2701
|
Lasorella A, Iavarone A. The protein ENH is a cytoplasmic sequestration factor for Id2 in normal and tumor cells from the nervous system. Proc Natl Acad Sci U S A 2006; 103:4976-81. [PMID: 16549780 PMCID: PMC1458780 DOI: 10.1073/pnas.0600168103] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Id2 is a natural inhibitor of the basic helix-loop-helix transcription factors and the retinoblastoma tumor suppressor protein. Active Id2 prevents differentiation and promotes cell-cycle progression and tumorigenesis in the nervous system. A key event that regulates Id2 activity during differentiation is translocation from the nucleus to the cytoplasm. Here we show that the actin-associated protein enigma homolog (ENH) is a cytoplasmic retention factor for Id2. ENH contains three LIM domains, which bind to the helix-loop-helix domain of Id proteins in vitro and in vivo. ENH is up-regulated during neural differentiation, and its ectopic expression in neuroblastoma cells leads to translocation of Id2 from the nucleus to the cytoplasm, with consequent inactivation of transcriptional and cell-cycle-promoting functions of Id2. Conversely, silencing of ENH by RNA interference prevents cytoplasmic relocation of Id2 in neuroblastoma cells differentiated with retinoic acid. Finally, the differentiated neural crest-derived tumor ganglioneuroblastoma coexpresses Id2 and ENH in the cytoplasm of ganglionic cells. These data indicate that ENH contributes to differentiation of the nervous system through cytoplasmic sequestration of Id2. They also suggest that ENH is a restraining factor of the oncogenic activity of Id proteins in neural tumors.
Collapse
Affiliation(s)
- Anna Lasorella
- Institute for Cancer Genetics, Department of Pathology, Pediatrics, and Neurology, Columbia University Medical Center, New York, NY 10032
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Pathology, Pediatrics, and Neurology, Columbia University Medical Center, New York, NY 10032
- *To whom correspondence should be addressed at:
Institute for Cancer Genetics, Columbia University Medical Center, 1150 St. Nicholas Avenue, New York, NY 10032. E-mail:
| |
Collapse
|
2702
|
Himes SR, Sester DP, Ravasi T, Cronau SL, Sasmono T, Hume DA. The JNK are important for development and survival of macrophages. THE JOURNAL OF IMMUNOLOGY 2006; 176:2219-28. [PMID: 16455978 DOI: 10.4049/jimmunol.176.4.2219] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We report in this study that activation of the JNK by the growth factor, CSF-1 is critical for macrophage development, proliferation, and survival. Inhibition of JNK with two distinct classes of inhibitors, the pharmacological agent SP600125, or the peptide D-JNKI1 resulted in cell cycle inhibition with an arrest at the G(2)/M transition and subsequent apoptosis. JNK inhibition resulted in decreased expression of CSF-1R (c-fms) and Bcl-x(L) mRNA in mature macrophages and repressed CSF-1-dependent differentiation of bone marrow cells to macrophages. Macrophage sensitivity to JNK inhibitors may be linked to phosphorylation of the PU.1 transcription factor. Inhibition of JNK disrupted PU.1 binding to an element in the c-fms gene promoter and decreased promoter activity. Promoter activity could be restored by overexpression of PU.1. A comparison of expression profiles of macrophages with 22 other tissue types showed that genes that signal JNK activation downstream of tyrosine kinase receptors, such as focal adhesion kinase, Nck-interacting kinase, and Rac1 and scaffold proteins are highly expressed in macrophages relative to other tissues. This pattern of expression may underlie the novel role of JNK in macrophages.
Collapse
Affiliation(s)
- S Roy Himes
- Cooperative Research Centre for Chronic Inflammatory Disease, Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
2703
|
Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M, Dai XM, Stanley ER, Randolph GJ, Merad M. Langerhans cells arise from monocytes in vivo. Nat Immunol 2006; 7:265-273. [PMID: 16444257 PMCID: PMC4727824 DOI: 10.1038/ni1307] [Citation(s) in RCA: 537] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 01/06/2006] [Indexed: 12/18/2022]
Abstract
Langerhans cells (LCs) are the only dendritic cells of the epidermis and constitute the first immunological barrier against pathogens and environmental insults. The factors regulating LC homeostasis remain elusive and the direct circulating LC precursor has not yet been identified in vivo. Here we report an absence of LCs in mice deficient in the receptor for colony-stimulating factor 1 (CSF-1) in steady-state conditions. Using bone marrow chimeric mice, we have established that CSF-1 receptor-deficient hematopoietic precursors failed to reconstitute the LC pool in inflamed skin. Furthermore, monocytes with high expression of the monocyte marker Gr-1 (also called Ly-6c/G) were specifically recruited to the inflamed skin, proliferated locally and differentiated into LCs. These results identify Gr-1(hi) monocytes as the direct precursors for LCs in vivo and establish the importance of the CSF-1 receptor in this process.
Collapse
Affiliation(s)
- Florent Ginhoux
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2704
|
In Brief. Nat Rev Immunol 2006. [DOI: 10.1038/nri1814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2705
|
MacWilliams H, Doquang K, Pedrola R, Dollman G, Grassi D, Peis T, Tsang A, Ceccarelli A. A retinoblastoma ortholog controls stalk/spore preference in Dictyostelium. Development 2006; 133:1287-97. [PMID: 16495312 DOI: 10.1242/dev.02287] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We describe rblA, the Dictyostelium ortholog of the retinoblastoma susceptibility gene Rb. In the growth phase, rblA expression is correlated with several factors that lead to 'preference' for the spore pathway. During multicellular development, expression increases 200-fold in differentiating spores. rblA-null strains differentiate stalk cells and spores normally, but in chimeras with wild type, the mutant shows a strong preference for the stalk pathway. rblA-null cells are hypersensitive to the stalk morphogen DIF, suggesting that rblA normally suppresses the DIF response in cells destined for the spore pathway. rblA overexpression during growth leads to G1 arrest, but as growing Dictyostelium are overwhelmingly in G2 phase, rblA does not seem to be important in the normal cell cycle. rblA-null cells show reduced cell size and a premature growth-development transition; the latter appears anomalous but may reflect selection pressures acting on social ameba.
Collapse
Affiliation(s)
- Harry MacWilliams
- Biozentrum der Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
2706
|
Tacke F, Ginhoux F, Jakubzick C, van Rooijen N, Merad M, Randolph GJ. Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery. ACTA ACUST UNITED AC 2006; 203:583-97. [PMID: 16492803 PMCID: PMC2118235 DOI: 10.1084/jem.20052119] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Monocytes are circulating precursors for tissue macrophages and dendritic cells (DCs) but are not recognized to directly participate in antigen presentation. We developed techniques to label mouse monocyte subsets with particulate tracers in vivo. Gr-1lo but not Gr-1hi monocytes were stably labeled by intravenous injection of 0.5-μm microspheres. Gr-1hi monocytes could be labeled when the microspheres were injected after systemic depletion of blood monocytes and spleen macrophages. In this condition, the phagocytic tracer was transferred to immature bone marrow monocytes by neutrophils and B cells that first carried the particles to the bone marrow. Moreover, antigens from B cells or proteins conjugated to the tracer particles were processed for presentation by monocytes and could induce T cell responses in the periphery. Cell-associated antigen taken up by bone marrow monocytes was retained intracellularly for presentation of the antigen days later when monocyte-derived DCs migrated to lymph nodes or in vitro after differentiation with granulocyte/macrophage colony-stimulating factor. These data reveal that immature monocytes unexpectedly sample antigen from the bone marrow environment and that they can present these antigens after they leave the bone marrow.
Collapse
Affiliation(s)
- Frank Tacke
- Department of Gene and Cell Medicine, Icahn Research Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
2707
|
Tagoh H, Ingram R, Wilson N, Salvagiotto G, Warren AJ, Clarke D, Busslinger M, Bonifer C. The mechanism of repression of the myeloid-specific c-fms gene by Pax5 during B lineage restriction. EMBO J 2006; 25:1070-80. [PMID: 16482219 PMCID: PMC1409732 DOI: 10.1038/sj.emboj.7600997] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 01/19/2006] [Indexed: 11/09/2022] Open
Abstract
The transcription factor Pax5 (BSAP) is required for the expression of a B-cell-specific genetic program and for B-cell differentiation, and also to suppress genes of alternative lineages. The molecular mechanism by which repression of myeloid genes occurs during early B-lineage restriction is unknown and in this study we addressed this question. One of the genes repressed by Pax5 in B cells is the colony-stimulating factor receptor 1 gene (csf1r or c-fms). We examined the changes in chromatin caused by Pax5 activity, and we show that Pax5 is directly recruited to c-fms resulting in the rapid loss of RNA polymerase II binding, followed by loss of transcription factor binding and DNaseI hypersensitivity at all cis-regulatory elements. We also show that Pax5 targets the basal transcription machinery of c-fms by interacting with a binding site within the major transcription start sites. Our results support a model by which Pax5 does not lead to major alterations in chromatin modification, but inhibits transcription by interfering with the action of myeloid transcription factors.
Collapse
Affiliation(s)
- Hiromi Tagoh
- Division of Experimental Haematology, LIMM, University of Leeds, St James's University Hospital, Leeds, UK
| | - Richard Ingram
- Division of Experimental Haematology, LIMM, University of Leeds, St James's University Hospital, Leeds, UK
| | - Nicola Wilson
- Division of Experimental Haematology, LIMM, University of Leeds, St James's University Hospital, Leeds, UK
| | - Giorgia Salvagiotto
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Alan J Warren
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Deborah Clarke
- Division of Experimental Haematology, LIMM, University of Leeds, St James's University Hospital, Leeds, UK
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Constanze Bonifer
- Division of Experimental Haematology, LIMM, University of Leeds, St James's University Hospital, Leeds, UK
- Leeds Institute of Molecular Medicine, The JIF Building, St James University Hospital, University of Leeds, Leeds LS9 7TF, UK. Tel.: +44 113 343 8525; Fax: +44 113 343 8702; E-mail:
| |
Collapse
|
2708
|
Ovadia S, Insogna K, Yao GQ. The Cell-Surface Isoform of Colony Stimulating Factor 1 (CSF1) Restores but Does Not Completely Normalize Fecundity in CSF1-Deficient Mice1. Biol Reprod 2006; 74:331-6. [PMID: 16237150 DOI: 10.1095/biolreprod.105.045047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The complete genetic absence of colony stimulating factor 1 (CSF1) in CSF1-deficient Csf1(op)/Csf1(op) mice leads to reproductive defects in males and females. Although the cell-surface or membrane-bound isoform of CSF1 (mCSF1) is biologically active in bone, little is known about its role in reproduction. Transgenic mice expressing mCSF1 under the control of the 2.4-kb rat collagen type I alpha promoter were developed [Tg(Col1a1-mCSF1)1Gqy] and bred onto a Csf1(op)/Csf1(op) background [Csf1(op)/Csf1(op); Tg(Col1a1-mCSF1)1Gqy] to examine the effects of the mCSF1 isoform in bone in vivo. Surprisingly, when interbred, these mice were fertile. The Csf1(op)/Csf1(op); Tg(Col1a1-mCSF1)1Gqy transgenic male mice have normal libido, sperm number and percent of motile sperm. In Csf1(op)/Csf1(op); Tg(Col1a1-mCSF1)1Gqy females, puberty and estrus cycles are at expected age and duration. Further, females are able to carry pregnancies to term and nurse their offspring. Crosses of Csf1(op)/Csf1(op); Tg(Col1a1-mCSF1)1Gqy males or females with their control littermates showed no significant differences in either number or viability of offspring. However, crossing Csf1(op)/Csf1(op); Tg(Col1a1-mCSF1)1Gqy males with Csf1(op); Tg(Col1a1-mCSF1)1Gqy females resulted in a decline in both the number and viability of offspring, suggesting that a subtle reproductive defect might persist in the transgenic animals that was only manifest when the animals were interbred. Although the gravid murine uterus expresses extremely high levels of CSF1 that are thought to be important for reproduction, uterine tissue levels of CSF1 remained low and unchanged during pregnancy in Csf1(op)/Csf1(op); Tg(Col1a1-mCSF1)1Gqy mice. Low levels of CSF1 protein were detected in serum and in lung and uterine tissue in Csf1(op)/Csf1(op); Tg(Col1a1-mCSF1)1Gqy mouse, which likely result from the known proteolytic shedding of mCSF1 from the cell surface. These data are consistent with the conclusion that mCSF1, when shed from the cell surface, can support reproduction and that high uterine tissue levels of CSF1 may not be required for mouse reproduction.
Collapse
Affiliation(s)
- Shira Ovadia
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
2709
|
Palmqvist P, Lundberg P, Persson E, Johansson A, Lundgren I, Lie A, Conaway HH, Lerner UH. Inhibition of Hormone and Cytokine-stimulated Osteoclastogenesis and Bone Resorption by Interleukin-4 and Interleukin-13 Is Associated with Increased Osteoprotegerin and Decreased RANKL and RANK in a STAT6-dependent Pathway. J Biol Chem 2006; 281:2414-29. [PMID: 16251181 DOI: 10.1074/jbc.m510160200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin (IL)-4 and IL-13 are cytokines that inhibit bone resorption. Data showing an inhibitory effect of IL-4 and IL-13 on RANK mRNA in mouse calvariae were first reported at the 22nd American Society for Bone and Mineral Research Meeting (Lerner, U.H., and Conaway, H. H. 2000) J. Bone Min. Res. 15, Suppl. 1, Abstr. SU 230). In the present study, release of 45Ca from cultured mouse calvarial bones stimulated by different cytokines, peptides, and steroid hormones was inhibited by IL-4 and IL-13. IL-4 and IL-13 decreased receptor activator of nuclear factor-kappaB ligand (RANKL) and RANK mRNA and increased osteoprotegerin (OPG) mRNA in calvariae. Additionally, the cytokines decreased RANKL protein and increased OPG protein in calvarial bones. In osteoblasts isolated from calvariae, both an increase in RANKL mRNA and a decrease in OPG mRNA and protein elicited by vitamin D3 were reversed by IL-4 and IL-13. IL-4 and IL-13 decreased the number of tartrate-resistant acid phosphatase positive multinucleated cells and the mRNA expression of calcitonin receptor, tartrate-resistant acid phosphatase, and cathepsin K in mouse spleen cells and bone marrow macrophages (BMM) treated with macrophage colony-stimulating factor and RANKL. Inhibition of mRNA for RANK and the transcription factor NFAT2 was also noted in spleen cell and BMM cultures treated with IL-4 and IL-13. In addition, RANK mRNA and RANK protein were decreased by IL-4 and IL-13 in RAW 264.7 cells. Osteoblasts, spleen cells, and BMM expressed mRNA for the four proteins making up the IL-4 and IL-13 receptors. No effects by IL-4 on bone resorption and osteoclast formation or on RANKL and RANK mRNA expression were seen in Stat6-/- mice. The data indicate that IL-4 and IL-13, via a STAT6-dependent pathway, inhibit osteoclast differentiation and bone resorption by activating receptors on osteoblasts and osteoclasts that affect the RANKL/RANK/OPG system.
Collapse
Affiliation(s)
- Py Palmqvist
- Departments of Oral Cell Biology and Periodontics, Umeå University, Umeå S-901 87, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
2710
|
Korenjak M, Brehm A. E2F-Rb complexes regulating transcription of genes important for differentiation and development. Curr Opin Genet Dev 2006; 15:520-7. [PMID: 16081278 DOI: 10.1016/j.gde.2005.07.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 07/21/2005] [Indexed: 01/22/2023]
Abstract
Inactivation of the retinoblastoma tumour suppressor protein (pRb) is a hallmark of most human cancers. Accordingly, pRb is serving as a paradigm in our quest to understand tumour suppressor function. The role played by pRb and the related 'pocket proteins', p107 and p130, in regulating cell cycle progression has been extensively studied over the past two decades. The function of pRb in regulating transcriptional programmes in differentiating cells is less well understood. Recently, the use of a variety of different cell, animal and plant model systems has allowed us a first glimpse at some of the molecular mechanisms underlying pRb-mediated transcriptional regulation during differentiation and development.
Collapse
Affiliation(s)
- Michael Korenjak
- Lehrstuhl für Molekularbiologie, Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität, Schillerstrasse 44, 80336 München, Germany
| | | |
Collapse
|
2711
|
Nandi S, Akhter MP, Seifert MF, Dai XM, Stanley ER. Developmental and functional significance of the CSF-1 proteoglycan chondroitin sulfate chain. Blood 2006; 107:786-795. [PMID: 16210339 PMCID: PMC1895624 DOI: 10.1182/blood-2005-05-1822] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Accepted: 08/25/2005] [Indexed: 02/01/2023] Open
Abstract
The primary macrophage growth factor, colony-stimulating factor-1 (CSF-1), is homodimeric and exists in 3 biologically active isoforms: a membrane-spanning, cell-surface glycoprotein (csCSF-1) and secreted glycoprotein (sgCSF-1) and proteoglycan (spCSF-1) isoforms. To investigate the in vivo role of the chondroitin sulfate glycosaminoglycan (GAG) chain of spCSF-1, we created mice that exclusively express, in a normal tissue-specific and developmental manner, either the secreted precursor of spCSF-1 or the corresponding precursor in which the GAG addition site was mutated. The reproductive, hematopoietic tooth eruption and tissue macrophage defects of CSF-1-deficient, osteopetrotic Csf1(op)/Csf1(op) mice were corrected by transgenic expression of the precursors of either sgCSF-1 or spCSF-1. Furthermore, in contrast to the transgene encoding csCSF-1, both failed to completely correct growth retardation, suggesting a role for csCSF-1 in the regulation of body weight. However, spCSF-1, in contrast to sgCSF-1, completely resolved the osteopetrotic phenotype. Furthermore, in transgenic lines expressing different concentrations of sgCSF-1 or spCSF-1, spCSF-1 more efficiently corrected Csf1(op)/Csf1(op) defects of tooth eruption, eyelid opening, macrophage morphology, and B-cell deficiency than sgCSF-1. These results indicate an important role of the CSF-1 chondroitin sulfate proteoglycan in in vivo signaling by secreted CSF-1.
Collapse
Affiliation(s)
- Sayan Nandi
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
2712
|
Abstract
Rapid progress has been made in recent years in our understanding of the mechanisms regulating the formation, activation, and survival of osteoclasts, which are derived from precursor cells in the myeloid lineage. In contrast, study of the regulation of osteoclast precursors (OCPs) has been relatively slow, in part because it has been hard to accurately identify them. However, following the discovery of cell-surface markers that facilitated purification of OCPs, recent studies have demonstrated that peripheral blood OCP numbers are increased in tumor necrosis factor (TNF)-mediated arthritis, both in animals and humans, and these numbers correlate with serum TNF levels. The increase can be reversed by anti-TNF therapy. Furthermore, the precursor cells that give rise to osteoclasts can also differentiate into other cell types, including dendritic cells. Receptor activator nuclear factor-kappaB ligand (RANKL) stimulates OCPs to produce pro-inflammatory cytokines and chemokines, and RANKL blockade prevents joint inflammation in a murine model of inflammatory arthritis. These findings suggest that OCPs may serve as a source for both osteoclasts and other effector cells and participate actively in the pathogenesis of diseases. Here, we review our current understanding of the regulation of OCP formation and differentiation and provide a model of a vicious cycle in which pro-inflammatory cytokines produced in inflamed joints feedback on the bone marrow to promote the generation and release of OCPs. The OCPs then home to the inflamed joints to differentiate into mature osteoclasts or to produce more inflammatory factors in the presence of RANKL. Disruption of this cycle could provide a new strategy for the development of drugs to treat inflammatory arthritis and other disorders associated with elevated OCP/myeloid progenitors.
Collapse
Affiliation(s)
- Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
2713
|
Elsegood CL, Zhuo Y, Wesolowski GA, Hamilton JA, Rodan GA, Duong LT. M-CSF induces the stable interaction of cFms with αVβ3 integrin in osteoclasts. Int J Biochem Cell Biol 2006; 38:1518-29. [PMID: 16600665 DOI: 10.1016/j.biocel.2006.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 02/03/2006] [Accepted: 02/18/2006] [Indexed: 12/18/2022]
Abstract
The macrophage colony stimulating factor receptor (cFms) and alpha(V)beta(3) integrin are both abundantly expressed and play critical roles in the differentiation, survival and migration of osteoclasts. We have previously demonstrated that cross-talk between cFms- and alpha(V)beta(3)-mediated signaling pathways regulated the cytoskeletal organization required for osteoclast migration. To investigate the nature of interaction between the two receptors, we sequentially used anion-exchange chromatography and immunoprecipitation to purify alpha(V)beta(3)-associated protein complexes. We have demonstrated that cFms stably associated with alpha(V)beta(3) in osteoclasts during adhesion, and that the association was induced by macrophage colony stimulating factor (M-CSF) stimulation. However, the kinetics of association of alpha(V)beta(3) and cFms did not correlate with the kinetics of tyrosine phosphorylation of cFms. Instead, maximally observed alpha(V)beta(3)/cFms association was after the peak of cFms tyrosine phosphorylation and correlated inversely with the total amount of cFms remaining. Furthermore, the complex containing cFms and alpha(V)beta(3) also contained a number of other signaling molecules including Pyk2, p130(Cas) and c-Cbl, known downstream regulators of the integrin-mediated signaling pathways in osteoclasts. In the presence of M-CSF, co-localization of alpha(V)beta(3) integrin and cFms was identified in the podosomal actin ring of the osteoclast during adhesion on glass. Interestingly, co-localization of both receptors was not found in the sealing zone, but in punctate structures associated with adhesion- or transcytosis-like structures in osteoclasts on bone. Taken together, we suggest that the association of alpha(V)beta(3) and cFms could be the result of signaling following tyrosine phosphorylation of cFms. The recruitment of cFms to alpha(V)beta(3) integrin may be an integral part of a larger signaling complex via which both of adhesion- and growth factor receptors coordinately regulate osteoclast adhesion, motility and membrane trafficking.
Collapse
Affiliation(s)
- Caryn L Elsegood
- Department of Molecular Endocrinology & Bone Biology, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | | | |
Collapse
|
2714
|
Han D, Zhang Q. An essential requirement for osteoclasts in refined bone-like tissue reconstruction in vitro. Med Hypotheses 2006; 67:75-8. [PMID: 16516403 DOI: 10.1016/j.mehy.2006.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 01/04/2006] [Indexed: 11/24/2022]
Abstract
One crucial but often disregarded problem in tissue-engineered bone is that osteoblasts in culture significantly differ in function and behavior from their counterparts in vivo. This difference is represented as an inability of cultured osteoblasts to form lamellar bone-like structures and deposit the characteristic mineral of native bone, as well as their loss of polarity of matrix secretion, marked by tissue growth bridging the pore interconnections of scaffolds. These abnormalities of in vitro bone formation are a major cause of the current failure to yield functional and mechanically competent bone. Recent studies with osteoclast deficient animal models have definitely revealed that the regulatory effect of osteoclasts is essential for normal bone formation. The abnormalities of bone formation present in osteoclast deficient animals are largely reflected in current tissue-engineered bone. Reasonably, the abnormalities of in vitro bone formation most likely result from the absence of osteoclasts in current bone formation strategies. Therefore, it is hypothesized that osteoclast introduction will provide a necessary solution to the critical problems in bone tissue engineering. The way of osteoclast introduction is the first challenge in exploring its roles in bone tissue engineering. In vivo studies have shown that maturation of preosteoclasts, the cells just before fusion to form multinucleated cells, requires formation and accumulation of bone matrix despite the independence of preosteoclast appearance and bone formation. Thus, the application of preosteoclasts to biomineralized matrix for osteoclastogenesis is a physiologically relevant strategy for osteoclast introduction. In conclusion, osteoclast introduction holds the promise of structural and functional improvement of tissue-engineered bone.
Collapse
Affiliation(s)
- Daqing Han
- Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, 236 Baidi Road, Nankai District, Tianjin 300192, PR China.
| | | |
Collapse
|
2715
|
Martinez G, Georgas K, Challen GA, Rumballe B, Davis MJ, Taylor D, Teasdale RD, Grimmond SM, Little MH. Definition and spatial annotation of the dynamic secretome during early kidney development. Dev Dyn 2006; 235:1709-19. [PMID: 16538671 DOI: 10.1002/dvdy.20740] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The term "secretome" has been defined as a set of secreted proteins (Grimmond et al. [2003] Genome Res 13:1350-1359). The term "secreted protein" encompasses all proteins exported from the cell including growth factors, extracellular proteinases, morphogens, and extracellular matrix molecules. Defining the genes encoding secreted proteins that change in expression during organogenesis, the dynamic secretome, is likely to point to key drivers of morphogenesis. Such secreted proteins are involved in the reciprocal interactions between the ureteric bud (UB) and the metanephric mesenchyme (MM) that occur during organogenesis of the metanephros. Some key metanephric secreted proteins have been identified, but many remain to be determined. In this study, microarray expression profiling of E10.5, E11.5, and E13.5 kidney and consensus bioinformatic analysis were used to define a dynamic secretome of early metanephric development. In situ hybridisation was used to confirm microarray results and clarify spatial expression patterns for these genes. Forty-one secreted factors were dynamically expressed between the E10.5 and E13.5 timeframe profiled, and 25 of these factors had not previously been implicated in kidney development. A text-based anatomical ontology was used to spatially annotate the expression pattern of these genes in cultured metanephric explants.
Collapse
Affiliation(s)
- Gemma Martinez
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
2716
|
Lomas-Neira J, Chung CS, Perl M, Gregory S, Biffl W, Ayala A. Role of alveolar macrophage and migrating neutrophils in hemorrhage-induced priming for ALI subsequent to septic challenge. Am J Physiol Lung Cell Mol Physiol 2006; 290:L51-8. [PMID: 16157517 DOI: 10.1152/ajplung.00028.2005] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute lung injury (ALI) is identified with the targeting/sequestration of polymorphonuclear leukocytes (PMN) to the lung. Instrumental to PMN targeting are chemokines [e.g., macrophage inflammatory protein-2 (MIP-2), keratinocyte-derived chemokine (KC), etc.] produced by macrophage, PMN, and other resident pulmonary cells. However, the relative contribution of resident pulmonary macrophages as opposed to PMN in inducing ALI is poorly understood. We therefore hypothesize that depletion of peripheral blood PMN and/or the oblation of a macrophage-mediated PMN chemokine signal (via macrophage deficiency) will reduce the inflammation and ALI observed in mice following hemorrhage (Hem) and subsequent sepsis (CLP) in our murine model of ALI. To examine this we pretreated mice with either 500 μg anti-mouse Gr1 antibody/animal (to deplete PMN) or subjected mice deficient in mature macrophage (B6C3Fe-a/a-CsF1op) to Hem (90 min at 35 ± 5 mmHg) followed by resuscitation. Twenty-four hours post-Hem, mice were subjected to CLP and killed 24 h later, and lung tissue samples were collected. Our data showed that in the absence of either peripheral blood PMN or mature tissue macrophages there was a suppression of IL-6, KC, and MIP-2 levels in lung tissue from Hem/CLP mice as well as a reduction in PMN influx to the lung and lung injury (bronchoalveolar lavage fluid protein). In contrast, lung tissue IL-10 and TNF-α levels were suppressed in the macrophage-deficient Hem/CLP mice compared with PMN-depleted Hem/CLP mice. Together, these data suggest that both the PMN and the macrophage are required to induce inflammation seen here, however, macrophage not PMN regulate the release of IL-10, independent of local changes in TNF.
Collapse
Affiliation(s)
- Joanne Lomas-Neira
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, USA
| | | | | | | | | | | |
Collapse
|
2717
|
Ha H, Lee JH, Kim HN, Kim HM, Kwak HB, Lee S, Kim HH, Lee ZH. α-Lipoic Acid Inhibits Inflammatory Bone Resorption by Suppressing Prostaglandin E2 Synthesis. THE JOURNAL OF IMMUNOLOGY 2005; 176:111-7. [PMID: 16365401 DOI: 10.4049/jimmunol.176.1.111] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
alpha-Lipoic acid (LA) has been intensely investigated as a therapeutic agent for several pathological conditions, including diabetic polyneuropathy. In the present study, we examined the effects of LA on osteoclastic bone loss associated with inflammation. LA significantly inhibited IL-1-induced osteoclast formation in cocultures of mouse osteoblasts and bone marrow cells, but LA had only a marginal effect on osteoclastogenesis from bone marrow macrophages induced by receptor activator of NF-kappaB ligand (RANKL). LA inhibited both the sustained up-regulation of RANKL expression and the production of PGE2 induced by IL-1 in osteoblasts. In addition, treatment with either prostaglandin E2 (PGE2) or RANKL rescued IL-1-induced osteoclast formation inhibited by LA or NS398, a specific cyclooxygenase-2 (COX-2) inhibitor, in cocultures. LA blocked IL-1-induced PGE2 production even in the presence of arachidonic acid, without affecting the expression of COX-2 and membrane-bound PGE2 synthase. Dihydrolipoic acid (the reduced form of LA), but not LA, attenuated recombinant COX-2 activity in vitro. LA also inhibited osteoclast formation and bone loss induced by IL-1 and LPS in mice. Our results suggest that the reduced form of LA inhibits COX-2 activity, PGE2 production, and sustained RANKL expression, thereby inhibiting osteoclast formation and bone loss in inflammatory conditions.
Collapse
Affiliation(s)
- Hyunil Ha
- Department of Cell and Developmental Biology, DRI, BK21 Program, Seoul National University College of Dentistry, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
2718
|
Hume DA. The mononuclear phagocyte system. Curr Opin Immunol 2005; 18:49-53. [PMID: 16338128 DOI: 10.1016/j.coi.2005.11.008] [Citation(s) in RCA: 443] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 11/24/2005] [Indexed: 11/27/2022]
Abstract
The mononuclear phagocyte system (MPS) has been defined as a family of cells comprising bone marrow progenitors, blood monocytes and tissue macrophages. Macrophages are a major cell population in most of the tissues in the body, and their numbers increase further in inflammation, wounding and malignancy. Their trophic roles for other cell types in development and homeostasis are becoming increasingly evident. The receptor for macrophage colony-stimulating factor (CSF-1R) is expressed in a large proportion of cells considered to be mononuclear phagocytes, including antigen-presenting dendritic cells, which can be considered a specialized adaptive state rather than a separate lineage. The unity of the MPS is challenged by evidence that there is a separate embryonic phagocyte lineage, by the transdifferentiation and fusion of MPS cells with other cell types, and by evidence of local renewal of tissue macrophage populations as opposed to monocyte recruitment. The concept of the MPS may have partly outlived its usefulness.
Collapse
Affiliation(s)
- David A Hume
- Institute for Molecular Bioscience, University of Queensland, Q4072, Australia.
| |
Collapse
|
2719
|
Chitu V, Stanley ER. Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol 2005; 18:39-48. [PMID: 16337366 DOI: 10.1016/j.coi.2005.11.006] [Citation(s) in RCA: 473] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 11/24/2005] [Indexed: 11/17/2022]
Abstract
Colony-stimulating factor-1 (CSF-1, also known as macrophage-CSF) is the primary regulator of the survival, proliferation, differentiation and function of mononuclear phagocytes. Studies that involve CSF-1-deficient mice demonstrate that there is a variable requirement for CSF-1 in the development of individual mononuclear phagocyte populations. However, these cells uniformly express the CSF-1 receptor, and their morphology, phagocytosis and responsiveness to infectious and non-infectious stimuli is regulated by CSF-1. CSF-1 plays important roles in innate immunity, cancer and inflammatory diseases, including systemic lupus erythematosus, arthritis, atherosclerosis and obesity. In several conditions, activation of macrophages involves a CSF-1 autocrine loop. In addition, secreted and cell-surface isoforms of CSF-1 can have differential effects in inflammation and immunity.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA
| | | |
Collapse
|
2720
|
Lee J, Kim K, Kim JH, Jin HM, Choi HK, Lee SH, Kook H, Kim KK, Yokota Y, Lee SY, Choi Y, Kim N. Id helix-loop-helix proteins negatively regulate TRANCE-mediated osteoclast differentiation. Blood 2005; 107:2686-93. [PMID: 16322470 PMCID: PMC1895380 DOI: 10.1182/blood-2005-07-2798] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor necrosis factor (TNF)-related activation-induced cytokine (TRANCE) induces osteoclast formation from monocyte/macrophage lineage cells via various transcription factors, including the Mi transcription factor (Mitf). Here, we show that inhibitors of differentiation/DNA binding (Ids), helix-loop-helix (HLH) transcription factors, negatively regulate TRANCE-induced osteoclast differentiation. Expression levels of Id1, Id2, and Id3 genes are significantly reduced by TRANCE during osteoclastogenesis. Interestingly, overexpression of the 3 Id genes in bone marrow-derived monocyte/macrophage lineage cells (BMMs) inhibits the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear osteoclasts, but it does not alter the ability of BMMs to either phagocytose or differentiate into dendritic cells (DCs). Overexpression of Id2 in BMMs attenuates the gene induction of nuclear factor of activated T cells c1 (NFATc1) and osteoclast-associated receptor (OSCAR) during TRANCE-mediated osteoclastogenesis. Furthermore, Id proteins interact with Mitf, a basic HLH (bHLH) transcription factor, and inhibit its transactivation of OSCAR, which is a costimulatory receptor expressed by osteoclast precursors, by attenuating the DNA binding ability of Mitf to the E-box site of the OSCAR promoter. Taken together, our results reveal both a new facet of negative regulation, mediated by Id proteins, as well as the mechanism whereby TRANCE signaling overcomes it, allowing osteoclastogenesis to proceed.
Collapse
Affiliation(s)
- Junwon Lee
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Hak-Dong 5, Dong-Ku, Gwangju 501-746, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2721
|
Ross FP, Teitelbaum SL. alphavbeta3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol Rev 2005; 208:88-105. [PMID: 16313343 DOI: 10.1111/j.0105-2896.2005.00331.x] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osteoclasts, the sole bone-resorbing cells, arise by fusion and differentiation of monocyte/macrophage precursors. Matrix degradation requires adhesion of the osteoclast to bone, an integrin alphavbeta3-mediated event that also stimulates signals which polarize the cell and secrete resorptive molecules such as hydrochloric acid and acidic proteases. Two cytokines are necessary and sufficient for osteoclastogenesis, receptor activator of nuclear factor kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF), both produced by mesenchymal cells in the bone marrow environment. M-CSF promotes survival and proliferation of osteoclast precursors. It also contributes to their differentiation and regulates the cytoskeletal changes that accompany bone resorption. Binding of M-CSF to c-Fms, its receptor, recruits adapter proteins and cytosolic kinases, thereby activating a variety of intracellular signals. We herein review how alphavbeta3 and M-CSF, alone and in concert, impact production, survival, and function of the osteoclast, thereby controlling skeletal mass. Signals from alphavbeta3 and/or c-Fms activate Syk and Vav3, originally defined by their function in lymphoid cells. Genetic depletion of either protein generates a strong bone phenotype, underscoring the promise of osteoimmunobiology.
Collapse
Affiliation(s)
- F Patrick Ross
- Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
2722
|
Abstract
Periarticular osteolysis, a crippling complication of rheumatoid arthritis, is the product of enhanced osteoclast recruitment and activation. The osteoclast, which is a member of the monocyte/macrophage family, is the exclusive bone resorptive cell, and its differentiation and activation are under the aegis of a variety of cytokines. Receptor activator of NF-kappaB ligand (RANKL) and macrophage colony-stimulating factor are the essential osteoclastogenic cytokines and are increased in inflammatory joint disease. Tumor necrosis factor-alpha, which perpetrates arthritic bone loss, exerts its osteoclastogenic effect in the context of RANKL with which it synergizes. Achieving an understanding of the mechanisms by which the three cytokines affect the osteoclast has resulted in a number of active and candidate therapeutic targets.
Collapse
Affiliation(s)
- Steven L Teitelbaum
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8118, St Louis, MO 63110, USA.
| |
Collapse
|
2723
|
Imada C, Hasumura M, Nawa K. Promotive effect of macrophage colony-stimulating factor on long-term engraftment of murine hematopoietic stem cells. Cytokine 2005; 31:447-53. [PMID: 16112868 DOI: 10.1016/j.cyto.2005.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 06/01/2005] [Accepted: 07/06/2005] [Indexed: 11/17/2022]
Abstract
Large ex vivo expansion of hematopoietic stem cells (HSCs) sufficient for use in clinical applications has not been achieved, although the influence of some cytokines including SCF, IL-11, Flt3-L, and TPO for this purpose has been reported. We present evidence for an indirect effect of macrophage colony-stimulating factor (M-CSF) on expansion of murine HSCs. Fresh Lin(-/low) cells were isolated from Ly5.1 mouse bone marrow and cultured with or without M-CSF in the presence of SCF + IL-11 + Flt3-L or SCF + IL-11 + TPO for 6 days. The expanded cells were harvested and transplanted into lethally irradiated Ly5.2 recipients with competitor cells. Culture of Lin(-/low) cells with M-CSF significantly enhanced long-term engraftment. When the more enriched HSC populations of Lin(-/low) c-Kit(+) Sca-1(+) cells were used as a source of HSCs, such a promotive effect was not observed, in agreement with negative expression of the M-CSF receptor (c-Fms). However, co-culture with Lin(-/low) c-Fms(+) resulted in a significant increase of long-term engraftment. These results suggested that M-CSF is an indirect stimulator for ex vivo expansion of HSCs in the presence of SCF, IL-11, Flt3-L, and TPO. These observations provide new directions for ex vivo expansion and insight into new engraftment regulation through M-CSF signaling.
Collapse
Affiliation(s)
- Chiharu Imada
- Discovery Research Laboratory, Daiichi Pharmaceutical Company Limited, Kita-Kasai, Edogawa, Tokyo, Japan
| | | | | |
Collapse
|
2724
|
Kitaura H, Zhou P, Kim HJ, Novack DV, Ross FP, Teitelbaum SL. M-CSF mediates TNF-induced inflammatory osteolysis. J Clin Invest 2005; 115:3418-27. [PMID: 16294221 PMCID: PMC1283943 DOI: 10.1172/jci26132] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 09/23/2005] [Indexed: 11/17/2022] Open
Abstract
TNF-alpha is the dominant cytokine in inflammatory osteolysis. Using mice whose BM stromal cells and osteoclast precursors are chimeric for the presence of TNF receptors, we found that both cell types mediated the cytokine's osteoclastogenic properties. The greater contribution was made, however, by stromal cells that express the osteoclastogenic cytokine M-CSF. TNF-alpha stimulated M-CSF gene expression, in vivo, only in the presence of TNF-responsive stromal cells. M-CSF, in turn, induced the key osteoclastogenic cytokine receptor, receptor activator of NF-kappaB (RANK), in osteoclast precursors. In keeping with the proproliferative and survival properties of M-CSF, TNF-alpha enhanced osteoclast precursor number only in the presence of stromal cells bearing TNF receptors. To determine the clinical relevance of these observations, we induced inflammatory arthritis in wild-type mice and treated them with a mAb directed against the M-CSF receptor, c-Fms. Anti-c-Fms mAb selectively and completely arrested the profound pathological osteoclastogenesis attending this condition, the significance of which is reflected by similar blunting of the in vivo bone resorption marker tartrate-resistant acid phosphatase 5b (TRACP 5b). Confirming that inhibition of the M-CSF signaling pathway targets TNF-alpha, anti-c-Fms also completely arrested osteolysis in TNF-injected mice with nominal effect on macrophage number. M-CSF and its receptor, c-Fms, therefore present as candidate therapeutic targets in states of inflammatory bone erosion.
Collapse
MESH Headings
- Acid Phosphatase/chemistry
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/metabolism
- Bone Marrow Cells/cytology
- Bone Marrow Cells/metabolism
- Bone Resorption
- Bone and Bones
- CD4 Antigens/biosynthesis
- CD8 Antigens/biosynthesis
- Cell Separation
- Cytokines/metabolism
- Dose-Response Relationship, Drug
- Female
- Flow Cytometry
- Gene Expression Regulation
- Inflammation/pathology
- Interleukin-1/metabolism
- Isoenzymes/chemistry
- Macrophage Colony-Stimulating Factor/metabolism
- Macrophage Colony-Stimulating Factor/physiology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Knockout
- Mice, SCID
- Mice, Transgenic
- NF-kappa B/metabolism
- Osteoclasts/metabolism
- Osteolysis/pathology
- RNA, Messenger/metabolism
- Rats
- Receptor, Macrophage Colony-Stimulating Factor/metabolism
- Recombinant Fusion Proteins/chemistry
- Signal Transduction
- Stromal Cells/metabolism
- T-Lymphocytes/metabolism
- Tartrate-Resistant Acid Phosphatase
- Time Factors
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Hideki Kitaura
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
2725
|
Conway JG, McDonald B, Parham J, Keith B, Rusnak DW, Shaw E, Jansen M, Lin P, Payne A, Crosby RM, Johnson JH, Frick L, Lin MHJ, Depee S, Tadepalli S, Votta B, James I, Fuller K, Chambers TJ, Kull FC, Chamberlain SD, Hutchins JT. Inhibition of colony-stimulating-factor-1 signaling in vivo with the orally bioavailable cFMS kinase inhibitor GW2580. Proc Natl Acad Sci U S A 2005; 102:16078-83. [PMID: 16249345 PMCID: PMC1276040 DOI: 10.1073/pnas.0502000102] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 09/15/2005] [Indexed: 11/18/2022] Open
Abstract
Colony-stimulating-factor-1 (CSF-1) signaling through cFMS receptor kinase is increased in several diseases. To help investigate the role of cFMS kinase in disease, we identified GW2580, an orally bioavailable inhibitor of cFMS kinase. GW2580 completely inhibited human cFMS kinase in vitro at 0.06 microM and was inactive against 26 other kinases. GW2580 at 1 microM completely inhibited CSF-1-induced growth of mouse M-NFS-60 myeloid cells and human monocytes and completely inhibited bone degradation in cultures of human osteoclasts, rat calvaria, and rat fetal long bone. In contrast, GW2580 did not affect the growth of mouse NS0 lymphoblastoid cells, human endothelial cells, human fibroblasts, or five human tumor cell lines. GW2580 also did not affect lipopolysaccharide (LPS)-induced TNF, IL-6, and prostaglandin E2 production in freshly isolated human monocytes and mouse macrophages. After oral administration, GW2580 blocked the ability of exogenous CSF-1 to increase LPS-induced IL-6 production in mice, inhibited the growth of CSF-1-dependent M-NFS-60 tumor cells in the peritoneal cavity, and diminished the accumulation of macrophages in the peritoneal cavity after thioglycolate injection. Unexpectedly, GW2580 inhibited LPS-induced TNF production in mice, in contrast to effects on monocytes and macrophages in vitro. In conclusion, GW2580's selective inhibition of monocyte growth and bone degradation is consistent with cFMS kinase inhibition. The ability of GW2580 to chronically inhibit CSF-1 signaling through cFMS kinase in normal and tumor cells in vivo makes GW2580 a useful tool in assessing the role of cFMS kinase in normal and disease processes.
Collapse
Affiliation(s)
- James G Conway
- Department of Molecular Pharmacology, GlaxoSmithKline, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2726
|
Wei S, Lightwood D, Ladyman H, Cross S, Neale H, Griffiths M, Adams R, Marshall D, Lawson A, McKnight AJ, Stanley ER. Modulation of CSF-1-regulated post-natal development with anti-CSF-1 antibody. Immunobiology 2005; 210:109-19. [PMID: 16164017 DOI: 10.1016/j.imbio.2005.05.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Colony-stimulating factor-1 (CSF-1) regulates the survival, proliferation and differentiation of macrophages. CSF-1-deficient mice are osteopetrotic due to a lack of osteoclasts, while their tissue macrophage deficiencies and an absence of CSF-1 regulation of CSF-1 receptor-expressing cells in the female reproductive tract contribute to their pleiotropic phenotype. To further understand CSF-1 regulation of macrophages in vivo, we developed a neutralizing anti-mouse CSF-1 antibody which was expressed as a recombinant Fab' fragment and coupled to 40 kDa polyethylene glycol. As developmental regulation by CSF-1 is highest during the early post-natal period, the ability of this anti-CSF-1 reagent to inhibit development was tested by regular subcutaneous injection of mice from post-natal days 0.5-57.5. Antibody treatment decreased growth rate, decreased osteoclast number, induced osteopetrosis, decreased macrophage density in bone marrow, liver, dermis, synovium and kidney and decreased adipocyte size in adipose tissue, thereby inducing phenotypes shared by CSF-1- and CSF-1 receptor-deficient mice. While the antibody blocked macrophage development in some tissues, macrophage densities in other tissues were initially high and were reduced by treatment, proving that the antibody also blocked macrophage maintenance. Since cell surface CSF-1 is sufficient for the maintenance of normal synovial macrophage densities, these studies suggest that anti-CSF-1 Fab'-PEG efficiently neutralizes all three CSF-1 isoforms in vivo, namely the secreted proteoglycan, secreted glycoprotein and cell surface glycoprotein. Since CSF-1 has been shown to enhance chronic disease development in a number of mouse model systems, these studies demonstrate the feasibility of neutralizing CSF-1 effects in these models with an anti-CSF-1 antibody.
Collapse
Affiliation(s)
- Suwen Wei
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2727
|
Dauffy J, Mouchiroud G, Bourette RP. The interferon-inducible gene, Ifi204, is transcriptionally activated in response to M-CSF, and its expression favors macrophage differentiation in myeloid progenitor cells. J Leukoc Biol 2005; 79:173-83. [PMID: 16244109 DOI: 10.1189/jlb.0205083] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The interferon-inducible (Ifi)204 gene was isolated as a macrophage-colony stimulating factor (M-CSF)-responsive gene using a gene trap approach in the myeloid interleukin-3 (IL-3)-dependent FD-Fms cell line, which differentiates in macrophages in response to M-CSF. Here, we show that Ifi204 was transcriptionally activated in response to M-CSF, and FD-Fms cells decreased their growth and committed toward a macrophage morphology; this induction was abrogated when the differentiation signal of the M-CSF receptor was blocked; the Ifi204 gene was also induced during macrophage differentiation controlled by leukemia inhibitory factor; and the Ifi204 gene is expressed in different mature monocyte/macrophage cells. Finally, we showed that enforced expression of Ifi204 strongly decreased IL-3- and M-CSF-dependent proliferation and conversely, favored macrophage differentiation of FD-Fms cells in response to M-CSF. Altogether, these results demonstrate that the Ifi204 gene is activated during macrophage development and suggest that the Ifi204 protein may act as a regulator of the balance between proliferation and differentiation. Moreover, this study suggests that other members of the Ifi family might act as regulators of hematopoiesis under the control of hemopoietic cytokines.
Collapse
Affiliation(s)
- Jérémy Dauffy
- Centre de Génétique Moléculaire et Cellulaire, UMR CNRS 5534, Villeurbanne Cedex, France
| | | | | |
Collapse
|
2728
|
Heinz LX, Platzer B, Reisner PM, Jörgl A, Taschner S, Göbel F, Strobl H. Differential involvement of PU.1 and Id2 downstream of TGF-beta1 during Langerhans-cell commitment. Blood 2005; 107:1445-53. [PMID: 16223775 DOI: 10.1182/blood-2005-04-1721] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Langerhans cells (LCs) are highly abundant dendritic cells (DCs) in epidermal and mucosal tissues. The transcription factors PU.1 and Id2 have been implicated as positive regulators of LC development from hematopoietic progenitor cells. LC differentiation from progenitors is absolutely dependent on transforming growth factor beta 1 (TGF-beta1) in vitro as well as in vivo; however, downstream mechanisms are poorly defined. We found that both PU.1 and Id2 are induced by TGF-beta1 in human CD34+ monocyte/LC (M/LC) progenitor cells, and that neither ectopic PU.1 or Id2 alone, nor both together, could replace TGF-beta1 in its instructive function on LC commitment. However, both factors critically contributed to LC differentiation by acting at 2 distinct intersection points. Ectopic PU.1 strongly enhanced TGF-beta1-dependent LC development. Additionally, Notch-induced generation of interstitial-type DCs was associated with PU.1 up-regulation. Thus, PU.1 is generally increased during myeloid DC development. Ectopic Id2 inhibits the acquisition of early monocytic characteristics by cells generated in the absence of TGF-beta1 and also inhibits monocyte induction by alternative stimuli. Since TGF-beta1 represses a default monocyte pathway of common progenitor cells, PU.1 and Id2 seem to modulate lineage options of M/LC precursors, downstream of TGF-beta1.
Collapse
Affiliation(s)
- Leonhard X Heinz
- Institute of Immunology, Medical University Vienna, Lazarettgasse 19; A-1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
2729
|
Abstract
Rb was the first tumour suppressor identified through human genetic studies. The most significant achievement after almost twenty years since its cloning is the revelation that Rb possesses functions of a transcription regulator. Rb serves as a transducer between the cell cycle machinery and promoter-specific transcription factors. In this capacity, Rb is best known as a repressor of the E2F/DP family of transcription factors, which regulate expression of genes involved in cell proliferation and survival. An equally important aspect of Rb as a transcription regulator is that Rb also activates certain differentiation transcription factors to promote cellular differentiation. The molecular mechanisms behind the repressive effects of Rb on E2Fs have come to light in significant details, while those relating to Rb activation of differentiation transcription factors are much less understood. Finally, it has become clear that there are other aspects to Rb function that are not immediately related to transcription regulation.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Developmental and Molecular Biology, and Medicine, The Albert Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
2730
|
Gartland A, Mechler J, Mason-Savas A, MacKay CA, Mailhot G, Marks SC, Odgren PR. In vitro chondrocyte differentiation using costochondral chondrocytes as a source of primary rat chondrocyte cultures: an improved isolation and cryopreservation method. Bone 2005; 37:530-44. [PMID: 16054883 DOI: 10.1016/j.bone.2005.04.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/24/2005] [Accepted: 04/05/2005] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Isolating and culturing primary chondrocytes such that they retain their cell type and differentiate to a hypertrophic state is central to many investigations of skeletal growth and its regulation. The ability to store frozen chondrocytes has additional scientific and tissue engineering interest. Previous work has produced approaches of varying yield and complexity but does not permit frozen storage of cells for subsequent differentiation in culture. Investigations of growth plate dysplasias secondary to defective osteoclastogenesis in rodent models of osteopetrosis led us to adapt and modify a culture method and to cryopreserve neonatal rat costochondral chondrocytes. METHODS Chondrocytes were isolated from dissected ribs of 3-day-old rat pups by collagenase, hyaluronidase, and trypsin serial digestions. This was done either immediately or after the isolation was interrupted following an initial protease treatment to allow the chondrocytes, still in partially digested rib rudiments, to be frozen and later thawed for culture. Cells were plated in flat-bottom wells and allowed to adhere and grow under different conditions. Choice of media permitted cells to be maintained or induced to differentiate. Cell growth was monitored, as was expression of several relevant genes: collagen types II and X; osteocalcin, Sox9, adipocyte FABP, MyoD, aggrecan, and others. Mineralization was measured by alizarin red binding, and cultures were examined by light, fluorescence, and electron microscopy. RESULTS Cells retained their chondrocyte phenotype and ability to differentiate and mineralize the collagen-rich extracellular matrix even after freezing-thawing. RT-PCR showed retention of chondrocyte-specific gene expression, including aggrecan and collagen II. The cells had a flattened, "proliferating zone" appearance initially, and by 2 weeks post-confluence, exhibited swelling and other salient features of hypertrophic cells seen in vivo. Collagen fibrils were abundant in the extracellular matrix, along with matrix vesicles. The switch to collagen type X as marker for hypertrophy was not rigidly temporally regulated as happens in vivo, but its expression increased during hypertrophic differentiation. CONCLUSIONS This method should prove valuable as a means of studying chondrocyte regulation and has the advantages of simpler initial dissection, yields of a purer chondrocyte population, and the ability to stockpile frozen raw material for subsequent studies.
Collapse
Affiliation(s)
- Alison Gartland
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue N., Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|
2731
|
Gutiérrez L, Lindeboom F, Ferreira R, Drissen R, Grosveld F, Whyatt D, Philipsen S. A hanging drop culture method to study terminal erythroid differentiation. Exp Hematol 2005; 33:1083-91. [PMID: 16219530 DOI: 10.1016/j.exphem.2005.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 05/10/2005] [Accepted: 06/06/2005] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To design a culture method allowing the quantitative and qualitative analysis of terminal erythroid differentiation. METHODS Primary erythroid progenitors derived either from mouse tissues or from human umbilical cord blood were differentiated using hanging drop cultures and compared to methylcellulose cultures. Cultured cells were analyzed by FACS to assess differentiation. RESULTS We describe a practical culture method by adapting the previously described hanging drop culture system to conditions allowing terminal differentiation of primary erythroid progenitors. Using minimal volumes of media and small numbers of cells, we obtained quantitative terminal erythroid differentiation within two days of culture in the case of murine cells and 4 days in the case of human cells. CONCLUSIONS The established methods for ex vivo culture of primary erythroid progenitors, such as methylcellulose-based burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E) assays, allow the detection of committed erythroid progenitors but are of limited value to study terminal erythroid differentiation. We show that the application of hanging drop cultures is a practical alternative that, in combination with clonogenic assays, enables a comprehensive assessment of the behavior of primary erythroid cells ex vivo in the context of genetic and drug-induced perturbations.
Collapse
Affiliation(s)
- Laura Gutiérrez
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
2732
|
De Ciuceis C, Amiri F, Brassard P, Endemann DH, Touyz RM, Schiffrin EL. Reduced Vascular Remodeling, Endothelial Dysfunction, and Oxidative Stress in Resistance Arteries of Angiotensin II–Infused Macrophage Colony-Stimulating Factor–Deficient Mice. Arterioscler Thromb Vasc Biol 2005; 25:2106-13. [PMID: 16100037 DOI: 10.1161/01.atv.0000181743.28028.57] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Angiotensin (Ang) II-induced vascular damage may be partially mediated by reactive oxygen species generation and inflammation. Homozygous osteopetrotic mice (Op/Op), deficient in macrophage colony-stimulating factor (m-CSF), exhibit reduced inflammation. We therefore investigated Ang II effects on vascular structure, function, and oxidant stress generation in this model. METHODS AND RESULTS Adult Op/Op, heterozygous (Op/+), and wild type (+/+) mice underwent 14-day Ang II (1000 ng/kg per minute) or saline infusion. Blood pressure (BP) was assessed by radiotelemetry, mesenteric resistance artery vascular reactivity was studied on a pressurized myograph, and vascular superoxide and NAD(P)H oxidase activity by lucigenin chemiluminescence. Ang II increased BP in Op/+ and +/+ mice but not in Op/Op. Ang II-treated Op/+ and +/+ mice showed reduced acetylcholine-mediated relaxation (maximal relaxation, respectively, 64% and 67% versus 84% and 93% in respective controls; P<0.05), which was unaffected by L-NAME. Ang II-infused Op/Op mice arteries showed significantly less endothelial dysfunction than vehicle-infused counterparts (maximal relaxation 87% versus 96% in shams). Resistance arteries from Ang II-infused +/+ and Op/+ mice had significantly increased media-to-lumen ratio and media thickness, neither of which was altered in Op/Op mice compared with untreated littermates. Vascular media cross-sectional area, NAD(P)H oxidase activity and expression, and vascular cell adhesion molecule (VCAM)-1 expression were significantly increased by Ang II only in +/+ mice (P<0.05). CONCLUSIONS m-CSF-deficient mice (Op/Op) developed less endothelial dysfunction, vascular remodeling, and oxidative stress induced by Ang II than +/+ littermates, suggesting a critical role of m-CSF and proinflammatory mediators in Ang II-induced vascular injury.
Collapse
Affiliation(s)
- Carolina De Ciuceis
- CIHR Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
2733
|
Wilson NJ, Cross M, Nguyen T, Hamilton JA. cAMP inhibits CSF-1-stimulated tyrosine phosphorylation but augments CSF-1R-mediated macrophage differentiation and ERK activation. FEBS J 2005; 272:4141-52. [PMID: 16098196 DOI: 10.1111/j.1742-4658.2005.04826.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Macrophage colony stimulating factor (M-CSF) or CSF-1 controls the development of the macrophage lineage through its receptor tyrosine kinase, c-Fms. cAMP has been shown to influence proliferation and differentiation in many cell types, including macrophages. In addition, modulation of cellular ERK activity often occurs when cAMP levels are raised. We have shown previously that agents that increase cellular cAMP inhibited CSF-1-dependent proliferation in murine bone marrow-derived macrophages (BMM) which was associated with an enhanced extracellular signal-regulated kinase (ERK) activity. We report here that increasing cAMP levels, by addition of either 8-bromo cAMP (8BrcAMP) or prostaglandin E(1) (PGE1), can induce macrophage differentiation in M1 myeloid cells engineered to express the CSF-1 receptor (M1/WT cells) and can potentiate CSF-1-induced differentiation in the same cells. The enhanced CSF-1-dependent differentiation induced by raising cAMP levels correlated with enhanced ERK activity. Thus, elevated cAMP can promote either CSF-1-induced differentiation or inhibit CSF-1-induced proliferation depending on the cellular context. The mitogen-activated protein kinase/extracellular signal-related protein kinase kinase (MEK) inhibitor, PD98059, inhibited both the cAMP- and the CSF-1R-dependent macrophage differentiation of M1/WT cells suggesting that ERK activity might be important for differentiation in the M1/WT cells. Surprisingly, addition of 8BrcAMP or PGE1 to either CSF-1-treated M1/WT or BMM cells suppressed the CSF-1R-dependent tyrosine phosphorylation of cellular substrates, including that of the CSF-1R itself. It appears that there are at least two CSF-1-dependent pathway(s), one MEK/ERK dependent pathway and another controlling the bulk of the tyrosine phosphorylation, and that cAMP can modulate signalling through both of these pathways.
Collapse
Affiliation(s)
- Nicholas J Wilson
- Arthritis and Inflammation Research Centre, Department of Medicine (RMH/WH), University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
2734
|
Abstract
Signaling via cell surface receptors that are anchored by a single transmembrane domain is a well-established paradigm. Ligand binding to the extracellular domain of the receptor facilitates receptor dimerization, which juxtaposes the intracellular domains, typically activating intrinsic or associated kinases. Two large families of tyrosine kinase activating receptors have been particularly well characterized: the receptor-type protein tyrosine kinases and the receptors for the alpha-helical cytokines, which activate non-covalently bound JAK family tyrosine kinases. Despite the well-established function of these receptors at the cell surface, both intact and cleaved receptors belonging to these families have been repeatedly detected in the nucleus. Furthermore, there is evidence that some of these receptors or receptor fragments function directly in modulating gene transcription. In this essay, I examine how close we are to demonstrating that direct translocation of receptors, or receptor fragments, from the cell surface to the nucleus is a physiologically relevant means of intracellular signaling that can supplant or complement canonical signaling cascades.
Collapse
Affiliation(s)
- John J Krolewski
- Department of Pathology and Laboratory Medicine, Chao Family Comprehensive Cancer Center, College of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
2735
|
Bonnesen B, Orskov C, Rasmussen S, Holst PJ, Christensen JP, Eriksen KW, Qvortrup K, Odum N, Labuda T. MEK kinase 1 activity is required for definitive erythropoiesis in the mouse fetal liver. Blood 2005; 106:3396-404. [PMID: 16081685 DOI: 10.1182/blood-2005-04-1739] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogen-activated protein kinase/extracellular signal to regulated kinase (MEK) kinase 1 (MEKK1) is a c-Jun N-terminal kinase (JNK) activating kinase known to be implicated in proinflammatory responses and cell motility. Using mice deficient for MEKK1 kinase activity (Mekk1(DeltaKD)) we show a role for MEKK1 in definitive mouse erythropoiesis. Although Mekk1(DeltaKD) mice are alive and fertile on a 129 x C57/BL6 background, the frequency of Mekk1(DeltaKD) embryos that develop past embryonic day (E) 14.5 is dramatically reduced when backcrossed into the C57/BL6 background. At E13.5, Mekk1(DeltaKD) embryos have normal morphology but are anemic due to failure of definitive erythropoiesis. When Mekk1(DeltaKD) fetal liver cells were transferred to lethally irradiated wild-type hosts, mature red blood cells were generated from the mutant cells, suggesting that MEKK1 functions in a non-cell-autonomous manner. Based on immunohistochemical and hemoglobin chain transcription analysis, we propose that the failure of definitive erythropoiesis is due to a deficiency in enucleation activity caused by insufficient macrophage-mediated nuclear DNA destruction.
Collapse
Affiliation(s)
- Barbara Bonnesen
- Institute of Molecular Biology and Physiology, Department of Immunology, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
2736
|
Sester DP, Trieu A, Brion K, Schroder K, Ravasi T, Robinson JA, McDonald RC, Ripoll V, Wells CA, Suzuki H, Hayashizaki Y, Stacey KJ, Hume DA, Sweet MJ. LPS regulates a set of genes in primary murine macrophages by antagonising CSF-1 action. Immunobiology 2005; 210:97-107. [PMID: 16164016 DOI: 10.1016/j.imbio.2005.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that bacterial products such as LPS and CpG DNA down-modulated cell surface levels of the Colony Stimulating Factor (CSF)-1 receptor (CSF-1R) on primary murine macrophages in an all-or-nothing manner. Here we show that the ability of bacterial products to down-modulate the CSF-1R rendered bone marrow-derived macrophages (BMM) unresponsive to CSF-1 as assessed by Akt and ERK1/2 phosphorylation. Using toll-like receptor (tlr)9 as a model CSF-1-repressed gene, we show that LPS induced tlr9 expression in BMM only when CSF-1 was present, suggesting that LPS relieves CSF-1-mediated inhibition to induce gene expression. Using cDNA microarrays, we identified a cluster of similarly CSF-1 repressed genes in BMM. By real time PCR we confirmed that the expression of a selection of these genes, including integral membrane protein 2B (itm2b), receptor activity-modifying protein 2 (ramp2) and macrophage-specific gene 1 (mpg-1), were repressed by CSF-1 and were induced by LPS only in the presence of CSF-1. This pattern of gene regulation was also apparent in thioglycollate-elicited peritoneal macrophages (TEPM). LPS also counteracted CSF-1 action to induce mRNA expression of a number of transcription factors including interferon consensus sequence binding protein 1 (Icsbp1), suggesting that this mechanism leads to transcriptional reprogramming in macrophages. Since the majority of in vitro studies on macrophage biology do not include CSF-1, these genes represent a set of previously uncharacterised LPS-inducible genes. This study identifies a new mechanism of macrophage activation, in which LPS (and other toll-like receptor agonists) regulate gene expression by switching off the CSF-1R signal. This finding also provides a biological relevance to the well-documented ability of macrophage activators to down-modulate surface expression of the CSF-1R.
Collapse
Affiliation(s)
- David P Sester
- Cooperative Research Centre for Chronic Inflammatory Diseases, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2737
|
Abstract
Over the past few decades, biologists have identified key molecular signatures associated with a wide range of human cancers. Recently, animal models have been particularly useful in establishing whether such signatures have functional relevance; the overexpression of pro-oncogenic or loss of anti-oncogenic factors have been evaluated for their effects on various tumour models. The aim of this review is to analyze the potential role of the inhibitor of DNA binding (Id) proteins in cancer and examine whether deregulated Id activity is tumorigenic and contributes to hallmarks of malignancy, such as loss of differentiation (anaplasia), unrestricted proliferation and neoangiogenesis.
Collapse
Affiliation(s)
- Jonathan Perk
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue Box 241, New York 10021, USA
| | | | | |
Collapse
|
2738
|
Botolin S, Faugere MC, Malluche H, Orth M, Meyer R, McCabe LR. Increased bone adiposity and peroxisomal proliferator-activated receptor-gamma2 expression in type I diabetic mice. Endocrinology 2005; 146:3622-31. [PMID: 15905321 PMCID: PMC1242186 DOI: 10.1210/en.2004-1677] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Decreased bone mass, osteoporosis, and increased fracture rates are common skeletal complications in patients with insulin-dependent diabetes mellitus (IDDM; type I diabetes). IDDM develops from little or no insulin production and is marked by elevated blood glucose levels and weight loss. In this study we use a streptozotocin-induced diabetic mouse model to examine the effect of type I diabetes on bone. Histology and microcomputed tomography demonstrate that adult diabetic mice, exhibiting increased plasma glucose and osmolality, have decreased trabecular bone mineral content compared with controls. Bone resorption could not completely account for this effect, because resorption markers (tartrate-resistant acid phosphatase 5b, urinary deoxypyridinoline excretion, and tartrate-resistant acid phosphatase 5 mRNA) are unchanged or reduced at 2 and/or 4 wk after diabetes induction. However, osteocalcin mRNA (a marker of late-stage osteoblast differentiation) and dynamic parameters of bone formation were decreased in diabetic tibias, whereas osteoblast number and runx2 and alkaline phosphatase mRNA levels did not differ. These findings suggest that the final stages of osteoblast maturation and function are suppressed. We also propose a second mechanism contributing to diabetic bone loss: increased marrow adiposity. This is supported by increased expression of adipocyte markers [peroxisome proliferator-activated receptor gamma2, resistin, and adipocyte fatty acid binding protein (alphaP2)] and the appearance of lipid-dense adipocytes in diabetic tibias. In contrast to bone marrow, adipose stores at other sites are depleted in diabetic mice, as indicated by decreased body, liver, and peripheral adipose tissue weights. These findings suggest that IDDM contributes to bone loss through changes in marrow composition resulting in decreased mature osteoblasts and increased adipose accumulation.
Collapse
Affiliation(s)
- Sergiu Botolin
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | |
Collapse
|
2739
|
MacDonald KPA, Rowe V, Bofinger HM, Thomas R, Sasmono T, Hume DA, Hill GR. The Colony-Stimulating Factor 1 Receptor Is Expressed on Dendritic Cells during Differentiation and Regulates Their Expansion. THE JOURNAL OF IMMUNOLOGY 2005; 175:1399-405. [PMID: 16034075 DOI: 10.4049/jimmunol.175.3.1399] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The lineage of dendritic cells (DC), and in particular their relationship to monocytes and macrophages, remains obscure. Furthermore, the requirement for the macrophage growth factor CSF-1 during DC homeostasis is unclear. Using a transgenic mouse in which the promoter for the CSF-1R (c-fms) directs the expression of enhanced GFP in cells of the myeloid lineage, we determined that although the c-fms promoter is inactive in DC precursors, it is up-regulated in all DC subsets during differentiation. Furthermore, plasmacytoid DC and all CD11c(high) DC subsets are reduced by 50-70% in CSF-1-deficient osteopetrotic mice, confirming that CSF-1 signaling is required for the optimal differentiation of DC in vivo. These data provide additional evidence that the majority of tissue DC is of myeloid origin during steady state and supports a close relationship between DC and macrophage biology in vivo.
Collapse
Affiliation(s)
- Kelli P A MacDonald
- Bone Marrow Transplantation Laboratory, Queensland Institute of Medical Research, Queensland, Australia.
| | | | | | | | | | | | | |
Collapse
|
2740
|
Abstract
Osteoporosis and atherosclerosis are both widely prevalent in an ageing population, and induce serious morbidities and death. There is growing evidence that in addition to their relationship to ageing, osteoporosis and atherosclerosis are also linked by biological associations. This article reviews their clinical interrelations, discusses the basic biology of bone and the arterial wall, and presents five examples that illustrate their biological linkages. Current therapeutic approaches emerging from these linkages, including statins, bisphosphonates, and the thiazolidinediones, have dual effects on bone and the vasculature. Additional therapies derived from experimental studies that enhance bone density and reduce atherogenesis hold further promise to diminish the morbidity and mortality of osteoporosis and atherosclerosis, with attendant benefits to society.
Collapse
Affiliation(s)
- D Hamerman
- Department of Medicine and Resnick Gerontology Center, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210th Street, Bronx, NY 10467, USA.
| |
Collapse
|
2741
|
Himes SR, Cronau S, Mulford C, Hume DA. The Runx1 transcription factor controls CSF-1-dependent and -independent growth and survival of macrophages. Oncogene 2005; 24:5278-86. [PMID: 16007221 DOI: 10.1038/sj.onc.1208657] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene translocations that repress the function of the Runx1 transcription factor play a critical role in the development of myeloid leukemia. In this report, we demonstrate that Runx1 precisely regulates c-fms (CSF-1 receptor) gene expression. Runx1 controlled expression by binding to multiple sites within the mouse c-fms gene, allowing interaction between promoter and downstream enhancer elements. The runx1 and c-fms genes showed an identical pattern of expression in mature macrophages. Runx1 expression was repressed in CSF-1 stimulated, proliferating bone marrow-derived macrophages (BMM) and significantly increased in quiescent, CSF-1 starved cells. The RAW264.7 and Mono-Mac-6, macrophage-like cell lines expressed low levels of Runx1 and both showed growth arrest and cell death with ectopic expression of Runx1. The EM-3 cell line, which represents an early myeloid progenitor cell line, showed growth arrest with Runx1 expression in the absence of any detectable changes in cell differentiation. These findings suggest that Runx1 regulates growth and survival of myeloid cells and provide a novel insight into the role of Runx family gene translocations in leukemogenesis.
Collapse
Affiliation(s)
- Stewart R Himes
- CRC for Chronic Inflammatory Disease, Institute for Molecular Biosciences, Queensland Biosciences Precinct, Bldg. 80, Services Rd., University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
2742
|
Lasorella A, Rothschild G, Yokota Y, Russell RG, Iavarone A. Id2 mediates tumor initiation, proliferation, and angiogenesis in Rb mutant mice. Mol Cell Biol 2005; 25:3563-74. [PMID: 15831462 PMCID: PMC1084294 DOI: 10.1128/mcb.25.9.3563-3574.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The inhibitor of differentiation Id2 is a target of the retinoblastoma (Rb) protein during mouse embryogenesis. In Rb(+/-) mice, LOH at the wild-type Rb allele initiates pituitary adenocarcinoma, a tumor derived from embryonic melanotropes. Here we identify a critical role for Id2 in initiation, growth, and angiogenesis of pituitary tumors from Rb(+/-) mice. We show that proliferation and differentiation are intimately coupled in Rb(+/-) pituitary cells before tumor initiation. In Id2-null pituitaries, premature activation of basic helix-loop-helix-mediated transcription and expression of the cdk inhibitor p27(Kip1) impairs the proliferation of melanotropes and tumor initiation. Without Id2, Rb(+/-) mice have fewer early tumor lesions and a markedly decreased proliferation rate of the tumor foci. Expression of Id2 by pituitary tumor cells promotes growth and angiogenesis by functioning as a master regulator of vascular endothelial growth factor (VEGF). In human neuroblastoma, the N-Myc-driven expression of Id2 is sufficient and necessary for expression of VEGF. These results establish that aberrant Id2 activity directs initiation and progression of embryonal cancer.
Collapse
Affiliation(s)
- Anna Lasorella
- Institute for Cancer Genetics, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
2743
|
Pace BM, Lawrence DA, Behr MJ, Parsons PJ, Dias JA. Neonatal lead exposure changes quality of sperm and number of macrophages in testes of BALB/c mice. Toxicology 2005; 210:247-56. [PMID: 15840438 DOI: 10.1016/j.tox.2005.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 02/07/2005] [Accepted: 02/12/2005] [Indexed: 10/25/2022]
Abstract
BALB/c mice were exposed to 0.1 ppm lead acetate in the drinking water from postnatal day (PND) 1 for 6 weeks. Until PND21, lead exposure was from mother's milk; thereafter, it was directly from the drinking water. The blood lead levels were the highest in pups before weaning (59.5+/-0.9 microg/dL) and significantly lower between PND21 and PND42 (20.3+/-4.7 microg/dL). At PND42, lead-exposed male mice were tested for fertility, sperm DNA, and macrophage number. Mating of lead-treated males with non-treated females confirmed the reduction of fertility in the exposed males. Flow cytometric studies of testicular preparations indicated that the sperm count was not different between lead-exposed and control males; however, the lead-treated mice had a significant increase in the number of testicular cells having a < 1n amount of DNA, which coincided with a decrease in the number of testicular cells with a 2n and 4n amount of DNA. The number of testicular macrophages also was decreased in lead-exposed males, which could reflect altered levels of CSF-1 or response to CSF-1, as previously reported [Kowolenko, M., Tracy, L., Lawrence, D.A., 1989. Lead-induced alterations of in vitro bone marrow cell responses to colony stimulating factor-1. J. Leukoc. Biol. 45, 198-206]. Our study showed that exposure to 0.1 ppm of lead during the neonatal and adolescent period is sufficient to reduce fertility in adult male mice; however, it did not affect sperm count on PND42. The presence of an increased number of apoptotic (< 1n amount of DNA) testicular cells may be diagnostic of defective sperm function. Thus, an administered dose of 0.1 ppm via drinking water ingestion by neonatal male BALB/c mice sufficient to produce PbB of 20-60 mg/dL compromised reproductive function in these mice as adults.
Collapse
Affiliation(s)
- Beata M Pace
- Wadsworth Center, NYS Department of Health, Empire State Plaza, P.O. Box 509, Room C505, Albany, NY 12201-0509, USA.
| | | | | | | | | |
Collapse
|
2744
|
Abstract
PURPOSE OF REVIEW A number of interesting surprises has emerged during the past year in the field of early hematopoietic development. This review highlights recent studies that have challenged the prevailing view of embryonic and fetal hematopoiesis in mammals, with a focus on the mouse as a model system. The authors apologize to the many colleagues whose work could not be cited because of space limitations. RECENT FINDINGS Advances in our understanding of the embryonic origins of hematopoiesis in mammals and in the regulation of primitive and definitive hematopoietic development are discussed. SUMMARY The ontological relation between primitive (embryonic) and definitive (fetal and adult) hematopoiesis still holds some mysteries for the biologist. Both technical and conceptual breakthroughs have refined our view of how blood cells form at different stages of development. What we learn from the embryo is not only of fundamental interest but may have future applications in the clinic.
Collapse
Affiliation(s)
- Margaret H Baron
- Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|
2745
|
Follows GA, Tagoh H, Richards SJ, Melnik S, Dickinson H, de Wynter E, Lefevre P, Morgan GJ, Bonifer C. c-FMS chromatin structure and expression in normal and leukaemic myelopoiesis. Oncogene 2005; 24:3643-51. [PMID: 15806141 DOI: 10.1038/sj.onc.1208655] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The macrophage colony-stimulating factor receptor is encoded by the c-FMS gene, and it has been suggested that altered regulation of c-FMS expression may contribute to leukaemic transformation. c-FMS is expressed in pluripotent haemopoietic precursor cells and is subsequently upregulated during monocytic differentiation, but downregulated during granulopoiesis. We have examined transcription factor occupancy and aspects of chromatin structure of the critical c-FMS regulatory element located within the second intron (FIRE - fms intonic regulatory element) during normal and leukaemic myelopoiesis. Granulocytic differentiation from normal and leukaemic precursors is accompanied by loss of transcription factors at FIRE and downregulated c-FMS expression. The presence of AML1-ETO in leukaemic cells does not prevent this disassembly. In nonleukaemic cells, granulocytic differentiation is accompanied by reversal to a chromatin fine structure characteristic of c-FMS-nonexpressing cells. In addition, we show that low-level expression of the gene in leukaemic blast cells and granulocytes does not associate with increased CpG methylation across the c-FMS locus.
Collapse
|
2746
|
Gobert Gosse S, Bourgin C, Liu WQ, Garbay C, Mouchiroud G. M-CSF stimulated differentiation requires persistent MEK activity and MAPK phosphorylation independent of Grb2-Sos association and phosphatidylinositol 3-kinase activity. Cell Signal 2005; 17:1352-62. [PMID: 16125055 DOI: 10.1016/j.cellsig.2005.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 02/09/2005] [Indexed: 11/24/2022]
Abstract
Macrophage colony-stimulating factor (M-CSF) is a physiological regulator of monocyte-macrophage lineage. Ectopic expression of the M-CSF receptor (M-CSFR, or Fms) in murine myeloid cell line FDC-P1 (FD/Fms cells) results in M-CSF-dependent macrophage differentiation. Previously, we observed that M-CSF induces two temporally distinct phases of mitogen-activated protein kinase (MAPK) phosphorylation. Here we show that levels of phosphorylated MAPK kinase MEK1 follow the same kinetics as MAPK phosphorylation, characterized by an early and transient phase (the first 30 min of M-CSF stimulation) and a late and persistent phase from 4 h of stimulation. The MEK inhibitor U0126 strongly inhibited both phases of MAPK phosphorylation as well as FD/Fms cell differentiation, indicating that MAPK may relay M-CSF differentiation signaling downstream of M-CSFR. Treatment of FD/Fms cells with U0126 during the first hour of M-CSF stimulation reversibly blocked the early phase of MAPK phosphorylation but did not affect differentiation. In contrast, U0126 still inhibited FD/Fms cell differentiation when its addition was delayed by 24 h. This demonstrated that late and persistent MEK activity is specifically required for macrophage differentiation to occur. Furthermore, disrupting Grb2-Sos complexes with a specific blocking peptide did not prevent FD/Fms cells differentiation in response to M-CSF, nor did it abolish MAPK phosphorylation. The role of phosphatidylinositol 3-kinase (PI 3-kinase), another potential regulator of the MAPK pathway, was examined using the specific inhibitor LY294002. This compound could not impede FD/Fms cell commitment to macrophage differentiation and did not significantly affect MAPK phosphorylation in response to M-CSF. Therefore, M-CSF differentiation signaling in myeloid progenitor cells is mediated through persistent MEK activity but it is not strictly dependent upon Grb2-Sos interaction or PI 3-kinase activity.
Collapse
Affiliation(s)
- Stéphanie Gobert Gosse
- Centre de Génétique Moléculaire et Cellulaire, UMR CNRS 5534, Bâtiment Gregor Mendel, Université Lyon1, 69622 Villeurbanne , France
| | | | | | | | | |
Collapse
|
2747
|
Nagashima M, Sakai A, Uchida S, Tanaka S, Tanaka M, Nakamura T. Bisphosphonate (YM529) delays the repair of cortical bone defect after drill-hole injury by reducing terminal differentiation of osteoblasts in the mouse femur. Bone 2005; 36:502-11. [PMID: 15777685 DOI: 10.1016/j.bone.2004.11.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 11/11/2004] [Accepted: 11/24/2004] [Indexed: 11/20/2022]
Abstract
We evaluated the effects of YM529, a nitrogen-containing bisphosphonate, on the repair of cortical bone after drill-hole injury at the tissue-, cell- and gene-levels in the femur of mice. Eight-week-old male C57BL/6N mice were treated with an intravenous injection of 0.01, 0.05 and 0.1 mg/kg body weight (BW) of YM529, or the vehicle (VC) once a week from 8 weeks of age until sacrifice. At 10 weeks of age (day 0), a drill-hole was made in the diaphysis of bilateral femurs. Femoral specimens were obtained at days 3, 5, 7, 10, 14, 21 and 28 after surgery. Histology and histomorphometry confirmed the early woven bone formation in 7 days after injury in all four groups, but the following lamellar bone repair in the cortical tissue area delayed only in the YM529-treated groups. Since the findings were not dose-dependent, following evaluations were performed in VC and YM529 0.1 mg/kg BW dose groups. Calcein-labeled surface of regenerated bone decreased at day 21 in the YM529 group. At day 0, CFU-f number and mineralized nodule area that developed from marrow cells were significantly smaller in YM529 group than in VC group. At day 5, however, these values increased to levels similar to those in VC group. The mRNA expression levels of BMP-2, cbfa1, osterix, type I collagen, and osteocalcin in the injured bone and marrow cells at days 3 and 5 were similar in the two groups, but were higher in YM529 group at day 7 compared with that in the VC group. At day 14, the levels of these mRNAs were still high, while that of osteocalcin was significantly reduced compared to the VC group. These data indicate that the action of YM529 on bone formation is bimodal, stimulatory on the developments of osteogenic cells for the woven bone regeneration and inhibitory on the terminal differentiation of osteoblasts for the later remodeling, consequently leading to a delay in the lamellar bone healing in the cortical tissue area.
Collapse
Affiliation(s)
- Masato Nagashima
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | | | |
Collapse
|
2748
|
Rossetti S, Hoogeveen AT, Sacchi N. The MTG proteins: chromatin repression players with a passion for networking. Genomics 2005; 84:1-9. [PMID: 15203199 DOI: 10.1016/j.ygeno.2004.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 02/05/2004] [Accepted: 02/19/2004] [Indexed: 01/22/2023]
Abstract
The human myeloid translocation genes (MTGs) encode a family of proteins with a modular structure that can be traced to the Drosophila protein nervy. The nuclear MTGs can mediate the formation of complex protein networks among nuclear corepressors (Sin3a, N-CoR, SMRT), chromatin-modifying enzymes (histone deacetylases), and DNA-binding transcription factors. Hierarchical modulation of repression at target genes by MTG protein complexes is likely required for fine spatial and temporal gene regulation during development and differentiation. Genomic changes can disrupt these sophisticated protein networks and underlie novel pathogenic causes of cancer and neurodegeneration.
Collapse
Affiliation(s)
- Stefano Rossetti
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | |
Collapse
|
2749
|
|
2750
|
McKechnie A, Robins RA, Eremin O. Immunological aspects of head and neck cancer: biology, pathophysiology and therapeutic mechanisms. Surgeon 2005; 2:187-207. [PMID: 15570827 DOI: 10.1016/s1479-666x(04)80001-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Advanced cancer and head and neck cancer, in particular, remains a major clinical challenge with its associated morbidity and inevitable mortality. Local control of early disease is achievable in many solid tumours with current surgical and radiotherapeutic techniques but metastatic disease is associated with poor outcome and prognosis. It is known that, by the time of presentation, many patients will already have occult microscopic metastatic disease, and surgery and radiotherapy will not result in long-term survival. What little effect modern chemotherapeutic agents have on microscopic disease is, however, limited by systemic toxicity and multi-drug resistance. Immune surveillance is postulated to be operative in man. There is evidence, however, that patients with progressive tumour growth have failure of host defences both locally and systemically. Various possible defects and tumour escape mechanisms are discussed in the review. Immunotherapy and, in particular adoptive T cell therapy and DC therapy, show promise as putative tumour-specific therapy with clinical benefits. These techniques are undergoing development and evaluation in phase 1 clinical trials. Preliminary data suggest that the treatments are well tolerated. Unfortunately, there is limited evidence of significant and prolonged improvements in clinical outcome. Further developments of beneficial protocols (adjuvants, mode and frequency of vaccination etc) and multicentre studies of the use of immunotherapy in cancer are now required.
Collapse
Affiliation(s)
- A McKechnie
- Department of Surgery, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|