251
|
Abstract
Nitric oxide synthase (NOS) is an example of a family of heme-containing monooxygenases that, under the restricted control of a specific substrate, can generate free radicals. While the generation of nitric oxide (NO*) depends solely on the binding of L-arginine, NOS produces superoxide (O(2)*(-)) and hydrogen peroxide (H(2)O(2)) when the concentration of the substrate is low. Not surprisingly, effort has been put forth to understand the pathway by which NOS generates NO*, O(2)*(-) and H(2)O(2), including the role of substrate binding in determining the pathways by which free radicals are generated. By binding within the distal heme pocket near the sixth coordination position of the NOS heme iron, L-arginine alters the coordination properties of the heme iron that promotes formation of the perferryl complex NOS-[Fe(5+)=O](3+). This reactive iron intermediate has been shown to abstract a hydrogen atom from a carbon alpha to a heteroatom and generate carbon-centered free radicals. The ability of NOS to produce free radicals during enzymic cycling demonstrates that NOS-[Fe(5+)=O](3+) behaves like an analogous iron-oxo complex of cytochrome P-450 during aliphatic hydroxylation. The present review discusses the mechanism(s) by which NOS generates secondary free radicals that may initiate pathological events, along with the cell signaling properties of NO*, O(2)*(-) and H(2)O(2).
Collapse
Affiliation(s)
- Supatra Porasuphatana
- Department of Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | | |
Collapse
|
252
|
Brawley L, Poston L, Hanson MA. Mechanisms underlying the programming of small artery dysfunction: review of the model using low protein diet in pregnancy in the rat. Arch Physiol Biochem 2003; 111:23-35. [PMID: 12715272 DOI: 10.1076/apab.111.1.23.15138] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Human and animal studies have shown that unbalanced maternal nutrition is associated with the development of cardiovascular and metabolic disease in adulthood. In the Southampton maternal low protein model (SMLP), protein deprivation (50%) throughout pregnancy in rats leads to elevated blood pressure in adult offspring. Impaired peripheral arterial function may contribute to the cardiovascular dysfunction observed in these offspring. This review discusses the impact of such a dietary insult on the vascular function of resistance arteries from pregnant rats (pF(o)), their offspring (F(1)), the pregnant offspring (pF(1)) and the second generation (F(2)). At each stage, disturbances in endothelium-dependent relaxation were observed, implicating changes in endothelial nitric oxide (NO)-guanylate cyclase (GC) signalling pathway in the vascular adaptations to pregnancy and the programmed effects on offspring.
Collapse
Affiliation(s)
- L Brawley
- Centre for Fetal Origins of Adult Disease, Princess Anne Hospital, Southampton, UK.
| | | | | |
Collapse
|
253
|
Hickner RC, Kemeny G, McIver K, Harrison K, Hostetler ME. Lower skeletal muscle nutritive blood flow in older women is related to eNOS protein content. J Gerontol A Biol Sci Med Sci 2003; 58:20-5. [PMID: 12560407 DOI: 10.1093/gerona/58.1.b20] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The relationship between muscle endothelial nitric oxide synthase (eNOS) content and nutritive flow was investigated in nonobese sedentary young (27.7 +/- 2.6 years) and older (56.6 +/- 2.1 years) women matched for body composition and (2)peak. A muscle biopsy was taken and nutritive blood flow was determined under resting conditions in the vastus lateralis of the quadriceps femoris muscle group. Muscle eNOS protein content correlated with muscle nutritive blood flow (r =.66, p <.05) and body mass index (r =.74, p <.05), but it did not correlate with VO(2)peak. Muscle eNOS content was 35% lower in young than in older women (266 +/- 36 vs 407 +/- 53 pg/mg total protein; p <.05). The mean ethanol outflow-to-inflow ratio was higher (indicating lower nutritive flow) in older and young women (.666 +/-.042 and.546 +/-.043, respectively: p <.05). Resting skeletal nutritive blood flow and muscle eNOS content was lower in older than in young women. A low muscle eNOS protein content may be linked to a low muscle nutritive blood flow in healthy women.
Collapse
Affiliation(s)
- Robert C Hickner
- Human Performance Laboratory, Department of Exercise and Sport Science, East Carolina University, Greenville, North Carolina 27858, USA.
| | | | | | | | | |
Collapse
|
254
|
Barr FE, Beverley H, VanHook K, Cermak E, Christian K, Drinkwater D, Dyer K, Raggio NT, Moore JH, Christman B, Summar M. Effect of cardiopulmonary bypass on urea cycle intermediates and nitric oxide levels after congenital heart surgery. J Pediatr 2003; 142:26-30. [PMID: 12520250 DOI: 10.1067/mpd.2003.mpd0311] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To test the hypothesis that cardiopulmonary bypass used for repair of ventricular septal defects and atrioventricular septal defects would decrease availability of urea cycle intermediates including arginine and subsequent nitric oxide availability. STUDY DESIGN Consecutive infants (n = 26) undergoing cardiopulmonary bypass for repair of an unrestrictive ventricular septal defect or atrioventricular septal defect were studied. Blood samples were collected immediately before surgery, immediately after surgery, and 12 hours, 24 hours, and 48 hours after surgery. Urea cycle intermediates, including citrulline, arginine, and ornithine, were measured by amino acid analysis. Nitric oxide metabolites were measured by means of the modified Griess reaction. RESULTS Cardiopulmonary bypass caused a significant decrease in the urea cycle intermediates arginine, citrulline, and ornithine at all postoperative time points compared with preoperative levels. The ratio of ornithine to citrulline, a marker of urea cycle function, was elevated at all postoperative time points compared with preoperative values, indicating decreased urea cycle function. Nitric oxide metabolites were significantly decreased at all postoperative time points except for 48 hours, compared with preoperative levels. CONCLUSIONS Cardiopulmonary bypass significantly decreases availability of arginine, citrulline, and nitric oxide metabolites in the postoperative period. Decreased availability of nitric oxide precursors may contribute to the increased risk of postoperative pulmonary hypertension.
Collapse
Affiliation(s)
- Frederick E Barr
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Unlügenç H, Itegin M, Ocal I, Ozalevli M, Güler T, Isik G. Remifentanil produces vasorelaxation in isolated rat thoracic aorta strips. Acta Anaesthesiol Scand 2003; 47:65-9. [PMID: 12492799 DOI: 10.1034/j.1399-6576.2003.470111.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Remifentanil can cause transient instability in hemodynamic variables. However this change may not be solely the result of autonomic or central nervous system inhibition or of centrally mediated vagal stimulation. In this study, the aim was to examine the direct effects of remifentanil on isolated thoracic aorta strips in vitro. METHODS Forty-five Wistar rat thoracic aorta rings were isolated, and contraction-relaxation responses were recorded. RESULTS In aortic rings precontracted with phenylephrine or potassium chloride, remifentanil produced concentration-dependent relaxation in both endothelium-intact and denuded rings (P<0.001). Remifentanil induced significantly greater relaxation in intact rings than in those denuded of endothelium, regardless of whether they were precontracted with phenylephrine hydrochloride or KCl (P<0.001). When the endothelium was present, remifentanil produced greater relaxation in KCl-contracted rings than in PE-contracted rings at lower concentrations (10-9 and 10-8), and similar relaxation at higher concentrations (10-7 and 10-6). However, when the endothelium was removed, relaxation was similar in both solutions, at all concentrations (10-9 to 10-6). In intact rings, pretreatment with L-NO-ARG or indomethacin reduced the degree of remifentanil-induced relaxation. In Ca+ +/- free media, calcium-dependent KCl contractions were inhibited in a dose-dependent manner by remifentanil (P<0.001). CONCLUSION Remifentanil vasodilates by an endothelium-dependent mechanism, involving prostacyclin and nitric oxide released from the endothelium. Its endothelium-independent vasodilation probably occurs via the suppression of voltage-sensitive Ca++ channels.
Collapse
Affiliation(s)
- H Unlügenç
- Department of Anesthesiology, Cukurova University, Faculty of Medicine, Adana, Turkey.
| | | | | | | | | | | |
Collapse
|
256
|
Miyauchi T, Maeda S, Iemitsu M, Kobayashi T, Kumagai Y, Yamaguchi I, Matsuda M. Exercise causes a tissue-specific change of NO production in the kidney and lung. J Appl Physiol (1985) 2003; 94:60-8. [PMID: 12391092 DOI: 10.1152/japplphysiol.00269.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) is produced in the vascular endothelium and is a potent vasodilator substance that participates in the regulation of local vascular tone. Exercise causes peculiar changes in systemic and regional blood flow, i.e., an increase of systemic blood flow and a redistribution of local tissue blood flow, by which the blood flow is greatly increased in the working muscles, whereas it is decreased in some organs such as the kidney and intestine. Thus we hypothesized that exercise causes a tissue-specific change of NO production in some internal organs. We studied whether exercise affects expression of NO synthase (NOS) mRNA and protein, NOS activity, and tissue level of nitrite/nitrate (stable end products of NO) in the kidneys (in which blood flow during exercise is decreased) and lungs (in which blood flow during exercise is increased with the increase of cardiac output) of rat. Rats ran on a treadmill for 45 min at a speed of 25 m/min. Immediately after this exercise, kidneys and lungs were quickly removed. Control rats remained at rest during this 45-min period. Expression of endothelial NOS (eNOS) mRNA in the kidneys was markedly lower in exercise rats than in control rats, whereas that in the lungs was significantly higher in exercise rats than in control rats. Western blot analysis confirmed down- and upregulation of eNOS protein in the kidney and lung, respectively, after exercise. On the other hand, neither expression of neuronal NOS (nNOS) mRNA and nNOS protein nor inducible NOS (iNOS) mRNA and iNOS protein in the kidneys and lungs differed between exercise and control rats. NOS activity in the kidney was significantly lower in exercise rats than in control rats, whereas that in the lung was significantly higher in exercise rats than in control rats. On the other hand, the iNOS activity in the kidneys and lungs did not differ between exercise rats and control rats. Tissue nitrite/nitrate level in the kidneys was markedly lower in exercise rats, whereas that in the lungs was significantly higher in exercise rats. The present results show that production of NO is markedly and tissue-specifically changed in the kidney and lung by exercise.
Collapse
Affiliation(s)
- Takashi Miyauchi
- Cardiovascular Division, Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, Ibaraki 305-0006, Japan.
| | | | | | | | | | | | | |
Collapse
|
257
|
Abstract
The discovery of nitric oxide (NO) demonstrated that cells could communicate via the manufacture and local diffusion of an unstable lipid soluble molecule. Since the original demonstration of the vascular relaxant properties of endothelium derived NO, this fascinating molecule has been shown to have multiple, complex roles within many biological systems. This review cannot hope to cover all of the recent advances in NO biology, but seeks to place the discovery of NO in its historical context, and show how far our understanding has come in the past 20 years. The role of NO in mitochondrial respiration, and consequently in oxidative stress, is described in detail because these processes probably underline the importance of NO in the development of disease.
Collapse
Affiliation(s)
- K Stuart-Smith
- Department of Anaesthesia, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham B9 5SS, UK.
| |
Collapse
|
258
|
Kaneko K, Itoh K, Berliner LJ, Miyasaka K, Fujii H. Consequences of nitric oxide generation in epileptic-seizure rodent models as studied by in vivo EPR. Magn Reson Med 2002; 48:1051-6. [PMID: 12465116 DOI: 10.1002/mrm.10297] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The role of nitric oxide (NO) in epileptogenesis was studied in pentylenetetrazole (PTZ)-treated animals using in vivo and ex vivo EPR spectroscopy. NO generation was measured directly in the brain of a PTZ-induced mouse in vivo by an L-band EPR spectrometer. An elevation in NO production in the brain was observed during convulsions, and more NO was generated in the tonic seizure vs. the clonic seizure. NO content in several brain tissues (including the cerebral cortex (CR), cerebellum (CL), olfactory bulb (OB), hippocampus (HI), and hypothalamus (HT)) of PTZ-doped rats was analyzed quantitatively ex vivo by X-band EPR. To test the involvement of NO in seizure development, pharmacological analyses were performed using the NO synthase (NOS) inhibitors N(G)-nitro-L-arginine (L-NNA), N(G)-monomethyl-L-arginine (L-NMMA), and 3-bromo-7-nitroindazole (3Br-7NI). All of these inhibitors suppressed the convulsions, holding them at the clonic level, and prevented development of a tonic convulsion in rats doped with up to 80 mg/kg PTZ. 3Br-7NI completely inhibited NO production, but L-NNA and L-NMMA showed only 70% inhibition of NO production in PTZ-doped rats. In order to examine the contributions of NO in convulsions, rats were treated with anticonvulsants (phenytoin and diazepam) before PTZ treatment. Both drugs completely suppressed tonic convulsion in PTZ-doped rats at doses up to 80 mg/kg, but NO levels were similar to those detected in a clonic convulsion. These results support the notion that NO does not directly induce a clonic convulsion, but may be generated as a consequence of onset of seizure.
Collapse
Affiliation(s)
- Kenshi Kaneko
- Department of Radiology, Hokkaido University School of Medicine, Hokkaido, Japan
| | | | | | | | | |
Collapse
|
259
|
Murakami Y, Okada S, Yokotani K. Brain inducible nitric oxide synthase is involved in interleukin-1beta-induced activation of the central sympathetic outflow in rats. Eur J Pharmacol 2002; 455:73-8. [PMID: 12433597 DOI: 10.1016/s0014-2999(02)02580-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nitric oxide (NO) has been recognized as a neurotransmitter or a neuromodulator in the central nervous system. Brain NO is mainly generated either by neuronal NO synthase (NOS) or by inducible NOS. Previously we reported that central NO is involved in the elevation of plasma noradrenaline levels induced by intracerebroventricularly (i.c.v.) administered interleukin-1beta in rats [Eur. J. Phamacol. 317 (1996) 61]. In the present study, therefore, we tried to characterize which type of NOS isoforms is involved in the cytokine-induced responses using selective inhibitors of each NOS isoform in urethane-anesthetized rats. I.c.v. administered interleukin-1beta (100 ng/animal) elevated plasma levels of noradrenaline but not adrenaline. The cytokine-induced elevation of plasma noradrenaline levels was attenuated by cycloheximide, an inhibitor of protein synthesis, in a dose-dependent manner (10 and 20 microg/animal, i.c.v.). S-ethylisothiourea (0.1 and 0.5 microg/animal, i.c.v.), an inhibitor of inducible NOS, dose-dependently reduced the cytokine-induced elevation of plasma noradrenaline levels, while 7-nitroindazole (5 and 10 microg/animal, i.c.v.), an inhibitor of neuronal NOS, had no effect. These results suggest the involvement of brain inducible NOS in the interleukin-1beta-induced activation of the central sympathetic outflow in rats.
Collapse
Affiliation(s)
- Yoshinori Murakami
- Department of Pharmacology, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| | | | | |
Collapse
|
260
|
Mitra R, Khar A. Role of reactive nitrogen intermediates and protein nitration during immune response against a rat histiocytoma. Immunol Lett 2002; 84:145-51. [PMID: 12270552 DOI: 10.1016/s0165-2478(02)00173-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The ability of macrophages to produce reactive nitrogen species, particularly nitric oxide (NO) is correlated with an enhanced microbicidal or tumoricidal activity during pathogenic or tumoral invasion, respectively. NO reacts in water with oxygen and its reactive intermediates to yield, among others, nitrite and nitrate, which are relatively, stable anions. In this study, we show the varying concentrations of nitrite and nitrate present in different body fluids during AK-5 tumor growth and regression in Wistar rats. We have followed the tumor progression profile and the corresponding levels of nitrite and nitrate present in three major body compartments: the tumor mass; the serum which is the intermediary site; and the peritoneal compartment which is the priming ground for the macrophages. We are thus able to show that the status of the tumor has a direct correlation with macrophage activation and motility to different sites in the body. We also demonstrate after in vitro coculture, that the levels of nitrite and nitrate secreted by the macrophages correlate with their cytocidal capacity.
Collapse
Affiliation(s)
- Roshni Mitra
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
261
|
Amarante LH, Duarte IDG. The kappa-opioid agonist (+/-)-bremazocine elicits peripheral antinociception by activation of the L-arginine/nitric oxide/cyclic GMP pathway. Eur J Pharmacol 2002; 454:19-23. [PMID: 12409000 DOI: 10.1016/s0014-2999(02)02275-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In view of the scarce information about the analgesic mechanism of kappa-opioid receptor agonists, the objective of the present study was to determine whether nitric oxide (NO) is involved in the peripheral antinociception of bremazocine, a kappa-opioid receptor agonist. Three drugs all interfering with the L-arginine/NO/cyclic GMP pathway were tested using the rat paw model of carrageenan-induced (250 microg) hyperalgesia: (a) N(G)-nitro-L-arginine (a nonselective NO-synthase inhibitor), (b) methylene blue (a guanylate cyclase inhibitor), and (c) zaprinast (a cyclic GMP phosphodiesterase inhibitor). Intraplantar administration of bremazocine (20, 40 and 50 microg) caused a dose-dependent peripheral antihyperalgesia against carrageenan-induced hyperalgesia. The possibility of the higher dose of bremazocine (50 microg) having central or systemic effect was excluded since administration of the drug into the left paw did not elicit antinociception in the contralateral paw. However, when the dose of bremazocine was increased to 100 microg, a significant increase in the nociceptive threshold was observed, as measured in the hyperalgesic contralateral paw. Peripheral antihyperalgesia induced by bremazocine (50 microg) was significantly reduced in a dose-dependent manner when N(G)-nitro-L-arginine (6, 9, 12 and 25 microg) or methylene blue (250, 375 and 500 microg) was injected before. Previous treatment with 50 microg of zaprinast (which had no effect when administered alone) potentiated the antihyperalgesic effect of bremazocine (20 microg). Our data suggest that bremazocine elicits peripheral antinociception by activation of the L-arginine/NO/cyclic GMP pathway and that nitric oxide is an intermediary in this mechanism, forming cyclic GMP.
Collapse
Affiliation(s)
- Luiz H Amarante
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Campus da Pampulha, Belo Horizonte, MG 31270-100, Brazil
| | | |
Collapse
|
262
|
Chen H, Hu C, Wu C, Wang D. Nitric Oxide in Systemic and Pulmonary Hypertension. J Biomed Sci 2002; 4:244-248. [PMID: 12386386 DOI: 10.1007/bf02253424] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Endothelium-derived nitric oxide (NO) is an important gas molecule in the regulation of vascular tone and arterial pressure. It has been considered that endothelial dysfunction with impairment of NO production contributes to a hypertensive state. Alternatively, long-term hypertension may affect the endothelial function, depress NO production, and thereby reduce the dilator action on vasculatures. There were many studies to support that endothelium-dependent vasodilatation was impaired in animals and humans with long-term hypertension. However, results of some reports were not always consistent with this consensus. Recent experiments in our laboratory revealed that an NO synthase inhibitor, N(G)-nitro-L-arginine monomethyl ester (L-NAME) caused elevation of arterial pressure (AP) in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). The magnitude of AP increase following NO blockade with L-NAME was much higher in SHR than WKY. In other experiments with the use of arterial impedance analysis, we found that L-NAME slightly or little affected the pulsatile hemodynamics including characteristic impedance, wave reflection and ventricular work. Furthermore, these changes were not different between SHR and WKY. The increase in AP and total peripheral resistance (TPR) following NO blockade in SHR were significantly greater than those in WKY, despite higher resting values of AP and TPR in SHR. In connection with the results of other studies, we propose that heterogeneity with respect to the involvement of NO (impairment, no change or enhancement) in the development of hypertension may exist among animal species, hypertensive models and different organ vessels. Our study in SHR provide evidence to indicate that the effects of basal release of NO on the arterial pressure and peripheral resistance are not impaired, but enhanced in the hypertensive state. The increase in NO production may provide a compensatory mechanism to keep the blood pressure and peripheral resistance at lower levels. The phenomenon of enhanced NO release also occurs in certain type of pulmonary hypertension. We first hypothesized that a decrease in NO formation might be responsible for the pulmonary vasoconstriction during hypoxia. With the measurement of NO release in the pulmonary vein, we found that ventilatory hypoxia produced pulmonary hypertension accompanying an increase in NO production. Addition of NO inhibitor (L-NAME), blood or RBC into the perfusate attenuated or abolished the NO release, while potentiating pulmonary vasoconstriction. During hypoxia, the increased NO formation in the pulmonary circulation similarly exerts a compensatory mechanism to offset the degree of pulmonary vasoconstriction.
Collapse
Affiliation(s)
- H.I. Chen
- Department of Physiology, Tzu Chi College of Medicine, Hualien, Taiwan
| | | | | | | |
Collapse
|
263
|
Sekiguchi F, Yamamoto K, Matsuda K, Kawata K, Negishi M, Shinomiya K, Shimamur K, Sunano S. Endothelium-dependent relaxation in pulmonary arteries of L-NAME-treated Wistar and stroke-prone spontaneously hypertensive rats. J Smooth Muscle Res 2002; 38:131-44. [PMID: 12596891 DOI: 10.1540/jsmr.38.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To evaluate whether the elevated blood pressure induced by chronic treatment with N(omega)-nitro-L-arginine methyl ester (L-NAME) contributes to an impairment of endothelium-dependent relaxation (EDR), the effects of chronic treatment of Wistar rats with L-NAME on systolic blood pressure, pulmonary arterial blood pressure and EDR of the pulmonary arteries were studied and compared with those of stroke-prone spontaneously hypertensive rats (SHRSP). While the systolic blood pressure (SBP) of Wistar rats was increased above that of controls by chronic treatment with L-NAME, it was still significantly lower than that of SHRSP. Chronic treatment with L-NAME did not affect pulmonary arterial blood pressure. On the other hand, the pulmonary arterial blood pressure of SHRSP was slightly but significantly higher than that of the control normotensive Wistar Kyoto rats (WKY). EDR in response to acetylcholine in the pulmonary artery of L-NAME-treated rats was significantly smaller than that in control Wistar rats. The EDR markedly increased in the presence of L-arginine and completely disappeared in the presence of N(omega)-nitro-L-arginine. Indomethacin hardly affected EDR. In preparations from SHRSP, the EDR was not different from that in those from WKY. Relaxation induced by sodium nitroprusside was identical in all preparations. Elevation of SBP and the impairment of EDR observed in L-NAME-treated rats recovered two weeks following cessation of treatment. These results suggest that the impaired EDR in the pulmonary artery of L-NAME-treated rats is not due to an L-NAME-induced increase in blood pressure but due to the inhibition of nitric oxide synthase by the drug remaining in the endothelium.
Collapse
Affiliation(s)
- Fumiko Sekiguchi
- Department of Anatomy and Physiology, Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
264
|
Viaro F, Dalio MB, Evora PRB. Catastrophic cardiovascular adverse reactions to protamine are nitric oxide/cyclic guanosine monophosphate dependent and endothelium mediated: should methylene blue be the treatment of choice? Chest 2002; 122:1061-6. [PMID: 12226053 DOI: 10.1378/chest.122.3.1061] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Clinical and experimental observations prove that heparin-neutralizing doses of protamine increase pulmonary artery pressures and decrease systemic BP. Protamine also increases myocardial oxygen consumption, cardiac output, and heart rate, and decreases systemic vascular resistance. These cardiovascular effects have clinical consequences that have justified studies in this area. Protamine adverse reactions usually have three different categories: systemic hypotension, anaphylactoid reactions, and catastrophic pulmonary vasoconstriction. The precise mechanism that explains protamine-mediated systemic hypotension is unknown. Four experimental protocols performed at Mayo Clinic, Rochester, MN, studied the intrinsic mechanism of protamine vasodilation. The first study reported in vitro systemic and coronary vasodilation after protamine infusion. The second in vitro study suggested that the pulmonary circulation is extensively involved in the protamine-mediated effects on endothelial function. The third study, carried out in anesthetized dogs, reported the methylene blue and nitric oxide synthase blockers neutralization of the protamine vasodilatatory effects. The fourth study suggested that protamine also causes endothelium-dependent vasodilation in heart microvessels and conductance arteries by different mechanisms including hyperpolarization. Reviewing these experimental results and our clinical experience, we suggest methylene blue as a novel approach to prevent and treat hemodynamic complications caused by the use of protamine after cardiopulmonary bypass. In the absence of prospective clinical trials, a growing body of cumulative clinical evidence suggests that methylene blue may be strongly considered as a therapeutic approach in the treatment of distributive shock.
Collapse
Affiliation(s)
- Fernanda Viaro
- Division of Experimental Surgery, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | | | | |
Collapse
|
265
|
Di Nunzio AS, Jaureguiberry MS, Rodano V, Bianciotti LG, Vatta MS. Endothelin-1 and -3 diminish neuronal NE release through an NO mechanism in rat anterior hypothalamus. Am J Physiol Regul Integr Comp Physiol 2002; 283:R615-22. [PMID: 12184995 DOI: 10.1152/ajpregu.00026.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The existence of endothelin binding sites on the catecholaminergic neurons of the hypothalamus suggests that endothelins (ETs) participate in the regulation of noradrenergic transmission modulating various hypothalamic-controlled processes such as blood pressure, cardiovascular activity, etc. The effects of ET-1 and ET-3 on the neuronal release of norepinephrine (NE) as well as the receptors and intracellular pathway involved were studied in the rat anterior hypothalamus. ET-1 (10 nM) and ET-3 (10 nM) diminished neuronal NE release and the effect blocked by the selective ET type B receptor antagonist BQ-788 (100 nM). N(omega)-nitro-L-arginine methyl ester (10 microM), methylene blue (10 microM), and KT5823 (2 microM), inhibitors of nitric oxide synthase activity, guanylate cyclase, and protein kinase G, respectively, prevented the inhibitory effects of both ETs on neuronal NE release. In addition, both ETs increased nitric oxide synthase activity. Furthermore, 100 microM picrotoxin, a GABA(A)-receptor antagonist, inhibited ET-1 and ET-3 response. Our results show that ET-1 as well as ET-3 has an inhibitory neuromodulatory effect on NE release in the anterior hypothalamus mediated by the ET type B receptor and the involvement of a nitric oxide-dependent pathway and GABA(A) receptors. ET-1 and ET-3 may thus diminish available NE in the synaptic gap leading to decreased noradrenergic activity.
Collapse
Affiliation(s)
- Andrea S Di Nunzio
- Cátedras de Fisiología y Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1113 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
266
|
Maas R, Schwedhelm E, Albsmeier J, Böger RH. The pathophysiology of erectile dysfunction related to endothelial dysfunction and mediators of vascular function. Vasc Med 2002; 7:213-25. [PMID: 12553745 DOI: 10.1191/1358863x02vm429ra] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The incidence of erectile dysfunction increases with diabetes, hypertension, hypercholesterolaemia, cardiovascular disease and renal failure. All these conditions are associated with endothelial dysfunction. This review addresses the pathophysiology of erectile dysfunction with a special focus on new insights into nitric oxide (NO)-mediated pathways, oxidative stress and parallels to endothelial dysfunction. NO appears to be the key mediator promoting endothelium-derived vasodilation and penile erection. The possibility is discussed that elevated plasma concentrations of asymmetrical dimethylarginine (ADMA), an endogenous NO synthase inhibitor, may provide an additional pathomechanism for various forms of erectile dysfunction associated with cardiovascular risk factors and disease. Likewise, the role of endothelium-derived factors mediating NO-independent pathways is evaluated.
Collapse
Affiliation(s)
- Renke Maas
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | |
Collapse
|
267
|
Comhair SAA, Erzurum SC. Antioxidant responses to oxidant-mediated lung diseases. Am J Physiol Lung Cell Mol Physiol 2002; 283:L246-55. [PMID: 12114185 DOI: 10.1152/ajplung.00491.2001] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated throughout the human body. Enzymatic and nonenzymatic antioxidants detoxify ROS and RNS and minimize damage to biomolecules. An imbalance between the production of ROS and RNS and antioxidant capacity leads to a state of "oxidative stress" that contributes to the pathogenesis of a number of human diseases by damaging lipids, protein, and DNA. In general, lung diseases are related to inflammatory processes that generate increased ROS and RNS. The susceptibility of the lung to oxidative injury depends largely on its ability to upregulate protective ROS and RNS scavenging systems. Unfortunately, the primary intracellular antioxidants are expressed at low levels in the human lung and are not acutely induced when exposed to oxidative stresses such as cigarette smoke and hyperoxia. However, the response of extracellular antioxidant enzymes, the critical primary defense against exogenous oxidative stress, increases rapidly and in proportion to oxidative stress. In this paper, we review how antioxidants in the lung respond to oxidative stress in several lung diseases and focus on the mechanisms that upregulate extracellular glutathione peroxidase.
Collapse
Affiliation(s)
- Suzy A A Comhair
- Department of Pulmonary and Critical Care Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
268
|
Yuzurihara M, Ikarashi Y, Goto K, Sakakibara I, Hayakawa T, Sasaki H. Geissoschizine methyl ether, an indole alkaloid extracted from Uncariae Ramulus et Uncus, is a potent vasorelaxant of isolated rat aorta. Eur J Pharmacol 2002; 444:183-9. [PMID: 12063078 DOI: 10.1016/s0014-2999(02)01623-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Effects of geissoschizine methyl ether, an indole alkaloid isolated from the hook of Uncariae Ramulus et Uncus, on vascular responses were examined using isolated strips of rat aorta. Geissoschizine methyl ether (10(-7)-10(-4) M) relaxed norepinephrine (5x10(-8) M)-induced contraction in a dose-dependent manner. The potency (50% efficacy concentration, EC(50)=0.744 microM) was approximately 14 times greater than that (EC(50)=10.6 microM) of hirsutine, one of the indole alkaloids isolated from Uncariae Ramulus et Uncus that demonstrates a vasorelaxant effect by Ca(2+)-channel blocking. The vasorelaxant effect of geissoschizine methyl ether found at the lower concentrations (10(-7)-3x10(-6) M) on the norepinephrine-induced contraction was abolished by pretreatment with N(G)-nitro-L-arginine (10(-4) M), an inhibitor of nitric oxide synthesis, or by denuding aortas of endothelium, while the effects at the higher concentrations (10(-5)-10(-4) M) were not completely prevented by either N(G)-nitro-L-arginine and deendothelialization. Furthermore, geissoschizine methyl ether did not relax high K(+)-, Ca(2+)- and a Ca(2+)-channel agonist Bay K8644-induced contractions at the lower concentrations that markedly relaxed the norepinephrine-induced contractions, while the higher concentrations of geissoschizine methyl ether relaxed the high K(+)-, Ca(2+)- and Bay K8644-induced contractions. These results suggest that the vasorelaxant effect of geissoschizine methyl ether is composed of two different mechanisms: endothelial dependency with nitric oxide and endothelial independency with voltage-dependent Ca(2+)-channel blocking.
Collapse
Affiliation(s)
- Mitsutoshi Yuzurihara
- Kampo & Pharmacognosy Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun 3586, Ibaraki 300-1192, Japan.
| | | | | | | | | | | |
Collapse
|
269
|
Lidor AL, Cohen SB, Seidman DS, Novikov I, Rabinovici J, Mashiach S, Lipitz S. Effect of raloxifene on the ovarian circulation in women after menopause. Am J Obstet Gynecol 2002; 186:984-9. [PMID: 12015525 DOI: 10.1067/mob.2002.122401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE We sought to determine whether raloxifene effects the ovarian circulation in women after menopause. STUDY DESIGN The resistance indices of the ovarian blood flow were assessed in 130 women after menopause who were randomly assigned to receive either 60 mg of raloxifene, a continuous combined estrogen-progestin tablet daily, or neither treatment for 24 months. RESULTS The women who received raloxifene or hormonal replacement therapy had a significant time-related decrease in the resistance index of the ovarian artery blood flow compared to baseline values (resistance index, 0.91) starting after 12 and 18 months of treatment (resistance index, 0.88 and 0.89, respectively; P <.002 and.001, respectively). Whereas significant increases in the resistance index respective to the prestudy values were observed in the nontreated women at 24 months (resistance index, 0.93; P <.0001). The mean (+/-SD) resistance index of the ovarian blood flow at the end of the study (resistance index, 0.89) was significantly lower in the women who were treated with raloxifene than in the women who were treated with hormone replacement therapy (P <.002). No changes in the ovarian dimensions or appearance were noticed during the entire study. CONCLUSION Daily therapy with raloxifene has significant ovarian vascular-relaxing effect in women after menopause. This potentially important direct vasculoprotective long-term effect of raloxifene on cardiovascular disease deserves further investigation.
Collapse
Affiliation(s)
- Arie L Lidor
- Department of Obstetrics and Gynecology and the Gertner Institute For Epidemiological Studies, Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | |
Collapse
|
270
|
Lass A, Suessenbacher A, Wölkart G, Mayer B, Brunner F. Functional and analytical evidence for scavenging of oxygen radicals by L-arginine. Mol Pharmacol 2002; 61:1081-8. [PMID: 11961125 DOI: 10.1124/mol.61.5.1081] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
L-Arginine, the substrate of nitric oxide synthase, is known to exert favorable effects in the prevention and treatment of cardiovascular diseases. In several conditions, including atherosclerosis and ischemia/reperfusion, where oxygen metabolites are thought to mediate endothelial and myocardial injury, L-arginine has protective effects. Here we studied the mechanisms by which L-arginine protects against oxygen radical-induced myocardial injury. Buffer-perfused rat hearts were subjected to oxygen radicals generated by electrolysis or to hypoxanthine and xanthine oxidase, which generates superoxide anions (O(2)). Both sources of radicals impaired myocardial contractility, whereas L-arginine prevented the impairment. The observation that D-arginine as well as nitric oxide synthase inhibitors, such as N(G)-nitro-L-arginine but not glycine, had similar cardioprotective effects indicated that the protection might be due to a direct chemical interaction of L-arginine and its derivatives with oxygen radicals. In support, L-arginine and the derivatives prevented the formation of O(2) as determined by sensitive standard methods, whereas glycine did not. The radical scavenging activity of L-arginine and derivatives was dose-dependent, with an apparent rate constant of approximately 4.8 x 10(3) M s(-1) for the reaction of L-arginine with O(2) as determined by electron paramagnetic resonance spectroscopy using 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine (TEMPONE-H) as spin trap. In summary, the results of this study demonstrate protective effects of L-arginine against oxygen radical-induced cardiac injury by free radical scavenging.
Collapse
Affiliation(s)
- Achim Lass
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Graz, Austria
| | | | | | | | | |
Collapse
|
271
|
Thomas JB, Holtsberg FW, Ensor CM, Bomalaski JS, Clark MA. Enzymic degradation of plasma arginine using arginine deiminase inhibits nitric oxide production and protects mice from the lethal effects of tumour necrosis factor alpha and endotoxin. Biochem J 2002; 363:581-7. [PMID: 11964159 PMCID: PMC1222511 DOI: 10.1042/0264-6021:3630581] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Septic shock is mediated in part by nitric oxide (NO) and tumour necrosis factor alpha (TNFalpha). NO is synthesized primarily from extracellular arginine. We tested the ability of an arginine-degrading enzyme to inhibit NO production in mice and to protect mice from the hypotension and lethality that occur after the administration of TNFalpha or endotoxin. Treatment of BALB/c mice with arginine deiminase (ADI) formulated with succinimidyl succinimide polyethylene glycol of M(r) 20000 (ADI-SS PEG(20000)) eliminated all measurable plasma arginine (from normal levels of approximately 155 microM arginine to 2 microM). In addition, ADI-SS PEG(20000) also inhibited the production of NO, as quantified by plasma nitrate+nitrite. Treatment of mice with TNFalpha or endotoxin resulted in a dose-dependent increase in NO production and lethality. Pretreatment of mice with ADI-SS PEG(20000) resulted in increased resistance to the lethal effects of TNFalpha and endotoxin. These observations are consistent with NO production resulting, to some extent, from the metabolism of extracellular arginine. The toxic effects of TNFalpha and endotoxin may be partially inhibited by enzymic degradation of plasma arginine by ADI-SS PEG(20000). Interestingly, pretreatment with ADI-SS PEG(20000) did not inhibit the anti-tumour activity of TNFalpha in vitro or in vivo. This treatment may allow greater amounts of TNFalpha, as well as other cytokines, to be administered while abrogating side effects such as hypotension and death.
Collapse
Affiliation(s)
- J Brandon Thomas
- Department of Biology, T.H. Morgan Building, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | |
Collapse
|
272
|
Elayan HH, Kennedy BP, Ziegler MG. L-NAME raises systolic blood pressure in the pithed rat by a direct adrenal epinephrine releasing action. Life Sci 2002; 70:2481-91. [PMID: 12173412 DOI: 10.1016/s0024-3205(02)01520-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is generally thought that inhibition of nitric oxide synthase leads to blood pressure elevation largely through reduction in vascular levels of the vasodilator nitric oxide. However, there are several reports suggesting that NO synthase inhibitors cause adrenal epinephrine (E) release by both central and peripheral mechanisms. We investigated the role of adrenal E in the pressor effects of the nitric oxide synthase inhibitor L-NAME in the pithed rat to help distinguish central from peripherally mediated actions. L-NAME (10 mg/kg) raised both systolic and diastolic BP by about 30 mm Hg (P < .01) in the absence of exogenous electrical stimulation of sympathetic nerves. During stimulation at 10 V and frequencies of 1 or 2 Hz, systolic BP was about 70 mm Hg higher in L-NAME treated rats than in drug free stimulated rats. This enhancement of systolic BP by L-NAME was less pronounced at 5 or 10 Hz stimulation frequencies. Following these types of electrical stimulations of pithed rats, both plasma norepinephrine (NE) and E levels were dramatically elevated above resting plasma levels. L-NAME pretreatment of these electrically stimulated rats increased plasma E levels by an additional 60% and decreased NE by 18%. Acute adrenalectomy dramatically reduced plasma E levels and abolished the ability of L-NAME to enhance the pressor effect of sympathetic stimulation. In contrast, acute adrenalectomy of unstimulated pithed rats did not significantly reduce the pressor response to L-NAME. We conclude that adrenal E release may mediate much of the systolic pressor response of L-NAME in the stimulated pithed rat, but the magnitude of this effect varies with stimulation frequency. Since pithing disrupts central pathways, this induction of adrenal E release by L-NAME is a peripheral effect.
Collapse
|
273
|
Chang HR, Lee RP, Wu CY, Chen HI. Nitric oxide in mesenteric vascular reactivity: a comparison between rats with normotension and hypertension. Clin Exp Pharmacol Physiol 2002; 29:275-80. [PMID: 11985535 DOI: 10.1046/j.1440-1681.2002.03643.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Nitric oxide (NO) plays an important role in various physiological functions. The continuous formation of endogenous NO from endothelial cells maintains a vasodilator tone and regulates blood flow and pressure. However, the role of NO in hypertension remains controversial. 2. In the present study, we used an in situ mesenteric perfusion system. The primary objectives of the study were to examine whether or not mesenteric vasoreactivity is changed by alterations in perfusion pressure and to assess the role of NO in changes of vascular reactivity in hypertension. 3. Spontaneously hypertensive rats (SHR; 12-15 weeks of age) and age-matched normotensive Wistar-Kyoto (WKY) rats were used as the experimental and control groups, respectively. Endothelium-dependent and -independent vasodilation was detected by acetylcholine (ACh) or NO donors (sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine (SNAP)). Dose-dependent reactivity to these agents (10(-6) to 10(-4) mol/L) was detected by bolus intra-arterial injections of 10 microL of the test agents at 5 min intervals. Dose-dependent responses to vasoconstrictor drugs, such as noradrenaline (NA) and phenylephrine (PE; 10(-6) to 10(-4) mol/L) were also observed. The NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 10 mg/kg) was given to examine the contribution of NO to the vasoreactivity of the mesenteric bed. 4. Acetylcholine, SNP and SNAP produced dose-dependent vasodilation in both WKY rats and SHR. The magnitude of the vasodilation was significantly greater in SHR than in WKY rats. It was also greater at high than low flow rates in SHR. The increase in mesenteric perfusion pressure following L-NAME was significantly higher in SHR than in WKY rats. However, there were no differences in responses to L-NAME between low and high flow rates in SHR. Endothelium-independent vasoconstriction (NA and PE) was dose dependent in both SHR and WKY rats. The magnitude of the endothelium-independent vasoconstriction was greater in SHR than in WKY rats. 5. The results suggest that endothelium-dependent or -independent mesenteric vasoconstriction and vasodilation is enhanced in SHR compared with WKY rats, supporting the concept of enhancement of NO function in the hypertensive state. Flow-induced shear stress is also a key factor in the regulation of peripheral resistance depending on NO formation in hypertension.
Collapse
Affiliation(s)
- Huai-Ren Chang
- Department of Medicine, Tzu Chi University, Hualien, Taiwan
| | | | | | | |
Collapse
|
274
|
Murakami S, Yoshimura N, Koide H, Watanabe J, Takedachi M, Terakura M, Yanagita M, Hashikawa T, Saho T, Shimabukuro Y, Okada H. Activation of adenosine-receptor-enhanced iNOS mRNA expression by gingival epithelial cells. J Dent Res 2002; 81:236-40. [PMID: 12097306 DOI: 10.1177/154405910208100403] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A series of reports has revealed that adenosine has a plethora of biological actions toward a large variety of cells. In this study, we investigated the influence of adenosine receptor activation on iNOS mRNA expression in human gingival epithelial cells (HGEC) and SV-40-transformed HGEC. HGEC expressed adenosine receptor subtypes A1, A2a, and A2b, but not A3 mRNA. Ligation of adenosine receptors by a receptor agonist, 2-chloroadenosine (2CADO), enhanced iNOS mRNA expression by both HGEC and transformed HGEC. In addition, the adenosine receptor agonist enhanced the production of NO(2)(-)/NO(3)(-), NO-derived stable end-products. An enhanced expression of iNOS mRNA and NO(2)(-)/NO(3)(-) was also observed when SV40-transformed HGEC were stimulated with CPA or CGS21680, A1- or A2a-selective adenosine receptor agonists, respectively. These results provide new evidence for the possible involvement of adenosine in the regulation of inflammatory responses by HGEC in periodontal tissues.
Collapse
Affiliation(s)
- S Murakami
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Kakoki M, Wang W, Mattson DL. Cationic amino acid transport in the renal medulla and blood pressure regulation. Hypertension 2002; 39:287-92. [PMID: 11847199 DOI: 10.1161/hy0202.102700] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have indicated that NO synthesis in isolated inner medullary collecting duct cells is reduced by cationic amino acids that compete with L-arginine for cellular uptake. In the present study, we investigated the effects of chronic renal medullary infusion of cationic amino acids on renal NO concentration and mean arterial pressure (MAP) in Sprague-Dawley rats. Renal medullary infusion of L-ornithine (50 microg/kg per min) or L-lysine (50 microg/kg per min) markedly decreased NO in the medulla (vehicle, 124 +/- 11 nmol/L; L-ornithine, 45 +/- 4 nmol/L; L-lysine, 42 +/- 6 nmol/L) and increased MAP (vehicle, 111 +/- 7 mm Hg; L-ornithine, 143 +/- 6 mm Hg; L-lysine, 148 +/- 3 mm Hg) after 5 days of infusion. In contrast, intravenous infusion of the same dose of L-ornithine or L-lysine for 5 days increased plasma concentration to levels similar to those observed with intramedullary infusion but did not change NO in the medulla or alter MAP. Furthermore, the NO-suppressing and hypertensive effects of medullary interstitial infusion of L-ornithine (50 microg/kg per min) were attenuated by simultaneous infusion of L-arginine (500 microg/kg per min; NO, 97 +/- 10 nmol/L; MAP, 124 +/- 3 mm Hg). A 5-day infusion of an antisense oligonucleotide against CAT-1 (18-mer, 8.3 nmol/h) significantly decreased CAT-1 protein in the medulla, decreased NO in the medulla (scrambled oligo, 124 +/- 10 nmol/L; antisense oligo, 67 +/- 11 nmol/L), and increased MAP (scrambled oligo, 113 +/- 2 mm Hg; antisense oligo, 130 +/- 2 mm Hg). These results suggest that uptake of L-arginine by cationic amino acid transport systems in the renal medulla plays an important role in the regulation of medullary NO and MAP in rats.
Collapse
Affiliation(s)
- Masao Kakoki
- Department of Physiology, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | |
Collapse
|
276
|
Worthington J, Robson T, O'Keeffe M, Hirst DG. Tumour cell radiosensitization using constitutive (CMV) and radiation inducible (WAF1) promoters to drive the iNOS gene: a novel suicide gene therapy. Gene Ther 2002; 9:263-9. [PMID: 11896465 DOI: 10.1038/sj.gt.3301609] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2001] [Accepted: 10/29/2001] [Indexed: 11/08/2022]
Abstract
Nitric oxide (NO(*)) has many characteristics including cytotoxicity, radiosensitization and anti-angiogenesis, which make it an attractive molecule for use in cancer therapy. We have investigated the use of iNOS gene transfer, driven by both a constitutive (CMV) and X-ray inducible (WAF1) promoter, for generating high concentrations of NO(*) within tumour cells. We have combined this treatment with radiation to exploit the radiosensitizing properties of this molecule. Transfection of murine RIF-1 tumour cells in vitro with the iNOS constructs resulted in increased iNOS protein levels. Under hypoxic conditions cells were radiosensitized by delivery of both constructs so that these treatments effectively eliminated the radioresistance observed under hypoxic conditions. In vivo transfer of the CMV/iNOS construct by direct tumour injection resulted in a delay (4.2 days) in tumour growth compared with untreated controls. This was equivalent to the effect of 20 Gy X-rays alone. Combination of CMV/iNOS gene transfer with 20 Gy X-rays resulted in a dramatic 19.8 day growth delay compared with controls. Tumours treated with the CMV/iNOS showed large areas of necrosis and abundant apoptosis. We believe that iNOS gene transfer has the potential to be a highly effective treatment in combination with radiotherapy.
Collapse
Affiliation(s)
- J Worthington
- Radiation Science Research Group, School of Biomedical Sciences, University of Ulster, Newtownabbey, Co. Antrim, UK
| | | | | | | |
Collapse
|
277
|
Affiliation(s)
- Key-Sun Kim
- Life Sciences Division, KIST, Cheongyang Box 131, Seoul 130-650, Korea.
| |
Collapse
|
278
|
Wilkinson IB, Qasem A, McEniery CM, Webb DJ, Avolio AP, Cockcroft JR. Nitric oxide regulates local arterial distensibility in vivo. Circulation 2002; 105:213-7. [PMID: 11790703 DOI: 10.1161/hc0202.101970] [Citation(s) in RCA: 346] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Arterial stiffness is an important determinant of cardiovascular risk. Several lines of evidence support a role for the endothelium in regulating arterial stiffness by release of vasoactive mediators. We hypothesized that nitric oxide (NO) acting locally regulates arterial stiffness in vivo, and the aim of this experiment was to test this hypothesis in an ovine hind-limb preparation. METHODS AND RESULTS All studies were conducted in anesthetized sheep. Pulse wave velocity (PWV) was calculated by the foot-to-foot methodology from 2 pressure waveforms recorded simultaneously with a high-fidelity dual pressure-sensing catheter placed in the common iliac artery. Intra-arterial infusion of N(G)-monomethyl-L-arginine (L-NMMA) increased iliac PWV significantly, by 3+/-2% (P<0.01). Infusion of acetylcholine and glyceryl trinitrate reduced PWV significantly, by 6+/-4% (P=0.03) and 5+/-2% (P<0.01), respectively. Only the effect of acetylcholine, however, was significantly inhibited during coinfusion of L-NMMA (P=0.03). There was no change in systemic arterial pressure throughout the studies. Importantly, infusion of L-NMMA or acetylcholine distal to the common iliac artery (via the sheath) did not affect PWV. CONCLUSIONS These results demonstrate, for the first time, that basal NO production influences large-artery distensibility. In addition, exogenous acetylcholine and glyceryl trinitrate both increase arterial distensibility, the former mainly through NO production. This may help explain why conditions that exhibit endothelial dysfunction are also associated with increased arterial stiffness. Therefore, reversal of endothelial dysfunction or drugs that are large-artery vasorelaxants may be effective in reducing large-artery stiffness in humans, and thus cardiovascular risk.
Collapse
Affiliation(s)
- Ian B Wilkinson
- Clinical Pharmacology Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
279
|
Elayan HH, Kennedy BP, Ziegler MG. The pressor effect of NO synthase inhibition correlates to pre-existing systolic BP in the rat. Auton Neurosci 2002; 95:32-6. [PMID: 11871783 DOI: 10.1016/s1566-0702(01)00350-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A number of studies have found that the vasopressor effect of nitric oxide (NO) synthase inhibition is small following treatment with hypotensive agents but is enhanced after hypertensive agents, and have implicated NO in the mechanism of action of these drugs. We investigated the hypothesis that the rate of vascular NO synthesis is directly related to blood pressure. The vasopressor effect of 10 mg/kg of L-nitro-L-arginine methyl ester (L-NAME) was studied in relation to changes in BP induced by a variety of treatments in both pentobarbital sodium anesthetized and pithed rats. BP reductions were induced by blood withdrawal, surgery and pithing. BP increases were made by injecting 10 and 15 microg/kg boluses of phenylephrine or by injecting 5% albumin solution. Pithing decreased baseline BP and attenuated the vasopressor effect of L-NAME while phenylephrine increased both BP levels and the hypertensive effect of L-NAME. Volume expansion with 5% albumin solution increased both BP and the vasopressor effect of L-NAME. Both surgery (abdominal incision) and withdrawal of 1 ml blood reduced BP and attenuated the pressor effect of L-NAME. When the results of all these studies were combined, systolic BP was found to correlate strongly with the vasopressor effect of L-NAME (R2 = 0.73, P < 0.0001). Diastolic BP correlated less well with L-NAME (R2 = 0.36, P < 0.0003). The results suggest that shear stress generated by blood flow during the systole releases NO, and lowers BP. The pressor effect of NO synthase inhibition is closely related to pre-existing systolic BP.
Collapse
|
280
|
Abstract
At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, however, nitric oxide (NO), superoxide anion, and related reactive oxygen species (ROS) play an important role as regulatory mediators in signaling processes. Many of the ROS-mediated responses actually protect the cells against oxidative stress and reestablish "redox homeostasis." Higher organisms, however, have evolved the use of NO and ROS also as signaling molecules for other physiological functions. These include regulation of vascular tone, monitoring of oxygen tension in the control of ventilation and erythropoietin production, and signal transduction from membrane receptors in various physiological processes. NO and ROS are typically generated in these cases by tightly regulated enzymes such as NO synthase (NOS) and NAD(P)H oxidase isoforms, respectively. In a given signaling protein, oxidative attack induces either a loss of function, a gain of function, or a switch to a different function. Excessive amounts of ROS may arise either from excessive stimulation of NAD(P)H oxidases or from less well-regulated sources such as the mitochondrial electron-transport chain. In mitochondria, ROS are generated as undesirable side products of the oxidative energy metabolism. An excessive and/or sustained increase in ROS production has been implicated in the pathogenesis of cancer, diabetes mellitus, atherosclerosis, neurodegenerative diseases, rheumatoid arthritis, ischemia/reperfusion injury, obstructive sleep apnea, and other diseases. In addition, free radicals have been implicated in the mechanism of senescence. That the process of aging may result, at least in part, from radical-mediated oxidative damage was proposed more than 40 years ago by Harman (J Gerontol 11: 298-300, 1956). There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Collapse
Affiliation(s)
- Wulf Dröge
- Division of Immunochemistry, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| |
Collapse
|
281
|
Abstract
The role of nitric oxide (NO) in numerous physiologic systems only recently has been discovered. When used as a gas, inhaled NO (iNO) has many unique properties that cause immediate improvements in pulmonary hemodynamics and oxygenation. Acute benefits in physiologic parameters have been demonstrated in numerous studies of iNO in acute respiratory distress syndrome (ARDS), but recent randomized controlled trials have failed to show improvement in outcome. The addition of other treatments that prolong or enhance the affect of iNO or its use with other ventilator modalities such as prone positioning or high-frequency ventilation offer hope that iNO may be beneficial in select groups of patients.
Collapse
Affiliation(s)
- James R Klinger
- Division of Pulmonary, Sleep and Critical Care Medicine, Brown University School of Medicine, Rhode Island Hospital, Providence, Rhode Island, USA.
| |
Collapse
|
282
|
Lüscher TF, Spieker LE, Noll G, Cosentino F. Vascular effects of newer cardiovascular drugs: focus on nebivolol and ACE-inhibitors. J Cardiovasc Pharmacol 2001; 38 Suppl 3:S3-11. [PMID: 11811390 DOI: 10.1097/00005344-200112003-00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alterations in the function and structure of the blood vessel wall account for most clinical events in the coronary and cerebrovascular circulation such as myocardial infarction and stroke. Cardiovascular drugs may exert beneficial effects on the vascular wall both at the level of the endothelium and vascular smooth muscle cells. Therefore, endothelial mediators, in particular nitric oxide (NO) and endothelin (ET), are of special interest. Drugs can modulate the expression and actions of NO, a vasodilator with antiproliferative and antithrombotic properties, and of ET, a potent vasoconstrictor and proliferative mitogenic agent. The most successful drugs in this context are statins and angiotensin-converting enzyme (ACE)-inhibitors. While statins increase the expression of NO synthase. ACE-inhibitors increase the release of NO via bradykinin-mediated mechanisms. Antioxidant properties of drugs are also important, as oxidative stress is crucial in atherosclerotic vascular disease. These properties may explain part of the effects of calcium antagonists and ACE-inhibitors. Indeed, angiotensin II stimulates NAD(P)H oxidases responsible for the formation of superoxide, which inactivates NO. ACE-Inhibitors thus increase the bioavailability of NO. Newer cardiovascular drugs such as nebivolol are able to directly stimulate NO release from the endothelium both in isolated arteries and in the human forearm circulation. ET receptor antagonists may exert beneficial effects in the vessel wall by preventing the effects of ET at its receptors and by reducing ET production. In summary, cardiovascular drugs have important effects on the vessel wall, which may be clinically relevant for the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- T F Lüscher
- Division of Cardiology, University Hospital, Zürich, Switzerland
| | | | | | | |
Collapse
|
283
|
Stallone JN, Salisbury RL, Fulton CT. Androgen-receptor defect abolishes sex differences in nitric oxide and reactivity to vasopressin in rat aorta. J Appl Physiol (1985) 2001; 91:2602-10. [PMID: 11717225 DOI: 10.1152/jappl.2001.91.6.2602] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Contractions of rat thoracic aorta to vasopressin (VP) are threefold higher in females (F) than in males (M), primarily because nitric oxide (NO) attenuation of contraction is greater in M. To determine the role of the androgen receptor (AR) in this mechanism, vascular reactivity to VP was examined in thoracic aorta of the testicular-feminized male (Tfm) rat, which has an X-linked, recessive defect in AR function in affected M. Maximal contraction of normal aortas to VP was fourfold higher in F (4,128 +/- 291 mg/mg ring wt) than in M (971 +/- 133 mg); maximal response of Tfm (3,967 +/- 253 mg) was similar to that of normal F. N(G)-nitro-L-arginine methyl ester increased maximal response to VP threefold in M but had no effect in F or Tfm. In contrast, maximal contraction of normal aortas to phenylephrine was 43% higher in M (4,011 +/- 179 mg) than in F (2,809 +/- 78 mg); maximal response of Tfm (2,716 +/- 126 mg) was similar to that of normal F. N(G)-nitro-L-arginine methyl ester increased maximal response to phenylephrine by >50% in F and Tfm but had no effect in M. Maximal contractile response to 80 mM KCl did not differ among M, F, or Tfm. Thus androgens and normal vascular AR function are important in the greater NO-mediated attenuation of reactivity to VP in M than in F rat aorta, which may involve specific modulation of endothelial VP signal transduction pathways and NO release by androgens. These data also establish the importance of the Tfm rat as a model to study the effects of androgens on cardiovascular function.
Collapse
Affiliation(s)
- J N Stallone
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Michael E. DeBakey Institute for Comparative Cardiovascular Sciences, Texas A&M University, College Station, TX 77843, USA.
| | | | | |
Collapse
|
284
|
Tjen-A-Looi SC, Phan NT, Longhurst JC. Nitric oxide modulates sympathoexcitatory cardiac-cardiovascular reflexes elicited by bradykinin. Am J Physiol Heart Circ Physiol 2001; 281:H2010-7. [PMID: 11668062 DOI: 10.1152/ajpheart.2001.281.5.h2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A number of studies have demonstrated an important role for nitric oxide (NO) in central and peripheral neural modulation of sympathetic activity. To assess the interaction and integrative effects of NO release and sympathetic reflex actions, we investigated the influence of inhibition of NO on cardiac-cardiovascular reflexes. In anesthetized, sinoaortic-denervated and vagotomized cats, transient reflex increases in arterial blood pressure (BP) were induced by application of bradykinin (BK, 0.1-10 microg/ml) to the epicardial surface of the heart. The nonspecific NO synthase (NOS) inhibitor NG-monomethyl-L-arginine (L-NMMA, 10 mg/kg iv) was then administered and stimulation was repeated. L-NMMA increased baseline mean arterial pressure (MAP) from 129 +/- 8 to 152 +/- 9 mmHg and enhanced the change in MAP in response to BK from 32 +/- 3 to 39 +/- 5 mmHg (n = 9, P < 0.05). Pulse pressure was significantly enhanced during the reflex response from 6 +/- 4 to 27 +/- 6 mmHg after L-NMMA injection due to relatively greater potentiation of the rise in systolic BP. Both the increase in baseline BP and the enhanced pressor reflex were reversed by L-arginine (30 mg/kg iv). Because L-NMMA can inhibit both brain and endothelial NOS, the effects of 7-nitroindazole (7-NI, 25 mg/kg ip), a selective brain NOS inhibitor, on the BK-induced cardiac-cardiovascular pressor reflex also were examined. In contrast to L-NMMA, we observed significant reduction of the pressor response to BK from 37 +/- 5 to 18 +/- 3 mmHg 30 min after the administration of 7-NI (n = 9, P < 0.05), an effect that was reversed by L-arginine (300 mg/kg iv, n = 7). In a vehicle control group for 7-NI (10 ml of peanut oil ip), the pressor response to BK remained unchanged (n = 6, P > 0.05). In conclusion, neuronal NOS facilitates, whereas endothelial NOS modulates, the excitatory cardiovascular reflex elicited by chemical stimulation of sympathetic cardiac afferents.
Collapse
Affiliation(s)
- S C Tjen-A-Looi
- Department of Medicine, University of California, Irvine, California 92697-4075, USA.
| | | | | |
Collapse
|
285
|
Beffy P, Lajoix AD, Masiello P, Dietz S, Péraldi-Roux S, Chardès T, Ribes G, Gross R. A constitutive nitric oxide synthase modulates insulin secretion in the INS-1 cell line. Mol Cell Endocrinol 2001; 183:41-8. [PMID: 11604223 DOI: 10.1016/s0303-7207(01)00610-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We provide immunocytochemical evidence that the neuronal isoform of constitutive NO synthase (cNOS) is expressed in the rat insulinoma cell line INS-1. Furthermore, using N omega-nitro-L-arginine methyl ester (L-NAME), a pharmacological inhibitor of cNOS activity, we show that this enzyme is implicated in the modulation of insulin secretion in INS-1 cells. Indeed, in the presence of 2.8 mM glucose, L-NAME induced a specific and dose-dependent increase in insulin release, suggesting that cNOS exerts an inhibitory tone on basal insulin secretion. Moreover, L-arginine, the physiological substrate of cNOS, significantly reduced the marked enhancing effect of L-NAME on insulin release and to a lesser extent, at low concentrations, that of 10 mM KCl. L-NAME also potentiated the insulin secretion stimulated by 5.5 and 8.3 mM glucose, but in this case, its effect was not reduced by L-arginine. In conclusion, our data show that the neuronal isoform of cNOS exerts a negative modulation on insulin secretion in INS-1 cells, confirming the previous results obtained in the isolated perfused rat pancreas or pancreatic islets.
Collapse
Affiliation(s)
- P Beffy
- Istituto di Mutagenesi e Differenziamento, CNR, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
286
|
Yamamoto K, Shimamura K, Sekiguchi F, Sunano S. Effects of NG-nitro-L-arginine on the blood pressure of spontaneously hypertensive rats with different degrees of hypertension. Clin Exp Hypertens 2001; 23:533-44. [PMID: 11710755 DOI: 10.1081/ceh-100106824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The effects of NG-nitro-L-arginine (L-NNA) on blood pressure of various strains of spontaneously hypertensive rats were studied. Blood pressure of the rats was higher in the order of WKY, SHR, SHRSP, M-SHRSP. L-NNA caused an elevation of the blood pressure, which was greatest in SHR and smallest in WKY and M-SHRSP. Endothelium-dependent relaxation of aortae by acetylcholine was greatest in preparations from WKY and it decreased as the blood pressure of rats increased. Phenylephrine (higher than 10(-6) mg/kg) caused an elevation of the blood pressure, which was greatest in SHR and smallest in M-SHRSP. It was suggested that L-NNA elevated blood pressure by inhibiting the basal or flow-induced release of nitric oxide from the endothelium that is causing a reduction in vascular smooth muscle tone. The smaller effect of L-NNA in WKY was due to weak smooth muscle tone, while the smaller effect in SHRSP and M-SHRSP is due to impaired function of endothelium.
Collapse
Affiliation(s)
- K Yamamoto
- The Life Science Institute, Kinki University, Osaka-Sayama, Japan.
| | | | | | | |
Collapse
|
287
|
Vural KM, Bayazit M. Nitric oxide: implications for vascular and endovascular surgery. Eur J Vasc Endovasc Surg 2001; 22:285-93. [PMID: 11563885 DOI: 10.1053/ejvs.2001.1448] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nitric oxide has a key role in vascular homeostasis. It plays a protective role by suppressing abnormal proliferation of vascular smooth muscle following various pathological situations including atherosclerosis and restenosis after vascular interventions such as balloon angioplasty, stent deployment and bypass grafting. It also has strong antiplatelet and anti-thrombogenic properties. In this review, possible applications to daily vascular and endovascular surgery practice, including systemic use of NO donors, enhancing endogenous production of NO by L-arginine and gene therapy, local delivery strategies and coating stents and grafts with NO-delivering/enhancing chemicals are reviewed.
Collapse
Affiliation(s)
- K M Vural
- Department of Surgery, Yüksek Ihtisas Hospital of Turkey, Ankara, Turkey
| | | |
Collapse
|
288
|
Marchesi S, Lupattelli G, Siepi D, Roscini AR, Vaudo G, Sinzinger H, Mannarino E. Oral L-arginine administration attenuates postprandial endothelial dysfunction in young healthy males. J Clin Pharm Ther 2001; 26:343-9. [PMID: 11679024 DOI: 10.1046/j.1365-2710.2001.00362.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Endothelial dysfunction is considered the earliest stage of atherosclerosis. Postprandial phase is associated with a transient impairment of endothelial function concomitantly with the triglyceride-rich lipoprotein increase. This phenomenon may be explained by the oxidative burden induced by triglyceride-rich lipoproteins, reducing nitric oxide bioavailability. OBJECTIVE To investigate the effect of a diet enriched with L-arginine, the substrate for nitric oxide synthesis on endothelial function in healthy volunteers. METHODS Endothelial function (expressed as flow-mediated vasodilation (FMV) of the brachial artery), total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides, LDL-size, Lp (a) and reduced glutathione (GSH) were evaluated in seven healthy males (mean age 23 +/- 3 years) without cardiovascular risk factors. Measurements were made at baseline and 2, 4 and 6 h after a standardized oral fat load. L-arginine (6 g daily) was administered for 10 days. On the 11th day the oral fat load and the parameters examined previously at entry were repeated. RESULTS After the first oral fat load, FMV significantly decreased at 2 and 4 h, and overlapped with the basal levels at 6 h. After L-arginine treatment, FMV significantly decreased at 2 h and normalized after 4 and 6 h. Triglycerides increased at 2 and 4 h and decreased after 6 h in both sets of observations relating to before and after L-arginine administration. GSH dropped 2 h after the fat load, both before and after L-arginine. Before L-arginine, FMV exhibited a significant correlation with triglycerides (r= -0.426, P= 0.024) and GSH (r=0.48; P=0.009). After L-arginine, FMV was related to GSH (r=0.39; P=0.03) but not to triglycerides (r= -0.12; P=0.52). CONCLUSION Postprandial endothelial impairment is partly abolished by L-arginine administration. These data, which require confirmation, suggest the importance of dietary choice for atherosclerosis prevention even in young healthy subjects.
Collapse
Affiliation(s)
- S Marchesi
- Department of Internal Medicine, Angiology and Atherosclerosis, University of Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
289
|
Loscalzo J. An experiment of nature: genetic L-arginine deficiency and NO insufficiency. J Clin Invest 2001; 108:663-4. [PMID: 11544270 PMCID: PMC209388 DOI: 10.1172/jci13848] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- J Loscalzo
- Whitaker Cardiovascular Institute and Evans Department of Medicine, Boston University School of Medicine, 700 Albany Street, W507, Boston, Massachusetts 02118, USA.
| |
Collapse
|
290
|
Kamada Y, Nagaretani H, Tamura S, Ohama T, Maruyama T, Hiraoka H, Yamashita S, Yamada A, Kiso S, Inui Y, Ito N, Kayanoki Y, Kawata S, Matsuzawa Y. Vascular endothelial dysfunction resulting from l-arginine deficiency in a patient with lysinuric protein intolerance. J Clin Invest 2001. [DOI: 10.1172/jci200111260] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
291
|
Kamada Y, Nagaretani H, Tamura S, Ohama T, Maruyama T, Hiraoka H, Yamashita S, Yamada A, Kiso S, Inui Y, Ito N, Kayanoki Y, Kawata S, Matsuzawa Y. Vascular endothelial dysfunction resulting from L-arginine deficiency in a patient with lysinuric protein intolerance. J Clin Invest 2001; 108:717-24. [PMID: 11544277 PMCID: PMC209374 DOI: 10.1172/jci11260] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Although L-arginine is the only substrate for nitric oxide (NO) production, no studies have yet been reported on the effect of an L-arginine deficiency on vascular function in humans. Lysinuric protein intolerance (LPI) is a rare autosomal recessive defect of dibasic amino acid transport caused by mutations in the SLC7A7 gene, resulting in an L-arginine deficiency. Vascular endothelial function was examined in an LPI patient who was shown to be a compound heterozygote for two mutations in the gene (5.3-kbp Alu-mediated deletion, IVS3+1G-->A). The lumen diameter of the brachial artery was measured in this patient and in healthy controls at rest, during reactive hyperemia (endothelium-dependent vasodilation [EDV]), and after sublingual nitroglycerin administration (endothelium-independent vasodilation [EIV]) using ultrasonography. Both EDV and NO(x) concentrations were markedly reduced in the patient compared with those for the controls. They became normal after an L-arginine infusion. EIV was not significantly different between the patient and controls. Positron emission tomography of the heart and a treadmill test revealed ischemic changes in the patient, which were improved by the L-arginine infusion. Thus, in the LPI patient, L-arginine deficiency caused vascular endothelial dysfunction via a decrease in NO production.
Collapse
Affiliation(s)
- Y Kamada
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Abstract
Nitrite and nitrate have been widely used as markers for nitric oxide (NO) formation in vivo and represent the major NO oxidation products in biological fluids. In the present study, the use of capillary electrophoresis (CE) in the measurement of nitrite and nitrate in human urine is described. Urine samples were electrophoresed in an extended light path fused-silica capillary (104 cm; 75 microm ID) at an applied negative potential of 30 kV, and UV detection at 214 nm. Using electrokinetic sample injection (-6 kV x 20 s), we found that urine concentration, pH, sodium and chloride interfered with nitrite and nitrate detection. The detection of nitrite and nitrate was decreased when hydrodynamic sample injection was used (30 mbar x 60 s). However, basal levels of urinary nitrite (0.25 +/- 0.05 microM) and nitrate (591 +/- 115 microM) were detected and no interference by variations in urine concentration and pH was noted when hydrodynamic sample injection was used. Thus, hydrodynamic sample injection is convenient for the measurement of urinary nitrite and nitrate and avoids the effect of variations in urine matrices and pH on nitrite and nitrate detection.
Collapse
Affiliation(s)
- E Morcos
- Department of Urology, Karolinska Hospital, Stockholm, Sweden.
| | | |
Collapse
|
293
|
Pearson DL, Dawling S, Walsh WF, Haines JL, Christman BW, Bazyk A, Scott N, Summar ML. Neonatal pulmonary hypertension--urea-cycle intermediates, nitric oxide production, and carbamoyl-phosphate synthetase function. N Engl J Med 2001; 344:1832-8. [PMID: 11407344 DOI: 10.1056/nejm200106143442404] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Endogenous production of nitric oxide is vital for the decrease in pulmonary vascular resistance that normally occurs after birth. The precursor of nitric oxide is arginine, a urea-cycle intermediate. We hypothesized that low concentrations of arginine would correlate with the presence of persistent pulmonary hypertension in newborns and that the supply of this precursor would be affected by a functional polymorphism (the substitution of asparagine for threonine at position 1405 [T1405N]) in carbamoyl-phosphate synthetase, which controls the rate-limiting step of the urea cycle. METHODS Plasma concentrations of amino acids and genotypes of the carbamoyl-phosphate synthetase variants were determined in 65 near-term neonates with respiratory distress. Plasma nitric oxide metabolites were measured in a subgroup of 10 patients. The results in infants with pulmonary hypertension, as assessed by echocardiography, were compared with those in infants without pulmonary hypertension. The frequencies of the carbamoyl-phosphate synthetase genotypes in the study population were assessed for Hardy-Weinberg equilibrium. RESULTS As compared with infants without pulmonary hypertension, infants with pulmonary hypertension had lower mean (+/-SD) plasma concentrations of arginine (20.2+/-8.8 vs. 39.8+/-17.0 micromol per liter, P<0.001) and nitric oxide metabolites (18.8+/-12.7 vs. 47.2+/-11.2 micromol per liter, P=0.05). As compared with the general population, the infants in the study had a significantly skewed distribution of the genotypes for the carbamoyl-phosphate synthetase variants at position 1405 (P<0.005). None of the infants with pulmonary hypertension were homozygous for the T1405N polymorphism. CONCLUSIONS Infants with persistent pulmonary hypertension have low plasma concentrations of arginine and nitric oxide metabolites. The simultaneous presence of diminished concentrations of precursors and breakdown products suggests that inadequate production of nitric oxide is involved in the pathogenesis of neonatal pulmonary hypertension. Our preliminary observations suggest that the genetically predetermined capacity of the urea cycle--in particular, the efficiency of carbamoyl-phosphate synthetase--may contribute to the availability of precursors for nitric oxide synthesis.
Collapse
Affiliation(s)
- D L Pearson
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
294
|
Lajoix AD, Reggio H, Chardès T, Péraldi-Roux S, Tribillac F, Roye M, Dietz S, Broca C, Manteghetti M, Ribes G, Wollheim CB, Gross R. A neuronal isoform of nitric oxide synthase expressed in pancreatic beta-cells controls insulin secretion. Diabetes 2001; 50:1311-23. [PMID: 11375331 DOI: 10.2337/diabetes.50.6.1311] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Evidence is presented showing that a neuronal isoform of nitric oxide synthase (NOS) is expressed in rat pancreatic islets and INS-1 cells. Sequencing of the coding region indicated a 99.8% homology with rat neuronal NOS (nNOS) with four mutations, three of them resulting in modifications of the amino acid sequence. Double-immunofluorescence studies demonstrated the presence of nNOS in insulin-secreting beta-cells. Electron microscopy studies showed that nNOS was mainly localized in insulin secretory granules and to a lesser extent in the mitochondria and the nucleus. We also studied the mechanism involved in the dysfunction of the beta-cell response to arginine and glucose after nNOS blockade with N(G)-nitro-L-arginine methyl ester. Our data show that miconazole, an inhibitor of nNOS cytochrome c reductase activity, either alone for the experiments with arginine or combined with sodium nitroprusside for glucose, is able to restore normal secretory patterns in response to the two secretagogues. Furthermore, these results were corroborated by the demonstration of a direct enzyme-substrate interaction between nNOS and cytochrome c, which is strongly reinforced in the presence of the NOS inhibitor. Thus, we provide immunochemical and pharmacological evidence that beta-cell nNOS exerts, like brain nNOS, two catalytic activities: a nitric oxide production and an NOS nonoxidating reductase activity, both of which are essential for normal beta-cell function. In conclusion, we suggest that an imbalance between these activities might be implicated in beta-cell dysregulation involved in certain pathological hyperinsulinic states.
Collapse
Affiliation(s)
- A D Lajoix
- Unité mixte de recherche 5094 du Centre National de la Recherche Scientifique (CNRS), Université Montpellier I, 34060 Montpellier Cedex 1, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Kaposzta Z, Baskerville PA, Madge D, Fraser S, Martin JF, Markus HS. l
-Arginine and
S
-Nitrosoglutathione Reduce Embolization in Humans. Circulation 2001; 103:2371-5. [PMID: 11352886 DOI: 10.1161/01.cir.103.19.2371] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
—
l
-Arginine reduces platelet aggregation and adhesion in ex vivo studies, but there is no evidence as yet that it has a therapeutic effect on clinical end points. Doppler ultrasound can detect cerebral emboli noninvasively. Such embolic signals are common after carotid endarterectomy, and their frequency predicts risk of stroke recurrence. We used this situation to determine the antiplatelet efficacy of
l
-arginine and
S
-nitrosoglutathione (GSNO), a physiological nitric oxide donor with possible platelet specificity.
Methods and Results
—Patients undergoing carotid endarterectomy were randomized in a double-blind manner between
l
-arginine (n=14), GSNO (n=14), or placebo (n=14) administered intravenously for 90 minutes, starting 30 minutes after skin closure. All patients were pretreated with aspirin and given heparin during surgery. Transcranial Doppler recordings were made from the ipsilateral middle cerebral artery for 4 hours after surgery, beginning 30 minutes after skin closure, and also at 6 and 24 hours. There were highly significant reductions in the number of Doppler embolic signals in the
l
-arginine and GSNO groups; first 4 hours, median (range) number of embolic signals, placebo 44.7 (6 to 778),
l
-arginine 9.5 (0 to 225), and GSNO 0.8 (0 to 8), both
P
<0.001 versus control values. The reduction in the signals persisted at the 24-hour recording.
Conclusions
—Intravenous
l
-arginine and GSNO attenuate Doppler embolic signals in humans. Modulation of the NO system with these agents may have applications in the treatment of thromboembolic disease. This study demonstrates the potential application of ultrasonic embolic signal detection to examine the efficacy of new antiplatelet agents in relatively small numbers of patients.
Collapse
Affiliation(s)
- Z Kaposzta
- Clinical Neuroscience, St George's Hospital Medical School, Cranmer Terrace, London
| | | | | | | | | | | |
Collapse
|
296
|
Zhang C, Hein TW, Wang W, Chang CI, Kuo L. Constitutive expression of arginase in microvascular endothelial cells counteracts nitric oxide-mediated vasodilatory function. FASEB J 2001; 15:1264-6. [PMID: 11344108 DOI: 10.1096/fj.00-0681fje] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- C Zhang
- Department of Medical Physiology, Cardiovascular Research Institute, The Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | | | | | | | |
Collapse
|
297
|
Minhas S, Cartledge J, Eardley I. The pathophysiological role of prostaglandins in penile erection. Expert Opin Pharmacother 2001; 2:799-811. [PMID: 11336623 DOI: 10.1517/14656566.2.5.799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Penile erection is a complex haemodynamic event and relaxation of the vascular smooth muscle of the penis is fundamental to this process. This is primarily mediated by nitric oxide (NO) produced from non-adrenergic non-cholinergic (NANC) nerves and the endothelium surrounding the corporal sinusoids. However, corporal tissue has been shown to produce a number of other vasoactive factors, including prostaglandins (PGs), which appear to not only have diverse physiological effects, but are also able to modulate the effects of other neurotransmitters, including NO.
Collapse
Affiliation(s)
- S Minhas
- Pyrah Department of Urology, St James's University Hospital, Leeds, UK
| | | | | |
Collapse
|
298
|
Chung HT, Pae HO, Choi BM, Billiar TR, Kim YM. Nitric oxide as a bioregulator of apoptosis. Biochem Biophys Res Commun 2001; 282:1075-9. [PMID: 11302723 DOI: 10.1006/bbrc.2001.4670] [Citation(s) in RCA: 412] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO), synthesized from l-arginine by NO synthases, is a small, diffusible, highly reactive molecule with dichotomous regulatory roles under physiological and pathological conditions. NO can promote apoptosis (proapoptosis) in some cells, whereas it inhibits apoptosis (antiapoptosis) in other cells. This complexity is a consequence of the rate of NO production and the interaction with biological molecules such as iron, thiols, proteins, and reactive oxygen species. Long-lasting production of NO acts as a proapoptotic modulator by activating caspase family proteases through the release of mitochondrial cytochrome c into the cytosol, upregulation of p53 expression, activation of JNK/SAPK, and altering the expression of apoptosis-associated proteins including Bcl-2 family proteins. However, low or physiological concentrations of NO prevent cells from apoptosis induced by trophic factor withdrawal, Fas, TNFalpha, and lipopolysaccharide. The antiapoptotic mechanism can be understood via expression of protective genes such as heat shock proteins, Bcl-2 as well as direct inhibition of the apoptotic caspase family proteases by S-nitrosylation of the cysteine thiol. Our current understanding of the mechanisms by which NO exerts both pro- and antiapoptotic actions is discussed in this review article.
Collapse
Affiliation(s)
- H T Chung
- Department of Microbiology and Immunology, Wonkwang University, Chunbug, 570-749, Korea.
| | | | | | | | | |
Collapse
|
299
|
Sekiguchi F, Miyake Y, Hirakawa A, Nakahira T, Yamaoka M, Shimamura K, Yamamoto K, Sunano S. Hypertension and impairment of endothelium-dependent relaxation of arteries from spontaneously hypertensive and L-NAME-treated Wistar rats. J Smooth Muscle Res 2001; 37:67-79. [PMID: 11592285 DOI: 10.1540/jsmr.37.67] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Effects of chronic treatment of normotensive Wistar rats with N(omega)-nitro-L-arginine methyl ester (L-NAME) on blood pressure and on endothelium-dependent relaxation of the aorta, carotid and iliac arteries were studied. The endothelium-dependent relaxation was compared in arteries from normotensive Wistar Kyoto rats (WKY) and genetically hypertensive rats (stroke-prone spontaneously hypertensive rats, SHRSP). Chronic treatment of normotensive Wistar rats with L-NAME caused an elevation of blood pressure. The elevated blood pressure at 15 weeks of age was significantly higher in these animals than that of untreated Wistar rats, but lower than that of SHRSP. Endothelium-dependent relaxation of the arteries induced by acetylcholine (ACh) was almost abolished by chronic treatment with L-NAME. The remaining small relaxation in arteries from L-NAME-treated rats was completely inhibited by application of L-NAME (10(-4) M). In such preparations, higher concentrations of ACh induced a contraction, which was abolished by removal of the endothelium or by an application of indomethacin (10(-5) M). Endothelium-independent relaxation induced by sodium nitroprusside was similar between preparations from untreated and L-NAME-treated Wistar rats. Endothelium-dependent relaxation was significantly impaired in preparations from SHRSP, when compared with that in those from WKY. However, the impairment was less prominent in preparations from SHRSP than in those from L-NAME-treated rats. These results suggest that the impairment of endothelium-dependent relaxation in the arteries from L-NAME-treated rats is not due to the elevated blood pressure resulting from the chronic treatment, and that impairment of NO synthesis by the endothelium does not play a major role in the initiation of hypertension in SHRSP.
Collapse
Affiliation(s)
- F Sekiguchi
- Department of Anatomy and Physiology, Faculty of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
300
|
Monroy M, Kuluz JW, He D, Dietrich WD, Schleien CL. Role of nitric oxide in the cerebrovascular and thermoregulatory response to interleukin-1 beta. Am J Physiol Heart Circ Physiol 2001; 280:H1448-53. [PMID: 11247753 DOI: 10.1152/ajpheart.2001.280.4.h1448] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Central administration of interleukin-1 beta (IL-1 beta) increases cerebral blood flow (CBF) and body temperature, in part, through the production of prostaglandins. In previous studies, the temporal relationship between these effects of IL-1 beta have not been measured. In this study, we hypothesized that the increase in CBF occurs before any change in brain or body temperature and that the cerebrovascular and thermoregulatory effects of IL-1 beta would be attenuated by inhibiting the production of nitric oxide (NO). Adult male rats received 100 ng intracerebroventricular (icv) injection of IL-1 beta, and cortical CBF (cCBF) was measured by laser-Doppler in the contralateral cerebral cortex. A central injection of IL-1 beta caused a rapid increase in cCBF to 133 +/- 12% of baseline within 15 min and to an average of 137 +/- 12% for the remainder of the 3-h experiment. Brain and rectal temperature increased by 0.4 +/- 0.2 and 0.5 +/- 0.2 degrees C, but not until 45 min after IL-1 beta administration. Pretreatment with N(omega)-nitro-L-arginine methyl ester (L-NAME; 5 mg/kg iv) completely prevented the changes in cCBF and brain and rectal temperature induced by IL-1 beta. L-Arginine (150 mg/kg iv) partially reversed the effects of L-NAME and resulted in increases in both cCBF and temperature. These findings suggest that the vasodilatory effects of IL-1 beta in the cerebral vasculature are independent of temperature and that NO plays a major role in both the cerebrovascular and thermoregulatory effects of centrally administered IL-1 beta.
Collapse
Affiliation(s)
- M Monroy
- Department of Pediatrics, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | | | |
Collapse
|