251
|
Bolwell GP, Daudi A. Reactive Oxygen Species in Plant–Pathogen Interactions. REACTIVE OXYGEN SPECIES IN PLANT SIGNALING 2009. [DOI: 10.1007/978-3-642-00390-5_7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
252
|
Gan Y, Zhang L, Zhang Z, Dong S, Li J, Wang Y, Zheng X. The LCB2 subunit of the sphingolip biosynthesis enzyme serine palmitoyltransferase can function as an attenuator of the hypersensitive response and Bax-induced cell death. THE NEW PHYTOLOGIST 2009; 181:127-146. [PMID: 19076721 DOI: 10.1111/j.1469-8137.2008.02642.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Previous results showed that expression of the gene encoding the LONG-CHAIN BASE2 (LCB(2)) subunit of serine palmitoyltransferase (SPT), designated BcLCB(2), from nonheading Chinese cabbage (Brassica campestris ssp. chinensis) was up-regulated during hypersensitive cell death (HCD) induced by the Phytophthora boehmeriae elicitor PB90. Overexpression of BcLCB(2) in Nicotiana tabacum leaves suppressed the HCD normally initiated by elicitors and PB90-triggered H(2)O(2) accumulation. BcLCB(2) also functioned as a suppressor of mouse Bcl-2 associated X (Bax) protein-mediated HCD and cell death caused by Ralstonia solanacearum. BcLCB(2) overexpression suppressed Bax- and oxidant stress-triggered yeast cell death. Reactive oxygen species (ROS) accumulation induced by Bax was compromised in BcLCB(2)-overexpressing yeast cells. The findings that NbLCB(2) silencing in Nicotiana benthamiana enhanced elicitor-triggered HCD, combined with the fact that myriocin, a potent inhibitor of SPT, had no effect on Bax-induced programmed cell death, suggested that suppression of cell death was not involved in the dominant-negative effect that resulted from BcLCB(2) overexpression. A BcLCB(2) mutant assay showed that the suppression was not involved in SPT activity. The results suggest that plant HCD and stress-induced yeast cell death might share a common signal transduction pathway involving LCB(2), and that LCB(2) protects against cell death by inhibiting ROS accumulation, this inhibition being independent of SPT activity.
Collapse
Affiliation(s)
- Yunzhe Gan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lisha Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
253
|
Shoyama Y, Sugawa C, Tanaka H, Morimoto S. Cannabinoids act as necrosis-inducing factors in Cannabis sativa. PLANT SIGNALING & BEHAVIOR 2008; 3:1111-2. [PMID: 19704450 PMCID: PMC2634471 DOI: 10.4161/psb.3.12.7011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Accepted: 09/16/2008] [Indexed: 05/22/2023]
Abstract
Cannabis sativa is well known to produce unique secondary metabolites called cannabinoids. We recently discovered that Cannabis leaves induce cell death by secreting tetrahydrocannabinolic acid (THCA) into leaf tissues. Examinations using isolated Cannabis mitochondria demonstrated that THCA causes mitochondrial permeability transition (MPT) though opening of MPT pores, resulting in mitochondrial dysfunction (the important feature of necrosis). Although Ca(2+) is known to cause opening of animal MPT pores, THCA directly opened Cannabis MPT pores in the absence of Ca(2+). Based on these results, we conclude that THCA has the ability to induce necrosis though MPT in Cannabis leaves, independently of Ca(2+). We confirmed that other cannabinoids (cannabidiolic acid and cannabigerolic acid) also have MPT-inducing activity similar to that of THCA. Moreover, mitochondria of plants which do not produce cannabinoids were shown to induce MPT by THCA treatment, thus suggesting that many higher plants may have systems to cause THCA-dependent necrosis.
Collapse
Affiliation(s)
- Yoshinari Shoyama
- Graduate School of Pharmaceutical Sciences; Kyushu University; Fukuoka, Fukuoka Japan
| | | | | | | |
Collapse
|
254
|
Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P. SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 2008; 9:553. [PMID: 19025623 PMCID: PMC2628679 DOI: 10.1186/1471-2164-9-553] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 11/24/2008] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Drought is the major constraint to increase yield in chickpea (Cicer arietinum). Improving drought tolerance is therefore of outmost importance for breeding. However, the complexity of the trait allowed only marginal progress. A solution to the current stagnation is expected from innovative molecular tools such as transcriptome analyses providing insight into stress-related gene activity, which combined with molecular markers and expression (e)QTL mapping, may accelerate knowledge-based breeding. SuperSAGE, an improved version of the serial analysis of gene expression (SAGE) technique, generating genome-wide, high-quality transcription profiles from any eukaryote, has been employed in the present study. The method produces 26 bp long fragments (26 bp tags) from defined positions in cDNAs, providing sufficient sequence information to unambiguously characterize the mRNAs. Further, SuperSAGE tags may be immediately used to produce microarrays and probes for real-time-PCR, thereby overcoming the lack of genomic tools in non-model organisms. RESULTS We applied SuperSAGE to the analysis of gene expression in chickpea roots in response to drought. To this end, we sequenced 80,238 26 bp tags representing 17,493 unique transcripts (UniTags) from drought-stressed and non-stressed control roots. A total of 7,532 (43%) UniTags were more than 2.7-fold differentially expressed, and 880 (5.0%) were regulated more than 8-fold upon stress. Their large size enabled the unambiguous annotation of 3,858 (22%) UniTags to genes or proteins in public data bases and thus to stress-response processes. We designed a microarray carrying 3,000 of these 26 bp tags. The chip data confirmed 79% of the tag-based results, whereas RT-PCR confirmed the SuperSAGE data in all cases. CONCLUSION This study represents the most comprehensive analysis of the drought-response transcriptome of chickpea available to date. It demonstrates that--inter alias--signal transduction, transcription regulation, osmolyte accumulation, and ROS scavenging undergo strong transcriptional remodelling in chickpea roots already 6 h after drought stress. Certain transcript isoforms characterizing these processes are potential targets for breeding for drought tolerance. We demonstrate that these can be easily accessed by micro-arrays and RT-PCR assays readily produced downstream of SuperSAGE. Our study proves that SuperSAGE owns potential for molecular breeding also in non-model crops.
Collapse
Affiliation(s)
- Carlos Molina
- Biocenter, Frankfurt University, Max-von-Laue-Str, 9, 60439 Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Hilal M, Rodríguez-Montelongo L, Rosa M, Gallardo M, González JA, Interdonato R, Rapisarda VA, Prado FE. Solar and Supplemental UV-B Radiation Effects in Lemon Peel UV-B-absorbing Compound Content-Seasonal Variations. Photochem Photobiol 2008; 84:1480-6. [DOI: 10.1111/j.1751-1097.2008.00370.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
256
|
Darehshouri A, Affenzeller M, Lütz-Meindl U. Cell death upon H(2)O(2) induction in the unicellular green alga Micrasterias. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:732-45. [PMID: 18950431 PMCID: PMC2923030 DOI: 10.1111/j.1438-8677.2008.00078.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the present study, we investigated whether the unicellular green alga Micrasterias denticulata is capable of executing programmed cell death (PCD) upon experimental induction, and which morphological, molecular and physiological hallmarks characterise this. This is particularly interesting as unicellular freshwater green algae growing in shallow bog ponds are exposed to extreme environmental conditions, and the capacity to perform PCD may be an important strategy to guarantee survival of the population. The theoretically 'immortal' alga Micrasterias is an ideal object for such investigations as it has served as a cell biological model system for many years and details on its growth properties, physiology and ultrastructure throughout the cell cycle are well known. Treatments with low concentrations of H(2)O(2) are known to induce PCD in other organisms, resulting in severe ultrastructural changes to organelles, as observed in TEM. These include deformation and part disintegration of mitochondria, abnormal dilatation of cisternal rims of dictyosomes, occurrence of multivesicular bodies, an increase in the number of ER compartments, and slight condensation of chromatin. Additionally, a statistically significant increase in caspase-3-like activity was detected, which was abrogated by a caspase-3 inhibitor. Photosynthetic activity measured by fast chlorophyll fluorescence decreased as a consequence of H(2)O(2) exposure, whereas pigment composition, except for a reduction in carotenoids, was the same as in untreated controls. TUNEL positive staining and ladder-like degradation of DNA, both frequently regarded as a hallmark of PCD in higher plants, could only be detected in dead Micrasterias cells.
Collapse
Affiliation(s)
| | | | - Ursula Lütz-Meindl
- Corresponding author: U. Lütz-Meindl, Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria, Tel.: +43 662 8044 5555; fax +43 662 8044 619,
| |
Collapse
|
257
|
Takahashi H, Matsumura H, Kawai-Yamada M, Uchimiya H. The cell death factor, cell wall elicitor of rice blast fungus (Magnaporthe grisea) causes metabolic alterations including GABA shunt in rice cultured cells. PLANT SIGNALING & BEHAVIOR 2008; 3:945-53. [PMID: 19513197 PMCID: PMC2633740 DOI: 10.4161/psb.6112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 04/15/2008] [Indexed: 05/05/2023]
Abstract
An elicitor derived from the cell wall of rice blast fungus (Magnaporthe grisea) causes cell death in suspension cultured cells of rice (Oryza sativa L.). To elucidate the role of M. grisea elicitor on metabolic pathway of rice cells, we performed metabolite profiling using capillary electrophoresis-mass spectrometry (CE/MS). Treatment with M. grisea elicitor increased the amounts of antioxidants and free amino acids and decreased the amount of metabolites in the tricarboxylic acid (TCA) cycle. Lower ATP concentration caused aberrant energy charge, concurrently with reduced amount of NAD(P)H in elicitor treated cells. Among free amino acids detected in this study, the level of gamma-aminobutyric acid (GABA) increased. GABA is metabolized through a bypass pathway of the TCA cycle called GABA shunt, which is composed of glutamate decarboxylase (GAD), GABA transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). While M. grisea elicitor negligibly affected GAD and SSADH, GABA-T activity significantly decreased. The decrease in GABA-T activity was recovered by NADPH oxidase inhibitor, which prevents cell death induced by M. grisea elicitor. Thus, GABA accumulation observed in rice cells under elicitor stress is partly associated with GABA-T activity.
Collapse
Affiliation(s)
| | - Hideo Matsumura
- Iwate Biotechnology Research Center; Narita; Kitakami, Iwate Japan
| | - Maki Kawai-Yamada
- Institute of Molecular and Cellular Biosciences; The University of Tokyo; Yayoi; Bunkyo-ku, Tokyo Japan
| | - Hirofumi Uchimiya
- Iwate Biotechnology Research Center; Narita; Kitakami, Iwate Japan
- Institute of Molecular and Cellular Biosciences; The University of Tokyo; Yayoi; Bunkyo-ku, Tokyo Japan
| |
Collapse
|
258
|
Abstract
Cell death is a vital process in multi-cellular eukaryotes. Rather than being a contradiction in terms, this statement highlights the importance of limited and localized cell killing to the health and normal development of complex organisms. The main focus of this article is the role of mitochondrial morphological changes during cell death programmes, and the conserved role of mitochondrial permeability transition (increased permeability of either the outer or inner membrane) as an early mechanistic event preceding cell death in both plant and non-plant eukaryotes. A second focus of this article is a review of the terminology and fundamental paradigms underpinning cell death research. Because of the importance of the process of cell death, there has been an enormous quantity of research performed to try to understand the underlying biological mechanisms. One result of such a large and varied research effort, and a result that is perhaps particularly evident to investigators coming into the field anew, is that some of the basic tenets of cell death research appear to have become confused. In this short article, I make an attempt to clarify the subject, focussing on the role of mitochondria, and the difficulties in comprehensibility arising from the sometimes-erroneous, or at least unnecessarily confusing use of specific terminology; there are several key terms in the cell death literature that appear interchangeable when they are not, or are interchanged when they should not be.
Collapse
Affiliation(s)
- D C Logan
- School of Biology, Sir Harold Mitchell Building, University of St Andrews, St Andrews, Fife, KY16 9TH, Scotland, United Kingdom.
| |
Collapse
|
259
|
Atac IA, Peksel A, Yanardag R, Sokmen BB, Doger MM, Bilen ZG. The Effect of Combined Treatment with Niacin and Chromium (III) Chloride on the Different Tissues of Hyperlipemic Rats. Drug Chem Toxicol 2008; 29:363-77. [PMID: 16931439 DOI: 10.1080/01480540600820429] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We investigated the effects of a combined treatment with chromium (Cr) and niacin on the spleen, tongue, and lens tissues in terms of lipid peroxidation (LPO), glutathione (GSH), serum catalase (CAT), lactate dehydrogenase (LDH), serum cholesterol, and total lipid levels in normal and hyperlipemic rats. In this study, female 1-year-old Swiss albino rats were used. The rats were randomly divided into four groups. Group I rats (control) were fed with standard pellet chow. Group II rats were fed a lipogenic diet in which 2% cholesterol, 0.5% cholic acid, and 20% sunflower oil were added and were given 3% alcoholic water for 60 days. Group III rats were fed with the same lipogenic diet and were treated with a dose of 250 microg/kg body weight CrCI3 x 6H2O and 100 mg/kg body weight niacin, for 45 days, by gavage. The rats in group IV were fed with pellet chow and treated with 250 microg/kg body weight CrCI3 x 6H2O and 100 mg/kg body weight niacin, by gavage, for 45 days. After 2 weeks, the animals showed symptoms of hyperlipemia. On the 60th day, tissue and blood samples were taken. We have observed decreased CAT activity and GSH levels, increased LDH activity, cholesterol, total lipid, and LPO levels in hyperlipemic rats. Niacin and Cr administration to hyperlipemic rats increased tissue GSH levels and CAT activity and decreased tissue LPO levels and LDH activity, cholesterol, and total lipid levels compared with hyperlipemic rats. We conclude that the administration of a combination of niacin and chromium has a protective effect against oxidative damage to tongue, lens, and spleen tissues as a result of hyperlipemia.
Collapse
Affiliation(s)
- Inci A Atac
- Department of Chemistry, Arts and Science Faculty, Yildiz Technical University, Davutpasa, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
260
|
Schippers JHM, Nunes-Nesi A, Apetrei R, Hille J, Fernie AR, Dijkwel PP. The Arabidopsis onset of leaf death5 mutation of quinolinate synthase affects nicotinamide adenine dinucleotide biosynthesis and causes early ageing. THE PLANT CELL 2008; 20:2909-25. [PMID: 18978034 PMCID: PMC2590718 DOI: 10.1105/tpc.107.056341] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 10/03/2008] [Accepted: 10/15/2008] [Indexed: 05/18/2023]
Abstract
Leaf senescence in Arabidopsis thaliana is a strict, genetically controlled nutrient recovery program, which typically progresses in an age-dependent manner. Leaves of the Arabidopsis onset of leaf death5 (old5) mutant exhibit early developmental senescence. Here, we show that OLD5 encodes quinolinate synthase (QS), a key enzyme in the de novo synthesis of NAD. The Arabidopsis QS was previously shown to carry a Cys desulfurase domain that stimulates reconstitution of the oxygen-sensitive Fe-S cluster that is required for QS activity. The old5 lesion in this enzyme does not affect QS activity but it decreases its Cys desulfurase activity and thereby the long-term catalytic competence of the enzyme. The old5 mutation causes increased NAD steady state levels that coincide with increased activity of enzymes in the NAD salvage pathway. NAD plays a key role in cellular redox reactions, including those of the tricarboxylic acid cycle. Broad-range metabolite profiling of the old5 mutant revealed that it contains higher levels of tricarboxylic acid cycle intermediates and nitrogen-containing amino acids. The mutant displays a higher respiration rate concomitant with increased expression of oxidative stress markers. We postulate that the alteration in the oxidative state is integrated into the plant developmental program, causing early ageing of the mutant.
Collapse
Affiliation(s)
- Jos H M Schippers
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
261
|
Agrawal V, Zhang C, Shapiro AD, Dhurjati PS. A Dynamic Mathematical Model To Clarify Signaling Circuitry Underlying Programmed Cell Death Control in Arabidopsis Disease Resistance. Biotechnol Prog 2008; 20:426-42. [PMID: 15058987 DOI: 10.1021/bp034226s] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant cells undergo programmed cell death in response to invading pathogens. This cell death limits the spread of the infection and triggers whole plant antimicrobial and immune responses. The signaling network connecting molecular recognition of pathogens to these responses is a prime target for manipulation in genetic engineering strategies designed to improve crop plant disease resistance. Moreover, as alterations to metabolism can be misinterpreted as pathogen infection, successful plant metabolic engineering will ultimately depend on controlling these signaling pathways to avoid inadvertent activation of cell death. Programmed cell death resulting from infection of Arabidopsis thaliana with Pseudomonas syringae bacterial pathogens was chosen as a model system. Signaling circuitry hypotheses in this model system were tested by construction of a differential-equations-based mathematical model. Model-based simulations of time evolution of signaling components matched experimental measurements of programmed cell death and associated signaling components obtained in a companion study. Simulation of systems-level consequences of mutations used in laboratory studies led to two major improvements in understanding of signaling circuitry: (1) Simulations supported experimental evidence that a negative feedback loop in salicylic acid biosynthesis postulated by others does not exist. (2) Simulations showed that a second negative regulatory circuit for which there was strong experimental support did not affect one of two pathways leading to programmed cell death. Simulations also generated testable predictions to guide future experiments. Additional testable hypotheses were generated by results of individually varying each model parameter over 2 orders of magnitude that predicted biologically important changes to system dynamics. These predictions will be tested in future laboratory studies designed to further elucidate the signaling network control structure.
Collapse
Affiliation(s)
- Vikas Agrawal
- Department of Plant and Soil Sciences, Delaware Agricultural Experiment Station, College of Agriculture and Natural Resources, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
262
|
DeSalvo MK, Voolstra CR, Sunagawa S, Schwarz JA, Stillman JH, Coffroth MA, Szmant AM, Medina M. Differential gene expression during thermal stress and bleaching in the Caribbean coralMontastraea faveolata. Mol Ecol 2008; 17:3952-71. [PMID: 18662230 DOI: 10.1111/j.1365-294x.2008.03879.x] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- M K DeSalvo
- School of Natural Sciences, University of California, Merced, PO Box 2039, Merced, CA 95344, USA
| | | | | | | | | | | | | | | |
Collapse
|
263
|
Mitochondrial alterations related to programmed cell death in tobacco cells under aluminium stress. C R Biol 2008; 331:597-610. [PMID: 18606389 DOI: 10.1016/j.crvi.2008.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 04/11/2008] [Accepted: 04/14/2008] [Indexed: 12/21/2022]
Abstract
The present investigation was undertaken to verify whether mitochondria play a significant role in aluminium (Al) toxicity, using the mitochondria isolated from tobacco cells (Nicotiana tabacum, non-chlorophyllic cell line SL) under Al stress. An inhibition of respiration was observed in terms of state-III, state-IV, succinate-dependent, alternative oxidase (AOX)-pathway capacity and cytochrome (CYT)-pathway capacity, respectively, in the mitochondria isolated from tobacco cells subjected to Al stress for 18 h. In accordance with the respiratory inhibition, the mitochondrial ATP content showed a significant decrease under Al treatment. An enhancement of reactive oxygen species (ROS) production under state-III respiration was observed in the mitochondria isolated from Al-treated cells, which would create an oxidative stress situation. The opening of mitochondrial permeability transition pore (MPTP) was seen more extensively in mitochondria isolated from Al-treated cells than in those isolated from control cells. This was Ca(2+) dependent and well modulated by dithioerythritol (DTE) and Pi, but insensitive to cyclosporine A (CsA). The collapse of inner mitochondrial membrane potential (DeltaPsi(m)) was also observed with a release of cytochrome c from mitochondria. A great decrease in the ATP content was also seen under Al stress. Transmission electron microscopy analysis of Al-treated cells also corroborated our biochemical data with distortion in membrane architecture in mitochondria. TUNEL-positive nuclei in Al-treated cells strongly indicated the occurrence of nuclear fragmentation. From the above study, it was concluded that Al toxicity affects severely the mitochondrial respiratory functions and alters the redox status studied in vitro and also the internal structure, which seems to cause finally cell death in tobacco cells.
Collapse
|
264
|
Azad AK, Ishikawa T, Ishikawa T, Sawa Y, Shibata H. Intracellular energy depletion triggers programmed cell death during petal senescence in tulip. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2085-95. [PMID: 18515833 PMCID: PMC2413268 DOI: 10.1093/jxb/ern066] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 05/20/2023]
Abstract
Programmed cell death (PCD) in petals provides a model system to study the molecular aspects of organ senescence. In this study, the very early triggering signal for PCD during the senescence process from young green buds to 14-d-old petals of Tulipa gesneriana was determined. The opening and closing movement of petals of intact plants increased for the first 3 d and then gradually decreased. DNA degradation and cytochrome c (Cyt c) release were clearly observed in 6-d-old flowers. Oxidative stress or ethylene production can be excluded as the early signal for petal PCD. In contrast, ATP was dramatically depleted after the first day of flower opening. Sucrose supplementation to cut flowers maintained their ATP levels and the movement ability for a longer time than in those kept in water. The onset of DNA degradation, Cyt c release, and petal senescence was also delayed by sucrose supplementation to cut flowers. These results suggest that intracellular energy depletion, rather than oxidative stress or ethylene production, may be the very early signal to trigger PCD in tulip petals.
Collapse
Affiliation(s)
- A. K. Azad
- Department of Life Science and Biotechnology, Shimane University, Shimane 690-8504, Japan
- Department of Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Takayuki Ishikawa
- Department of Life Science and Biotechnology, Shimane University, Shimane 690-8504, Japan
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Shimane University, Shimane 690-8504, Japan
| | - Y. Sawa
- Department of Life Science and Biotechnology, Shimane University, Shimane 690-8504, Japan
| | - H. Shibata
- Department of Life Science and Biotechnology, Shimane University, Shimane 690-8504, Japan
| |
Collapse
|
265
|
Wan XY, Liu JY. Comparative proteomics analysis reveals an intimate protein network provoked by hydrogen peroxide stress in rice seedling leaves. Mol Cell Proteomics 2008; 7:1469-88. [PMID: 18407957 DOI: 10.1074/mcp.m700488-mcp200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hydrogen peroxide (H2O2) plays a dual role in plants as the toxic by-product of normal cell metabolism and as a regulatory molecule in stress perception and signal transduction. However, a clear inventory as to how this dual function is regulated in plants is far from complete. In particular, how plants maintain survival under oxidative stress via adjustments of the intercellular metabolic network and antioxidative system is largely unknown. To investigate the responses of rice seedlings to H2O2 stress, changes in protein expression were analyzed using a comparative proteomics approach. Treatments with different concentrations of H2O2 for 6 h on 12-day-old rice seedlings resulted in several stressful phenotypes such as rolling leaves, decreased photosynthetic and photorespiratory rates, and elevated H2O2 accumulation. Analysis of approximately 2000 protein spots on each two-dimensional electrophoresis gel revealed 144 differentially expressed proteins. Of them, 65 protein spots were up-regulated, and 79 were down-regulated under at least one of the H2O2 treatment concentrations. Furthermore 129 differentially expressed protein spots were identified by mass spectrometry to match 89 diverse protein species. These identified proteins are involved in different cellular responses and metabolic processes with obvious functional tendencies toward cell defense, redox homeostasis, signal transduction, protein synthesis and degradation, photosynthesis and photorespiration, and carbohydrate/energy metabolism, indicating a good correlation between oxidative stress-responsive proteins and leaf physiological changes. The abundance changes of these proteins, together with their putative functions and participation in physiological reactions, produce an oxidative stress-responsive network at the protein level in H2O2-treated rice seedling leaves. Such a protein network allows us to further understand the possible management strategy of cellular activities occurring in the H2O2-treated rice seedling leaves and provides new insights into oxidative stress responses in plants.
Collapse
Affiliation(s)
- Xiang-Yuan Wan
- Laboratory of Molecular Biology and Protein Science Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
266
|
Lagido C, Pettitt J, Flett A, Glover LA. Bridging the phenotypic gap: real-time assessment of mitochondrial function and metabolism of the nematode Caenorhabditis elegans. BMC PHYSIOLOGY 2008; 8:7. [PMID: 18384668 PMCID: PMC2364618 DOI: 10.1186/1472-6793-8-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 04/02/2008] [Indexed: 12/21/2022]
Abstract
BACKGROUND The ATP levels of an organism are an important physiological parameter that is affected by genetic make up, ageing, stress and disease. RESULTS We have generated luminescent C. elegans through ubiquitous, constitutive expression of firefly luciferase, widely used for in vitro ATP determination. We hypothesise that whole animal luminescence reflects its intracellular ATP levels in vivo. To test this, we characterised the bioluminescence response of C. elegans during sublethal exposure to, and recovery from azide, a treatment that inhibits mitochondrial respiration reversibly, and causes ATP depletion. Consistent with our expectations, in vivo luminescence decreased with increasing sublethal azide levels, and recovered fully when worms were removed from azide. Firefly luciferase expression levels, stability and activity did not influence the final luminescence. Bioluminescence also reflected the lowered activity of the electron transport chain achieved with RNA interference (RNAi) of genes encoding respiratory chain components. CONCLUSION Results indicated that C. elegans luminescence reports on ATP levels in real-time. For the first time, we are able to directly assess the metabolism of a whole, living, multicellular organism by determination of the relative ATP levels. This will enable genetic analysis based on a readily quantifiable metabolic phenotype and will provide novel insights into mechanisms of fitness and disease that are likely to be of relevance for other organisms, as well as the worm.
Collapse
Affiliation(s)
- Cristina Lagido
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jonathan Pettitt
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Aileen Flett
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - L Anne Glover
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
267
|
Pavlovskaya NS, Savinova OV, Grabel'nykh OI, Pobezhimova TP, Koroleva NA, Voinikov VK. The cyclosporine-A-sensitive mitochondrial permeability transition pore in winter wheat at a low temperature and under oxidative stress. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2008; 417:446-8. [PMID: 18274487 DOI: 10.1134/s0012496607060105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- N S Pavlovskaya
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, ul. Lermontova 132, Irkutsk 664033, Russia
| | | | | | | | | | | |
Collapse
|
268
|
Winger AM, Taylor NL, Heazlewood JL, Day DA, Millar AH. Identification of intra- and intermolecular disulphide bonding in the plant mitochondrial proteome by diagonal gel electrophoresis. Proteomics 2008; 7:4158-70. [PMID: 17994621 DOI: 10.1002/pmic.200700209] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Redox active proteins in plant mitochondria were examined using 2-D oxidant/reductant diagonal-SDS-PAGE to separate and identify proteins with intermolecular or intramolecular disulphide bonds using diamide in the first dimension and DTT in the second dimension. Eighteen proteins spots were resolved either above or below the diagonal and these were in-gel digested and identified by MS/MS. This analysis revealed intermolecular disulphide bonds in alternative oxidase, O-acetylserine (thiol) lyase, citrate synthase and between subunits of the ATP synthase. Intramolecular disulphide bonds were observed in a range of mitochondrial dehydrogenases, elongation factor Tu, adenylate kinase and the phosphate translocator. Many of the soluble proteins found were known glutaredoxin/thioredoxin targets in other plants, but the membrane proteins were not found by these methods nor were the nature of the disulphides able to be investigated. The accessibility of thiols involved in disulphide bonds to modification by a lipid derived aldehyde gave an insight into the potential impact of Cys modification on redox-functions in mitochondria during lipid peroxidation. Comparison of the protein sequences of the identified proteins with homologs from other species has identified specific Cys residues that may be responsible for plant-specific redox modulations of mitochondrial proteins.
Collapse
Affiliation(s)
- Alison M Winger
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | | | | | | | | |
Collapse
|
269
|
Boubriak II, Grodzinsky DM, Polischuk VP, Naumenko VD, Gushcha NP, Micheev AN, McCready SJ, Osborne DJ. Adaptation and impairment of DNA repair function in pollen of Betula verrucosa and seeds of Oenothera biennis from differently radionuclide-contaminated sites of Chernobyl. ANNALS OF BOTANY 2008; 101:267-76. [PMID: 17981881 PMCID: PMC2711018 DOI: 10.1093/aob/mcm276] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Revised: 08/02/2007] [Accepted: 09/26/2007] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS The plants that have remained in the contaminated areas around Chernobyl since 1986 encapsulate the effects of radiation. Such plants are chronically exposed to radionuclides that they have accumulated internally as well as to alpha-, beta- and gamma-emitting radionuclides from external sources and from the soil. This radiation leads to genetic damage that can be countered by DNA repair systems. The objective of this study is to follow DNA repair and adaptation in haploid cells (birch pollen) and diploid cells (seed embryos of the evening primrose) from plants that have been growing in situ in different radionuclide fall-out sites in monitored regions surrounding the Chernobyl explosion of 1986. METHODS Radionuclide levels in soil were detected using gamma-spectroscopy and radiochemistry. DNA repair assays included measurement of unscheduled DNA synthesis, electrophoretic determination of single-strand DNA breaks and image analysis of rDNA repeats after repair intervals. Nucleosome levels were established using an ELISA kit. KEY RESULTS Birch pollen collected in 1987 failed to perform unscheduled DNA synthesis, but pollen at gamma/beta-emitter sites has now recovered this ability. At a site with high levels of combined alpha- and gamma/beta-emitters, pollen still exhibits hidden damage, as shown by reduced unscheduled DNA synthesis and failure to repair lesions in rDNA repeats properly. Evening primrose seed embryos generated on plants at the same gamma/beta-emitter sites now show an improved DNA repair capacity and ability to germinate under abiotic stresses (salinity and accelerated ageing). Again those from combined alpha- and gamma/beta-contaminated site do not show this improvement. CONCLUSIONS Chronic irradiation at gamma/beta-emitter sites has provided opportunities for plant cells (both pollen and embryo cells) to adapt to ionizing irradiation and other environmental stresses. This may be explained by facilitation of DNA repair function.
Collapse
Affiliation(s)
- I I Boubriak
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | | | | | | | | | | | |
Collapse
|
270
|
Foyer CH, Pellny TK, Locato V, De Gara L. Analysis of redox relationships in the plant cell cycle: determinations of ascorbate, glutathione and poly (ADPribose)polymerase (PARP) in plant cell cultures. Methods Mol Biol 2008; 476:199-215. [PMID: 19157018 DOI: 10.1007/978-1-59745-129-1_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Reactive oxygen species (ROS) and low molecular weight antioxidants, such as glutathione and ascorbate, are powerful signaling molecules that participate in the control of plant growth and development, and modulate progression through the mitotic cell cycle. Enhanced reactive oxygen species accumulation or low levels of ascorbate or glutathione cause the cell cycle to arrest and halt progression especially through the G1 checkpoint. Plant cell suspension cultures have proved to be particularly useful tools for the study of cell cycle regulation. Here we provide effective and accurate methods for the measurement of changes in the cellular ascorbate and glutathione pools and the activities of related enzymes such poly (ADP-ribose) polymerase during mitosis and cell expansion, particularly in cell suspension cultures. These methods can be used in studies seeking to improve current understanding of the roles of redox controls on cell division and cell expansion.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
271
|
Kim EJ, Kim JS, Lee IH, Rhee HJ, Lee JK. Superoxide generation by chlorophyllide a reductase of Rhodobacter sphaeroides. J Biol Chem 2007; 283:3718-30. [PMID: 18079120 DOI: 10.1074/jbc.m707774200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chlorophyllide a reductase of Rhodobacter sphaeroides, which were reconstituted with the purified subunits of BchX, BchY, and BchZ, reduced ring B of chlorophyllide a using NADH under anaerobic conditions. Interestingly, suppressor mutations rescuing the inability of R. sphaeroides Fe-SOD mutant to grow in succinate-based minimal medium were predominantly mapped to BchZ subunit of chlorophyllide a reductase. The enzyme is labile in the presence of O(2). However, it generates superoxide at low O(2). The enzymes reconstituted with BchX, BchY, and the mutein subunit of BchZ from suppressor mutants showed less activity not only for chlorophyllide a reduction but also for superoxide generation compared with the enzyme reconstituted with the wild-type subunits. BchX, which contains FMN, and BchY are iron-sulfur proteins, whereas BchZ is a hemoprotein containing b-type heme. Neither chlorophyllide a reduction nor superoxide generation was observed with the enzyme reconstituted with the wild-type subunits of BchX and BchY, and the apo-subunit of BchZ that had been refolded without heme, in which FMN of BchX was fully reduced. Thus, superoxide is generated not from FMN of BchX but from heme of BchZ. Consistently, the heme of BchZ muteins was half-reduced in its redox state compared with that of wild-type BchZ.
Collapse
Affiliation(s)
- Eui-Jin Kim
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul 121-742, Korea
| | | | | | | | | |
Collapse
|
272
|
Weinberger F. Pathogen-induced defense and innate immunity in macroalgae. THE BIOLOGICAL BULLETIN 2007; 213:290-302. [PMID: 18083968 DOI: 10.2307/25066646] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Animals and vascular plants are known to defend themselves facultatively against pathogens, with innate receptors mediating their resistance. Macroalgal defense against microorganisms, in contrast, has until recently been regarded mainly as constitutive. Indeed, many macroalgae appear to be chemically defended at constantly high levels, and this is possibly one of the reasons why the first evidence of pathogen-aroused resistance in a macroalga was detected only a decade ago. Here, I summarize the results of studies that indicate the existence of pathogen-activated or pathogen-induced macroalgal defense. Most indications so far come from molecular investigations, which revealed major functional similarities among the defense systems of distant macroalgal clades and the innate immune systems of vascular plants and metazoans. Homologies exist in the primary and secondary defense-activating signals, as well as in the enzymes that are involved and the cellular responses that are activated. This strongly suggests that innate immunity also exists in relatively distinct macroalgal clades. However, a macroalgal receptor still needs to be isolated and characterized, and the molecular concept of macroalgal receptor-mediated immunity needs to be complemented with an ecological perspective on pathogen-induced defense, to develop a joint neuroecological perspective on seaweed-microbe interactions.
Collapse
Affiliation(s)
- Florian Weinberger
- Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR), Düsternbrooker Weg 20, 24105 Kiel, Germany.
| |
Collapse
|
273
|
Goldin N, Heyfets A, Reischer D, Flescher E. Mitochondria-mediated ATP depletion by anti-cancer agents of the jasmonate family. J Bioenerg Biomembr 2007; 39:51-7. [PMID: 17549642 DOI: 10.1007/s10863-006-9061-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Jasmonates are plant stress hormones that induce suppression of proliferation and death in cancer cells, while being selectively inactive towards non-transformed cells. Jasmonates can overcome apoptotic blocks and exert cytotoxic effects on drug-resistant cells expressing p53 mutations. Jasmonates induce a rapid depletion of ATP in cancer cells. Indeed, this steep drop occurs when no signs of cell death are detectable yet. Experiments using modulators of ATP synthesis via glycolysis or oxidative phosphorylation suggest that the latter is the pathway suppressed by jasmonates. Consequently, the direct effects of jasmonates on mitochondria were evaluated. Jasmonates induced cytochrome c release and swelling in mitochondria isolated from cancer cells but not from normal ones. Thus, the selectivity of jasmonates against cancer cells is rooted at the mitochondrial level, and probably exploits differences between mitochondria from normal versus cancer cells. These findings position jasmonates as promising anti-cancer drugs acting via energetic depletion in neoplastic cells.
Collapse
Affiliation(s)
- Natalia Goldin
- Department of Human Microbiology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
274
|
Bolduc N, Lamb GN, Cessna SG, Brisson LF. Modulation of Bax Inhibitor-1 and cytosolic Ca2+ by cytokinins in Nicotiana tabacum cells. Biochimie 2007; 89:961-71. [PMID: 17397988 DOI: 10.1016/j.biochi.2007.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 02/09/2007] [Indexed: 12/16/2022]
Abstract
The protein Bax Inhibitor-1 (BI-1) has recently emerged as a negative regulator of plant programmed cell death (PCD), but how it functions at the biochemical level remains unknown. To elucidate its regulation and mode of action, we used suspension cells of Nicotiana tabacum to study the effects of cytokinins (CKs) on the expression level of NtBI-1 via western analysis. We found that the NtBI-1 protein is up-regulated following treatments with CKs at concentrations inducing a stress response (determined by growth reduction and PR1a accumulation), but not at PCD-inducing concentrations. These data point toward a role for NtBI-1 in the stress response to CKs. Application of CKs was also accompanied by a rapid cytosolic Ca(2+) pulse, and inhibition of this pulse with La(3+) or EGTA partially restored viability, indicating a signaling role for Ca(2+) in CK-induced cell death. However, CK-induced NtBI-1 accumulation was not altered by pretreatment with La(3+), nor by treatment with several modulators of intracellular Ca(2+) homeostasis and signaling, suggesting that CK-dependent regulation of NtBI-1 accumulation is not directly mediated by Ca(2+).
Collapse
Affiliation(s)
- Nathalie Bolduc
- Département de Biochimie et de Microbiologie, Université Laval, Québec, QC G1K 7P4, Canada.
| | | | | | | |
Collapse
|
275
|
Leshem Y, Seri L, Levine A. Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:185-97. [PMID: 17521408 DOI: 10.1111/j.1365-313x.2007.03134.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Salt imposes immediate problems for plant cells, such as osmotic stress, impaired ion homeostasis and sodium toxicity, followed by a secondary oxidative stress caused by generation of reactive oxygen species (ROS). Here, we analyzed the production of ROS during salt stress. We show that salt stress triggered plasma membrane internalization, resulting in the production of ROS within endosomes. The intracellular ROS were produced by NADPH oxidase in response to the ionic but not the osmotic stress. Both endocytosis and ROS production were suppressed in phosphatidylinositol (PtdIns) 3-kinase (PI3K) mutants, PI3K being a key regulator of vesicle trafficking in animals and plants, and by wortmannin, which is a specific inhibitor of PI3K and PI4K. Endocytosis and the production of ROS were rescued by supplementation of seedlings with exogenous PtdIns 3-phosphate (PtdIns3P), less with PtdIns4P, but not with PtdIns(4,5)P(2). Surprisingly, despite reduced oxidative stress, the mutants and the wortmannin-treated plants exhibited a phenotype overly sensitive to salt, as also resulted from treatment with diphenyleneiodonium, a suicide inhibitor of NADPH oxidase, suggesting a positive role for ROS in salt tolerance. In summary, our results show that salt stress responses, such as increased plasma membrane endocytosis and the intracellular production of ROS, are coordinated by phospholipid-regulated signaling pathways, and suggest that ROS act in the signal transduction of the salt tolerance response.
Collapse
Affiliation(s)
- Yehoram Leshem
- Department of Plant Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| | | | | |
Collapse
|
276
|
Morimoto S, Tanaka Y, Sasaki K, Tanaka H, Fukamizu T, Shoyama Y, Shoyama Y, Taura F. Identification and characterization of cannabinoids that induce cell death through mitochondrial permeability transition in Cannabis leaf cells. J Biol Chem 2007; 282:20739-51. [PMID: 17513301 DOI: 10.1074/jbc.m700133200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cannabinoids are secondary metabolites stored in capitate-sessile glands on leaves of Cannabis sativa. We discovered that cell death is induced in the leaf tissues exposed to cannabinoid resin secreted from the glands, and identified cannabichromenic acid (CBCA) and Delta(1)-tetrahydrocannabinolic acid (THCA) as unique cell death mediators from the resin. These cannabinoids effectively induced cell death in the leaf cells or suspension-cultured cells of C. sativa, whereas pretreatment with the mitochondrial permeability transition (MPT) inhibitor cyclosporin A suppressed this cell death response. Examinations using isolated mitochondria demonstrated that CBCA and THCA mediate opening of MPT pores without requiring Ca(2+) and other cytosolic factors, resulting in high amplitude mitochondrial swelling, release of mitochondrial proteins (cytochrome c and nuclease), and irreversible loss of mitochondrial membrane potential. Therefore, CBCA and THCA are considered to cause serious damage to mitochondria through MPT. The mitochondrial damage was also confirmed by a marked decrease of ATP level in cannabinoid-treated suspension cells. These features are in good accord with those of necrotic cell death, whereas DNA degradation was also observed in cannabinoid-mediated cell death. However, the DNA degradation was catalyzed by nuclease(s) released from mitochondria during MPT, indicating that this reaction was not induced via a caspase-dependent apoptotic pathway. Furthermore, the inhibition of the DNA degradation only slightly blocked the cell death induced by cannabinoids. Based on these results, we conclude that CBCA and THCA have the ability to induce necrotic cell death via mitochondrial dysfunction in the leaf cells of C. sativa.
Collapse
Affiliation(s)
- Satoshi Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
277
|
Wan C, Li S, Wen L, Kong J, Wang K, Zhu Y. Damage of oxidative stress on mitochondria during microspores development in Honglian CMS line of rice. PLANT CELL REPORTS 2007; 26:373-82. [PMID: 17053903 DOI: 10.1007/s00299-006-0234-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/31/2006] [Accepted: 08/11/2006] [Indexed: 05/12/2023]
Abstract
One of the cytoplasmic male sterility (CMS) types used for hybrid rice (Oryza sativa L.) production in China is the Honglian (HL)-CMS. Previous studies suggested that pollen abortion of the sterile plants was resulted from a special programmed cell death (PCD) program started at meiosis in the microspores. To elucidate the molecular basis of the pollen abortion, we compared the biochemical and physiological properties such as content of reactive oxygen species (ROS), ATP, NADH, total glutathione and ascorbate acid, the activities of dehydroascrbate reductase, glutathione reductase, ascorbate peroxides and superoxide dismutase, and the integrity of mitochondrial genome DNA isolated from an HL-CMS line, Yuetai A and its maintainer line, Yuetai B. Our results indicated that the mitochondria of the HL-CMS line suffered from a serious oxidative stress during microspores development. Oxidative stress induced by abnormal increased ROS at meiosis stage resulted in the depletion of ATP and NADH, and the degradation of mitochondrial genomic DNA. This suggests that the presence of redox signal originated in mitochondria affects the rest of the cell. Therefore, it is possible that the abortion of premature microspores in HL-CMS line is induced by the chronic oxidative stress in mitochondria in the early stage of pollen development.
Collapse
Affiliation(s)
- Cuixiang Wan
- Key Laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | | | |
Collapse
|
278
|
Keon J, Antoniw J, Carzaniga R, Deller S, Ward JL, Baker JM, Beale MH, Hammond-Kosack K, Rudd JJ. Transcriptional adaptation of Mycosphaerella graminicola to programmed cell death (PCD) of its susceptible wheat host. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:178-93. [PMID: 17313169 DOI: 10.1094/mpmi-20-2-0178] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Many important fungal pathogens of plants spend long periods (days to weeks) of their infection cycle in symptomless association with living host tissue, followed by a sudden transition to necrotrophic feeding as host tissue death occurs. Little is known about either the host responses associated with this sudden transition or the specific adaptations made by the pathogen to invoke or tolerate it. We are studying a major host-specific fungal pathogen of cultivated wheat, Septoria tritici (teleomorph Mycosphaerella graminicola). Here, we describe the host responses of wheat leaves infected with M. graminicola during the development of disease symptoms and use microarray transcription profiling to identify adaptive responses of the fungus to its changing environment. We show that symptom development on a susceptible host genotype has features reminiscent of the hypersensitive response, a rapid and strictly localized form of host programmed cell death (PCD) more commonly associated with disease-resistance mechanisms. The initiation and advancement of this host response is associated with a loss of cell-membrane integrity and dramatic increases in apoplastic metabolites and the rate of fungal growth. Microarray analysis of the fungal genes differentially expressed before and after the onset of host PCD supports a transition to more rapid growth. Specific physiological adaptation of the fungus is also revealed with respect to membrane transport, chemical and oxidative stress mechanisms, and metabolism. Our data support the hypothesis that host plant PCD plays an important role in susceptibility towards fungal pathogens with necrotrophic lifestyles.
Collapse
Affiliation(s)
- John Keon
- Wheat Pathogenesis Programme, Plant-Pathogen Interactions Division, Rothamsted Research, Harpenden, Herts AL5 2JQ, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Rhoads DM, Subbaiah CC. Mitochondrial retrograde regulation in plants. Mitochondrion 2007; 7:177-94. [PMID: 17320492 DOI: 10.1016/j.mito.2007.01.002] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 01/03/2007] [Accepted: 01/08/2007] [Indexed: 01/17/2023]
Abstract
Plant cells must react to a variety of adverse environmental conditions that they may experience on a regular basis. Part of this response centers around (1) ROS as damaging molecules and signaling molecules; (2) redox status, which can be influenced by ROS production; and (3) availability of metabolites. All of these are also likely to interface with changes in hormone levels [Desikan, R., Hancock, J., Neill, S., 2005. Reactive oxygen species as signalling molecules. In: Smirnoff, N. (ed.), Antioxidants and reactive oxygen species in plants. Blackwell Pub. Ltd., Oxford, pp. 169-196; Kwak, J.M., Nguyen, V., Schroeder, J.I., 2006. The role of reactive oxygen species in hormonal responses. Plant Physiol. 141, 323-329]. Each of these areas can be strongly influenced by changes in mitochondrial function. Such changes trigger altered nuclear gene expression by a poorly understood process of mitochondrial retrograde regulation (MRR), which is likely composed of several distinct signaling pathways. Much of what is known about plant MRR centers around the response to a dysfunctional mtETC and subsequent induction of genes encoding proteins involved in recovery of mitochondrial functions, such as AOX and alternative NAD(P)H dehydrogenases, and genes encoding enzymes aimed at regaining ROS level/redox homeostasis, such as glutathione transferases, catalases, ascorbate peroxidases and superoxide dismutases. However, as evidence of new and interesting targets of MRR emerge, this picture is likely to change and the complexity and importance of MRR in plant responses to stresses and the decision for cells to either recover or switch into programmed cell death mode is likely to become more apparent.
Collapse
Affiliation(s)
- David M Rhoads
- Department of Applied Biological Sciences, Arizona State University, Mesa, AZ 85212, USA.
| | | |
Collapse
|
280
|
Baxter CJ, Redestig H, Schauer N, Repsilber D, Patil KR, Nielsen J, Selbig J, Liu J, Fernie AR, Sweetlove LJ. The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. PLANT PHYSIOLOGY 2007; 143:312-25. [PMID: 17122072 PMCID: PMC1761969 DOI: 10.1104/pp.106.090431] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 11/10/2006] [Indexed: 05/12/2023]
Abstract
To cope with oxidative stress, the metabolic network of plant cells must be reconfigured either to bypass damaged enzymes or to support adaptive responses. To characterize the dynamics of metabolic change during oxidative stress, heterotrophic Arabidopsis (Arabidopsis thaliana) cells were treated with menadione and changes in metabolite abundance and (13)C-labeling kinetics were quantified in a time series of samples taken over a 6 h period. Oxidative stress had a profound effect on the central metabolic pathways with extensive metabolic inhibition radiating from the tricarboxylic acid cycle and including large sectors of amino acid metabolism. Sequential accumulation of metabolites in specific pathways indicated a subsequent backing up of glycolysis and a diversion of carbon into the oxidative pentose phosphate pathway. Microarray analysis revealed a coordinated transcriptomic response that represents an emergency coping strategy allowing the cell to survive the metabolic hiatus. Rather than attempt to replace inhibited enzymes, transcripts encoding these enzymes are in fact down-regulated while an antioxidant defense response is mounted. In addition, a major switch from anabolic to catabolic metabolism is signaled. Metabolism is also reconfigured to bypass damaged steps (e.g. induction of an external NADH dehydrogenase of the mitochondrial respiratory chain). The overall metabolic response of Arabidopsis cells to oxidative stress is remarkably similar to the superoxide and hydrogen peroxide stimulons of bacteria and yeast (Saccharomyces cerevisiae), suggesting that the stress regulatory and signaling pathways of plants and microbes may share common elements.
Collapse
Affiliation(s)
- Charles J Baxter
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 2007; 32:37-43. [PMID: 17141506 DOI: 10.1016/j.tibs.2006.11.001] [Citation(s) in RCA: 662] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 10/13/2006] [Accepted: 11/20/2006] [Indexed: 12/20/2022]
Abstract
Necrosis has been defined as a type of cell death that lacks the features of apoptosis and autophagy, and is usually considered to be uncontrolled. Recent research suggests, however, that its occurrence and course might be tightly regulated. After signaling- or damage-induced lesions, necrosis can include signs of controlled processes such as mitochondrial dysfunction, enhanced generation of reactive oxygen species, ATP depletion, proteolysis by calpains and cathepsins, and early plasma membrane rupture. In addition, the inhibition of specific proteins involved in regulating apoptosis or autophagy can change the type of cell death to necrosis. Because necrosis is prominent in ischemia, trauma and possibly some forms of neurodegeneration, further biochemical comprehension and molecular definition of this process could have important clinical implications.
Collapse
Affiliation(s)
- Pierre Golstein
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, 13288 Marseille Cedex 9, France
| | | |
Collapse
|
282
|
Amirsadeghi S, Robson CA, Vanlerberghe GC. The role of the mitochondrion in plant responses to biotic stress. PHYSIOLOGIA PLANTARUM 2007; 129:253-266. [PMID: 0 DOI: 10.1111/j.1399-3054.2006.00775.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
283
|
Valenti D, Vacca RA, de Pinto MC, De Gara L, Marra E, Passarella S. In the early phase of programmed cell death in Tobacco Bright Yellow 2 cells the mitochondrial adenine nucleotide translocator, adenylate kinase and nucleoside diphosphate kinase are impaired in a reactive oxygen species-dependent manner. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1767:66-78. [PMID: 17184729 DOI: 10.1016/j.bbabio.2006.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 11/03/2006] [Accepted: 11/08/2006] [Indexed: 11/18/2022]
Abstract
To investigate whether and how mitochondria can change in plant programmed cell death (PCD), we used the non-photosynthetic Tobacco Bright Yellow 2 (TBY-2) cells. These can be synchronized to high levels, stand out in terms of growth rate and homogeneity and undergo PCD as a result of heat shock. Using these cells we investigated the activity of certain mitochondrial proteins that have a role in providing ATP and/or other nucleoside triphosphates (NTPs). We show that, already after 2 h from the heat shock, when cell viability remains unaffected, the rate of ADP/ATP exchange due to adenine nucleotide translocator (ANT) activity, and the rate of the reactions catalysed by adenylate kinase (ADK; EC 2.7.4.3) and nucleoside diphosphate kinase (NDPK; EC 2.7.4.6) are inhibited in a non-competitive-like manner. In all cases, externally added ascorbate partially prevented the inhibition. These effects occurred in spite of minor (for ANT) or no changes in the mitochondrial protein levels as immunologically investigated. Interestingly, a decrease of both the steady state level of the ascorbate pool and of the activity of l-galactono-gamma-lactone dehydrogenase (GLDH) (EC 1.3.2.3), the mitochondrial enzyme catalysing the last step of ascorbate biosynthesis, were also found.
Collapse
Affiliation(s)
- Daniela Valenti
- Istituto di Biomembrane e Bioenergetica, CNR, Via G. Amendola 165/A 70126, Bari, Italy
| | | | | | | | | | | |
Collapse
|
284
|
Xiong TC, Bourque S, Lecourieux D, Amelot N, Grat S, Brière C, Mazars C, Pugin A, Ranjeva R. Calcium signaling in plant cell organelles delimited by a double membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1209-15. [PMID: 17052770 DOI: 10.1016/j.bbamcr.2006.09.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 09/13/2006] [Accepted: 09/15/2006] [Indexed: 01/07/2023]
Abstract
Increases in the concentration of free calcium in the cytosol are one of the general events that relay an external stimulus to the internal cellular machinery and allow eukaryotic organisms, including plants, to mount a specific biological response. Different lines of evidence have shown that other intracellular organelles contribute to the regulation of free calcium homeostasis in the cytosol. The vacuoles, the endoplasmic reticulum and the cell wall constitute storage compartments for mobilizable calcium. In contrast, the role of organelles surrounded by a double membrane (e.g. mitochondria, chloroplasts and nuclei) is more complex. Here, we review experimental data showing that these organelles harbor calcium-dependent biological processes. Mitochondria, chloroplasts as well as nuclei are equipped to generate calcium signal on their own. Changes in free calcium in a given organelle may also favor the relocalization of proteins and regulatory components and therefore have a profound influence on the integrated functioning of the cell. Studying, in time and space, the dynamics of different components of calcium signaling pathway will certainly give clues to understand the extraordinary flexibility of plants to respond to stimuli and mount adaptive responses. The availability of technical and biological resources should allow breaking new grounds by unveiling the contribution of signaling networks in integrative plant biology.
Collapse
Affiliation(s)
- Tou-Cheu Xiong
- UMR CNRS/Université Paul Sabatier 5546, Surfaces Cellulaires et Signalisation chez les Végétaux, Pôle de Biotechnologie Végétale, 24 chemin de Borde Rouge, Auzeville BP42617, 31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Dzyubinskaya EV, Kiselevsky DB, Lobysheva NV, Shestak AA, Samuilov VD. Death of stoma guard cells in leaf epidermis under disturbance of energy provision. BIOCHEMISTRY. BIOKHIMIIA 2006; 71:1120-7. [PMID: 17125461 DOI: 10.1134/s0006297906100105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyanide is an apoptosis inducer in stoma guard cells from pea leaf epidermis. Unlike CN-, the uncoupler of oxidative and photosynthetic phosphorylation carbonyl cyanide m-chlorophenylhydrazone (CCCP), the combination of CCCP, 3-(3 ,4 -dichlorophenyl)-1,1-dimethylurea (DCMU), benzylhydroxamate (BH), myxothiazol, antimycin A, and a glycolysis inhibitor 2-deoxyglucose (DG) did not induce destruction of guard cell nuclei for 20 h of incubation of epidermal peels in the light. DCMU prevented the effect of CN- as a programmed cell death (PCD) inducer. CCCP, the combination of DCMU and CCCP, or the combination of DCMU, CCCP, BH, myxothiazol, antimycin A, and DG supplemented by CN- caused destruction of cell nuclei; the number of the cells lacking nuclei in this case was higher than with CN- alone. DG and CCCP caused cell destruction after longer incubation of the isolated epidermis - after 2 days and to a greater degree after 4 days. The effect of DG and CCCP was reduced by illumination. Cell destruction during long-term incubation was prevented by the combination of DG and CCCP. From data of electron microscopy, DCMU and dinitrophenyl ester of iodonitrothymol (DNP-INT) prevented apoptotic changes of the nuclear ultrastructure induced by CN-. The suppression of the destruction of the guard cell nuclei under combined action of DG and CCCP was apparently caused by switching of cell death from PCD to necrosis. Thus, the type of cell death - via apoptosis or necrosis - is controlled by the level of energy provision.
Collapse
Affiliation(s)
- E V Dzyubinskaya
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | | | | | | | | |
Collapse
|
286
|
Abstract
The evolution of aerobic metabolism such as respiration and photosynthesis resulted in the generation of reactive oxygen species (ROS). A common property of all ROS types is that they can cause oxidative damage to proteins, DNA, and lipids. This toxicity of ROS explains the evolution of complex arrays of nonenzymatic and enzymatic detoxification mechanisms in plants. However, increasing evidence indicates that plants also make use of ROS as signaling molecules for regulating development and various physiological responses. In this review, novel insights into the mechanisms of how plants sense and respond to ROS are discussed in the context of the biological effects and functions of ROS in plants.
Collapse
Affiliation(s)
- Andrea Pitzschke
- Department of Plant Molecular Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
287
|
Rodríguez-Roldán V, García-Heredia JM, Navarro JA, Hervás M, De la Cerda B, Molina-Heredia FP, De la Rosa MA. A comparative kinetic analysis of the reactivity of plant, horse, and human respiratory cytochrome c towards cytochrome c oxidase. Biochem Biophys Res Commun 2006; 346:1108-13. [PMID: 16782050 DOI: 10.1016/j.bbrc.2006.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 06/03/2006] [Indexed: 01/29/2023]
Abstract
Two synthetic genes coding for human and Arabidopsis cytochrome c, respectively, have been designed and constructed, and the recombinant proteins have been over-expressed in Escherichia coli cells. Thus a comparative analysis of the two heme proteins, including horse cytochrome c as a reference, has been performed. In addition to their physico-chemical properties, the redox behavior of the three proteins has been analyzed by following the kinetics of both their reduction by flavin semiquinones (lumiflavin, riboflavin, and FMN) and oxidation by cytochrome c oxidase. The resulting data indicate that the accessibility and electrostatic charge of the active site do not differ in a significant way among the three proteins, but human cytochrome c exhibits some intriguing differences when interacting with cytochrome c oxidase that could be related to the amino acid changes underwent by the latter along evolution.
Collapse
Affiliation(s)
- Vicente Rodríguez-Roldán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla y CSIC, Centro de Investigaciones Científicas Isla de la Cartuja, Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
288
|
Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN. Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. PLANT PHYSIOLOGY 2006; 141:357-66. [PMID: 16760488 PMCID: PMC1475474 DOI: 10.1104/pp.106.079129] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 03/24/2006] [Accepted: 03/27/2006] [Indexed: 05/10/2023]
Affiliation(s)
- David M Rhoads
- School of Life Sciences, Arizona State University, Tempe, 85287-4501, USA.
| | | | | | | |
Collapse
|
289
|
Affiliation(s)
- Frank Van Breusegem
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9052 Gent, Belgium.
| | | |
Collapse
|
290
|
Vacca RA, Valenti D, Bobba A, Merafina RS, Passarella S, Marra E. Cytochrome c is released in a reactive oxygen species-dependent manner and is degraded via caspase-like proteases in tobacco Bright-Yellow 2 cells en route to heat shock-induced cell death. PLANT PHYSIOLOGY 2006; 141:208-19. [PMID: 16531480 PMCID: PMC1459318 DOI: 10.1104/pp.106.078683] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 02/27/2006] [Accepted: 02/27/2006] [Indexed: 05/07/2023]
Abstract
To gain some insight into the mechanism of plant programmed cell death, certain features of cytochrome c (cyt c) release were investigated in heat-shocked tobacco (Nicotiana tabacum) Bright-Yellow 2 cells in the 2- to 6-h time range. We found that 2 h after heat shock, cyt c is released from intact mitochondria into the cytoplasm as a functionally active protein. Such a release did not occur in the presence of superoxide anion dismutase and catalase, thus showing that it depends on reactive oxygen species (ROS). Interestingly, ROS production due to xanthine plus xanthine oxidase results in cyt c release in sister control cultures. Maximal cyt c release was found 2 h after heat shock; later, activation of caspase-3-like protease was found to increase with time. Activation of this protease did not occur in the presence of ROS scavenger enzymes. The released cyt c was found to be progressively degraded in a manner prevented by either the broad-range caspase inhibitor (zVAD-fmk) or the specific inhibitor of caspase-3 (AC-DEVD-CHO), which have no effect on cyt c release. In the presence of these inhibitors, a significant increase in survival of the cells undergoing programmed cell death was found. We conclude that ROS can trigger release of cyt c, but do not cause cell death, which requires caspase-like activation.
Collapse
Affiliation(s)
- Rosa Anna Vacca
- Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, I-70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
291
|
Xu Y, Ishida H, Reisen D, Hanson MR. Upregulation of a tonoplast-localized cytochrome P450 during petal senescence in Petunia inflata. BMC PLANT BIOLOGY 2006; 6:8. [PMID: 16613603 PMCID: PMC1540422 DOI: 10.1186/1471-2229-6-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 04/13/2006] [Indexed: 05/08/2023]
Abstract
BACKGROUND Gene expression in Petunia inflata petals undergoes major changes following compatible pollination. Severe flower wilting occurs reproducibly within 36 hours, providing an excellent model for investigation of petal senescence and programmed cell death. Expression of a number of genes and various enzyme activities involved in the degradation and remobilization of macromolecules have been found to be upregulated during the early stages of petal senescence. RESULTS By performing differential display of cDNAs during Petunia inflata petal senescence, a highly upregulated gene encoding a cytochrome P450 was identified. Analysis of the complete cDNA sequence revealed that the predicted protein is a member of the CYP74C family (CYP74C9) and is highly similar to a tomato CYP74C allene oxide synthase (AOS) that is known to be active on 9-hydroperoxides. Cloning of the petunia genomic DNA revealed an intronless gene with a promoter region that carries signals found in stress-responsive genes and potential binding sites for Myb transcription factors. Transcripts were present at detectable levels in root and stem, but were 40 times more abundant in flowers 36 hours after pollination. Ethylene and jasmonate treatment resulted in transitory increases in expression in detached flowers. A protein fusion of the CYP74C coding region to a C-terminal GFP was found to be located in the tonoplast. CONCLUSION Though oxylipins, particularly jasmonates, are known to be involved in stress responses, the role of other products of CYP74 enzymes is less well understood. The identification of a CYP74C family member as a highly upregulated gene during petal senescence suggests that additional products of fatty acid metabolism may play important roles during programmed cell death. In contrast to the chloroplast localization of AOS proteins in the CYP74A subfamily, GFP fusion data indicates that the petunia CYP74C9 enzyme is in the tonoplast. This result suggests that the highly similar CYP74C enzymes that have been identified in two other Solanaceous plants may also be associated with the vacuole, an organelle known to have a prominent role in programmed cell death.
Collapse
Affiliation(s)
- Yan Xu
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
- Current address: New England BioLabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Hiroyuki Ishida
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
- Laboratory of Plant Nutrition and Function, Department of Applied Plant Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Sendai 981–8555, Japan
| | - Daniel Reisen
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
292
|
Samuilov VD, Kiselevsky DB, Sinitsyn SV, Shestak AA, Lagunova EM, Nesov AV. H2O2 intensifies CN(-)-induced apoptosis in pea leaves. BIOCHEMISTRY. BIOKHIMIIA 2006; 71:384-94. [PMID: 16615858 DOI: 10.1134/s0006297906040067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
H2O2 intensifies CN(-)-induced apoptosis in stoma guard cells and to lesser degree in basic epidermal cells in peels of the lower epidermis isolated from pea leaves. The maximum effect of H2O2 on guard cells was observed at 10(-4) M. By switching on non-cyclic electron transfer in chloroplasts menadione and methyl viologen intensified H2O2 generation in the light, but prevented the CN--induced apoptosis in guard cells. The light stimulation of CN- effect on guard cell apoptosis cannot be caused by disturbance of the ribulose-1,5-bisphosphate carboxylase function and associated OH* generation in chloroplasts with participation of free transition metals in the Fenton or Haber-Weiss type reactions as well as with participation of the FeS clusters of the electron acceptor side of Photosystem I. Menadione and methyl viologen did not suppress the CN(-)-induced apoptosis in epidermal cells that, unlike guard cells, contain mitochondria only, but not chloroplasts. Quinacrine and diphenylene iodonium, inhibitors of NAD(P)H oxidase of cell plasma membrane, had no effect on the respiration and photosynthetic O2 evolution by leaf slices, but prevented the CN(-)-induced guard cell death. The data suggest that NAD(P)H oxidase of guard cell plasma membrane is a source of reactive oxygen species (ROS) needed for execution of CN(-)-induced programmed cell death. Chloroplasts and mitochondria were inefficient as ROS sources in the programmed death of guard cells. When ROS generation is insufficient, exogenous H2O2 exhibits a stimulating effect on programmed cell death. H2O2 decreased the inhibitory effects of DCMU and DNP-INT on the CN(-)-induced apoptosis of guard cells. Quinacrine, DCMU, and DNP-INT had no effect on CN(-)-induced death of epidermal cells.
Collapse
Affiliation(s)
- V D Samuilov
- Department of Physiology of Microorganisms, Biological Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
293
|
Kang CH, Jung WY, Kang YH, Kim JY, Kim DG, Jeong JC, Baek DW, Jin JB, Lee JY, Kim MO, Chung WS, Mengiste T, Koiwa H, Kwak SS, Bahk JD, Lee SY, Nam JS, Yun DJ, Cho MJ. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death Differ 2006; 13:84-95. [PMID: 16003391 DOI: 10.1038/sj.cdd.4401712] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Calmodulin (CaM) influences many cellular processes by interacting with various proteins. Here, we isolated AtBAG6, an Arabidopsis CaM-binding protein that contains a central BCL-2-associated athanogene (BAG) domain. In yeast and plants, overexpression of AtBAG6 induced cell death phenotypes consistent with programmed cell death (PCD). Recombinant AtBAG6 had higher affinity for CaM in the absence of free Ca2 + than in its presence. An IQ motif (IQXXXRGXXXR, where X denotes any amino-acid) was required for Ca2 +-independent CaM complex formation and single amino-acid changes within this motif abrogated both AtBAG6-activated CaM-binding and cell death in yeast and plants. A 134-amino-acid stretch, encompassing both the IQ motif and BAG domain, was sufficient to induce cell death. Agents generating oxygen radicals, which are known to be involved in plant PCD, specifically induced the AtBAG6 transcript. Collectively, these results suggest that AtBAG6 is a stress-upregulated CaM-binding protein involved in plant PCD.
Collapse
Affiliation(s)
- C H Kang
- Division of Applied Life Science (BK21 program) and Environmental Biotechnology National Core Research Center, Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Weir TL, Bais HP, Stull VJ, Callaway RM, Thelen GC, Ridenour WM, Bhamidi S, Stermitz FR, Vivanco JM. Oxalate contributes to the resistance of Gaillardia grandiflora and Lupinus sericeus to a phytotoxin produced by Centaurea maculosa. PLANTA 2006; 223:785-95. [PMID: 16395587 DOI: 10.1007/s00425-005-0192-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 11/16/2005] [Indexed: 05/06/2023]
Abstract
Centaurea maculosa Lam. is a noxious weed in western North America that produces a phytotoxin, (+/-)-catechin, which is thought to contribute to its invasiveness. Areas invaded by C. maculosa often result in monocultures of the weed, however; in some areas, North American natives stand their ground against C. maculosa and show varying degrees of resistance to its phytotoxin. Two of these resistant native species, Lupinus sericeus Pursh and Gaillardia grandiflora Van Houtte, were found to secrete increased amounts of oxalate in response to catechin exposure. Mechanistically, we found that oxalate works exogenously by blocking generation of reactive oxygen species in susceptible plants and reducing oxidative damage generated in response to catechin. Furthermore, field experiments show that L. sericeus indirectly facilitates native grasses in grasslands invaded by C. maculosa, and this facilitation can be correlated with the presence of oxalate in soil. Addition of exogenous oxalate to native grasses and Arabidopsis thaliana (L.) Heynh grown in vitro alleviated the phytotoxic effects of catechin, supporting the field experiments and suggesting that root-secreted oxalate may also act as a chemical facilitator for plant species that do not secrete the compound.
Collapse
Affiliation(s)
- Tiffany L Weir
- Department of Horticulture and Landscape Architecture, Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, 80523, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Mur LAJ, Carver TLW, Prats E. NO way to live; the various roles of nitric oxide in plant-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:489-505. [PMID: 16377733 DOI: 10.1093/jxb/erj052] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nitric oxide has attracted considerable interest from plant pathologists due its established role in regulating mammalian anti-microbial defences, particularly via programmed cell death (PCD). Although NO plays a major role in plant PCD elicited in response to certain types of pathogenic challenge, the race-specific hypersensitive response (HR), it is now evident that NO also acts in the regulation of non-specific, papilla-based resistance to penetration by plant cells that survive attack and, possibly, in systemic acquired resistance. Equally, the potential roles of NO signalling/scavenging within the pathogen are being recognized. This review will consider key defensive roles played by NO in living cells during plant-pathogen interactions, as well as in those undergoing PCD.
Collapse
Affiliation(s)
- Luis A J Mur
- University of Wales Aberystwyth, Institute of Biological Sciences, Aberystwyth, Ceredigion SY23 2DA, UK.
| | | | | |
Collapse
|
296
|
Zhang L, Tamura K, Shin-ya K, Takahashi H. The telomerase inhibitor telomestatin induces telomere shortening and cell death in Arabidopsis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:39-44. [PMID: 16473138 DOI: 10.1016/j.bbamcr.2005.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 10/27/2005] [Accepted: 12/05/2005] [Indexed: 01/06/2023]
Abstract
The cellular response to telomere dysfunction in plants was investigated with the use of telomestatin, an inhibitor of human telomerase activity. Telomestatin bound to plant telomeric repeat sequence, and inhibited telomerase activity in suspension-cultured cells of Arabidopsis thaliana and Oryza sativa (rice) in a dose-dependent manner. The inhibitor did not affect transcript level of the TERT gene, which encodes the catalytic subunit of telomerase, in the plant cells. Inhibition of telomerase activity by telomestatin resulted in rapid shortening of telomeres and the induction of cell death by an apoptosis-like mechanism in Arabidopsis cells. These results suggest that telomerase contributes to the survival of proliferating plant cells by maintaining telomere length, and that telomere erosion triggers cell death.
Collapse
Affiliation(s)
- Lili Zhang
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
297
|
Brewer M, Kirkpatrick ND, Wharton JT, Wang J, Hatch K, Auersperg N, Utzinger U, Gershenson D, Bast R, Zou C. 4-HPR modulates gene expression in ovarian cells. Int J Cancer 2006; 119:1005-13. [PMID: 16570282 DOI: 10.1002/ijc.21797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ovarian cancer has a high rate of recurrence and subsequent mortality following chemotherapy despite intense efforts to improve treatment outcomes. Recent trials have suggested that retinoids, especially 4-(N-hydroxyphenyl) retinamide (4-HPR), play an important role as a chemopreventive agent and are currently being used in clinical trials for ovarian cancer chemoprevention as well as treatment. This study examines the mechanism of its activity in premalignant and cancer cells. We investigated the modulation of gene expression by 4-HPR in immortalized ovarian surface epithelial (IOSE) cells and ovarian cancer (OVCA433) cells with DNA microarray. Real time RT-PCR and western blotting were used to confirm the microarray results and metabolic changes were examined with optical fluorescence spectroscopy. 4-HPR resulted in an up-regulation of expression of proapoptotic genes and mitochondrial uncoupling protein in OVCA433 cells and modulation of the RXR receptors in IOSE cells, and down-regulation of mutant BRCA genes in both IOSE and OVCA433 cells. 4-HPR had a larger effect on the redox in the 433 cells compared to IOSE. These findings suggest that 4-HPR acts through different mechanisms in premalignant ovarian surface cells and cancer cells, with a preventive effect in premalignant cells and a treatment effect in cancer cells.
Collapse
Affiliation(s)
- Molly Brewer
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Arizona Cancer Center, Tucson, 85724, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Guo FQ, Crawford NM. Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. THE PLANT CELL 2005; 17:3436-50. [PMID: 16272429 PMCID: PMC1315380 DOI: 10.1105/tpc.105.037770] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Arabidopsis thaliana protein nitric oxide synthase1 (NOS1) is needed for nitric oxide (NO) synthesis and signaling during defense responses, hormonal signaling, and flowering. The cellular localization of NOS1 was examined because it is predicted to be a mitochondrial protein. NOS1-green fluorescent protein fusions were localized by confocal microscopy to mitochondria in roots. Isolated mitochondria from leaves of wild-type plants supported Arg-stimulated NO synthesis that could be inhibited by NOS inhibitors and quenched by a NO scavenger; this NOS activity is absent in mitochondria isolated from nos1 mutant plants. Because mitochondria are a source of reactive oxygen species (ROS), which participate in senescence and programmed cell death, these parameters were examined in the nos1 mutant. Dark-induced senescence of detached leaves and intact plants progressed more rapidly in the mutant compared with the wild type. Hydrogen peroxide, superoxide anion, oxidized lipid, and oxidized protein levels were all higher in the mutant. These results demonstrate that NOS1 is a mitochondrial NOS that reduces ROS levels, mitigates oxidative damage, and acts as an antisenescence agent.
Collapse
Affiliation(s)
- Fang-Qing Guo
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, 92093-0116, USA.
| | | |
Collapse
|
299
|
Petrussa E, Casolo V, Peresson C, Braidot E, Vianello A, Macrì F. The K(ATP)+ channel is involved in a low-amplitude permeability transition in plant mitochondria. Mitochondrion 2005; 3:297-307. [PMID: 16120362 DOI: 10.1016/j.mito.2004.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 01/27/2004] [Accepted: 01/29/2004] [Indexed: 01/26/2023]
Abstract
Pea (Pisum sativum) stem mitochondria, energized by NADH, succinate or malate plus glutamate, underwent a spontaneous low-amplitude permeability transition (PT), which could be monitored by dissipation of the electrical potential (deltapsi) or swelling. The occurrence of the latter effects was dependent on O2 availability, because O2 shortage anticipated the manifestation of both deltapsi dissipation and swelling. Spontaneous deltapsi collapse was also monitored in sucrose-resuspended mitochondria and again O2 deprivation caused an anticipation of the phenomenon. However, in this case deltapsi dissipation was not accompanied by a parallel mitochondrial swelling. The latter effect was, indeed, evident only if mitochondria were resuspended in KCl (as osmoticum), or other cations with a molecular mass up to 100 Da (choline+). PT was also induced by protonophores (carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) or free fatty acids) or valinomycin (only in KCl). The FCCP-induced dissipation of deltapsi and swelling were inhibited by ATP and stimulated (anticipated) by cyclosporin A or O2 shortage. The FCCP-induced PT was accompanied by the release of pyridine nucleotides from the matrix and of cytochrome c from the intermembrane space of KCl-resuspended mitochondria. The spontaneous and FCCP-induced low-amplitude PT of plant mitochondria are interpreted as due to the activity of a recently identified K(ATP)+ channel whose open/closed state is dependent on polarization of the inner membrane and on the oxidoreductive state of some sulfhydryl groups.
Collapse
Affiliation(s)
- Elisa Petrussa
- Department of Biology and Agro-Industrial Economics, Section of Plant Biology, University of Udine, via Cotonificio 108, Udine I-33100, Italy
| | | | | | | | | | | |
Collapse
|
300
|
Chen JC, Jiang CZ, Reid MS. Silencing a prohibitin alters plant development and senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:16-24. [PMID: 16167892 DOI: 10.1111/j.1365-313x.2005.02505.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Prohibitins, highly conserved mitochondrial proteins, have been shown to play important roles in cell cycling and senescence in animals and yeast. Sequences with high similarity to prohibitins have been identified in a number of plant species, but their function has not yet been demonstrated. The deduced amino acid sequences of PhPHB1 and PhPHB2, sequences that we identified in a petunia floral expressed sequence tag (EST) database, show high similarity to those of prohibitin-1 and prohibitin-2 proteins, respectively, reported from yeast, animals and plants. Southern analysis suggested that these genes were members of small gene families with at least two prohibitin-1 homologs and four prohibitin-2 homologs. When we downregulated expression of prohibitin-1 using a Tobacco rattle virus-based (TRV), virus-induced gene silencing system (VIGS), we observed plants with smaller and distorted leaves and flowers. Cells in silenced flowers were larger than in control flowers, indicating a substantial reduction in the number of cell divisions that took place during corolla development. The life of silenced flowers was shorter than that of controls, whether on the plant or detached. The respiration of silenced flowers was higher than that of controls, and we observed a marked increase in the abundance of transcripts of a catalase and a small heat-shock protein in the silenced flowers. Our data indicate that prohibitins play a key role in plant development and senescence.
Collapse
Affiliation(s)
- Jen-Chih Chen
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|