251
|
Abstract
Severe dengue virus infections usually occur in individuals who have preexisting anti-dengue virus antibodies. Mast cells are known to play an important role in host defense against several pathogens, but their role in viral infection has not yet been elucidated. The effects of dengue virus infection on the production of chemokines by human mast cells were examined. Elevated levels of secreted RANTES, MIP-1alpha, and MIP-1beta, but not IL-8 or ENA-78, were observed following infection of KU812 or HMC-1 human mast cell-basophil lines. In some cases a >200-fold increase in RANTES production was observed. Cord blood-derived cultured human mast cells treated with dengue virus in the presence of subneutralizing concentrations of dengue virus-specific antibody also demonstrated significantly (P < 0.05) increased RANTES production, under conditions which did not induce significant degranulation. Chemokine responses were not observed when mast cells were treated with UV-inactivated dengue virus in the presence or absence of human dengue virus-specific antibody. Neither antibody-enhanced dengue virus infection of the highly permissive U937 monocytic cell line nor adenovirus infection of mast cells induced a RANTES, MIP-1alpha, or MIP-1beta response, demonstrating a selective mast cell response to dengue virus. These results suggest a role for mast cells in the initiation of chemokine-dependent host responses to dengue virus infection.
Collapse
Affiliation(s)
- Christine A King
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | |
Collapse
|
252
|
Wang WK, Lin SR, Lee CM, King CC, Chang SC. Dengue type 3 virus in plasma is a population of closely related genomes: quasispecies. J Virol 2002; 76:4662-5. [PMID: 11932434 PMCID: PMC155095 DOI: 10.1128/jvi.76.9.4662-4665.2002] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using reverse transcription-PCR and clonal sequencing of the dengue virus envelope gene derived from the plasma samples of six patients, we reported for the first time that dengue virus circulates as a population of closely related genomes. The extent of sequence diversity varied among patients, with the mean pairwise proportions of difference ranging from 0.21 to 1.67%. Genome-defective viruses were found in 5.8% of the total number of clones analyzed. Our findings on the quasispecies nature of dengue virus and the defective virus in vivo have implications with regard to the pathogenesis of dengue virus.
Collapse
Affiliation(s)
- Wei-Kung Wang
- Institute of Microbiology, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
253
|
Vallée I, Tait SW, Powell PP. African swine fever virus infection of porcine aortic endothelial cells leads to inhibition of inflammatory responses, activation of the thrombotic state, and apoptosis. J Virol 2001; 75:10372-82. [PMID: 11581405 PMCID: PMC114611 DOI: 10.1128/jvi.75.21.10372-10382.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African swine fever (ASF) is an asymptomatic infection of warthogs and bushpigs, which has become an emergent disease of domestic pigs, characterized by hemorrhage, lymphopenia, and disseminated intravascular coagulation. It is caused by a large icosohedral double-stranded DNA virus, African swine fever virus (ASFV), with infection of macrophages well characterized in vitro and in vivo. This study shows that virulent isolates of ASFV also infect primary cultures of porcine aortic endothelial cells and bushpig endothelial cells (BPECs) in vitro. Kinetics of early and late gene expression, viral factory formation, replication, and secretion were similar in endothelial cells and macrophages. However, ASFV-infected endothelial cells died by apoptosis, detected morphologically by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling and nuclear condensation and biochemically by poly(ADP-ribose) polymerase (PARP) cleavage at 4 h postinfection (hpi). Immediate-early proinflammatory responses were inhibited, characterized by a lack of E-selectin surface expression and interleukin 6 (IL-6) and IL-8 mRNA synthesis. Moreover, ASFV actively downregulated interferon-induced major histocompatibility complex class I surface expression, a strategy by which viruses evade the immune system. Significantly, Western blot analysis showed that the 65-kDa subunit of the transcription factor NF-kappaB, a central regulator of the early response to viral infection, decreased by 8 hpi and disappeared by 18 hpi. Both disappearance of NF-kappaB p65 and cleavage of PARP were reversed by the caspase inhibitor z-VAD-fmk. Interestingly, surface expression and mRNA transcription of tissue factor, an important initiator of the coagulation cascade, increased 4 h after ASFV infection. These data suggest a central role for vascular endothelial cells in the hemorrhagic pathogenesis of the disease. Since BPECs infected with ASFV also undergo apoptosis, resistance of the natural host must involve complex pathological factors other than viral tropism.
Collapse
Affiliation(s)
- I Vallée
- Department of Immunology and Pathology, Institute for Animal Health, Pirbright, Surrey GU24 ONF, United Kingdom
| | | | | |
Collapse
|
254
|
Cuzzubbo AJ, Endy TP, Nisalak A, Kalayanarooj S, Vaughn DW, Ogata SA, Clements DE, Devine PL. Use of recombinant envelope proteins for serological diagnosis of Dengue virus infection in an immunochromatographic assay. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2001; 8:1150-5. [PMID: 11687456 PMCID: PMC96242 DOI: 10.1128/cdli.8.6.1150-1155.2001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An immunochromatographic test that incorporates recombinant antigens (Dengue Duo Rapid Strip Test; PanBio, Brisbane, Australia) has recently become commercially available. This assay is performed in 15 min and detects both immunoglobulin M (IgM) and IgG in a capture format. The four recombinant proteins used represent the N-terminal 80% of the viral envelope glycoproteins of dengue viruses 1, 2, 3, and 4, respectively. The sensitivity and specificity of the recombinant-antigen-based assay were 90 and 86%, respectively. The similar diagnostic performance of these antigens to that of enzyme-linked immunosorbent assays using whole dengue virus suggests that they mimic whole dengue viruses in primary structure and epitope conformation. These results suggest that recombinant proteins can be used in diagnostic assays for dengue to overcome safety issues associated with the use of whole virus.
Collapse
Affiliation(s)
- A J Cuzzubbo
- PanBio Ltd., Windsor 4030, Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
255
|
Lei HY, Yeh TM, Liu HS, Lin YS, Chen SH, Liu CC. Immunopathogenesis of dengue virus infection. J Biomed Sci 2001; 8:377-88. [PMID: 11549879 DOI: 10.1007/bf02255946] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dengue virus infection causes dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), whose pathogeneses are not clearly understood. Current hypotheses of antibody-dependent enhancement, virus virulence, and IFN-gamma/TNFalpha-mediated immunopathogenesis are insufficient to explain clinical manifestations of DHF/DSS such as thrombocytopenia and hemoconcentration. Dengue virus infection induces transient immune aberrant activation of CD4/CD8 ratio inversion and cytokine overproduction, and infection of endothelial cells and hepatocytes causes apoptosis and dysfunction of these cells. The coagulation and fibrinolysis systems are also activated after dengue virus infection. We propose a new hypothesis for the immunopathogenesis for dengue virus infection. The aberrant immune responses not only impair the immune response to clear the virus, but also result in overproduction of cytokines that affect monocytes, endothelial cells, and hepatocytes. Platelets are destroyed by crossreactive anti-platelet autoantibodies. Dengue-virus-induced vasculopathy and coagulopathy must be involved in the pathogenesis of hemorrhage, and the unbalance between coagulation and fibrinolysis activation increases the likelihood of severe hemorrhage in DHF/DSS. Hemostasis is maintained unless the dysregulation of coagulation and fibrinolysis persists. The overproduced IL-6 might play a crucial role in the enhanced production of anti-platelet or anti-endothelial cell autoantibodies, elevated levels of tPA, as well as a deficiency in coagulation. Capillary leakage is triggered by the dengue virus itself or by antibodies to its antigens. This immunopathogenesis of DHF/DSS can account for specific characteristics of clinical, pathologic, and epidemiological observations in dengue virus infection.
Collapse
Affiliation(s)
- H Y Lei
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, ROC.
| | | | | | | | | | | |
Collapse
|
256
|
Martínez-Barragán JJ, del Angel RM. Identification of a putative coreceptor on Vero cells that participates in dengue 4 virus infection. J Virol 2001; 75:7818-27. [PMID: 11483725 PMCID: PMC115024 DOI: 10.1128/jvi.75.17.7818-7827.2001] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dengue virus infects target cells by attaching to a cell surface receptor through the envelope (E) glycoprotein, located on the surface of the viral membrane. On Vero and BHK cells, heparan sulfate (HS) moieties of proteoglycans are the receptors for dengue virus; however, additional proteins have also been described as putative dengue virus receptors on C6/36, HL60, and BM cells. HS can also act as a receptor for other types of viruses or as an attachment molecule for viruses that require additional host cell molecules to allow viral penetration. In this study we searched for molecules other than HS that could participate in dengue virus infection of Vero cells. Labeled dengue 4 virus bound with high affinity to two molecules of 74 and 44 kDa. Binding of dengue virus to the 74-kDa molecule was susceptible to protease and sodium periodate treatment and resistant to heparinase treatments. Lectins such as concanavalin A and wheat germ agglutinin prevented dengue virus binding to both the 74- and the 44-kDa protein in overlay assays, while phytohemagglutinin P did not affect binding, suggesting that carbohydrate residues (alpha-mannose or N-acetylglucosamine) are important in virus binding to host cells. Protease susceptibility, biotin labeling, and immunofluorescence with a polyclonal antibody raised against the 74-kDa protein consistently identified the protein on the surfaces of Vero cells. Moreover, the antibody against the 74-kDa protein was able to inhibit dengue virus infection. These data suggest that HS might serve as a primary receptor, probably concentrating virus particles on the surfaces of Vero cells, and then other molecules, such as the 74-kDa protein, might participate as coreceptors in viral penetration. The 74-kDa protein possibly constitutes part of a putative receptor complex for dengue virus infection of Vero cells.
Collapse
Affiliation(s)
- J J Martínez-Barragán
- Departamento de Patología Experimental, Centro de Investigación y de Estudios Avanzados del IPN, México City 07360, México
| | | |
Collapse
|
257
|
Guirakhoo F, Arroyo J, Pugachev KV, Miller C, Zhang ZX, Weltzin R, Georgakopoulos K, Catalan J, Ocran S, Soike K, Ratterree M, Monath TP. Construction, safety, and immunogenicity in nonhuman primates of a chimeric yellow fever-dengue virus tetravalent vaccine. J Virol 2001; 75:7290-304. [PMID: 11462001 PMCID: PMC114964 DOI: 10.1128/jvi.75.16.7290-7304.2001] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We previously reported construction of a chimeric yellow fever-dengue type 2 virus (YF/DEN2) and determined its safety and protective efficacy in rhesus monkeys (F. Guirakhoo et al., J. Virol. 74:5477-5485, 2000). In this paper, we describe construction of three additional YF/DEN chimeras using premembrane (prM) and envelope (E) genes of wild-type (WT) clinical isolates: DEN1 (strain PUO359, isolated in 1980 in Thailand), DEN3 (strain PaH881/88, isolated in 1988 in Thailand), and DEN4 (strain 1228, isolated in 1978 in Indonesia). These chimeric viruses (YF/DEN1, YF/DEN3, and YF/DEN4) replicated to ~7.5 log(10) PFU/ml in Vero cells, were not neurovirulent in 3- to 4-week-old ICR mice inoculated by the intracerebral route, and were immunogenic in monkeys. All rhesus monkeys inoculated subcutaneously with one dose of these chimeric viruses (as monovalent or tetravalent formulation) developed viremia with magnitudes similar to that of the YF 17D vaccine strain (YF-VAX) but significantly lower than those of their parent WT viruses. Eight of nine monkeys inoculated with monovalent YF/DEN1 -3, or -4 vaccine and six of six monkeys inoculated with tetravalent YF/DEN1-4 vaccine seroconverted after a single dose. When monkeys were boosted with a tetravalent YF/DEN1-4 dose 6 months later, four of nine monkeys in the monovalent YF/DEN groups developed low levels of viremia, whereas no viremia was detected in any animals previously inoculated with either YF/DEN1-4 vaccine or WT DEN virus. An anamnestic response was observed in all monkeys after the second dose. No statistically significant difference in levels of neutralizing antibodies was observed between YF virus-immune and nonimmune monkeys which received the tetravalent YF/DEN1-4 vaccine or between tetravalent YF/DEN1-4-immune and nonimmune monkeys which received the YF-VAX. However, preimmune monkeys developed either no detectable viremia or a level of viremia lower than that in nonimmune controls. This is the first recombinant tetravalent dengue vaccine successfully evaluated in nonhuman primates.
Collapse
Affiliation(s)
- F Guirakhoo
- Acambis, Inc., Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Wu SJ, Lee EM, Putvatana R, Shurtliff RN, Porter KR, Suharyono W, Watts DM, King CC, Murphy GS, Hayes CG, Romano JW. Detection of dengue viral RNA using a nucleic acid sequence-based amplification assay. J Clin Microbiol 2001; 39:2794-8. [PMID: 11473994 PMCID: PMC88241 DOI: 10.1128/jcm.39.8.2794-2798.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Faster techniques are needed for the early diagnosis of dengue fever and dengue hemorrhagic fever during the acute viremic phase of infection. An isothermal nucleic acid sequence-based amplification (NASBA) assay was optimized to amplify viral RNA of all four dengue virus serotypes by a set of universal primers and to type the amplified products by serotype-specific capture probes. The NASBA assay involved the use of silica to extract viral nucleic acid, which was amplified without thermocycling. The amplified product was detected by a probe-hybridization method that utilized electrochemiluminescence. Using normal human plasma spiked with dengue viruses, the NASBA assay had a detection threshold of 1 to 10 PFU/ml. The sensitivity and specificity of the assay were determined by testing 67 dengue virus-positive and 21 dengue virus-negative human serum or plasma samples. The "gold standard" used for comparison and evaluation was the mosquito C6/36 cell culture assay followed by an immunofluorescent assay. Viral infectivity titers in test samples were also determined by a direct plaque assay in Vero cells. The NASBA assay was able to detect dengue viral RNA in the clinical samples at plaque titers below 25 PFU/ml (the detection limit of the plaque assay). Of the 67 samples found positive by the C6/36 assay, 66 were found positive by the NASBA assay, for a sensitivity of 98.5%. The NASBA assay had a specificity of 100% based on the negative test results for the 21 normal human serum or plasma samples. These results indicate that the NASBA assay is a promising assay for the early diagnosis of dengue infections.
Collapse
Affiliation(s)
- S J Wu
- Viral Diseases Department, Naval Medical Research Center, Silver Spring, Maryland 20910-7500, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Matusan AE, Kelley PG, Pryor MJ, Whisstock JC, Davidson AD, Wright PJ. Mutagenesis of the dengue virus type 2 NS3 proteinase and the production of growth-restricted virus. J Gen Virol 2001; 82:1647-1656. [PMID: 11413376 DOI: 10.1099/0022-1317-82-7-1647] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The N-terminal one-third of the NS3 protein of Dengue virus type 2 (DEN-2) complexes with co-factor NS2B to form an active serine proteinase which cleaves the viral polyprotein. To identify sites within NS3 that may interact with NS2B, seven regions within the NS3 proteinase outside the conserved flavivirus enzyme motifs were mutated by alanine replacement. Five sites contained clusters of charged residues and were hydrophilic. Two sites were hydrophobic and highly conserved among flaviviruses. The effects of five mutations on NS2B/3 processing were examined using a COS cell expression system. Four retained significant proteinase activity. Three of these mutations and two more were introduced into genomic-length cDNA and tested for their effects on virus replication. The five mutant viruses showed reduced plaque size and two of the five showed significantly reduced titres. All seven mutations were mapped on the X-ray crystal structure of the DEN-2 NS3 proteinase: three were located at the N terminus and two at the C terminus of the NS2B-binding cleft. Two mutations were at the C terminus of the proteinase domain and one was solvent-exposed. The study demonstrated that charged-to-alanine mutagenesis in the viral proteinase can be used to produce growth-restricted flaviviruses that may be useful in the production of attenuated vaccine strains.
Collapse
Affiliation(s)
- Anita E Matusan
- Department of Microbiology1 and Department of Biochemistry and Molecular Biology2, Monash University, PO Box 53, Victoria 3800, Australia
| | - Peter G Kelley
- Department of Microbiology1 and Department of Biochemistry and Molecular Biology2, Monash University, PO Box 53, Victoria 3800, Australia
| | - Melinda J Pryor
- Department of Microbiology1 and Department of Biochemistry and Molecular Biology2, Monash University, PO Box 53, Victoria 3800, Australia
| | - James C Whisstock
- Department of Microbiology1 and Department of Biochemistry and Molecular Biology2, Monash University, PO Box 53, Victoria 3800, Australia
| | - Andrew D Davidson
- Department of Microbiology1 and Department of Biochemistry and Molecular Biology2, Monash University, PO Box 53, Victoria 3800, Australia
| | - Peter J Wright
- Department of Microbiology1 and Department of Biochemistry and Molecular Biology2, Monash University, PO Box 53, Victoria 3800, Australia
| |
Collapse
|
260
|
Wu HC, Huang YL, Chao TT, Jan JT, Huang JL, Chiang HY, King CC, Shaio MF. Identification of B-cell epitope of dengue virus type 1 and its application in diagnosis of patients. J Clin Microbiol 2001; 39:977-82. [PMID: 11230414 PMCID: PMC87860 DOI: 10.1128/jcm.39.3.977-982.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a serotype-specific monoclonal antibody (MAb) of dengue virus type 1 (DEN-1), 15F3-1, we identified the B-cell epitope of DEN-1 from a random peptide library displayed on phage. Fourteen immunopositive phage clones that bound specifically to MAb 15F3-1 were selected. These phage-borne peptides had a consensus motif of HxYaWb (a = S/T, b = K/H/R) that mimicked the sequence HKYSWK, which corresponded to amino acid residues 111 to 116 of the nonstructural protein 1 (NS1) of DEN-1. Among the four synthetic peptides corresponding to amino acid residues 110 to 117 of the NS1 of DEN-1, -2, -3, and -4, only one peptide, EHKYSWKS (P14M) of DEN-1, was found to bind to 15F3-1 specifically. Furthermore, P14M was shown to inhibit the binding of phage particles to 15F3-1 in a competitive inhibition assay. Histidine(111) (His(111)) was crucial to the binding of P14M to 15F3-1, since its binding activity dramatically reduced when it changed to leucine(111) (Leu(111)). This epitope-based peptide demonstrated its clinical diagnostic potential when it reacted with a high degree of specificity with serum samples obtained from both DEN-1-infected rabbits and patients. Based on these observations, our DEN-1 epitope-based serologic test could be useful in laboratory viral diagnosis and in understanding the pathogenesis of DEN-1.
Collapse
Affiliation(s)
- H C Wu
- Institute of Preventive Medicine, National Defense Medical Center, P.O. Box 90048-700, San-Hsia, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
261
|
Chen RF, Yeh WT, Yang MY, Yang KD. A model of the real-time correlation of viral titers with immune reactions in antibody-dependent enhancement of dengue-2 infections. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2001; 30:1-7. [PMID: 11172984 DOI: 10.1111/j.1574-695x.2001.tb01542.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We simultaneously assessed dengue-2 virus (DEN-2) titers by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) and immune reactions including interleukin-4 (IL-4), interferon-gamma (IFN-gamma) and prostaglandin E(2) (PGE(2)) production by human mononuclear cells (MNLs) in a model of antibody-dependent enhancement (ADE). We found that DEN-1 immune sera at 1:100 and 1:250, but not those at 1:10 or control sera, enhanced DEN-2 infections in human MNLs as assessed by the fluorogenic RT-PCR technique. The enhanced profiles of DEN-2 infections determined by the RT-PCR in 6 h were reproducible by the standard plaque-forming unit (PFU) measurement established after 7 days. The ADE-enhanced DEN-2 titers determined by the RT-PCR were 5.5-33-fold higher than those detected by PFU assay, suggesting that total virions during infections were much higher than the viable ones detected by PFU assay. MNLs in response to DEN-2 infections had higher IFN-gamma and PGE(2) production. However, the enhancement of DEN-2 infections by DEN-1 immune sera in MNLs was not associated with further enhancement of IFN-gamma production. In contrast, the presence of subneutralizing DEN-1 immune sera that enhanced DEN-2 infections also enhanced PGE(2) but not IL-4 production. The results of this study suggest that ADE of DEN-2 infections associated with induction of immunosuppressive mediators such as PGE(2) and IL-4 can be simultaneously assessed in a real-time fashion.
Collapse
Affiliation(s)
- R F Chen
- Chang Gung Children's Hospital at Kaohsiung, Chang Gung University, 123 Ta-Pei Road, Niau-Sung, 833, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
262
|
Huang JL, Huang JH, Shyu RH, Teng CW, Lin YL, Kuo MD, Yao CW, Shaio MF. High-level expression of recombinant dengue viral NS-1 protein and its potential use as a diagnostic antigen. J Med Virol 2001. [DOI: 10.1002/jmv.2072] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
263
|
Lin CF, Lei HY, Liu CC, Liu HS, Yeh TM, Wang ST, Yang TI, Sheu FC, Kuo CF, Lin YS. Generation of IgM anti-platelet autoantibody in dengue patients. J Med Virol 2001. [DOI: 10.1002/1096-9071(20000201)63:2<143::aid-jmv1009>3.0.co;2-l] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
264
|
Valdés K, Alvarez M, Pupo M, Vázquez S, Rodríguez R, Guzmán MG. Human Dengue antibodies against structural and nonstructural proteins. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2000; 7:856-7. [PMID: 10973471 PMCID: PMC95972 DOI: 10.1128/cdli.7.5.856-857.2000] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antibodies against dengue virus type 2 and 4 proteins in acute-phase sera of 10 primary and 10 secondary dengue fever and dengue hemorrhagic fever patients were studied by Western blotting. In the first group the immune response was barely detectable, while in the second group more proteins were detected, with a very strong reaction. Anti-NS1 and -NS3 antibodies were detected mainly in secondary cases. Anti-E, -NS3, and -NS5 antibodies were detected in a high number of cases. The possibility of implementing early diagnostic assays for antigen detection is suggested.
Collapse
Affiliation(s)
- K Valdés
- Department of Virology, PAHO/WHO Collaborating Center for Viral Diseases, "Pedro Kouri" Tropical Medicine Institute, Autopista Novia del Mediodía, Marianao 13, Havana, Cuba
| | | | | | | | | | | |
Collapse
|
265
|
van Der Most RG, Murali-Krishna K, Ahmed R, Strauss JH. Chimeric yellow fever/dengue virus as a candidate dengue vaccine: quantitation of the dengue virus-specific CD8 T-cell response. J Virol 2000; 74:8094-101. [PMID: 10933719 PMCID: PMC112342 DOI: 10.1128/jvi.74.17.8094-8101.2000] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We have constructed a chimeric yellow fever/dengue (YF/DEN) virus, which expresses the premembrane (prM) and envelope (E) genes from DEN type 2 (DEN-2) virus in a YF virus (YFV-17D) genetic background. Immunization of BALB/c mice with this chimeric virus induced a CD8 T-cell response specific for the DEN-2 virus prM and E proteins. This response protected YF/DEN virus-immunized mice against lethal dengue encephalitis. Control mice immunized with the parental YFV-17D were not protected against DEN-2 virus challenge, indicating that protection was mediated by the DEN-2 virus prM- and E-specific immune responses. YF/DEN vaccine-primed CD8 T cells expanded and were efficiently recruited into the central nervous systems of DEN-2 virus challenged mice. At 5 days after challenge, 3 to 4% of CD8 T cells in the spleen were specific for the prM and E proteins, and 34% of CD8 T cells in the central nervous system recognized these proteins. Depletion of either CD4 or CD8 T cells, or both, strongly reduced the protective efficacy of the YF/DEN virus, stressing the key role of the antiviral T-cell response.
Collapse
Affiliation(s)
- R G van Der Most
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
266
|
Huang KJ, Li SYJ, Chen SC, Liu HS, Lin YS, Yeh TM, Liu CC, Lei HY. Manifestation of thrombocytopenia in dengue-2-virus-infected mice. J Gen Virol 2000; 81:2177-2182. [PMID: 10950974 DOI: 10.1099/0022-1317-81-9-2177] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dengue virus infection causes dengue fever, dengue haemorrhagic fever and dengue shock syndrome. No animal model is available that mimics these clinical manifestations. In this study, the establishment is reported of a murine model for dengue virus infection that resembles the thrombocytopenia manifestation. Dengue-2 virus (dengue virus type 2) can infect murine cells either in vitro (primary cell culture) or in vivo. Viraemia detected by RT-PCR was found transiently at 2 days after intravenous injection of dengue-2 virus. Transient thrombocytopenia developed at 10-13 days after primary or secondary infection. Anti-platelet antibody was generated after dengue-2 virus infection. There was strain variation in dengue-2 virus infection; the A/J strain was more sensitive than BALB/c or B6 mice. This dengue-2-virus-infected mouse system accompanied by thrombocytopenia and anti-platelet antibody will be a valuable model to study the pathogenicity of dengue virus infection.
Collapse
Affiliation(s)
- Kao-Jean Huang
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China1
| | - Shu-Yi J Li
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China1
| | - Shiour-Ching Chen
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China1
| | - Hsiao-Sheng Liu
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China1
| | - Yee-Shin Lin
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China1
| | - Trai-Ming Yeh
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China1
| | - Ching-Chuan Liu
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China1
| | - Huan-Yao Lei
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China1
| |
Collapse
|
267
|
Diamond MS, Edgil D, Roberts TG, Lu B, Harris E. Infection of human cells by dengue virus is modulated by different cell types and viral strains. J Virol 2000; 74:7814-23. [PMID: 10933688 PMCID: PMC112311 DOI: 10.1128/jvi.74.17.7814-7823.2000] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although prior studies have investigated cellular infection by dengue virus (DV), many have used highly passaged strains. We have reassessed cellular infection by DV type 2 (DV2) using prototype and low-passage isolates representing genotypes from different geographic areas. We observed marked variation in the susceptibility to infection among cell types by different DV2 strains. HepG2 hepatoma cells were susceptible to infection by all DV2 strains assayed. Although the prototype strain generated higher titers of secreted virus than the low-passage isolates, this difference did not correspond to positive- or negative-strand viral RNA levels and thus may reflect variation in efficiency among DV2 isolates to translate viral proteins or package and/or secrete virus. In contrast, human foreskin fibroblasts were susceptible to the prototype and low-passage Thai isolates but not to five Nicaraguan strains tested, as reflected by the absence of accumulation of negative-strand viral RNA, viral antigen, and infectious virus. A similar pattern was observed with the antibody-dependent pathway of infection. U937 and THP-1 myeloid cells and peripheral blood monocytes were infected in the presence of enhancing antibodies by the prototype strain but not by low-passage Nicaraguan isolates. Again, the barrier appeared to be prior to negative-strand accumulation. Thus, depending on the cell type and viral isolate, blocks that limit the production of infectious virus in vitro may occur at distinct steps in the pathway of cellular infection.
Collapse
Affiliation(s)
- M S Diamond
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
268
|
Jan JT, Chen BH, Ma SH, Liu CI, Tsai HP, Wu HC, Jiang SY, Yang KD, Shaio MF. Potential dengue virus-triggered apoptotic pathway in human neuroblastoma cells: arachidonic acid, superoxide anion, and NF-kappaB are sequentially involved. J Virol 2000; 74:8680-91. [PMID: 10954569 PMCID: PMC116379 DOI: 10.1128/jvi.74.18.8680-8691.2000] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Direct in vivo evidence for the susceptibility of human neuronal cells to dengue virus has not been reported. In this study, we demonstrated that type 2 dengue (DEN-2) virus infection induced extensive apoptosis in the human neuroblastoma cell line SK-N-SH. Phospholipase A(2) (PLA(2)) was activated by DEN-2 infection, which led to the generation of arachidonic acid (AA). Inhibition of PLA(2) activity by the PLA(2) inhibitors, AACOCF(3) and ONO-RS-082, diminished DEN-2 virus-induced apoptosis. In contrast, the cyclooxygenase inhibitors aspirin and indomethacin, thought to increase AA accumulation by blocking AA catabolism, enhanced apoptosis. Exogenous AA induced apoptosis in a dose-dependent manner. Superoxide anion, which is thought to be generated through the AA-activated NADPH oxidase, was increased after infection. Pretreatment with superoxide dismutase (SOD) protected cells against DEN-2 virus-induced apoptosis. Furthermore, generation of superoxide anion was blocked by AACOCF(3). In addition, the transcription factors, NF-kappaB and c-Jun, were found to be activated after DEN-2 virus infection. However, pretreatment of cells with oligodeoxynucleotides containing NF-kappaB, but not c-Jun, binding sites (transcription factor decoy) strongly prevented dengue virus-induced apoptosis. The finding that AACOCF(3) and SOD significantly block activation of NF-kappaB suggests that this activation is derived from the AA-superoxide anion pathway. Our results indicate that DEN-2 virus infection of human neuroblastoma cells triggers an apoptotic pathway through PLA(2) activation to superoxide anion generation and subsequently to NF-kappaB activation. This apoptotic effect can be either directly derived from the action of AA and superoxide anion on mitochondria or indirectly derived from the products of apoptosis-related genes activated by NF-kappaB.
Collapse
Affiliation(s)
- J T Jan
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
269
|
King CA, Marshall JS, Alshurafa H, Anderson R. Release of vasoactive cytokines by antibody-enhanced dengue virus infection of a human mast cell/basophil line. J Virol 2000; 74:7146-50. [PMID: 10888655 PMCID: PMC112233 DOI: 10.1128/jvi.74.15.7146-7150.2000] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We report here the first demonstration of dengue virus infection and vasoactive cytokine response of a cell of the mast cell/basophil lineage. Infection of KU812 cells was dependent on dengue-specific antibody and gave rise to infectious virions. This antibody-enhanced dengue virus infection triggered a four- to fivefold increase in the release of interleukin-1beta (IL-1beta) and a modest increase for IL-6 but not for an alternate cytokine, granulocyte-macrophage colony-stimulating factor. The results suggest a potential role for mast cells/basophils in the pathogenesis of dengue virus-induced disease.
Collapse
Affiliation(s)
- C A King
- Departments of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | |
Collapse
|
270
|
Raviprakash K, Porter KR, Kochel TJ, Ewing D, Simmons M, Phillips I, Murphy GS, Weiss WR, Hayes CG. Dengue virus type 1 DNA vaccine induces protective immune responses in rhesus macaques. J Gen Virol 2000; 81:1659-67. [PMID: 10859370 DOI: 10.1099/0022-1317-81-7-1659] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A candidate DNA vaccine expressing dengue virus type 1 pre-membrane and envelope proteins was used to immunize rhesus macaques. Monkeys were immunized intramuscularly (i.m.) or intradermally (i.d.) by three or four 1 mg doses of vaccine, respectively. Monkeys that were inoculated i.m. seroconverted more quickly and had higher antibody levels than those that were inoculated i.d. The sera exhibited virus-neutralizing activity, which declined over time. Four of the eight i.m.-inoculated monkeys were protected completely from developing viraemia when challenged 4 months after the last dose with homologous dengue virus. The other four monkeys had reduced viraemia compared with the control immunized monkeys. The i.d. -inoculated monkeys showed no reduction in viraemia when challenged with the virus. All vaccinated monkeys showed an anamnestic antibody response, indicating that they had established immunological memory. Vaccine-induced antibody had an avidity index similar to that of antibody induced by virus infection; however, no clear correlation was apparent between antibody avidity and virus neutralization titres.
Collapse
Affiliation(s)
- K Raviprakash
- Virology Program, Infectious Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Rm 3N71, Silver Spring, MD 20910-7500, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Wu SJ, Grouard-Vogel G, Sun W, Mascola JR, Brachtel E, Putvatana R, Louder MK, Filgueira L, Marovich MA, Wong HK, Blauvelt A, Murphy GS, Robb ML, Innes BL, Birx DL, Hayes CG, Frankel SS. Human skin Langerhans cells are targets of dengue virus infection. Nat Med 2000; 6:816-20. [PMID: 10888933 DOI: 10.1038/77553] [Citation(s) in RCA: 481] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Dengue virus (DV), an arthropod-borne flavivirus, causes a febrile illness for which there is no antiviral treatment and no vaccine. Macrophages are important in dengue pathogenesis; however, the initial target cell for DV infection remains unknown. As DV is introduced into human skin by mosquitoes of the genus Aedes, we undertook experiments to determine whether human dendritic cells (DCs) were permissive for the growth of DV. Initial experiments demonstrated that blood-derived DCs were 10-fold more permissive for DV infection than were monocytes or macrophages. We confirmed this with human skin DCs (Langerhans cells and dermal/interstitial DCs). Using cadaveric human skin explants, we exposed skin DCs to DV ex vivo. Of the human leukocyte antigen DR-positive DCs that migrated from the skin, emigrants from both dermis and epidermis, 60-80% expressed DV antigens. These observations were supported by histologic findings from the skin rash of a human subject who received an attenuated tetravalent dengue vaccine. Immunohistochemistry of the skin showed CD1a-positive DCs double-labeled with an antibody against DV envelope glycoprotein. These data demonstrate that human skin DCs are permissive for DV infection, and provide a potential mechanism for the transmission of DV into human skin.
Collapse
Affiliation(s)
- S J Wu
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Bethesda, Maryland 20889-5607, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Diamond MS, Roberts TG, Edgil D, Lu B, Ernst J, Harris E. Modulation of Dengue virus infection in human cells by alpha, beta, and gamma interferons. J Virol 2000; 74:4957-66. [PMID: 10799569 PMCID: PMC110847 DOI: 10.1128/jvi.74.11.4957-4966.2000] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A role for interferon (IFN) in modulating infection by dengue virus (DV) has been suggested by studies in DV-infected patients and IFN receptor-deficient mice. To address how IFN modulates DV type 2 infection, we have assayed IFN-alpha, -beta, and -gamma for the ability to enhance or diminish antibody-independent and antibody-dependent cell infection using a competitive, asymmetric reverse transcriptase-mediated PCR (RT-PCR) assay that quantitates positive and negative strands of viral RNA, a flow cytometric assay that measures viral antigen, and a plaque assay that analyzes virion production. Our data suggest that IFN-alpha and -beta protect cells against DV infection in vitro. Treatment of hepatoma cells with IFN-alpha or -beta decreases viral RNA levels greater than 1, 000-fold, the percentage of cells infected 90 to 95%, and the amount of infectious virus secreted 150- to 100,000-fold. These results have been reproduced with several cell types and viral strains, including low-passage isolates. In contrast, IFN-gamma has a more variable effect depending on the cell type and pathway of infection. Quantitative RT-PCR experiments indicate that IFN inhibits DV infection by preventing the accumulation of negative-strand viral RNA.
Collapse
Affiliation(s)
- M S Diamond
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
273
|
Guirakhoo F, Weltzin R, Chambers TJ, Zhang ZX, Soike K, Ratterree M, Arroyo J, Georgakopoulos K, Catalan J, Monath TP. Recombinant chimeric yellow fever-dengue type 2 virus is immunogenic and protective in nonhuman primates. J Virol 2000; 74:5477-85. [PMID: 10823852 PMCID: PMC112032 DOI: 10.1128/jvi.74.12.5477-5485.2000] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A chimeric yellow fever (YF)-dengue type 2 (dengue-2) virus (ChimeriVax-D2) was constructed using a recombinant cDNA infectious clone of a YF vaccine strain (YF 17D) as a backbone into which we inserted the premembrane (prM) and envelope (E) genes of dengue-2 virus (strain PUO-218 from a case of dengue fever in Bangkok, Thailand). The chimeric virus was recovered from the supernatant of Vero cells transfected with RNA transcripts and amplified once in these cells to yield a titer of 6.3 log(10) PFU/ml. The ChimeriVax-D2 was not neurovirulent for 4-week-old outbred mice inoculated intracerebrally. This virus was evaluated in rhesus monkeys for its safety (induction of viremia) and protective efficacy (induction of anti-dengue-2 neutralizing antibodies and protection against challenge). In one experiment, groups of non-YF-immune monkeys received graded doses of ChimeriVax-D2; a control group received only the vaccine diluents. All monkeys (except the control group) developed a brief viremia and showed no signs of illness. Sixty-two days postimmunization, animals were challenged with 5.0 log(10) focus forming units (FFU) of a wild-type dengue-2 virus. No viremia (<1.7 log(10) FFU/ml) was detected in any vaccinated group, whereas all animals in the placebo control group developed viremia. All vaccinated monkeys developed neutralizing antibodies in a dose-dependent response. In another experiment, viremia and production of neutralizing antibodies were determined in YF-immune monkeys that received either ChimeriVax-D2 or a wild-type dengue-2 virus. Low viremia was detected in ChimeriVax-D2-inoculated monkeys, whereas all dengue-2-immunized animals became viremic. All of these animals were protected against challenge with a wild-type dengue-2 virus, whereas all YF-immune monkeys and nonimmune controls became viremic upon challenge. Genetic stability of ChimeriVax-D2 was assessed by continuous in vitro passage in VeroPM cells. The titer of ChimeriVax-D2, the attenuated phenotype for 4-week-old mice, and the sequence of the inserted prME genes were unchanged after 18 passages in Vero cells. The high replication efficiency, attenuation phenotype in mice and monkeys, immunogenicity and protective efficacy, and genomic stability of ChimeriVax-D2 justify it as a novel vaccine candidate to be evaluated in humans.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Animals, Newborn
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Cell Line
- Dengue/immunology
- Dengue/prevention & control
- Dengue/virology
- Dengue Virus/genetics
- Dengue Virus/immunology
- Dengue Virus/pathogenicity
- Dengue Virus/physiology
- Dose-Response Relationship, Immunologic
- Genes, Viral/genetics
- Macaca mulatta
- Mice
- Neutralization Tests
- Serial Passage
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Nonstructural Proteins/chemistry
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Viremia/immunology
- Viremia/prevention & control
- Viremia/virology
- Virulence
- Virus Replication
- Yellow fever virus/genetics
- Yellow fever virus/immunology
- Yellow fever virus/pathogenicity
- Yellow fever virus/physiology
Collapse
Affiliation(s)
- F Guirakhoo
- OraVax, Inc., Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Huang CY, Butrapet S, Pierro DJ, Chang GJ, Hunt AR, Bhamarapravati N, Gubler DJ, Kinney RM. Chimeric dengue type 2 (vaccine strain PDK-53)/dengue type 1 virus as a potential candidate dengue type 1 virus vaccine. J Virol 2000; 74:3020-8. [PMID: 10708416 PMCID: PMC111800 DOI: 10.1128/jvi.74.7.3020-3028.2000] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We constructed chimeric dengue type 2/type 1 (DEN-2/DEN-1) viruses containing the nonstructural genes of DEN-2 16681 virus or its vaccine derivative, strain PDK-53, and the structural genes (encoding capsid protein, premembrane protein, and envelope glycoprotein) of DEN-1 16007 virus or its vaccine derivative, strain PDK-13. We previously reported that attenuation markers of DEN-2 PDK-53 virus were encoded by genetic loci located outside the structural gene region of the PDK-53 virus genome. Chimeric viruses containing the nonstructural genes of DEN-2 PDK-53 virus and the structural genes of the parental DEN-1 16007 virus retained the attenuation markers of small plaque size and temperature sensitivity in LLC-MK(2) cells, less efficient replication in C6/36 cells, and attenuation for mice. These chimeric viruses elicited higher mouse neutralizing antibody titers against DEN-1 virus than did the candidate DEN-1 PDK-13 vaccine virus or chimeric DEN-2/DEN-1 viruses containing the structural genes of the PDK-13 virus. Mutations in the envelope protein of DEN-1 PDK-13 virus affected in vitro phenotype and immunogenicity in mice. The current PDK-13 vaccine is the least efficient of the four Mahidol candidate DEN virus vaccines in human trials. The chimeric DEN-2/DEN-1 virus might be a potential DEN-1 virus vaccine candidate. This study indicated that the infectious clones derived from the candidate DEN-2 PDK-53 vaccine are promising attenuated vectors for development of chimeric flavivirus vaccines.
Collapse
Affiliation(s)
- C Y Huang
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Fort Collins, Colorado 80522, USA
| | | | | | | | | | | | | | | |
Collapse
|
275
|
Young PR, Hilditch PA, Bletchly C, Halloran W. An antigen capture enzyme-linked immunosorbent assay reveals high levels of the dengue virus protein NS1 in the sera of infected patients. J Clin Microbiol 2000; 38:1053-7. [PMID: 10698995 PMCID: PMC86336 DOI: 10.1128/jcm.38.3.1053-1057.2000] [Citation(s) in RCA: 346] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the development of a capture enzyme-linked immunosorbent assay for the detection of the dengue virus nonstructural protein NS1. The assay employs rabbit polyclonal and monoclonal antibodies as the capture and detection antibodies, respectively. Immunoaffinity-purified NS1 derived from dengue 2 virus-infected cells was used as a standard to establish a detection sensitivity of approximately 4 ng/ml for an assay employing monoclonal antibodies recognizing a dengue 2 serotype-specific epitope. A number of serotype cross-reactive monoclonal antibodies were also shown to be suitable probes for the detection of NS1 expressed by the remaining three dengue virus serotypes. Examination of clinical samples demonstrated that the assay was able to detect NS1 with minimal interference from serum components at the test dilutions routinely used, suggesting that it could form the basis of a useful additional diagnostic test for dengue virus infection. Furthermore, quantitation of NS1 levels in patient sera may prove to be a valuable surrogate marker for viremia. Surprisingly high levels of NS1, as much as 15 microg/ml, were found in acute-phase sera taken from some of the patients experiencing serologically confirmed dengue 2 virus secondary infections but was not detected in the convalescent sera of these patients. In contrast, NS1 could not be detected in either acute-phase or convalescent serum samples taken from patients with serologically confirmed primary infection. The presence of high levels of secreted NS1 in the sera of patients experiencing secondary dengue virus infections, and in the context of an anamnestic antibody response, suggests that NS1 may contribute significantly to the formation of the circulating immune complexes that are suspected to play an important role in the pathogenesis of severe dengue disease.
Collapse
Affiliation(s)
- P R Young
- Sir Albert Sakzewski Virus Research Centre, The Royal Children's Hospital, Herston, Brisbane 4029, Australia.
| | | | | | | |
Collapse
|
276
|
Wu SJ, Paxton H, Hanson B, Kung CG, Chen TB, Rossi C, Vaughn DW, Murphy GS, Hayes CG. Comparison of two rapid diagnostic assays for detection of immunoglobulin M antibodies to dengue virus. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2000; 7:106-10. [PMID: 10618287 PMCID: PMC95832 DOI: 10.1128/cdli.7.1.106-110.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two easy-to-use commercial diagnostic assays, a dipstick enzyme-linked immunosorbent assay (ELISA) (Integrated Diagnostics, Baltimore, Md.) and an immunochromatographic card assay (PanBio, Brisbane, Australia) were evaluated for detection of immunoglobulin M (IgM) antibody to dengue virus with an in-house IgM antibody capture microplate ELISA as a reference assay. The dipstick ELISA was based on the indirect-ELISA format using dengue 2 virus as the only antigen and enzyme-labeled goat anti-human IgM antibody as the detector. The total assay time was 75 min. The immunochromatographic card assay was based on the antibody capture format and separately measured both anti-dengue virus IgM and IgG in the same test. Colloidal-gold-labeled anti-dengue virus monoclonal antibody bound with dengue virus 1 to 4 antigen cocktail was the detector, and anti-human IgM and IgG were the capture antibodies. The total assay time was <10 min. Sera from 164 individuals classified as either anti-dengue virus IgM positive (94) or anti-dengue virus IgM negative (70) in the reference microplate ELISA with a dengue virus 1 to 4 antigen cocktail were tested in the two commercial assays. The dipstick ELISA missed 7 of 94 positive samples, for a sensitivity of 92.6%, while the immunochromatographic card assay missed two positive samples, for a sensitivity of 97.9%. Of the 70 negative samples, four were false positive by the dipstick ELISA and two were false positive in the immunochromatographic card assay, resulting in specificities of 94.3 and 97.1%, respectively. Both commercial assays provide sensitive and specific detection of anti-dengue virus IgM antibody and could prove useful in settings where the microplate ELISA is impractical.
Collapse
Affiliation(s)
- S J Wu
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Bethesda, Maryland 20889-5607, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Zivny J, DeFronzo M, Jarry W, Jameson J, Cruz J, Ennis FA, Rothman AL. Partial Agonist Effect Influences the CTL Response to a Heterologous Dengue Virus Serotype. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.5.2754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Activation of dengue serotype-cross-reactive memory CTL during secondary dengue virus (DV) infection is thought to be important in the pathogenesis of dengue hemorrhagic fever. To model this effect, we studied the CTL responses to DV types 2 (D2V) and 3 (D3V) in PBMC from an individual previously infected with D3V. DV-specific CD8+ CTL from this donor recognized two HLA-B62-restricted epitopes on the NS3 protein, aa 71–79 (SVKKDLISY) and 235–243 (AMKGLPIRY). Both D3V-specific and D2V/D3V-cross-reactive CTL clones were detected for each epitope; all D2V-reactive CTL clones could lyse D2V-infected autologous cells. CTL responses to both epitopes were detected in bulk cultures stimulated with D3V, but PBMC stimulated with D2V recognized only the 235–243 epitope. IFN-γ enzyme-linked immunospot assay showed that the D2V (71–79) peptide (DVKKDLISY) did not efficiently activate T cells. Analysis of a CTL clone suggests that the D2V (71–79) peptide acts as a partial agonist, able to sensitize target cells for lysis and inducing only minimal proliferation at high concentrations. These results suggest that variant peptide sequences present in the heterologous DV serotype can influence the CTL response in vivo during secondary DV infection.
Collapse
Affiliation(s)
- Jaroslav Zivny
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| | - Matthew DeFronzo
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| | - William Jarry
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| | - Julie Jameson
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| | - John Cruz
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| | - Francis A. Ennis
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| | - Alan L. Rothman
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
278
|
Cuzzubbo AJ, Vaughn DW, Nisalak A, Solomon T, Kalayanarooj S, Aaskov J, Dung NM, Devine PL. Comparison of PanBio dengue duo enzyme-linked immunosorbent assay (ELISA) and MRL dengue fever virus immunoglobulin M capture ELISA for diagnosis of dengue virus infections in Southeast Asia. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1999; 6:705-12. [PMID: 10473522 PMCID: PMC95759 DOI: 10.1128/cdli.6.5.705-712.1999] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The performances of the MRL dengue fever virus immunoglobulin M (IgM) capture enzyme-linked immunosorbent assay (ELISA) and the PanBio Dengue Duo IgM capture and IgG capture ELISA were compared. Eighty sera from patients with dengue virus infections, 24 sera from patients with Japanese encephalitis (JE), and 78 sera from patients with nonflavivirus infections, such as malaria, typhoid, leptospirosis, and scrub typhus, were used. The MRL test showed superior sensitivity for dengue virus infections (94 versus 89%), while the PanBio test showed superior specificity for JE (79 versus 25%) and other infections (100 versus 91%). The PanBio ELISA showed better overall performance, as assessed by the sum of sensitivity and specificity (F value). When dengue virus and nonflavivirus infections were compared, F values of 189 and 185 were obtained for the PanBio and MRL tests, respectively, while when dengue virus infections and JE were compared, F values of 168 and 119 were obtained. The results obtained with individual sera in the PanBio and MRL IgM ELISAs showed good correlation, but this analysis revealed that the cutoff value of the MRL test was set well below that of the PanBio test. Comparing the sensitivity and specificity of the tests at different cutoff values (receiver-operator analysis) revealed that the MRL and PanBio IgM ELISAs performed similarly in distinguishing dengue virus from nonflavivirus infections, although the PanBio IgM ELISA showed significantly better distinction between dengue virus infections and JE. The implications of these findings for the laboratory diagnosis of dengue are discussed.
Collapse
Affiliation(s)
- A J Cuzzubbo
- PanBio Pty Ltd., School of Life Sciences, Queensland University of Technology, Brisbane, Australia
| | | | | | | | | | | | | | | |
Collapse
|
279
|
Kida K, Hohdatsu T, Fujii K, Koyama H. Selection of antigenic variants of the S glycoprotein of feline infectious peritonitis virus and analysis of antigenic sites involved in neutralization. J Vet Med Sci 1999; 61:935-8. [PMID: 10487234 DOI: 10.1292/jvms.61.935] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The type II feline infectious peritonitis virus (FIPV) epitopes for neutralizing and enhancing antibodies are present on large spike glycoprotein (S) protein. In this study, we established monoclonal antibody-resistant mutant viruses resistant to three different monoclonal antibodies with neutralizing activity in Felis catus whole fetus cells and enhancing activity in feline macrophages, recognizing distinct epitopes on type II FIPV S protein. By comparing the nucleotide sequences of these mutant viruses with that of wild-type virus, we attempted to identify the neutralizing epitopes. The mutations were localized in the region of amino acid residues from 480 to 649 from the N terminal of the S protein.
Collapse
Affiliation(s)
- K Kida
- Department of Veterinary Infectious Diseases, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori, Japan
| | | | | | | |
Collapse
|
280
|
Berzofsky JA, Ahlers JD, Derby MA, Pendleton CD, Arichi T, Belyakov IM. Approaches to improve engineered vaccines for human immunodeficiency virus and other viruses that cause chronic infections. Immunol Rev 1999; 170:151-72. [PMID: 10566149 DOI: 10.1111/j.1600-065x.1999.tb01336.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We used several approaches to develop enhanced vaccines for chronic viral infections such as human immunodeficiency virus (HIV) and hepatitis C virus (HCV). 1) Selected epitopes were used to avoid potentially harmful immune responses. 2) Linkage between helper and cytotoxic T-lymphocyte (CTL) epitopes was found to be important. 3) We developed an "epitope enhancement" approach modifying the sequences of epitopes to make more potent vaccines, including examples for HIV and HCV epitopes presented by murine class II and human class I major histocompatibility complex (MHC) molecules. 4) CTL avidity was found to be important for clearing viral infections in vivo, and the mechanism was examined. High-avidity CTLs, however, were found to undergo apoptosis when confronted with high-density antigen, through a mechanism involving tumor necrosis factor (TNF), TNF-RII, and a permissive state induced through the T-cell receptor. 5) We employed cytokines in the adjuvant to steer immune responses toward desired phenotypes, and showed synergy between cytokines. 6) Intrarectal immunization with peptide vaccine induced mucosal and systemic CTL. Local mucosal CTL were found to be critical for resistance to mucosal viral transmission and this resistance was enhanced with mucosally delivered interleukin-12. 7) We used an asymmetry in induction of mucosal and systemic immune responses to circumvent pre-existing vaccinia immunity for use of recombinant vaccinia vaccines.
Collapse
Affiliation(s)
- J A Berzofsky
- Molecular Immunogenetics and Vaccine Research Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1578, USA
| | | | | | | | | | | |
Collapse
|
281
|
Leitmeyer KC, Vaughn DW, Watts DM, Salas R, Villalobos I, Ramos C, Rico-Hesse R. Dengue virus structural differences that correlate with pathogenesis. J Virol 1999; 73:4738-47. [PMID: 10233934 PMCID: PMC112516 DOI: 10.1128/jvi.73.6.4738-4747.1999] [Citation(s) in RCA: 387] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The understanding of dengue virus pathogenesis has been hampered by the lack of in vitro and in vivo models of disease. The study of viral factors involved in the production of severe dengue, dengue hemorrhagic fever (DHF), versus the more common dengue fever (DF), have been limited to indirect clinical and epidemiologic associations. In an effort to identify viral determinants of DHF, we have developed a method for comparing dengue type 2 genomes (reverse transcriptase PCR in six fragments) directly from patient plasma. Samples for comparison were selected from two previously described dengue type 2 genotypes which had been shown to be the cause of DF or DHF. When full genome sequences of 11 dengue viruses were analyzed, several structural differences were seen consistently between those associated with DF only and those with the potential to cause DHF: a total of six encoded amino acid charge differences were seen in the prM, E, NS4b, and NS5 genes, while sequence differences observed within the 5' nontranslated region (NTR) and 3' NTR were predicted to change RNA secondary structures. We hypothesize that the primary determinants of DHF reside in (i) amino acid 390 of the E protein, which purportedly alters virion binding to host cells; (ii) in the downstream loop (nucleotides 68 to 80) of the 5' NTR, which may be involved in translation initiation; and (iii) in the upstream 300 nucleotides of the 3' NTR, which may regulate viral replication via the formation of replicative intermediates. The significance of four amino acid differences in the nonstructural proteins NS4b and NS5, a presumed transport protein and the viral RNA polymerase, respectively, remains unknown. This new approach to the study of dengue virus genome differences should better reflect the true composition of viral RNA populations in the natural host and permit their association with pathogenesis.
Collapse
Affiliation(s)
- K C Leitmeyer
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas 78227-5301, USA
| | | | | | | | | | | | | |
Collapse
|
282
|
Gagnon SJ, Ennis FA, Rothman AL. Bystander target cell lysis and cytokine production by dengue virus-specific human CD4(+) cytotoxic T-lymphocyte clones. J Virol 1999; 73:3623-9. [PMID: 10196254 PMCID: PMC104137 DOI: 10.1128/jvi.73.5.3623-3629.1999] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dengue hemorrhagic fever, the severe form of dengue virus infection, is believed to be an immunopathological response to a secondary infection with a heterologous serotype of dengue virus. Dengue virus capsid protein-specific CD4(+) cytotoxic T-lymphocyte (CTL) clones were shown to be capable of mediating bystander lysis of non-antigen-presenting target cells. After activation by anti-CD3 or in the presence of unlabeled antigen-presenting target cells, these clones could lyse both Jurkat cells and HepG2 cells as bystander targets. Lysis of HepG2 cells suggests a potential role for CD4(+) CTL in the liver involvement observed during dengue virus infection. Three CD4(+) CTL clones were demonstrated to lyse cognate, antigen-presenting target cells by a mechanism that primarily involves perforin, while bystander lysis occurred through Fas/Fas ligand interactions. In contrast, one clone used a Fas/Fas ligand mechanism to lyse both cognate and bystander targets. Cytokine production by the CTL clones was also examined. In response to stimulation with D2 antigen, CD4(+) T-cell clones produced gamma interferon, tumor necrosis factor alpha (TNF-alpha) and TNF-beta. The data suggest that CD4(+) CTL clones may contribute to the immunopathology observed upon secondary dengue virus infections through direct cytolysis and/or cytokine production.
Collapse
Affiliation(s)
- S J Gagnon
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical Center, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
283
|
Ferguson NM, Donnelly CA, Anderson RM. Transmission dynamics and epidemiology of dengue: insights from age-stratified sero-prevalence surveys. Philos Trans R Soc Lond B Biol Sci 1999; 354:757-68. [PMID: 10365401 PMCID: PMC1692557 DOI: 10.1098/rstb.1999.0428] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The relationship between infection with the four major serotypes of dengue virus and the occurrence of different forms of disease is complex and not fully understood. Interpreting longitudinal records of the incidence of serious disease to gain insight into the transmission dynamics and epidemiology of the virus is therefore complicated. Since age reflects duration of exposure, age-stratified, strain-specific serological surveys carried out at one point in time, or over a short time interval, can potentially provide a rich source of information on longitudinal patterns. This paper describes the development and application (to data collected in Thailand) of statistically rigorous methods designed to estimate time-varying, strain-specific forces of infection, and thus basic reproduction numbers, from cross-sectional serological data. The analyses provide support for the hypothesis that antibody-dependent enhancement of transmission influences observed epidemiological pattern. Age-stratified serological data also reveal evidence of a propensity for the annual incidence of infection to oscillate over time with a frequency of several years. The latter observation is consistent with the predictions of simple mathematical models of the transmission dynamics of the virus. The estimates of the basic reproduction numbers obtained are similar in magnitude for each dengue serotype, being in the range of four to six. Such values are higher than those obtained from earlier analyses, and the implications of this for dengue control are discussed.
Collapse
Affiliation(s)
- N M Ferguson
- Wellcome Trust Centre for the Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, UK
| | | | | |
Collapse
|
284
|
Chen YC, Wang SY, King CC. Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism. J Virol 1999; 73:2650-7. [PMID: 10074110 PMCID: PMC104020 DOI: 10.1128/jvi.73.4.2650-2657.1999] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/1998] [Accepted: 12/18/1998] [Indexed: 12/31/2022] Open
Abstract
Monocytes/macrophages (MO/Mphi) are the major target cells for both dengue virus (DV) and bacterial lipopolysaccharide (LPS), and the aim of this study was to define their interactions. We had found that LPS markedly suppressed DV infection of primary human MO/Mphi when it was added to cultures prior to or together with, but not after, viral adsorption. The inhibitory effect of LPS was direct and specific and was not mediated by LPS-induced secretion of cytokines and chemokines such as tumor necrosis factor alpha, interleukin-1beta (IL-1beta), IL-6, IL-8, IL-12, alpha interferon, MIP-1alpha, and RANTES. In fact, productive DV infection was not blocked but was just postponed by LPS, with a time lag equal to one viral replication cycle. Time course studies demonstrated that LPS was only effective in suppressing DV infection of MO/Mphi that had not been previously exposed to the virus. At various time points after viral adsorption, the level of unbound viruses that remained free in the culture supernatants of LPS-pretreated cultures was much higher than that of untreated controls. These observations suggest that the LPS-induced suppression of DV replication was at the level of virus attachment and/or entry. Blockade of the major LPS receptor, CD14, with monoclonal antibodies MY4 or MoS39 failed to inhibit DV infection but could totally abrogate the inhibitory effect of LPS. Moreover, human serum could significantly enhance the LPS-induced DV suppression in a CD14-dependent manner, indicating that the "binding" of LPS to CD14 was critical for the induction of virus inhibition. Taken together, our results suggest that LPS blocked DV entry into human MO/Mphi via its receptor CD14 and that a CD14-associated cell surface structure may be essential for the initiation of a DV infection.
Collapse
Affiliation(s)
- Y C Chen
- Laboratory of Hematology, Department of Medical Research, Veterans General Hospital-Taipei and National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
285
|
Gupta S, Snow RW, Donnelly C, Newbold C. Acquired immunity and postnatal clinical protection in childhood cerebral malaria. Proc Biol Sci 1999; 266:33-8. [PMID: 10081156 PMCID: PMC1689649 DOI: 10.1098/rspb.1999.0600] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
By analysing data on the age distribution of cerebral malaria among sites of different transmission intensities, we conclude that the most plausible explanation for the epidemiological patterns seen is that (i) cerebral malaria is caused by a distinct set of Plasmodium falciparum antigenic types; (ii) these antigenic types or 'CM strains' are very common and induce strong strain-specific immunity; and (iii) the postnatal period of protection against cerebral malaria is much longer than the period of protection against other forms of severe disease. The alternative hypothesis that cerebral malaria may be caused by any 'strain' of P. falciparum is compatible with the data only if a single exposure is sufficient to protect against further episodes. This is not consistent with observations on the history of exposure of patients with cerebral malaria. Finally, it is clear that although the delayed peak in incidence of cerebral malaria (with age) can be generated by assuming that subsequent exposures carry a higher risk of disease, such an explanation is not compatible with the observation that severe disease rates are low among infants and young children in areas of high transmissibility.
Collapse
Affiliation(s)
- S Gupta
- Wellcome Trust Centre for Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, UK
| | | | | | | |
Collapse
|
286
|
Stamatos NM, Mascola JR, Kalyanaraman VS, Louder MK, Frampton LM, Birx DL, VanCott TC. Neutralizing antibodies from the sera of human immunodeficiency virus type 1-infected individuals bind to monomeric gp120 and oligomeric gp140. J Virol 1998; 72:9656-67. [PMID: 9811699 PMCID: PMC110475 DOI: 10.1128/jvi.72.12.9656-9667.1998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibodies that neutralize primary isolates of human immunodeficiency virus type 1 (HIV-1) appear during HIV-1 infection but are difficult to elicit by immunization with current vaccine products comprised of monomeric forms of HIV-1 envelope glycoprotein gp120. The limited neutralizing antibody response generated by gp120 vaccine products could be due to the absence or inaccessibility of the relevant epitopes. To determine whether neutralizing antibodies from HIV-1-infected patients bind to epitopes accessible on monomeric gp120 and/or oligomeric gp140 (ogp140), purified total immunoglobulin from the sera of two HIV-1-infected patients as well as pooled HIV immune globulin were selectively depleted of antibodies which bound to immobilized gp120 or ogp140. After passage of each immunoglobulin preparation through the respective columns, antibody titers against gp120 and ogp140 were specifically reduced at least 128-fold. The gp120- and gp140-depleted antibody fraction from each serum displayed reduced neutralization activity against three primary and two T-cell line-adapted (TCLA) HIV-1 isolates. Significant residual neutralizing activity, however, persisted in the depleted sera, indicating additional neutralizing antibody specificities. gp120- and ogp140-specific antibodies eluted from each column neutralized both primary and TCLA viruses. These data demonstrate the presence and accessibility of epitopes on both monomeric gp120 and ogp140 that are specific for antibodies that are capable of neutralizing primary isolates of HIV-1. Thus, the difficulties associated with eliciting neutralizing antibodies by using current monomeric gp120 subunit vaccines may be related less to improper protein structure and more to ineffective immunogen formulation and/or presentation.
Collapse
Affiliation(s)
- N M Stamatos
- Division of Retrovirology, Walter Reed Army Institute of Research, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | |
Collapse
|
287
|
Lin YL, Liao CL, Chen LK, Yeh CT, Liu CI, Ma SH, Huang YY, Huang YL, Kao CL, King CC. Study of Dengue virus infection in SCID mice engrafted with human K562 cells. J Virol 1998; 72:9729-37. [PMID: 9811707 PMCID: PMC110483 DOI: 10.1128/jvi.72.12.9729-9737.1998] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/1998] [Accepted: 09/09/1998] [Indexed: 11/20/2022] Open
Abstract
Here we report that severe combined immunodeficient (SCID) mice engrafted with human K562 cells (K562-SCID mice) can be used as an animal model to study dengue virus (DEN) infection. After intratumor injection into K562 cell masses of PL046, a Taiwanese DEN-2 human isolate, the K562-SCID mice showed neurological signs of paralysis and died at approximately 2 weeks postinfection. In addition to being detected in the tumor masses, high virus titers were detected in the peripheral blood and the brain tissues, indicating that DEN had replicated in the infected K562-SCID mice. In contrast, the SCID mice were resistant to DEN infection and the mock-infected K562-SCID mice survived for over 3 months. These data illustrate that DEN infection contributed directly to the deaths of the infected K562-SCID mice. Other serotypes of DEN were also used to infect the K562-SCID mice, and the mortality rates of the infected mice varied with different challenge strains, suggesting the existence of diverse degrees of virulence among DENs. To determine whether a neutralizing antibody against DEN in vitro was also protective in vivo, the K562-SCID mice were challenged with DEN-2 and received antibody administration at the same time or 1 day earlier. Our results revealed that the antibody-treated mice exhibited a reduction in mortality and a delay of paralysis onset after DEN infection. In contrast to K562-SCID, the persistently DEN-infected K562 cells generated in vitro invariably failed to be implanted in the mice. It seems that in the early stage of implantation, a gamma interferon activated, nitric oxide-mediated anti-DEN effect might play a role in the innate immunity against DEN-infected cells. The system described herein offers an opportunity to explore DEN replication in vivo and to test various antiviral protocols in infected hosts.
Collapse
Affiliation(s)
- Y L Lin
- Institute of Biomedical Sciences, Academia Sinica, National Taiwan University, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Harris E, Roberts TG, Smith L, Selle J, Kramer LD, Valle S, Sandoval E, Balmaseda A. Typing of dengue viruses in clinical specimens and mosquitoes by single-tube multiplex reverse transcriptase PCR. J Clin Microbiol 1998; 36:2634-9. [PMID: 9705406 PMCID: PMC105176 DOI: 10.1128/jcm.36.9.2634-2639.1998] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In recent years, dengue viruses (serotypes 1 to 4) have spread throughout tropical regions worldwide. In many places, multiple dengue virus serotypes are circulating concurrently, which may increase the risk for the more severe form of the disease, dengue hemorrhagic fever. For the control and prevention of dengue fever, it is important to rapidly detect and type the virus in clinical samples and mosquitoes. Assays based on reverse transcriptase (RT) PCR (RT-PCR) amplification of dengue viral RNA can offer a rapid, sensitive, and specific approach to the typing of dengue viruses. We have reduced a two-step nested RT-PCR protocol to a single-tube reaction with sensitivity equivalent to that of the two-step protocol (1 to 50 PFU) in order to maximize simplicity and minimize the risk of sample cross-contamination. This assay was also optimized for use with a thermostable RT-polymerase. We designed a plasmid-based internal control that produces a uniquely sized product and can be used to control for both reverse transcription or amplification steps without the risk of generating false-positive results. This single-tube RT-PCR procedure was used to type dengue viruses during the 1995 and 1997-1998 outbreaks in Nicaragua. In addition, an extraction procedure that permits the sensitive detection of viral RNA in pools of up to 50 mosquitoes without PCR inhibition or RNA degradation was developed. This assay should serve as a practical tool for use in countries where dengue fever is endemic, in conjunction with classical methods for surveillance and epidemiology of dengue viruses.
Collapse
Affiliation(s)
- E Harris
- Program in Molecular Pathogenesis, University of California, San Francisco, San Francisco, California 94143-0422, USA.
| | | | | | | | | | | | | | | |
Collapse
|
289
|
Abstract
Dengue fever, a very old disease, has reemerged in the past 20 years with an expanded geographic distribution of both the viruses and the mosquito vectors, increased epidemic activity, the development of hyperendemicity (the cocirculation of multiple serotypes), and the emergence of dengue hemorrhagic fever in new geographic regions. In 1998 this mosquito-borne disease is the most important tropical infectious disease after malaria, with an estimated 100 million cases of dengue fever, 500,000 cases of dengue hemorrhagic fever, and 25,000 deaths annually. The reasons for this resurgence and emergence of dengue hemorrhagic fever in the waning years of the 20th century are complex and not fully understood, but demographic, societal, and public health infrastructure changes in the past 30 years have contributed greatly. This paper reviews the changing epidemiology of dengue and dengue hemorrhagic fever by geographic region, the natural history and transmission cycles, clinical diagnosis of both dengue fever and dengue hemorrhagic fever, serologic and virologic laboratory diagnoses, pathogenesis, surveillance, prevention, and control. A major challenge for public health officials in all tropical areas of the world is to develop and implement sustainable prevention and control programs that will reverse the trend of emergent dengue hemorrhagic fever.
Collapse
Affiliation(s)
- D J Gubler
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado 80522, USA.
| |
Collapse
|
290
|
Sang CT, Hoon LS, Cuzzubbo A, Devine P. Clinical evaluation of a rapid immunochromatographic test for the diagnosis of dengue virus infection. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1998; 5:407-9. [PMID: 9606000 PMCID: PMC104533 DOI: 10.1128/cdli.5.3.407-409.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A rapid immunochromatographic test was compared to the hemagglutination inhibition assay for separate determinations of dengue virus-specific immunoglobulin M (IgM) and IgG levels in paired serum specimens from 92 patients (34 with primary dengue virus infection, 35 with secondary dengue virus infection, and 23 without dengue virus infection). The rapid test showed 99% sensitivity in the diagnosis of dengue virus infection. The majority (30 of 34 [88%]) of patients with primary infection showed positive IgM but negative IgG, while 34 of 35 (97%) patients with secondary infection showed positive IgG with or without IgM. Specificity in nonflavivirus infections was 96% (1 of 23 positive). The rapid test should be a useful aid in rapid diagnosis of dengue virus infection.
Collapse
Affiliation(s)
- C T Sang
- Department of Pathology, Singapore General Hospital, Singapore
| | | | | | | |
Collapse
|
291
|
Seiler P, Kalinke U, Rülicke T, Bucher EM, Böse C, Zinkernagel RM, Hengartner H. Enhanced virus clearance by early inducible lymphocytic choriomeningitis virus-neutralizing antibodies in immunoglobulin-transgenic mice. J Virol 1998; 72:2253-8. [PMID: 9499083 PMCID: PMC109522 DOI: 10.1128/jvi.72.3.2253-2258.1998] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Following infection of mice with lymphocytic choriomeningitis virus (LCMV), virus-neutralizing antibodies appear late, after 30 to 60 days. Such neutralizing antibodies play an important role in protection against reinfection. To analyze whether a neutralizing antibody response which developed earlier could contribute to LCMV clearance during the acute phase of infection, we generated transgenic mice expressing LCMV-neutralizing antibodies. Transgenic mice expressing the immunoglobulin mu heavy chain of the LCMV-neutralizing monoclonal antibody KL25 (H25 transgenic mice) mounted LCMV-neutralizing immunoglobulin M (IgM) serum titers within 8 days after infection. This early inducible LCMV-neutralizing antibody response significantly improved the host's capacity to clear the infection and did not cause an enhancement of disease after intracerebral (i.c.) LCMV infection. In contrast, mice which had been passively administered LCMV-neutralizing antibodies and transgenic mice exhibiting spontaneous LCMV-neutralizing IgM serum titers (HL25 transgenic mice expressing the immunoglobulin mu heavy and the kappa light chain) showed an enhancement of disease after i.c. LCMV infection. Thus, early-inducible LCMV-neutralizing antibodies can contribute to viral clearance in the acute phase of the infection and do not cause antibody-dependent enhancement of disease.
Collapse
Affiliation(s)
- P Seiler
- Department of Pathology, Institute of Experimental Immunology, University of Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
292
|
Thomson SA, Burrows SR, Misko IS, Moss DJ, Coupar BE, Khanna R. Targeting a polyepitope protein incorporating multiple class II-restricted viral epitopes to the secretory/endocytic pathway facilitates immune recognition by CD4+ cytotoxic T lymphocytes: a novel approach to vaccine design. J Virol 1998; 72:2246-52. [PMID: 9499082 PMCID: PMC109521 DOI: 10.1128/jvi.72.3.2246-2252.1998] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/1997] [Accepted: 11/20/1997] [Indexed: 02/06/2023] Open
Abstract
The role of CD4+ and CD8+ cells in the generation of an effective immune response against viral infections is well established. Moreover, there is an increasing realization that subunit vaccines which include both CD4+- and CD8+-T-cell epitopes are highly effective in controlling viral infections, as opposed to those which are designed to activate a CD8+- or CD4+-T-cell response alone. One of the major limitations of epitope-based vaccines designed to stimulate virus-specific CD4+ T cells is that endogenously expressed class II-restricted minimal cytotoxic-T-lymphocyte (CTL) epitopes are poorly recognized by CD4+ CTLs. In the present study we attempted to enhance the efficiency of class II-restricted endogenous presentation of minimal class II-restricted CTL epitopes by specifically targeting a polyepitope protein to class II processing compartments through the endosomal and/or lysosomal pathway. A significantly enhanced stimulation of virus-specific CD4+-T-cell clones by antigen-presenting cells (APC) expressing the recombinant polyepitope protein targeted to the endocytic/secretory pathway was readily demonstrated in cytotoxicity assays. In addition, in vitro activation of Epstein-Barr virus- and influenza virus-specific CD4+ memory CTLs by the recombinant constructs encoding the polyepitope protein, specifically targeted to the lysosomal compartment, was also demonstrated. The enhanced stimulatory capacity of APC expressing a lysosome-targeted polyepitope protein has important implications for vaccine design.
Collapse
Affiliation(s)
- S A Thomson
- CRC for Vaccine Technology, Queensland Institute of Medical Research, The Bancroft Centre, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
293
|
Lin YL, Chen LK, Liao CL, Yeh CT, Ma SH, Chen JL, Huang YL, Chen SS, Chiang HY. DNA immunization with Japanese encephalitis virus nonstructural protein NS1 elicits protective immunity in mice. J Virol 1998; 72:191-200. [PMID: 9420215 PMCID: PMC109364 DOI: 10.1128/jvi.72.1.191-200.1998] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/1997] [Accepted: 10/01/1997] [Indexed: 02/05/2023] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is a zoonotic pathogen that is prevalent in some Southeast Asian countries and causes acute encephalitis in humans. To evaluate the potential application of gene immunization to JEV infection, we characterized the immune responses from mice intramuscularly injected with plasmid DNA encoding JEV glycoproteins, including the precursor membrane (prM) plus envelope (E) proteins and the nonstructural protein NS1. When injected with the plasmid expressing prM plus E, 70% of the immunized mice survived after a lethal JEV challenge, whereas when immunized with the plasmid expressing NS1, 90% of the mice survived after a lethal challenge. As a control, the mice immunized with the DNA vector pcDNA3 showed a low level (40%) of protection, suggesting a nonspecific adjuvant effect of the plasmid DNA. Despite having no detectable neutralizing activity, the NS1 immunization elicited a strong antibody response exhibiting cytolytic activity against JEV-infected cells in a complement-dependent manner. By contrast, immunization with a construct expressing a longer NS1 protein (NS1'), containing an extra 60-amino-acid portion from the N terminus of NS2A, failed to protect mice against a lethal challenge. Biochemical analyses revealed that when individually expressed, NS1 but not NS1' could be readily secreted as a homodimer in large quantity and could also be efficiently expressed on the cell surface. Interestingly, when NS1 and NS1' coexisted in cells, the level of NS1 cell surface expression was much lower than that in cells expressing NS1 alone. These data imply that the presence of partial NS2A might have a negative influence on an NS1-based DNA vaccine. The results herein clearly illustrate that immunization with DNA expressing NS1 alone is sufficient to protect mice against a lethal JEV challenge.
Collapse
Affiliation(s)
- Y L Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
294
|
|
295
|
Gan YJ, Chodosh J, Morgan A, Sixbey JW. Epithelial cell polarization is a determinant in the infectious outcome of immunoglobulin A-mediated entry by Epstein-Barr virus. J Virol 1997; 71:519-26. [PMID: 8985380 PMCID: PMC191081 DOI: 10.1128/jvi.71.1.519-526.1997] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Diseases of the nasopharyngeal epithelium due to Epstein-Barr virus (EBV) infection typically occur in chronic virus carriers with preexisting virus-specific antibodies. In vitro studies have shown that EBV-specific immunoglobulin A (IgA) promotes infection of human epithelial cells, otherwise refractory to EBV, via the polymeric immunoglobulin receptor (pIgR). To determine if EBV similarly exploits IgA transport mechanisms in vivo, we examined the fate of IgA-EBV complexes in the blood of mice, where pIgR-mediated transcytosis of IgA immune complexes through hepatocytes eliminates exogenous antigens from the circulation. By PCR analysis we showed hepatobiliary transport of IgA-EBV in viremic mice, but without detectable hepatocellular infection by immunostaining. Because efficient transport of EBV immune complexes might avert an infectious outcome, we modulated the transcytotic pathway in polarized Madin-Darby canine kidney (MDCK) cells transfected with pIgR to determine the effect on viral antigen expression. Like hepatocytes in vivo, MDCK cells in polarized monolayers translocated IgA-EBV from the basal cell face into apical medium without evidence for infection. However, when exposed to IgA-EBV as unpolarized single-cell suspensions, MDCK cells expressed EBV immediate-early and early antigens. These results suggest that pIgR-mediated transcytosis of pIgA-EBV through epithelium facilitates endogenous spread of EBV in long-term virus carriers, with infection being confined to cells with altered polarity from prior cytopathology.
Collapse
Affiliation(s)
- Y J Gan
- Program in Viral Oncogenesis and Tumor Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | |
Collapse
|
296
|
Zinkernagel RM. Immunology and immunity studied with viruses. CIBA FOUNDATION SYMPOSIUM 1997; 204:105-25; discussion 125-9. [PMID: 9107415 DOI: 10.1002/9780470515280.ch8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immunity to viruses is used to define important biological parameters of immunology. Specificity, tolerance and T and B cell memory were analysed with murine model infections. The key parameters of antigen kinetics, localization and patterns of T and B cell response induction in maintaining memory and in causing deletion of reactive lymphocytes were compared for self and for viral foreign antigens. Evidence is reviewed that suggests that B cells essentially recognize antigen patterns, whereas T cells react against antigens newly brought into lymphoid tissues; antigens outside lymphoid tissues are ignored, and antigens always present in, or spreading too fast throughout, lymphoid tissues exhaust and delete T cell responses. Finally, effector mechanisms of antiviral immunity are summarized, as they vary with different viruses. On this basis immunological T and B cell memory against viruses is reviewed. Memory studies suggest that increased precursor frequencies of B and T cells appear to remain in the host independent of antigen persistence. However, in order to protect against cytopathic viruses, memory B cells have to produce antibody to maintain protective elevated levels of antibody: B cell differentiation into plasma cells is driven by persisting antigen. Similarly, to protect against infection with a non-cytopathic virus, cytotoxic T cells have to recirculate through peripheral organs. Activation and capacity to emigrate into solid tissues as well as cytolytic effector function are also dependent upon, and driven by, persisting antigen. Because no convincing evidence is yet available of the existence of identifiable B or T cells with specialized memory characteristics, the phenotype of protective immunological memory correlates best with antigen-driven activation of low frequency effector T cells and plasma cells.
Collapse
Affiliation(s)
- R M Zinkernagel
- Institute of Experimental Immunology, University Hospital of Zurich, Switzerland
| |
Collapse
|
297
|
Rothman AL, Kurane I, Ennis FA. Multiple specificities in the murine CD4+ and CD8+ T-cell response to dengue virus. J Virol 1996; 70:6540-6. [PMID: 8794288 PMCID: PMC190694 DOI: 10.1128/jvi.70.10.6540-6546.1996] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The target epitopes, serotype specificity, and cytolytic function of dengue virus-specific T cells may influence their theoretical roles in protection against secondary infection as well as the immunopathogenesis of dengue hemorrhagic fever. To study these factors in an experimental system, we isolated dengue virus-specific CD4+ and CD8+ T-cell clones from dengue-2 virus-immunized BALB/c mice. The T-cell response to dengue virus in this mouse strain was heterogeneous; we identified at least five different CD4+ phenotypes and six different CD8+ phenotypes. Individual T-cell clones recognized epitopes on the dengue virus pre-M, E, NSl/NS2A, and NS3 proteins and were restricted by the I-Ad, I-Ed, Ld, and Kd antigens. Both serotype-specific and serotype-cross-reactive clones were isolated in the CD4+ and CD8+ subsets; among CD8+ clones, those that recognized the dengue virus structural proteins were serotype specific whereas those that recognized the nonstructural proteins were serotype cross-reactive. All of the CD8+ and one of five CD4+ clones lysed dengue virus-infected target cells. Using synthetic peptides, we identified an Ld-restricted epitope on the E protein (residues 331 to 339, SPCKIPFEI) and a Kd-restricted epitope on the NS3 protein (residues 296 to 310, ARGYISTRVEM GEAA). These data parallel previous findings of studies using human dengue virus-specific T-cell clones. This experimental mouse system may be useful for studying the role of the virus serotype and HLA haplotype on T-cell responses after primary dengue virus infection.
Collapse
Affiliation(s)
- A L Rothman
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | |
Collapse
|
298
|
Aichele P, Bachmann MF, Hengartner H, Zinkernagel RM. Immunopathology or organ-specific autoimmunity as a consequence of virus infection. Immunol Rev 1996; 152:21-45. [PMID: 8930666 DOI: 10.1111/j.1600-065x.1996.tb00909.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- P Aichele
- Department of Pathology, University Hospital Zürich, Switzerland
| | | | | | | |
Collapse
|
299
|
Lobigs M, Blanden RV, Müllbacher A. Flavivirus-induced up-regulation of MHC class I antigens; implications for the induction of CD8+ T-cell-mediated autoimmunity. Immunol Rev 1996; 152:5-19. [PMID: 8930665 PMCID: PMC7165549 DOI: 10.1111/j.1600-065x.1996.tb00908.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Infection of a wide variety of cells of human, mouse and other species' origin by flaviviruses such as WNV, YF, Den, MVE, KUN and JE, increases the cell-surface expression of MHC class I. This MHC class I up-regulation is not due to increased MHC class I synthesis per se, but the result of increased peptide availability in the ER for MHC class I assembly. This is most likely due to the interaction of the viral polyprotein with the ER membrane during viral replication. Flavivirus infection can overcome peptide deficiency in TAP-deficient or non-permissive cell lines such as RMA-S and Syrian hamster cells, BHK and NIL-2. The consequence of this increased MHC class I expression manifests itself in reduced susceptibility to NK cells and augmented lysis by Tc cells. In mice, long-term flavivirus-immune Tc cell memory formation is impaired, following the appearance of strong anti-self Tc cell reactivity observed in in vitro cultures from splenocytes of flavivirus-primed animals. We hypothesize that flavivirus-induced MHC class I up-regulation leads to transient T-cell autoimmunity, followed by down-regulation of both autoimmunity and virus-specific Tc cell memory. Furthermore, we speculate that flavivirus infections of humans in the tropics may be responsible for the observed lower incidence of overt autoimmunity in these geographic regions than in temperate climates where flaviviruses are not endemic.
Collapse
Affiliation(s)
- M Lobigs
- Division of Immunology and Cell Biology, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | |
Collapse
|
300
|
Affiliation(s)
- E Harris
- Applied Molecular Biology/Appropriate Technology Transfer Program, University of California at San Francisco 94143-0422, USA
| |
Collapse
|