251
|
Xue J, Wei J, Dong X, Zhu C, Li Y, Song A, Liu Z. ABCG1 deficiency promotes endothelial apoptosis by endoplasmic reticulum stress-dependent pathway. J Physiol Sci 2013; 63:435-44. [PMID: 23897420 PMCID: PMC10717156 DOI: 10.1007/s12576-013-0281-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
The present study was focused on whether ABCG1 deficiency was involved in endothelial apoptosis and its possible mechanism. Human umbilical artery endothelial cells were transfected with ABCG1 siRNA and/or ABCG1 expression plasmid. We observed that silencing of endothelial ABCG1 reduced cholesterol efflux to HDL and increased intracellular lipid content. Moreover, reduction of ABCG1 promoted endothelial apoptosis and expression of endoplasmic reticulum (ER) stress-related molecules GRP78 and CHOP. In contrast, transfection of ABCG1 overexpression plasmid reversed endothelial apoptosis and intracellular lipid accumulation as well as decreased expression of GRP78 and CHOP in ABCG1-deficient endothelial cells. Furthermore, endothelial apoptosis and ER stress-related molecules were induced by repletion of endothelial cells with cholesterol-loaded cyclodextrin, otherwise endothelial apoptotic response and expression of GRP78 and CHOP were suppressed by depletion of cellular cholesterol in ABCG1-deficient endothelial cells. The present results suggest that reduction of ABCG1 induces endothelial apoptosis, which seems associated with intracellular free cholesterol accumulation and subsequent ER stress.
Collapse
Affiliation(s)
- Jiahong Xue
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, 157 West Five Road, Xi'an, 710004, Shaanxi, China,
| | | | | | | | | | | | | |
Collapse
|
252
|
Aho V, Ollila HM, Rantanen V, Kronholm E, Surakka I, van Leeuwen WMA, Lehto M, Matikainen S, Ripatti S, Härmä M, Sallinen M, Salomaa V, Jauhiainen M, Alenius H, Paunio T, Porkka-Heiskanen T. Partial sleep restriction activates immune response-related gene expression pathways: experimental and epidemiological studies in humans. PLoS One 2013; 8:e77184. [PMID: 24194869 PMCID: PMC3806729 DOI: 10.1371/journal.pone.0077184] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/30/2013] [Indexed: 12/22/2022] Open
Abstract
Epidemiological studies have shown that short or insufficient sleep is associated with increased risk for metabolic diseases and mortality. To elucidate mechanisms behind this connection, we aimed to identify genes and pathways affected by experimentally induced, partial sleep restriction and to verify their connection to insufficient sleep at population level. The experimental design simulated sleep restriction during a working week: sleep of healthy men (N = 9) was restricted to 4 h/night for five nights. The control subjects (N = 4) spent 8 h/night in bed. Leukocyte RNA expression was analyzed at baseline, after sleep restriction, and after recovery using whole genome microarrays complemented with pathway and transcription factor analysis. Expression levels of the ten most up-regulated and ten most down-regulated transcripts were correlated with subjective assessment of insufficient sleep in a population cohort (N = 472). Experimental sleep restriction altered the expression of 117 genes. Eight of the 25 most up-regulated transcripts were related to immune function. Accordingly, fifteen of the 25 most up-regulated Gene Ontology pathways were also related to immune function, including those for B cell activation, interleukin 8 production, and NF-κB signaling (P<0.005). Of the ten most up-regulated genes, expression of STX16 correlated negatively with self-reported insufficient sleep in a population sample, while three other genes showed tendency for positive correlation. Of the ten most down-regulated genes, TBX21 and LGR6 correlated negatively and TGFBR3 positively with insufficient sleep. Partial sleep restriction affects the regulation of signaling pathways related to the immune system. Some of these changes appear to be long-lasting and may at least partly explain how prolonged sleep restriction can contribute to inflammation-associated pathological states, such as cardiometabolic diseases.
Collapse
Affiliation(s)
- Vilma Aho
- Department of Physiology, Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | - Hanna M. Ollila
- Department of Physiology, Institute of Biomedicine, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine, National Institute for Health and Welfare, Helsinki, Finland
- FIMM, Finnish Institute of Molecular Medicine, Helsinki, Finland
- Department of Psychiatry, HUCH, Helsinki, Finland
| | - Ville Rantanen
- Research Programs Unit, Genome-Scale Biology & Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | - Erkki Kronholm
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Ida Surakka
- Department of Molecular Medicine, National Institute for Health and Welfare, Helsinki, Finland
- FIMM, Finnish Institute of Molecular Medicine, Helsinki, Finland
| | - Wessel M. A. van Leeuwen
- Department of Physiology, Institute of Biomedicine, University of Helsinki, Helsinki, Finland
- Centre of Expertise for Human Factors at Work, Finnish Institute of Occupational Health, Helsinki, Finland
- Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Maili Lehto
- Unit of Systems Toxicology, Centre of Expertise for Health and Work Ability, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Sampsa Matikainen
- Unit of Systems Toxicology, Centre of Expertise for Health and Work Ability, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Samuli Ripatti
- Department of Molecular Medicine, National Institute for Health and Welfare, Helsinki, Finland
- FIMM, Finnish Institute of Molecular Medicine, Helsinki, Finland
- Department of Medical Epidemiology & Biostatistics, Karolinska Institute, Stockholm, Sweden
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Mikko Härmä
- Centre of Expertise for Human Factors at Work, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Mikael Sallinen
- Centre of Expertise for Human Factors at Work, Finnish Institute of Occupational Health, Helsinki, Finland
- Agora Center, University of Jyväskylä, Jyväskylä, Finland
| | - Veikko Salomaa
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Matti Jauhiainen
- Department of Molecular Medicine, National Institute for Health and Welfare, Helsinki, Finland
- FIMM, Finnish Institute of Molecular Medicine, Helsinki, Finland
| | - Harri Alenius
- Unit of Systems Toxicology, Centre of Expertise for Health and Work Ability, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Tiina Paunio
- Department of Molecular Medicine, National Institute for Health and Welfare, Helsinki, Finland
- FIMM, Finnish Institute of Molecular Medicine, Helsinki, Finland
- Department of Psychiatry, HUCH, Helsinki, Finland
| | - Tarja Porkka-Heiskanen
- Department of Physiology, Institute of Biomedicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
253
|
Song Y, Shen H, Du W, Goldstein DR. Inhibition of x-box binding protein 1 reduces tunicamycin-induced apoptosis in aged murine macrophages. Aging Cell 2013; 12:794-801. [PMID: 23711292 DOI: 10.1111/acel.12105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2013] [Indexed: 01/08/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is induced by the accumulation of unfolded and misfolded proteins in the ER. Although apoptosis induced by ER stress has been implicated in several aging-associated diseases, such as atherosclerosis, it is unclear how aging modifies ER stress response in macrophages. To decipher this relationship, we assessed apoptosis in macrophages isolated from young (1.5-2 months) and aged (16-18 months) mice and exposed the cells to the ER stress inducer tunicamycin. We found that aged macrophages exhibited more apoptosis than young macrophages, which was accompanied by reduced activation of phosphorylated inositol-requiring enzyme-1 (p-IRE1α), one of the three key ER stress signal transducers. Reduced gene expression of x-box binding protein 1 (XBP1), a downstream effector of IRE1α, enhanced p-IRE1α levels and reduced apoptosis in aged, but not young macrophages treated with tunicamycin. These findings delineate a novel, age-dependent interaction by which macrophages undergo apoptosis upon ER stress, and suggest an important protective role of IRE1α in aging-associated ER stress-induced apoptosis. This novel pathway may not only be important in our understanding of longevity, but may also have important implications for pathogenesis and potential treatment of aging-associated diseases in general.
Collapse
Affiliation(s)
- Yang Song
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | |
Collapse
|
254
|
Affiliation(s)
- Sanja Arandjelovic
- From the Center for Cell Clearance, and the Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA
| | | |
Collapse
|
255
|
Sleiman L, Beanlands R, Hasu M, Thabet M, Norgaard A, Chen YX, Holcik M, Whitman S. Loss of cellular inhibitor of apoptosis protein 2 reduces atherosclerosis in atherogenic apoE-/- C57BL/6 mice on high-fat diet. J Am Heart Assoc 2013; 2:e000259. [PMID: 24072531 PMCID: PMC3835229 DOI: 10.1161/jaha.113.000259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Cellular inhibitor of apoptosis protein 2 (cIAP2) is predicted to participate in atherosclerosis; however, its direct role in atherosclerosis development has not been investigated. We aimed to examine and assess the loss of cIAP2 on atherosclerosis lesion development. Methods and Results We used apoE−/− C57BL/6 male mice, either cIAP2−/− or cIAP2+/+. At 8 weeks, mice were fed a high‐fat diet (HFD) for 4 and 12 weeks. Aortic root was serially sectioned and stained with Sudan IV, CD68, α‐actin, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). cIAP2−/− mice displayed a significant decrease in atherosclerotic lesion's macrophage number after 4 weeks of HFD. Similarly, decrease in lesion area at 4 and 12 weeks HFD was detected by use of en face analysis (cIAP2−/− 0.58±0.37% versus cIAP2+/+ 1.51±0.79% [P=0.0056]); (cIAP2−/− 9.34±4.88% versus cIAP2+/+ 17.65±6.24% [P=0.0019]). Aortic root lesion area after 4 and 12 weeks of HFD also decreased (cIAP2−/− 0.0328±0.014 mm2 versus cIAP2+/+ 0.0515±0.021 mm2 [P=0.022]); (cIAP2−/− 0.3614±0.1157 mm2 versus cIAP2+/+ 0.4901±0.125 mm2 [P=0.065]). TUNEL analysis after 4 and 12 weeks of HFD showed a 2.5‐fold increase in TUNEL+ cells (cIAP2−/− 4.47±2.26% versus cIAP2+/+ 1.74±0.98% [P=0.036]); (cIAP2−/− 2.39±0.75% versus cIAP2+/+ 1.29±0.47% [P=0.032]). Smooth muscle cell content in cIAP2−/− mice was 3.075±3.3% compared with cIAP2+/+ with 0.085±0.1% (P=0.0071). Conclusions Results uncover a key role for cIAP2 in atherosclerotic lesion development, and targeting it may represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Lyne Sleiman
- Departments of Pathology and Laboratory Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
256
|
Abstract
Atherosclerosis is a chronic inflammatory disease that arises from an imbalance in lipid metabolism and a maladaptive immune response driven by the accumulation of cholesterol-laden macrophages in the artery wall. Through the analysis of the progression and regression of atherosclerosis in animal models, there is a growing understanding that the balance of macrophages in the plaque is dynamic and that both macrophage numbers and the inflammatory phenotype influence plaque fate. In this Review, we summarize recently identified pro- and anti-inflammatory pathways that link lipid and inflammation biology with the retention of macrophages in plaques, as well as factors that have the potential to promote their egress from these sites.
Collapse
|
257
|
|
258
|
Electronegative LDL: a circulating modified LDL with a role in inflammation. Mediators Inflamm 2013; 2013:181324. [PMID: 24062611 PMCID: PMC3766570 DOI: 10.1155/2013/181324] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/19/2013] [Indexed: 12/13/2022] Open
Abstract
Electronegative low density lipoprotein (LDL(−)) is a minor modified fraction of LDL found in blood. It comprises a heterogeneous population of LDL particles modified by various mechanisms sharing as a common feature increased electronegativity. Modification by oxidation is one of these mechanisms. LDL(−) has inflammatory properties similar to those of oxidized LDL (oxLDL), such as inflammatory cytokine release in leukocytes and endothelial cells. However, in contrast with oxLDL, LDL(−) also has some anti-inflammatory effects on cultured cells. The inflammatory and anti-inflammatory properties ascribed to LDL(−) suggest that it could have a dual biological effect.
Collapse
|
259
|
PI3K p110γ deletion attenuates murine atherosclerosis by reducing macrophage proliferation but not polarization or apoptosis in lesions. PLoS One 2013; 8:e72674. [PMID: 23991137 PMCID: PMC3750002 DOI: 10.1371/journal.pone.0072674] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 07/17/2013] [Indexed: 02/02/2023] Open
Abstract
Atherosclerosis is an inflammatory disease regulated by infiltrating monocytes and T cells, among other cell types. Macrophage recruitment to atherosclerotic lesions is controlled by monocyte infiltration into plaques. Once in the lesion, macrophage proliferation in situ, apoptosis, and differentiation to an inflammatory (M1) or anti-inflammatory phenotype (M2) are involved in progression to advanced atherosclerotic lesions. We studied the role of phosphoinositol-3-kinase (PI3K) p110γ in the regulation of in situ apoptosis, macrophage proliferation and polarization towards M1 or M2 phenotypes in atherosclerotic lesions. We analyzed atherosclerosis development in LDLR−/−p110γ+/− and LDLR−/−p110γ−/− mice, and performed expression and functional assays in tissues and primary cells from these and from p110γ+/− and p110γ−/− mice. Lack of p110γ in LDLR−/− mice reduces the atherosclerosis burden. Atherosclerotic lesions in fat-fed LDLR−/−p110γ−/− mice were smaller than in LDLR−/−p110γ+/− controls, which coincided with decreased macrophage proliferation in LDLR−/−p110γ−/− mouse lesions. This proliferation defect was also observed in p110γ−/− bone marrow-derived macrophages (BMM) stimulated with macrophage colony-stimulating factor (M-CSF), and was associated with higher intracellular cyclic adenosine monophosphate (cAMP) levels. In contrast, T cell proliferation was unaffected in LDLR−/−p110γ−/− mice. Moreover, p110γ deficiency did not affect macrophage polarization towards the M1 or M2 phenotypes or apoptosis in atherosclerotic plaques, or polarization in cultured BMM. Our results suggest that higher cAMP levels and the ensuing inhibition of macrophage proliferation contribute to atheroprotection in LDLR−/− mice lacking p110γ. Nonetheless, p110γ deletion does not appear to be involved in apoptosis, in macrophage polarization or in T cell proliferation.
Collapse
|
260
|
Yu E, Calvert PA, Mercer JR, Harrison J, Baker L, Figg NL, Kumar S, Wang JC, Hurst LA, Obaid DR, Logan A, West NEJ, Clarke MCH, Vidal-Puig A, Murphy MP, Bennett MR. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation 2013; 128:702-12. [PMID: 23841983 DOI: 10.1161/circulationaha.113.002271] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) damage occurs in both circulating cells and the vessel wall in human atherosclerosis. However, it is unclear whether mtDNA damage directly promotes atherogenesis or is a consequence of tissue damage, which cell types are involved, and whether its effects are mediated only through reactive oxygen species. METHODS AND RESULTS mtDNA damage occurred early in the vessel wall in apolipoprotein E-null (ApoE(-/-)) mice, before significant atherosclerosis developed. mtDNA defects were also identified in circulating monocytes and liver and were associated with mitochondrial dysfunction. To determine whether mtDNA damage directly promotes atherosclerosis, we studied ApoE(-/-) mice deficient for mitochondrial polymerase-γ proofreading activity (polG(-/-)/ApoE(-/-)). polG(-/-)/ApoE(-/-) mice showed extensive mtDNA damage and defects in oxidative phosphorylation but no increase in reactive oxygen species. polG(-/-)/ApoE(-/-) mice showed increased atherosclerosis, associated with impaired proliferation and apoptosis of vascular smooth muscle cells, and hyperlipidemia. Transplantation with polG(-/-)/ApoE(-/-) bone marrow increased the features of plaque vulnerability, and polG(-/-)/ApoE(-/-) monocytes showed increased apoptosis and inflammatory cytokine release. To examine mtDNA damage in human atherosclerosis, we assessed mtDNA adducts in plaques and in leukocytes from patients who had undergone virtual histology intravascular ultrasound characterization of coronary plaques. Human atherosclerotic plaques showed increased mtDNA damage compared with normal vessels; in contrast, leukocyte mtDNA damage was associated with higher-risk plaques but not plaque burden. CONCLUSIONS We show that mtDNA damage in vessel wall and circulating cells is widespread and causative and indicates higher risk in atherosclerosis. Protection against mtDNA damage and improvement of mitochondrial function are potential areas for new therapeutics.
Collapse
Affiliation(s)
- Emma Yu
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Centre for Clinical Investigation, P.O. Box 110, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Falck-Hansen M, Kassiteridi C, Monaco C. Toll-like receptors in atherosclerosis. Int J Mol Sci 2013; 14:14008-23. [PMID: 23880853 PMCID: PMC3742229 DOI: 10.3390/ijms140714008] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/18/2013] [Accepted: 06/22/2013] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis, the leading cause of cardiovascular disease (CVD), is driven by inflammation. Increasing evidence suggests that toll-like receptors (TLRs) are key orchestrators of the atherosclerotic disease process. Interestingly, a distinct picture is being revealed for individual receptors in atherosclerosis. TLRs exhibit a complex nature enabling the detection of multiple motifs named danger-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). Activation of these receptors triggers an intracellular signalling cascade mediated through MyD88 or TRIF, leading to the production of pro- and anti-inflammatory cytokines. In this review we explore key novel findings pertaining to TLR signalling in atherosclerosis, including recently described endosomal TLRs and future directions in TLR research.
Collapse
Affiliation(s)
- Mika Falck-Hansen
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK.
| | | | | |
Collapse
|
262
|
Sanz AB, Sanchez-Niño MD, Izquierdo MC, Gonzalez-Espinoza L, Ucero AC, Poveda J, Ruiz-Andres O, Ruiz-Ortega M, Selgas R, Egido J, Ortiz A. Macrophages and recently identified forms of cell death. Int Rev Immunol 2013; 33:9-22. [PMID: 23802146 DOI: 10.3109/08830185.2013.771183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent advances in cell death biology have uncovered an ever increasing range of cell death forms. Macrophages have a bidirectional relationship with cell death that modulates the immune response. Thus, macrophages engulf apoptotic cells and secrete cytokines that may promote cell death in parenchymal cells. Furthermore, the presence of apoptotic or necrotic dead cells in the microenvironment elicits differential macrophage responses. Apoptotic cells elicit anti-inflammatory responses in macrophages. By contrast macrophages may undergo a proinflammatory form of cell death (pyroptosis) in response to damage-associated molecular patterns (DAMPs) released from necrotic cells and also in response to pathogen-associated molecular patterns (PAMPs). Pyroptosis is a recently identified form of cell death that occurs predominantly in subsets of inflammatory macrophages and is associated to the release of interleukin-1β (IL-1β) and IL-18. Deregulation of these processes may result in disease. Thus, failure of macrophages to engulf apoptotic cells may be a source of autoantigens in autoimmune diseases, excessive macrophage release of proapoptotic factors or sterile pyroptosis may contribute to tissue injury and failure of pathogen-induced pyroptosis may contribute to pathogen survival. Ongoing research is exploring the therapeutic opportunities resulting this new knowledge.
Collapse
Affiliation(s)
- Ana B Sanz
- 1Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Fenyo IM, Gafencu AV. The involvement of the monocytes/macrophages in chronic inflammation associated with atherosclerosis. Immunobiology 2013; 218:1376-84. [PMID: 23886694 DOI: 10.1016/j.imbio.2013.06.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 12/12/2022]
Abstract
Atherosclerosis is a progressive chronic disease of large and medium arteries, characterized by the formation of atherosclerotic plaques. Monocytes and macrophages are key factors in lesion development, participating to the processes that mediate the progression of the atherosclerotic plaque (lipid accumulation, secretion of pro-inflammatory and cytotoxic factors, extracellular matrix remodeling). The recruitment of the monocytes in the vascular wall represents a hallmark in the pathology of the atherosclerotic lesion. Monocyte adhesion and transmigration are dependent on the complementary adhesion molecules expressed on the endothelial surface, whose expression is modulated by chemical mediators. The atherosclerotic plaque is characterized by a heterogeneous population of macrophages reflecting the complexity and diversity of the micro-environment to which cells are exposed after entering the arterial wall. Within the atherosclerotic lesions, macrophages differentiate, proliferate and undergo apoptosis. Taking into account that their behavior has a direct and critical influence on all lesional stages, the development of therapeutic approaches to target monocytes/macrophages in the atherosclerotic plaque became a focal interest point for researchers in the field.
Collapse
Affiliation(s)
- Ioana Madalina Fenyo
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania.
| | | |
Collapse
|
264
|
Affiliation(s)
- Hiroshi Iwata
- From the Center for Interdisciplinary Cardiovascular Sciences, Harvard Medical School, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts (H.I.); Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Bunkyo, Tokyo, Japan (H.I., I.M., R.N.); and Jichi Medical University, Yakushiji, Shimotsuke-shi, Tochigi Prefecture, Japan (R.N.)
| | - Ichiro Manabe
- From the Center for Interdisciplinary Cardiovascular Sciences, Harvard Medical School, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts (H.I.); Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Bunkyo, Tokyo, Japan (H.I., I.M., R.N.); and Jichi Medical University, Yakushiji, Shimotsuke-shi, Tochigi Prefecture, Japan (R.N.)
| | - Ryozo Nagai
- From the Center for Interdisciplinary Cardiovascular Sciences, Harvard Medical School, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts (H.I.); Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Bunkyo, Tokyo, Japan (H.I., I.M., R.N.); and Jichi Medical University, Yakushiji, Shimotsuke-shi, Tochigi Prefecture, Japan (R.N.)
| |
Collapse
|
265
|
Kim JH. Cardiovascular Diseases and Panax ginseng: A Review on Molecular Mechanisms and Medical Applications. J Ginseng Res 2013; 36:16-26. [PMID: 23717100 PMCID: PMC3659571 DOI: 10.5142/jgr.2012.36.1.16] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 01/25/2023] Open
Abstract
Ginseng is one of the most widely used herbal medicines and is reported to have a wide range of therapeutic and pharmacological applications. Ginseng may also be potentially valuable in treating cardiovascular diseases. Research concerning cardiovascular disease is focusing on purified individual ginsenoside constituents of ginseng to reveal specific mechanisms instead of using whole ginseng extracts. The most commonly studied ginsenosides are Rb1, Rg1, Rg3, Rh1, Re, and Rd. The molecular mechanisms and medical applications of ginsenosides in the treatment of cardiovascular disease have attracted much attention and been the subject of numerous publications. Here, we review the current literature on the myriad pharmacological functions and the potential benefits of ginseng in this area. In vitro investigations using cell cultures and in vivo animal models have indicated ginseng's potential cardiovascular benefits through diverse mechanisms that include antioxidation, modifying vasomotor function, reducing platelet adhesion, influencing ion channels, altering autonomic neurotransmitters release, and improving lipid profiles. Some 40 ginsenosides have been identified. Each may have different effects in pharmacology and mechanisms due to their different chemical structures. This review also summarizes results of relevant clinical trials regarding the cardiovascular effects of ginseng, particularly in the management of hypertension and improving cardiovascular function.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756, Korea
| |
Collapse
|
266
|
Berisha SZ, Hsu J, Robinet P, Smith JD. Transcriptome analysis of genes regulated by cholesterol loading in two strains of mouse macrophages associates lysosome pathway and ER stress response with atherosclerosis susceptibility. PLoS One 2013; 8:e65003. [PMID: 23705026 PMCID: PMC3660362 DOI: 10.1371/journal.pone.0065003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 04/24/2013] [Indexed: 11/18/2022] Open
Abstract
Cholesterol loaded macrophages in the arterial intima are the earliest histological evidence of atherosclerosis. Studies of mouse models of atherosclerosis have shown that the strain background can have a significant effect on lesion development. We have previously shown that DBA/2 ApoE(-/-) mice have aortic root lesions 10-fold larger than AKR ApoE(-/-) mice. The current study analyzes the response to cholesterol loading of macrophages from these two strains. Macrophages from the atherosclerosis susceptible DBA/2 strain had significantly higher levels of total and esterified cholesterol compared to atherosclerosis resistant AKR macrophages, while free cholesterol levels were higher in AKR cells. Gene expression profiles were obtained and data were analyzed for strain, cholesterol loading, and strain-cholesterol loading interaction effects by a fitted linear model. Pathway and transcriptional motif enrichment were identified by gene set enrichment analysis. In addition to observed strain differences in basal gene expression, we identified many transcripts whose expression was significantly altered in response to cholesterol loading, including P2ry13 and P2ry14, Trib3, Hyal1, Vegfa, Ccr5, Ly6a, and Ifit3. Eight pathways were significantly enriched in transcripts regulated by cholesterol loading, among which the lysosome and cytokine-cytokine receptor interaction pathways had the highest number of significantly regulated transcripts. Of the differentially regulated transcripts with a strain-cholesterol loading interaction effect, we identified three genes known to participate in the endoplasmic reticulum (ER) stress response, Ddit3, Trib3 and Atf4. These three transcripts were highly up-regulated by cholesterol in AKR and either down-regulated or unchanged in loaded DBA/2 macrophages, thus associating a robust ER stress response with atherosclerosis resistance. We identified significant transcripts with strain, loading, or strain-loading interaction effect that reside within previously described quantitative trait loci as atherosclerosis modifier candidate genes. In conclusion, we characterized several strain and cholesterol induced differences that may lead to new insights into cellular cholesterol metabolism and atherosclerosis.
Collapse
Affiliation(s)
- Stela Z. Berisha
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jeffrey Hsu
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Peggy Robinet
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jonathan D. Smith
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
267
|
Baruch A, van Bruggen N, Kim JB, Lehrer-Graiwer JE. Anti-Inflammatory Strategies for Plaque Stabilization after Acute Coronary Syndromes. Curr Atheroscler Rep 2013; 15:327. [DOI: 10.1007/s11883-013-0327-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
268
|
Lin J, Shou X, Mao X, Dong J, Mohabeer N, Kushwaha KK, Wang L, Su Y, Fang H, Li D. Oxidized low density lipoprotein induced caspase-1 mediated pyroptotic cell death in macrophages: implication in lesion instability? PLoS One 2013; 8:e62148. [PMID: 23637985 PMCID: PMC3636212 DOI: 10.1371/journal.pone.0062148] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/18/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Macrophage death in advanced lesion has been confirmed to play an important role in plaque instability. However, the mechanism underlying lesion macrophage death still remains largely unknown. METHODS AND RESULTS Immunohistochemistry showed that caspase-1 activated in advanced lesion and co-located with macrophages and TUNEL positive reaction. In in-vitro experiments showed that ox-LDL induced caspase-1 activation and this activation was required for ox-LDL induced macrophages lysis, IL-1β and IL-18 production as well as DNA fragmentation. Mechanism experiments showed that CD36 and NLRP3/caspase-1/pathway involved in ox-LDL induced macrophage pyroptosis. CONCLUSION Our study here identified a novel cell death, pyroptosis in ox-LDL induced human macrophage, which may be implicated in lesion macrophages death and play an important role in lesion instability.
Collapse
Affiliation(s)
- Jing Lin
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiling Shou
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaobo Mao
- Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangchuan Dong
- Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nilesh Mohabeer
- Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kishan kumar Kushwaha
- Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wang
- Department of Cardiology, Shenzhen Sixth People's Hospital (Nanshan Hospital), Huazhong University of Science and Technology, Union Shenzhen Hospital, Shenzhen, China
| | - Yousu Su
- Department of Cardiology, Shenzhen Sixth People's Hospital (Nanshan Hospital), Huazhong University of Science and Technology, Union Shenzhen Hospital, Shenzhen, China
| | - Hongcheng Fang
- Department of Cardiology, Shenzhen Sixth People's Hospital (Nanshan Hospital), Huazhong University of Science and Technology, Union Shenzhen Hospital, Shenzhen, China
| | - Dazhu Li
- Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
269
|
Abstract
Multiple systemic factors and local stressors in the arterial wall can disturb the functions of endoplasmic reticulum (ER), causing ER stress in endothelial cells (ECs), smooth muscle cells (SMCs), and macrophages during the initiation and progression of atherosclerosis. As a protective response to restore ER homeostasis, the unfolded protein response (UPR) is initiated by three major ER sensors: protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1α (IRE1α), and activating transcription factor 6 (ATF6). The activation of the various UPR signaling pathways displays a temporal pattern of activation at different stages of the disease. The ATF6 and IRE1α pathways that promote the expression of protein chaperones in ER are activated in ECs in athero-susceptible regions of pre-lesional arteries and before the appearance of foam cells. The PERK pathway that reduces ER protein client load by blocking protein translation is activated in SMCs and macrophages in early lesions. The activation of these UPR signaling pathways aims to cope with the ER stress and plays a pro-survival role in the early stage of atherosclerosis. However, with the progression of atherosclerosis, the extended duration and increased intensity of ER stress in lesions lead to prolonged and enhanced UPR signaling. Under this circumstance, the PERK pathway induces expression of death effectors, and possibly IRE1α activates apoptosis signaling pathways, leading to apoptosis of macrophages and SMCs in advanced lesions. Importantly, UPR-mediated cell death is associated with plaque instability and the clinical progression of atherosclerosis. Moreover, UPR signaling is linked to inflammation and possibly to macrophage differentiation in lesions. Therapeutic approaches targeting the UPR may have promise in the prevention and/or regression of atherosclerosis. However, more progress is needed to fully understand all of the roles of the UPR in atherosclerosis and to harness this information for therapeutic advances.
Collapse
|
270
|
Alberts-Grill N, Denning TL, Rezvan A, Jo H. The role of the vascular dendritic cell network in atherosclerosis. Am J Physiol Cell Physiol 2013; 305:C1-21. [PMID: 23552284 DOI: 10.1152/ajpcell.00017.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A complex role has been described for dendritic cells (DCs) in the potentiation and control of vascular inflammation and atherosclerosis. Resident vascular DCs are found in the intima of atherosclerosis-prone vascular regions exposed to disturbed blood flow patterns. Several phenotypically and functionally distinct vascular DC subsets have been described. The functional heterogeneity of these cells and their contributions to vascular homeostasis, inflammation, and atherosclerosis are only recently beginning to emerge. Here, we review the available literature, characterizing the origin and function of known vascular DC subsets and their important role contributing to the balance of immune activation and immune tolerance governing vascular homeostasis under healthy conditions. We then discuss how homeostatic DC functions are disrupted during atherogenesis, leading to atherosclerosis. The effectiveness of DC-based "atherosclerosis vaccine" therapies in the treatment of atherosclerosis is also reviewed. We further provide suggestions for distinguishing DCs from macrophages and discuss important future directions for the field.
Collapse
Affiliation(s)
- Noah Alberts-Grill
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
271
|
Arnal-Levron M, Chen Y, Delton-Vandenbroucke I, Luquain-Costaz C. Bis(monoacylglycero)phosphate reduces oxysterol formation and apoptosis in macrophages exposed to oxidized LDL. Biochem Pharmacol 2013; 86:115-21. [PMID: 23542536 DOI: 10.1016/j.bcp.2013.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/21/2013] [Accepted: 03/21/2013] [Indexed: 02/02/2023]
Abstract
Atherosclerosis is a major cardiovascular complication of diseases associated with increased oxidative stress that favors oxidation of circulating low density lipoproteins (LDLs). Oxidized LDL (oxLDL) is considered as highly atherogenic as it induces a strong accumulation of cholesterol in subendothelial macrophages leading to the formation of foam cells and emergence of atherosclerotic plaque. OxLDL is enriched in oxidation products of cholesterol called oxysterols, some of which have been involved in the ability of oxLDL to induce cellular oxidative stress and cytotoxicity, mainly by apoptosis. Little is known about the possible contribution of cell-generated oxysterols toward LDL-associated oxysterols in cellular accumulation of oxysterols and related apoptosis. Using both radiochemical and mass analyzes, we showed that oxLDL greatly enhanced oxysterol production by RAW macrophages in comparison with unloaded cells or cells loaded with native LDL. Most oxysterols were produced by non-enzymatic routes (7-ketocholesterol and 7α/β-hydroyxycholesterol) but enzymatically formed 7α-, 25- and 27-hydroxycholesterol were also quantified. Bis(monoacylglycero)phosphate (BMP) is a unique phospholipid preferentially found in late endosomes. We and others have highlighted the role of BMP in the regulation of intracellular cholesterol metabolism/traffic in macrophages. We here report that cellular BMP accumulation was associated with a significantly lower production of oxysterols upon oxLDL exposure. Of note, potent pro-apoptotic 7-ketocholesterol was the most markedly decreased. OxLDL-induced cell cytotoxicity and apoptosis were consistently attenuated in BMP-enriched cells. Taken together, our data suggest that BMP exerts a protective action against the pro-apoptotic effect of oxLDL via a reduced production of intracellular pro-apoptotic oxysterols.
Collapse
|
272
|
Tsuchiya K, Westerterp M, Murphy AJ, Subramanian V, Ferrante AW, Tall AR, Accili D. Expanded granulocyte/monocyte compartment in myeloid-specific triple FoxO knockout increases oxidative stress and accelerates atherosclerosis in mice. Circ Res 2013; 112:992-1003. [PMID: 23420833 DOI: 10.1161/circresaha.112.300749] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RATIONALE Increased neutrophil and monocyte counts are often associated with an increased risk of atherosclerosis, but their relationship to insulin sensitivity is unknown. OBJECTIVE To investigate the contribution of forkhead transcription factors (FoxO) in myeloid cells to neutrophil and monocyte counts, atherosclerosis, and systemic insulin sensitivity. METHODS AND RESULTS Genetic ablation of the 3 genes encoding FoxO isoforms 1, 3a, and 4, in myeloid cells resulted in an expansion of the granulocyte/monocyte progenitor compartment and was associated with increased atherosclerotic lesion formation in low-density lipoprotein receptor knockout mice. In vivo and ex vivo studies indicate that FoxO ablation in myeloid cells increased generation of reactive oxygen species. Accordingly, treatment with the antioxidant N-acetyl-l-cysteine reversed the phenotype, normalizing atherosclerosis. CONCLUSIONS Our data indicate that myeloid cell proliferation and oxidative stress can be modulated via the FoxO branch of insulin receptor signaling, highlighting a heretofore-unknown link between insulin sensitivity and leukocytosis that can affect the predisposition to atherosclerosis.
Collapse
Affiliation(s)
- Kyoichiro Tsuchiya
- Naomi Berrie Diabetes Center, 1150 St Nicholas Ave, Russ Berrie Pavilion Room 238, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
273
|
Cuerrier CM, Chen YX, Tremblay D, Rayner K, McNulty M, Zhao X, Kennedy CRJ, de BelleRoche J, Pelling AE, O'Brien ER. Chronic over-expression of heat shock protein 27 attenuates atherogenesis and enhances plaque remodeling: a combined histological and mechanical assessment of aortic lesions. PLoS One 2013; 8:e55867. [PMID: 23409070 PMCID: PMC3567023 DOI: 10.1371/journal.pone.0055867] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/03/2013] [Indexed: 11/19/2022] Open
Abstract
Aims Expression of Heat Shock Protein-27 (HSP27) is reduced in human coronary atherosclerosis. Over-expression of HSP27 is protective against the early formation of lesions in atherosclerosis-prone apoE−/− mice (apoE−/−HSP27o/e) - however, only in females. We now seek to determine if chronic HSP27 over-expression is protective in a model of advanced atherosclerosis in both male and female apoE−/− mice. Methods and Results After 12 weeks on a high fat diet, serum HSP27 levels rose more than 16-fold in male and female apoE−/−HSP27o/e mice, although females had higher levels than males. Relative to apoE−/− mice, female apoE−/−HSP27o/e mice showed reductions in aortic lesion area of 35% for en face and 30% for cross-sectional sinus tissue sections – with the same parameters reduced by 21% and 24% in male cohorts; respectively. Aortic plaques from apoE−/−HSP27o/e mice showed almost 50% reductions in the area occupied by cholesterol clefts and free cholesterol, with fewer macrophages and reduced apoptosis but greater intimal smooth muscle cell and collagen content. The analysis of the aortic mechanical properties showed increased vessel stiffness in apoE−/−HSP27o/e mice (41% in female, 34% in male) compare to apoE−/− counterparts. Conclusions Chronic over-expression of HSP27 is atheroprotective in both sexes and coincides with reductions in lesion cholesterol accumulation as well as favorable plaque remodeling. These data provide new clues as to how HSP27 may improve not only the composition of atherosclerotic lesions but potentially their stability and resilience to plaque rupture.
Collapse
Affiliation(s)
- Charles M. Cuerrier
- University of Ottawa Heart Institute, Ottawa, Canada
- Centre for Interdisciplinary NanoPhysics, Department of Physics, University of Ottawa, Ottawa, Canada
| | | | - Dominique Tremblay
- Centre for Interdisciplinary NanoPhysics, Department of Physics, University of Ottawa, Ottawa, Canada
| | - Katey Rayner
- University of Ottawa Heart Institute, Ottawa, Canada
| | | | - XiaoLing Zhao
- University of Ottawa Heart Institute, Ottawa, Canada
| | | | | | - Andrew E. Pelling
- Centre for Interdisciplinary NanoPhysics, Department of Physics, University of Ottawa, Ottawa, Canada
- Department of Biology, University of Ottawa, Ottawa, Canada
- Institute for Science, Society and Policy, University of Ottawa, Ottawa, Canada
| | - Edward R. O'Brien
- University of Ottawa Heart Institute, Ottawa, Canada
- Libin Cardiovascular Institute of Alberta, Calgary, Canada
- * E-mail:
| |
Collapse
|
274
|
Abstract
Ischaemic heart disease accounts for nearly half of the global cardiovascular disease burden. Aetiologies relating to heart disease are complex, but dyslipidaemia, oxidative stress and inflammation are cardinal features. Despite preventative measures and advancements in treatment regimens with lipid-lowering agents, the high prevalence of heart disease and the residual risk of recurrent events continue to be a significant burden to the health sector and to the affected individuals and their families. The development of improved risk models for the early detection and prevention of cardiovascular events in addition to new therapeutic strategies to address this residual risk are required if we are to continue to make inroads into this most prevalent of diseases. Metabolomics and lipidomics are modern disciplines that characterize the metabolite and lipid complement respectively, of a given system. Their application to ischaemic heart disease has demonstrated utilities in population profiling, identification of multivariate biomarkers and in monitoring of therapeutic response, as well as in basic mechanistic studies. Although advances in magnetic resonance and mass spectrometry technologies have given rise to the fields of metabolomics and lipidomics, the plethora of data generated presents challenges requiring specific statistical and bioinformatics applications, together with appropriate study designs. Nonetheless, the predictive and re-classification capacity of individuals with various degrees of risk by the plasma lipidome has recently been demonstrated. In the present review, we summarize evidence derived exclusively by metabolomic and lipidomic studies in the context of ischaemic heart disease. We consider the potential role of plasma lipid profiling in assessing heart disease risk and therapeutic responses, and explore the potential mechanisms. Finally, we highlight where metabolomic studies together with complementary -omic disciplines may make further inroads into the understanding, detection and treatment of ischaemic heart disease.
Collapse
|
275
|
Shah PK. Inflammation and atherothrombosis. Clin Immunol 2013. [DOI: 10.1016/b978-0-7234-3691-1.00082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
276
|
Bonaterra GA, Zügel S, Thogersen J, Walter SA, Haberkorn U, Strelau J, Kinscherf R. Growth differentiation factor-15 deficiency inhibits atherosclerosis progression by regulating interleukin-6-dependent inflammatory response to vascular injury. J Am Heart Assoc 2012; 1:e002550. [PMID: 23316317 PMCID: PMC3540664 DOI: 10.1161/jaha.112.002550] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/07/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND Growth differentiation factor (GDF)-15 is a distant and divergent member of the transforming growth factor-β superfamily (TGF-β) . There is growing evidence indicating the involvement of GDF-15 in various pathologies. Expression of GDF-15 is induced under conditions of inflammation and increased GDF-15 serum levels are suggested as a risk factor for cardiovascular diseases. METHODS AND RESULTS We show here that GDF-15 and proinflammatory cytokine interleukin (IL)-6 levels are highly increased (5-fold) in cultured oxidized low-density lipoproteins-stimulated peritoneal macrophages derived from GDF-15(+/+)/apolipoprotein (apo) E(-/-), mice. Notably, IL-6 induction on oxidized low-density lipoproteins stimulation is completely abolished in the absence of GDF-15. Consistent with our in vitro data GDF-15 mRNA expression and protein levels are upregulated (2.5- to 6-fold) in the atherosclerotic vessel wall of GDF-15(+/+)/apoE(-/-) mice after a cholesterol-enriched diet. GDF-15 deficiency inhibits lumen stenosis (52%) and (18)FDG uptake (34%) in the aortic arch despite increased serum triglyceride/cholesterol levels and elevated body weight. Immunohistomorphometric investigations of atherosclerotic lesions reveal a decreased percentage of inflammatory CD11b(+) (57%) or IL-6(+), leukocytes, and apoptotic cells (74%) after 20 weeks. However, the total number of macrophages and cell density in atherosclerotic lesions of the innominate artery are increased in GDF-15(-/-)/apoE(-/-) mice. CONCLUSIONS Our data suggest that GDF-15 is involved in orchestrating atherosclerotic lesion progression by regulating apoptotic cell death and IL-6-dependent inflammatory responses to vascular injury.
Collapse
Affiliation(s)
- Gabriel A Bonaterra
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
277
|
Scholtes VPW, Johnson JL, Jenkins N, Sala-Newby GB, de Vries JPPM, de Borst GJ, de Kleijn DPV, Moll FL, Pasterkamp G, Newby AC. Carotid atherosclerotic plaque matrix metalloproteinase-12-positive macrophage subpopulation predicts adverse outcome after endarterectomy. J Am Heart Assoc 2012; 1:e001040. [PMID: 23316311 PMCID: PMC3540663 DOI: 10.1161/jaha.112.001040] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/27/2012] [Indexed: 12/19/2022]
Abstract
Background Matrix metalloproteinase-12 (MMP-12) promotes atherosclerosis in animal models. MMP-12 is expressed in only a subset of foam-cell macrophages (FCMs) in human plaques. We investigated whether the prevalence of this MMP-12–expressing subpopulation is a prognostic indicator of adverse outcome in patients after carotid endarterectomy (CEA). Methods and Results Serial sections of culprit lesions from 236 patients who underwent CEA and had undergone 3 years of clinical follow-up were stained immunocytochemically for MMP-12 and for CD68, and the MMP-12/CD68 ratio was used to quantify the MMP-12–expressing subpopulation. A high MMP-12/CD68 ratio correlated with a high content of lipid and total macrophages and a low content of vascular smooth muscle cells, as well as with MMP-8 (R=0.211, P=0.001), MMP-9 (R=0.251, P<0.001), and cleaved caspase-3 (R=0.142, P=0.036) activity measured in a neighboring segment. Dual immunohistochemical examination confirmed the location of MMP-12 in a subpopulation of MMP-8– and MMP-9–positive FCMs, whereas all apoptotic FCMs were MMP-12 positive. Patients who yielded plaques within the highest quartile compared with the lowest quartile of MMP-12/CD68 ratio had a 2.4-fold (hazard ratio, 2.4; 95% CI, 1.1- to 5.1-fold; adjusted P=0.027) increased risk of major adverse cardiovascular event and a 3.4-fold (3.4; 1.2- to 9.6-fold, P=0.024) increased risk for stroke. Conclusions The prevalence of an MMP-12–positive subset of FCMs is a prognostic marker for adverse clinical outcome after CEA.
Collapse
|
278
|
Kosuge H, Sherlock SP, Kitagawa T, Dash R, Robinson JT, Dai H, McConnell MV. Near infrared imaging and photothermal ablation of vascular inflammation using single-walled carbon nanotubes. J Am Heart Assoc 2012; 1:e002568. [PMID: 23316318 PMCID: PMC3540665 DOI: 10.1161/jaha.112.002568] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/05/2012] [Indexed: 12/31/2022]
Abstract
Background Macrophages are critical contributors to atherosclerosis. Single-walled carbon nanotubes (SWNTs) show promising properties for cellular imaging and thermal therapy, which may have application to vascular macrophages. Methods and Results In vitro uptake and photothermal destruction of mouse macrophage cells (RAW264.7) were performed with SWNTs (14.7 nmol/L) exposed to an 808-nm light source. SWNTs were taken up by 94±6% of macrophages, and light exposure induced 93±3% cell death. In vivo vascular macrophage uptake and ablation were then investigated in carotid-ligated FVB mice (n=33) after induction of hyperlipidemia and diabetes. Two weeks postligation, near-infrared fluorescence (NIRF) carotid imaging (n=12) was performed with SWNT-Cy5.5 (8 nmol of Cy5.5) given via the tail vein. Photothermal heating and macrophage apoptosis were evaluated on freshly excised carotid arteries (n=21). NIRF of SWNTs showed higher signal intensity in ligated carotids compared with sham, confirmed by both in situ and ex vivo NIRF imaging (P<0.05, ligation versus sham). Immunofluorescence staining showed colocalization of SWNT-Cy5.5 and macrophages in atherosclerotic lesions. Light (808 nm) exposure of freshly excised carotids showed heating and induction of macrophage apoptosis in ligated left carotid arteries with SWNTs, but not in control groups without SWNTs or without light exposure. Conclusions Carbon nanotubes accumulate in atherosclerotic macrophages in vivo and provide a multifunctional platform for imaging and photothermal therapy of vascular inflammation.
Collapse
Affiliation(s)
- Hisanori Kosuge
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
279
|
Pathologic Etiologies of Late and Very Late Stent Thrombosis following First-Generation Drug-Eluting Stent Placement. THROMBOSIS 2012; 2012:608593. [PMID: 23227328 PMCID: PMC3512327 DOI: 10.1155/2012/608593] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/23/2012] [Indexed: 11/17/2022]
Abstract
Several randomized and observational studies have reported steady increase in cumulative incidence of late and very late ST (LST/VLST) following first-generation drug-eluting stents (DES: sirolimus-(SES) and paclitaxel-(PES)) up to 5 years. Pathologic studies have identified uncovered struts as the primary substrate responsible for LST/VLST following DES, where delayed arterial healing is associated with stent struts penetrating into the necrotic core, long/overlapping stents, and bifurcation stenting especially in flow divider region. Grade V stent fracture also induces LST/VLST and restenosis. Hypersensitivity reaction is exclusive to SES as an etiology of LST/VLST, whereas malapposition secondary to excessive fibrin deposition is associated with PES. Uncovered struts can be identified in SES and PES with duration of implant beyond 12 months, particularly in stents placed for "off-label" indications. Neoatherosclerosis is another important contributing factor for VLST in DES and bare metal stents (BMS); however, DES shows rapid and more frequent development of neoatherosclerosis than BMS. Future pathologic studies should address the long-term safety of newer generation DES including zotarolimus- and everolimus-eluting stents in terms of the improvement in reendothelialization, decreased inflammation and fibrin deposition as well as a lower incidence of stent fracture-related adverse events, and reduced neoatherosclerosis, which likely contribute to the decreased risk of LST/VLST and better patient outcomes.
Collapse
|
280
|
Rong JX, Blachford C, Feig JE, Bander I, Mayne J, Kusunoki J, Miller C, Davis M, Wilson M, Dehn S, Thorp E, Tabas I, Taubman MB, Rudel LL, Fisher EA. ACAT inhibition reduces the progression of preexisting, advanced atherosclerotic mouse lesions without plaque or systemic toxicity. Arterioscler Thromb Vasc Biol 2012; 33:4-12. [PMID: 23139293 DOI: 10.1161/atvbaha.112.252056] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Acyl-CoA:cholesterol acyltransferase (ACAT) converts cholesterol to cholesteryl esters in plaque foam cells. Complete deficiency of macrophage ACAT has been shown to increase atherosclerosis in hypercholesterolemic mice because of cytotoxicity from free cholesterol accumulation, whereas we previously showed that partial ACAT inhibition by Fujirebio compound F1394 decreased early atherosclerosis development. In this report, we tested F1394 effects on preestablished, advanced lesions of apolipoprotein-E-deficient mice. METHODS AND RESULTS Apolipoprotein-E-deficient mice on Western diet for 14 weeks developed advanced plaques, and were either euthanized (Baseline), or continued on Western diet with or without F1394 and euthanized after 14 more weeks. F1394 was not associated with systemic toxicity. Compared with the baseline group, lesion size progressed in both groups; however, F1394 significantly retarded plaque progression and reduced plaque macrophage, free and esterified cholesterol, and tissue factor contents compared with the untreated group. Apoptosis of plaque cells was not increased, consistent with the decrease in lesional free cholesterol. There was no increase in plaque necrosis and unimpaired efferocytosis (phagocytic clearance of apoptotic cells). The effects of F1394 were independent of changes in plasma cholesterol levels. CONCLUSIONS Partial ACAT inhibition by F1394 lowered plaque cholesterol content and had other antiatherogenic effects in advanced lesions in apolipoprotein-E-deficient mice without overt systemic or plaque toxicity, suggesting the continued potential of ACAT inhibition for the clinical treatment of atherosclerosis, in spite of recent trial data.
Collapse
Affiliation(s)
- James X Rong
- Marc and Ruti Bell Vascular Biology and Disease Research Program of the Leon H. Charney Division of Cardiology and the Department of Medicine (Cardiology), New York University School of Medicine, Smilow 7, 522 First Ave, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Sung HJ, Son SJ, Yang SJ, Rhee KJ, Kim YS. Increased expression of interleukin-1β in triglyceride-induced macrophage cell death is mediated by p38 MAP kinase. BMB Rep 2012; 45:414-8. [PMID: 22831977 DOI: 10.5483/bmbrep.2012.45.7.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Triglycerides (TG) are implicated in the development of atherosclerosis through formation of foam cells and induction of macrophage cell death. In this study, we report that addition of exogenous TG induced cell death in phorbol 12-myristate 13-acetate-differentiated THP-1 human macrophages. TG treatment induced a dramatic decrease in interleukin-1β (IL-1β) mRNA expression in a dose- and time-dependent manner. The expression of granulocyte macrophage colony-stimulating factor and platelet endothelial cell adhesion molecule remained unchanged. To identify signaling pathways involved in TG-induced downregulation of IL-1β, we added p38 MAPK, protein kinase C (PKC) or c-Raf1 specific inhibitors. We found that inhibition of p38 MAPK alleviated the TG-induced downregulation of IL-1β, whereas inhibition of PKC and c-Raf1 had no effect. This is the first report showing decreased IL-1β expression during TG-induced cell death in a human macrophage line. Our results suggest that downregulation of IL-1β expression by TG-treated macrophages may play a role during atherogenesis.
Collapse
Affiliation(s)
- Ho Joong Sung
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Gyeongi-Do, Korea
| | | | | | | | | |
Collapse
|
282
|
Menini S, Iacobini C, Ricci C, Scipioni A, Blasetti Fantauzzi C, Giaccari A, Salomone E, Canevotti R, Lapolla A, Orioli M, Aldini G, Pugliese G. D-Carnosine octylester attenuates atherosclerosis and renal disease in ApoE null mice fed a Western diet through reduction of carbonyl stress and inflammation. Br J Pharmacol 2012; 166:1344-56. [PMID: 22229552 DOI: 10.1111/j.1476-5381.2012.01834.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Lipoxidation-derived reactive carbonyl species (RCS) such as 4-hydroxy-2-nonenal (HNE) react with proteins to form advanced lipoxidation end products (ALEs), which have been implicated in both atherosclerosis and renal disease. L-carnosine acts as an endogenous HNE scavenger, but it is rapidly inactivated by carnosinase. This study aimed at assessing the effect of the carnosinase-resistant, D-carnosine, on HNE-induced cellular injury and of its bioavailable prodrug D-carnosine octylester on experimental atherosclerosis and renal disease. EXPERIMENTAL APPROACH Vascular smooth muscle cells (VSMCs) were exposed to HNE or H₂O₂ plus D-carnosine. ApoE null mice fed a Western, pro-atherogenic diet were treated with D-carnosine octylester for 12 weeks. KEY RESULTS In vitro, D-carnosine attenuated the effect of HNE, but not of H₂O₂, on VSMCs. In vivo, D-carnosine octylester-treated mice showed reduced lesion area and a more stable plaque phenotype compared with untreated animals, with reduced foam cell accumulation, inflammation and apoptosis and increased clearance of apoptotic bodies and collagen deposition, resulting in decreased necrotic core formation. Likewise, renal lesions were attenuated in D-carnosine octylester-treated versus untreated mice, with lower inflammation, apoptosis and fibrosis. This was associated with increased urinary levels of HNE-carnosine adducts and reduced protein carbonylation, circulating and tissue ALEs, expression of receptors for these products, and systemic and tissue oxidative stress. CONCLUSIONS AND IMPLICATIONS These data indicate RCS quenching with a D-carnosine ester was highly effective in attenuating experimental atherosclerosis and renal disease by reducing carbonyl stress and inflammation and that this may represent a promising therapeutic strategy in humans.
Collapse
Affiliation(s)
- Stefano Menini
- Department of Clinical and Molecular Medicine, La Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Yao S, Zong C, Zhang Y, Sang H, Yang M, Jiao P, Fang Y, Yang N, Song G, Qin S. Activating transcription factor 6 mediates oxidized LDL-induced cholesterol accumulation and apoptosis in macrophages by up-regulating CHOP expression. J Atheroscler Thromb 2012; 20:94-107. [PMID: 23037953 DOI: 10.5551/jat.13425] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM This study was to explore whether activating transcription factor 6 (ATF6), an important sensor to endoplasmic reticulum (ER) stress, would mediate oxidized low-density lipoprotein (ox-LDL)- induced cholesterol accumulation and apoptosis in cultured macrophages and the underlying molecular mechanisms. METHODS Intracellular lipid droplets and total cholesterol levels were assayed by oil red O staining and enzymatic colorimetry, respectively. Cell viability and apoptosis were determined using MTT assay and AnnexinV-FITC apoptosis detection kit, respectively. The nuclear translocation of ATF6 in cells was detected by immunofluorescence analysis. Protein and mRNA levels were examined by Western blot analysis and real time-PCR, respectively. ATF6 siRNA was transfected to RAW264.7 cells by lipofectamin. RESULTS Exposure of cells to ox-LDL induced glucose-regulated protein 78 (GRP78). C/EBP homologous protein (CHOP), a key-signaling component of ER stress-induced apoptosis, was up-regulated in ox-LDL-treated cells. ATF6, a factor that positively regulates CHOP expression, was activated by ox-LDL in a concentration- and time- dependent manner. The role of the ATF6-mediated ER stress pathway was further confirmed through the siRNA-mediated knockdown of ATF6, which attenuated ox-LDL-induced upregulation of CHOP, cholesterol accumulation and apoptosis in macrophages. In addition, the phosphorylation of double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK), another factor that positively regulates CHOP expression, was induced in the presence of ox-LDL, and PERK-specific siRNA also inhibited the ox-LDL-induced upregulation of CHOP and apoptosis in RAW264.7 cells. CONCLUSION These results demonstrate that ER stress-related proteins, particularly ATF6 and its downstream molecule CHOP, are involved in ox-LDL-induced cholesterol accumulation and apoptosis in macrophages.
Collapse
Affiliation(s)
- Shutong Yao
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Taian, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Garbin U, Baggio E, Stranieri C, Pasini A, Manfro S, Mozzini C, Vallerio P, Lipari G, Merigo F, Guidi G, Cominacini L, Fratta Pasini A. Expansion of necrotic core and shedding of Mertk receptor in human carotid plaques: a role for oxidized polyunsaturated fatty acids? Cardiovasc Res 2012; 97:125-33. [PMID: 22997156 DOI: 10.1093/cvr/cvs301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS Expansion of necrotic core (NC), a major feature responsible for plaque disruption, is likely the consequence of accelerated macrophage apoptosis coupled with defective phagocytic clearance (efferocytosis). The cleavage of the extracellular domain of Mer tyrosine kinase (Mertk) by metallopeptidase domain17 (Adam17) has been shown to produce a soluble Mertk protein (sMer), which can inhibit efferocytosis. Herein, we analysed the expression and localization of Mertk and Adam17 in the tissue around the necrotic core (TANC) and in the periphery (P) of human carotid plaques. Then we studied the mechanisms of NC expansion by evaluating which components of TANC induce Adam17 and the related cleavage of the extracellular domain of Mertk. METHODS AND RESULTS We studied 97 human carotid plaques. The expression of Mertk and Adam17 was found to be higher in TANC than in P (P < 0.001). By immunohistochemistry, Mertk was higher than Adam17 in the area of TANC near to the lumen (P < 0.01) but much lower in the area close to NC (P < 0.01). The extract of this portion of TANC increased the expression (mRNA) of Adam17 and Mertk (P < 0.01) in macrophage-like THP-1 cells but it also induced the cleavage of the extracellular domain of Mertk, generating sMer in the medium (P < 0.01). This effect of TANC extract was most evoked by its content in F(2)-isoprostanes, hydroxyoctadecadienoic acids, and hydroxytetraenoic acids. CONCLUSION Some oxidized derivatives of polyunsaturated fatty acids contained in TANC of human carotid plaques are strong inducers of Adam17, which in turn leads to the generation of sMer, which can inhibit efferocytosis.
Collapse
Affiliation(s)
- Ulisse Garbin
- Department of Medicine, Section of Internal Medicine D, University of Verona, Verona 37121, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Molecular and cellular mechanisms of macrophage survival in atherosclerosis. Basic Res Cardiol 2012; 107:297. [DOI: 10.1007/s00395-012-0297-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/20/2012] [Accepted: 08/26/2012] [Indexed: 01/22/2023]
|
286
|
Schutters K, Kusters DHM, Chatrou MLL, Montero-Melendez T, Donners M, Deckers NM, Krysko DV, Vandenabeele P, Perretti M, Schurgers LJ, Reutelingsperger CPM. Cell surface-expressed phosphatidylserine as therapeutic target to enhance phagocytosis of apoptotic cells. Cell Death Differ 2012; 20:49-56. [PMID: 22955945 DOI: 10.1038/cdd.2012.107] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Impaired efferocytosis has been shown to be associated with, and even to contribute to progression of, chronic inflammatory diseases such as atherosclerosis. Enhancing efferocytosis has been proposed as strategy to treat diseases involving inflammation. Here we present the strategy to increase 'eat me' signals on the surface of apoptotic cells by targeting cell surface-expressed phosphatidylserine (PS) with a variant of annexin A5 (Arg-Gly-Asp-annexin A5, RGD-anxA5) that has gained the function to interact with α(v)β(3) receptors of the phagocyte. We describe design and characterization of RGD-anxA5 and show that introduction of RGD transforms anxA5 from an inhibitor into a stimulator of efferocytosis. RGD-anxA5 enhances engulfment of apoptotic cells by phorbol-12-myristate-13-acetate-stimulated THP-1 (human acute monocytic leukemia cell line) cells in vitro and resident peritoneal mouse macrophages in vivo. In addition, RGD-anxA5 augments secretion of interleukin-10 during efferocytosis in vivo, thereby possibly adding to an anti-inflammatory environment. We conclude that targeting cell surface-expressed PS is an attractive strategy for treatment of inflammatory diseases and that the rationally designed RGD-anxA5 is a promising therapeutic agent.
Collapse
Affiliation(s)
- K Schutters
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht 6200 MD, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Furusho Y, Miyata M, Matsuyama T, Nagai T, Li H, Akasaki Y, Hamada N, Miyauchi T, Ikeda Y, Shirasawa T, Ide K, Tei C. Novel Therapy for Atherosclerosis Using Recombinant Immunotoxin Against Folate Receptor β-Expressing Macrophages. J Am Heart Assoc 2012; 1:e003079. [PMID: 23130174 PMCID: PMC3487340 DOI: 10.1161/jaha.112.003079] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 06/19/2012] [Indexed: 12/02/2022]
Abstract
Background Folate receptor β (FRβ) is induced during macrophage activation. A recombinant immunotoxin consisting of the truncated Pseudomonas exotoxin A (PE38) conjugated to an anti-FRβ antibody (anti–FRβ-PE38) has been reported to kill activated macrophages in inflammatory diseases. To elucidate the effect of an immunotoxin targeting FRβ on atherosclerosis, we determined the presence of FRβ-expressing macrophages in atherosclerotic lesions and administered the FRβ immunotoxin in apolipoprotein E–deficient mice. Methods and Results The FRβ-expressing macrophages were observed in atherosclerotic lesions of apolipoprotein E–deficient mice. At 15 or 35 weeks of age, the apolipoprotein E–deficient mice were divided into 3 groups and were intravenously administered 0.1 mg/kg of anti–FRβ-PE38 (immunotoxin group), 0.1 mg/kg of PE38 (toxin group), or 0.1 mL of saline (control group) every 3 days, for a total of 5 times for each age group. The mice were analyzed at 21 or 41 weeks of age. Treatment with the immunotoxin resulted in 31% and 22% reductions in atherosclerotic lesions of the 21- and 41-week-old mice, respectively (P<0.05). Administration of immunotoxin reduced the numbers of FRβ- and tumor necrosis factor-α–expressing macrophages, reduced cell proliferation, and increased the number of apoptotic cells (P<0.05). Real-time polymerase chain reaction demonstrated that the expression of FRβ and tumor necrosis factor-α mRNA was significantly decreased in the immunotoxin group (P<0.05). Conclusions These results suggest that FRβ-expressing macrophages exist in the atherosclerotic lesions of apolipoprotein E–deficient mice and that FRβ immunotoxin administration reduces the progression of atherosclerotic lesions in younger and older individuals. The recombinant FRβ immunotoxin targeting activated macrophages could provide a novel therapeutic tool for atherosclerosis. (J Am Heart Assoc. 2012;1:e003079 doi: 10.1161/JAHA.112.003079.)
Collapse
Affiliation(s)
- Yuko Furusho
- Department of Cardiovascular, Respiratory, and Metabolic Medicine, Kagoshima University, Kagoshima, Japan (Y.F., M.M., Y.A., N.H., T. Miyauchi, Y.I., T.S., K.I., C.T.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Kim SJ, Park JH, Kim KH, Lee WR, An HJ, Min BK, Han SM, Kim KS, Park KK. Apamin inhibits THP-1-derived macrophage apoptosis via mitochondria-related apoptotic pathway. Exp Mol Pathol 2012; 93:129-134. [PMID: 22537544 DOI: 10.1016/j.yexmp.2012.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
The development of atherosclerotic lesions is mainly due to macrophage death. The oxidative stresses of monocytes/macrophages play a vital role in the initiation and amplification of atherosclerosis. Apamin, a component of bee venom, exerts an anti-inflammatory effect, and selectively inhibits the Ca(2+)-activated K(+) channels. The mechanisms involved in the inhibition of macrophage apoptosis have been fully elucidated. We induced oxidized low-density lipoprotein (oxLDL) in THP-1-derived macrophage and studied the effect of apamin on intercellular lipid levels, mitochondria-related apoptotic pathway and numbers of apoptotic cells. Oil-red O staining indicates that the inhibition of apamin in the condition significantly prevents intracellular lipid deposition. Treatment with apamin significantly decreased the apoptotic macrophages by decreasing the expression of pro-apoptotic genes Bax, caspase-3 and PARP protein levels, as well as through increasing expression of anti-apoptotic genes Bcl-2 and Bcl-xL protein levels in the absence and presence of oxLDL. In vivo, with apamin treatment reduced apoptotic cells death by TUNEL staining. These results indicate that apamin plays an important role in monocyte/macrophage apoptotic processing, which may provide a potential drug for preventing atherosclerosis.
Collapse
Affiliation(s)
- Soo-Jung Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, 3056-6, Daemyung 4-Dong, Nam-gu, Daegu 705-718, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Yao S, Sang H, Song G, Yang N, Liu Q, Zhang Y, Jiao P, Zong C, Qin S. Quercetin protects macrophages from oxidized low-density lipoprotein-induced apoptosis by inhibiting the endoplasmic reticulum stress-C/EBP homologous protein pathway. Exp Biol Med (Maywood) 2012; 237:822-31. [PMID: 22829699 DOI: 10.1258/ebm.2012.012027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quercetin (QUE), a member of the bioflavonoid family, has been proposed to have antioxidative, anti-inflammatory and antihypertensive properties. This study was designed to investigate the protective effect of QUE on oxidized low-density lipoprotein (ox-LDL)-induced cytotoxicity in RAW264.7 macrophages and specifically the endoplasmic reticulum (ER) stress-C/EBP homologous protein (CHOP) pathway-mediated apoptosis. Our results showed that treatment with QUE (20, 40 and 80 μmol/L) significantly attenuated ox-LDL-induced cholesterol accumulation in macrophages and foam cell formation in a dose-dependent manner. Similar to tunicamycin (TM), a classical ER stress inducer, ox-LDL reduced cell viability and induced apoptosis in RAW264.7 macrophages. The cytotoxic effects of ox-LDL and TM were significantly inhibited by QUE treatment. Interestingly, we found that QUE also significantly suppressed the ox-LDL- and TM-induced activation of ER stress signaling events, including the phosphorylation of inositol-requiring enzyme 1 (IRE1), translocation of activating transcription factor 6 (ATF6) from the cytoplasm to the nucleus and upregulation of X-box-binding protein 1. In addition, exposure of RAW264.7 macrophages to ox-LDL or TM resulted in a significant increase in the expression of CHOP, a transcription factor regulated by IRE1 and ATF6 under conditions of ER stress, as well as a decrease in Bcl-2 transcript and protein concentrations. QUE blocked these effects in a dose-dependent manner. These data indicate that QUE can protect RAW264.7 cells from ox-LDL-induced apoptosis and that the mechanism at least partially involves its ability to inhibit the ER stress-CHOP signaling pathway.
Collapse
Affiliation(s)
- Shutong Yao
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
290
|
|
291
|
Liu ML, Scalia R, Mehta JL, Williams KJ. Cholesterol-induced membrane microvesicles as novel carriers of damage-associated molecular patterns: mechanisms of formation, action, and detoxification. Arterioscler Thromb Vasc Biol 2012; 32:2113-21. [PMID: 22814745 DOI: 10.1161/atvbaha.112.255471] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Cholesterol enrichment occurs in vivo when phagocytes ingest retained and aggregated lipoproteins, damaged or senescent cells, and related debris. We previously reported that enrichment of human monocyte/macrophages with unesterified cholesterol (UC) triggers the release of highly procoagulant microvesicles ([MVs], also called microparticles) through induction of apoptosis. We determined whether UC-induced MVs (UCMVs) might transmit endogenous danger signals and, if so, what molecular processes might be responsible for their production, recognition, and detoxification. METHODS AND RESULTS Injection of UCMVs into rats provoked extensive leukocyte rolling and adherence to postcapillary venules in vivo. Likewise, exposure of mouse aortic explants or cultured human endothelial cells to UCMVs augmented the adhesion of human monocytes by several fold and increased endothelial cell intercellular adhesion molecule-1 via nuclear factor-κB activation. To explore molecular mechanisms, we found that UC enrichment of human monocytes, in the absence of other stimuli, induced mitochondrial complex II-dependent accumulation of superoxide and peroxides. A subset of these moieties was exported on UCMVs and mediated endothelial activation. Strikingly, aortic explants from mice lacking lectin-like oxidized low-density lipoprotein receptor-1, a pattern-recognition receptor, were essentially unable to respond to UCMVs, whereas simultaneously treated explants from wild-type mice responded robustly by increasing monocyte recruitment. Moreover, high-density lipoprotein and its associated enzyme paraoxonase-1 exerted unexpected roles in the detoxification of UCMVs. CONCLUSIONS Overall, our study implicates MVs from cholesterol-loaded human cells as novel carriers of danger signals. By promoting maladaptive immunologic and thrombotic responses, these particles may contribute to atherothrombosis and other conditions in vivo.
Collapse
Affiliation(s)
- Ming-Lin Liu
- Section of Endocrinology, Diabetes and Metabolism, Temple University School of Medicine, 3322 North Broad Street, Medical Office Building, room 212, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
292
|
Soares E Silva AK, de Oliveira Cipriano Torres D, Santos Rocha SW, dos Santos Gomes FO, dos Santos Silva B, Donato MAM, Raposo C, Santos ACO, de Lima MDCA, Galdino SL, da Rocha Pitta I, de Souza JRB, Peixoto CA. Effect of new thiazolidine derivatives LPSF/GQ-02 and LPSF/GQ-16 on atherosclerotic lesions in LDL receptor-deficient mice (LDLR(-/-)). Cardiovasc Pathol 2012; 22:81-90. [PMID: 22795892 DOI: 10.1016/j.carpath.2012.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Atherosclerotic cardiovascular disease is a chronic inflammatory condition. Thiazolidinediones (TZDs) are used to enhance sensitivity to insulin and have demonstrated a protective effect over a variety of cardiovascular markers and risk factors. Controversially, the TZDs are associated with the development of heart failure. Thus, lines of research have invested in the search for new molecules in order to obtain more selective and less harmful treatment alternatives for the pathogenesis of atherosclerosis and its risk factors. METHODS Animals were fed a diet rich in fat for 10 weeks. In the last 2 weeks, animals received either pioglitazone, LPSF/GQ-02, or LPSF/GQ-16 daily through gavage. At the end of the treatment, blood was collected for biochemical analysis and the aortas were dissected for subsequent analyses. RESULTS No changes in the blood lipid profile were found following the use of the drugs in comparison to the control. However, the new thiazolidine derivatives were more efficient in improving insulin resistance in comparison to pioglitazone and the control group. Morphometric analyses revealed that neither pioglitazone nor LPSF/GQ16 led to satisfactory effects over atherosclerosis. However, LPSF/GQ-02 led to a reduction in area of the atherosclerotic lesions. Ultrastructural analyses revealed extensive degeneration of the endothelium and an increase in apoptotic cells in the subendothelial space following the use of pioglitazone and LPSF/GQ-16. However, LPSF/GQ-02 caused minimal cell alterations in the aortic endothelium. Regarding markers, endothelial nitric oxide synthase (eNOS) and matrix metalloproteinase 9 (MMP-9), LPSF/GQ-16, and pioglitazone exerted similar effects, increasing the expression of MMP-9, and had no effect on the expression of eNOS compared with the control group. On the other hand, LPSF/GQ-02 was effective in reducing the expression of MMP-9 and increased eNOS significantly. CONCLUSIONS The results suggest that the new thiazolidine derivative LPSF/GQ-02 is a promising candidate for the treatment of atherosclerosis.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/ultrastructure
- Aortic Diseases/drug therapy
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Apoptosis/drug effects
- Atherosclerosis/blood
- Atherosclerosis/drug therapy
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Blotting, Western
- Cardiovascular Agents/pharmacology
- Cardiovascular Agents/toxicity
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Immunohistochemistry
- Insulin/blood
- Insulin Resistance
- Lipids/blood
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron, Transmission
- Nitric Oxide Synthase Type III/metabolism
- Pioglitazone
- Plaque, Atherosclerotic
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Thiazolidinediones/pharmacology
- Thiazolidinediones/toxicity
- Thiazolidines/pharmacology
- Thiazolidines/toxicity
- Time Factors
Collapse
|
293
|
Abstract
A number of nuclear receptors are involved in maintenance of normal vessel wall physiology as well as in pathophysiological processes such as atherosclerosis, restenosis and remodelling. Recent studies revealed a previously unrecognized function of the NR4A subfamily of nuclear receptors as key regulatory proteins in vascular disease. The NR4A subfamily comprises the members Nur77, Nurr1 and NOR-1 and in the current review a comprehensive overview is given of the data supporting functional involvement of these nuclear receptors in three major cell types in vascular (patho)physiology; endothelial cells, smooth muscle cells and monocytes-macrophages.
Collapse
Affiliation(s)
- Claudia M van Tiel
- Academic Medical Center, K1-113, University of Amsterdam, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | | |
Collapse
|
294
|
Macrophage ABCA2 deletion modulates intracellular cholesterol deposition, affects macrophage apoptosis, and decreases early atherosclerosis in LDL receptor knockout mice. Atherosclerosis 2012; 223:332-41. [PMID: 22748276 DOI: 10.1016/j.atherosclerosis.2012.05.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 05/01/2012] [Accepted: 05/31/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The ABCA2 transporter shares high structural homology to ABCA1, which is crucial for the removal of excess cholesterol from macrophages and, by extension, in atherosclerosis. It has been suggested that ABCA2 sequesters cholesterol inside the lysosomes, however, little is known of the macrophage-specific role of ABCA2 in regulating lipid homeostasis in vivo and in modulating susceptibility to atherosclerosis. METHODS Chimeras with dysfunctional macrophage ABCA2 were generated by transplantation of bone marrow from ABCA2 knockout (KO) mice into irradiated LDL receptor (LDLr) KO mice. RESULTS Interestingly, lack of ABCA2 in macrophages resulted in a diminished lesion size in the aortic root (-24.5%) and descending thoracic aorta (-36.6%) associated with a 3-fold increase in apoptotic cells, as measured by both caspase 3 and TUNEL. Upon oxidized LDL exposure, macrophages from wildtype (WT) transplanted animals developed filipin-positive droplets in lysosomal-like compartments, corresponding to free cholesterol (FC) accumulation. In contrast, ABCA2-deficient macrophages displayed an abnormal diffuse distribution of FC over peripheral regions. The accumulation of neutral sterols in lipid droplets was increased in ABCA2-deficient macrophages, but primarily in cytoplasmic clusters and not in lysosomes. Importantly, apoptosis of oxLDL loaded macrophages lacking ABCA2 was increased 2.7-fold, probably as a consequence of the broad cellular distribution of FC. CONCLUSIONS Lack of functional ABCA2 generates abnormalities in intracellular lipid distribution/trafficking in macrophages consistent with its lysosomal sequestering role, leading to an increased susceptibility to apoptosis in response to oxidized lipids and reduced atherosclerotic lesion development.
Collapse
|
295
|
Otsuka F, Finn AV, Yazdani SK, Nakano M, Kolodgie FD, Virmani R. The importance of the endothelium in atherothrombosis and coronary stenting. Nat Rev Cardiol 2012; 9:439-53. [PMID: 22614618 DOI: 10.1038/nrcardio.2012.64] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deployment of drug-eluting stents instead of bare-metal stents has dramatically reduced restenosis rates, but rates of very late stent thrombosis (>1 year postimplantation) have increased. Vascular endothelial cells normally provide an efficient barrier against thrombosis, lipid uptake, and inflammation. However, endothelium that has regenerated after percutaneous coronary intervention is incompetent in terms of its integrity and function, with poorly formed cell junctions, reduced expression of antithrombotic molecules, and decreased nitric oxide production. Delayed arterial healing, characterized by poor endothelialization, is the primary cause of late (1 month-1 year postimplantation) and very late stent thrombosis following implantation of drug-eluting stents. Impairment of vasorelaxation in nonstented proximal and distal segments of stented coronary arteries is more severe with drug-eluting stents than bare-metal stents, and stent-induced flow disturbances resulting in complex spatiotemporal shear stress can also contribute to increased thrombogenicity and inflammation. The incompetent endothelium leads to late stent thrombosis and the development of in-stent neoatherosclerosis. The process of neoatherosclerosis occurs more rapidly, and more frequently, following deployment of drug-eluting stents than bare-metal stents. Improved understanding of vascular biology is crucial for all cardiologists, and particularly interventional cardiologists, as maintenance of a competently functioning endothelium is critical for long-term vascular health.
Collapse
Affiliation(s)
- Fumiyuki Otsuka
- CVPath Institute Inc., 19 Firstfield Road, Gaithersburg, MD 20878, USA
| | | | | | | | | | | |
Collapse
|
296
|
Johnson BB, Moe PC, Wang D, Rossi K, Trigatti BL, Heuck AP. Modifications in Perfringolysin O Domain 4 Alter the Cholesterol Concentration Threshold Required for Binding. Biochemistry 2012; 51:3373-82. [DOI: 10.1021/bi3003132] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | - David Wang
- Department of Biochemistry and
Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Kathleen Rossi
- Department of Biochemistry and
Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Bernardo L. Trigatti
- Department of Biochemistry and
Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
297
|
Diverse roles of macrophages in atherosclerosis: from inflammatory biology to biomarker discovery. Mediators Inflamm 2012; 2012:693083. [PMID: 22577254 PMCID: PMC3337637 DOI: 10.1155/2012/693083] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 01/11/2012] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease, a leading cause of mortality in developed countries, is mainly caused by atherosclerosis, a chronic inflammatory disease. Macrophages, which differentiate from monocytes that are recruited from the blood, account for the majority of leukocytes in atherosclerotic plaques. Apoptosis and the suppressed clearance of apoptotic macrophages (efferocytosis) are associated with vulnerable plaques that are prone to rupture, leading to thrombosis. Based on the central functions of macrophages in atherogenesis, cytokines, chemokines, enzymes, or microRNAs related to or produced by macrophages have become important clinical prognostic or diagnostic biomarkers. This paper discusses the impact of monocyte-derived macrophages in early atherogenesis and advanced disease. The role and possible future development of macrophage inflammatory biomarkers are also described.
Collapse
|
298
|
Abstract
PURPOSE OF REVIEW Microvesicles (also known as microparticles) are small membranous structures that are released from platelets and cells upon activation or during apoptosis. Microvesicles have been found in blood, urine, synovial fluid, extracellular spaces of solid organs, atherosclerotic plaques, tumors, and elsewhere. Here, we focus on new clinical and basic work that implicates microvesicles as markers and mediators of endothelial dysfunction and hence novel contributors to cardiovascular and other diseases. RECENT FINDINGS Advances in the detection of microvesicles and the use of cell type-specific markers to determine their origin have allowed studies that associated plasma concentrations of specific microvesicles with major types of endothelial dysfunction - namely, inappropriate or maladaptive vascular tone, leukocyte recruitment, and thrombosis. Recent investigations have highlighted microvesicular transport of key biologically active molecules besides tissue factor, such as ligands for pattern-recognition receptors, elements of the inflammasome, and morphogens. Microvesicles generated from human cells under different pathologic circumstances, for example, during cholesterol loading or exposure to endotoxin, carry different subsets of these molecules and thereby alter endothelial function through several distinct, well characterized molecular pathways. SUMMARY Clinical and basic studies indicate that microvesicles may be novel markers and mediators of endothelial dysfunction. This work has advanced our understanding of the development of cardiovascular and other diseases. Opportunities and obstacles to clinical applications are discussed.
Collapse
Affiliation(s)
- Ming-Lin Liu
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | |
Collapse
|
299
|
Dahl TB, Holm S, Aukrust P, Halvorsen B. Visfatin/NAMPT: a multifaceted molecule with diverse roles in physiology and pathophysiology. Annu Rev Nutr 2012; 32:229-43. [PMID: 22462624 DOI: 10.1146/annurev-nutr-071811-150746] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visfatin/NAMPT (nicotinamide phosphoribosyltransferase) is a protein with several suggested functions. Although the first discovery of this molecule as a pre-B-cell colony-enhancing factor suggested primarily a cytokine function, its rediscovery as the key enzyme in nicotinamide adenine dinucleotide generation has considerably widened its potential biological activities. Although originally thought to be produced in adipose tissue (i.e., adipocytes and infiltrating macrophages), its production seems to involve other cells and tissues such as skeletal muscle, liver, immune cells, cardiomyocytes, and the brain. Visfatin/NAMPT has both intracellular and extracellular effects influencing several signaling pathways. Its broad spectrum of effects is mirrored by its potential involvement in a wide range of disorders including human immunodeficiency virus infection, septicemia, myocardial failure, atherosclerosis, metabolic disorders, inflammatory diseases, malignancies, and neurodegenerative disorders and aging. Moreover, studies on visfatin/NAMPT in atherosclerotic disorders suggest a rather complex role of this molecule in pathophysiology, potentially mediating both adaptive and maladaptive responses.
Collapse
Affiliation(s)
- Tuva B Dahl
- Research Institute for Internal Medicine, Faculty of Medicine, University of Oslo, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| | | | | | | |
Collapse
|
300
|
ApoA-1 mimetic restores adiponectin expression and insulin sensitivity independent of changes in body weight in female obese mice. Nutr Diabetes 2012; 2:e33. [PMID: 23169576 PMCID: PMC3341710 DOI: 10.1038/nutd.2012.4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND We examined the ability of the apolipoprotein AI mimetic peptide L-4F to improve the metabolic state of female and male ob mice and the mechanisms involved. METHODS Female and male lean and obese (ob) mice were administered L-4F or vehicle for 6 weeks. Body weight was measured weekly. Fat distribution, serum cytokines and markers of cardiovascular dysfunction were determined at the end of treatment. RESULTS L-4F significantly decreased serum interleukin (IL)-6, tumor necrosis factor-α and IL-1β. L-4F improved vascular function, and increased serum adiponectin levels and insulin sensitivity compared with untreated mice. In addition, L-4F treatment increased heme oxygenase (HO)-1, pAKT and pAMPK levels in kidneys of ob animals. pAKT and pAMPK levels were significantly reduced in the presence of an HO inhibitor. Interestingly, L4F did not alter body weight in female mice, but caused a significant reduction in males. CONCLUSIONS L-4F treatments reduced cardiovascular risk factors and improved insulin sensitivity in female ob mice independent of body fat changes. Reduced inflammatory cytokine levels accompanied by increased HO activity, serum adiponectin and improved insulin sensitivity suggest that L-4F may promote the conversion of visceral fat to a healthier phenotype. Therefore, L-4F appears to be a promising therapeutic strategy for treating both cardiovascular risk factors and insulin resistance in obese patients of either gender.
Collapse
|