201
|
Gerber J, Brück W, Stadelmann C, Bunkowski S, Lassmann H, Nau R. Expression of death-related proteins in dentate granule cells in human bacterial meningitis. Brain Pathol 2006; 11:422-31. [PMID: 11556687 PMCID: PMC8098385 DOI: 10.1111/j.1750-3639.2001.tb00410.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Neuronal apoptosis in the dentate gyrus has been observed in animal models of bacterial meningitis and in humans dying in the course of the disease. To evaluate the mechanisms of neuronal cell death, hippocampal sections of 20 patients dying from bacterial meningitis were investigated by immunohistochemistry using antibodies against the proform of caspase-3 and the active enzyme, bcl-2, bax and p53. In the dentate granule cell layer, the median density of neurons with an apoptotic morphology was 7.6/mm2 (0-15.6/mm2). The median density of immunoreactive neurons was 2.3/mm2 (procaspase-3), 0.9/mm2 (activated caspase-3), 1.8/mm2 (bcl-2), 1.1/mm2 (bax) and 0.4/mm2 (p53). 80% of neurons immunoreactive for active caspase-3 had an apoptotic morphology, whereas only 10% of all procaspase-3 stained neurons showed signs of apoptosis. Apoptotic cell death is present in humans dying in the course of bacterial meningitis in the dentate gyrus of the Formatio hippocampi. Neuronal expression of caspase-3, bcl-2 and bax suggests an involvement of these proteins in neuronal death.
Collapse
Affiliation(s)
- Joachim Gerber
- Department of Neurology, Georg‐August‐Universität Göttingen, Germany
| | - Wolfgang Brück
- Department of Neuropathology, Charité, Humboldt‐Universität, Berlin, Germany
| | | | | | - Hans Lassmann
- Institute of Brain Research, Department of Neuroimmunology, University of Vienna, Austria
| | - Roland Nau
- Department of Neurology, Georg‐August‐Universität Göttingen, Germany
| |
Collapse
|
202
|
Zhang GY, Zhang QG. Agents targeting c-Jun N-terminal kinase pathway as potential neuroprotectants. Expert Opin Investig Drugs 2006; 14:1373-83. [PMID: 16255677 DOI: 10.1517/13543784.14.11.1373] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
c-Jun N-terminal kinase (JNK) plays an integral role in neuronal death in multiple cell lines following a wide variety of stimuli and in a number of physiological functions that may be involved in human disease, including CNS diseases. In the past decades, many researchers in this field have found and reinforced the concept that prolonged activation of JNK signalling can induce neuronal cell death by both a transcriptional induction of death-promoting genes and modulation of the mitochondrial apoptosis pathways. Data are emerging to extend the understanding of the JNK signalling and confirm the possibility that targeting JNK signalling may offer an effective therapy for pathological conditions in the near future. This review will focus on the pro-apoptotic role of JNK signalling and updated pharmacological inhibitors of this pathway.
Collapse
Affiliation(s)
- Guang-Yi Zhang
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, PR China.
| | | |
Collapse
|
203
|
Liu Q, Chejanovsky N. Activation pathways and signal-mediated upregulation of the insect Spodoptera frugiperda caspase-1. Apoptosis 2006; 11:487-96. [PMID: 16532278 DOI: 10.1007/s10495-006-5059-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sf-caspase-1 is the most studied effector caspase of Lepidoptera. Its activation is believed to follow a two-step mechanism: The first step requires cleavage by an initiator caspase at D195 (between the large and small subunits) releasing the C-terminal small subunit. This is blocked by the baculovirus caspase inhibitor P49. The second step removes the N-terminal prodomain by cleavage at D28 to generate the large subunit that is blocked by the baculovirus caspase inhibitor P35. In this study, we identified an alternative mechanism of Sf-caspase-1 activation. This additional two-step mechanism involves first cleavage of pro-Sf-caspase-1 at D28 to remove the N-terminal prodomain and subsequently cleavage at D195 to generate the large and small subunits. Both mechanisms are triggered by apoptotic stimuli following a distinct pattern. We also showed that expression of Sf-caspase-1 was upregulated upon reception of apoptotic stimuli. Different from all published data, this upregulation occurred as a post-transcriptional event. Moreover, we proved that the stronger the stimuli, the higher the upregulation. And we demonstrated that P49 and P35 inhibited the cleavage at D28 and D195 respectively, independently of wether the first cleavage was at D195 or at D28.
Collapse
Affiliation(s)
- Q Liu
- Entomology Department, Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, POB 6, Bet Dagan, 50250, Israel.
| | | |
Collapse
|
204
|
Sucher NJ. Insights from molecular investigations of traditional Chinese herbal stroke medicines: implications for neuroprotective epilepsy therapy. Epilepsy Behav 2006; 8:350-62. [PMID: 16455305 DOI: 10.1016/j.yebeh.2005.11.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 11/25/2005] [Indexed: 11/18/2022]
Abstract
Traditional Chinese herbal medicine is the most widely practiced form of herbalism worldwide. It is based on a sophisticated system of medical theory and practice that is distinctly different from orthodox Western scientific medicine. Most traditional therapeutic formulations consist of a combination of several drugs. The combination of multiple drugs is thought to maximize therapeutic efficacy by facilitating synergistic actions and ameliorating or preventing potential adverse effects while at the same time aiming at multiple targets. Orthodox drug therapy has been subject to critical analysis by the "evidence-based medicine" movement, and demands have been made that herbal medicine should be subject to the same kind of scrutiny. However, evaluation of the effectiveness of herbal medicines can be challenging, as their active components are often not known. Accordingly, it may be difficult to ensure that an herbal preparation used in clinical trials contains the components underlying its purported therapeutic effect. We reasoned that the identification of actions of herbal medicines at well-defined molecular targets and subsequent identification of chemical compounds underlying these molecular effects might serve as surrogate markers in the hypothesis-guided evaluation of their therapeutic efficacy. A research program was initiated to characterize in vitro molecular actions of a collection of 58 traditional Chinese drugs that are often used for the treatment of stroke. The results indicate that these drugs possess activity at disparate molecular targets in the signaling pathways involved in N-methyl-d-aspartate (NMDA) receptor-mediated neuronal injury and death. Each herbal drug contains diverse families of chemical compounds, where each family comprises structurally related members that act with low affinity at multiple molecular targets. The data appear to support the multicomponent, multitarget approach of traditional Chinese medicine. Glutamate release and excessive stimulation of NMDA receptors cause status epilepticus-induced neuronal death and are involved in epileptogenesis. Therefore, these results are also relevant to the development of antiepileptogenic and neuroprotective therapy for seizures. The combination of principles of modern molecular medicine with certain ideas of traditional empirical Chinese medicine may be beneficial in translational medicine in general.
Collapse
Affiliation(s)
- Nikolaus J Sucher
- Division of Neuroscience, Department of Neurology, Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
205
|
Guan QH, Pei DS, Zong YY, Xu TL, Zhang GY. Neuroprotection against ischemic brain injury by a small peptide inhibitor of c-Jun N-terminal kinase (JNK) via nuclear and non-nuclear pathways. Neuroscience 2006; 139:609-27. [PMID: 16504411 DOI: 10.1016/j.neuroscience.2005.11.067] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2005] [Revised: 11/19/2005] [Accepted: 11/30/2005] [Indexed: 11/22/2022]
Abstract
Our previous studies and the others have strongly suggested that c-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in ischemic brain injury. Here we reported that Tat-JNK binding domain (JBD) of JNK-interacting protein-1 (JIP-1), a smaller 11-mer peptide corresponding to residues 153-163 of murine JIP-1 conjugated to Tat peptide, perturbed the assembly of JIP-1-JNK3 complexes, thus inhibiting the activation of JNK3 induced by ischemia/reperfusion in the vulnerable hippocampal CA1 subregion. As a result, Tat-JBD diminished the increased phosphorylation of c-Jun (a nuclear substrate of JNK) and the increased expression of Fas ligand induced by ischemia/reperfusion in the vulnerable hippocampal CA1 subregion. At the same time, through inhibiting phosphorylation of Bcl-2 (a cytosolic target of JNK) and the release of Bax from Bcl-2/Bax dimers, Tat-JBD attenuated Bax translocation to mitochondria and the release of cytochrome c induced by ischemia/reperfusion. Furthermore, the activation of caspase3 and hydrolyzation of poly-ADP-ribose-polymerase induced by brain ischemia/reperfusion were also significantly suppressed by preinfusion of the peptide Tat-JBD. Importantly, Tat-JBD showed neuroprotective effects on ischemic brain damage in vivo, and administration of the peptide after ischemia also achieved the same effects as preinfusion of the peptide did. Thus, our findings imply that Tat-JBD induced neuroprotection against ischemia/reperfusion in rat hippocampal CA1 region via inhibiting nuclear and non-nuclear pathways of JNK signaling. Taken together, these results indicate that Tat-JBD peptide provides a promising therapeutic approach for ischemic brain injury.
Collapse
Affiliation(s)
- Q-H Guan
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou 221002, China.
| | | | | | | | | |
Collapse
|
206
|
Nakajima T, Wakasa T, Okuma Y, Inanami O, Nomura Y, Kuwabara M, Kawahara K. Dual inhibition of protein phosphatase-1/2A and calpain rescues nerve growth factor-differentiated PC12 cells from oxygen-glucose deprivation-induced cell death. J Neurosci Res 2006; 83:459-68. [PMID: 16385561 DOI: 10.1002/jnr.20740] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the present study, we examined how the cell survival signaling via cyclic AMP-responsive element binding protein (CREB) and Akt, and the cell death signaling via cystein proteases, calpain and caspase-3, are involved in oxygen-glucose deprivation (OGD) followed by reoxygenation (OGD/reoxygenation)-induced cell death in nerve growth factor (NGF)-differentiated PC12 cells. OGD/reoxygenation-induced cell death was evaluated by LDH release into the culture medium. The level of LDH release was low (9.0% +/- 4.1%) immediately after 4 hr of OGD (0 hr of reoxygenation), was significantly increased to 28.6% +/- 6.6% at 3 hr of reoxygenation, and remained at similar levels at 6 and 20 hr of reoxygenation, suggesting that reoxygenation at least for 3 hr resulted in the loss of cell membrane integrity. After 4 hr of OGD followed by 3 hr of reoxygenation, dephosphorylation of phosphorylated CREB (pCREB), but not phosphorylated Akt (pAkt), was induced. Under these conditions, calpain- but not caspase-3-mediated alpha-spectrin breakdown product was increased, indicating that OGD/reoxygenation also induced an increase in calpain activity. The restoration of pCREB by protein phosphatase (PP)-1/2A inhibitors or the inhibition of excessive activation of calpain by calpain inhibitor did not reduce OGD/reoxygenation-induced LDH release. Cotreatment with PP-1/2A and calpain inhibitors reduced OGD/reoxygenation-induced LDH release. The present study suggests that a balance in the phosphorylation and proteolytic signaling is involved in the survival of NGF-differentiated PC12 cells.
Collapse
Affiliation(s)
- Takayuki Nakajima
- Laboratory of Cellular Cybernetics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
207
|
Wang Q, Sun AY, Simonyi A, Jensen MD, Shelat PB, Rottinghaus GE, MacDonald RS, Miller DK, Lubahn DE, Weisman GA, Sun GY. Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. J Neurosci Res 2006; 82:138-48. [PMID: 16075466 DOI: 10.1002/jnr.20610] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Increased oxidative stress has been regarded as an important underlying cause for neuronal damage induced by cerebral ischemia/reperfusion (I/R) injury. In recent years, there has been increasing interest in investigating polyphenols from botanical source for possible neuroprotective effects against neurodegenerative diseases. In this study, we investigated the mechanisms underlying the neuroprotective effects of curcumin, a potent polyphenol antioxidant enriched in tumeric. Global cerebral ischemia was induced in Mongolian gerbils by transient occlusion of the common carotid arteries. Histochemical analysis indicated extensive neuronal death together with increased reactive astrocytes and microglial cells in the hippocampal CA1 area at 4 days after I/R. These ischemic changes were preceded by a rapid increase in lipid peroxidation and followed by decrease in mitochondrial membrane potential, increased cytochrome c release, and subsequently caspase-3 activation and apoptosis. Administration of curcumin by i.p. injections (30 mg/kg body wt) or by supplementation to the AIN76 diet (2.0 g/kg diet) for 2 months significantly attenuated ischemia-induced neuronal death as well as glial activation. Curcumin administration also decreased lipid peroxidation, mitochondrial dysfunction, and the apoptotic indices. The biochemical changes resulting from curcumin also correlated well with its ability to ameliorate the changes in locomotor activity induced by I/R. Bioavailability study indicated a rapid increase in curcumin in plasma and brain within 1 hr after treatment. Together, these findings attribute the neuroprotective effect of curcumin against I/R-induced neuronal damage to its antioxidant capacity in reducing oxidative stress and the signaling cascade leading to apoptotic cell death.
Collapse
Affiliation(s)
- Qun Wang
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Sabbagh L, Bourbonnière M, Denis F, Sékaly RP. Cloning and Functional Characterization of the Murine Caspase-3 Gene Promoter. DNA Cell Biol 2006; 25:104-15. [PMID: 16460234 DOI: 10.1089/dna.2006.25.104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Several studies have shown that the levels of caspase-3 are upregulated under different conditions of apoptosis. Previously, we have shown that activation of T cells through the TCR leads to the upregulation of caspase-3 levels. These findings highlight the importance of regulating the expression of caspase-3 in order to prevent premature cell death. To better understand the regulation of the caspase-3 gene, a portion of the 5'- untranslated region was cloned, sequenced, and characterized. The segment of the 5'-flanking region of the caspase-3 gene was also cloned upstream of a luciferase reporter gene, demonstrating that this fragment contains promoter activity. Higher luciferase expression was found with several of the promoter deletion constructs in Jurkat T cells but not the mouse Neuro-2A neuroblastoma cell line, suggesting the presence of a T-cell-specific regulated region. The importance of these sequences is further supported by the genomic organization of the human and mouse caspase-3 promoter regions. These findings demonstrated that the -2245/+14 region of the caspase-3 promoter shows constitutive levels of expression, and that several regions of the promoter play a role in basal regulation. Finally, some of the conserved transcription factor binding sites identified between the human and mouse promoters appear to play an important role in lymphoid cells.
Collapse
Affiliation(s)
- Laurent Sabbagh
- Laboratoire d'Immunologie, Centre de Recherche du CHUM, Campus St.-Luc, Pavillon Edouard-Asselin, 264 Boulevard René Lévesque Est, #1370D, Montreal, Quebec H3C 3J7, Canada
| | | | | | | |
Collapse
|
209
|
Silva JP, Areias FM, Proença FM, Coutinho OP. Oxidative stress protection by newly synthesized nitrogen compounds with pharmacological potential. Life Sci 2006; 78:1256-67. [PMID: 16253284 DOI: 10.1016/j.lfs.2005.06.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 06/27/2005] [Indexed: 01/20/2023]
Abstract
In this study we used new nitrogen compounds obtained by organic synthesis whose structure predicted an antioxidant potential and then an eventual development as molecules of pharmacological interest in diseases involving oxidative stress. The compounds, identified as FMA4, FMA5, FMA7 and FMA8 differ in the presence of hydroxyl groups located in the C-3 and/or C-4 position of a phenolic unit, which is possibly responsible for their free radicals' buffering capacity. Data from the DPPH discoloration method confirm the high antiradical efficiency of the compounds. The results obtained with cellular models (L929 and PC12) show that they are not toxic and really protect from membrane lipid peroxidation induced by the ascorbate-iron oxidant pair. The level of protection correlates with the drug's lipophilic profile and is sometimes superior to trolox and equivalent to that observed for alpha-tocopherol. The compounds FMA4 and FMA7 present also a high protection from cell death evaluated in the presence of a staurosporine apoptotic stimulus. That protection results in a significant reduction of caspase-3 activity induced by staurosporine which by its turn seems to result from a protection observed in the membrane receptor pathway (caspase-8) together with a protection observed in the mitochondrial pathway (caspase-9). Taken together the results obtained with the new compounds, with linear chains, open up perspectives for their use as therapeutical agents, namely as antioxidants and protectors of apoptotic pathways. On the other hand the slight pro-oxidant profile obtained with the cyclic structures suggests a different therapeutic potential that is under current investigation.
Collapse
Affiliation(s)
- João P Silva
- Department of Biology, Center of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | | | | | | |
Collapse
|
210
|
Li W, Luo Y, Zhang F, Signore AP, Gobbel GT, Simon RP, Chen J. Ischemic preconditioning in the rat brain enhances the repair of endogenous oxidative DNA damage by activating the base-excision repair pathway. J Cereb Blood Flow Metab 2006; 26:181-98. [PMID: 16001017 DOI: 10.1038/sj.jcbfm.9600180] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development of ischemic tolerance in the brain, whereby a brief period of sublethal 'preconditioning' ischemia attenuates injury from subsequent severe ischemia, may involve the activation of multiple intracellular signaling events that promote neuronal survival. In this study, the potential role of inducible DNA base-excision repair (BER), an endogenous adaptive response that prevents the detrimental effect of oxidative DNA damage, has been studied in the rat model of ischemic tolerance produced by three episodes of ischemic preconditioning (IP). This paradigm of IP, when applied 2 and 5 days before 2-h middle cerebral artery occlusion (MCAO), significantly decreased infarct volume in the frontal-parietal cortex 72 h later. Correlated with this protective effect, IP markedly attenuated the nuclear accumulations of several oxidative DNA lesions, including 8-oxodG, AP sites, and DNA strand breaks, after 2-h MCAO. Consequently, harmful DNA damage-responsive events, including NAD depletion and p53 activation, were reduced during postischemic reperfusion in preconditioned brains. The mechanism underlying the decreased DNA damage in preconditioned brain was then investigated by measuring BER activities in nuclear extracts. Beta-polymerase-mediated BER activity was markedly increased after IP, and this activation occurred before (24 h) and during the course of ischemic tolerance (48 to 72 h). In similar patterns, the activities for AP site and 8-oxodG incisions were also upregulated after IP. The upregulation of BER activities after IP was likely because of increased expression of repair enzymes beta-polymerase, AP endonuclease, and OGG1. These results suggest that the activation of the BER pathway may contribute to IP-induced neuroprotection by enhancing the repair of endogenous oxidative DNA damage after ischemic injury.
Collapse
Affiliation(s)
- Wenjin Li
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
211
|
Morales P, Reyes P, Klawitter V, Huaiquín P, Bustamante D, Fiedler J, Herrera-Marschitz M. Effects of perinatal asphyxia on cell proliferation and neuronal phenotype evaluated with organotypic hippocampal cultures. Neuroscience 2006; 135:421-31. [PMID: 16112481 DOI: 10.1016/j.neuroscience.2005.05.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 05/24/2005] [Accepted: 05/30/2005] [Indexed: 10/25/2022]
Abstract
The present report summarizes studies combining an in vivo and in vitro approach, where asphyxia is induced in vivo at delivery time of Wistar rats, and the long term effects on hippocampus neurocircuitry are investigated in vitro with organotypic cultures plated at postnatal day seven. The cultures preserved hippocampus layering and regional subdivisions shown in vivo, and only few dying cells were observed when assayed with a viability test at day in vitro 27. When properly fixed, cultures from asphyxia-exposed animals showed a decreased amount of microtubule-associated protein-2 immunocytochemically positive cells (approximately 30%), as compared with that from controls. The decrease in microtubule-associated protein-2 immunocytochemistry was particularly prominent in Ammon's horn 1 and dentate gyrus regions (approximately 40%). 5-Bromo-2'deoxyuridine labeling revealed a two-fold increase in cellular proliferation in cultures from asphyxia-exposed, compared with that from control animals. Furthermore, confocal microscopy and quantification using the optical disector technique demonstrated that in cultures from asphyxia-exposed animals approximately 30% of 5-bromo-2'deoxyuridine-positive cells were also positive to microtubule-associated protein-2, a marker for neuronal phenotype. That proportion was approximately 20% in cultures from control animals. Glial fibrillary acidic protein-immunocytochemistry and Fast Red nuclear staining revealed that the core of the hippocampus culture was surrounded by a well-developed network of glial fibrillary acidic protein-positive cells and glial fibrillary acidic protein-processes providing an apparent protective shield around the hippocampus. That shield was less developed in cultures from asphyxia-exposed animals. The increased mitotic activity observed in this study suggests a compensatory mechanism for the long-term impairment induced by perinatal asphyxia, although it is not clear yet if that mechanism leads to neurogenesis, astrogliogenesis, or to further apoptosis.
Collapse
Affiliation(s)
- P Morales
- Programme of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, P.O. Box 70.000 Santiago 7, Chile
| | | | | | | | | | | | | |
Collapse
|
212
|
Holcík M. Targeting endogenous inhibitors of apoptosis for treatment of cancer, stroke and multiple sclerosis. Expert Opin Ther Targets 2006; 8:241-53. [PMID: 15161430 DOI: 10.1517/14728222.8.3.241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The inhibitor of apoptosis (IAP) genes have emerged as probably the most important intrinsic regulators of apoptosis. The members of the IAP family are highly conserved in evolutionarily distant species and perform the critical role of binding to and inhibiting distinct caspases. This inhibition is mediated by discrete baculoviral IAP repeat domains that, in a domain-specific manner, inhibit either the initiator or executioner caspases. As such the function of IAPs lies at the very centre of virtually all apoptotic pathways. Since many, if not most, human pathologies involve aberrant apoptosis, the modulation of IAP levels or their activity offers huge therapeutic potential for treatment of various disorders. Indeed, available data suggest that the therapeutic downregulation of IAPs by antisense targeting or their adenovirally-mediated overexpression, can in fact be used to successfully modulate cell death.
Collapse
Affiliation(s)
- Martin Holcík
- Apoptosis Research Center, Children's Hospital of Eastern Ontario Research Institute and Department of Pediatrics, University of Ottawa, 401 Smyth Road, Ottawa, Ontario, K1H 8L1, USA.
| |
Collapse
|
213
|
Van Hemelrijck A, Hachimi-Idrissi S, Sarre S, Ebinger G, Michotte Y. Post-ischaemic mild hypothermia inhibits apoptosis in the penumbral region by reducing neuronal nitric oxide synthase activity and thereby preventing endothelin-1-induced hydroxyl radical formation. Eur J Neurosci 2006; 22:1327-37. [PMID: 16190888 DOI: 10.1111/j.1460-9568.2005.04331.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Previously, we showed that treatment with resuscitative, post-ischaemic mild hypothermia (34 degrees C for 2 h) reduced apoptosis in the penumbra (cortex), but not in the core (striatum) of an endothelin-1 (Et-1)-induced focal cerebral infarct in the anaesthetized rat. Therefore, the purpose of this study was to investigate by which pathways resuscitative mild hypothermia exerts its neuroprotective effect in this model. The amino acids glutamate, serine, glutamine, alanine, taurine, arginine and the NO-related compound citrulline were sampled from the striatum and cortex of the ischaemic hemisphere using in vivo microdialysis. The in vivo salicylate trapping method was applied for monitoring hydroxyl radical formation via 2,3 dihydroxybenzoic acid (2,3 DHBA) detection. Caspase-3, neuronal nitric oxide synthase (nNOS) immunoreactivity and the volume of ischaemic damage were determined 24 h after the insult. In both the striatum and the cortex, Et-1-induced increases in glutamate, taurine and alanine were refractory to mild hypothermia. However, mild hypothermia significantly attenuated the ischaemia-induced 2,3 DHBA levels and the nNOS immunoreactivity in the cortex, but not in the striatum. These observations were associated with a decreased caspase-3 immunoreactivity. These results suggest that mild hypothermia exerts its neuroprotective effect in the penumbra partially by reducing nNOS activity and thereby preventing oxidative stress. Furthermore, we confirm our previous findings that the neuroprotective effect of resuscitative hypothermia is not mediated by changes in ischaemia-induced amino acid release as they could not be associated with the ischaemia-induced damage in the Et-1 rat model.
Collapse
Affiliation(s)
- An Van Hemelrijck
- Department of Pharmaceutical Chemistry and Drug Analysis, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | | | | | | | | |
Collapse
|
214
|
Uchino H, Morota S, Takahashi T, Ikeda Y, Kudo Y, Ishii N, Siesjö BK, Shibasaki F. A novel neuroprotective compound FR901459 with dual inhibition of calcineurin and cyclophilins. ACTA NEUROCHIRURGICA. SUPPLEMENT 2006; 96:157-62. [PMID: 16671446 DOI: 10.1007/3-211-30714-1_35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Brain ischemia leads to severe damage in the form of delayed neuronal cell death. In our study, we show that the marked neuroprotection of the new immunosuppressant FR901495 in forebrain ischemia is due not only to inhibition of calcineurin, but also to protection against mitochondrial damage caused by mitochondrial permeability transition pore formation through cyclophilin D, one of the prolyl cis/trans isomerase family members. These findings shed light on the clinical application and development of new drugs for the treatment of ischemic damage in the brain as well as in the heart and liver.
Collapse
Affiliation(s)
- H Uchino
- Department of Anesthesiology, Hachioji Medical Center, Tokyo Medical University, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Signore AP, Weng Z, Hastings T, Van Laar AD, Liang Q, Lee YJ, Chen J. Erythropoietin protects against 6-hydroxydopamine-induced dopaminergic cell death. J Neurochem 2006; 96:428-43. [PMID: 16336625 DOI: 10.1111/j.1471-4159.2005.03587.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the death of midbrain dopaminergic neurons. In the present study, erythropoietin, a trophic factor that has both hematopoietic and neural protective characteristics, was investigated for its capacity to protect dopaminergic neurons in experimental Parkinson's disease. Using both the dopaminergic cell line, MN9D, and primary dopamine neurons, we show that erythropoietin (1-3 U/mL) is neuroprotective against the dopaminergic neurotoxin, 6-hydroxydopamine. Protection was mediated by the erythropoietin receptor, as neutralizing anti-erythropoietin receptor antibody abrogated the protection. Activation of Akt/protein kinase B (PKB), via the phosphoinositide 3-kinase pathway, is a critical mechanism in erythropoietin-induced protection, while activation of extracellular signal-regulated kinase (ERK)1/2 contributes only moderately. Indeed, transfection of constitutively active Akt/PKB into dopaminergic cells was sufficient to protect against cell death. Furthermore, erythropoietin diminished markers of apoptosis in MN9D cells, including caspase 9 and caspase 3 activation and internucleosomal DNA fragmentation, suggesting that erythropoietin interferes with the apoptosis-execution process. When erythropoietin was administered to mice unilaterally lesioned with 6-hydroxydopamine, it prevented the loss of nigral dopaminergic neurons and maintained striatal catecholamine levels for at least 8 weeks. Erythropoietin-treated mice also had significantly reduced behavioral asymmetries. These studies suggest that erythropoietin can be an effective neuroprotective agent for dopaminergic neurons, and may be useful in reversing behavioral deficits associated with Parkinson's disease.
Collapse
Affiliation(s)
- Armando P Signore
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
216
|
Fattorusso R, Frutos S, Sun X, Sucher NJ, Pellecchia M. Traditional Chinese medicines with caspase-inhibitory activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2006; 13:16-22. [PMID: 16360928 DOI: 10.1016/j.phymed.2005.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Accepted: 03/22/2005] [Indexed: 05/05/2023]
Abstract
Clinical evidence indicates that traditional Chinese medicine (TCM) drugs can reduce stroke-inflicted brain damage. To date, the molecular basis of the apparent neuroprotective effects of these TCM drugs remains largely obscure. Several lines of evidence indicate that the activation of cell death programs leads to the loss of neurons during the reperfusion phase of ischemic stroke. In particular, activation of caspases (cysteinyl aspartate-specific proteinases) is a critical step in neuronal apoptosis. Using nuclear magnetic resonance (NMR) and fluorescence assays, we screened a collection of 58 TCM drugs that are commonly used in stroke therapy for caspase inhibitory activity. We found that aqueous extracts of Lianqiao (Fructus Forsythiae) and Shouwuteng (Caulis Polygoni multiflori) blocked the activity of the initiator caspase-8 as well as the effector caspase-3 and caspase-7 in a dose-dependent manner with an IC(50)10 microg/ml. Identification of caspase inhibitory activity of these TCM drugs, allows the formulation of testable hypotheses and design of further investigations aimed at the elucidation of the molecular basis of TCM stroke therapy.
Collapse
|
217
|
Zhang F, Signore AP, Zhou Z, Wang S, Cao G, Chen J. Erythropoietin protects CA1 neurons against global cerebral ischemia in rat: Potential signaling mechanisms. J Neurosci Res 2006; 83:1241-51. [PMID: 16511866 DOI: 10.1002/jnr.20816] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Erythropoietin (EPO) is a hormone that is neuroprotective in models of neurodegenerative diseases. This study examined whether EPO can protect against neuronal death in the CA1 region of the rat hippocampus following global cerebral ischemia. Recombinant human EPO was infused into the intracerebral ventricle either before or after the induction of ischemia produced by using the four-vessel-occlusion model in rat. Hippocampal CA1 neuron damage was ameliorated by infusion of 50 U EPO. Administration of EPO was neuroprotective if given 20 hr before or 20 min after ischemia, but not 1 hr following ischemia. Coinjection of the phosphoinositide 3 kinase inhibitor LY294002 with EPO inhibited the protective effects of EPO. Treatment with EPO induced phosphorylation of both AKT and its substrate, glycogen synthase kinase-3beta, in the CA1 region. EPO also enhanced the CA1 level of brain-derived neurotrophic factor. Finally, we determined that ERK activation played minor roles in EPO-mediated neuroprotection. These studies demonstrate that a single injection of EPO ICV up to 20 min after global ischemia is an effective neuroprotective agent and suggest that EPO is a viable candidate for treating global ischemic brain injury.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
218
|
Feng Y, Paul IA, LeBlanc MH. Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat. Brain Res Bull 2005; 69:117-22. [PMID: 16533659 PMCID: PMC3146056 DOI: 10.1016/j.brainresbull.2005.11.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 11/04/2005] [Accepted: 11/21/2005] [Indexed: 11/17/2022]
Abstract
Nicotinamide reduces ischemic brain injury in adult rats. Can similar brain protection be seen in newborn animals? Seven-day-old rat pups had the right carotid artery permanently ligated followed by 2.5 h of 8% oxygen. Nicotinamide 250 or 500 mg/kg was administered i.p. 5 min after reoxygenation, with a second dose given at 6 h after the first. Brain damage was evaluated by weight deficit of the right hemisphere at 22 days following hypoxia. Nicotinamide 500 mg/kg reduced brain weight loss from 24.6 +/- 3.6% in vehicle pups (n = 28) to 11.9 +/- 2.6% in the treated pups (n = 29, P < 0.01), but treatment with 250 mg/kg did not affect brain weight. Nicotinamide 500 mg/kg also improved behavior in rotarod performance. Levels of 8-isoprostaglandin F2alpha measured in the cortex by enzyme immune assay 16 h after reoxygenation was 115 +/- 7 pg/g in the shams (n = 6), 175 +/- 17 pg/g in the 500 mg/kg nicotinamide treated (n = 7), and 320 +/- 79 pg/g in the vehicle treated pups (n = 7, P < 0.05 versus sham, P < 0.05 versus nicotinamide). Nicotinamide reduced the increase in caspase-3 activity caused by hypoxic ischemia (P < 0.01). Nicotinamide reduces brain injury in the neonatal rat, possibly by reducing oxidative stress and caspase-3 activity.
Collapse
Affiliation(s)
- Yangzheng Feng
- University of Mississippi Medical Center, Department of Pediatrics, USA
| | - Ian A. Paul
- University of Mississippi Medical Center, Department of Psychiatry and Human Behavior, USA
| | - Michael H. LeBlanc
- University of Mississippi Medical Center, Department of Pediatrics, USA
- Corresponding author at: 2500 North State Street, Jackson, MS 39216, USA. Tel.: +1 601 984 5260; fax: +1 601 815 3666. (M.H. LeBlanc)
| |
Collapse
|
219
|
Holopainen IE. Organotypic Hippocampal Slice Cultures: A Model System to Study Basic Cellular and Molecular Mechanisms of Neuronal Cell Death, Neuroprotection, and Synaptic Plasticity. Neurochem Res 2005; 30:1521-8. [PMID: 16362771 DOI: 10.1007/s11064-005-8829-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2005] [Indexed: 10/25/2022]
Abstract
The hippocampus has become one of the most extensively studied areas of the mammalian brain, and its proper function is of utmost importance, particularly for learning and memory. The hippocampus is the most susceptible brain region for damage, and its impaired function has been documented in many human brain diseases, e.g. hypoxia, ischemia, and epilepsy regardless of the age of the affected patients. In addition to experimental in vivo models of these disorders, the investigation of basic anatomical, physiological, and molecular aspects requires an adequate experimental in vitro model, which should meet the requirements for well-preserved representation of various cell types, and functional information processing properties in the hippocampus. In this review, the characteristics of organotypic hippocampal slice cultures (OHCs) together with the main differences between the in vivo and in vitro preparations are first briefly outlined. Thereafter, the use of OHCs in studies focusing on neuron cell death and synaptic plasticity is discussed.
Collapse
Affiliation(s)
- Irma E Holopainen
- Department of Pharmacology and Clinical Pharmacology, University of Turku, Itäinen Pitkäkatu 4, FI-20520, Turku, Finland.
| |
Collapse
|
220
|
Kwon KJ, Jung YS, Lee SH, Moon CH, Baik EJ. Arachidonic acid induces neuronal death through lipoxygenase and cytochrome P450 rather than cyclooxygenase. J Neurosci Res 2005; 81:73-84. [PMID: 15931672 DOI: 10.1002/jnr.20520] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Arachidonic acid (AA) is released from membrane phospholipids during normal and pathologic processes such as neurodegeneration. AA is metabolized via lipoxygenase (LOX)-, cyclooxygenase (COX)-, and cytochrome P450 (CYP450)-catalyzed pathways. We investigated the relative contributions of these pathways in AA-induced neuronal death. Exposure of cultured cortical neurons to AA (50 microM) yielded significantly apoptotic neuronal death, which was attenuated greatly by LOX inhibitors (nordihydroguaiaretic acid, AA861, and baicalein), or CYP450 inhibitors (SKF525A and metyrapone), rather than COX inhibitors (indomethacin and NS398). AA (10 microM)-induced neurotoxicity was prevented by all kinds of inhibitors. Compared, the neurotoxic effects of three pathway metabolites, 12-hydroxyeicosatetraenoic acid (12-HETE), a major LOX metabolite, induced a significant neurotoxicity. AA also produced reactive oxygen species within 30 min, which was reduced by all inhibitors tested, including COX inhibitors, and AA neurotoxicity was abolished by the antioxidant Trolox. AA treatment also depleted glutathione levels; this depletion was reduced by the LOX or CYP450 inhibitors rather than by the COX inhibitors. Taken together, our data suggested that the LOX pathway likely plays a major role in AA-induced neuronal death with the modification of intracellular free radical levels.
Collapse
Affiliation(s)
- Kyoung Ja Kwon
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | |
Collapse
|
221
|
Zhang QG, Wang RM, Yin XH, Pan J, Xu TL, Zhang GY. Knock-down of POSH expression is neuroprotective through down-regulating activation of the MLK3-MKK4-JNK pathway following cerebral ischaemia in the rat hippocampal CA1 subfield. J Neurochem 2005; 95:784-95. [PMID: 16248889 DOI: 10.1111/j.1471-4159.2005.03435.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We investigated the expression and subcellular localization of the multidomain protein POSH (plenty of SH3s) by immunohistochemistry and western blot analysis, as well as its role in the selective activation of mixed-lineage kinases (MLKs) 3, MAP kinase kinase (MKK) 4, c-Jun N-terminal kinases (JNKs) and the c-Jun signalling cascade in the rat hippocampal CA1 region following cerebral ischaemia. Our results indicated that the cytosol immunoreactivity of POSH was strong in the CA1-CA3 pyramidal cell but weak in the DG granule cell of the rat hippocampus both in sham control and after reperfusion. Co-immunoprecipitation experiments showed that the interactions of MLK3, MKK4 and phospho-JNKs with POSH were persistently enhanced during the early (30 min) and the later reperfusion period (from 1 to 3 days) compared with sham controls. Consistently, MLK3-MKK4-JNK activation was rapidly increased with peaks both at 30 min and 3 days of reperfusion. Intracerebroventricular infusion of POSH antisense oligodeoxynucleotides (AS-ODNs) not only significantly reduced the protein level of POSH, markedly decreased its interactions with MLK3, MKK4 and phospho-JNKs, but also attenuated the activation of the JNK signalling pathway. In addition, infusion of POSH AS-ODNs significantly increased the neuronal density in the CA1 region at 5 days of reperfusion. Our results suggest that POSH might serve as a scaffold mediating JNK signalling activation in the hippocampal CA1 region following cerebral ischaemia, and POSH AS-ODNs exerts its protective effects on ischaemic injury through a mechanism of inhibition of the MLK3-MKK4-JNK signalling pathway, involving c-Jun and caspase 3 activation.
Collapse
Affiliation(s)
- Quan-Guang Zhang
- Department of Neurobiology and Biophysics, University of Science and Technology of China, Hefei, Anhui, China
| | | | | | | | | | | |
Collapse
|
222
|
Siegelin M, Touzani O, Toutain J, Liston P, Rami A. Induction and redistribution of XAF1, a new antagonist of XIAP in the rat brain after transient focal ischemia. Neurobiol Dis 2005; 20:509-18. [PMID: 15905097 DOI: 10.1016/j.nbd.2005.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 04/13/2005] [Accepted: 04/14/2005] [Indexed: 11/26/2022] Open
Abstract
Apoptotic cell death occurs in neurons after cerebral ischemia. To investigate the molecular basis of this mechanism of cell death, we explored the expression and localization of Smac/DIABLO, a newly identified mitochondrial apoptogenic molecule, and XAF1, a recently identified antagonist of XIAP anti-caspase activity in the rat brain following focal ischemia. Transient focal cerebral ischemia was produced for 90 min in rats. We observed changes in the expression of Smac, XAF1, and XIAP during reperfusion. The expression level of Smac/DIABLO was negligible under normal conditions and was moderately increased by 6-24 h reperfusion on both immunohistochemical and Western blotting levels. In opposition to the orthodox method of Western blotting employing electrophoretic analysis and homogenization, the immunohistochemical investigations of XIAP provided spatial information. Immunohistochemical analysis showed that the subcellular localization of XIAP became more extensive within cells during reperfusion, as compared with the normal state. Under normal conditions, XIAP was localized predominantly in the cytoplasm and the perinuclear region. However, at 6, 12, 24, and 48 h post-reperfusion, XIAP exhibited a diffuse distribution, including nuclear and cytoplasmic compartments. Interestingly, the expression of XAF1 exhibited significant changes during reperfusion. XAF1 expression was increased and there was a cellular redistribution with a nuclear localization in the post-ischemic phase by 6-24 h. XAF1 expression apparently enhances neuronal susceptibility to degeneration either by suppressing the ability of XIAP to complex with caspases or by sequestering XIAP in nuclear inclusions. These finding indicate that Smac/DIABLO, XAF1, and XIAP are implicated in the pathophysiological mechanisms of reperfusion injury.
Collapse
Affiliation(s)
- M Siegelin
- Institut für Anatomie III, Universitätsklinikum, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
223
|
Ohmura A, Nakajima W, Ishida A, Yasuoka N, Kawamura M, Miura S, Takada G. Prolonged hypothermia protects neonatal rat brain against hypoxic-ischemia by reducing both apoptosis and necrosis. Brain Dev 2005; 27:517-26. [PMID: 15899566 DOI: 10.1016/j.braindev.2005.01.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 12/27/2004] [Accepted: 01/13/2005] [Indexed: 11/16/2022]
Abstract
Although hypothermia is an effective treatment for perinatal cerebral hypoxic-ischemic (HI) injury, it remains unclear how long and how deep we need to maintain hypothermia to obtain maximum neuroprotection. We examined effects of prolonged hypothermia on HI immature rat brain and its protective mechanisms using the Rice-Vannucci model. Immediately after the end of hypoxic exposure, the pups divided into a hypothermia group (30 degrees C) and a normothermia one (37 degrees C). Rectal temperature was maintained until they were sacrificed at each time point before 72h post HI. Prolonged hypothermia significantly reduced macroscopic brain injury compared with normothermia group. Quantitative analysis of cell death using H&E-stained sections revealed the number of both apoptotic and necrotic cells was significantly reduced by hypothermia after 24h post HI. Hypothermia seemed to decrease the number of TUNEL-positive cells. Immunohistochemistry and Western blot showed that prolonged hypothermia suppressed cytochrome c release from mitochondria to cytosol and activation of both caspase-3 and calpain in cortex, hippocampus, thalamus and striatum throughout the experiment. These results showed that prolonged hypothermia significantly reduced neonatal brain injury even when it was started after HI insult. Our results suggest that prolonged hypothermia protects neonatal brain after HI by reducing both apoptosis and necrosis.
Collapse
Affiliation(s)
- Akiko Ohmura
- Department of Pediatrics, Akita University School of Medicine, 1-1-1 Honda, Akita, 010-8543, Japan
| | | | | | | | | | | | | |
Collapse
|
224
|
Chen X, Chi S, Liu M, Yang W, Wei T, Qi Z, Yang F. Inhibitory effect of ganglioside GD1b on K+ current in hippocampal neurons and its involvement in apoptosis suppression. J Lipid Res 2005; 46:2580-5. [PMID: 16199892 DOI: 10.1194/jlr.m500252-jlr200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Gangliosides are endogenous membrane components enriched in neuronal cells. They have been shown to play regulatory roles in many cellular processes. Here, we show for the first time that ganglioside GD1b plays an antiapoptotic role in cultured hippocampal neurons. GD1b inhibited the voltage-dependent outward delayed rectifier current (I(K)) but not the transient outward A-type current in a dose-dependent manner, with an IC50 value of 15.2 microM. This effect appears to be somehow specific, because GD1b, but not GM1, GM2, GM3, GD1a, GD3, or GT1b, was effective in inhibiting I(K). Intracellular application of staurosporine (STS; 0.1 microM) resulted in rapid activation of I(K), which was partially reversed upon addition of the K+ channel blocker tetraethylammonium (TEA; 5 mM) and GD1b (10 microM). Furthermore, GD1b (10 microM) attenuated STS-induced neuronal apoptosis by nearly the same amount as 5 mM TEA. In addition, GD1b suppressed the apoptosis-associated caspase 3 activation that was activated by STS. Collectively, these findings suggest that GD1b plays an antiapoptotic role in cultured hippocampal neurons through its inhibitory effect on the I(K) and caspase activity.
Collapse
Affiliation(s)
- Xuesong Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
225
|
Yin W, Cao G, Johnnides MJ, Signore AP, Luo Y, Hickey RW, Chen J. TAT-mediated delivery of Bcl-xL protein is neuroprotective against neonatal hypoxic-ischemic brain injury via inhibition of caspases and AIF. Neurobiol Dis 2005; 21:358-71. [PMID: 16140540 DOI: 10.1016/j.nbd.2005.07.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 07/19/2005] [Accepted: 07/29/2005] [Indexed: 11/22/2022] Open
Abstract
Systemic delivery of recombinant Bcl-xL fusion protein containing the TAT protein transduction domain attenuated neonatal brain damage following hypoxic ischemia (H-I). Within 30 min after intraperitoneal injection of TAT-Bcl-xL protein into 7-day-old rats, substantially enhanced levels of Bcl-xL were found in several brain regions. Administration of TAT-Bcl-xL at the conclusion of the H-I insult decreased cerebral tissue loss in a dose-dependent manner measured 1 and 8 weeks later. Neuroprotection provided by TAT-Bcl-xL was significantly greater than that of the pan-caspase inhibitor BAF, suggesting that protection is only partially attributable to caspase inhibition by TAT-Bcl-xL. TAT-Bcl-xL not only inhibited caspases-3 and -9 activities after H-I but also prevented nuclear translocation of AIF. Taken together, these results substantiate the feasibility of peripheral delivery of an anti-apoptotic factor into the brain of neonatal animals to reduce H-I-induced brain injury.
Collapse
Affiliation(s)
- Wei Yin
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
226
|
Bingham B, Liu D, Wood A, Cho S. Ischemia-stimulated neurogenesis is regulated by proliferation, migration, differentiation and caspase activation of hippocampal precursor cells. Brain Res 2005; 1058:167-77. [PMID: 16140288 DOI: 10.1016/j.brainres.2005.07.075] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 07/29/2005] [Accepted: 07/29/2005] [Indexed: 11/20/2022]
Abstract
A brief ischemic injury to the gerbil forebrain that caused selective damage in the CA1 region of the hippocampus also enhanced the production of new cells in the hippocampal neurogenic area. When evaluated 1 week after bromodeoxyuridine (BrdU) injection, approximately ten times more labeled cells were detected in the hippocampal dentate gyrus in ischemic animals than controls, indicating a stimulation of mitotic activity. To assess the temporal course of the survival and fate of these newborn cells, we monitored BrdU labeling and cell marker expression up to 60 days after ischemia (DAI). Loss of BrdU-positive cells was observed from both control and ischemic animals, but at 30 DAI and afterward, the ischemic group maintained more than 3 times as many BrdU-positive cells as the control group. In addition, ischemic injury also fostered the neuronal differentiation of these cells beyond the capacity observed in control animals and facilitated the migration of developing neurons to a neuronal cellular layer. The establishment of a temporal correlation between differentiation and migration provides evidence of the functional maturation of these cells. Surprisingly, we found that ischemic injury induced activation of caspase-3, not only in the CA1 region as expected, but also in the dentate subgranular zone (SGZ). Active caspase-3 immunoreactivity in the subgranular layer was co-localized with an early neuronal marker, suggesting that caspase-mediated apoptosis could mediate the loss of neurogenic cells in the SGZ. Inhibiting caspase-3 in the context of ischemia-induced neurogenesis might provide an opportunity for functional repair and a therapeutic outcome in the wake of ischemic injury.
Collapse
Affiliation(s)
- Brendan Bingham
- Neuroscience Discovery Research, Wyeth Research, Princeton, NJ 08543-8000, USA
| | | | | | | |
Collapse
|
227
|
Chan SHH, Wu KLH, Wang LL, Chan JYH. Nitric oxide- and superoxide-dependent mitochondrial signaling in endotoxin-induced apoptosis in the rostral ventrolateral medulla of rats. Free Radic Biol Med 2005; 39:603-18. [PMID: 16085179 DOI: 10.1016/j.freeradbiomed.2005.04.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 03/21/2005] [Accepted: 04/16/2005] [Indexed: 11/21/2022]
Abstract
This study evaluated the hypothesis that the repertoire of cellular events that underlie circulatory fatality during endotoxemia may entail mitochondrial respiratory enzyme dysfunction, followed by the release of cytochrome c to the cytosol that triggers the activation of caspase cascades, leading to apoptotic cell death in the rostral ventrolateral medulla (RVLM) where sympathetic premotor neurons responsible for maintaining vasomotor tone are located. In adult Sprague-Dawley rats maintained under propofol anesthesia, nucleosomal DNA fragmentation was detected in the RVLM in a temporal profile that coincided positively with the progression of cardiovascular depression during experimental endotoxemia induced by Escherichia coli lipopolysaccharide (LPS). LPS also induced nitric oxide (NO) and superoxide (O(2)(-)) production, depressed mitochondrial Complex I and IV activity, promoted the release of cytochrome c from mitochondria to cytosol, upregulated the cytosolic expression of activated caspase-9 and -3, or increased caspase-3 enzyme activity in the RVLM. Microinjection bilaterally into the RVLM of an inducible nitric oxide synthase (iNOS) blocker, S-methylisothiourea, or a superoxide dismutase mimetic, Tempol, significantly blunted these apoptotic cellular events and antagonized the cardiovascular depression during endotoxemia. We conclude that caspase-dependent apoptotic cell death that results from NO- and O(2)(-)-associated mitochondrial signaling in the RVLM may underlie fatal cardiovascular depression during endotoxemia.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung 804, Taiwan, Republic of China
| | | | | | | |
Collapse
|
228
|
Hossain MA. Molecular mediators of hypoxic-ischemic injury and implications for epilepsy in the developing brain. Epilepsy Behav 2005; 7:204-13. [PMID: 16054439 DOI: 10.1016/j.yebeh.2005.05.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 05/24/2005] [Indexed: 02/05/2023]
Abstract
Perinatal hypoxia-ischemia (HI) is the most common cause of cerebral palsy, and an important consequence of perinatal HI is epilepsy. Epilepsy is a disorder in which the balance between cerebral excitability and inhibition is tipped toward uncontrolled excitability. Selected neuronal circuits as well as certain populations of glial cells die from the excitotoxicity triggered by HI. Excitotoxicity, a term referring to cell death caused by overstimulation of the excitatory glutamate neurotransmitter receptors, plays a critical role in brain injury caused by perinatal HI. Ample evidence suggests distinct differences between the immature and mature brain with respect to the pathology and consequences of hypoxic-ischemic brain injury. Thus, the intrinsic vulnerability of specific cell types and systems in the developing brain is particularly important in determining the final pattern of damage and functional disability caused by perinatal HI. These patterns of neuronal vulnerability are associated with clinical syndromes of neurologic disorders such as cerebral palsy, epilepsy, and seizures. Recent studies have uncovered important molecular and cellular aspects of hypoxic-ischemic brain injury. The cascade of biochemical and histopathological events initiated by HI can extend for days to weeks after the insult is triggered, which may provide a "therapeutic window" for intervening in the pathogenesis in the developing brain. Activation of apoptotic programs accounts for the majority of HI-induced pathophysiology in neonatal brain disorders. New experimental approaches to protecting brain tissue from the effects of neonatal HI include administration of neuronal growth factors and effective inhibition of the death effector pathways, such as caspase cascade, and their downstream targets, which execute apoptosis and/or induction of their regulatory cellular proteins. Our recent findings that a novel neuronal protein, neuronal pentraxin 1 (NP1), is induced following HI in neonatal brain and that NP1 gene silencing is neuroprotective suggest that NP1 could be a new molecular target in the central neurons for preventing HI injury in developing brain. Most importantly, the specific interactions between NP1 and the excitatory glutamate receptors and their colocalization further implicate a role for this novel neuronal protein in the excitotoxic cascade. Recent experimental work suggests that these approaches may be effective during a longer therapeutic window after the insult, as they are acting on events that are relatively delayed, creating the potential for therapeutic interventions for these lifelong neurological disabilities.
Collapse
Affiliation(s)
- Mir Ahamed Hossain
- Department of Neurology, The Johns Hopkins University School of Medicine and The Kennedy Krieger Research Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
229
|
Zhao H, Yenari MA, Cheng D, Sapolsky RM, Steinberg GK. Biphasic cytochrome c release after transient global ischemia and its inhibition by hypothermia. J Cereb Blood Flow Metab 2005; 25:1119-29. [PMID: 15789032 DOI: 10.1038/sj.jcbfm.9600111] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypothermia is effective in preventing ischemic damage. A caspase-dependent apoptotic pathway is involved in ischemic damage, but how hypothermia inhibits this pathway after global cerebral ischemia has not been well explored. It was determined whether hypothermia protects the brain by altering cytochrome c release and caspase activity. Cerebral ischemia was produced by two-vessel occlusion plus hypotension for 10 mins. Body temperature in hypothermic animals was reduced to 33 degrees C before ischemia onset and maintained for 3 h after reperfusion. Western blots of subcellular fractions revealed biphasic cytosolic cytochrome c release, with an initial peak at about 5 h after ischemia, which decreased at 12 to 24 h, and a second, larger peak at 48 h. Caspase-3 and -9 activity increased at 12 and 24 h. A caspase inhibitor, Z-DEVD-FMK, administered 5 and 24 h after ischemia onset, protected hippocampal CA1 neurons from injury and blocked the second cytochrome c peak, suggesting that caspases mediate this second phase. Hypothermia (33 degrees C), which prevented CA1 injury, did not inhibit cytochrome c release at 5 h, but reduced cytochrome c release at 48 h. Caspase-3 and -9 activity was markedly attenuated by hypothermia at 12 and 24 h. Thus, biphasic cytochrome c release occurs after transient global ischemia and mild hypothermia protects against ischemic damage by blocking the second phase of cytochrome c release, possibly by blocking caspase activity.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, California 94305-5327, USA
| | | | | | | | | |
Collapse
|
230
|
Muranyi M, He QP, Fong KSK, Li PA. Induction of heat shock proteins by hyperglycemic cerebral ischemia. ACTA ACUST UNITED AC 2005; 139:80-7. [PMID: 15961182 DOI: 10.1016/j.molbrainres.2005.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 05/11/2005] [Accepted: 05/12/2005] [Indexed: 11/21/2022]
Abstract
Hyperglycemia worsens the neuronal death induced by cerebral ischemia. A previous study demonstrated that diabetic hyperglycemia suppressed the expression of heat shock protein 70 (HSP70) in the liver. The objective of this study is to determine whether hyperglycemia exacerbates ischemic brain damage by suppressing the expression of heat shock proteins (HSPs) in the brain. Both normoglycemic and hyperglycemic rats were subjected to a transient global cerebral ischemia of 15 min and followed by 0.5, 1 and 3 h of reperfusion. The expression of stress-related genes and levels of HSP proteins were determined by DNA microarray, immunocytochemistry and Western blot analyses. The results showed that hyperglycemic ischemia upregulated the expressions of hsp70, hsp90A, hsp90B, heat shock cognate 71 kD protein (hsc70) and mthsp70. Protein levels of HSP70 and HSP60 were enhanced by hyperglycemia compared with normoglycemia. The results suggested that hyperglycemia-exacerbated ischemic brain damage is not mediated by the suppression of the HSPs. The increased levels of HSPs and mthsp70 suggest that the cell and the mitochondrion had strong stress responses to hyperglycemic ischemia.
Collapse
Affiliation(s)
- Marianna Muranyi
- Cardiovascular Research Center, John A. Burns School of Medicine, University of Hawaii, 1960 East West Road, Biomedical Tower 514, Honolulu, HI 96822, USA
| | | | | | | |
Collapse
|
231
|
Abstract
It has long been recognized that much of the post-traumatic degeneration of the spinal cord following injury is caused by a multi-factorial secondary injury process that occurs during the first minutes, hours, and days after spinal cord injury (SCI). A key biochemical event in that process is reactive oxygen-induced lipid peroxidation (LP). In 1990 the results of the Second National Acute Spinal Cord Injury Study (NASCIS II) were published, which showed that the administration of a high-dose regimen of the glucocorticoid steroid methylprednisolone (MP), which had been previously shown to inhibit post-traumatic LP in animal models of SCI, could improve neurological recovery in spinal-cord-injured humans. This resulted in the registration of high-dose MP for acute SCI in several countries, although not in the U.S. Nevertheless, this treatment quickly became the standard of care for acute SCI since the drug was already on the U.S. market for many other indications. Subsequently, it was demonstrated that the non-glucocorticoid 21-aminosteroid tirilazad could duplicate the antioxidant neuroprotective efficacy of MP in SCI models, and evidence of human efficacy was obtained in a third NASCIS trial (NASCIS III). In recent years, the use of high-dose MP in acute SCI has become controversial largely on the basis of the risk of serious adverse effects versus what is perceived to be on average a modest neurological benefit. The opiate receptor antagonist naloxone was also tested in NASCIS II based upon the demonstration of its beneficial effects in SCI models. Although it did not a significant overall effect, some evidence of efficacy was seen in incomplete (i.e., paretic) patients. The monosialoganglioside GM1 has also been examined in a recently completed clinical trial in which the patients first received high-dose MP treatment. However, GM1 failed to show any evidence of a significant enhancement in the extent of neurological recovery over the level afforded by MP therapy alone. The present paper reviews the past development of MP, naloxone, tirilazad, and GM1 for acute SCI, the ongoing MP-SCI controversy, identifies the regulatory complications involved in future SCI drug development, and suggests some promising neuroprotective approaches that could either replace or be used in combination with high-dose MP.
Collapse
Affiliation(s)
- Edward D Hall
- Spinal Cord and Brain Injury Research Center, University of Kentucky Chandler Medical Center, Lexington, Kentucky 40536, USA.
| | | |
Collapse
|
232
|
Miyoshi N, Naniwa K, Kumagai T, Uchida K, Osawa T, Nakamura Y. α-Tocopherol-mediated caspase-3 up-regulation enhances susceptibility to apoptotic stimuli. Biochem Biophys Res Commun 2005; 334:466-73. [PMID: 16009347 DOI: 10.1016/j.bbrc.2005.06.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 06/19/2005] [Indexed: 11/25/2022]
Abstract
Although alpha-tocopherol is known as an essential micronutrient involved in various oxidative stress-related processes, its non-antioxidant activities have only been characterized in recent years. In this study, we reveal that (+)-alpha-tocopherol [RRR-alpha-tocopherol] enhances cellular susceptibility to both oxidative and non-oxidative apoptosis-inducing stimuli through up-regulation of caspase-3/CPP32 expression in several human cell lines. Exposure of (+)-alpha-tocopherol pretreated cells to known apoptosis-inducing stimuli, such as Fas, H(2)O(2), or etoposide, resulted in an increase in cellular apoptotsis. In addition, (+)-alpha-tocopherol also elevated the pro-caspase-3 protein level and mRNA expression in a time- and dose-dependent manner, while other tocopherol analogues showed no effect. Experiments using a GC-specific DNA binding agent, mithramycin A, and an electrophoretic mobility shift assay demonstrated that Sp1 might mediate the enhanced expression of caspase-3. Our results also confirmed that (+)-alpha-tocopherol promotes the expression, but not the activation, of caspase-3 in various human cell lines. These findings provide biological evidence showing that (+)-alpha-tocopherol can amplify the apoptotic response by up-regulating the expression of pro-caspase-3.
Collapse
Affiliation(s)
- Noriyuki Miyoshi
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
233
|
Liu Q, Qi Y, Chejanovsky N. Spodoptera littoralis caspase-1, a Lepidopteran effector caspase inducible by apoptotic signaling. Apoptosis 2005; 10:787-95. [PMID: 16133869 DOI: 10.1007/s10495-005-0365-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) can successfully infect Spodoptera frugiperda SF9 cells, but in contrast, in Spodoptera littoralis SL2 cells it induces apoptosis aborting the infection. To understand better the mechanism of induction and execution of apoptosis in SL2 cells, we identified and characterized the first Spodoptera littoralis caspase, Sl-caspase-1. Sl-caspase-1 is an effector caspase that cleaves DEVD but not IETD and LEHD substrates, and the caspase-3 inhibitor DQMD-CHO inhibited this activity. It was involved in two apoptotic pathways induced by UV irradiation and virus infection. Moreover processing of Sl-caspase-1 was a determinant factor for baculovirus induction of apoptosis in SL2 cells. Since very little is known on the regulation of expression of Lepidopteran caspases, we studied Sl-caspase-1 expression after exposure to apoptosis stimuli. We found that triggering apoptosis in SL2 cells increased the steady-state level of Sl-caspase-1 without changing the level of sl-caspase-1 mRNA, suggesting that Sl-caspase-1 was post-transcriptionally up regulated. This regulation might occur as an early event in transduction of the apoptotic signal.
Collapse
Affiliation(s)
- Q Liu
- Entomology Department, Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, POB 6, Bet Dagan, 50250 Israel
| | | | | |
Collapse
|
234
|
Abstract
We examined the mechanism of neuronal necrosis induced by hypoxia in dentate gyrus cultures or by status epilepticus (SE) in adult mice. Our observations showed that hypoxic necrosis can be an active process starting with early mitochondrial swelling and loss of the mitochondrial membrane potential, followed by cytochrome c release and caspase-9-dependent activation of caspase-3. This sequence of events (or program) was independent of protein synthesis and may be induced by energy failure and/or calcium overloading of mitochondria. We called this form of necrosis "programmed necrosis." After SE in adult mice, CA1 and CA3 pyramidal neurons displayed a necrotic morphology, associated with caspase-3 immunoreactivity and with double-stranded DNA breaks, suggesting that "programmed necrosis" may be involved in SE-induced neuronal loss.
Collapse
Affiliation(s)
- Jerome Niquet
- Epilepsy Research Laboratory, VA Greater Los Angeles Healthcare System, West Los Angeles, CA 90073, USA.
| | | | | |
Collapse
|
235
|
Masuda R, Monahan JW, Kashiwaya Y. D-beta-hydroxybutyrate is neuroprotective against hypoxia in serum-free hippocampal primary cultures. J Neurosci Res 2005; 80:501-9. [PMID: 15825191 DOI: 10.1002/jnr.20464] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hypoxia decreased survival of cultured rat primary hippocampal neurons in a time dependent manner. Addition of 4 mM Na D-beta-hydroxybutyrate (bHB), a ketone body, protected the cells for 2 hr and maintained the increase in survival compared to that of controls for up to 6 hr. Trypan blue exclusion indicated that acute cell death was reduced markedly after 2-hr exposure to hypoxia in the bHB-treated group. The presence of bHB also decreased the number of neurons exhibiting condensed nuclei visualized by propidium iodide, indicative of apoptosis. The mitochondrial transmembrane potential (Em/c) was maintained for up to 2 hr exposure to hypoxia in the bHB-treated group, whereas the potential in the control group was decreased. Furthermore, cytochrome C release, caspase-3 activation, and poly (ADP-ribose) polymerase (PARP) cleavage were decreased in the bHB-treated group for the first 2 hr of exposure. These findings indicate that ketone bodies may be a candidate for widening the therapeutic window before thrombolytic therapy and at the same time decreasing apoptotic damage in the ischemic penumbra.
Collapse
Affiliation(s)
- R Masuda
- Laboratory of Metabolic Control/National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, DHHS, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
236
|
Aktaş Y, Andrieux K, Alonso MJ, Calvo P, Gürsoy RN, Couvreur P, Capan Y. Preparation and in vitro evaluation of chitosan nanoparticles containing a caspase inhibitor. Int J Pharm 2005; 298:378-83. [PMID: 15893439 DOI: 10.1016/j.ijpharm.2005.03.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 03/16/2005] [Accepted: 03/21/2005] [Indexed: 11/21/2022]
Abstract
The aim of this work was to develop a formulation for Z-DEVD-FMK, a peptide which is a caspase inhibitor and has been used in experimental animal studies for a decade. Peptide loaded chitosan nanoparticles were obtained by ionotropic gelation process and Z-DEVD-FMK was quantified by an HPLC method. The influence of the initial peptide concentration on the nanoparticle characteristics and release behavior was evaluated. The CS nanoparticles have a particle diameter (Z-average) ranging from approximately 313-412 nm and a positive zeta potential (20-28 mV). The formulation with the initial peptide concentration of 400 ng/ml provided the highest loading capacity (0.46%) and the highest extent of release (65% at 24 h) suggesting the possibility to achieve a therapeutic dose. According to the data obtained, this chitosan-based nanotechnology opens new and interesting perspectives for anticaspase activity.
Collapse
Affiliation(s)
- Yeşim Aktaş
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
237
|
Sabbagh L, Bourbonnière M, Sékaly RP, Cohen LY. Selective up-regulation of caspase-3 gene expression following TCR engagement. Mol Immunol 2005; 42:1345-54. [PMID: 15950730 DOI: 10.1016/j.molimm.2004.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 12/19/2004] [Indexed: 01/12/2023]
Abstract
Activation-induced cell death (AICD) in T lymphocytes depends on the expression of Fas-ligand, which triggers the apoptotic process after binding to its receptor Fas. This leads to the activation of cysteine proteases of the caspase family and especially of caspase-3, a critical effector protein during AICD. We have previously observed the up-regulation of caspase-3 expression in effector but not memory T cells stimulated in vivo. In this study, we further characterized the regulation of caspase expression following T cell receptor (TCR) signaling and demonstrate that a three-fold increase in caspase-3 mRNA levels was observed by semi-quantitative and real-time RT-PCR analysis. Caspase-3 expression was selectively increased among five different caspases following TCR stimulation, as assessed by RNase protection assay. Real-time RT-PCR analysis demonstrated that a three-fold up-regulation in caspase-3 mRNA levels was observed following TCR triggering, whereas caspase-8 mRNA levels remained unchanged. The increase in caspase-3 mRNA levels occurred before cleavage and activation of caspase-3 and in the absence of apoptosis. TCR-mediated induction in caspase-3 expression was not dependent on STAT1 activation, since following stimulation of KOX-14 cells the transcription factor was not phosphorylated. Together, these results show that TCR activation triggers the selective increase in caspase-3 mRNA levels, independently of caspase activity and the induction of apoptosis.
Collapse
Affiliation(s)
- Laurent Sabbagh
- Laboratoire d'Immunologie, Centre de Recherche du CHUM, Campus St. Luc, Pavillon Edouard-Asselin, 264 Boul. Rene Levesque Est #1307D, Montreal, Que., Canada H2X 1P1
| | | | | | | |
Collapse
|
238
|
|
239
|
Gao Y, Signore AP, Yin W, Cao G, Yin XM, Sun F, Luo Y, Graham SH, Chen J. Neuroprotection against focal ischemic brain injury by inhibition of c-Jun N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway. J Cereb Blood Flow Metab 2005; 25:694-712. [PMID: 15716857 DOI: 10.1038/sj.jcbfm.9600062] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
c-Jun N-terminal kinase (JNK) is an important stress-responsive kinase that is activated by various forms of brain insults. In this study, we have examined the role of JNK activation in neuronal cell death in a murine model of focal ischemia and reperfusion; furthermore, we investigated the mechanism of JNK in apoptosis signaling, focusing on the mitochondrial-signaling pathway. We show here that JNK activity was induced in the brain 0.5 to 24 h after ischemia. Systemic administration of SP600125, a small molecule JNK-specific inhibitor, diminished JNK activity after ischemia and dose-dependently reduced infarct volume. c-Jun N-terminal kinase inhibition also attenuated ischemia-induced expression of Bim, Hrk/DP5, and Fas, but not the expression of Bcl-2 or FasL. In strong support of a role for JNK in promoting the mitochondrial apoptosis-signaling pathway, JNK inhibition prevented ischemia-induced mitochondrial translocation of Bax and Bim, release of cytochrome c and Smac, and activation of caspase-9 and caspase-3. The potential mechanism by which JNK promoted Bax translocation after ischemia was further studied using coimmunoprecipitation, and the results revealed that JNK activation caused serine phosphorylation of 14-3-3, a cytoplasmic sequestration protein of Bax, leading to Bax disassociation from 14-3-3 and subsequent translocation to mitochondria. These results confirm the role of JNK as a critical cell death mediator in ischemic brain injury, and suggest that one of the mechanisms by which JNK triggers the mitochondrial apoptosis-signaling pathway is via promoting Bax and Bim translocation.
Collapse
Affiliation(s)
- Yanqin Gao
- Department of Neurology, University of Pittsburgh School of Medicine, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Gopez JJ, Yue H, Vasudevan R, Malik AS, Fogelsanger LN, Lewis S, Panikashvili D, Shohami E, Jansen SA, Narayan RK, Strauss KI. Cyclooxygenase-2-specific inhibitor improves functional outcomes, provides neuroprotection, and reduces inflammation in a rat model of traumatic brain injury. Neurosurgery 2005; 56:590-604. [PMID: 15730585 PMCID: PMC1513642 DOI: 10.1227/01.neu.0000154060.14900.8f] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 12/13/2004] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Increases in brain cyclooxygenase-2 (COX2) are associated with the central inflammatory response and with delayed neuronal death, events that cause secondary insults after traumatic brain injury. A growing literature supports the benefit of COX2-specific inhibitors in treating brain injuries. METHODS DFU [5,5-dimethyl-3(3-fluorophenyl)-4(4-methylsulfonyl)phenyl-2(5)H)-furanone] is a third-generation, highly specific COX2 enzyme inhibitor. DFU treatments (1 or 10 mg/kg intraperitoneally, twice daily for 3 d) were initiated either before or after traumatic brain injury in a lateral cortical contusion rat model. RESULTS DFU treatments initiated 10 minutes before injury or up to 6 hours after injury enhanced functional recovery at 3 days compared with vehicle-treated controls. Significant improvements in neurological reflexes and memory were observed. DFU initiated 10 minutes before injury improved histopathology and altered eicosanoid profiles in the brain. DFU 1 mg/kg reduced the rise in prostaglandin E2 in the brain at 24 hours after injury. DFU 10 mg/kg attenuated injury-induced COX2 immunoreactivity in the cortex (24 and 72 h) and hippocampus (6 and 72 h). This treatment also decreased the total number of activated caspase-3-immunoreactive cells in the injured cortex and hippocampus, significantly reducing the number of activated caspase-3-immunoreactive neurons at 72 hours after injury. DFU 1 mg/kg amplified potentially anti-inflammatory epoxyeicosatrienoic acid levels by more than fourfold in the injured brain. DFU 10 mg/kg protected the levels of 2-arachidonoyl glycerol, a neuroprotective endocannabinoid, in the injured brain. CONCLUSION These improvements, particularly when treatment began up to 6 hours after injury, suggest exciting neuroprotective potential for COX2 inhibitors in the treatment of traumatic brain injury and support the consideration of Phase I/II clinical trials.
Collapse
Affiliation(s)
- Jonas J. Gopez
- Department of Neurosurgery, Temple University, School of Medicine, Philadelphia, Pennsylvania
| | - Hongfei Yue
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania
| | - Ram Vasudevan
- Department of Neurosurgery, Temple University, School of Medicine, Philadelphia, Pennsylvania
| | - Amir S. Malik
- Department of Neurosurgery, University of Texas, Houston Medical Center, Houston, Texas
| | - Lester N. Fogelsanger
- Department of Neurosurgery, Temple University, School of Medicine, Philadelphia, Pennsylvania
| | - Shawn Lewis
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Esther Shohami
- Department of Pharmacology, Hebrew University, Jerusalem, Israel
| | - Susan A. Jansen
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania
| | - Raj K. Narayan
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kenneth I. Strauss
- Reprint requests: Kenneth I. Strauss, Ph.D., Department of Neurosurgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML515, Cincinnati, OH 45267-0515.
| |
Collapse
|
241
|
Artal-Sanz M, Tavernarakis N. Proteolytic mechanisms in necrotic cell death and neurodegeneration. FEBS Lett 2005; 579:3287-96. [PMID: 15943973 DOI: 10.1016/j.febslet.2005.03.052] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2005] [Indexed: 11/16/2022]
Abstract
Programmed neuronal cell death is required during development to achieve the accurate wiring of the nervous system. However, genetic or accidental factors can lead to the premature, non-programmed death of neurons during adult life. Inappropriate death of cells in the nervous system is the cause of multiple neurodegenerative disorders. Pathological neuronal death can occur by apoptosis, by necrosis or by a combination of both. Necrotic cell death underlies the pathology of devastating neurological diseases such as neurodegenerative disorders, stroke or trauma. However, little is known about the molecular mechanisms that bring about necrotic cell death. Proteases play crucial roles in neuron degeneration by exerting both regulatory and catabolic functions. Elevated intracellular calcium is the most ubiquitous feature of neuronal death with the concomitant activation of cysteine calcium-dependent proteases, calpains. Calpains and lysosomal, catabolic aspartyl proteases, play key roles in the necrotic death of neurons. In this review, we survey the recent literature on the role of cysteine and aspartyl proteases in necrosis and neurodegeneration, aiming to delineate common proteolytic mechanisms mediating cellular destruction.
Collapse
Affiliation(s)
- Marta Artal-Sanz
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Vassilika Vouton, P.O. Box 1527, Heraklion 71110, Crete, Greece
| | | |
Collapse
|
242
|
Zhu H, Dahlström A, Hansson HA. Characterization of cell proliferation in the adult dentate under normal conditions and after kainate induced seizures using ribonucleotide reductase and BrdU. Brain Res 2005; 1036:7-17. [PMID: 15725396 DOI: 10.1016/j.brainres.2004.12.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2004] [Revised: 11/30/2004] [Accepted: 12/04/2004] [Indexed: 11/24/2022]
Abstract
Ribonucleotide reductase (RNR), an enzyme for DNA synthesis, was recently used as a marker of proliferating cells in the dentate gyrus and subventricular zone in normal adult mammalian brains. However, the duration of RNR expression in normal adult brain and the expression pattern of RNR in the adult dentate gyrus following brain injury have not been explored. In this study, we examined the duration of the RNR expression in newborn cells in the normal adult rat brain by analysis of RNR and BrdU double-labeled specimens at different time intervals after BrdU application. Secondly, we induced, in adult rats, seizures by kainic acid and investigated the changes in expression of RNR following seizures, and characterized the phenotype of RNR-positive cells using a variety of other markers. Our results revealed that RNR was detectable in proliferating cells from 2 h to at least 1 day. At 7 and 28 days after seizures, there was a fivefold increase in number of clusters of RNR-positive cells in the dentate gyrus, and a doubling of the number of BrdU-labeled cells in each cluster. Proliferating astrocytes and neuronal precursors were recognized in each RNR-positive cell cluster, and both types increased in number after seizures. Colocalization of RNR and activated caspase-3 was observed at 7 days, indicating that proliferating cells were susceptible to status epilepticus induced damage. RNR immunohistochemistry provides a useful approach in experiments investigating a change in cell proliferation, revealing the location, number, morphology and fate of newly formed cells after, e.g., brain injury.
Collapse
Affiliation(s)
- Hong Zhu
- Institute of Anatomy and Cell Biology, Göteborg University, P.O. Box 420, SE 40530 Göteborg, Sweden.
| | | | | |
Collapse
|
243
|
McBride CB, McPhail LT, Steeves JD. Emerging therapeutic targets in caspase-dependent disease. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.3.3.391] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
244
|
Müller GJ, Stadelmann C, Bastholm L, Elling F, Lassmann H, Johansen FF. Ischemia leads to apoptosis--and necrosis-like neuron death in the ischemic rat hippocampus. Brain Pathol 2005; 14:415-24. [PMID: 15605989 PMCID: PMC8095808 DOI: 10.1111/j.1750-3639.2004.tb00085.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Morphological evidence of apoptosis in transient forebrain ischemia is controversial. We therefore investigated the time sequence of apoptosis-related antigens by immunohistochemistry and correlated it with emerging nuclear patterns of cell death in a model of transient forebrain ischemia in CA1 pyramidal cells of the rat hippocampus. The earliest ischemic changes were found on day 2 and 3, reflected by an upregulation of phospho-c-Jun in a proportion of morphologically intact CA1 neurons, which matched the number of neurons that succumbed to ischemia at later time points. At day 3 and later 3 ischemic cell death morphologies became apparent: pyknosis, apoptosis-like cell death and necrosis-like cell death, which were confirmed by electron microscopy. Activated caspase-3 was present in the vast majority of cells with apoptosis-like morphology as well as in a small subset of cells undergoing necrosis; its expression peaked on days 3 to 4. Silver staining for nucleoli, which are a substrate for caspase-3, revealed a profound loss of nucleoli in cells with apoptosis-like morphology, whereas cells with necrosis-like morphology showed intact nucleoli. Overall, cells with apoptosis-like morphology and/or caspase-3 expression represented a minor fraction (<10%) of ischemic neurons, while the vast majority followed a necrosis-like pathway. Our studies suggest that CA1 pyramidal cell death following transient forebrain ischemia may be initiated through c-Jun N-terminal kinase (JNK) pathway activation, which then either follows an apoptosis-like cell death pathway or leads to secondary necrosis.
Collapse
Affiliation(s)
| | | | - Lone Bastholm
- Institute of Molecular Pathology, University of Copenhagen, Denmark
| | - Folmer Elling
- Institute of Molecular Pathology, University of Copenhagen, Denmark
| | - Hans Lassmann
- Brain Research Institute, Medical University of Vienna, Austria
| | | |
Collapse
|
245
|
Yamashima T. Ca2+-dependent proteases in ischemic neuronal death: a conserved 'calpain-cathepsin cascade' from nematodes to primates. Cell Calcium 2005; 36:285-93. [PMID: 15261484 DOI: 10.1016/j.ceca.2004.03.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2004] [Indexed: 12/15/2022]
Abstract
From rodents to primates, transient global brain ischemia is a well known cause of delayed neuronal death of the vulnerable neurons including cornu Ammonis 1 (CA1) pyramidal cells of the hippocampus. Previous reports using the rodent experimental paradigm indicated that apoptosis is a main contributor to such ischemic neuronal death. In primates, however, the detailed molecular mechanism of ischemic neuronal death still remains obscure. Recent data suggest that necrosis rather than apoptosis appear to be the crucial component of the damage to the nervous system during human ischemic injuries and neurodegenerative diseases. Currently, necrotic neuronal death mediated by Ca2+-dependent cysteine proteases, is becoming accepted to underlie the pathology of neurodegenerative conditions from the nematode Caenorhabditis elegans to primates. This paper reviews the role of cysteine proteases such as caspase, calpain and cathepsin in order to clarify the mechanism of ischemic neuronal death being triggered by the unspecific digestion of lysosomal proteases.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Neurosurgery, Division of Neuroscience, Kanazawa University Graduate School of Medical Science, Takara-machi 13-1, Kanazawa 920-8641, Japan.
| |
Collapse
|
246
|
Lai M, Seckl J, Macleod M. Overexpression of the mineralocorticoid receptor protects against injury in PC12 cells. ACTA ACUST UNITED AC 2005; 135:276-9. [PMID: 15857689 DOI: 10.1016/j.molbrainres.2004.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 11/03/2004] [Accepted: 11/06/2004] [Indexed: 11/19/2022]
Abstract
Mineralocorticoid receptor expression is increased following neuronal injury, and this is associated with increased neuronal survival. Here we demonstrate a causal link between overexpression of MR in PC12 cells and protection against death induced by staurosporine and oxygen-glucose deprivation. This survival effect is abrogated by MR antagonism. Drugs which upregulate MR may form the basis for a novel therapeutic approach in conditions such as stroke and head injury.
Collapse
Affiliation(s)
- Maggie Lai
- Endocrinology Unit, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, UK.
| | | | | |
Collapse
|
247
|
Xu L, Chock VY, Yang EY, Giffard RG. Susceptibility to apoptosis varies with time in culture for murine neurons and astrocytes: changes in gene expression and activity. Neurol Res 2005; 26:632-43. [PMID: 15327753 DOI: 10.1179/016164104225017587] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Apoptotic pathways in the brain may differ depending on cell type and developmental stage. To understand these differences, we studied several apoptotic proteins in the murine cortex and primary cultures of neurons and astrocytes of various ages in culture. We then induced apoptosis in our cultures using serum deprivation (SD) and observed changes in these apoptotic proteins. When analyzed by nuclear morphology and TUNEL staining, early cultures showed greater apoptotic injury compared with late cultures, and neuronal cultures showed greater apoptosis than astrocyte cultures. The decrease in apoptosis with development correlated best with a down-regulation of procaspase-3 and bax and decreasing caspase activation. Early culture astrocytes had higher caspase-11 levels compared with neurons. Mitogen-activated protein (MAP) kinases were also differentially expressed with activation of extracellular signal-regulated kinase (ERK) and p38 higher in early culture astrocytes and stress-activated protein kinase/C-jun N-terminal kinase (SAPK/JNK) greater in early culture neurons. However, caspase inhibitors, but not MAP kinase inhibitors reduced cell death. Our findings demonstrate that apoptosis regulatory proteins display cell type and developmentally specific expression and activation.
Collapse
Affiliation(s)
- Lijun Xu
- Department of Anesthesia, Stanford University School of Medicine, Stanford CA 94305-5123, USA
| | | | | | | |
Collapse
|
248
|
Stepanichev MY, Kudryashova IV, Yakovlev AA, Onufriev MV, Khaspekov LG, Lyzhin AA, Lazareva NA, Gulyaeva NV. Central administration of a caspase inhibitor impairs shuttle-box performance in rats. Neuroscience 2005; 136:579-91. [PMID: 16198488 DOI: 10.1016/j.neuroscience.2005.08.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 08/02/2005] [Accepted: 08/02/2005] [Indexed: 01/29/2023]
Abstract
Recent studies suggest that caspase-3-mediated mechanisms are essential for neuronal plasticity. N-benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val- Asp(OMe)-fluoromethyl ketone (z-DEVD-fmk), a caspase inhibitor with predominant specificity toward caspase-3, has been shown to block long-term potentiation in hippocampal slices. Intrahippocampal infusion of a caspase-3 inhibitor to rats has been shown to significantly impair spatial memory in the water maze. The present work was designed to study whether i.c.v. administration of a caspase-3 inhibitor z-DEVD-fmk impairs learning in other tasks related to specific forms of memory in rats. The rats received bilateral injections of z-DEVD-fmk or N-benzyloxycarbonyl-Phe-Ala-fluoromethyl ketone (z-FA-fmk) ("control" peptide) at a dose of 3 nmol. Administration of z-DEVD-fmk significantly decreased the number of avoidance reactions in some blocks of trials in the active avoidance (shuttle box) learning, while z-FA-fmk had no effect as compared with intact rats. However, only a slight effect of the caspase inhibitor across the session was found. z-DEVD-fmk impaired development of some essential components of the two-way active avoidance performance, such as escape reaction, conditioned fear reaction, and inter-trial crossings. Measurement of caspase-3 activity in rat brain regions involved in active avoidance learning revealed most expressed z-DEVD-fmk-related inhibition of the enzyme activity (about 30%) in the fronto-parietal cortex. A similar effect was close to significant in the hippocampus, but not in the other cerebral structures studied. In primary cultures of cerebellar neurons z-DEVD-fmk (2-50 microM) inhibited caspase-3 activity by 60-87%. We suggest that moderate inhibition of caspase-3 resulting from the central administration of z-DEVD-fmk to rats may impair active avoidance learning. Taking into account previous data on the involvement of neuronal caspase-3 in neuroplasticity phenomena we assume that the enzyme may be important for selected forms of learning.
Collapse
Affiliation(s)
- M Yu Stepanichev
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerov Street 5A, Moscow 117485, Russia
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Li ZG, Britton M, Sima AAF, Dunbar JC. Diabetes enhances apoptosis induced by cerebral ischemia. Life Sci 2004; 76:249-62. [PMID: 15531378 DOI: 10.1016/j.lfs.2004.03.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 03/02/2004] [Indexed: 01/04/2023]
Abstract
The aim of this study is to explore the mechanism by which diabetes exaggerates cerebral stroke and its outcome. Since ischemia can be related to not only necrosis but apoptosis as well, we compared the development of apoptosis in STZ-diabetic rats and STZ-diabetic rats subjected to occlusion of the middle cerebral artery (MCA). 24-48 hr following MCA occlusion the animals were killed, the brain removed and prepared for evaluation by several indexes of apoptosis: nucleosomal DNA fragmentation, TUNEL staining, activation of caspase-3 and alteration in the expression of Bax and Bcl2. DNA fragmentation was not detected in the cortex of normal and diabetic animals, but was evident following MCA occlusion in diabetic rats. Bax expression was increased in the cortex of normal rats following MCA occlusion and this expression was further increased in the cortex of MCA occluded diabetic rats. Bcl2 expression was not changed in any of the groups. In the hippocampus, DNA fragmentation was not evident in control rats but was observed in diabetic rats. Ischemic injury did not enhance DNA laddering in diabetic animals. The expression of Bax was increased in diabetic rats but was not increased following MCA occlusion. Bcl2 expression was not changed by ischemia in any of the animal models. These data suggest that diabetes may enhance the development of stroke via increased cortical apoptotic activity but this was not additive in the hippocampus following ischemic injury.
Collapse
Affiliation(s)
- Zhen-guo Li
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
250
|
Jin Y, McEwen ML, Ghandour MS, Springer JE. Overexpression of XIAP inhibits apoptotic cell death in an oligodendroglial cell line. Cell Mol Neurobiol 2004; 24:853-63. [PMID: 15672685 PMCID: PMC11529914 DOI: 10.1007/s10571-004-6924-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. This study describes the use of an oligodendroglial cell line (158N) to study the protective effects of X-chromosome-linked inhibitor of apoptosis (XIAP) overexpression. 2. 158N cells were transiently transfected with either pCMV-Myc-XIAP or control pCMV-Myc vector. At 48 h post-transfection, immunoblotting and immunocytochemical staining showed robust myc-XIAP overexpression in pCMV-Myc-XIAP transfected cells relative to pCMV-Myc-transfected cells and normal 158N cells. 158N cells were treated with either 100 nm staurosporine (STS) or 300 microM dopamine (DA) and cell survival/function determined using two cell viability assays. 3. Both STS and DA treatments resulted in increased apoptotic death of pCMV-Myc transfected cells. In contrast, there was significant decrease in apoptotic cell death in cells transfected with pCMV-Myc-XIAP. Finally, XIAP overexpression was found to significantly reduce caspase-3 enzyme activity levels in response to apoptotic stimuli. 4. These results provide evidence that XIAP overexpression promotes cell survival in a non-neuronal cell type derived from the central nervous system. In addition, these data suggest that the 158N oligodendroglial cell line is a suitable tool for transient transfection studies, which is a problem frequently encountered when attempting to introduce genes of interest in cultures of primary oligodendroglia.
Collapse
Affiliation(s)
- Ying Jin
- Departments of Anatomy and Neurobiology, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center, Lexington, KY 40536-0298
| | - Melanie L. McEwen
- Departments of Anatomy and Neurobiology, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center, Lexington, KY 40536-0298
| | | | - Joe E. Springer
- Departments of Anatomy and Neurobiology, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center, Lexington, KY 40536-0298
- Physical Medicine and Rehabilitation, University of Kentucky College of Medicine, and Cardinal Hill Rehabilitation Hospital, Lexington, KY 40536-0298
| |
Collapse
|