-induced neutrophil extracellular trap formation (NETosis) promotes AAA was tested. APPROACH AND RESULTS NETs were identified through colocalized staining of neutrophil, Cit-H3 (citrullinated histone H3), and DNA, using immunohistochemistry. NETs were detected in human AAAs and were colocalized with IL-1β. In vitro, IL-1RA attenuated IL-1β-induced NETosis in human neutrophils. Mechanistically, IL-1β treatment of isolated neutrophils induced nuclear localization of ceramide synthase 6 and synthesis of C16-ceramide, which was inhibited by IL-1RA or fumonisin B1, an inhibitor of ceramide synthesis. Furthermore, IL-1RA or fumonisin B1 attenuated IL1-β-induced NETosis. In an experimental model of murine AAA, NETs were detected at a very early stage-day 3 of aneurysm induction. IL-1β-knockout mice demonstrated significantly lower infiltration of neutrophils to aorta and were protected from AAA. Adoptive transfer of wild-type neutrophils promoted AAA formation in IL-1β-knockout mice. Moreover, treatment of wild-type mice with Cl-amidine, an inhibitor NETosis, significantly attenuated AAA formation, whereas, treatment with deoxyribonuclease, a DNA digesting enzyme, had no effect on AAA formation. CONCLUSIONS Altogether, the results suggest a dominant role of IL-1β-induced NETosis in AAA formation.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Ceramides/metabolism
- Disease Models, Animal
- Extracellular Traps/drug effects
- Extracellular Traps/metabolism
- Humans
- Image Processing, Computer-Assisted/methods
- Interleukin-1beta/deficiency
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Microscopy, Fluorescence/methods
- Neutrophils/drug effects
- Neutrophils/metabolism
- Neutrophils/pathology
- Neutrophils/transplantation
- Ornithine/analogs & derivatives
- Ornithine/pharmacology
- Receptors, Interleukin-1/metabolism
- Signal Transduction
- Sphingosine N-Acyltransferase/metabolism
Collapse
Affiliation(s)
- Akshaya K Meher
- From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of Biomedical Engineering (G.A.), University of Virginia, Charlottesville.
| | - Michael Spinosa
- From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of Biomedical Engineering (G.A.), University of Virginia, Charlottesville
| | - John P Davis
- From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of Biomedical Engineering (G.A.), University of Virginia, Charlottesville
| | - Nicolas Pope
- From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of Biomedical Engineering (G.A.), University of Virginia, Charlottesville
| | - Victor E Laubach
- From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of Biomedical Engineering (G.A.), University of Virginia, Charlottesville
| | - Gang Su
- From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of Biomedical Engineering (G.A.), University of Virginia, Charlottesville
| | - Vlad Serbulea
- From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of Biomedical Engineering (G.A.), University of Virginia, Charlottesville
| | - Norbert Leitinger
- From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of Biomedical Engineering (G.A.), University of Virginia, Charlottesville
| | - Gorav Ailawadi
- From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of Biomedical Engineering (G.A.), University of Virginia, Charlottesville
| | - Gilbert R Upchurch
- From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of Biomedical Engineering (G.A.), University of Virginia, Charlottesville
| |
Collapse
|
212
|
Munrós J, Tàssies D, Reverter JC, Martin L, Pérez A, Carmona F, Martínez-Zamora MÁ. Circulating Neutrophil Extracellular Traps Are Elevated in Patients With Deep Infiltrating Endometriosis. Reprod Sci 2018; 26:70-76. [PMID: 29448896 DOI: 10.1177/1933719118757682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neutrophil extracellular traps (NETs) have been described to be related to the pathogenesis of inflammatory and autoimmune conditions. Endometriosis is currently considered a chronic inflammatory condition. Therefore, we performed a preliminary case-control study to compare the circulating plasma NET levels in patients with surgically confirmed endometriosis (E group, n = 82) and those of patients without surgical findings of endometriosis (C group, n = 35). Venous blood samples were obtained at the time of surgery. Circulating plasma NET levels were assessed as histone-DNA complexes (ie, nucleosomes) by a quantitative sandwich enzyme-linked immunosorbent assay. The results were expressed in arbitrary units. Circulating plasma NET levels were significantly higher in the E group compared with the C group (median [25th; 75th percentiles]): E group: 0.734 [0.484; 1.363]; C group: 0.541 [0.411; 0.653]; P = .005). The subanalysis of E group patients with deep infiltrating endometriosis (DIE group) or without DIE (non-DIE group) showed that plasma NET levels were higher in the DIE group ( P = .02). No differences were observed in NET levels among patients with and without severe pelvic pain or in patients with and without infertility, regardless of the presence of endometriotic lesions. Therefore, our study shows significantly higher NET levels in patients with endometriosis, which seem to be attributed to increased levels in the subgroup of patients with DIE, suggesting that the presence of elevated circulating plasma NET levels may reflect an inflammatory status in this gynecological condition. Further research is warranted to confirm our findings and to assess the exact role of NETs in the pathophysiological mechanisms of endometriosis.
Collapse
Affiliation(s)
- Jordina Munrós
- 1 Department of Gynaecology, Institut Clínic of Gynaecology, Obstetrics and Neonatology, Hospital Clínic of Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine, University of Barcelona, Villarroel, 170, Barcelona, Spain
| | - Dolors Tàssies
- 2 Department of Hemotherapy and Hemostasis, Hospital Clínic of Barcelona, Villarroel, 170, Barcelona, Spain
| | - Joan Carles Reverter
- 2 Department of Hemotherapy and Hemostasis, Hospital Clínic of Barcelona, Villarroel, 170, Barcelona, Spain
| | - Lidia Martin
- 2 Department of Hemotherapy and Hemostasis, Hospital Clínic of Barcelona, Villarroel, 170, Barcelona, Spain
| | - Amelia Pérez
- 1 Department of Gynaecology, Institut Clínic of Gynaecology, Obstetrics and Neonatology, Hospital Clínic of Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine, University of Barcelona, Villarroel, 170, Barcelona, Spain
| | - Francisco Carmona
- 1 Department of Gynaecology, Institut Clínic of Gynaecology, Obstetrics and Neonatology, Hospital Clínic of Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine, University of Barcelona, Villarroel, 170, Barcelona, Spain
| | - María Ángeles Martínez-Zamora
- 1 Department of Gynaecology, Institut Clínic of Gynaecology, Obstetrics and Neonatology, Hospital Clínic of Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine, University of Barcelona, Villarroel, 170, Barcelona, Spain
| |
Collapse
|
213
|
Elweza AE, Ezz MA, Acosta TJ, Talukder AK, Shimizu T, Hayakawa H, Shimada M, Imakawa K, Zaghloul AH, Miyamoto A. A proinflammatory response of bovine endometrial epithelial cells to active sperm in vitro. Mol Reprod Dev 2018; 85:215-226. [DOI: 10.1002/mrd.22955] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/15/2017] [Accepted: 01/03/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Ahmed E. Elweza
- Graduate School of Animal and Food Hygiene; Obihiro University of Agriculture and Veterinary Medicine; Obihiro Japan
- Faculty of Veterinary Medicine; Department of Theriogenology; University of Sadat City; Sadat City Egypt
| | - Mohamed A. Ezz
- Graduate School of Animal and Food Hygiene; Obihiro University of Agriculture and Veterinary Medicine; Obihiro Japan
- Faculty of Veterinary Medicine; Department of Theriogenology; Mansoura University; Mansoura Egypt
| | - Tomas J. Acosta
- Field Center of Animal Science and Agriculture; Obihiro University of Agriculture and Veterinary Medicine; Obihiro Japan
| | - Anup K. Talukder
- Graduate School of Animal and Food Hygiene; Obihiro University of Agriculture and Veterinary Medicine; Obihiro Japan
- Department of Gynecology; Obstetrics and Reproductive Health; Bangabandhu Sheikh Mujibur Rahman Agricultural University; Gaipur Bangladesh
| | - Takashi Shimizu
- Graduate School of Animal and Food Hygiene; Obihiro University of Agriculture and Veterinary Medicine; Obihiro Japan
| | | | - Masayuki Shimada
- Graduate School of Biosphere Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Kazuhiko Imakawa
- Animal Resource Science Center; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Ibaraki Japan
| | - Ahmed H. Zaghloul
- Faculty of Veterinary Medicine; Department of Theriogenology; University of Sadat City; Sadat City Egypt
| | - Akio Miyamoto
- Graduate School of Animal and Food Hygiene; Obihiro University of Agriculture and Veterinary Medicine; Obihiro Japan
| |
Collapse
|
214
|
Gupta S, Chan DW, Zaal KJ, Kaplan MJ. A High-Throughput Real-Time Imaging Technique To Quantify NETosis and Distinguish Mechanisms of Cell Death in Human Neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:869-879. [PMID: 29196457 PMCID: PMC5760330 DOI: 10.4049/jimmunol.1700905] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022]
Abstract
Neutrophils play a key role in host defenses and have recently been implicated in the pathogenesis of autoimmune diseases by various mechanisms, including formation of neutrophil extracellular traps through a recently described distinct form of programmed cell death called NETosis. Techniques to assess and quantitate NETosis in an unbiased, reproducible, and efficient way are lacking, considerably limiting the advancement of research in this field. We optimized and validated, a new method to automatically quantify the percentage of neutrophils undergoing NETosis in real time using the IncuCyte ZOOM imaging platform and the membrane-permeability properties of two DNA dyes. Neutrophils undergoing NETosis induced by various physiological stimuli showed distinct changes, with a loss of multilobulated nuclei, as well as nuclear decondensation followed by membrane compromise, and were accurately counted by applying filters based on fluorescence intensity and nuclear size. Findings were confirmed and validated with the established method of immunofluorescence microscopy. The platform was also validated to rapidly assess and quantify the dose-dependent effect of inhibitors of NETosis. In addition, this method was able to distinguish among neutrophils undergoing NETosis, apoptosis, or necrosis based on distinct changes in nuclear morphology and membrane integrity. The IncuCyte ZOOM platform is a novel real-time assay that quantifies NETosis in a rapid, automated, and reproducible way, significantly optimizing the study of neutrophils. This platform is a powerful tool to assess neutrophil physiology and NETosis, as well as to swiftly develop and test novel neutrophil targets.
Collapse
Affiliation(s)
- Sarthak Gupta
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Diana W Chan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Kristien J Zaal
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
215
|
Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer. PLoS One 2018; 13:e0191231. [PMID: 29324871 PMCID: PMC5764486 DOI: 10.1371/journal.pone.0191231] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/29/2017] [Indexed: 12/12/2022] Open
Abstract
Citrullinated histone H3 (H3Cit) is a central player in the neutrophil release of nuclear chromatin, known as neutrophil extracellular traps (NETs). NETs have been shown to elicit harmful effects on the host, and were recently proposed to promote tumor progression and spread. Here we report significant elevations of plasma H3Cit in patients with advanced cancer compared with age-matched healthy individuals. These elevations were specific to cancer patients as no increase was observed in severely ill and hospitalized patients with a higher non-malignant comorbidity. The analysis of neutrophils from cancer patients showed a higher proportion of neutrophils positive for intracellular H3Cit compared to severely ill patients. Moreover, the presence of plasma H3Cit in cancer patients strongly correlated with neutrophil activation markers neutrophil elastase (NE) and myeloperoxidase (MPO), and the inflammatory cytokines interleukin-6 and -8, known to induce NETosis. In addition, we show that high levels of circulating H3Cit strongly predicted poor clinical outcome in our cohort of cancer patients with a 2-fold increased risk for short-term mortality. Our results also corroborate the association of NE, interleukin-6 and -8 with poor clinical outcome. Taken together, our results are the first to unveil H3Cit as a potential diagnostic and prognostic blood marker associated with an exacerbated inflammatory response in patients with advanced cancer.
Collapse
|
216
|
Alhamdi Y, Toh CH. Recent advances in pathophysiology of disseminated intravascular coagulation: the role of circulating histones and neutrophil extracellular traps. F1000Res 2017; 6:2143. [PMID: 29399324 PMCID: PMC5785716 DOI: 10.12688/f1000research.12498.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2017] [Indexed: 12/29/2022] Open
Abstract
Disseminated intravascular coagulation (DIC) is an acquired condition that develops as a complication of systemic and sustained cell injury in conditions such as sepsis and trauma. It represents major dysregulation and increased thrombin generation in vivo. A poor understanding and recognition of the complex interactions in the coagulation, fibrinolytic, inflammatory, and innate immune pathways have resulted in continued poor management and high mortality rates in DIC. This review focuses attention on significant recent advances in our understanding of DIC pathophysiology. In particular, circulating histones and neutrophil extracellular traps fulfil established criteria in DIC pathogenesis. Both are damaging to the vasculature and highly relevant to the cross talk between coagulation and inflammation processes, which can culminate in adverse clinical outcomes. These molecules have a strong potential to be novel biomarkers and therapeutic targets in DIC, which is still considered synonymous with 'death is coming'.
Collapse
Affiliation(s)
- Yasir Alhamdi
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Roald Dahl Haemostasis & Thrombosis Centre, Royal Liverpool University Hospital, Liverpool, UK
| |
Collapse
|
217
|
Barliya T, Dardik R, Nisgav Y, Dachbash M, Gaton D, Kenet G, Ehrlich R, Weinberger D, Livnat T. Possible involvement of NETosis in inflammatory processes in the eye: Evidence from a small cohort of patients. Mol Vis 2017; 23:922-932. [PMID: 29296072 PMCID: PMC5741378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 12/11/2017] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To evaluate whether NETosis is involved in cytokine-induced ocular inflammation and to track neutrophil extracellular traps (NET) complexes in patients with proliferative diabetic retinopathy (PDR). METHODS For the animal model, the eyes of C57BL/6J mice were intravitreally injected with interleukin-8 (IL-8), tumor necrosis factor alpha (TNF-α), or saline. Histology and immunofluorescence staining for CD11b, neutrophil elastase (NE), myeloperoxidase (MPO), citrullinated histone 3 (H3Cit), and net-like structure were performed. Vitreous samples were collected from patients with PDR; the PDR1 group had no need for repeated surgical intervention, and the PDR2 group had repeated vitreous bleeding or other complication and controls. Levels of MPO, H3Cit-MPO, and NE-MPO complex were measured with enzyme-linked immunosorbent assay (ELISA). RESULTS Massive influx of CD11+ inflammatory cells, involving the anterior and posterior chambers, was observed in the murine eyes 24 h after the IL-8 or TNF-α injections. Cells excreted to their surroundings an extracellular net-like structure positive for NE, MPO, and H3Cit. H3Cit staining was abolished with the DNase I treatment, indicating the presence of extracellular DNA in the net-like structures. The vitreous samples of the patients with PDR2 contained statistically significantly higher levels of MPO (173±230) compared to those of the patients with PDR1 (12.0±33.0, p<0.05) or the controls (0.00, p<0.01). The levels of H3Cit-MPO and NE-MPO complexes were also statistically significantly higher in the patients with PDR2 (776.0±1274, 573.0±911.0, respectively) compared to those in the patients with PDR1 (0, p<0.05) and the controls (0, p<0.05). CONCLUSIONS This study showed the existence of NETosis in cytokine-induced ocular inflammation in a mouse model and human samples. Furthermore, the extent of NET complex formation was higher in a subset of patients who exhibited more complicated PDR.
Collapse
Affiliation(s)
- Tilda Barliya
- Laboratory of Eye research Felsenstein Medical Research Center (FMRC), Rabin Medical Center, Petah Tikva, Israel
| | - Rima Dardik
- The Israeli National Hemophilia Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Yael Nisgav
- Laboratory of Eye research Felsenstein Medical Research Center (FMRC), Rabin Medical Center, Petah Tikva, Israel
| | - Mor Dachbash
- Laboratory of Eye research Felsenstein Medical Research Center (FMRC), Rabin Medical Center, Petah Tikva, Israel
| | - Dan Gaton
- Division of Ophthalmology, Rabin Medical Center- Beilinson campus, Petah Tikva, Israel,Sackler School of Medicine, Tel-Aviv University, Israel
| | - Gili Kenet
- The Israeli National Hemophilia Center, Sheba Medical Center, Tel Hashomer, Israel,Sackler School of Medicine, Tel-Aviv University, Israel
| | - Rita Ehrlich
- Division of Ophthalmology, Rabin Medical Center- Beilinson campus, Petah Tikva, Israel,Sackler School of Medicine, Tel-Aviv University, Israel
| | - Dov Weinberger
- Laboratory of Eye research Felsenstein Medical Research Center (FMRC), Rabin Medical Center, Petah Tikva, Israel,Division of Ophthalmology, Rabin Medical Center- Beilinson campus, Petah Tikva, Israel,Sackler School of Medicine, Tel-Aviv University, Israel
| | - Tami Livnat
- Laboratory of Eye research Felsenstein Medical Research Center (FMRC), Rabin Medical Center, Petah Tikva, Israel,The Israeli National Hemophilia Center, Sheba Medical Center, Tel Hashomer, Israel,Sackler School of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
218
|
cfDNA correlates with endothelial damage after cardiac surgery with prolonged cardiopulmonary bypass and amplifies NETosis in an intracellular TLR9-independent manner. Sci Rep 2017; 7:17421. [PMID: 29234042 PMCID: PMC5727170 DOI: 10.1038/s41598-017-17561-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/28/2017] [Indexed: 12/02/2022] Open
Abstract
Cardiopulmonary bypass (CPB) provokes inflammation culminating in organ dysfunction and increased mortality. Recently, neutrophil extracellular traps (NETs) have been found to be involved in a variety of cardiovascular diseases promoting tissue and organ injury. Here, we aimed to elaborate the proinflammatory potential of circulating cell-free (cf)DNA in patients undergoing cardiac surgery with CPB. Plasma was collected pre- and postoperatively as well as at d1, d3, d5 and d8 after surgery. At d1, we found circulating cfDNA levels to be significantly increased in patients with prolonged CPB duration (>100 min) when compared to those with shorter CPB times (CPB < 100 min). Increased CPB duration yielded in higher levels of circulating mitochondrial (mt)DNA, soluble thrombomodulin (sCD141) and ICAM-1, reflecting endothelial damage. Positive correlation between cfDNA and sCD141 was demonstrated at all time points. Plasma and cfDNA from patients with CPB > 100 min induced NETs release by neutrophils from healthy donors which was not suppressed by inhibitors of intracellular toll-like receptor (TLR)9. DNA binding to neutrophils’ surface (s)TLR9 has been evidenced. Altogether, we demonstrate that elevated plasma cfDNA might be useful to assess CPB-mediated detrimental effects, including endothelial damage, in cardiac surgical patients with prolonged CPB duration. cfDNA-triggered NETosis is independent of classical TLR9 signaling.
Collapse
|
219
|
Cockx M, Gouwy M, Van Damme J, Struyf S. Chemoattractants and cytokines in primary ciliary dyskinesia and cystic fibrosis: key players in chronic respiratory diseases. Cell Mol Immunol 2017; 15:312-323. [PMID: 29176750 DOI: 10.1038/cmi.2017.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
Patients with primary ciliary dyskinesia (PCD) and cystic fibrosis (CF), two inherited disorders, suffer from recurrent airway infections characterized by persistent bacterial colonization and uncontrollable inflammation. Although present in high counts, neutrophils fail to clear infection in the airways. High levels of C-X-C motif chemokine ligand 8/interleukin-8 (CXCL8/IL-8), the most potent chemokine to attract neutrophils to sites of infection, are detected in the sputum of both patient groups and might cause the high neutrophil influx in the airways. Furthermore, in CF, airway neutrophils are highly activated because of the genetic defect and the high levels of proinflammatory chemoattractants and cytokines (e.g., CXCL8/IL-8, tumor necrosis factor-α and IL-17). The overactive state of neutrophils leads to lung damage and fuels the vicious circle of infection, excessive inflammation and tissue damage. The inflammatory process in CF airways is well characterized, whereas the lung pathology in PCD is far less studied. The knowledge of CF lung pathology could be useful to guide molecular investigations of the inflammatory processes in PCD lungs. Current available therapies can not completely remedy the chronic airway infections in these diseases. This review gives an overview of the role that chemoattractants and cytokines play in these neutrophil-dominated lung pathologies. Finally, the most frequently applied treatments in CF and PCD and new experimental therapies to reduce neutrophil-dominated airway inflammation are described.
Collapse
Affiliation(s)
- Maaike Cockx
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium.
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium
| |
Collapse
|
220
|
Filio-Rodríguez G, Estrada-García I, Arce-Paredes P, Moreno-Altamirano MM, Islas-Trujillo S, Ponce-Regalado MD, Rojas-Espinosa O. In vivo induction of neutrophil extracellular traps by Mycobacterium tuberculosis in a guinea pig model. Innate Immun 2017; 23:625-637. [PMID: 28929912 DOI: 10.1177/1753425917732406] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In 2004, a novel mechanism of cellular death, called 'NETosis', was described in neutrophils. This mechanism, different from necrosis and apoptosis, is characterized by the release of chromatin webs admixed with microbicidal granular proteins and peptides (NETs). NETs trap and kill a variety of microorganisms. Diverse microorganisms, including Mycobacterium tuberculosis, are NET inducers in vitro. The aim of this study was to examine whether M. tuberculosis can also induce NETs in vivo and if the NETs are bactericidal to the microorganism. Guinea pigs were intradermally inoculated with M. tuberculosis H37Rv, and the production of NETs was investigated at several time points thereafter. NETs were detected as early as 30 min post-inoculation and were clearly evident by 4 h post-inoculation. NETs produced in vivo contained DNA, myeloperoxidase, elastase, histones, ROS and acid-fast bacilli. Viable and heat-killed M. tuberculosis, as well as Mycobacterium bovis BCG were efficient NET inducers, as were unilamellar liposomes prepared with lipids from M. tuberculosis. In vitro, guinea pig neutrophils also produced NETs in response to M. tuberculosis. However, neither the in vivo nor the in vitro-produced NETs were able to kill M. tuberculosis. Nevertheless, in vivo, neutrophils might propitiate recruitment and activation of more efficient microbicidal cells.
Collapse
Affiliation(s)
- Georgina Filio-Rodríguez
- 1 Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Colonia Santo Tomas, México
| | - Iris Estrada-García
- 1 Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Colonia Santo Tomas, México
| | - Patricia Arce-Paredes
- 1 Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Colonia Santo Tomas, México
| | - María M Moreno-Altamirano
- 1 Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Colonia Santo Tomas, México
| | - Sergio Islas-Trujillo
- 1 Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Colonia Santo Tomas, México
| | - M Dolores Ponce-Regalado
- 2 Departamento de Clínicas, Centro Universitario de los Altos, Universidad de Guadalajara, Carretera a Yahualica, Jalisco, México
| | - Oscar Rojas-Espinosa
- 1 Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Colonia Santo Tomas, México
| |
Collapse
|
221
|
Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review. Autoimmun Rev 2017; 16:1160-1173. [PMID: 28899799 DOI: 10.1016/j.autrev.2017.09.012] [Citation(s) in RCA: 417] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/26/2022]
Abstract
Neutrophil extracellular traps (NETs) are fibrous networks which protrude from the membranes of activated neutrophils. NETs are found in a variety of conditions such as infection, malignancy, atherosclerosis, and autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV), psoriasis, and gout. Studies suggest that an imbalance between "NETosis," which is a process by which NETs are formed, and NET degradation may be associated with autoimmune diseases. Neutrophils, interleukin-8, ANCA and other inflammatory molecules are considered to play a key role in NET formation. Prolonged exposure to NETs-related cascades is associated with autoimmunity and increases the chance of systemic organ damage. In this review, we discuss the roles of various inflammatory molecules in relation to NETs. We also describe the role of NETs in the pathogenesis of autoimmune diseases and discuss the possibility of using targeted therapies directed to NETs and associated molecules to treat autoimmune diseases.
Collapse
|
222
|
Kaufman T, Magosevich D, Moreno MC, Guzman MA, D'Atri LP, Carestia A, Fandiño ME, Fondevila C, Schattner M. Nucleosomes and neutrophil extracellular traps in septic and burn patients. Clin Immunol 2017; 183:254-262. [PMID: 28863968 DOI: 10.1016/j.clim.2017.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/28/2017] [Accepted: 08/28/2017] [Indexed: 11/30/2022]
Abstract
NETosis is a host defense mechanism associated with inflammation and tissue damage. Experimental models show that platelets and von Willebrand factor (VWF) are key elements for intravascular NETosis. We determined NETosis in septic and burn patients at 1 and 4days post-admission (dpa). Nucleosomes were elevated in patients. In septics, they correlated with Human Neutrophil Elastase (HNE)-DNA complexes and SOFA score at 1dpa, and were associated with mortality. Patient's neutrophils had spontaneous NETosis and were unresponsive to stimulation. Although platelet P-selectin and TNF-α were increased in both groups, higher platelet TLR-4 expression, VWF levels and IL-6 were found in septics at 1dpa. Neither platelet activation markers nor cytokines correlated with nucleosomes or HNE-DNA. Nucleosomes could be indicators of organ damage and predictors of mortality in septic but not in burn patients. Platelet activation, VWF and cytokines do not appear to be key mediators of NETosis in these patient groups.
Collapse
Affiliation(s)
- Tomás Kaufman
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine-CONICET, National Academy of Medicine, José Andrés Pacheco de Melo 3081, Buenos Aires, Argentina
| | - Débora Magosevich
- Sagrado Corazón Clinic, Bartolomé Mitre 1955, Buenos Aires, Argentina
| | | | | | - Lina Paola D'Atri
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine-CONICET, National Academy of Medicine, José Andrés Pacheco de Melo 3081, Buenos Aires, Argentina
| | - Agostina Carestia
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine-CONICET, National Academy of Medicine, José Andrés Pacheco de Melo 3081, Buenos Aires, Argentina
| | | | | | - Mirta Schattner
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine-CONICET, National Academy of Medicine, José Andrés Pacheco de Melo 3081, Buenos Aires, Argentina.
| |
Collapse
|
223
|
Mohebichamkhorami F, Farivar S, Rafieian Kopaei M. The importance of M694V mutation in systemic lupus erythematosus; implications for its role in neutrophil extracellular traps associated renal involvement. J Nephropathol 2017. [DOI: 10.15171/jnp.2017.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
224
|
Xue J, Zhao Z, Zhang L, Xue L, Shen S, Wen Y, Wei Z, Wang L, Kong L, Sun H, Ping Q, Mo R, Zhang C. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. NATURE NANOTECHNOLOGY 2017; 12:692-700. [PMID: 28650441 DOI: 10.1038/nnano.2017.54] [Citation(s) in RCA: 674] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/05/2017] [Indexed: 05/19/2023]
Abstract
Cell-mediated drug-delivery systems have received considerable attention for their enhanced therapeutic specificity and efficacy in cancer treatment. Neutrophils (NEs), the most abundant type of immune cells, are known to penetrate inflamed brain tumours. Here we show that NEs carrying liposomes that contain paclitaxel (PTX) can penetrate the brain and suppress the recurrence of glioma in mice whose tumour has been resected surgically. Inflammatory factors released after tumour resection guide the movement of the NEs into the inflamed brain. The highly concentrated inflammatory signals in the brain trigger the release of liposomal PTX from the NEs, which allows delivery of PTX into the remaining invading tumour cells. We show that this NE-mediated delivery of drugs efficiently slows the recurrent growth of tumours, with significantly improved survival rates, but does not completely inhibit the regrowth of tumours.
Collapse
Affiliation(s)
- Jingwei Xue
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Zekai Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Shiyang Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Yajing Wen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Zhuoyuan Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Hongbin Sun
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Qineng Ping
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
225
|
Vargas A, Roux-Dalvai F, Droit A, Lavoie JP. Neutrophil-Derived Exosomes: A New Mechanism Contributing to Airway Smooth Muscle Remodeling. Am J Respir Cell Mol Biol 2017; 55:450-61. [PMID: 27105177 DOI: 10.1165/rcmb.2016-0033oc] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neutrophils infiltrate the airways of patients with asthma of all severities, yet their role in the pathogenesis of asthma and their contribution to airway remodeling is largely unknown. We hypothesized that neutrophils modulate airway smooth muscle (ASM) proliferation in asthma by releasing bioactive exosomes. These newly discovered nano-sized vesicles have the capacity to modulate immune responses, cell migration, cell differentiation, and other aspects of cell-to-cell communication. The aim of the study is to determine whether bioactive exosomes are released by neutrophils, and, if so, characterize their proteomic profile and evaluate their capacity to modulate ASM cell proliferation. Exosomes were isolated from equine neutrophil supernatants by differential centrifugation and filtration methods, followed by size-exclusion chromatography. Nanovesicles were characterized using electron microscopy, particle size determination, and proteomic analyses. Exosomes were cocultured with ASM cells and analyzed for exosome internalization by confocal microscopy. ASM proliferation was measured using an impedance-based system. Neutrophils release exosomes that have characteristic size, morphology, and exosomal markers. We identified 271 proteins in exosomes from both LPS and unstimulated neutrophils, and 16 proteins that were differentially expressed, which carried proteins associated with immune response and positive regulation of cell communication. Furthermore, neutrophil-derived exosomes were rapidly internalized by ASM cells and altered their proliferative properties. Upon stimulation of LPS, neutrophil-derived exosomes can enhance the proliferation of ASM cells and could therefore play an important role in the progression of asthma and promoting airway remodeling in severe and corticosteroid-insensitive patients with asthma.
Collapse
Affiliation(s)
- Amandine Vargas
- 1 Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada; and
| | - Florence Roux-Dalvai
- 2 Proteomics Platform, Centre Hospitalier Universitaire de Québec, Research Center and Faculty of Medicine, Laval University, Sainte-Foy, Quebec, Canada
| | - Arnaud Droit
- 2 Proteomics Platform, Centre Hospitalier Universitaire de Québec, Research Center and Faculty of Medicine, Laval University, Sainte-Foy, Quebec, Canada
| | - Jean-Pierre Lavoie
- 1 Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada; and
| |
Collapse
|
226
|
Deldar Y, Pilehvar-Soltanahmadi Y, Dadashpour M, Montazer Saheb S, Rahmati-Yamchi M, Zarghami N. An in vitro examination of the antioxidant, cytoprotective and anti-inflammatory properties of chrysin-loaded nanofibrous mats for potential wound healing applications. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:706-716. [DOI: 10.1080/21691401.2017.1337022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yaghoub Deldar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar-Soltanahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Rahmati-Yamchi
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
227
|
Liu T, Wang FP, Wang G, Mao H. Role of Neutrophil Extracellular Traps in Asthma and Chronic Obstructive Pulmonary Disease. Chin Med J (Engl) 2017; 130:730-736. [PMID: 28303858 PMCID: PMC5358425 DOI: 10.4103/0366-6999.201608] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objective: Asthma and chronic obstructive pulmonary disease (COPD) are representative chronic inflammatory airway diseases responsible for a considerable burden of disease. In this article, we reviewed the relationship between neutrophil extracellular traps (NETs) and chronic inflammatory airway diseases. Data Sources: Articles published up to January 1, 2017, were selected from the PubMed, Ovid Medline, Embase databases, with the keywords of “asthma” or “pulmonary disease, chronic obstructive”, “neutrophils” and “extracellular traps.” Study Selection: Articles were obtained and reviewed to analyze the role of NETs in asthma and COPD. Results: NETs are composed of extracellular DNA, histones, and granular proteins, which are released from activated neutrophils. Multiple studies have indicated that there are a large amount of NETs in the airways of asthmatics and COPD patients. NETs can engulf and kill invading pathogens in the host. However, disordered regulation of NET formation has shown to be involved in the development of asthma and COPD. An overabundance of NETs in the airways or lung tissue could cause varying degrees of damage to lung tissues by inducing the death of human epithelial and endothelial cells, and thus resulting in impairing pulmonary function and accelerating the progress of the disease. Conclusions: Excessive NETs accumulate in the airways of asthmatics and COPD patients. Although NETs play an essential role in the innate immune system against infection, excessive components of NETs can cause lung tissue damage and accelerate disease progression in asthmatics and COPD patients. These findings suggest that administration of NETs could be a novel approach to treat asthma and COPD. Mechanism studies, clinical practice, and strategies to regulate neutrophil activation or directly interrupt NET function in asthmatics and COPD patients are desperately needed.
Collapse
Affiliation(s)
- Ting Liu
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuang 610041, China
| | - Fa-Ping Wang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuang 610041, China
| | - Geng Wang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuang 610041, China
| | - Hui Mao
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuang 610041, China
| |
Collapse
|
228
|
Hoppenbrouwers T, Autar ASA, Sultan AR, Abraham TE, van Cappellen WA, Houtsmuller AB, van Wamel WJB, van Beusekom HMM, van Neck JW, de Maat MPM. In vitro induction of NETosis: Comprehensive live imaging comparison and systematic review. PLoS One 2017; 12:e0176472. [PMID: 28486563 PMCID: PMC5423591 DOI: 10.1371/journal.pone.0176472] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/11/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiple inducers of in vitro Neutrophil Extracellular Trap (NET) formation (NETosis) have been described. Since there is much variation in study design and results, our aim was to create a systematic review of NETosis inducers and perform a standardized in vitro study of NETosis inducers important in (cardiac) wound healing. METHODS In vitro NETosis was studied by incubating neutrophils with PMA, living and dead bacteria (S. aureus and E. coli), LPS, (activated) platelets (supernatant), glucose and calcium ionophore Ionomycin using 3-hour periods of time-lapse confocal imaging. RESULTS PMA is a consistent and potent inducer of NETosis. Ionomycin also consistently resulted in extrusion of DNA, albeit with a process that differs from the NETosis process induced by PMA. In our standardized experiments, living bacteria were also potent inducers of NETosis, but dead bacteria, LPS, (activated) platelets (supernatant) and glucose did not induce NETosis. CONCLUSION Our systematic review confirms that there is much variation in study design and results of NETosis induction. Our experimental results confirm that under standardized conditions, PMA, living bacteria and Ionomycin all strongly induce NETosis, but real-time confocal imaging reveal different courses of events.
Collapse
Affiliation(s)
- Tamara Hoppenbrouwers
- Department of Plastic and Reconstructive Surgery, Erasmus MC, Rotterdam, The Netherlands
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Anouchska S. A. Autar
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Andi R. Sultan
- Department of Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Tsion E. Abraham
- Optical Imaging Center, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Willem J. B. van Wamel
- Department of Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | | | - Johan W. van Neck
- Department of Plastic and Reconstructive Surgery, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
229
|
Steiert SA, Zissler UM, Chaker AM, Esser-von-Bieren J, Dittlein D, Guerth F, Jakwerth CA, Piontek G, Zahner C, Drewe J, Traidl-Hoffmann C, Schmidt-Weber CB, Gilles S. Anti-inflammatory effects of the petasin phyto drug Ze339 are mediated by inhibition of the STAT pathway. Biofactors 2017; 43:388-399. [PMID: 28139053 DOI: 10.1002/biof.1349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/29/2016] [Accepted: 12/10/2016] [Indexed: 01/13/2023]
Abstract
Ze339, an herbal extract from Petasites hybridus leaves is effective in treatment of allergic rhinitis by inhibition of a local production of IL-8 and eicosanoid LTB4 in allergen-challenged patients. However, the mechanism of action and anti-inflammatory potential in virally induced exacerbation of the upper airways is unknown. This study investigates the anti-inflammatory mechanisms of Ze339 on primary human nasal epithelial cells (HNECs) upon viral, bacterial and pro-inflammatory triggers. To investigate the influence of viral and bacterial infections on the airways, HNECs were stimulated with viral mimics, bacterial toll-like-receptor (TLR)-ligands or cytokines, in presence or absence of Ze339. The study uncovers Ze339 modulated changes in pro-inflammatory mediators and decreased neutrophil chemotaxis as well as a reduction of the nuclear translocation and phosphorylation of STAT molecules. Taken together, this study suggests that phyto drug Ze339 specifically targets STAT-signalling pathways in HNECs and has high potential as a broad anti-inflammatory drug that exceeds current indication. © 2016 BioFactors, 43(3):388-399, 2017.
Collapse
Affiliation(s)
- Sabrina A Steiert
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Adam M Chaker
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Otolaryngology and Head and Neck Surgery, TUM Medical School, Technical University of Munich, Munich, Germany
| | - Julia Esser-von-Bieren
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Daniela Dittlein
- Chair and institute of environmental medicine, UNIKA-T, Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Augsburg, Germany
- CK CARE - Christine Kühne Center for allergy research and education, Davos, Switzerland
| | - Ferdinand Guerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Constanze A Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Guido Piontek
- Department of Otolaryngology and Head and Neck Surgery, TUM Medical School, Technical University of Munich, Munich, Germany
| | | | | | - Claudia Traidl-Hoffmann
- Chair and institute of environmental medicine, UNIKA-T, Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Augsburg, Germany
- CK CARE - Christine Kühne Center for allergy research and education, Davos, Switzerland
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Stefanie Gilles
- Chair and institute of environmental medicine, UNIKA-T, Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Augsburg, Germany
- CK CARE - Christine Kühne Center for allergy research and education, Davos, Switzerland
| |
Collapse
|
230
|
Bravo-Barrera J, Kourilovitch M, Galarza-Maldonado C. Neutrophil Extracellular Traps, Antiphospholipid Antibodies and Treatment. Antibodies (Basel) 2017; 6:antib6010004. [PMID: 31548520 PMCID: PMC6698875 DOI: 10.3390/antib6010004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 12/22/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are a network of extracellular fibers, compounds of chromatin, neutrophil DNA and histones, which are covered with antimicrobial enzymes with granular components. Autophagy and the production of reactive oxygen species (ROS) by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase are essential in the formation of NETs. There is increasing evidence that suggests that autoantibodies against beta-2-glycoprotein-1 (B2GP1) induce NETs and enhance thrombosis. Past research on new mechanisms of thrombosis formation in antiphospholipid syndrome (APS) has elucidated the pharmacokinetics of the most common medication in the treatment of the disease.
Collapse
Affiliation(s)
- Jessica Bravo-Barrera
- UNERA (Unit of Rheumatic and Autoimmune Diseases), Hospital Monte Sinaí, Miguel Cordero 6-111 y av. Solano, Cuenca, Ecuador.
- Department of Hematology and Hemostasis, CDB, Hospital Clinic, Villaroel 170, 08036 Barcelona, Catalonia, Spain.
| | - Maria Kourilovitch
- UNERA (Unit of Rheumatic and Autoimmune Diseases), Hospital Monte Sinaí, Miguel Cordero 6-111 y av. Solano, Cuenca, Ecuador.
- Faculty of Medicine and Health Science, Doctorate Programme "Medicine and Translational Research", Barcelona University, Casanova, 143, 08036 Barcelona, Catalonia, Spain.
| | - Claudio Galarza-Maldonado
- UNERA (Unit of Rheumatic and Autoimmune Diseases), Hospital Monte Sinaí, Miguel Cordero 6-111 y av. Solano, Cuenca, Ecuador.
- Department of Investigation (DIUC-Dirección de Investigación de Universidad de Cuenca), Cuenca State University, Av. 12 de Abril y Agustin Cueva, Cuenca, Ecuador.
| |
Collapse
|
231
|
Pietronigro EC, Della Bianca V, Zenaro E, Constantin G. NETosis in Alzheimer's Disease. Front Immunol 2017; 8:211. [PMID: 28303140 PMCID: PMC5332471 DOI: 10.3389/fimmu.2017.00211] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive deterioration of cognitive functions. Its neuropathological features include amyloid-β (Aβ) accumulation, the formation of neurofibrillary tangles, and the loss of neurons and synapses. Neuroinflammation is a well-established feature of AD pathogenesis, and a better understanding of its mechanisms could facilitate the development of new therapeutic approaches. Recent studies in transgenic mouse models of AD have shown that neutrophils adhere to blood vessels and migrate inside the parenchyma. Moreover, studies in human AD subjects have also shown that neutrophils adhere and spread inside brain vessels and invade the parenchyma, suggesting these cells play a role in AD pathogenesis. Indeed, neutrophil depletion and the therapeutic inhibition of neutrophil trafficking, achieved by blocking LFA-1 integrin in AD mouse models, significantly reduced memory loss and the neuropathological features of AD. We observed that neutrophils release neutrophil extracellular traps (NETs) inside blood vessels and in the parenchyma of AD mice, potentially harming the blood–brain barrier and neural cells. Furthermore, confocal microscopy confirmed the presence of NETs inside the cortical vessels and parenchyma of subjects with AD, providing more evidence that neutrophils and NETs play a role in AD-related tissue destruction. The discovery of NETs inside the AD brain suggests that these formations may exacerbate neuro-inflammatory processes, promoting vascular and parenchymal damage during AD. The inhibition of NET formation has achieved therapeutic benefits in several models of chronic inflammatory diseases, including autoimmune diseases affecting the brain. Therefore, the targeting of NETs may delay AD pathogenesis and offer a novel approach for the treatment of this increasingly prevalent disease.
Collapse
Affiliation(s)
| | - Vittorina Della Bianca
- Department of Medicine, Section of General Pathology, University of Verona , Verona , Italy
| | - Elena Zenaro
- Department of Medicine, Section of General Pathology, University of Verona , Verona , Italy
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, University of Verona , Verona , Italy
| |
Collapse
|
232
|
Pancreatic Cancer-Induced Neutrophil Extracellular Traps: A Potential Contributor to Cancer-Associated Thrombosis. Int J Mol Sci 2017; 18:ijms18030487. [PMID: 28245569 PMCID: PMC5372503 DOI: 10.3390/ijms18030487] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/30/2017] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PaCa) is a highly metastatic cancer, and patients are at high risk of developing venous thromboembolism (VTE). Neutrophil extracellular traps (NETs) have been associated with cancer metastasis and cancer-associated thrombosis, but the ability of cancer to stimulate NET release is not known. The release of NETs has been shown to be a slow process and requires reactive oxygen species (ROS) production. Studies suggest that activated platelets are important mediators in the release. Here, we show that PaCa cells can stimulate the rapid release of NETs, independently of ROS production. We further assessed the role of platelets in PaCa-induced NETs and observed a trend of increased the NET release by PaCa-primed platelets. Additionally, NETs promoted thrombus formation under venous shear stress ex vivo. Taken together, our results suggest that PaCa-induced NETs can contribute to the high risk of venous thromboembolism development in PaCa patients, and reveal NETs as a potential therapeutic target.
Collapse
|
233
|
Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L, García-Orozco A, Alvarado-Navarro A, Fafutis-Morris M. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Front Immunol 2017; 8:81. [PMID: 28220120 PMCID: PMC5292617 DOI: 10.3389/fimmu.2017.00081] [Citation(s) in RCA: 462] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022] Open
Abstract
In addition to physical barriers, neutrophils are considered a part of the first line of immune defense. They can be found in the bloodstream, with a lifespan of 6–8 h, and in tissue, where they can last up to 7 days. The mechanisms that neutrophils utilize for host defense are phagocytosis, degranulation, cytokine production, and, the most recently described, neutrophil extracellular trap (NET) production. NETs are DNA structures released due to chromatin decondensation and spreading, and they thus occupy three to five times the volume of condensed chromatin. Several proteins adhere to NETs, including histones and over 30 components of primary and secondary granules, among them components with bactericidal activity such as elastase, myeloperoxidase, cathepsin G, lactoferrin, pentraxin 3, gelatinase, proteinase 3, LL37, peptidoglycan-binding proteins, and others with bactericidal activity able to destroy virulence factors. Three models for NETosis are known to date. (a) Suicidal NETosis, with a duration of 2–4 h, is the best described model. (b) In vital NETosis with nuclear DNA release, neutrophils release NETs without exhibiting loss of nuclear or plasma membrane within 5–60 min, and it is independent of reactive oxygen species (ROS) and the Raf/MERK/ERK pathway. (c) The final type is vital NETosis with release of mitochondrial DNA that is dependent on ROS and produced after stimuli with GM-CSF and lipopolysaccharide. Recent research has revealed neutrophils as more sophisticated immune cells that are able to precisely regulate their granular enzymes release by ion fluxes and can release immunomodulatory cytokines and chemokines that interact with various components of the immune system. Therefore, they can play a key role in autoimmunity and in autoinflammatory and metabolic diseases. In this review, we intend to show the two roles played by neutrophils: as a first line of defense against microorganisms and as a contributor to the pathogenesis of various illnesses, such as autoimmune, autoinflammatory, and metabolic diseases.
Collapse
|
234
|
Mor-Vaknin N, Saha A, Legendre M, Carmona-Rivera C, Amin MA, Rabquer BJ, Gonzales-Hernandez MJ, Jorns J, Mohan S, Yalavarthi S, Pai DA, Angevine K, Almburg SJ, Knight JS, Adams BS, Koch AE, Fox DA, Engelke DR, Kaplan MJ, Markovitz DM. DEK-targeting DNA aptamers as therapeutics for inflammatory arthritis. Nat Commun 2017; 8:14252. [PMID: 28165452 PMCID: PMC5303823 DOI: 10.1038/ncomms14252] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/08/2016] [Indexed: 12/14/2022] Open
Abstract
Novel therapeutics are required for improving the management of chronic inflammatory diseases. Aptamers are single-stranded RNA or DNA molecules that have recently shown utility in a clinical setting, as they can specifically neutralize biomedically relevant proteins, particularly cell surface and extracellular proteins. The nuclear chromatin protein DEK is a secreted chemoattractant that is abundant in the synovia of patients with juvenile idiopathic arthritis (JIA). Here, we show that DEK is crucial to the development of arthritis in mouse models, thus making it an appropriate target for aptamer-based therapy. Genetic depletion of DEK or treatment with DEK-targeted aptamers significantly reduces joint inflammation in vivo and greatly impairs the ability of neutrophils to form neutrophil extracellular traps (NETs). DEK is detected in spontaneously forming NETs from JIA patient synovial neutrophils, and DEK-targeted aptamers reduce NET formation. DEK is thus key to joint inflammation, and anti-DEK aptamers hold promise for the treatment of JIA and other types of arthritis.
Collapse
MESH Headings
- Adult
- Animals
- Aptamers, Nucleotide/therapeutic use
- Arthritis, Juvenile/immunology
- Arthritis, Juvenile/therapy
- Chemotactic Factors/antagonists & inhibitors
- Chemotactic Factors/genetics
- Chemotactic Factors/immunology
- Chemotactic Factors/metabolism
- Chromosomal Proteins, Non-Histone/antagonists & inhibitors
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/immunology
- Chromosomal Proteins, Non-Histone/metabolism
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Extracellular Traps/immunology
- Extracellular Traps/metabolism
- Female
- Healthy Volunteers
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophils/immunology
- Oncogene Proteins/antagonists & inhibitors
- Oncogene Proteins/genetics
- Oncogene Proteins/immunology
- Oncogene Proteins/metabolism
- Poly-ADP-Ribose Binding Proteins/antagonists & inhibitors
- Poly-ADP-Ribose Binding Proteins/genetics
- Poly-ADP-Ribose Binding Proteins/immunology
- Poly-ADP-Ribose Binding Proteins/metabolism
- Primary Cell Culture
- Synovial Fluid/chemistry
- Synovial Fluid/cytology
- Synovial Fluid/immunology
- Zymosan/immunology
Collapse
Affiliation(s)
- Nirit Mor-Vaknin
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Anjan Saha
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Cancer Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Maureen Legendre
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892, USA
| | - M Asif Amin
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Bradley J. Rabquer
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Marta J. Gonzales-Hernandez
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Julie Jorns
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Smriti Mohan
- Department of Pediatrics and Communicable Diseases, Division of Pediatric Rheumatology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Srilakshmi Yalavarthi
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Dave A. Pai
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kristine Angevine
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shelley J. Almburg
- Microscopy & Image – Analysis Laboratory, University of Michigan, Ann Arbor, Michigan 48109, USA
- Deceased
| | - Jason S. Knight
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Barbara S. Adams
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alisa E. Koch
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan 48109, USA
- VA Medical Service, Department of Internal Medicine/Division of Rheumatology, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - David A. Fox
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - David R. Engelke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892, USA
| | - David M. Markovitz
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
- Programs in Immunology, Cellular & Molecular Biology, and Cancer Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
235
|
Podaza E, Sabbione F, Risnik D, Borge M, Almejún MB, Colado A, Fernández-Grecco H, Cabrejo M, Bezares RF, Trevani A, Gamberale R, Giordano M. Neutrophils from chronic lymphocytic leukemia patients exhibit an increased capacity to release extracellular traps (NETs). Cancer Immunol Immunother 2017; 66:77-89. [PMID: 27796477 PMCID: PMC11029506 DOI: 10.1007/s00262-016-1921-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 10/23/2016] [Indexed: 12/19/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by immune defects that contribute to a high rate of infections and autoimmune cytopenias. Neutrophils are the first line of innate immunity and respond to pathogens through multiple mechanisms, including the release of neutrophil extracellular traps (NETs). These web-like structures composed of DNA, histones, and granular proteins are also produced under sterile conditions and play important roles in thrombosis and autoimmune disorders. Here we show that neutrophils from CLL patients are more prone to release NETs compared to those from age-matched healthy donors (HD). Increased generation of NETs was not due to higher levels of elastase, myeloperoxidase, or reactive oxygen species production. Instead, we found that plasma from CLL patients was able to prime neutrophils from HD to generate higher amounts of NETs upon activation. Plasmatic IL-8 was involved in the priming effect since its depletion reduced plasma capacity to enhance NETs release. Finally, we found that culture with NETs delayed spontaneous apoptosis and increased the expression of activation markers on leukemic B cells. Our study provides new insights into the immune dysregulation in CLL and suggests that the chronic inflammatory environment typical of CLL probably underlies this inappropriate neutrophil priming.
Collapse
Affiliation(s)
- Enrique Podaza
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Florencia Sabbione
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Denise Risnik
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Mercedes Borge
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - María B Almejún
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Ana Colado
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | | | - María Cabrejo
- Servicio de Hematología, Sanatorio Municipal Dr. Julio Méndez, Buenos Aires, Argentina
| | - Raimundo F Bezares
- Servicio de Hematología, Hospital Municipal Dr. Teodoro Alvarez, Buenos Aires, Argentina
| | - Analía Trevani
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Romina Gamberale
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Mirta Giordano
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina.
| |
Collapse
|
236
|
White PC, Chicca IJ, Ling MR, Wright HJ, Cooper PR, Milward MR, Chapple ILC. Characterization, Quantification, and Visualization of Neutrophil Extracellular Traps. Methods Mol Biol 2017; 1537:481-497. [PMID: 27924613 DOI: 10.1007/978-1-4939-6685-1_29] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Following the discovery of neutrophil extracellular traps (NETs) in 2004 by Brinkmann and colleagues, there has been extensive research into the role of NETs in a number of inflammatory diseases, including periodontitis. This chapter describes the current methods for the isolation of peripheral blood neutrophils for subsequent NET experiments, including approaches to quantify and visualize NET production, the ability of NETs to entrap and kill bacteria, and the removal of NETs by nuclease-containing plasma.
Collapse
Affiliation(s)
- Phillipa C White
- Institute of Clinical Sciences, College of Medical and Dental Sciences, The School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Ilaria J Chicca
- Institute of Clinical Sciences, College of Medical and Dental Sciences, The School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Martin R Ling
- Institute of Clinical Sciences, College of Medical and Dental Sciences, The School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Helen J Wright
- Institute of Clinical Sciences, College of Medical and Dental Sciences, The School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Paul R Cooper
- Institute of Clinical Sciences, College of Medical and Dental Sciences, The School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Mike R Milward
- Institute of Clinical Sciences, College of Medical and Dental Sciences, The School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Iain L C Chapple
- Institute of Clinical Sciences, College of Medical and Dental Sciences, The School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK.
| |
Collapse
|
237
|
Marin Oyarzún CP, Carestia A, Lev PR, Glembotsky AC, Castro Ríos MA, Moiraghi B, Molinas FC, Marta RF, Schattner M, Heller PG. Neutrophil extracellular trap formation and circulating nucleosomes in patients with chronic myeloproliferative neoplasms. Sci Rep 2016; 6:38738. [PMID: 27958278 PMCID: PMC5153854 DOI: 10.1038/srep38738] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/14/2016] [Indexed: 12/15/2022] Open
Abstract
The mechanisms underlying increased thrombotic risk in chronic myeloproliferative neoplasms (MPN) are incompletely understood. We assessed whether neutrophil extracellular traps (NETs), which promote thrombosis, contribute to the procoagulant state in essential thrombocythemia, polycythemia vera and myelofibrosis (MF) patients. Although MPN neutrophils showed increased basal reactive oxygen species (ROS), enhanced NETosis by unstimulated neutrophils was an infrequent finding, whereas PMA-triggered NETosis was impaired, particularly in MF, due to decreased PMA-triggered ROS production. Elevated circulating nucleosomes were a prominent finding and were higher in patients with advanced disease, which may have potential prognostic implication. Histone-MPO complexes, proposed as specific NET biomarker, were seldomly detected, suggesting NETs may not be the main source of nucleosomes in most patients, whereas their correlation with high LDH points to increased cell turn-over as a plausible origin. Lack of association of nucleosomes or NETs with thrombosis or activation markers does not support their use as predictors of thrombosis although prospective studies in a larger cohort may help define their potential contribution to MPN thrombosis. These results do not provide evidence for relevant in vivo NETosis in MPN patients under steady state conditions, although availability of standardized NET biomarkers may contribute to further research in this field.
Collapse
Affiliation(s)
- Cecilia P Marin Oyarzún
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Agostina Carestia
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (IMEX)- CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Paola R Lev
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Ana C Glembotsky
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | | | - Beatriz Moiraghi
- Department of Hematology, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Felisa C Molinas
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Rosana F Marta
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Mirta Schattner
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (IMEX)- CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Paula G Heller
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
238
|
Neutrophil extracellular traps: protagonists of cancer progression? Oncogene 2016; 36:2483-2490. [PMID: 27941879 DOI: 10.1038/onc.2016.406] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/18/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022]
Abstract
Neutrophil extracellular traps (NETs) are a defense mechanism first described to trap and kill bacteria and other pathogens. Increasingly, however, their involvement in the pathogenesis of inflammatory and malignant diseases is being recognized. Several recent studies have suggested important roles of NETs in tumor progression, metastasis and tumor-associated thrombosis. Although systematic studies to address the role of NETs in tumor development are still scarce, we will explore the emerging evidence for NETs as potential protagonists in malignant disease and highlight the mechanisms through which these effects may be exerted. Future questions arising from our current knowledge of direct and indirect interactions between NETs and cancer cells will be outlined and we will explore NETs as candidate pharmaceutical targets in cancer patients.
Collapse
|
239
|
Malmström V, Catrina AI, Klareskog L. The immunopathogenesis of seropositive rheumatoid arthritis: from triggering to targeting. Nat Rev Immunol 2016; 17:60-75. [PMID: 27916980 DOI: 10.1038/nri.2016.124] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Patients with rheumatoid arthritis can be divided into two major subsets characterized by the presence versus absence of antibodies to citrullinated protein antigens (ACPAs) and of rheumatoid factor (RF). The antibody-positive subset of disease, also known as seropositive rheumatoid arthritis, constitutes approximately two-thirds of all cases of rheumatoid arthritis and generally has a more severe disease course. ACPAs and RF are often present in the blood long before any signs of joint inflammation, which suggests that the triggering of autoimmunity may occur at sites other than the joints (for example, in the lung). This Review summarizes recent progress in our understanding of this gradual disease development in seropositive patients. We also emphasize the implications of this new understanding for the development of preventive and therapeutic strategies. Similar temporal and spatial separation of immune triggering and clinical manifestations, with novel opportunities for early intervention, may also occur in other immune-mediated diseases.
Collapse
Affiliation(s)
- Vivianne Malmström
- Rheumatology Unit, Department of Medicine at Solna, Karolinska University Hospital, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Anca I Catrina
- Rheumatology Unit, Department of Medicine at Solna, Karolinska University Hospital, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Lars Klareskog
- Rheumatology Unit, Department of Medicine at Solna, Karolinska University Hospital, Karolinska Institute, 171 76 Stockholm, Sweden
| |
Collapse
|
240
|
Biermann MHC, Podolska MJ, Knopf J, Reinwald C, Weidner D, Maueröder C, Hahn J, Kienhöfer D, Barras A, Boukherroub R, Szunerits S, Bilyy R, Hoffmann M, Zhao Y, Schett G, Herrmann M, Munoz LE. Oxidative Burst-Dependent NETosis Is Implicated in the Resolution of Necrosis-Associated Sterile Inflammation. Front Immunol 2016; 7:557. [PMID: 27990145 PMCID: PMC5131011 DOI: 10.3389/fimmu.2016.00557] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/18/2016] [Indexed: 02/05/2023] Open
Abstract
Necrosis is associated with a profound inflammatory response. The regulation of necrosis-associated inflammation, particularly the mechanisms responsible for resolution of inflammation is incompletely characterized. Nanoparticles are known to induce plasma membrane damage and necrosis followed by sterile inflammation. We observed that injection of metabolically inert nanodiamonds resulted in paw edema in WT and Ncf1** mice. However, while inflammation quickly resolved in WT mice, it persisted over several weeks in Ncf1** mice indicating failure of resolution of inflammation. Mechanistically, NOX2-dependent reactive oxygen species (ROS) production and formation of neutrophil extracellular traps were essential for the resolution of necrosis-induced inflammation: hence, by evaluating the fate of the particles at the site of inflammation, we observed that Ncf1** mice deficient in NADPH-dependent ROS failed to generate granulation tissue therefore being unable to trap the nanodiamonds. These data suggest that NOX2-dependent NETosis is crucial for preventing the chronification of the inflammatory response to tissue necrosis by forming NETosis-dependent barriers between the necrotic and healthy surrounding tissue.
Collapse
Affiliation(s)
- Mona H. C. Biermann
- Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Malgorzata J. Podolska
- Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christiane Reinwald
- Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Daniela Weidner
- Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Maueröder
- Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jonas Hahn
- Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Deborah Kienhöfer
- Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandre Barras
- UMR CNRS 8520, Institut d’Electronique de Microélectronique et de Nanotechnologie (IEMN), Université Lille 1, Villeneuve d’Ascq, France
| | - Rabah Boukherroub
- UMR CNRS 8520, Institut d’Electronique de Microélectronique et de Nanotechnologie (IEMN), Université Lille 1, Villeneuve d’Ascq, France
| | - Sabine Szunerits
- UMR CNRS 8520, Institut d’Electronique de Microélectronique et de Nanotechnologie (IEMN), Université Lille 1, Villeneuve d’Ascq, France
| | - Rostyslav Bilyy
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Markus Hoffmann
- Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Georg Schett
- Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Luis E. Munoz
- Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
241
|
Sil P, Hayes CP, Reaves BJ, Breen P, Quinn S, Sokolove J, Rada B. P2Y6 Receptor Antagonist MRS2578 Inhibits Neutrophil Activation and Aggregated Neutrophil Extracellular Trap Formation Induced by Gout-Associated Monosodium Urate Crystals. THE JOURNAL OF IMMUNOLOGY 2016; 198:428-442. [PMID: 27903742 DOI: 10.4049/jimmunol.1600766] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/23/2016] [Indexed: 12/27/2022]
Abstract
Human neutrophils (polymorphonuclear leukocytes [PMNs]) generate inflammatory responses within the joints of gout patients upon encountering monosodium urate (MSU) crystals. Neutrophil extracellular traps (NETs) are found abundantly in the synovial fluid of gout patients. The detailed mechanism of MSU crystal-induced NET formation remains unknown. Our goal was to shed light on possible roles of purinergic signaling and neutrophil migration in mediating NET formation induced by MSU crystals. Interaction of human neutrophils with MSU crystals was evaluated by high-throughput live imaging using confocal microscopy. We quantitated NET levels in gout synovial fluid supernatants and detected enzymatically active neutrophil primary granule enzymes, myeloperoxidase, and human neutrophil elastase. Suramin and PPADS, general P2Y receptor blockers, and MRS2578, an inhibitor of the purinergic P2Y6 receptor, blocked NET formation triggered by MSU crystals. AR-C25118925XX (P2Y2 antagonist) did not inhibit MSU crystal-stimulated NET release. Live imaging of PMNs showed that MRS2578 represses neutrophil migration and blocked characteristic formation of MSU crystal-NET aggregates called aggregated NETs. Interestingly, the store-operated calcium entry channel inhibitor (SK&F96365) also reduced MSU crystal-induced NET release. Our results indicate that the P2Y6/store-operated calcium entry/IL-8 axis is involved in MSU crystal-induced aggregated NET formation, but MRS2578 could have additional effects affecting PMN migration. The work presented in the present study could lead to a better understanding of gouty joint inflammation and help improve the treatment and care of gout patients.
Collapse
Affiliation(s)
- Payel Sil
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Craig P Hayes
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Barbara J Reaves
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Patrick Breen
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602
| | - Shannon Quinn
- Department of Computer Science, Franklin College of Arts and Sciences, University of Georgia, Athens, 30602 GA
| | - Jeremy Sokolove
- Stanford University School of Medicine, Stanford, CA 94305; and.,Internal Medicine and Rheumatology, VA Palo Alto Health Care System, Palo Alto, CA 94034
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602;
| |
Collapse
|
242
|
Doke M, Fukamachi H, Morisaki H, Arimoto T, Kataoka H, Kuwata H. Nucleases from Prevotella intermedia can degrade neutrophil extracellular traps. Mol Oral Microbiol 2016; 32:288-300. [PMID: 27476978 PMCID: PMC5516193 DOI: 10.1111/omi.12171] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2016] [Indexed: 01/19/2023]
Abstract
Periodontitis is an inflammatory disease caused by periodontal bacteria in subgingival plaque. These bacteria are able to colonize the periodontal region by evading the host immune response. Neutrophils, the host's first line of defense against infection, use various strategies to kill invading pathogens, including neutrophil extracellular traps (NETs). These are extracellular net‐like fibers comprising DNA and antimicrobial components such as histones, LL‐37, defensins, myeloperoxidase, and neutrophil elastase from neutrophils that disarm and kill bacteria extracellularly. Bacterial nuclease degrades the NETs to escape NET killing. It has now been shown that extracellular nucleases enable bacteria to evade this host antimicrobial mechanism, leading to increased pathogenicity. Here, we compared the DNA degradation activity of major Gram‐negative periodontopathogenic bacteria, Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans. We found that Pr. intermedia showed the highest DNA degradation activity. A genome search of Pr. intermedia revealed the presence of two genes, nucA and nucD, putatively encoding secreted nucleases, although their enzymatic and biological activities are unknown. We cloned nucA‐ and nucD‐encoding nucleases from Pr. intermedia ATCC 25611 and characterized their gene products. Recombinant NucA and NucD digested DNA and RNA, which required both Mg2+ and Ca2+ for optimal activity. In addition, NucA and NucD were able to degrade the DNA matrix comprising NETs.
Collapse
Affiliation(s)
- M Doke
- Department of Oral Microbiology and Immunology, Showa University School of Dentistry, Shinagawa, Tokyo, Japan
| | - H Fukamachi
- Department of Oral Microbiology and Immunology, Showa University School of Dentistry, Shinagawa, Tokyo, Japan
| | - H Morisaki
- Department of Oral Microbiology and Immunology, Showa University School of Dentistry, Shinagawa, Tokyo, Japan
| | - T Arimoto
- Department of Oral Microbiology and Immunology, Showa University School of Dentistry, Shinagawa, Tokyo, Japan
| | - H Kataoka
- Department of Oral Microbiology and Immunology, Showa University School of Dentistry, Shinagawa, Tokyo, Japan
| | - H Kuwata
- Department of Oral Microbiology and Immunology, Showa University School of Dentistry, Shinagawa, Tokyo, Japan
| |
Collapse
|
243
|
Abstract
OBJECTIVES Innate immune dysfunction after major burn injuries increases the susceptibility to organ failure. Lipid mediators of inflammation resolution, e.g., resolvin D2, have been shown recently to restore neutrophil functionality and reduce mortality rate in a rat model of major burn injury. However, the physiological mechanisms responsible for the benefic activity of resolvin D2 are not well understood. DESIGN Prospective randomized animal investigation. SETTING Academic research setting. SUBJECTS Wistar male rats. INTERVENTIONS Animals were subjected to a full-thickness burn of 30% total body surface area. Two hours after burn, 25 ng/kg resolvin D2 was administered IV and repeated every day, for 8 days. At day 10 post burn, 2 mg/kg of lipopolysaccharide was administered IV, and the presence of renal and hepatic injuries was evaluated at day 11 post burn by histology, immunohistochemistry, and relevant blood chemistry. MEASUREMENTS AND MAIN RESULTS In untreated animals, we found significant tissue damage in the kidneys and liver, consistent with acute tubular necrosis and multifocal necrosis, and changes in blood chemistry, reflecting the deterioration of renal and hepatic functions. We detected less tissue damage and significantly lower values of blood urea nitrogen (26.4 ± 2.1 vs 36.0 ± 9.3 mg/dL; p ≤ 0.001), alanine aminotransferase (266.5 ± 295.2 vs 861.8 ± 813.7 U/L; p ≤ 0.01), and total bilirubin (0.13 ± 0.05 vs 0.30 ± 0.14 mg/dL; p ≤ 0.01) in resolvin D2-treated rats than in untreated animals. The mean blood pressure of all animals was above 65 mm Hg, indicating adequate tissue perfusion throughout the experiments. We measured significantly larger amounts of chromatin in the circulation of untreated than of resolvin D2-treated rats (575.1 ± 331.0 vs 264.1 ± 122.4 ng/mL; p ≤ 0.05) and identified neutrophil extracellular traps in kidney and liver tissues from untreated rats, consistent with the tissue damage. CONCLUSIONS Pathologic changes in kidney and liver tissues in a rat model of major burn and endotoxin insults are ameliorated by resolvin D2.
Collapse
|
244
|
Moorthy AN, Tan KB, Wang S, Narasaraju T, Chow VT. Effect of High-Fat Diet on the Formation of Pulmonary Neutrophil Extracellular Traps during Influenza Pneumonia in BALB/c Mice. Front Immunol 2016; 7:289. [PMID: 27531997 PMCID: PMC4969943 DOI: 10.3389/fimmu.2016.00289] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Obesity is an independent risk factor for severe outcome of influenza infection. Higher dietary fat consumption has been linked to greater morbidity and severe influenza in mouse models. However, the extent of generation of neutrophil extracellular traps (NETs or NETosis) in obese individuals during influenza pneumonia is hitherto unknown. This study investigated pulmonary NETs generation in BALB/c mice fed with high-fat diet (HFD) and low-fat diet (LFD), during the course of influenza pneumonia. Clinical disease progression, histopathology, lung reactive oxygen species, and myeloperoxidase activity were also compared. Consumption of HFD over 18 weeks led to significantly higher body weight, body mass index, and adiposity in BALB/c mice compared with LFD. Lethal challenge of mice (on HFD and LFD) with influenza A/PR/8/34 (H1N1) virus led to similar body weight loss and histopathologic severity. However, NETs were formed at relatively higher levels in mice fed with HFD, despite the absence of significant difference in disease progression between HFD- and LFD-fed mice.
Collapse
Affiliation(s)
- Anandi Narayana Moorthy
- Department of Microbiology and Immunology, School of Medicine, National University of Singapore, National University Health System , Singapore
| | - Kong Bing Tan
- Department of Pathology, National University Hospital, National University of Singapore, National University Health System , Singapore
| | - Shi Wang
- Department of Pathology, National University Hospital, National University of Singapore, National University Health System , Singapore
| | | | - Vincent T Chow
- Department of Microbiology and Immunology, School of Medicine, National University of Singapore, National University Health System , Singapore
| |
Collapse
|
245
|
Wang W, Xue L, Ma T, Li Y, Li Z. Non-intervention observation: Dynamic evolution laws of inflammatory response in necrotizing enterocolitis. Exp Ther Med 2016; 12:1770-1774. [PMID: 27588096 PMCID: PMC4998058 DOI: 10.3892/etm.2016.3540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of necrotizing enterocolitis (NEC) is not well understood but immunological factors are thought to be key determinants of the disease appearance and its prognosis. During the course of the present study, different groups of newborn infants were observed and tested, to obtain an accurate image of values of pro- and anti-inflammatory cytokines at the onset, development and progression of neonatal NEC and to compare the values to those obtained during normal healthy development. All the infants in the study received standard medical treatment as appropriate. Initially, all the low birth weight premature infants born between June, 2014 and June, 2015 were tested on days 1, 3, 7, 10, 14, and 21 after birth, to obtain serum values of platelet activating factor (PAF), interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α) and IL-10. In total, 150 low birth weight premature infants were included, and the incidence of NEC was 6.67% (10/150). For the comparison studies, 10 premature NEC infants of low birth weight, 15 premature normal infants, and 15 full-term normal infants born during the same period were enrolled in the study. The serum values of PAF, IL-1, TNF-α and IL-10 for these infants were detected on the same days after birth. PAF, IL-1 and TNF-α levels began to increase on days 1-3 after birth in premature infants, reached a peak on days 7-10, and declined to normal levels on days 14-21. Comparison differences in premature and full-term infants were statistically significant (P<0.01). Interleukin-10 began to increase on days 7-10 after birth in premature infants and reached a peak on days 14-21. Comparisons among premature and full-term infants at the given time points showed the differences were also statistically significant (P<0.01). The differences in values of the above inflammatory cytokines in the infants that died and the values in the survivors were not statistically significant (P>0.05). In conclusion, pro-inflammatory factors PAF, IL-1, TNF-α and anti-inflammatory factor IL-10 may be important in the pathogenesis of NEC, and monitoring their levels in blood can be useful in the prediction of the occurrence of disease. Nevertheless, these levels are not useful as prognostic markers.
Collapse
Affiliation(s)
- Wei Wang
- Neonatal Department of Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Li Xue
- Neonatal Department of Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Tongsheng Ma
- Department of Neonatal Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Yuan Li
- Department of Urology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Zhenguang Li
- Neonatal Department of Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
246
|
Far beyond Phagocytosis: Phagocyte-Derived Extracellular Traps Act Efficiently against Protozoan Parasites In Vitro and In Vivo. Mediators Inflamm 2016; 2016:5898074. [PMID: 27445437 PMCID: PMC4944069 DOI: 10.1155/2016/5898074] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/02/2016] [Accepted: 06/05/2016] [Indexed: 12/30/2022] Open
Abstract
Professional mononuclear phagocytes such as polymorphonuclear neutrophils (PMN), monocytes, and macrophages are considered as the first line of defence against invasive pathogens. The formation of extracellular traps (ETs) by activated mononuclear phagocytes is meanwhile well accepted as an effector mechanism of the early host innate immune response acting against microbial infections. Recent investigations showed evidence that ETosis is a widely spread effector mechanism in vertebrates and invertebrates being utilized to entrap and kill bacteria, fungi, viruses, and protozoan parasites. ETs are released in response to intact protozoan parasites or to parasite-specific antigens in a controlled cell death process. Released ETs consist of nuclear DNA as backbone adorned with histones, antimicrobial peptides, and phagocyte-specific granular enzymes thereby producing a sticky extracellular matrix capable of entrapping and killing pathogens. This review summarizes recent data on protozoa-induced ETosis. Special attention will be given to molecular mechanisms of protozoa-induced ETosis and on its consequences for the parasites successful reproduction and life cycle accomplishment.
Collapse
|
247
|
Gupta S, Kaplan MJ. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol 2016; 12:402-13. [PMID: 27241241 DOI: 10.1038/nrneph.2016.71] [Citation(s) in RCA: 326] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic autoimmune diseases are a group of disorders characterized by a failure in self-tolerance to a wide variety of autoantigens. In genetically predisposed individuals, these diseases occur as a multistep process in which environmental factors have key roles in the development of abnormal innate and adaptive immune responses. Experimental evidence collected in the past decade suggests that neutrophils - the most abundant type of white blood cell - might have an important role in the pathogenesis of these diseases by contributing to the initiation and perpetuation of immune dysregulation through the formation of neutrophil extracellular traps (NETs), synthesis of proinflammatory cytokines and direct tissue damage. Many of the molecules externalized through NET formation are considered to be key autoantigens and might be involved in the generation of autoimmune responses in predisposed individuals. In several systemic autoimmune diseases, the imbalance between NET formation and degradation might increase the half-life of these lattices, which could enhance the exposure of the immune system to modified autoantigens and increase the capacity for NET-induced organ damage. This Review details the role of neutrophils and NETs in the pathophysiology of systemic autoimmune diseases, including their effect on renal damage, and discusses neutrophil targets as potential novel therapies for these diseases.
Collapse
Affiliation(s)
- Sarthak Gupta
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Systemic Autoimmunity Branch, Intramural Research Program, National Institutes of Health, Room 6D 47C, 10 Center Drive, Bethesda, MD 20892-1930, USA
| | - Mariana J Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Systemic Autoimmunity Branch, Intramural Research Program, National Institutes of Health, Room 6D 47C, 10 Center Drive, Bethesda, MD 20892-1930, USA
| |
Collapse
|
248
|
Zhang S, Shen H, Shu X, Peng Q, Wang G. Abnormally increased low-density granulocytes in peripheral blood mononuclear cells are associated with interstitial lung disease in dermatomyositis. Mod Rheumatol 2016; 27:122-129. [PMID: 27171278 DOI: 10.1080/14397595.2016.1179861] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE We previously found that neutrophil extracellular traps (NETs) were associated with interstitial lung disease (ILD) in dermatomyositis (DM) patients. However, it is unclear whether low-density granulocytes (LDGs), endowed with enhanced NET formation capabilities, contribute to the pathogenesis of ILD. This study aims to elucidate the relationship between LDGs and DM-associated ILD. METHODS We recruited 48 DM patients (28 with ILD) as well as 19 healthy volunteers for this study. The percentage of LDGs in peripheral blood mononuclear cells (PBMCs) was ascertained by flow cytometry. Plasma cfDNA was measured by using the Quant-iT PicoGreen dsDNA Kit and plasma LL-37 was tested by using the LL-37 ELISA kit. RESULTS The percentage of LDGs was 7.1 times higher in DM patients than in healthy controls. LDG percentage was 2.7 times higher in DM patients with ILD than in DM patients without ILD. Additionally, LDG percentage positively correlated with MYOACT lung disease activity scores, and NET/neutrophil-related marker levels (LL-37, cfDNA, MPO, and MMP-8) in the DM group were significantly higher than those in the control group. CONCLUSION The abnormal increase of LDGs may exacerbate abnormal NET regulation and further contribute to the pathogenesis of ILD in DM patients by abnormally forming NETs.
Collapse
Affiliation(s)
- Sigong Zhang
- a Department of Rheumatology , Lanzhou University Second Hospital , Lanzhou , China and
| | - Haili Shen
- a Department of Rheumatology , Lanzhou University Second Hospital , Lanzhou , China and
| | - Xiaoming Shu
- b Department of Rheumatology , China-Japan Friendship Hospital , Beijing , China
| | - Qinglin Peng
- b Department of Rheumatology , China-Japan Friendship Hospital , Beijing , China
| | - Guochun Wang
- b Department of Rheumatology , China-Japan Friendship Hospital , Beijing , China
| |
Collapse
|
249
|
Marder W, Knight JS, Kaplan MJ, Somers EC, Zhang X, O'Dell AA, Padmanabhan V, Lieberman RW. Placental histology and neutrophil extracellular traps in lupus and pre-eclampsia pregnancies. Lupus Sci Med 2016; 3:e000134. [PMID: 27158525 PMCID: PMC4854113 DOI: 10.1136/lupus-2015-000134] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/18/2016] [Accepted: 03/28/2016] [Indexed: 12/12/2022]
Abstract
Objective Systemic lupus erythematosus (SLE) is associated with increased risk of adverse pregnancy outcomes, including pre-eclampsia, particularly in association with antiphospholipid antibody syndrome (APS). While significant placental abnormalities are expected in pre-eclampsia, less is known about how lupus activity and APS in pregnancy affect the placenta. We describe placental pathology from a population of lupus pregnancies, several of which were complicated by APS-related thromboses, in which pre-eclampsia and other complications developed. We performed standard histopathological placental review and quantified neutrophils and neutrophil extracellular traps (NETs) in the intervillous space, given the recognised association of NETs with lupus, APS and pre-eclampsia. Methods Pre-eclampsia, SLE and control placentas were scored for histological features, and neutrophils were quantified on H&E and immunohistochemical staining for the granular protein myeloperoxidase. NETs were identified by extracellular myeloperoxidase staining in the setting of decondensed nuclei. Non-parametric analysis was used to evaluate differences in netting and intact neutrophils between groups, with Kruskal–Wallis testing for associations between histological findings and neutrophils. Results Placentas were evaluated from 35 pregnancies: 10 controls, 11 pre-eclampsia, 4 SLE+pre-eclampsia and 10 SLE, including one complicated by catastrophic APS and one complicated by hepatic and splenic vein thromboses during pregnancy. Intrauterine growth restriction and oligohydramnios were observed in lupus cases but not controls. Significantly more NETs were found infiltrating placental intervillous spaces in pre-eclampsia, SLE+pre-eclampsia and all 10 SLE non-pre-eclampsia cases. The ratio of NETs to total neutrophils was significantly increased in all case groups compared with controls. When present, NETs were associated with maternal vasculitis, laminar decidual necrosis, maternal–fetal interface haemorrhage and non-occlusive fetal thrombotic vasculopathy. Conclusions In this pilot study of placental tissue from lupus pregnancies, outcomes were more complicated, particularly if associated with APS. Placental tissue revealed marked inflammatory and vascular changes that were essentially indistinguishable from placental tissue of pre-eclampsia pregnancies.
Collapse
Affiliation(s)
- Wendy Marder
- Division of Rheumatology, Department of Internal Medicine,University of Michigan, Ann Arbor, Michigan, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan , USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health , Bethesda, Maryland , USA
| | - Emily C Somers
- Division of Rheumatology, Department of Internal Medicine,University of Michigan, Ann Arbor, Michigan, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA; Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Xu Zhang
- Division of Rheumatology, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan , USA
| | - Alexander A O'Dell
- Division of Rheumatology, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan , USA
| | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard W Lieberman
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA; Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
250
|
Val S, Poley M, Brown K, Choi R, Jeong S, Colberg-Poley A, Rose MC, Panchapakesan KC, Devaney JC, Perez-Losada M, Preciado D. Proteomic Characterization of Middle Ear Fluid Confirms Neutrophil Extracellular Traps as a Predominant Innate Immune Response in Chronic Otitis Media. PLoS One 2016; 11:e0152865. [PMID: 27078692 PMCID: PMC4831838 DOI: 10.1371/journal.pone.0152865] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/21/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Chronic Otitis Media (COM) is characterized by middle ear effusion (MEE) and conductive hearing loss. MEE reflect mucus hypersecretion, but global proteomic profiling of the mucosal components are limited. OBJECTIVE This study aimed at characterizing the proteome of MEEs from children with COM with the goal of elucidating important innate immune responses. METHOD MEEs were collected from children (n = 49) with COM undergoing myringotomy. Mass spectrometry was employed for proteomic profiling in nine samples. Independent samples were further analyzed by cytokine multiplex assay, immunoblotting, neutrophil elastase activity, next generation DNA sequencing, and/or immunofluorescence analysis. RESULTS 109 unique and common proteins were identified by MS. A majority were innate immune molecules, along with typically intracellular proteins such as histones and actin. 19.5% percent of all mapped peptide counts were from proteins known to be released by neutrophils. Immunofluorescence and immunoblotting demonstrated the presence of neutrophil extracellular traps (NETs) in every MEE, along with MUC5B colocalization. DNA found in effusions revealed unfragmented DNA of human origin. CONCLUSION Proteomic analysis of MEEs revealed a predominantly neutrophilic innate mucosal response in which MUC5B is associated with NET DNA. NETs are a primary macromolecular constituent of human COM middle ear effusions.
Collapse
Affiliation(s)
- Stephanie Val
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC, United States of America
| | - Marian Poley
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC, United States of America
| | - Kristy Brown
- Center for Genetic Medicine Research, Children’s National Health System, Washington, DC, United States of America
| | - Rachel Choi
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC, United States of America
| | - Stephanie Jeong
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC, United States of America
| | - Annie Colberg-Poley
- Center for Genetic Medicine Research, Children’s National Health System, Washington, DC, United States of America
| | - Mary C. Rose
- Center for Genetic Medicine Research, Children’s National Health System, Washington, DC, United States of America
| | - Karuna C. Panchapakesan
- Center for Genetic Medicine Research, Children’s National Health System, Washington, DC, United States of America
| | - Joe C. Devaney
- Center for Genetic Medicine Research, Children’s National Health System, Washington, DC, United States of America
| | - Marcos Perez-Losada
- Center for Genetic Medicine Research, Children’s National Health System, Washington, DC, United States of America
| | - Diego Preciado
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC, United States of America
- Division of Pediatric Otolaryngology, Children’s National Health System, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|