251
|
Grinnell F, Ho CH, Tamariz E, Lee DJ, Skuta G. Dendritic fibroblasts in three-dimensional collagen matrices. Mol Biol Cell 2003; 14:384-95. [PMID: 12589041 PMCID: PMC149979 DOI: 10.1091/mbc.e02-08-0493] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cell motility determines form and function of multicellular organisms. Most studies on fibroblast motility have been carried out using cells on the surfaces of culture dishes. In situ, however, the environment for fibroblasts is the three-dimensional extracellular matrix. In the current research, we studied the morphology and motility of human fibroblasts embedded in floating collagen matrices at a cell density below that required for global matrix remodeling (i.e., contraction). Under these conditions, cells were observed to project and retract a dendritic network of extensions. These extensions contained microtubule cores with actin concentrated at the tips resembling growth cones. Platelet-derived growth factor promoted formation of the network; lysophosphatidic acid stimulated its retraction in a Rho and Rho kinase-dependent manner. The dendritic network also supported metabolic coupling between cells. We suggest that the dendritic network provides a mechanism by which fibroblasts explore and become interconnected to each other in three-dimensional space.
Collapse
Affiliation(s)
- Frederick Grinnell
- Department of Cell Biology, University of Texas Southwestern Medical School, Dallas 75390-9039, USA.
| | | | | | | | | |
Collapse
|
252
|
Fuller CL, Braciale VL, Samelson LE. All roads lead to actin: the intimate relationship between TCR signaling and the cytoskeleton. Immunol Rev 2003; 191:220-36. [PMID: 12614363 DOI: 10.1034/j.1600-065x.2003.00004.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Regardless of cell type, the regulation of the actin cytoskeleton is tightly linked to vital biological properties such as polarity, motility, cell-cell contact, exocytosis and proliferation. In the immune system, where rapid and efficient response to antigen-provoked stimuli is crucial, an overwhelming amount of data implicate the actin cytoskeleton and its regulators as central to immune function. Increasingly, the cytoskeleton is considered an essential amplification step in T cell receptor (TCR)-, costimulatory-, and integrin-mediated signaling. Advances in genetic manipulation and confocal imaging have led to a keener appreciation of the importance of TCR signal integration by the actin cytoskeleton. This review outlines recent advances in elucidating the regulation of T cell function through the actin cytoskeleton. We also examine intriguing parallels between the immune system and other models of cytoskeletal regulation.
Collapse
Affiliation(s)
- Claudette L Fuller
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | | | | |
Collapse
|
253
|
Nozumi M, Nakagawa H, Miki H, Takenawa T, Miyamoto S. Differential localization of WAVE isoforms in filopodia and lamellipodia of the neuronal growth cone. J Cell Sci 2003; 116:239-46. [PMID: 12482910 DOI: 10.1242/jcs.00233] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The formation and extension of filopodia in response to an extracellular stimulus by guidance cues determine the path of growth cone advance. Actin-filament bundling and actin polymerization at the tips supply the driving force behind the formation and elongation. We tried to clarify how signals in response to extracellular cues are transformed to induce filopodial generation and extension. Observations on the formation process of filopodia at growth cones in the neuroblastoma cell line NG108 showed that WAVE (WASP (Wiskott-Aldrich syndrome protein)-family verprolin homologous protein) isoforms played crucial and distinct roles in this process. WAVE1 was continuously distributed along the leading edge only and was not found in the filopodia. WAVE2 and WAVE3 discretely localized at the initiation sites of microspikes on the leading edge and also concentrated at the tips of protruding filopodia. We further found that WAVE isoforms localized at the filopodial tips through SHD (SCAR homology domain), next to its leucine zipper-like motif. Furthermore, time-lapse observations of filopodial formation in living cells showed that WAVE2 and WAVE3 were continuously expressed at the tips of filopodia during elongation. These results indicate that WAVE2 or WAVE3 may guide the actin bundles into the filopodia and promote actin assembly at the tips.
Collapse
Affiliation(s)
- Motohiro Nozumi
- Department of Biochemical Science, Kyushu Institute of Technology, 680-4 Kawatsu, lizuka, Fukuoka 820-8502, Japan
| | | | | | | | | |
Collapse
|
254
|
Samstag Y, Eibert SM, Klemke M, Wabnitz GH. Actin cytoskeletal dynamics in T lymphocyte activation and migration. J Leukoc Biol 2003; 73:30-48. [PMID: 12525560 DOI: 10.1189/jlb.0602272] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dynamic rearrangements of the actin cytoskeleton are crucial for the function of numerous cellular elements including T lymphocytes. They are required for migration of T lymphocytes through the body to scan for the presence of antigens, as well as for the formation and stabilization of the immunological synapse at the interface between antigen-presenting cells and T lymphocytes. Supramolecular activation clusters within the immunological synapse play an important role for the initiation of T cell responses and for the execution of T cell effector functions. In addition to the T cell receptor/CD3 induced actin nucleation via Wasp/Arp2/3-activation, signals through accessory receptors of the T cell (i.e., costimulation) regulate actin cytoskeletal dynamics. In this regard, the actin-binding proteins cofilin and L-plastin represent prominent candidates linking accessory receptor stimulation to the rearrangement of the actin cytoskeleton. Cofilin enhances actin polymerization via its actin-severing activity, and as a long-lasting effect, cofilin generates novel actin monomers through F-actin depolymerization. L-plastin stabilizes actin filament structures by means of its actin-bundling activity.
Collapse
Affiliation(s)
- Yvonne Samstag
- Institute for Immunology, Ruprecht-Karls-University, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
255
|
Wehrle-Haller B, Imhof BA. Actin, microtubules and focal adhesion dynamics during cell migration. Int J Biochem Cell Biol 2003; 35:39-50. [PMID: 12467646 DOI: 10.1016/s1357-2725(02)00071-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cell migration is a complex cellular behavior that results from the coordinated changes in the actin cytoskeleton and the controlled formation and dispersal of cell-substrate adhesion sites. While the actin cytoskeleton provides the driving force at the cell front, the microtubule network assumes a regulatory function in coordinating rear retraction. The polarity within migrating cells is further highlighted by the stationary behavior of focal adhesions in the front and their sliding in trailing ends. We discuss here the cross-talk of the actin cytoskeleton with the microtubule network and the potential mechanisms that control the differential behavior of focal adhesions sites during cell migration.
Collapse
Affiliation(s)
- Bernhard Wehrle-Haller
- Department of Pathology, Centre Médical Universitaire, 1 Rue Michel-Servet, 1211 4, Geneva, Switzerland.
| | | |
Collapse
|
256
|
Ledesma MD, Dotti CG. Membrane and cytoskeleton dynamics during axonal elongation and stabilization. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 227:183-219. [PMID: 14518552 DOI: 10.1016/s0074-7696(03)01010-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Proper nervous activities are gradually developing events. Reflecting this, embryonic neurons start differentiation by sprouting multiple extensions, neurites, which do not bear clear axonal or dendritic structural and molecular characteristics. Later in development one of these multiple neurites elongates further, generating a morphologically polarized neuron with a single long axon and many short dendrites. Still, despite such morphological differences these processes can switch destiny, further reflecting their immaturity. Final and irreversible axonal and dendritic commitment occurs after both axons and dendrites have elongated considerably. Recent evidence suggests that the transition from axonal immaturity to maturity reflects changes in the mechanisms used by neurons to control the precise membrane and cytoskeleton polarization. This chapter provides an overview of how these mechanisms contribute to the formation of an axon.
Collapse
Affiliation(s)
- Maria Dolores Ledesma
- Cavalieri Ottolenghi Scientific Institute, Universita degli Studi di Torino, Orbassano, Turin, Italy
| | | |
Collapse
|
257
|
Abstract
The conversion of physical signals, such as contractile forces or external mechanical perturbations, into chemical signaling events is a fundamental cellular process that occurs at cell-extracellular matrix contacts, known as focal adhesions. At these sites, transmembrane integrin receptors are associated via their cytoplasmic domains with the actin cytoskeleton. This interaction with actin is mediated by a submembrane plaque, consisting of numerous cytoskeletal and signaling molecules. Application of intrinsic or external forces to these structures dramatically affects their assembly and triggers adhesion-mediated signaling. In this review, we discuss the structure-function relationships of focal adhesions and the possible mode of action of the putative mechanosensor associated with them. We also discuss the general phenomenon of mechanosensitivity, and the approaches used to measure local forces at adhesion sites, the cytoskeleton-mediated regulation of local contractility, and the nature of the signaling networks that both affect contractility and are affected by it.
Collapse
Affiliation(s)
- Alexander D Bershadsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | |
Collapse
|
258
|
Denker SP, Barber DL. Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J Cell Biol 2002; 159:1087-96. [PMID: 12486114 PMCID: PMC2173980 DOI: 10.1083/jcb.200208050] [Citation(s) in RCA: 349] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Directed cell movement is a multi-step process requiring an initial spatial polarization that is established by asymmetric stimulation of Rho GTPases, phosphoinositides (PIs), and actin polymerization. We report that the Na-H exchanger isoform 1 (NHE1), a ubiquitously expressed plasma membrane ion exchanger, is necessary for establishing polarity in migrating fibroblasts. In fibroblasts, NHE1 is predominantly localized in lamellipodia, where it functions as a plasma membrane anchor for actin filaments by its direct binding of ezrin/radixin/moesin (ERM) proteins. Migration in a wounding assay was impaired in fibroblasts expressing NHE1 with mutations that independently disrupt ERM binding and cytoskeletal anchoring or ion transport. Disrupting either function of NHE1 impaired polarity, as indicated by loss of directionality, mislocalization of the Golgi apparatus away from the orientation of the wound edge, and inhibition of PI signaling. Both functions of NHE1 were also required for remodeling of focal adhesions. Most notably, lack of ion transport inhibited de-adhesion, resulting in trailing edges that failed to retract. These findings indicate that by regulating asymmetric signals that establish polarity and by coordinating focal adhesion remodeling at the cell front and rear, cytoskeletal anchoring by NHE1 and its localized activity in lamellipodia act cooperatively to integrate cues for directed migration.
Collapse
Affiliation(s)
- Sheryl P Denker
- Department of Stomatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
259
|
Severson AF, Baillie DL, Bowerman B. A Formin Homology protein and a profilin are required for cytokinesis and Arp2/3-independent assembly of cortical microfilaments in C. elegans. Curr Biol 2002; 12:2066-75. [PMID: 12498681 DOI: 10.1016/s0960-9822(02)01355-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND F-actin is enriched at the cortex of embryonic cells in the nematode Caenorhabditis elegans and is required for multiple processes that include the establishment of an anterior-posterior (A-P) axis and cytokinesis. However, the mechanisms that regulate cortical microfilament (MF) assembly remain poorly understood. RESULTS We show here that a profilin called PFN-1 accumulates at the cortex independent of the actin cytoskeleton and is required for the assembly or maintenance of cortical MFs and myosin. Reducing PFN-1 levels by RNAi results in cytokinesis and A-P polarity defects. PFN-1 binds to the Formin Homology (FH) protein CYK-1, which also is required for cortical MFs. In contrast to PFN-1 and CYK-1, the Arp2/3 complex appears to be dispensable for the assembly of cortical MFs, for A-P polarity, and for cytokinesis. Instead, the Arp2/3 complex is required for cell migrations that occur during gastrulation and may also be involved in cellular rearrangements required for epidermal enclosure prior to elongation of ovoid embryos into vermiform larvae. CONCLUSIONS We conclude that the FH protein CYK-1 and the profilin PFN-1 mediate the Arp2/3-independent assembly of MFs and are required for cytokinesis in the early embryo. These data suggest that CYK-1 and PFN-1 may nucleate MFs, as has recently been shown for an FH protein and a profilin in yeast.
Collapse
Affiliation(s)
- Aaron F Severson
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | |
Collapse
|
260
|
Ehrlicher A, Betz T, Stuhrmann B, Koch D, Milner V, Raizen MG, Kas J. Guiding neuronal growth with light. Proc Natl Acad Sci U S A 2002; 99:16024-8. [PMID: 12456879 PMCID: PMC138558 DOI: 10.1073/pnas.252631899] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2002] [Accepted: 10/17/2002] [Indexed: 11/18/2022] Open
Abstract
Control over neuronal growth is a fundamental objective in neuroscience, cell biology, developmental biology, biophysics, and biomedicine and is particularly important for the formation of neural circuits in vitro, as well as nerve regeneration in vivo [Zeck, G. & Fromherz, P. (2001) Proc. Natl. Acad. Sci. USA 98, 10457-10462]. We have shown experimentally that we can use weak optical forces to guide the direction taken by the leading edge, or growth cone, of a nerve cell. In actively extending growth cones, a laser spot is placed in front of a specific area of the nerve's leading edge, enhancing growth into the beam focus and resulting in guided neuronal turns as well as enhanced growth. The power of our laser is chosen so that the resulting gradient forces are sufficiently powerful to bias the actin polymerization-driven lamellipodia extension, but too weak to hold and move the growth cone. We are therefore using light to control a natural biological process, in sharp contrast to the established technique of optical tweezers [Ashkin, A. (1970) Phys. Rev. Lett. 24, 156-159; Ashkin, A. & Dziedzic, J. M. (1987) Science 235, 1517-1520], which uses large optical forces to manipulate entire structures. Our results therefore open an avenue to controlling neuronal growth in vitro and in vivo with a simple, noncontact technique.
Collapse
Affiliation(s)
- A Ehrlicher
- Center for Nonlinear Dynamics, Department of Physics, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|
261
|
DeMali KA, Barlow CA, Burridge K. Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion. J Cell Biol 2002; 159:881-91. [PMID: 12473693 PMCID: PMC2173392 DOI: 10.1083/jcb.200206043] [Citation(s) in RCA: 320] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell migration involves many steps, including membrane protrusion and the development of new adhesions. Here we have investigated whether there is a link between actin polymerization and integrin engagement. In response to signals that trigger membrane protrusion, the actin-related protein (Arp)2/3 complex transiently binds to vinculin, an integrin-associated protein. The interaction is regulated, requiring phosphatidylinositol-4,5-bisphosphate and Rac1 activation, and is sufficient to recruit the Arp2/3 complex to new sites of integrin aggregation. Binding of the Arp2/3 complex to vinculin is direct and does not depend on the ability of vinculin to associate with actin. We have mapped the binding site for the Arp2/3 complex to the hinge region of vinculin, and a point mutation in this region selectively blocks binding to the Arp2/3 complex. Compared with WT vinculin, expression of this mutant in vinculin-null cells results in diminished lamellipodial protrusion and spreading on fibronectin. The recruitment of the Arp2/3 complex to vinculin may be one mechanism through which actin polymerization and membrane protrusion are coupled to integrin-mediated adhesion.
Collapse
Affiliation(s)
- Kris A DeMali
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
262
|
Rombouts K, Knittel T, Machesky L, Braet F, Wielant A, Hellemans K, De Bleser P, Gelman I, Ramadori G, Geerts A. Actin filament formation, reorganization and migration are impaired in hepatic stellate cells under influence of trichostatin A, a histone deacetylase inhibitor. J Hepatol 2002; 37:788-96. [PMID: 12445420 DOI: 10.1016/s0168-8278(02)00275-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Previously, trichostatin A (TSA), a histone deacetylase inhibitor, has been shown to exhibit strong antifibrotic characteristics in hepatic stellate cells (HSC), which are known to play a central role in chronic liver diseases. TSA retained a more quiescent phenotype in spite of culture conditions that favor transdifferentiation into activated HSC. METHODS To identify TSA-sensitive genes, differential mRNA display, Northern and Western blot analysis were used and genes were functionally validated by using contraction and motility assays. RESULTS TSA prevented new actin filament formation by down-regulation of two nucleating proteins, actin related protein 2 (Arp2) and Arp3, and by up-regulation of adducin like protein 70 (ADDL70) and gelsolin, two capping proteins. RhoA, a key mediator in the development of the actin cytoskeleton, decreased following TSA exposure. Expression of proteins of Class III intermediate filaments was affected by TSA. Furthermore, F-actin and G-actin were expressed heterogeneously under influence of TSA. Functionally, TSA treatment abrogated migration of quiescent HSC, while migration was reduced in transitional HSC. The endothelin-1-induced contractility properties of HSC was not affected by TSA. CONCLUSIONS These data indicate that TSA affects the development of the actin cytoskeleton in quiescent HSC and thereby abrogates the process of HSC transdifferentiation.
Collapse
Affiliation(s)
- Krista Rombouts
- Laboratory for Molecular Liver Cell Biology, Faculty of Medicine and Pharmacy, Free University of Brussels (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
263
|
DesMarais V, Ichetovkin I, Condeelis J, Hitchcock-DeGregori SE. Spatial regulation of actin dynamics: a tropomyosin-free, actin-rich compartment at the leading edge. J Cell Sci 2002; 115:4649-60. [PMID: 12415009 DOI: 10.1242/jcs.00147] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid polymerization of a network of short, branched actin filaments takes place at the leading edge of migrating cells, a compartment enriched in activators of actin polymerization such as the Arp2/3 complex and cofilin. Actin filaments elsewhere in the cell are long and unbranched. Results reported here show that the presence or absence of tropomyosin in these different actin-containing regions helps establish functionally distinct actin-containing compartments in the cell. Tropomyosin, an inhibitor of the Arp2/3 complex and cofilin function, was localized in relation to actin filaments, the Arp2/3 complex, and free barbed ends of actin filaments in MTLn3 cells, which rapidly extend flat lamellipodia following EGF stimulation. All tropomyosin isoforms examined using indirect immunofluorescence were relatively absent from the dynamic leading edge compartment, but did colocalize with actin structures deeper in the lamellipodium and in stress fibers. An in vitro light microscopy assay revealed that tropomyosin protects actin filaments from cofilin severing. The results suggest that tropomyosin-free actin filaments under the membrane can participate in rapid, dynamic processes that depend on interactions between the activities of the Arp2/3 complex and ADF/cofilin that tropomyosin inhibits elsewhere in the cell.
Collapse
Affiliation(s)
- Vera DesMarais
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
264
|
Okada K, Blanchoin L, Abe H, Chen H, Pollard TD, Bamburg JR. Xenopus actin-interacting protein 1 (XAip1) enhances cofilin fragmentation of filaments by capping filament ends. J Biol Chem 2002; 277:43011-6. [PMID: 12055192 DOI: 10.1074/jbc.m203111200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Xenopus actin-interacting protein 1 (XAip1) is thought to promote fragmentation of actin filaments by cofilin. To examine the mechanism of XAip1, we measured polymer lengths by fluorescence microscopy and the concentration of filament ends with an elongation assay. Cofilin creates ends by severing actin filaments. XAip1 alone does not sever actin filaments or prevent annealing/redistribution of mechanically severed filaments and has no effect on the concentration of ends available for subunit addition. In the presence of XAip1, the apparent filament fragmentation by cofilin is enhanced, but XAip1 reduces rather than increases the concentration of ends capable of adding subunits. Electron microscopy with gold-labeled antibodies showed that a low concentration of XAip1 bound preferentially to one end of the filament. A high concentration of XAip1 bound along the length of the filament. In the presence of gelsolin-actin to cap filament barbed ends, XAip1 does not enhance cofilin activity. We conclude that XAip1 caps the barbed end of filaments severed by cofilin. This capping blocks annealing and depolymerization and allows more extensive severing by cofilin.
Collapse
Affiliation(s)
- Kyoko Okada
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | |
Collapse
|
265
|
Ricciardi-Castagnoli P, Granucci F. Opinion: Interpretation of the complexity of innate immune responses by functional genomics. Nat Rev Immunol 2002; 2:881-9. [PMID: 12415311 DOI: 10.1038/nri936] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Understanding how the immune system is regulated and responds to pathogens will require whole-system approaches, because the study of single immunological parameters has, so far, been unable to unlock immune-system complexity. Global transcription analysis using microarray technologies provides a new approach to the description of complex biological phenomena. Here, we discuss insights into innate immunity that have been provided by genome-wide approaches and their impact on the interpretation of immune-system complexity.
Collapse
Affiliation(s)
- Paola Ricciardi-Castagnoli
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, Milan, Italy.
| | | |
Collapse
|
266
|
Biernat J, Wu YZ, Timm T, Zheng-Fischhöfer Q, Mandelkow E, Meijer L, Mandelkow EM. Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Mol Biol Cell 2002; 13:4013-28. [PMID: 12429843 PMCID: PMC133611 DOI: 10.1091/mbc.02-03-0046] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein kinases of the microtubule affinity-regulating kinase (MARK) family were originally discovered because of their ability to phosphorylate certain sites in tau protein (KXGS motifs in the repeat domain). This type of phosphorylation is enhanced in abnormal tau from Alzheimer brain tissue and causes the detachment of tau from microtubules. MARK-related kinases (PAR-1 and KIN1) occur in various organisms and are involved in establishing and maintaining cell polarity. Herein, we report the ability of MARK2 to affect the differentiation and outgrowth of cell processes from neuroblastoma and other cell models. MARK2 phosphorylates tau protein at the KXGS motifs; this results in the detachment of tau from microtubules and their destabilization. The formation of neurites in N2a cells is blocked if MARK2 is inactivated, either by transfecting a dominant negative mutant, or by MARK2 inhibitors such as hymenialdisine. Alternatively, neurites are blocked if the target KXGS motifs on tau are rendered nonphosphorylatable by point mutations. The results suggest that MARK2 contributes to the plasticity of microtubules needed for neuronal polarity and the growth of neurites.
Collapse
Affiliation(s)
- Jacek Biernat
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
267
|
Tachado SD, Mayhew MW, Wescott GG, Foreman TL, Goodwin CD, McJilton MA, Terrian DM. Regulation of tumor invasion and metastasis in protein kinase C epsilon-transformed NIH3T3 fibroblasts. J Cell Biochem 2002; 85:785-97. [PMID: 11968018 DOI: 10.1002/jcb.10164] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Protein kinase C epsilon is an oncogenic, actin nucleating protein that coordinately regulates changes in cell growth and shape. Cells constitutively expressing PKCepsilon spontaneously acquire a polarized morphology and extend long cellular membrane protrusions. Here we report that the regulatory C1 domain of PKCepsilon contains an actin binding site that is essential for the formation of elongate invadopodial-like structures, increased pericellular metalloproteinase activity, in vitro invasion of a Matrigel barrier, and the invasion and metastasis of tumors grown in vivo by PKCepsilon-transformed NIH3T3 fibroblasts in nude mice. While removing this small actin binding motif caused a dramatic reversion of tumor invasion, the deletion mutant of PKCepsilon remained oncogenic and tumorigenic in this experimental system. We propose that PKCepsilon directly interacts with actin to stimulate polymerization and the extension of membrane protrusions that transformed NIH3T3 cells use in vivo to penetrate and degrade surrounding tissue boundaries.
Collapse
Affiliation(s)
- Souvenir D Tachado
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27858, USA
| | | | | | | | | | | | | |
Collapse
|
268
|
Abstract
The ability to sense and respond to shallow gradients of extracellular signals is remarkably similar in Dictyostelium discoideum amoebae and mammalian leukocytes. Chemoattractant receptors and G proteins are fairly evenly distributed along the cell surface. Receptor occupancy generates local excitatory and global inhibitory processes that balance to control the chemotactic response. Uniform stimuli transiently recruit PI3Ks to, and release PTEN from, the plasma membrane, while gradients of chemoattractant cause the two enzymes to bind to the membrane at the front and back of the cell, respectively. Interference with PI3Ks alters chemotaxis, and disruption of PTEN broadens PI localization and actin polymerization in parallel. Thus, counteracting signals from the upstream elements of the pathway converge to regulate the key enzymes of PI metabolism, localize these lipids, and direct pseudopod formation.
Collapse
Affiliation(s)
- Miho Iijima
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
269
|
Kruse K, Sekimoto K. Growth of fingerlike protrusions driven by molecular motors. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2002; 66:031904. [PMID: 12366149 DOI: 10.1103/physreve.66.031904] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2002] [Revised: 05/23/2002] [Indexed: 05/23/2023]
Abstract
The actin cortex is an important part of the motile machinery of a eucaryotic cell. The cortex is steadily reorganized, for example, through the action of molecular motors forming active crosslinks between pairs of actin filaments. Here, the effect of correlations between molecular motors on the induced relative motion of two aligned filaments is investigated. It is found that the average relative velocity between filaments depends nonmonotonically on the motor concentration. Depending on the properties of the filaments' ends, the active interaction between filaments of the same orientation may lead either to a complete overlap or to separation. In addition to pure actin polymerization the active separation of filaments might be involved in the growth of long fingerlike protrusions (filopods).
Collapse
Affiliation(s)
- K Kruse
- Institut Curie, Physicochimie, UMR CNRS/IC 168, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | |
Collapse
|
270
|
|
271
|
da Silva JS, Dotti CG. Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 2002; 3:694-704. [PMID: 12209118 DOI: 10.1038/nrn918] [Citation(s) in RCA: 356] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The sprouting of neurites, which will later become axons and dendrites, is an important event in early neuronal differentiation. Studies in living neurons indicate that neuritogenesis begins immediately after neuronal commitment, with the activation of membrane receptors by extracellular cues. These receptors activate intracellular cascades that trigger changes in the actin cytoskeleton, which promote the initial breakdown of symmetry. Then, through the regulation of gene transcription, and of microtubule and membrane dynamics, the newly formed neurite becomes stabilized. A key challenge is to define the molecular machinery that regulates the actin cytoskeleton during initial neurite sprouting. We propose that analysing the molecules involved in actin-dependent mechanisms in non-neuronal systems, such as budding yeast and migrating fibroblasts, could help to uncover the secrets of neuritogenesis.
Collapse
Affiliation(s)
- Jorge Santos da Silva
- Cavalieri Ottolenghi Scientific Institute, Universita Degli Studi di Torino, A.O. San Luigi Gonzaga, Regione Gonzole 10, 10024 Orbassano, Torino, Italy
| | | |
Collapse
|
272
|
Weaver AM, Heuser JE, Karginov AV, Lee WL, Parsons JT, Cooper JA. Interaction of cortactin and N-WASp with Arp2/3 complex. Curr Biol 2002; 12:1270-8. [PMID: 12176354 DOI: 10.1016/s0960-9822(02)01035-7] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Dynamic actin assembly is required for diverse cellular processes and often involves activation of Arp2/3 complex. Cortactin and N-WASp activate Arp2/3 complex, alone or in concert. Both cortactin and N-WASp contain an acidic (A) domain that is required for Arp2/3 complex binding. RESULTS We investigated how cortactin and the constitutively active VCA domain of N-WASp interact with Arp2/3 complex. Structural studies showed that cortactin is a thin, elongated monomer. Chemical crosslinking studies demonstrated selective interaction of the Arp2/3 binding NTA domain of cortactin (cortactin NTA) with the Arp3 subunit and VCA with Arp3, Arp2, and ARPC1/p40. Cortactin NTA and VCA crosslinking to the Arp3 subunit were mutually exclusive; however, cortactin NTA did not inhibit VCA crosslinking to Arp2 or ARPC1/p40, nor did it inhibit activation of Arp2/3 complex by VCA. We conducted an experiment in which a saturating concentration of cortactin NTA modestly lowered the binding affinity of VCA for Arp2/3; the results of this experiment provided further evidence for ternary complex formation. Consistent with a common binding site on Arp3, a saturating concentration of VCA abolished binding of cortactin to Arp2/3 complex. CONCLUSIONS Under certain circumstances, cortactin and N-WASp can bind simultaneously to Arp2/3 complex, accounting for their synergy in activation of actin assembly. The interaction of cortactin NTA with Arp2/3 complex does not inhibit Arp2/3 activation by N-WASp, despite competition for a common binding site located on the Arp3 subunit. These results suggest a model in which cortactin may bridge Arp2/3 complex to actin filaments via Arp3 and N-WASp activates Arp2/3 complex by binding Arp2 and/or ARPC1/p40.
Collapse
Affiliation(s)
- Alissa M Weaver
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
273
|
Tseng BS, Zhao P, Pattison JS, Gordon SE, Granchelli JA, Madsen RW, Folk LC, Hoffman EP, Booth FW. Regenerated mdx mouse skeletal muscle shows differential mRNA expression. J Appl Physiol (1985) 2002; 93:537-45. [PMID: 12133862 DOI: 10.1152/japplphysiol.00202.2002] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite over 3,000 articles published on dystrophin in the last 15 years, the reasons underlying the progression of the human disease, differential muscle involvement, and disparate phenotypes in different species are not understood. The present experiment employed a screen of 12,488 mRNAs in 16-wk-old mouse mdx muscle at a time when the skeletal muscle is avoiding severe dystrophic pathophysiology, despite the absence of a functional dystrophin protein. A number of transcripts whose levels differed between the mdx and human Duchenne muscular dystrophy were noted. A fourfold decrease in myostatin mRNA in the mdx muscle was noted. Differential upregulation of actin-related protein 2/3 (subunit 4), beta-thymosin, calponin, mast cell chymase, and guanidinoacetate methyltransferase mRNA in the more benign mdx was also observed. Transcripts for oxidative and glycolytic enzymes in mdx muscle were not downregulated. These discrepancies could provide candidates for salvage pathways that maintain skeletal muscle integrity in the absence of a functional dystrophin protein in mdx skeletal muscle.
Collapse
Affiliation(s)
- B S Tseng
- Division of Child Neurology, Department of Neurology, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Abstract
Rap1 is a monomeric GTPase that is closely related to Ras. In this review, we summarize our recent work showing that the B cell antigen receptor (BCR), as well as chemokine receptors, activate Rap1 via a pathway that involves phospholipase C-dependent production of diacylglycerol (DAG). The possible identities of the DAG-regulated guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that regulate the activation of Rap1 by the BCR and chemokine receptors will be discussed. Although initially thought to be an antagonist of Ras-mediated signaling, Rap1 does not appear to modulate the ability of the BCR to activate downstream targets of Ras. Instead, activation of Rap1 promotes B cell adhesion as well as B cell migration toward chemokines. Thus, Rap1 may play a key role in a number of processes that are essential for B cell development and activation.
Collapse
Affiliation(s)
- S J McLeod
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
275
|
Jones GE, Zicha D, Dunn GA, Blundell M, Thrasher A. Restoration of podosomes and chemotaxis in Wiskott-Aldrich syndrome macrophages following induced expression of WASp. Int J Biochem Cell Biol 2002; 34:806-15. [PMID: 11950596 DOI: 10.1016/s1357-2725(01)00162-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We used a direct-viewing (Dunn) chemotaxis chamber to analyse the chemotactic responses of human normal and Wiskott-Aldrich syndrome (WAS) macrophages to the cytokine colony stimulating factor-1 (CSF-1). In five patients with classic WAS, where specialised adhesion complexes called podosomes are absent, chemotaxis of macrophages was abolished. The deficient chemotactic responses of WAS macrophages following cytokine stimulation could be correlated with abnormalities in cell polarisation and actin organisation. In a series of cell microinjection studies we found that normal chemotactic responses were restored in WASp macrophages transfected with a full-length human WAS construct. Expression of exogenous WAS protein (WASp) in these cells also restored normal polarised cell morphology and the ability to form podosomes.
Collapse
Affiliation(s)
- Gareth E Jones
- The Randall Centre, King's College London, London SE1 1UL, UK.
| | | | | | | | | |
Collapse
|
276
|
Li Z, Kim ES, Bearer EL. Arp2/3 complex is required for actin polymerization during platelet shape change. Blood 2002; 99:4466-74. [PMID: 12036877 PMCID: PMC3376088 DOI: 10.1182/blood.v99.12.4466] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelets undergo a series of actin-dependent morphologic changes when activated by thrombin receptor activating peptide (TRAP) or when spreading on glass. Polymerization of actin results in the sequential formation of filopodia, lamellipodia, and stress fibers, but the molecular mechanisms regulating this polymerization are unknown. The Arp2/3 complex nucleates actin polymerization in vitro and could perform this function inside cells as well. To test whether Arp2/3 regulated platelet actin polymerization, we used recombinant Arp2 protein (rArp2) to generate Arp2-specific antibodies (alpha Arp2). Intact and Fab fragments of alpha Arp2 inhibited TRAP-stimulated actin-polymerizing activity in platelet extracts as measured by the pyrene assay. Inhibition was reversed by the addition of rArp2 protein. To test the effect of Arp2/3 inhibition on the formation of specific actin structures, we designed a new method to permeabilize resting platelets while preserving their ability to adhere and to form filopodia and lamellipodia on exposure to glass. Inhibition of Arp2/3 froze platelets at the rounded, early stage of activation, before the formation of filopodia and lamellipodia. By morphometric analysis, the proportion of platelets in the rounded stage rose from 2.85% in untreated to 63% after treatment with alpha Arp2. This effect was also seen with Fab fragments and was reversed by the addition of rArp2 protein. By immunofluorescence of platelets at various stages of spreading, the Arp2/3 complex was found in filopodia and lamellipodia. These results suggest that activation of the Arp2/3 complex at the cortex by TRAP stimulation initiates an explosive polymerization of actin filaments that is required for all subsequent actin-dependent events.
Collapse
Affiliation(s)
- Zhi Li
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
277
|
Abstract
Uptake of microorganisms by eukaryotic cells depends on proper functioning of the actin machinery. It creates a driving force for the cell membrane deformations necessary for ingestion and killing of microbes by phagocytes. Therefore, specific alterations in the activity of the actin apparatus could be favorable for pathogenic bacteria, representing an efficient mechanism in their virulence. Such alterations are supposed to be achieved in two principle ways. One is accomplished via binding of bacterial ligands to certain surface receptors, which initiate subsequent actin cytoskeleton rearrangements. Another is to introduce cytoskeleton-targeted products directly into eukaryotic cells and in this way modulate the activity of the actin apparatus. Indeed, Legionella and some other intracellular parasites possess ligands able to stimulate certain receptors on the surface of phagocytes and possess devices suitable for translocation of effector molecules into eukaryotic cytoplasm. The results of such events could be increased uptake of these microbes and their subsequent transportation to permit multiplication in their intracellular niche. On the contrary, representatives of Clostridium and a number of other extracellular pathogens create products which penetrate eukaryotic cells and disorganize the actin cytoskeleton network, thus making uptake of these pathogens by phagocytes impossible.
Collapse
Affiliation(s)
- Iouri F Belyi
- Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia.
| |
Collapse
|
278
|
Abstract
Engagement of the T cell antigen receptor (TCR) leads to a complex series of molecular changes at the plasma membrane, in the cytoplasm, and at the nucleus that lead ultimately to T cell effector function. Activation at the TCR of a set of protein tyrosine kinases (PTKs) is an early event in this process. This chapter reviews some of the critical substrates of these PTKs, the adapter proteins that, following phosphorylation on tyrosine residues, serve as binding sites for many of the critical effector enzymes and other adapter proteins required for T cell activation. The role of these adapters in binding various proteins, the interaction of adapters with plasma membrane microdomains, and the function of adapter proteins in control of the cytoskeleton are discussed.
Collapse
Affiliation(s)
- Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 1E24, Bethesda, Maryland, 20892-4255, USA.
| |
Collapse
|
279
|
Guvakova MA, Boettiger D, Adams JC. Induction of fascin spikes in breast cancer cells by activation of the insulin-like growth factor-I receptor. Int J Biochem Cell Biol 2002; 34:685-98. [PMID: 11943599 DOI: 10.1016/s1357-2725(01)00160-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Insulin-like growth factor-I receptor (IGF-IR) signaling contributes to the formation of mammary carcinomas and has chiefly been studied with regard to the proliferative and anti-apoptotic effects of IGF-IR signaling. However, IGF-IR activation also affects the actin cytoskeleton and alterations in cell migratory behavior are of known importance for the malignant conversion and metastasis of epithelial cells. The actin-binding protein fascin is found in cell projections and spikes that are involved in the locomotion of mesenchymal cells. Fascin expression is typically low in normal epithelial cells, but is markedly upregulated in several types of carcinomas. Here, we also demonstrate increased fascin expression in breast carcinoma cell lines and adopt MCF-7 human mammary carcinoma cells that over-express wild-type or kinase-inactivated forms of the IGF-IR as a model system to test the hypothesis that IGF-IR activation induces fascin projections. We show that the time-dependent dissociation of cell colonies that occurs upon receptor activation by IGF-I involves the formation of dynamic, fascin-containing lateral cell projections that co-localize with ruffling membranes in association with protrusive activity and cell migratory phenotype. The molecular mechanism of these effects is completely dependent on IGF-IR tyrosine kinase activity and is mediated by a phosphatidylinositol (PI) 3-kinase-dependent process. In demonstrating transduction of fascin spike assembly by activation of a peptide growth factor receptor, these novel data reveal a wide role for fascin spikes in cell motility and provide new insight into the complex effects of IGF-IR signaling on actin cytoskeletal organization.
Collapse
Affiliation(s)
- Marina A Guvakova
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
280
|
Bear JE, Svitkina TM, Krause M, Schafer DA, Loureiro JJ, Strasser GA, Maly IV, Chaga OY, Cooper JA, Borisy GG, Gertler FB. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 2002; 109:509-21. [PMID: 12086607 DOI: 10.1016/s0092-8674(02)00731-6] [Citation(s) in RCA: 658] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell motility requires lamellipodial protrusion, a process driven by actin polymerization. Ena/VASP proteins accumulate in protruding lamellipodia and promote the rapid actin-driven motility of the pathogen Listeria. In contrast, Ena/VASP negatively regulate cell translocation. To resolve this paradox, we analyzed the function of Ena/VASP during lamellipodial protrusion. Ena/VASP-deficient lamellipodia protruded slower but more persistently, consistent with their increased cell translocation rates. Actin networks in Ena/VASP-deficient lamellipodia contained shorter, more highly branched filaments compared to controls. Lamellipodia with excess Ena/VASP contained longer, less branched filaments. In vitro, Ena/VASP promoted actin filament elongation by interacting with barbed ends, shielding them from capping protein. We conclude that Ena/VASP regulates cell motility by controlling the geometry of actin filament networks within lamellipodia.
Collapse
Affiliation(s)
- James E Bear
- Massachusetts Institute of Technology, Department of Biology, Cambridge 02139, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Tseng Y, An KM, Wirtz D. Microheterogeneity controls the rate of gelation of actin filament networks. J Biol Chem 2002; 277:18143-50. [PMID: 11889122 DOI: 10.1074/jbc.m110868200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rapid sol-gel transitions of the actin cytoskeleton are required for many key cellular processes, including cell spreading and cell locomotion. Actin monomers assemble into semiflexible polymers that rapidly intertwine into a network, a process that in vitro takes approximately 1 min for an actin concentration of 1 mg/ml. The same actin filament network, however, takes approximately 1 h to exhibit a steady-state elasticity. We hypothesize that the slow gelation of F-actin is due to the slow establishment of a homogeneous meshwork. Using a novel method, time-resolved multiple particle tracking, which monitors the range of thermally excited displacements of microspheres imbedded in the network, we show that the increase in elasticity in a polymerizing solution of actin parallels the progressive decline of the network microheterogeneity. The rates of gelation and network homogenization slightly decrease with actin concentration and in the presence of the F-actin cross-linking proteins alpha-actinin and fascin, whereas the rate of actin polymerization increases dramatically with actin concentration. Our measurements show that the slow spatial homogenization of the actin filament network, not actin polymerization or the formation of polymer overlaps, is the rate-limiting step in the establishment of an elastic actin network and suggest that a new activity of F-actin binding proteins may be required for the rapid formation of a homogeneous stiff gel.
Collapse
Affiliation(s)
- Yiider Tseng
- Department of Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
282
|
Putney LK, Denker SP, Barber DL. The changing face of the Na+/H+ exchanger, NHE1: structure, regulation, and cellular actions. Annu Rev Pharmacol Toxicol 2002; 42:527-52. [PMID: 11807182 DOI: 10.1146/annurev.pharmtox.42.092001.143801] [Citation(s) in RCA: 361] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The NHE family of ion exchangers includes six isoforms (NHE1-NHE6) that function in an electroneutral exchange of intracellular H(+) for extracellular Na(+). This review focuses on the only ubiquitously expressed isoform, NHE1, which is localized at the plasma membrane where it plays a critical role in intracellular pH (pHi) and cell volume homeostasis. All NHE isoforms share a similar topology: an N-terminus of 12 transmembrane (TM) alpha-helices that collectively function in ion exchange, and a C-terminal cytoplasmic regulatory domain that modulates transport activity by the TM domain. Extracellular signals, mediated by diverse classes of cell-surface receptors, regulate NHE1 activity through distinct signaling networks that converge to directly modify the C-terminal regulatory domain. Modifications in the C-terminus, including phosphorylation and the binding of regulatory proteins, control transport activity by altering the affinity of the TM domain for intracellular H(+). Recently, it was determined that NHE1 also functions as a membrane anchor for the actin-based cytoskeleton, independently of its role in ion translocation. Through its effects on pHi homeostasis, cell volume, and the actin cortical network, NHE1 regulates a number of cell behaviors, including adhesion, shape determination, migration, and proliferation.
Collapse
Affiliation(s)
- L K Putney
- Department of Stomatology, University of California, San Francisco, HSW 604, San Francisco, California 94143-0512, USA.
| | | | | |
Collapse
|
283
|
Webb DJ, Parsons JT, Horwitz AF. Adhesion assembly, disassembly and turnover in migrating cells -- over and over and over again. Nat Cell Biol 2002; 4:E97-100. [PMID: 11944043 DOI: 10.1038/ncb0402-e97] [Citation(s) in RCA: 581] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cell migration is an integrated process that requires the continuous, coordinated formation and disassembly of adhesions. These processes are complex and require a regulated interaction of numerous molecules, and the activation of specific signalling pathways. Even though understanding these processes is challenging, important insights are beginning to emerge, and the technology to facilitate significant advances in this area is now in place.
Collapse
Affiliation(s)
- Donna J Webb
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
284
|
Kureishy N, Sapountzi V, Prag S, Anilkumar N, Adams JC. Fascins, and their roles in cell structure and function. Bioessays 2002; 24:350-61. [PMID: 11948621 DOI: 10.1002/bies.10070] [Citation(s) in RCA: 260] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The fascins are a structurally unique and evolutionarily conserved group of actin cross-linking proteins. Fascins function in the organisation of two major forms of actin-based structures: dynamic, cortical cell protrusions and cytoplasmic microfilament bundles. The cortical structures, which include filopodia, spikes, lamellipodial ribs, oocyte microvilli and the dendrites of dendritic cells, have roles in cell-matrix adhesion, cell interactions and cell migration, whereas the cytoplasmic actin bundles appear to participate in cell architecture. We discuss the current understanding of the cellular mechanisms that regulate the binding of fascin to actin and how these processes contribute to the organisation or disassembly of cell protrusions. Although the in vivo roles of fascin have been studied principally in Drosophila, several human diseases are associated with inherited or acquired alterations in the expression of fascins. Strategies to modulate fascin-containing protrusions and thereby cell adhesive and migratory behaviour could have potential for therapeutic intervention in these conditions. The supplementary material referred to in this section can be found at http://www.interscience.wiley.com/jpages/0265-9247/suppmat/2002/v24.350.html
Collapse
Affiliation(s)
- Nina Kureishy
- MRC Laboratory for Molecular Cell Biology and Department of Biochemistry and Molecular Biology, University College London
| | | | | | | | | |
Collapse
|
285
|
Abstract
Structurally diverse ion transport proteins anchor the spectrin-actin cytoskeleton to the plasma membrane by binding directly to linker proteins of the ankyrin and protein 4.1 families. Cytoskeletal anchoring regulates cell shape and restricts the activity of ion transport proteins to specialised membrane domains. New directions are being forged by recent findings that localised anchoring by ion transport proteins regulates the ordered assembly of actin filaments and the actin-dependent processes of cell adhesion and motility.
Collapse
Affiliation(s)
- Sheryl P Denker
- Department of Stomatology, University of California, San Francisco, CA 94143-0512, USA
| | | |
Collapse
|
286
|
Abstract
Actin and small heat shock proteins (sHsps) are ubiquitous and multifaceted proteins that exist in 2 reversible forms, monomers and multimers, ie, the microfilament of the cytoskeleton and oligomers of the sHsps, generally, supposed to be in a spherical and hollow form. Two situations are described in the literature, where the properties of actin are modulated by sHsps; the actin polymerization is inhibited in vitro by some sHsps acting as capping proteins, and the actin cytoskeleton is protected by some sHsps against the disruption induced by various stressful conditions. We propose that a direct actin-sHsp interaction occurs to inhibit actin polymerization and to participate in the in vivo regulation of actin filament dynamics. Protection of the actin cytoskeleton would result from an F-actin-sHsp interaction in which microfilaments would be coated by small oligomers of phosphorylated sHsps. Both proteins share common structural motives suggesting direct binding sites, but they remain to be demonstrated. Some sHsps would behave with the actin cytoskeleton as actin-binding proteins capable of either capping a microfilament when present as a nonphosphorylated monomer or stabilizing and protecting the microfilament when organized in small, phosphorylated oligomers.
Collapse
Affiliation(s)
- Nicole Mounier
- Laboratoire du Stress Oxydant, Chaperons et Apoptose, Centre de Génétique Moléculaire et Cellulaire (UMR-CNRS 5534), Université Claude Bernard Lyon1, Villeurbanne, France.
| | | |
Collapse
|
287
|
Szabó B, Selmeczi D, Környei Z, Madarász E, Rozlosnik N. Atomic force microscopy of height fluctuations of fibroblast cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2002; 65:041910. [PMID: 12005876 DOI: 10.1103/physreve.65.041910] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2001] [Revised: 12/18/2001] [Indexed: 05/21/2023]
Abstract
We investigated the nanometer scale height fluctuations of 3T3 fibroblast cells with the atomic force microscope under physiological conditions. A correlation between these fluctuations and lateral cellular motility can be observed. Fluctuations measured on leading edges appear to be predominantly related to actin polymerization-depolymerization processes. We found fast (5 Hz) pulsatory behavior with 1-2 nm amplitude on a cell with low motility showing emphasized structure of stress fibers. Myosin driven contractions of stress fibers are thought to induce this pulsation.
Collapse
Affiliation(s)
- Bálint Szabó
- Department of Biological Physics, Eötvös University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
288
|
Diakonova M, Gunter DR, Herrington J, Carter-Su C. SH2-Bbeta is a Rac-binding protein that regulates cell motility. J Biol Chem 2002; 277:10669-77. [PMID: 11786545 DOI: 10.1074/jbc.m111138200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Src homology 2 (SH2) domain-containing protein SH2-Bbeta binds to and is a substrate of the growth hormone (GH) and cytokine receptor-associated tyrosine kinase JAK2. SH2-Bbeta also binds, via its SH2 domain, to multiple activated growth factor receptor tyrosine kinases. We have previously implicated SH2-Bbeta in GH and platelet-derived growth factor regulation of the actin cytoskeleton. We extend these findings by establishing a potentiating effect of SH2-Bbeta on GH-dependent cell motility and defining regions of SH2-Bbeta required for this potentiation. Time-lapse video microscopy, phagokinetic, and/or wounding assays demonstrate reduced movement of cells overexpressing SH2-Bbeta lacking an intact SH2 domain because of a point mutation or a C-terminal truncation. An N-terminal proline-rich domain (amino acids 85-106) of SH2-Bbeta is required for inhibition of cellular motility by SH2 domain-deficient mutants. Co-immunoprecipitation experiments indicate that Rac binds to this domain. GH is shown to activate endogenous Rac, and dominant negative mutants of SH2-Bbeta are shown to inhibit membrane ruffling induced by constitutively active Rac. These findings suggest that SH2-Bbeta is an adapter protein that facilitates actin rearrangement and cellular motility by recruiting Rac and potentially Rac-regulating, Rac effector, or other actin-regulating proteins to activated cytokine (e.g. GH) and growth factor receptors.
Collapse
Affiliation(s)
- Maria Diakonova
- Department of Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA
| | | | | | | |
Collapse
|
289
|
Nakamura F, Osborn E, Janmey PA, Stossel TP. Comparison of filamin A-induced cross-linking and Arp2/3 complex-mediated branching on the mechanics of actin filaments. J Biol Chem 2002; 277:9148-54. [PMID: 11786548 DOI: 10.1074/jbc.m111297200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We compared the effects of human filamin A (FLNa) and the activated human Arp2/3 complex on mechanical properties of actin filaments. As little as 1 FLNa to 800 polymerizing actin monomers induces a sharp concentration-dependent increase in the apparent viscosity of 24 microm actin, a parameter classically defined as a gel point. The activated Arp2/3 complex, at concentrations up to 1:25 actins had no detectable actin gelation activity, even in the presence of phalloidin, to stabilize actin filaments against debranching. Increasing the activated Arp2/3 complex to actin ratio raises the FLNa concentration required to induce actin gelation, an effect ascribable to Arp2/3-mediated actin nucleation resulting in actin filament length diminution. Time lapse video microscopy of microparticles attached to actin filaments or photoactivation of fluorescence revealed actin filament immobilization by FLNa in contrast to diffusion of Arp2/3-branched actin filaments. The experimental results support theories predicting that polymer branching absent cross-linking does not lead to polymer gelation and are consistent with the observation that cells deficient in actin filament cross-linking activity have unstable surfaces. They suggest complementary roles for actin branching and cross-linking in cellular actin mechanics in vivo.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- Hematology Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
290
|
Abstract
Lamellipodia, filopodia and membrane ruffles are essential for cell motility, the organization of membrane domains, phagocytosis and the development of substrate adhesions. Their formation relies on the regulated recruitment of molecular scaffolds to their tips (to harness and localize actin polymerization), coupled to the coordinated organization of actin filaments into lamella networks and bundled arrays. Their turnover requires further molecular complexes for the disassembly and recycling of lamellipodium components. Here, we give a spatial inventory of the many molecular players in this dynamic domain of the actin cytoskeleton in order to highlight the open questions and the challenges ahead.
Collapse
Affiliation(s)
- J Victor Small
- Dept of Cell Biology, Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, 5020 Salzburg, Austria.
| | | | | | | |
Collapse
|
291
|
Berg JS, Cheney RE. Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nat Cell Biol 2002; 4:246-50. [PMID: 11854753 DOI: 10.1038/ncb762] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Filopodia are thin cellular protrusions that are important in cell motility and neuronal growth cone guidance. The actin filaments that make up the core of a filopodium undergo continuous retrograde flow towards the cell body. Surface receptors or particles can couple to this retrograde flow and can also move forward to the tips of filopodia, although the molecular basis of forward transport is unknown. We report here that myosin-X (Myo10 or M10), the founding member of a novel class of myosins, localizes to the tips of filopodia and undergoes striking forward and rearward movements within filopodia, which we term intrafilopodial motility. The movements of the GFP-M10 puncta correspond to forward and rearward movements of phase-dense granules along the filopodia. Finally, overexpressing full-length M10 (but not truncated forms of M10) causes an increase in the number and length of filopodia, indicating that M10 or its cargo may function in filopodial dynamics. The localization and movements of M10 strongly suggest that it functions as a motor for intrafilopodial motility.
Collapse
Affiliation(s)
- Jonathan S Berg
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
292
|
Zallen JA, Cohen Y, Hudson AM, Cooley L, Wieschaus E, Schejter ED. SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila. J Cell Biol 2002; 156:689-701. [PMID: 11854309 PMCID: PMC2174092 DOI: 10.1083/jcb.200109057] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Arp2/3 complex and its activators, Scar/WAVE and Wiskott-Aldrich Syndrome protein (WASp), promote actin polymerization in vitro and have been proposed to influence cell shape and motility in vivo. We demonstrate that the Drosophila Scar homologue, SCAR, localizes to actin-rich structures and is required for normal cell morphology in multiple cell types throughout development. In particular, SCAR function is essential for cytoplasmic organization in the blastoderm, axon development in the central nervous system, egg chamber structure during oogenesis, and adult eye morphology. Highly similar developmental requirements are found for subunits of the Arp2/3 complex. In the blastoderm, SCAR and Arp2/3 mutations result in a reduction in the amount of cortical filamentous actin and the disruption of dynamically regulated actin structures. Remarkably, the single Drosophila WASp homologue, Wasp, is largely dispensable for these numerous Arp2/3-dependent functions, whereas SCAR does not contribute to cell fate decisions in which Wasp and Arp2/3 play an essential role. These results identify SCAR as a major component of Arp2/3-dependent cell morphology during Drosophila development and demonstrate that the Arp2/3 complex can govern distinct cell biological events in response to SCAR and Wasp regulation.
Collapse
Affiliation(s)
- Jennifer A Zallen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
293
|
Guild GM, Connelly PS, Vranich KA, Shaw MK, Tilney LG. Actin filament turnover removes bundles fromDrosophilabristle cells. J Cell Sci 2002; 115:641-53. [PMID: 11861770 DOI: 10.1242/jcs.115.3.641] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drosophila bristle cells form enormous extensions that are supported by equally impressive scaffolds of modular, polarized and crosslinked actin filament bundles. As the cell matures and support is taken over by the secreted cuticle, the actin scaffold is completely removed. This removal begins during cell elongation and proceeds via an orderly series of steps that operate on each module. Using confocal and electron microscopy, we found that the ∼500-filament modules are fractured longitudinally into 25-50-filament subbundles, indicating that module breakdown is the reverse of assembly. Time-lapse confocal analysis of GFP-decorated bundles in live cells showed that modules were shortened by subunit removal from filament barbed ends, again indicating that module breakdown is the reverse of assembly. Module shortening takes place at a fairly slow rate of ∼1μm/hour,implying that maximally crosslinked modules are not rapidly depolymerized. Barbed-end depolymerization was prevented with jasplakinolide and accelerated with cycloheximide, indicating that barbed-end maintenance requires continuous protein synthesis. Subbundle adhesion was lost in the presence of cytochalasin, indicating that continuous actin polymerization is required. Thus, these polarized actin filament bundles are dynamic structures that require continuous maintenance owing to protein and actin filament turnover. We propose that after cell elongation, maintenance falls behind turnover,resulting in the removal of this modular cytoskeleton.
Collapse
Affiliation(s)
- Gregory M Guild
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.
| | | | | | | | | |
Collapse
|
294
|
Loitto V, Forslund T, Sundqvist T, Magnusson K, Gustafsson M. Neutrophil leukocyte motility requires directed water influx. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.2.212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Vesa‐Matti Loitto
- Division of Medical Microbiology, Department of Health and Environment, Faculty of Health Sciences, Linköping University, Sweden; and
| | - Tony Forslund
- Division of Medical Microbiology, Department of Health and Environment, Faculty of Health Sciences, Linköping University, Sweden; and
| | - Tommy Sundqvist
- Division of Medical Microbiology, Department of Health and Environment, Faculty of Health Sciences, Linköping University, Sweden; and
| | - Karl‐Eric Magnusson
- Division of Medical Microbiology, Department of Health and Environment, Faculty of Health Sciences, Linköping University, Sweden; and
| | - Mikael Gustafsson
- Department of Medicine and Care, Linköping University Hospital, Sweden
| |
Collapse
|
295
|
Renfranz PJ, Beckerle MC. Doing (F/L)PPPPs: EVH1 domains and their proline-rich partners in cell polarity and migration. Curr Opin Cell Biol 2002; 14:88-103. [PMID: 11792550 DOI: 10.1016/s0955-0674(01)00299-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Actin filament assembly is a tightly regulated process that functions in many aspects of cell physiology. Members of the Ena/VASP (Drosophila Enabled/vasodilator-stimulated phosphoprotein) family are key players in regulating actin filament assembly, in many cases through their association with binding partners that display a particular proline-rich motif, FPPPP. Ena/VASP proteins interact with these partners via the highly conserved Ena/VASP homology 1 (EVH1) domain. The diverse array of binding partners for EVH1 domains, including cytoskeletal proteins such as zyxin, transmembrane guidance receptors such as Roundabout, and the T-cell signaling protein Fyb/SLAP, shows that these interactions are likely to be important in a number of cellular processes that require regulated actin filament assembly.
Collapse
Affiliation(s)
- Patricia J Renfranz
- Department of Biology and Huntsman Cancer Institute, 2000 East Circle of Hope, University of Utah, Salt Lake City, UT 84112-5550, USA
| | | |
Collapse
|
296
|
She BR, Liou GG, Lin-Chao S. Association of the growth-arrest-specific protein Gas7 with F-actin induces reorganization of microfilaments and promotes membrane outgrowth. Exp Cell Res 2002; 273:34-44. [PMID: 11795944 DOI: 10.1006/excr.2001.5435] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The growth-arrest-specific gene, Gas7, is required for neurite outgrowth in cerebellar neurons. Here we report that Gas7 can induce the formation of extended cellular processes in NIH3T3 cells by interacting with actin and mediating reorganization of microfilaments. The Gas 7 protein, which increased markedly during growth arrest of NIH3T3 cells and persisted transiently at high levels upon reentry of cells into the cell cycle, localized near the plasma membrane and selectively colocalized with microfilaments in membrane ruffles. Process extensions induced by ectopic overexpression of Gas7 were blocked by the actin-depolymerizing agent cytochalasin D, suggesting that membrane extensions produced by Gas7 require actin polymerization. Association of endogenous Gas7 protein with microfilaments was verified by F-actin affinity chromatography; direct binding of purified His-Gas7 to actin also was demonstrated and shown to be mediated by the Gas7 C-terminal domain. Similarly, localization of Gas7 in membrane ruffles was mediated by the C-terminal domain, although neither this region nor the N-terminal domain was individually sufficient to induce process formation. Biochemical studies and electron microscopy showed that both full-length Gas7 protein and its C-terminal region can promote actin assembly as well as the crosslinking of actin filaments. We propose that Gas7 localized near the plasma membrane induces the assembly of actin and the membrane outgrowth.
Collapse
Affiliation(s)
- Bin-Ru She
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | | | | |
Collapse
|
297
|
Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 2002; 108:233-46. [PMID: 11832213 DOI: 10.1016/s0092-8674(01)00638-9] [Citation(s) in RCA: 539] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The ADF (actin-depolymerizing factor)/cofilin family is a stimulus-responsive mediator of actin dynamics. In contrast to the mechanisms of inactivation of ADF/cofilin by kinases such as LIM-kinase 1 (LIMK1), much less is known about its reactivation through dephosphorylation. Here we report Slingshot (SSH), a family of phosphatases that have the property of F actin binding. In Drosophila, loss of ssh function dramatically increased levels of both F actin and phospho-cofilin (P cofilin) and disorganized epidermal cell morphogenesis. In mammalian cells, human SSH homologs (hSSHs) suppressed LIMK1-induced actin reorganization. Furthermore, SSH and the hSSHs dephosphorylated P cofilin in cultured cells and in cell-free assays. Our results strongly suggest that the SSH family plays a pivotal role in actin dynamics by reactivating ADF/cofilin in vivo.
Collapse
Affiliation(s)
- Ryusuke Niwa
- Department of Molecular Genetics, The Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
298
|
Abstract
The extracellular matrix is vital for tissue organisation in multicellular organisms. Cells attach to the extracellular matrix at discrete points on the cell surface, termed cell-matrix contacts. In general molecular terms, these contacts are assembled from large multiprotein complexes. However, many forms of matrix contacts can be distinguished by microscopy or by biochemical criteria, and these fulfil a diverse range of roles associated with cell adhesion, guidance, migration, matrix assembly, differentiation and survival. Two major functional categories are the protrusive and contractile matrix contacts. I describe contexts for the formation of protrusive or contractile contacts and discuss recent information on the molecular processes by which these contacts are specified, coordinated and regulated at a cellular level.
Collapse
Affiliation(s)
- Josephine Clare Adams
- MRC Laboratory for Molecular Cell Biology and Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
299
|
Abstract
Sperm of the nematode, Ascaris suum, crawl using lamellipodial protrusion, adhesion and retraction, a process analogous to the amoeboid motility of other eukaryotic cells. However, rather than employing an actin cytoskeleton to generate locomotion, nematode sperm use the major sperm protein (MSP). Moreover, nematode sperm lack detectable molecular motors or the battery of actin-binding proteins that characterize actin-based motility. The Ascaris system provides a simple ‘stripped down’ version of a crawling cell in which to examine the basic mechanism of cell locomotion independently of other cellular functions that involve the cytoskeleton. Here we present a mechanochemical analysis of crawling in Ascaris sperm. We construct a finite element model wherein (a) localized filament polymerization and bundling generate the force for lamellipodial extension and (b) energy stored in the gel formed from the filament bundles at the leading edge is subsequently used to produce the contraction that pulls the rear of the cell forward. The model reproduces the major features of crawling sperm and provides a framework in which amoeboid cell motility can be analyzed. Although the model refers primarily to the locomotion of nematode sperm, it has important implications for the mechanics of actin-based cell motility.Movies available on-line.
Collapse
Affiliation(s)
- Dean Bottino
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720-3112, USA
| | | | | | | | | |
Collapse
|
300
|
Ravenall SJ, Gavazzi I, Wood JN, Akopian AN. A peripheral nervous system actin-binding protein regulates neurite outgrowth. Eur J Neurosci 2002; 15:281-90. [PMID: 11849295 DOI: 10.1046/j.0953-816x.2001.01862.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Difference cloning has identified a Villin-like mRNA transcript expressed selectively in peripheral sensory and sympathetic neurons. Pervin, the encoded 820-amino acid protein, has 60% identity with Villin and is the rat homologue of Advillin. Coimmunoprecipitation studies demonstrate that Pervin and actin interact in vivo. Transfection of COS-7 epithelial cell lines demonstrates colocalization of epitope-tagged Pervin with green fluorescent protein-actin and results in an increase in process formation. This effect is abolished when the putative actin-bundling headpiece of Pervin is deleted. Biolistic transfection of primary cultures of rat dorsal root ganglion sensory neurons also results in increased neurite outgrowth with FLAG-tagged Pervin. Deletion of the actin-bundling headpiece inhibits normal neurite growth. These data suggest that Pervin may play a significant role in regulating process outgrowth in peripheral neurons through a mechanism that involves the activity of an actin-bundling domain.
Collapse
Affiliation(s)
- Samantha J Ravenall
- Department of Biology, University College, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|