251
|
Yim G, Margetaki K, Romano ME, Kippler M, Vafeiadi M, Roumeliotaki T, Bempi V, Farzan SF, Chatzi L, Howe CG. Metal mixture exposures and serum lipid levels in childhood: the Rhea mother-child cohort in Greece. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:688-698. [PMID: 38698271 PMCID: PMC11559660 DOI: 10.1038/s41370-024-00674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Growing evidence suggests that cardiovascular disease develops over the lifetime, often beginning in childhood. Metal exposures have been associated with cardiovascular disease and important risk factors, including dyslipidemia, but prior studies have largely focused on adult populations and single metal exposures. OBJECTIVE To investigate the individual and joint impacts of multiple metal exposures on lipid levels during childhood. METHODS This cross-sectional study included 291 4-year-old children from the Rhea Cohort Study in Heraklion, Greece. Seven metals (manganese, cobalt, selenium, molybdenum, cadmium, mercury, and lead) were measured in whole blood using inductively coupled plasma mass spectrometry. Serum lipid levels included total cholesterol, triglycerides, high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) cholesterol. To determine the joint and individual impacts of child metal exposures (log2-transformed) on lipid levels, Bayesian kernel machine regression (BKMR) was employed as the primary multi-pollutant approach. Potential effect modification by child sex and childhood environmental tobacco smoke exposure was also evaluated. RESULTS BKMR identified a positive association between the metal mixture and both total and LDL cholesterol. Of the seven metals examined, selenium (median 90.6 [IQR = 83.6, 96.5] µg/L) was assigned the highest posterior inclusion probability for both total and LDL cholesterol. A difference in LDL cholesterol of 8.22 mg/dL (95% CI = 1.85, 14.59) was observed when blood selenium was set to its 75th versus 25th percentile, holding all other metals at their median values. In stratified analyses, the positive association between selenium and LDL cholesterol was only observed among boys or among children exposed to environmental tobacco smoke during childhood. IMPACT STATEMENT Growing evidence indicates that cardiovascular events in adulthood are the consequence of the lifelong atherosclerotic process that begins in childhood. Therefore, public health interventions targeting childhood cardiovascular risk factors may have a particularly profound impact on reducing the burden of cardiovascular disease. Although growing evidence supports that both essential and nonessential metals contribute to cardiovascular disease and risk factors, such as dyslipidemia, prior studies have mainly focused on single metal exposures in adult populations. To address this research gap, the current study investigated the joint impacts of multiple metal exposures on lipid concentrations in early childhood.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA.
| | - Katerina Margetaki
- Clinic of Preventive Medicine and Nutrition, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Vicky Bempi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Division of Environmental Health, University of Southern California, Los Angeles, CA, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Division of Environmental Health, University of Southern California, Los Angeles, CA, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA
| |
Collapse
|
252
|
Li Y, Chen H, Xie X, Pang R, Huang S, Ying H, Chen M, Xue L, Zhang J, Ding Y, Wu Q. Skin microbiome profiling reveals the crucial role of microbial metabolites in anti-photoaging. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12987. [PMID: 38968385 DOI: 10.1111/phpp.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Skin microbiota is essential for health maintenance. Photoaging is the primary environmental factor that affects skin homeostasis, but whether it influences the skin microbiota remains unclear. OBJECTIVE The objective of this study is to investigate the relationship between photoaging and skin microbiome. METHODS A cohort of senior bus drivers was considered as a long-term unilateral ultraviolet (UV) irradiated population. 16S rRNA amplicon sequencing was conducted to assess skin microbial composition variations on different sides of their faces. The microbiome characteristics of the photoaged population were further examined by photoaging guinea pig models, and the correlations between microbial metabolites and aging-related cytokines were analyzed by high-throughput sequencing and reverse transcription polymerase chain reaction. RESULTS Photoaging decreased the relative abundance of microorganisms including Georgenia and Thermobifida in human skin and downregulated the generation of skin microbe-derived antioxidative metabolites such as ectoin. In animal models, Lactobacillus and Streptobacillus abundance in both the epidermis and dermis dropped after UV irradiation, resulting in low levels of skin antioxidative molecules and leading to elevated expressions of the collagen degradation factors matrix metalloproteinase (MMP)-1 and MMP-2 and inflammatory factors such as interleukin (IL)-1β and IL-6. CONCLUSIONS Skin microbial characteristics have an impact in photoaging and the loss of microbe-derived antioxidative metabolites impairs skin cells and accelerates the aging process. Therefore, microbiome-based therapeutics may have potential in delaying skin aging.
Collapse
Affiliation(s)
- Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huizhen Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shixuan Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hang Ying
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
253
|
Feng BY, Zhang H, Zhang DY, Luo YH, Yang H, Lin J, Li LY, Qiu XZ, Qiu FY, Ye LS, Yi LT, Xu GH. Comprehensive biochemical analysis and nutritional evaluation of fatty acid and amino acid profiles in eight seahorse species ( Hippocampus spp.). Heliyon 2024; 10:e33220. [PMID: 39021916 PMCID: PMC11252734 DOI: 10.1016/j.heliyon.2024.e33220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Seahorses are increasingly recognized for their nutritional potential, which underscores the necessity for comprehensive biochemical analyses. This study aims to investigate the fatty acid and amino acid compositions of eight seahorse species, including both genders of Hippocampus trimaculatus, Hippocampus kelloggi, Hippocampus abdominalis, and Hippocampus erectus, to evaluate their nutritional value. We employed Gas Chromatography-Mass Spectrometry (GC-MS) and High-Performance Liquid Chromatography (HPLC) to analyze the fatty acid and amino acid profiles of the seahorse species. GC-MS was used to detect 34 fatty acid methyl esters, while HPLC provided detailed amino acid profiles. GC-MS analysis demonstrated high precision with relative standard deviations (RSDs) generally below 2.53 %, satisfactory repeatability (RSDs from 6.55 % to 8.73 %), and stability (RSDs below 2.82 %). Recovery rates for major fatty acids ranged from 98.73 % to 109.12 %. HPLC analysis showed strong separation of amino acid profiles with theoretical plate numbers exceeding 5000. Precision tests yielded RSDs below 1.23 %, with reproducibility and stability tests showing RSDs below 2.73 % and 2.86 %, respectively. Amino acid recovery rates ranged from 97.58 % to 104.66 %. Nutritional analysis revealed significant variations in fatty acid content among the species. Female H. erectus showed higher levels of hexadecanoic acid and saturated fatty acids, while male H. abdominalis had lower concentrations of n-3 full cis 4,7,10,13,16,19-docosahexaenoic acid (DHA). Total lipid yields varied from 3.2491 % to 12.3175 %, with major fatty acids constituting 17.9717 %-74.6962 % of total lipids. In conclusion, this study provides essential insights into the fatty acid and amino acid composition of seahorses, supporting their potential as valuable dietary supplements. The differences between genders in specific fatty acids suggest a nuanced nutritional profile that could be exploited for targeted dietary applications. Further research is needed to explore the seasonal and environmental variations affecting seahorse biochemical composition.
Collapse
Affiliation(s)
- Bi-Yun Feng
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, PR China
| | - Hui Zhang
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
| | - Dong-Yuan Zhang
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, PR China
| | - You-Hua Luo
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, PR China
- Xiamen Health and Medical Big Data Center, Xiamen, Fujian province, 361008, PR China
| | - Hui Yang
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
- Xiamen Health and Medical Big Data Center, Xiamen, Fujian province, 361008, PR China
| | - Jing Lin
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
| | - Ling-Yan Li
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, PR China
| | - Xian-Zhu Qiu
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
- Xiamen Anz Health Co., LTD, Xiamen, Fujian province, 361006, PR China
| | - Feng-Yan Qiu
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
- Xiamen Anz Health Co., LTD, Xiamen, Fujian province, 361006, PR China
| | - Li-Shan Ye
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
- Department of Automation, Tsinghua University, 100084, Beijing, PR China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian province, 361021, PR China
| | - Guang-Hui Xu
- Xiamen Medicine Research Institute, Xiamen, Fujian province, 361008, PR China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, PR China
- Xiamen Health and Medical Big Data Center, Xiamen, Fujian province, 361008, PR China
| |
Collapse
|
254
|
Li N, Huang Y, Zhao Y, Yang Z, Jia Q, Feng B, Taylor DC, Du C, Zhang M. Lipidomics studies reveal dynamic changes in polar lipids of developing endosperm of oat and wheat varieties with differing oil contents. Food Chem 2024; 444:138597. [PMID: 38310783 DOI: 10.1016/j.foodchem.2024.138597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
Polar lipids have biosynthetic pathways which intersect and overlap with triacylglycerol biosynthesis; however, polar lipids have not been well characterized in the developing endosperms of oat with high oil accumulation. The polar lipids in endosperms of oat and wheat varieties having different oil contents were analyzed and compared at different developmental stages. Our study shows that the relative contents of polar lipid by mass were decreased more slowly in wheat than in oat. Phosphatidylcholine and phosphatidylethanolamine were the major phospholipids, which showed similar abundance and gradual decreases during endosperm development in oat and wheat, while lysophospholipids were noticeably higher in oat. Monogalactosyldiacylglycerol showed a gradual increase in wheat and a decrease in oat during endosperm development. The relative contents of some polar lipid species and their unsaturation index were significantly different in their endosperms. These characteristics of polar lipids might indicate an adaption of oat to accommodate oil accumulation.
Collapse
Affiliation(s)
- Na Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yi Huang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yingdong Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zheng Yang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qingli Jia
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Baili Feng
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - David C Taylor
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chang Du
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
255
|
Xie J, Luo M, Chen Q, Zhang Q, Qin L, Wang Y, Zhao Y, He Y. Hypolipidemic effect and gut microbiota regulation of Gypenoside aglycones in rats fed a high-fat diet. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118066. [PMID: 38499259 DOI: 10.1016/j.jep.2024.118066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynostemma pentaphyllum (Thunb.) Makino has traditional applications in Chinese medicine to treat lipid abnormalities. Gypenosides (GPs), the main bioactive components of Gynostemma pentaphyllum, have been reported to exert hypolipidemic effects through multiple mechanisms. The lipid-lowering effects of GPs may be attributed to the aglycone portion resulting from hydrolysis of GPs by the gut microbiota. However, to date, there have been no reports on whether gypenoside aglycones (Agl), the primary bioactive constituents, can ameliorate hyperlipidemia by modulating the gut microbiota. AIM OF THE STUDY This study explored the potential therapeutic effects of gypenoside aglycone (Agl) in a rat model of high-fat diet (HFD)-induced hyperlipidemia. METHODS A hyperlipidemic rat model was established by feeding rats with a high-fat diet. Agl was administered orally, and serum lipid levels were analyzed. Molecular techniques, including RT-polymerase chain reaction (PCR) and fecal microbiota sequencing, were used to investigate the effects of Agl on lipid metabolism and gut microbiota composition. RESULTS Agl administration significantly reduced serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) and mitigated hepatic damage induced by HFD. Molecular investigations have revealed the modulation of key lipid metabolism genes and proteins by Agl. Notably, Agl treatment enriched the gut microbiota with beneficial genera, including Lactobacillus, Akkermansia, and Blautia and promoted specific shifts in Lactobacillus murinus, Firmicutes bacterium CAG:424, and Allobaculum stercoricanis. CONCLUSION This comprehensive study established Agl as a promising candidate for the treatment of hyperlipidemia. It also exhibits remarkable hypolipidemic and hepatoprotective properties. The modulation of lipid metabolism-related genes, along with the restoration of gut microbiota balance, provides mechanistic insights. Thus, Agl has great potential for clinical applications in hyperlipidemia management.
Collapse
Affiliation(s)
- Jian Xie
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China; Department of Medical Genetics, Zunyi Medical University, Zunyi, 563000, China.
| | - Mingxia Luo
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Qiuyi Chen
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Qianru Zhang
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Yuhe Wang
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Yongxia Zhao
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
256
|
Ivanova N, Atanasova M, Terzieva D, Georgieva K, Tchekalarova J. The Role of Piromelatine on Peripheral and Hippocampal Insulin Resistance in Rat Offspring Exposed to Chronic Maternal Stress. Int J Mol Sci 2024; 25:7022. [PMID: 39000130 PMCID: PMC11241293 DOI: 10.3390/ijms25137022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Prenatal stress (PNS), which alters the hypothalamic-pituitary-adrenal axis function in the offspring, predisposes to insulin resistance (IR) in later life and is associated with numerous disorders, including cognitive and memory impairments. At present, our main goal is to assess the effects of chronic piromelatine (Pir) administration, a melatonin analogue, on PNS-provoked IR in the periphery and the hippocampus in male and female offspring. Pregnant Sprague-Dawley rats were exposed to chronic stress (one short-term stressor on a daily basis and one long-term stressor on a nightly basis) from the first gestation week until birth. Vehicle or Pir 20 mg/kg were administered intraperitoneally for 21 days. Plasma glucose, serum insulin levels, and the homeostasis model assessment of insulin resistance (HOMA-IR) were determined as markers of peripheral IR. For the hippocampal IR assessment, insulin receptors (IRs) and glucose transporter 4 (GLUT4) were examined. Prenatally stressed offspring of both sexes indicated enhanced plasma glucose and serum insulin concentrations, increased HOMA-IR, and decreased hippocampal GLUT4 only in male rats. The PNS-induced changes were corrected by chronic treatment with Pir. The present results suggest that the melatoninergic compound Pir exerts beneficial effects on altered glucose/insulin homeostasis in PNS-exposed offspring.
Collapse
Affiliation(s)
- Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| | - Milena Atanasova
- Department of Biology, Medical University of Pleven, 5800 Pleven, Bulgaria;
| | - Dora Terzieva
- Department of Clinical Laboratory, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Katerina Georgieva
- Department of Physiology, Medical University of Plovdiv, 5800 Pleven, Bulgaria;
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| |
Collapse
|
257
|
Rohli KE, Stubbe NJ, Walker EM, Pearson GL, Soleimanpour SA, Stephens SB. A metabolic redox relay supports ER proinsulin export in pancreatic islet β cells. JCI Insight 2024; 9:e178725. [PMID: 38935435 PMCID: PMC11383593 DOI: 10.1172/jci.insight.178725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
ER stress and proinsulin misfolding are heralded as contributing factors to β cell dysfunction in type 2 diabetes, yet how ER function becomes compromised is not well understood. Recent data identify altered ER redox homeostasis as a critical mechanism that contributes to insulin granule loss in diabetes. Hyperoxidation of the ER delays proinsulin export and limits the proinsulin supply available for insulin granule formation. In this report, we identified glucose metabolism as a critical determinant in the redox homeostasis of the ER. Using multiple β cell models, we showed that loss of mitochondrial function or inhibition of cellular metabolism elicited ER hyperoxidation and delayed ER proinsulin export. Our data further demonstrated that β cell ER redox homeostasis was supported by the metabolic supply of reductive redox donors. We showed that limiting NADPH and thioredoxin flux delayed ER proinsulin export, whereas thioredoxin-interacting protein suppression restored ER redox and proinsulin trafficking. Taken together, we propose that β cell ER redox homeostasis is buffered by cellular redox donor cycles, which are maintained through active glucose metabolism.
Collapse
Affiliation(s)
- Kristen E Rohli
- Fraternal Order of Eagles Diabetes Research Center
- Interdisciplinary Graduate Program in Genetics, and
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | - Emily M Walker
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, and
| | - Gemma L Pearson
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, and
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, and
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Samuel B Stephens
- Fraternal Order of Eagles Diabetes Research Center
- Interdisciplinary Graduate Program in Genetics, and
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
258
|
Gong L, Lin Y. Microfluidics in smart food safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:305-354. [PMID: 39103216 DOI: 10.1016/bs.afnr.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The evolution of food safety practices is crucial in addressing the challenges posed by a growing global population and increasingly complex food supply chains. Traditional methods are often labor-intensive, time-consuming, and susceptible to human error. This chapter explores the transformative potential of integrating microfluidics into smart food safety protocols. Microfluidics, involving the manipulation of small fluid volumes within microscale channels, offers a sophisticated platform for developing miniaturized devices capable of complex tasks. Combined with sensors, actuators, big data analytics, artificial intelligence, and the Internet of Things, smart microfluidic systems enable real-time data acquisition, analysis, and decision-making. These systems enhance control, automation, and adaptability, making them ideal for detecting contaminants, pathogens, and chemical residues in food products. The chapter covers the fundamentals of microfluidics, its integration with smart technologies, and its applications in food safety, addressing the challenges and future directions in this field.
Collapse
Affiliation(s)
- Liyuan Gong
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, United States
| | - Yang Lin
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, United States.
| |
Collapse
|
259
|
Wang Y, Liu Q, Liu Y, Qiao W, Zhao J, Cao H, Liu Y, Chen L. Advances in the composition, efficacy, and mimicking of human milk phospholipids. Food Funct 2024; 15:6254-6273. [PMID: 38787648 DOI: 10.1039/d4fo00539b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Phospholipids are the essential components of human milk, contributing to the enhancement of cognitive development, regulation of immune functions, and mitigation of elevated cholesterol levels. Infant formulas supplemented with phospholipids can change the composition, content, and globule membrane structure of milk lipids, improving their digestive properties and nutritional value. However, mimicking phospholipids in infant formulas is currently limited, and the supplemented standards of phospholipid species and amounts in infant formulas are unknown. Consequently, there is a significant difference between the phospholipids in infant formulas and those in human milk. This article reviews the recent progress in human milk phospholipid research, aiming to describe the composition, content, and positive effects of human milk phospholipids, as well as summarises the dietary sources of phospholipid supplementation and the current state of human milk phospholipid mimicking in infant formulas. This review provides clear directions for research on mimicking human milk phospholipids and evaluating the nutritional functions of phospholipids in infants.
Collapse
Affiliation(s)
- Yuru Wang
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Qian Liu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Huiru Cao
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Sanyuan Foods Co. Ltd., No. 8, Yingchang Street 100076, Yinghai Town, Daxing District, Beijing, China.
| |
Collapse
|
260
|
Fan S, Zhu H, Liu W, Ha J, Liu Y, Mi M, Ren Q, Xu L, Zhang J, Liu W, Feng F, Xu J. Comparing massa medicata fermentata before and after charred in terms of digestive promoting effect via metabolomics and microbiome analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117989. [PMID: 38462026 DOI: 10.1016/j.jep.2024.117989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Massa Medicata Fermentata, a fermented Chinese medicine, is produced by the fermentation of six traditional Chinese medicines. Liu Shenqu (LSQ) and charred Liu Shenqu (CLSQ) have been used for strengthening the spleen and enhancing digestion for over a thousand years, and CLSQ is commonly used in clinical practice. However, it is unclear whether there is a difference in the spleen strengthening and digestion effects between LSQ and CLSQ, as well as their mechanisms of action. AIM OF STUDY This study aims to compare the effects of LSQ and CLSQ on the digestive function of functional dyspepsia (FD) rats and reveal their mechanisms of action. MATERIALS AND METHODS SPF grade SD rats were randomly divided into 6 groups: control group, model group, Liu Shenqu decoction low-dosage (LSQ LD) group, Liu Shenqu decoction high-dosage (LSQ HD) group, charred Liu Shenqu decoction low-dosage (CLSQ LD) group, and charred Liu Shenqu decoction high-dosage (CLSQ HD) group. Rats were injected intraperitoneally with reserpine to create an FD model and then treated by intragastric administration. During this period, record the weight and food intake of the animals. After 18 days of treatment, specimens of the gastric antrum, spleen, and duodenum of rats were taken for pathological staining and immunohistochemical detection of Ghrelin protein expression. Enzyme linked immunosorbent assay (ELISA) was used to determine the concentration of relevant gastrointestinal hormones in serum. The 16 S rDNA sequencing method was used to evaluate the effect of cecal contents on the structure of the gut microbiota in experimental rats. Plasma metabolomics analysis was performed using ultra high performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-QTOF-MS) to further reveal their mechanism of action. RESULTS LSQ and CLSQ improved the pathological tissue histological structure of FD rats and increased the levels of MTL and GAS hormones in serum and the levels of ghrelin in the gastric antrum, spleen, and duodenum, while reducing VIP, CCK, and SP hormone levels. The above results showed that the therapeutic efficacy of CLSQ is better than that of LSQ. Futhermore, the mechanism of action of LSQ and CLSQ were revealed. The 16 S rDNA sequencing results showed that both LSQ and CLSQ can improve the composition and diversity of the gut microbiota. And metabolomic analysis demonstrated that 20 metabolites changed after LSQ treatment, and 16 metabolites underwent continuous changes after CLSQ treatment. Further analysis revealed that LSQ mainly intervened in the metabolic pathways of glycerol phospholipid metabolism and arginine and proline metabolism, but CLSQ mainly intervened in the metabolic pathways of ether lipid metabolism, sphingolipid metabolism, and glycerophospholipid metabolism. CONCLUSIONS Both LSQ and CLSQ can improve functional dyspepsia in FD rats, but CLSQ has a stronger improvement effect on FD. Although their mechanisms of action are all related to regulating gastrointestinal hormone secretion, significantly improving intestinal microbiota disorders, and improving multiple metabolic pathways, but the specific gut microbiota and metabolic pathways they regulate are different.
Collapse
Affiliation(s)
- Siqi Fan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Huangyao Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wanqiu Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingwen Ha
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ma Mi
- Tibetan University of Tibetan Medicine, Lhasa, 850007, China
| | - Qingjia Ren
- Tibetan University of Tibetan Medicine, Lhasa, 850007, China
| | - Lijun Xu
- Tibetan University of Tibetan Medicine, Lhasa, 850007, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenyuan Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, China; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Jian Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; Tibetan University of Tibetan Medicine, Lhasa, 850007, China.
| |
Collapse
|
261
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
262
|
Yuan K, Xie X, Huang W, Li D, Zhao Y, Yang H, Wang X. Elucidating causal relationships of diet-derived circulating antioxidants and the risk of osteoporosis: A Mendelian randomization study. Front Genet 2024; 15:1346367. [PMID: 38911297 PMCID: PMC11190308 DOI: 10.3389/fgene.2024.1346367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
Background Osteoporosis (OP) is typically diagnosed by evaluating bone mineral density (BMD), and it frequently results in fractures. Here, we investigated the causal relationships between diet-derived circulating antioxidants and the risk of OP using Mendelian randomization (MR). Methods Published studies were used to identify instrumental variables related to absolute levels of circulating antioxidants like lycopene, retinol, ascorbate, and β-carotene, as well as antioxidant metabolites such as ascorbate, retinol, α-tocopherol, and γ-tocopherol. Outcome variables included BMD (in femoral neck, lumbar spine, forearm, heel, total body, total body (age over 60), total body (age 45-60), total body (age 30-45), total body (age 15-30), and total body (age 0-15)), fractures (in arm, spine, leg, heel, and osteoporotic fractures), and OP. Inverse variance weighted or Wald ratio was chosen as the main method for MR analysis based on the number of single nucleotide polymorphisms (SNPs). Furthermore, we performed sensitivity analyses to confirm the reliability of the findings. Results We found a causal relationship between absolute retinol levels and heel BMD (p = 7.6E-05). The results of fixed effects IVW showed a protective effect of absolute retinol levels against heel BMD, with per 0.1 ln-transformed retinol being associated with a 28% increase in heel BMD (OR: 1.28, 95% CI: 1.13-1.44). In addition, a sex-specific effect of the absolute circulating retinol levels on the heel BMD has been observed in men. No other significant causal relationship was found. Conclusion There is a positive causal relationship between absolute retinol levels and heel BMD. The implications of our results should be taken into account in future studies and in the creation of public health policies and OP prevention tactics.
Collapse
Affiliation(s)
- Kexin Yuan
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Xingwen Xie
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Weiwei Huang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Dingpeng Li
- The Second People’s Hospital of Gansu Province, Lanzhou, China
| | - Yongli Zhao
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Haodong Yang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuetao Wang
- Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
263
|
Reed J, Higginbotham V, Bain S, Kanamarlapudi V. Comparative Analysis of Orthosteric and Allosteric GLP-1R Agonists' Effects on Insulin Secretion from Healthy, Diabetic, and Recovered INS-1E Pancreatic Beta Cells. Int J Mol Sci 2024; 25:6331. [PMID: 38928038 PMCID: PMC11203424 DOI: 10.3390/ijms25126331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the availability of different treatments for type 2 diabetes (T2D), post-diagnosis complications remain prevalent; therefore, more effective treatments are desired. Glucagon-like peptide (GLP)-1-based drugs are currently used for T2D treatment. They act as orthosteric agonists for the GLP-1 receptor (GLP-1R). In this study, we analyzed in vitro how the GLP-1R orthosteric and allosteric agonists augment glucose-stimulated insulin secretion (GSIS) and intracellular cAMP production (GSICP) in INS-1E pancreatic beta cells under healthy, diabetic, and recovered states. The findings from this study suggest that allosteric agonists have a longer duration of action than orthosteric agonists. They also suggest that the GLP-1R agonists do not deplete intracellular insulin, indicating they can be a sustainable and safe treatment option for T2D. Importantly, this study demonstrates that the GLP-1R agonists variably augment GSIS through GSICP in healthy, diabetic, and recovered INS-1E cells. Furthermore, we find that INS-1E cells respond differentially to the GLP-1R agonists depending on both glucose concentration during and before treatment and/or whether the cells have been previously exposed to these drugs. In conclusion, the findings described in this manuscript will be useful in determining in vitro how pancreatic beta cells respond to T2D drug treatments in healthy, diabetic, and recovered states.
Collapse
Affiliation(s)
| | | | | | - Venkateswarlu Kanamarlapudi
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (J.R.); (V.H.); (S.B.)
| |
Collapse
|
264
|
Chuang HH, Lin C, Lee LA, Chang HC, She GJ, Lin YH. Comparing Human-Smartphone Interactions and Actigraphy Measurements for Circadian Rhythm Stability and Adiposity: Algorithm Development and Validation Study. J Med Internet Res 2024; 26:e50149. [PMID: 38838328 PMCID: PMC11187513 DOI: 10.2196/50149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/17/2023] [Accepted: 03/20/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND This study aimed to investigate the relationships between adiposity and circadian rhythm and compare the measurement of circadian rhythm using both actigraphy and a smartphone app that tracks human-smartphone interactions. OBJECTIVE We hypothesized that the app-based measurement may provide more comprehensive information, including light-sensitive melatonin secretion and social rhythm, and have stronger correlations with adiposity indicators. METHODS We enrolled a total of 78 participants (mean age 41.5, SD 9.9 years; 46/78, 59% women) from both an obesity outpatient clinic and a workplace health promotion program. All participants (n=29 with obesity, n=16 overweight, and n=33 controls) were required to wear a wrist actigraphy device and install the Rhythm app for a minimum of 4 weeks, contributing to a total of 2182 person-days of data collection. The Rhythm app estimates sleep and circadian rhythm indicators by tracking human-smartphone interactions, which correspond to actigraphy. We examined the correlations between adiposity indices and sleep and circadian rhythm indicators, including sleep time, chronotype, and regularity of circadian rhythm, while controlling for physical activity level, age, and gender. RESULTS Sleep onset and wake time measurements did not differ significantly between the app and actigraphy; however, wake after sleep onset was longer (13.5, SD 19.5 minutes) with the app, resulting in a longer actigraphy-measured total sleep time (TST) of 20.2 (SD 66.7) minutes. The obesity group had a significantly longer TST with both methods. App-measured circadian rhythm indicators were significantly lower than their actigraphy-measured counterparts. The obesity group had significantly lower interdaily stability (IS) than the control group with both methods. The multivariable-adjusted model revealed a negative correlation between BMI and app-measured IS (P=.007). Body fat percentage (BF%) and visceral adipose tissue area (VAT) showed significant correlations with both app-measured IS and actigraphy-measured IS. The app-measured midpoint of sleep showed a positive correlation with both BF% and VAT. Actigraphy-measured TST exhibited a positive correlation with BMI, VAT, and BF%, while no significant correlation was found between app-measured TST and either BMI, VAT, or BF%. CONCLUSIONS Our findings suggest that IS is strongly correlated with various adiposity indicators. Further exploration of the role of circadian rhythm, particularly measured through human-smartphone interactions, in obesity prevention could be warranted.
Collapse
Affiliation(s)
- Hai-Hua Chuang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Family Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chen Lin
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Li-Ang Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Department of Otorhinolaryngology - Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
| | - Hsiang-Chih Chang
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Guan-Jie She
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Yu-Hsuan Lin
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
265
|
Stream A, Corriden R, Döhrmann S, Gallo RL, Nizet V, Anderson EL. The Effect of Retinoic Acid on Neutrophil Innate Immune Interactions With Cutaneous Bacterial Pathogens. INFECTIOUS MICROBES & DISEASES 2024; 6:65-73. [PMID: 38952747 PMCID: PMC11216695 DOI: 10.1097/im9.0000000000000145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Vitamin A and its biologically active derivative, retinoic acid (RA), are important for many immune processes. RA, in particular, is essential for the development of immune cells, including neutrophils, which serve as a front-line defense against infection. While vitamin A deficiency has been linked to higher susceptibility to infections, the precise role of vitamin A/RA in host-pathogen interactions remains poorly understood. Here, we provided evidence that RA boosts neutrophil killing of methicillin-resistant Staphylococcus aureus (MRSA). RA treatment stimulated primary human neutrophils to produce reactive oxygen species, neutrophil extracellular traps, and the antimicrobial peptide cathelicidin (LL-37). Because RA treatment was insufficient to reduce MRSA burden in an in vivo murine model of skin infection, we expanded our analysis to other infectious agents. RA did not affect the growth of a number of common bacterial pathogens, including MRSA, Escherichia coli K1 and Pseudomonas aeruginosa; however, RA directly inhibited the growth of group A Streptococcus (GAS). This antimicrobial effect, likely in combination with RA-mediated neutrophil boosting, resulted in substantial GAS killing in neutrophil killing assays conducted in the presence of RA. Furthermore, in a murine model of GAS skin infection, topical RA treatment showed therapeutic potential by reducing both skin lesion size and bacterial burden. These findings suggest that RA may hold promise as a therapeutic agent against GAS and perhaps other clinically significant human pathogens.
Collapse
Affiliation(s)
- Alexandra Stream
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Ross Corriden
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Simon Döhrmann
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 3, USA
| | - Ericka L. Anderson
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
266
|
Desmet SJ, Thommis J, Vanderhaeghen T, Vandenboorn EMF, Clarisse D, Li Y, Timmermans S, Fijalkowska D, Ratman D, Van Hamme E, De Cauwer L, Staels B, Brunsveld L, Peelman F, Libert C, Tavernier J, De Bosscher K. Crosstalk interactions between transcription factors ERRα and PPARα assist PPARα-mediated gene expression. Mol Metab 2024; 84:101938. [PMID: 38631478 PMCID: PMC11059514 DOI: 10.1016/j.molmet.2024.101938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/10/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE The peroxisome proliferator-activated receptor α (PPARα) is a transcription factor driving target genes involved in fatty acid β-oxidation. To what extent various PPARα interacting proteins may assist its function as a transcription factor is incompletely understood. An ORFeome-wide unbiased mammalian protein-protein interaction trap (MAPPIT) using PPARα as bait revealed a PPARα-ligand-dependent interaction with the orphan nuclear receptor estrogen-related receptor α (ERRα). The goal of this study was to characterize the nature of the interaction in depth and to explore whether it was of physiological relevance. METHODS We used orthogonal protein-protein interaction assays and pharmacological inhibitors of ERRα in various systems to confirm a functional interaction and study the impact of crosstalk mechanisms. To characterize the interaction surfaces and contact points we applied a random mutagenesis screen and structural overlays. We pinpointed the extent of reciprocal ligand effects of both nuclear receptors via coregulator peptide recruitment assays. On PPARα targets revealed from a genome-wide transcriptome analysis, we performed an ERRα chromatin immunoprecipitation analysis on both fast and fed mouse livers. RESULTS Random mutagenesis scanning of PPARα's ligand-binding domain and coregulator profiling experiments supported the involvement of (a) bridging coregulator(s), while recapitulation of the interaction in vitro indicated the possibility of a trimeric interaction with RXRα. The PPARα·ERRα interaction depends on 3 C-terminal residues within helix 12 of ERRα and is strengthened by both PGC1α and serum deprivation. Pharmacological inhibition of ERRα decreased the interaction of ERRα to ligand-activated PPARα and revealed a transcriptome in line with enhanced mRNA expression of prototypical PPARα target genes, suggesting a role for ERRα as a transcriptional repressor. Strikingly, on other PPARα targets, including the isolated PDK4 enhancer, ERRα behaved oppositely. Chromatin immunoprecipitation analyses demonstrate a PPARα ligand-dependent ERRα recruitment onto chromatin at PPARα-binding regions, which is lost following ERRα inhibition in fed mouse livers. CONCLUSIONS Our data support the coexistence of multiple layers of transcriptional crosstalk mechanisms between PPARα and ERRα, which may serve to finetune the activity of PPARα as a nutrient-sensing transcription factor.
Collapse
Affiliation(s)
- Sofie J Desmet
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Jonathan Thommis
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Tineke Vanderhaeghen
- VIB Center for Inflammation Research, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Edmee M F Vandenboorn
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612AZ Eindhoven, the Netherlands
| | - Dorien Clarisse
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Yunkun Li
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Steven Timmermans
- VIB Center for Inflammation Research, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Daria Fijalkowska
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Dariusz Ratman
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | | | - Lode De Cauwer
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Luc Brunsveld
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612AZ Eindhoven, the Netherlands
| | - Frank Peelman
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Claude Libert
- VIB Center for Inflammation Research, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
267
|
Yesuf HA, Molla MD, Malik T, Seyoum Wendimagegn Z, Yimer Y. MicroRNA-29-mediated cross-talk between metabolic organs in the pathogenesis of diabetes mellitus and its complications: A narrative review. Cell Biochem Funct 2024; 42:e4053. [PMID: 38773932 DOI: 10.1002/cbf.4053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024]
Abstract
Diabetes mellitus (DM) is a heterogeneous group of disorders characterized by hyperglycemia. Microribonucleic acids (microRNAs) are noncoding RNA molecules synthesized in the nucleus, modified, and exported to the extracellular environment to bind to their complementary target sequences. It regulates protein synthesis in the targeted cells by inhibiting translation or triggering the degradation of the target messenger. MicroRNA-29 is one of noncoding RNA that can be secreted by adipose tissue, hepatocytes, islet cells, and brain cells. The expression level of the microRNA-29 family in several metabolic organs is regulated by body weight, blood concentrations of inflammatory mediators, serum glucose levels, and smoking habits. Several experimental studies have demonstrated the effect of microRNA-29 on the expression of target genes involved in glucose metabolism, insulin synthesis and secretion, islet cell survival, and proliferation. These findings shed new light on the role of microRNA-29 in the pathogenesis of diabetes and its complications, which plays a vital role in developing appropriate therapies. Different molecular pathways have been proposed to explain how microRNA-29 promotes the development of diabetes and its complications. However, to the best of our knowledge, no published review article has summarized the molecular mechanism of microRNA-29-mediated initiation of DM and its complications. Therefore, this narrative review aims to summarize the role of microRNA-29-mediated cross-talk between metabolic organs in the pathogenesis of diabetes and its complications.
Collapse
Affiliation(s)
- Hassen Ahmed Yesuf
- Department of Biomedical Science, School of Medicine, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Meseret Derbew Molla
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Division of Research and Development, Lovely Professional University, Phagwara, India
| | - Zeru Seyoum Wendimagegn
- Department of Biomedical Science, School of Medicine, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Yadelew Yimer
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
268
|
Su F, Koeberle A. Regulation and targeting of SREBP-1 in hepatocellular carcinoma. Cancer Metastasis Rev 2024; 43:673-708. [PMID: 38036934 PMCID: PMC11156753 DOI: 10.1007/s10555-023-10156-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is an increasing burden on global public health and is associated with enhanced lipogenesis, fatty acid uptake, and lipid metabolic reprogramming. De novo lipogenesis is under the control of the transcription factor sterol regulatory element-binding protein 1 (SREBP-1) and essentially contributes to HCC progression. Here, we summarize the current knowledge on the regulation of SREBP-1 isoforms in HCC based on cellular, animal, and clinical data. Specifically, we (i) address the overarching mechanisms for regulating SREBP-1 transcription, proteolytic processing, nuclear stability, and transactivation and (ii) critically discuss their impact on HCC, taking into account (iii) insights from pharmacological approaches. Emphasis is placed on cross-talk with the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt)-mechanistic target of rapamycin (mTOR) axis, AMP-activated protein kinase (AMPK), protein kinase A (PKA), and other kinases that directly phosphorylate SREBP-1; transcription factors, such as liver X receptor (LXR), peroxisome proliferator-activated receptors (PPARs), proliferator-activated receptor γ co-activator 1 (PGC-1), signal transducers and activators of transcription (STATs), and Myc; epigenetic mechanisms; post-translational modifications of SREBP-1; and SREBP-1-regulatory metabolites such as oxysterols and polyunsaturated fatty acids. By carefully scrutinizing the role of SREBP-1 in HCC development, progression, metastasis, and therapy resistance, we shed light on the potential of SREBP-1-targeting strategies in HCC prevention and treatment.
Collapse
Affiliation(s)
- Fengting Su
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
269
|
Thiel G, Rössler OG. Signal Transduction of Transient Receptor Potential TRPM8 Channels: Role of PIP5K, Gq-Proteins, and c-Jun. Molecules 2024; 29:2602. [PMID: 38893478 PMCID: PMC11174004 DOI: 10.3390/molecules29112602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Transient receptor potential melastatin-8 (TRPM8) is a cation channel that is activated by cold and "cooling agents" such as menthol and icilin, which induce a cold sensation. The stimulation of TRPM8 activates an intracellular signaling cascade that ultimately leads to a change in the gene expression pattern of the cells. Here, we investigate the TRPM8-induced signaling pathway that links TRPM8 channel activation to gene transcription. Using a pharmacological approach, we show that the inhibition of phosphatidylinositol 4-phosphate 5 kinase α (PIP5K), an enzyme essential for the biosynthesis of phosphatidylinositol 4,5-bisphosphate, attenuates TRPM8-induced gene transcription. Analyzing the link between TRPM8 and Gq proteins, we show that the pharmacological inhibition of the βγ subunits impairs TRPM8 signaling. In addition, genetic studies show that TRPM8 requires an activated Gα subunit for signaling. In the nucleus, the TRPM8-induced signaling cascade triggers the activation of the transcription factor AP-1, a complex consisting of a dimer of basic region leucine zipper (bZIP) transcription factors. Here, we identify the bZIP protein c-Jun as an essential component of AP-1 within the TRPM8-induced signaling cascade. In summary, with PIP5K, Gq subunits, and c-Jun, we identified key molecules in TRPM8-induced signaling from the plasma membrane to the nucleus.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany;
| | | |
Collapse
|
270
|
Metherel AH, Valenzuela R, Klievik BJ, Cisbani G, Rotarescu RD, Gonzalez-Soto M, Cruciani-Guglielmacci C, Layé S, Magnan C, Mutch DM, Bazinet RP. Dietary docosahexaenoic acid (DHA) downregulates liver DHA synthesis by inhibiting eicosapentaenoic acid elongation. J Lipid Res 2024; 65:100548. [PMID: 38649096 PMCID: PMC11126934 DOI: 10.1016/j.jlr.2024.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
DHA is abundant in the brain where it regulates cell survival, neurogenesis, and neuroinflammation. DHA can be obtained from the diet or synthesized from alpha-linolenic acid (ALA; 18:3n-3) via a series of desaturation and elongation reactions occurring in the liver. Tracer studies suggest that dietary DHA can downregulate its own synthesis, but the mechanism remains undetermined and is the primary objective of this manuscript. First, we show by tracing 13C content (δ13C) of DHA via compound-specific isotope analysis, that following low dietary DHA, the brain receives DHA synthesized from ALA. We then show that dietary DHA increases mouse liver and serum EPA, which is dependant on ALA. Furthermore, by compound-specific isotope analysis we demonstrate that the source of increased EPA is slowed EPA metabolism, not increased DHA retroconversion as previously assumed. DHA feeding alone or with ALA lowered liver elongation of very long chain (ELOVL2, EPA elongation) enzyme activity despite no change in protein content. To further evaluate the role of ELOVL2, a liver-specific Elovl2 KO was generated showing that DHA feeding in the presence or absence of a functional liver ELOVL2 yields similar results. An enzyme competition assay for EPA elongation suggests both uncompetitive and noncompetitive inhibition by DHA depending on DHA levels. To translate our findings, we show that DHA supplementation in men and women increases EPA levels in a manner dependent on a SNP (rs953413) in the ELOVL2 gene. In conclusion, we identify a novel feedback inhibition pathway where dietary DHA downregulates its liver synthesis by inhibiting EPA elongation.
Collapse
Affiliation(s)
- Adam H Metherel
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.
| | | | - Brinley J Klievik
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Giulia Cisbani
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | | | - Melissa Gonzalez-Soto
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Sophie Layé
- INRA, Bordeaux INP, NutriNeuro, Université de Bordeaux, Bordeaux, France
| | | | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
271
|
Henning P, Westerlund A, Horkeby K, Lionikaite V, Nilsson KH, Movérare-Skrtic S, Conaway HH, Lerner UH. Vitamin A enhanced periosteal osteoclastogenesis is associated with increased number of tissue-derived macrophages/osteoclast progenitors. J Biol Chem 2024; 300:107308. [PMID: 38657862 PMCID: PMC11163173 DOI: 10.1016/j.jbc.2024.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
A deleterious effect of elevated levels of vitamin A on bone health has been reported in clinical studies. Mechanistic studies in rodents have shown that numbers of periosteal osteoclasts are increased, while endocortical osteoclasts are simultaneously decreased by vitamin A treatment. The present study investigated the in vitro and in vivo effect of all-trans retinoic acid (ATRA), the active metabolite of vitamin A, on periosteal osteoclast progenitors. Mouse calvarial bone cells were cultured in media containing ATRA, with or without the osteoclastogenic cytokine receptor activator of nuclear factor kappa B-ligand (RANKL), on plastic dishes or bone discs. Whereas ATRA did not stimulate osteoclast formation alone, the compound robustly potentiated the formation of RANKL-induced bone resorbing osteoclasts. This effect was due to stimulation by ATRA (half-maximal stimulation ∼3 nM) on the numbers of macrophages/osteoclast progenitors in the bone cell cultures, as assessed by mRNA and protein expression of several macrophage and osteoclast progenitor cell markers, such as macrophage colony-stimulating factor receptor, receptor activator of nuclear factor kappa B, F4/80, and CD11b, as well as by flow cytometry (FACS) analysis of CD11b+/F480+/Gr1- cells. The stimulation of macrophage numbers in the periosteal cell cultures was not mediated by increased macrophage colony-stimulating factor or interleukin-34. In contrast, ATRA did not enhance macrophages in bone marrow cell cultures. Importantly, ATRA treatment upregulated the mRNA expression of several macrophage-related genes in the periosteum of tibia in adult mice. These observations demonstrate a novel mechanism by which vitamin A enhances osteoclast formation specifically on periosteal surfaces.
Collapse
Affiliation(s)
- Petra Henning
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna Westerlund
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin Horkeby
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Vikte Lionikaite
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin H Nilsson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - H Herschel Conaway
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ulf H Lerner
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
272
|
Piccinin E, Arconzo M, Pasculli E, Tricase AF, Cultrera S, Bertrand-Michel J, Loiseau N, Villani G, Guillou H, Moschetta A. Pivotal role of intestinal cholesterol and nuclear receptor LXR in metabolic liver steatohepatitis and hepatocarcinoma. Cell Biosci 2024; 14:69. [PMID: 38824560 PMCID: PMC11144344 DOI: 10.1186/s13578-024-01248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Hepatocellular carcinoma (HCC) incidence is continuously increasing worldwide, due to the rise of metabolic dysfunction-associated steatohepatitis (MASH) cases. Cholesterol is an essential driver of the metabolic dysregulations that promote HCC progression. Liver X Receptor (LXR) is a nuclear receptor best known for the regulation of lipid and cholesterol homeostasis, with a prominent function in the liver and in the intestine. Here, we aimed to explore whether modifications in intestinal lipid metabolism may contribute to the onset of HCC, particularly taking into account cholesterol metabolism and LXRs. To study the progression of MASH to HCC, we induced metabolic HCC in wild-type male mice and mice carrying an intestinal chronic activation of LXRα. Also, we analysed human hepatic transcriptome datasets. The increased consumption of fat and carbohydrates drives the intestinal activation of LXRα and accelerates the onset of the hepatic tumours. Chronic intestinal-specific activation of LXRα enhances HCC progression only in the presence of a high cholesterol intake. In HCC, despite the increased hepatic cholesterol content, LXR is not active, thus driving liver cancer development. Intriguingly, in line with these results in the mouse model, LXR transcriptome is also downregulated in human hepatocarcinoma and its expression level in liver tumours directly correlates with a decreased survival rate in patients. Overall, our findings establish the relevance of the intestine in influencing the susceptibility to MASH-HCC and point to intestinal LXRα activation as a driver of metabolic liver cancer in the presence of dietary cholesterol.
Collapse
Affiliation(s)
- Elena Piccinin
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Maria Arconzo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Emanuela Pasculli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Angela Fulvia Tricase
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Silvia Cultrera
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | | | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Gaetano Villani
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy.
- INBB, National Institute for Biostructures and Biosystems, Rome, Italy.
| |
Collapse
|
273
|
Jacovetti C, Donnelly C, Menoud V, Suleiman M, Cosentino C, Sobel J, Wu K, Bouzakri K, Marchetti P, Guay C, Kayser B, Regazzi R. The mitochondrial tRNA-derived fragment, mt-tRF-Leu TAA, couples mitochondrial metabolism to insulin secretion. Mol Metab 2024; 84:101955. [PMID: 38704026 PMCID: PMC11112368 DOI: 10.1016/j.molmet.2024.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVE The contribution of the mitochondrial electron transfer system to insulin secretion involves more than just energy provision. We identified a small RNA fragment (mt-tRF-LeuTAA) derived from the cleavage of a mitochondrially-encoded tRNA that is conserved between mice and humans. The role of mitochondrially-encoded tRNA-derived fragments remains unknown. This study aimed to characterize the impact of mt-tRF-LeuTAA, on mitochondrial metabolism and pancreatic islet functions. METHODS We used antisense oligonucleotides to reduce mt-tRF-LeuTAA levels in primary rat and human islet cells, as well as in insulin-secreting cell lines. We performed a joint transcriptome and proteome analysis upon mt-tRF-LeuTAA inhibition. Additionally, we employed pull-down assays followed by mass spectrometry to identify direct interactors of the fragment. Finally, we characterized the impact of mt-tRF-LeuTAA silencing on the coupling between mitochondrial metabolism and insulin secretion using high-resolution respirometry and insulin secretion assays. RESULTS Our study unveils a modulation of mt-tRF-LeuTAA levels in pancreatic islets in different Type 2 diabetes models and in response to changes in nutritional status. The level of the fragment is finely tuned by the mechanistic target of rapamycin complex 1. Located within mitochondria, mt-tRF-LeuTAA interacts with core subunits and assembly factors of respiratory complexes of the electron transfer system. Silencing of mt-tRF-LeuTAA in islet cells limits the inner mitochondrial membrane potential and impairs mitochondrial oxidative phosphorylation, predominantly by affecting the Succinate (via Complex II)-linked electron transfer pathway. Lowering mt-tRF-LeuTAA impairs insulin secretion of rat and human pancreatic β-cells. CONCLUSIONS Our findings indicate that mt-tRF-LeuTAA interacts with electron transfer system complexes and is a pivotal regulator of mitochondrial oxidative phosphorylation and its coupling to insulin secretion.
Collapse
Affiliation(s)
- Cecile Jacovetti
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| | - Chris Donnelly
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Véronique Menoud
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, Diabetes Unit, University of Pisa, Pisa, Italy
| | - Cristina Cosentino
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Jonathan Sobel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Kejing Wu
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Karim Bouzakri
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Diabetes Unit, University of Pisa, Pisa, Italy
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
274
|
Varghese A, Kirankumar PS, Ajay SV, Prathish KP. Foraging animal origin food samples as passive indicators of dioxin-like POPs contamination in industry sites: Method development, characterisation and risk assessment. CHEMOSPHERE 2024; 357:142078. [PMID: 38643844 DOI: 10.1016/j.chemosphere.2024.142078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Titanium dioxide (TiO2) is an important industrial chemical, and studies suggest its major production route - the chloride process could lead to the generation of unintentional dl-POPs. However, no relevant studies assessed the occurrence of dl-POPs associated with TiO2 production in the industrial zones, which is mostly due to the ultra-trace level distribution of these compounds in environmental compartments. The present study explored the novel possibility of utilising foraging animal-origin foods as sensitive indicators for addressing this challenge and generated a globally beneficial dataset by assessing the background levels of dl-POPs in the vicinity of a TiO2 production house in Southern India. Systematic sampling of foraging cow's milk and free-ranging hen's eggs was carried out from the study site, and the dl-POPs assessments were conducted utilising an in-house developed cost-effective GC-MS/MS-based analytical methodology. The median dl-POPs levels in milk and egg samples were about 3 times higher than the control samples collected from farm-fed animals and retail markets. The contaminant loads in the foraging animal-origin food samples were further traced to their presence in environmental compartments of soil and sediment and admissible degree of correlations were observed in congener fingerprints. Elevated health risks were inferred for the population in the industrial zones with weekly intakes weighing about 0.15-17 times the European Food Safety Authority-assigned levels. The consumption of foraging cow's milk was observed to have a higher contribution towards the hazard indices and cancer risk estimates and were significantly higher (p < 0.05) for children. The study also presents a critical validation of the GC-MS/MS-based method for the purpose of regulatory monitoring of dl-POPs, which could be of practical significance in economies in transition.
Collapse
Affiliation(s)
- Amala Varghese
- Environmental Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, (CSIR-NIIST), Thiruvananthapuram, Kerala, 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - P S Kirankumar
- Environmental Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, (CSIR-NIIST), Thiruvananthapuram, Kerala, 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - S V Ajay
- Environmental Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, (CSIR-NIIST), Thiruvananthapuram, Kerala, 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - K P Prathish
- Environmental Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, (CSIR-NIIST), Thiruvananthapuram, Kerala, 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India.
| |
Collapse
|
275
|
Samson N, Bosoi CR, Roy C, Turcotte L, Tribouillard L, Mouchiroud M, Berthiaume L, Trottier J, Silva HCG, Guerbette T, Plata-Gómez AB, Besse-Patin A, Montoni A, Ilacqua N, Lamothe J, Citron YR, Gélinas Y, Gobeil S, Zoncu R, Caron A, Morissette M, Pellegrini L, Rochette PJ, Estall JL, Efeyan A, Shum M, Audet-Walsh É, Barbier O, Marette A, Laplante M. HSDL2 links nutritional cues to bile acid and cholesterol homeostasis. SCIENCE ADVANCES 2024; 10:eadk9681. [PMID: 38820148 PMCID: PMC11141617 DOI: 10.1126/sciadv.adk9681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
In response to energy and nutrient shortage, the liver triggers several catabolic processes to promote survival. Despite recent progress, the precise molecular mechanisms regulating the hepatic adaptation to fasting remain incompletely characterized. Here, we report the identification of hydroxysteroid dehydrogenase-like 2 (HSDL2) as a mitochondrial protein highly induced by fasting. We show that the activation of PGC1α-PPARα and the inhibition of the PI3K-mTORC1 axis stimulate HSDL2 expression in hepatocytes. We found that HSDL2 depletion decreases cholesterol conversion to bile acids (BAs) and impairs FXR activity. HSDL2 knockdown also reduces mitochondrial respiration, fatty acid oxidation, and TCA cycle activity. Bioinformatics analyses revealed that hepatic Hsdl2 expression positively associates with the postprandial excursion of various BA species in mice. We show that liver-specific HSDL2 depletion affects BA metabolism and decreases circulating cholesterol levels upon refeeding. Overall, our report identifies HSDL2 as a fasting-induced mitochondrial protein that links nutritional signals to BAs and cholesterol homeostasis.
Collapse
Affiliation(s)
- Nolwenn Samson
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
| | - Cristina R. Bosoi
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Christian Roy
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Laurie Turcotte
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Laura Tribouillard
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
| | - Mathilde Mouchiroud
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
| | - Line Berthiaume
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
| | - Jocelyn Trottier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
| | - Heitor C. G. Silva
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Thomas Guerbette
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Ana Belén Plata-Gómez
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Aurèle Besse-Patin
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Alicia Montoni
- Axe Médecine régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Hôpital du Saint-Sacrement, Québec, QC, Canada
| | - Nicolò Ilacqua
- Faculté de médecine, Université Laval, Québec, QC, Canada
- Centre de recherche CERVO, Québec, QC, Canada
| | - Jennifer Lamothe
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Yemima R. Citron
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA, USA
| | - Yves Gélinas
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | | | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA, USA
| | - Alexandre Caron
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Mathieu Morissette
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Luca Pellegrini
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, QC, Canada
| | - Patrick J. Rochette
- Faculté de médecine, Université Laval, Québec, QC, Canada
- Axe Médecine régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Hôpital du Saint-Sacrement, Québec, QC, Canada
- Département d’Ophtalmologie et ORL – chirurgie cervico-faciale, Université Laval, Québec, QC, Canada
| | - Jennifer L. Estall
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
- Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Michael Shum
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Étienne Audet-Walsh
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Olivier Barbier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - André Marette
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Mathieu Laplante
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
276
|
Puginier E, Leal-Fischer K, Gaitan J, Lallouet M, Scotti PA, Raoux M, Lang J. Extracellular electrophysiology on clonal human β-cell spheroids. Front Endocrinol (Lausanne) 2024; 15:1402880. [PMID: 38883608 PMCID: PMC11176477 DOI: 10.3389/fendo.2024.1402880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024] Open
Abstract
Background Pancreatic islets are important in nutrient homeostasis and improved cellular models of clonal origin may very useful especially in view of relatively scarce primary material. Close 3D contact and coupling between β-cells are a hallmark of physiological function improving signal/noise ratios. Extracellular electrophysiology using micro-electrode arrays (MEA) is technically far more accessible than single cell patch clamp, enables dynamic monitoring of electrical activity in 3D organoids and recorded multicellular slow potentials (SP) provide unbiased insight in cell-cell coupling. Objective We have therefore asked whether 3D spheroids enhance clonal β-cell function such as electrical activity and hormone secretion using human EndoC-βH1, EndoC-βH5 and rodent INS-1 832/13 cells. Methods Spheroids were formed either by hanging drop or proprietary devices. Extracellular electrophysiology was conducted using multi-electrode arrays with appropriate signal extraction and hormone secretion measured by ELISA. Results EndoC-βH1 spheroids exhibited increased signals in terms of SP frequency and especially amplitude as compared to monolayers and even single cell action potentials (AP) were quantifiable. Enhanced electrical signature in spheroids was accompanied by an increase in the glucose stimulated insulin secretion index. EndoC-βH5 monolayers and spheroids gave electrophysiological profiles similar to EndoC-βH1, except for a higher electrical activity at 3 mM glucose, and exhibited moreover a biphasic profile. Again, physiological concentrations of GLP-1 increased AP frequency. Spheroids also exhibited a higher secretion index. INS-1 cells did not form stable spheroids, but overexpression of connexin 36, required for cell-cell coupling, increased glucose responsiveness, dampened basal activity and consequently augmented the stimulation index. Conclusion In conclusion, spheroid formation enhances physiological function of the human clonal β-cell lines and these models may provide surrogates for primary islets in extracellular electrophysiology.
Collapse
Affiliation(s)
- Emilie Puginier
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| | - Karen Leal-Fischer
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| | - Julien Gaitan
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| | - Marie Lallouet
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| | - Pier-Arnaldo Scotti
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| | - Matthieu Raoux
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| | - Jochen Lang
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| |
Collapse
|
277
|
Ezzat WM. Impact of lifestyle interventions on pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 2024; 30:2633-2637. [PMID: 38855152 PMCID: PMC11154675 DOI: 10.3748/wjg.v30.i20.2633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/27/2024] Open
Abstract
This editorial builds on the article titled "Establishment and validation of an adherence prediction system for lifestyle interventions in non-alcoholic fatty liver disease" by Zeng et al. We carried out a critical examination of nonalcoholic fatty liver disease (NAFLD) pathogenesis and how lifestyle interventions could facilitate disease resolution, particularly highlighting that non-alcoholic steatohepatitis (NASH) is a severe form of NAFLD. Our discussion details that weight loss is a pivotal factor in disease outcomes: A 3%-5% reduction is enough for resolution in 50% of non-obese individuals, while a 7%-10% reduction achieves similar benefits in obese individuals, as demonstrated by magnetic resonance spectroscopy. Additionally, the editorial underscores that such lifestyle changes are instrumental not only in resolving NAFLD but also in reversing hepatic steatosis and inflammation. These insights, derived from the research, emphasize the critical role of personalized lifestyle modifications in halting the progression of NAFLD to NASH and even reversing fibrosis, thus offering a template for effective patient management.
Collapse
Affiliation(s)
- Wafaa Mohamed Ezzat
- Department of Internal Medicine, Medical Research and Clinical Studies Institute, National Research Center, Giza 12311, Egypt
| |
Collapse
|
278
|
Duan X, Hu H, Wang L, Chen L. Aldehyde dehydrogenase 1 family: A potential molecule target for diseases. Cell Biol Int 2024. [PMID: 38800962 DOI: 10.1002/cbin.12188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
Aldehyde dehydrogenase 1 (ALDH1), a crucial aldehyde metabolizing enzyme, has six family members. The ALDH1 family is expressed in various tissues, with a significant presence in the liver. It plays a momentous role in several pathophysiological processes, including aldehyde detoxification, oxidative stress, and lipid peroxidation. Acetaldehyde detoxification is the fundamental function of the ALDH1 family in participating in vital pathological mechanisms. The ALDH1 family can catalyze retinal to retinoic acid (RA) that is a hormone-signaling molecule and plays a vital role in the development and adult tissues. Furthermore, there is a need for further and broader research on the role of the ALDH1 family as a signaling molecule. The ALDH1 family is widely recognized as a cancer stem cell (CSC) marker and plays a significant role in the proliferation, invasion, metastasis, prognosis, and drug resistance of cancer. The ALDH1 family also participates in other human diseases, such as neurodegenerative diseases, osteoarthritis, diabetes, and atherosclerosis. It can inhibit disease progression by inhibiting/promoting the expression/activity of the ALDH1 family. In this review, we comprehensively analyze the tissue distribution, and functions of the ALDH1 family. Additionally, we review the involvement of the ALDH1 family in diseases, focusing on the underlying pathological mechanisms and briefly talk about the current status and development of ALDH1 family inhibitors. The ALDH1 family presents new possibilities for treating diseases, with both its upstream and downstream pathways serving as promising targets for therapeutic intervention. This offers fresh perspectives for drug development in the field of disease research.
Collapse
Affiliation(s)
- Xiangning Duan
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| | - Haoliang Hu
- Changde Research Centre for Artificial Intelligence and Biomedicine, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Lingzhi Wang
- Department of Pharmacy, The First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Linxi Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| |
Collapse
|
279
|
Lu X, Zhao W, Wang J, He Y, Yang S, Sun H. A comprehensive review on the heterotrophic production of bioactive compounds by microalgae. World J Microbiol Biotechnol 2024; 40:210. [PMID: 38773011 DOI: 10.1007/s11274-024-03892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/09/2024] [Indexed: 05/23/2024]
Abstract
Bioactive compounds derived from microalgae have garnered considerable attention as valuable resources for drugs, functional foods, and cosmetics. Among these compounds, photosynthetic pigments and polyunsaturated fatty acids (PUFAs) have gained increasing interest due to their numerous beneficial properties, including anti-oxidant, anti-viral, anti-bacterial, anti-fungal, anti-inflammatory, and anti-tumor effects. Several microalgae species have been identified as rich sources of bioactive compounds, including the Chlorophyceae Dunaliella and Haematococcus, the Bacillariophyta Phaeodactylum and Nitzschia, and the dinoflagellate Crypthecodinium cohnii. However, most of the reported microalgae species primarily grow through autotrophic mechanisms, resulting in low yields and high production costs of bioactive compounds. Consequently, the utilization of heterotrophic microalgae, such as Chromochloris zofingiensis and Nitzschia laevis, has shown significant advantages in the production of astaxanthin and eicosapentaenoic acid (EPA), respectively. These heterotrophic microalgae exhibit superior capabilities in synthesizing target compounds. This comprehensive review provides a thorough examination of the heterotrophic production of bioactive compounds by microalgae. It covers key aspects, including the metabolic pathways involved, the impact of cultivation conditions, and the practical applications of these compounds. The review discusses how heterotrophic cultivation strategies can be optimized to enhance bioactive compound yields, shedding light on the potential of microalgae as a valuable resource for high-value product development.
Collapse
Affiliation(s)
- Xue Lu
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Weixuan Zhao
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
280
|
AL-asiri IS, Almatrafi FG, Al-thagafi SD, AlQarni AM, Aljubran HJ, Aljamaan AK, Al-Zahrani N. The Prevalence of Sleep Disorders in People with Type 2 Diabetes and Obesity in Saudi Arabia: A Cross-Sectional Study. Diabetes Metab Syndr Obes 2024; 17:2075-2083. [PMID: 38799281 PMCID: PMC11122321 DOI: 10.2147/dmso.s455945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Purpose Difficulty falling or staying asleep are considered sleep disorders, and these are common among people with type 2 diabetes mellitus (T2DM) and obesity. The presence of sleep disorders may cause poor glycemic control among this population. We therefore designed this study to assess sleep disorders among patients with T2DM and obesity. Patients and Methods This cross-sectional study examined the prevalence of sleep disorders in 148 patients with T2DM and obesity at a hospital in Taif, Saudi Arabia using a validated questionnaire. Results Among those patients who have been involved in this study, we found a moderate level of sleep disorders and disturbances. The average sleep disorder assessment score for the patients with T2DM and obesity was 2.8 ± 1.4. Additionally, the average score for the sleep pattern assessment was 2.7 ± 1.3 and 2.9 ± 1.5 for symptoms of lack of sleep. Our study also revealed that those patients also had suboptimal weight and glycemic control. Conclusion These findings demonstrate that patients with T2DM and obesity are at a higher risk of developing sleep disorders. Therefore, these patients need to be screened for sleep disorders to avoid further diabetes-related complications and to have an early lifestyle intervention.
Collapse
Affiliation(s)
- Ibrahim S AL-asiri
- Diabetes and Endocrine Specialist Centre, Prince Mansour Military Hospital, Taif, Saudi Arabia
| | - Fahad G Almatrafi
- Diabetes and Endocrine Specialist Centre, Prince Mansour Military Hospital, Taif, Saudi Arabia
| | - Saja D Al-thagafi
- Diabetes and Endocrine Specialist Centre, Prince Mansour Military Hospital, Taif, Saudi Arabia
| | - Amani M AlQarni
- Family and Community Medicine Department, King Fahd Hospital of the University, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Hussain J Aljubran
- College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Abdullah K Aljamaan
- College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Noura Al-Zahrani
- Diabetes and Endocrine Center, Hera General Hospital, Ministry of Health, Makkah, Saudi Arabia
| |
Collapse
|
281
|
Moreno N, Sabater-Arcis M, Sevilla T, Alonso MP, Ohana J, Bargiela A, Artero R. Therapeutic potential of oleic acid supplementation in myotonic dystrophy muscle cell models. Biol Res 2024; 57:29. [PMID: 38760841 PMCID: PMC11100173 DOI: 10.1186/s40659-024-00496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 04/05/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND We recently reported that upregulation of Musashi 2 (MSI2) protein in the rare neuromuscular disease myotonic dystrophy type 1 contributes to the hyperactivation of the muscle catabolic processes autophagy and UPS through a reduction in miR-7 levels. Because oleic acid (OA) is a known allosteric regulator of MSI2 activity in the biogenesis of miR-7, here we sought to evaluate endogenous levels of this fatty acid and its therapeutic potential in rescuing cell differentiation phenotypes in vitro. In this work, four muscle cell lines derived from DM1 patients were treated with OA for 24 h, and autophagy and muscle differentiation parameters were analyzed. RESULTS We demonstrate a reduction of OA levels in different cell models of the disease. OA supplementation rescued disease-related phenotypes such as fusion index, myotube diameter, and repressed autophagy. This involved inhibiting MSI2 regulation of direct molecular target miR-7 since OA isoschizomer, elaidic acid (EA) could not cause the same rescues. Reduction of OA levels seems to stem from impaired biogenesis since levels of the enzyme stearoyl-CoA desaturase 1 (SCD1), responsible for converting stearic acid to oleic acid, are decreased in DM1 and correlate with OA amounts. CONCLUSIONS For the first time in DM1, we describe a fatty acid metabolism impairment that originated, at least in part, from a decrease in SCD1. Because OA allosterically inhibits MSI2 binding to molecular targets, reduced OA levels synergize with the overexpression of MSI2 and contribute to the MSI2 > miR-7 > autophagy axis that we proposed to explain the muscle atrophy phenotype.
Collapse
Affiliation(s)
- Nerea Moreno
- Human Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERER, IISCIII, Madrid, Spain
| | - Maria Sabater-Arcis
- Human Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERER, IISCIII, Madrid, Spain
| | - Teresa Sevilla
- CIBERER, IISCIII, Madrid, Spain
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital, La Fe (IIS La Fe), Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| | - Manuel Perez Alonso
- Human Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERER, IISCIII, Madrid, Spain
| | - Jessica Ohana
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, Paris, F-75013, France
| | - Ariadna Bargiela
- CIBERER, IISCIII, Madrid, Spain.
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital, La Fe (IIS La Fe), Valencia, Spain.
| | - Ruben Artero
- Human Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERER, IISCIII, Madrid, Spain
| |
Collapse
|
282
|
Yu Q, Zuo X, Bai H, Zhang S, Luan J, Zhao Q, Zhao X, Feng X. Alleviative effects of the parthenolide derivative ACT001 on insulin resistance induced by sodium propionate combined with a high-fat diet and its potential mechanisms. Eur J Pharmacol 2024; 971:176529. [PMID: 38554931 DOI: 10.1016/j.ejphar.2024.176529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
The increasing side effects of traditional medications used to treat type II diabetes have made research into the development of safer and more effective natural medications necessary. ACT001, a derivative of parthenolide, has been shown to have good anti-inflammatory and antitumor effects; however, its role in diabetes is unclear. The short-chain fatty acid propionate is a common food preservative that has been found to cause disturbances in glucose metabolism in mice and humans. This study aimed to investigate whether sodium propionate could aggravate insulin resistance in obese mice and cause diabetes and to study the alleviative effects and potential mechanisms of action of ACT001 on insulin resistance in diabetic mice. Type II diabetic mice were adminietered sodium propionate combined with a high-fat diet (HFD + propionate) by gavage daily for four weeks. Biochemical analysis showed that ACT001 significantly affected blood glucose concentration in diabetic mice, mainly by downregulating the expression of phosphoenolpyruvate carboxykinase 2 and glucose-6-phosphatase. Meanwhile, the level of fatty acid-binding protein 4 in the liver was significantly decreased. ACT001 has a protective effect on the liver and adipose tissue of mice. In addition, the results of the running wheel experiment indicated that ACT001 alleviated the circadian rhythm disorder caused by insulin resistance to a certain extent. This study revealed the potential mechanism by which ACT001 alleviates insulin resistance and provides ideas for developing natural antidiabetic drugs.
Collapse
Affiliation(s)
- Qian Yu
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiang Zuo
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Huijuan Bai
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Qili Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
283
|
Atwiine F, Mwesigwa A, Mwesiga D, Mwesigwa P, Katumba L, Ogwang PE. Appetite Suppressing Activity of Rumex Usambarensis Leaf and Stem Aqueous Extract in Wistar Albino Female Rats: an in vivo Experimental Study. J Exp Pharmacol 2024; 16:201-209. [PMID: 38745913 PMCID: PMC11093116 DOI: 10.2147/jep.s458705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
Background The burden of obesity and overweight associated morbidity and mortality is increasing in epidemic proportions worldwide. Suppression of appetite is one of the mechanisms that has been shown to reduce weight. Most of the drugs on the market currently for appetite suppression are not readily available or affordable in resource-limited settings. Additionally, previous studies have shown that most of these drugs are associated with significant adverse effects, which demonstrates a need for alternative or complementary options of drugs for appetite suppression. In Uganda, herdsmen commonly chew the raw stems and leaves of Rumex usambarensis, a wild shrub, and this is believed to reduce hunger. This study aimed at determining the effect of Rumex usambarensis aqueous extract on food intake as a measure of appetite in Wistar albino rats. Methods This study was carried out in two phases: the fattening phase and the treatment phase. Female albino Wistar rats were fed a high-fat diet for 49 days. The fattened animals were then randomly separated into 4 groups, which received 1 mL of distilled water (negative control), 500 mg/kg body weight of aqueous extract of Rumex usambarensis, 1000 mg/kg body weight of the extract and 20 mg/kg body weight topiramate (positive control), respectively. Food intake was measured every day, and weights were taken every two days for every group. Results Rumex usambarensis extract significantly reduced body weight of fattened rats compared to the control group at both doses: for the 500mg/kg dose (Mean difference, MD = 17.2, p < 0.001) and for 1000mg/kg dose (MD = 25.9, p < 0.001). Additionally, both doses of the aqueous extract showed a significant reduction in food intake: for the 500mg/kg dose (MD = 16.1, p < 0.001) and for the 1000mg/kg dose (MD = 37.3, p < 0.001). There was a strong correlation between food intake and weight for both doses for the 500mg/kg dose (r = 0.744, p = 0.009), and the strongest association observed with 1000mg/kg dose (r = 0.906, p < 0.001). Conclusion The aqueous extract of the leaves and stems of Rumex usambarensis has appetite suppressing and weight reduction effects in fattened female Wistar albino rats and could be an efficacious alternative medicine for management of overweight, obesity and other related disorders.
Collapse
Affiliation(s)
- Fredrick Atwiine
- Department of Pharmacy, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Albert Mwesigwa
- Department of Pharmacy, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Derick Mwesiga
- Department of Pharmacy, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Polly Mwesigwa
- Department of Pharmacy, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Lawrence Katumba
- Department of Pharmacy, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Patrick Engeu Ogwang
- Department of Pharmacy, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
284
|
Zhou Y, Zhang S, Jia Y, Wang X, Liu Y, Zhang H, Yuan Z, Han Y, Weng Q. Regulation and Role of Adiponectin Secretion in Rat Ovarian Granulosa Cells. Int J Mol Sci 2024; 25:5155. [PMID: 38791193 PMCID: PMC11120769 DOI: 10.3390/ijms25105155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Adiponectin is an important adipokine involved in glucose and lipid metabolism, but its secretion and potential role in regulating glucose utilization during ovarian development remains unclear. This study aims to investigate the mechanism and effects of follicle-stimulating hormones (FSHs) on adiponectin secretion and its following impact on glucose transport in the granulosa cells of rat ovaries. A range of experimental techniques were utilized to test our research, including immunoblotting, immunohistochemistry, immunofluorescence, ELISA, histological staining, real-time quantitative PCR, and transcriptome analysis. The immunohistochemistry results indicated that adiponectin was primarily located in the granulosa cells of rat ovaries. In primary granulosa cells cultured in vitro, both Western blot and immunofluorescence assays demonstrated that FSH significantly induced adiponectin secretion within 2 h of incubation, primarily via the PKA signaling pathway rather than the PI3K/AKT pathway. Concurrently, the addition of the AdipoR1/AdipoR2 dual agonist AdipoRon to the culture medium significantly stimulated the protein expression of GLUT1 in rat granulosa cells, resulting in enhanced glucose absorption. Consistent with these in vitro findings, rats injected with eCG (which shares structural and functional similarities with FSH) exhibited significantly increased adiponectin levels in both the ovaries and blood. Moreover, there was a notable elevation in mRNA and protein levels of AdipoRs and GLUTs following eCG administration. Transcriptomic analysis further revealed a positive correlation between the expression of the intraovarian adiponectin system and glucose transporter. The present study represents a novel investigation, demonstrating that FSH stimulates adiponectin secretion in ovarian granulosa cells through the PKA signaling pathway. This mechanism potentially influences glucose transport (GLUT1) and utilization within the ovaries.
Collapse
Affiliation(s)
- Yue Zhou
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.J.); (X.W.); (Y.L.); (H.Z.); (Z.Y.)
| | - Shuhao Zhang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China;
| | - Yurong Jia
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.J.); (X.W.); (Y.L.); (H.Z.); (Z.Y.)
| | - Xi Wang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.J.); (X.W.); (Y.L.); (H.Z.); (Z.Y.)
| | - Yuning Liu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.J.); (X.W.); (Y.L.); (H.Z.); (Z.Y.)
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.J.); (X.W.); (Y.L.); (H.Z.); (Z.Y.)
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.J.); (X.W.); (Y.L.); (H.Z.); (Z.Y.)
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.J.); (X.W.); (Y.L.); (H.Z.); (Z.Y.)
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.J.); (X.W.); (Y.L.); (H.Z.); (Z.Y.)
| |
Collapse
|
285
|
Li T, Hu X, Fan L, Yang Y, He K. Myricanol improves metabolic profiles in dexamethasone induced lipid and protein metabolism disorders in mice. Biomed Pharmacother 2024; 174:116557. [PMID: 38583337 DOI: 10.1016/j.biopha.2024.116557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Myricanol (MY) is one of the main active components from bark of Myrica Rubra. It is demonstrated that MY rescues dexamethasone (DEX)-induced muscle dysfunction via activating silent information regulator 1 (SIRT1) and increasing adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation. Since SIRT1 and AMPK are widely involved in the metabolism of nutrients, we speculated that MY may exert beneficial effects on DEX-induced metabolic disorders. This study for the first time applied widely targeted metabolomics to investigate the beneficial effects of MY on glucose, lipids, and protein metabolism in DEX-induced metabolic abnormality in mice. The results showed that MY significantly reversed DEX-induced soleus and gastrocnemius muscle weight loss, muscle fiber damage, and muscle strength loss. MY alleviated DEX-induced metabolic disorders by increasing SIRT1 and glucose transporter type 4 (GLUT4) expressions. Additionally, myricanol prevented muscle cell apoptosis and atrophy by inhibiting caspase 3 cleavages and muscle ring-finger protein-1 (MuRF1) expression. Metabolomics showed that MY treatment reversed the serum content of carnitine ph-C1, palmitoleic acid, PS (16:0_17:0), PC (14:0_20:5), PE (P-18:1_16:1), Cer (t18:2/38:1(2OH)), four amino acids and their metabolites, and 16 glycerolipids in DEX mice. Kyoto encyclopedia of genes and genomes (KEGG) and metabolic set enrichment analysis (MSEA) analysis revealed that MY mainly affected metabolic pathways, glycerolipid metabolism, lipolysis, fat digestion and absorption, lipid and atherosclerosis, and cholesterol metabolism pathways through regulation of metabolites involved in glutathione, butanoate, vitamin B6, glycine, serine and threonine, arachidonic acid, and riboflavin metabolism. Collectively, MY can be used as an attractive therapeutic agent for DEX-induced metabolic abnormalities.
Collapse
Affiliation(s)
- Tiandan Li
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Xiaochao Hu
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Lingyang Fan
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Yong Yang
- chool of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China.
| | - Kai He
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan 418000, China.
| |
Collapse
|
286
|
Patibandla C, van Aalten L, Dinkova-Kostova AT, Honda T, Cuadrado A, Fernández-Ginés R, McNeilly AD, Hayes JD, Cantley J, Sutherland C. Inhibition of glycogen synthase kinase-3 enhances NRF2 protein stability, nuclear localisation and target gene transcription in pancreatic beta cells. Redox Biol 2024; 71:103117. [PMID: 38479223 PMCID: PMC10950707 DOI: 10.1016/j.redox.2024.103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
Accumulation of reactive oxygen species (i.e., oxidative stress) is a leading cause of beta cell dysfunction and apoptosis in diabetes. NRF2 (NF-E2 p45-related factor-2) regulates the adaptation to oxidative stress, and its activity is negatively regulated by the redox-sensitive CUL3 (cullin-3) ubiquitin ligase substrate adaptor KEAP1 (Kelch-like ECH-associated protein-1). Additionally, NRF2 is repressed by the insulin-regulated Glycogen Synthase Kinase-3 (GSK3). We have demonstrated that phosphorylation of NRF2 by GSK3 enhances β-TrCP (beta-transducin repeat-containing protein) binding and ubiquitylation by CUL1 (cullin-1), resulting in increased proteasomal degradation of NRF2. Thus, we hypothesise that inhibition of GSK3 activity or β-TrCP binding upregulates NRF2 and so protects beta cells against oxidative stress. We have found that treating the pancreatic beta cell line INS-1 832/13 with the KEAP1 inhibitor TBE31 significantly enhanced NRF2 protein levels. The presence of the GSK3 inhibitor CT99021 or the β-TrCP-NRF2 protein-protein interaction inhibitor PHAR, along with TBE31, resulted in prolonged NRF2 stability and enhanced nuclear localisation (P < 0.05). TBE31-mediated induction of NRF2-target genes encoding NAD(P)H quinone oxidoreductase 1 (Nqo1), glutamate-cysteine ligase modifier (Gclm) subunit and heme oxygenase (Hmox1) was significantly enhanced by the presence of CT99021 or PHAR (P < 0.05) in both INS-1 832/13 and in isolated mouse islets. Identical results were obtained using structurally distinct GSK3 inhibitors and inhibition of KEAP1 with sulforaphane. In summary, we demonstrate that GSK3 and β-TrCP/CUL1 regulate the proteasomal degradation of NRF2, enhancing the impact of KEAP1 regulation, and so contributes to the redox status of pancreatic beta cells. Inhibition of GSK3, or β-TrCP/CUL1 binding to NRF2 may represent a strategy to protect beta cells from oxidative stress.
Collapse
Affiliation(s)
- Chinmai Patibandla
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom.
| | - Lidy van Aalten
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - Albena T Dinkova-Kostova
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - Tadashi Honda
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas Sols-Morreale UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Raquel Fernández-Ginés
- Instituto de Investigaciones Biomédicas Sols-Morreale UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Alison D McNeilly
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - John D Hayes
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - James Cantley
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - Calum Sutherland
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| |
Collapse
|
287
|
Eghbali-Zarch M, Masoud S. Application of machine learning in affordable and accessible insulin management for type 1 and 2 diabetes: A comprehensive review. Artif Intell Med 2024; 151:102868. [PMID: 38632030 DOI: 10.1016/j.artmed.2024.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/03/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
Proper insulin management is vital for maintaining stable blood sugar levels and preventing complications associated with diabetes. However, the soaring costs of insulin present significant challenges to ensuring affordable management. This paper conducts a comprehensive review of current literature on the application of machine learning (ML) in insulin management for diabetes patients, particularly focusing on enhancing affordability and accessibility within the United States. The review encompasses various facets of insulin management, including dosage calculation and response, prediction of blood glucose and insulin sensitivity, initial insulin estimation, resistance prediction, treatment adherence, complications, hypoglycemia prediction, and lifestyle modifications. Additionally, the study identifies key limitations in the utilization of ML within the insulin management literature and suggests future research directions aimed at furthering accessible and affordable insulin treatments. These proposed directions include exploring insurance coverage, optimizing insulin type selection, assessing the impact of biosimilar insulin and market competition, considering mental health factors, evaluating insulin delivery options, addressing cost-related issues affecting insulin usage and adherence, and selecting appropriate patient cost-sharing programs. By examining the potential of ML in addressing insulin management affordability and accessibility, this work aims to envision improved and cost-effective insulin management practices. It not only highlights existing research gaps but also offers insights into future directions, guiding the development of innovative solutions that have the potential to revolutionize insulin management and benefit patients reliant on this life-saving treatment.
Collapse
Affiliation(s)
- Maryam Eghbali-Zarch
- Department of Industrial and Systems Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Sara Masoud
- Department of Industrial and Systems Engineering, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
288
|
Alashmali S. Nutritional roles and therapeutic potentials of dietary sphingomyelin in brain diseases. J Clin Biochem Nutr 2024; 74:185-191. [PMID: 38799143 PMCID: PMC11111474 DOI: 10.3164/jcbn.23-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 05/29/2024] Open
Abstract
Sphingolipids have recently gained interest as potential players in variety of diseases due to their import roles in human body particularly, the brain. As sphingomyelin is the most common type of sphingolipids, deficits in its distribution to brain cells may contribute to neurological anomalies. However, data is limited regarding the impact of different levels of dietary sphingomyelin intake on neural function especially if this approach can boost cognition and prevent neurological disorders. This review evaluates the effect of dietary sphingomyelin and its metabolites (ceramide and sphingosine-1-phosphate) in animal models and in humans, with a primary focus on its impact on brain health. Additionally, it proposes multiple neuroenhancing effects of sphingomyelin-rich diet. This presents an opportunity to stimulate further research that aims to determine the therapeutic value of dietary sphingomyelin in preventing, improving or slowing the progression of central nervous system disorders.
Collapse
Affiliation(s)
- Shoug Alashmali
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
289
|
Spoladore D, Tosi M, Lorenzini EC. Ontology-based decision support systems for diabetes nutrition therapy: A systematic literature review. Artif Intell Med 2024; 151:102859. [PMID: 38564880 DOI: 10.1016/j.artmed.2024.102859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Diabetes is a non-communicable disease that has reached epidemic proportions, affecting 537 million people globally. Artificial Intelligence can support patients or clinicians in diabetes nutrition therapy - the first medical therapy in most cases of Type 1 and Type 2 diabetes. In particular, ontology-based recommender and decision support systems can deliver a computable representation of experts' knowledge, thus delivering patient-tailored nutritional recommendations or supporting clinical personnel in identifying the most suitable diet. This work proposes a systematic literature review of the domain ontologies describing diabetes in such systems, identifying their underlying conceptualizations, the users targeted by the systems, the type(s) of diabetes tackled, and the nutritional recommendations provided. This review also delves into the structure of the domain ontologies, highlighting several aspects that may hinder (or foster) their adoption in recommender and decision support systems for diabetes nutrition therapy. The results of this review process allow to underline how recommendations are formulated and the role of clinical experts in developing domain ontologies, outlining the research trends characterizing this research area. The results also allow for identifying research directions that can foster a preeminent role for clinical experts and clinical guidelines in a cooperative effort to make ontologies more interoperable - thus enabling them to play a significant role in the decision-making processes about diabetes nutrition therapy.
Collapse
Affiliation(s)
- Daniele Spoladore
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing - National Research Council, (CNR-STIIMA), Lecco, Italy.
| | - Martina Tosi
- Department of Health Sciences, University of Milan, 20142 Milan, Italy; Institute of Agricultural Biology and Biotechnology - National Research Council (CNR-IBBA), Milan, Italy.
| | - Erna Cecilia Lorenzini
- Department of Biomedical Sciences for Health, University of Milan, I-20133 Milan, Italy.
| |
Collapse
|
290
|
Vladimir de la Rosa J, Tabraue C, Huang Z, Orizaola MC, Martin‐Rodríguez P, Steffensen KR, Zapata JM, Boscá L, Tontonoz P, Alemany S, Treuter E, Castrillo A. Reprogramming of the LXRα Transcriptome Sustains Macrophage Secondary Inflammatory Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307201. [PMID: 38549193 PMCID: PMC11132038 DOI: 10.1002/advs.202307201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/01/2024] [Indexed: 05/29/2024]
Abstract
Macrophages regulate essential aspects of innate immunity against pathogens. In response to microbial components, macrophages activate primary and secondary inflammatory gene programs crucial for host defense. The liver X receptors (LXRα, LXRβ) are ligand-dependent nuclear receptors that direct gene expression important for cholesterol metabolism and inflammation, but little is known about the individual roles of LXRα and LXRβ in antimicrobial responses. Here, the results demonstrate that induction of LXRα transcription by prolonged exposure to lipopolysaccharide (LPS) supports inflammatory gene expression in macrophages. LXRα transcription is induced by NF-κB and type-I interferon downstream of TLR4 activation. Moreover, LPS triggers a reprogramming of the LXRα cistrome that promotes cytokine and chemokine gene expression through direct LXRα binding to DNA consensus sequences within cis-regulatory regions including enhancers. LXRα-deficient macrophages present fewer binding of p65 NF-κB and reduced histone H3K27 acetylation at enhancers of secondary inflammatory response genes. Mice lacking LXRα in the hematopoietic compartment show impaired responses to bacterial endotoxin in peritonitis models, exhibiting reduced neutrophil infiltration and decreased expansion and inflammatory activation of recruited F4/80lo-MHC-IIhi peritoneal macrophages. Together, these results uncover a previously unrecognized function for LXRα-dependent transcriptional cis-activation of secondary inflammatory gene expression in macrophages and the host response to microbial ligands.
Collapse
Affiliation(s)
- Juan Vladimir de la Rosa
- Unidad de Biomedicina (Unidad Asociada al CSIC)Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran CanariaLas Palmas35016Spain
| | - Carlos Tabraue
- Unidad de Biomedicina (Unidad Asociada al CSIC)Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran CanariaLas Palmas35016Spain
- Departamento de MorfologíaUniversidad de Las Palmas de Gran CanariaLas Palmas35016Spain
| | - Zhiqiang Huang
- Department of Biosciences and NutritionKarolinska Institutet, NEOHuddinge14183Sweden
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular MedicineMedical SchoolNanjing UniversityNanjing210093P. R. China
| | - Marta C. Orizaola
- Department of Metabolic and Immune Diseases. Instituto de Investigaciones Biomédicas Sols‐MorrealeCentro Mixto Consejo Superior de Investigaciones Científicas CSIC‐Universidad Autónoma de MadridMadrid28029Spain
| | - Patricia Martin‐Rodríguez
- Unidad de Biomedicina (Unidad Asociada al CSIC)Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran CanariaLas Palmas35016Spain
| | - Knut R. Steffensen
- Division of Clinical Chemistry, Department of Laboratory MedicineKarolinska InstituteHuddinge14186Sweden
| | - Juan Manuel Zapata
- Department of Metabolic and Immune Diseases. Instituto de Investigaciones Biomédicas Sols‐MorrealeCentro Mixto Consejo Superior de Investigaciones Científicas CSIC‐Universidad Autónoma de MadridMadrid28029Spain
| | - Lisardo Boscá
- Department of Metabolic and Immune Diseases. Instituto de Investigaciones Biomédicas Sols‐MorrealeCentro Mixto Consejo Superior de Investigaciones Científicas CSIC‐Universidad Autónoma de MadridMadrid28029Spain
- Centro de Investigación Biomedica en Red sobre Enfermedades Cardiovasculares (CIBERCV)Madrid28029Spain
| | - Peter Tontonoz
- Department of Pathology and Laboratory MedicineUniversity of California Los AngelesUCLACalifornia90095USA
| | - Susana Alemany
- Department of Metabolic and Immune Diseases. Instituto de Investigaciones Biomédicas Sols‐MorrealeCentro Mixto Consejo Superior de Investigaciones Científicas CSIC‐Universidad Autónoma de MadridMadrid28029Spain
| | - Eckardt Treuter
- Department of Biosciences and NutritionKarolinska Institutet, NEOHuddinge14183Sweden
| | - Antonio Castrillo
- Unidad de Biomedicina (Unidad Asociada al CSIC)Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran CanariaLas Palmas35016Spain
- Department of Metabolic and Immune Diseases. Instituto de Investigaciones Biomédicas Sols‐MorrealeCentro Mixto Consejo Superior de Investigaciones Científicas CSIC‐Universidad Autónoma de MadridMadrid28029Spain
| |
Collapse
|
291
|
Lu M, Zhao ZT, Xin Y, Chen G, Yang F. Dietary supplementation of water extract of Eucommia ulmoides bark improved caecal microbiota and parameters of health in white-feathered broilers. J Anim Physiol Anim Nutr (Berl) 2024; 108:816-838. [PMID: 38324000 DOI: 10.1111/jpn.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/08/2024]
Abstract
Eucommia ulmoides has been used as a food and medicine homologue for a long time in China. We hypothesize that Eucommia ulmoides achieves its health-promoting effects via altering gut microbiota. Here, we investigated the effects of water extract of Eucommia ulmoides bark on caecal microbiota and growth performance, antioxidant activity, and immunity in white-feathered broilers treated for 42 days. A total of 108 one-day-old Cobb white-feathered broilers were randomly assigned to three treatment groups: control diet, 0.75% Eucommia ulmoides diet (EU Ⅰ) and 1.5% Eucommia ulmoides diet (EU Ⅱ). The results showed that EU Ⅱ treatment improved average body weight (ABW), thigh muscle quality and total length of intestines, and decreased the serum total triglycerides and total cholesterol (TC) (p < 0.05). Eucommia ulmoides supplementation increased serum superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant activities and content of immunoglobulins, and reduced levels of malondialdehyde and tumour necrosis factor-α (TNF-α) (p < 0.05). Moreover, the supplementation increased the diversity of caecal microbiota and reduced the pathogenic genera Escherichia Shigella and Helicobacter. The genera Ochrobactrum, Odoribater, Klebsiella, Enterobacter, Georgenia and Bifidobacterium were positively associated with the ABW, total intestinal length, serum levels of GSH-Px, SOD and immunoglobulins (p < 0.001) and negatively associated with the TC and TNF-α (p < 0.01), suggesting an association of the changes of gut microbiota and improvement of broiler health. Meanwhile, Eucommia ulmoides supplementation enriched the Kyoto Encyclopedia of Genes and Genomes pathway of exocrine secretion from the pancreas, circadian entrainment and inhibited lipopolysaccharide biosynthesis. In conclusion, Eucommia ulmoides water extract can be used as a feed additive to improve poultry industry production.
Collapse
Affiliation(s)
- Min Lu
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhong-Tao Zhao
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Ye Xin
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Guoxun Chen
- Food Nutrition and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fang Yang
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
292
|
Tyczyńska M, Hunek G, Szczasny M, Brachet A, Januszewski J, Forma A, Portincasa P, Flieger J, Baj J. Supplementation of Micro- and Macronutrients-A Role of Nutritional Status in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2024; 25:4916. [PMID: 38732128 PMCID: PMC11085010 DOI: 10.3390/ijms25094916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a condition in which the pathological cumulation of fat with coexisting inflammation and damage of hepatic cells leads to progressive dysfunctions of the liver. Except for the commonly well-known major causes of NAFLD such as obesity, dyslipidemia, insulin resistance, or diabetes, an unbalanced diet and imbalanced nutritional status should also be taken into consideration. In this narrative review, we summarized the current knowledge regarding the micro- and macronutrient status of patients suffering from NAFLD considering various diets and supplementation of chosen supplements. We aimed to summarize the knowledge indicating which nutritional impairments may be associated with the onset and progression of NAFLD at the same time evaluating the potential therapy targets that could facilitate the healing process. Except for the above-mentioned objectives, one of the most important aspects of this review was to highlight the possible strategies for taking care of NAFLD patients taking into account the challenges and opportunities associated with the micronutrient status of the patients. The current research indicates that a supplementation of chosen vitamins (e.g., vitamin A, B complex, C, or D) as well as chosen elements such as zinc may alleviate the symptoms of NAFLD. However, there is still a lack of sufficient data regarding healthy ranges of dosages; thus, further research is of high importance in this matter.
Collapse
Affiliation(s)
- Magdalena Tyczyńska
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Gabriela Hunek
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Martyna Szczasny
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Adam Brachet
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Jacek Januszewski
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| |
Collapse
|
293
|
Spinelli S, Bruschi M, Passalacqua M, Guida L, Magnone M, Sturla L, Zocchi E. Estrogen-Related Receptor α: A Key Transcription Factor in the Regulation of Energy Metabolism at an Organismic Level and a Target of the ABA/LANCL Hormone Receptor System. Int J Mol Sci 2024; 25:4796. [PMID: 38732013 PMCID: PMC11084903 DOI: 10.3390/ijms25094796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The orphan nuclear receptor ERRα is the most extensively researched member of the estrogen-related receptor family and holds a pivotal role in various functions associated with energy metabolism, especially in tissues characterized by high energy requirements, such as the heart, skeletal muscle, adipose tissue, kidney, and brain. Abscisic acid (ABA), traditionally acknowledged as a plant stress hormone, is detected and actively functions in organisms beyond the land plant kingdom, encompassing cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. Its ancient, cross-kingdom role enables ABA and its signaling pathway to regulate cell responses to environmental stimuli in various organisms, such as marine sponges, higher plants, and humans. Recent advancements in understanding the physiological function of ABA and its mammalian receptors in governing energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells suggest potential therapeutic applications for ABA in pre-diabetes, diabetes, and cardio-/neuroprotection. The ABA/LANCL1-2 hormone/receptor system emerges as a novel regulator of ERRα expression levels and transcriptional activity, mediated through the AMPK/SIRT1/PGC-1α axis. There exists a reciprocal feed-forward transcriptional relationship between the LANCL proteins and transcriptional coactivators ERRα/PGC-1α, which may be leveraged using natural or synthetic LANCL agonists to enhance mitochondrial function across various clinical contexts.
Collapse
Affiliation(s)
- Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Mario Passalacqua
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Lucrezia Guida
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Mirko Magnone
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Laura Sturla
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Elena Zocchi
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| |
Collapse
|
294
|
Choudhary RC, Kuschner CE, Kazmi J, Mcdevitt L, Espin BB, Essaihi M, Nishikimi M, Becker LB, Kim J. The Role of Phospholipid Alterations in Mitochondrial and Brain Dysfunction after Cardiac Arrest. Int J Mol Sci 2024; 25:4645. [PMID: 38731864 PMCID: PMC11083216 DOI: 10.3390/ijms25094645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The human brain possesses three predominate phospholipids, phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS), which account for approximately 35-40%, 35-40%, and 20% of the brain's phospholipids, respectively. Mitochondrial membranes are relatively diverse, containing the aforementioned PC, PE, and PS, as well as phosphatidylinositol (PI) and phosphatidic acid (PA); however, cardiolipin (CL) and phosphatidylglycerol (PG) are exclusively present in mitochondrial membranes. These phospholipid interactions play an essential role in mitochondrial fusion and fission dynamics, leading to the maintenance of mitochondrial structural and signaling pathways. The essential nature of these phospholipids is demonstrated through the inability of mitochondria to tolerate alteration in these specific phospholipids, with changes leading to mitochondrial damage resulting in neural degeneration. This review will emphasize how the structure of phospholipids relates to their physiologic function, how their metabolism facilitates signaling, and the role of organ- and mitochondria-specific phospholipid compositions. Finally, we will discuss the effects of global ischemia and reperfusion on organ- and mitochondria-specific phospholipids alongside the novel therapeutics that may protect against injury.
Collapse
Affiliation(s)
- Rishabh C. Choudhary
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
| | - Cyrus E. Kuschner
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Jacob Kazmi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Liam Mcdevitt
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Blanca B. Espin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
| | - Mohammed Essaihi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
| | - Mitsuaki Nishikimi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
| | - Lance B. Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Junhwan Kim
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
295
|
Lerner UH. Vitamin A - discovery, metabolism, receptor signaling and effects on bone mass and fracture susceptibility. Front Endocrinol (Lausanne) 2024; 15:1298851. [PMID: 38711977 PMCID: PMC11070503 DOI: 10.3389/fendo.2024.1298851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
The first evidence of the existence of vitamin A was the observation 1881 that a substance present in small amounts in milk was necessary for normal development and life. It was not until more than 100 years later that it was understood that vitamin A acts as a hormone through nuclear receptors. Unlike classical hormones, vitamin A cannot be synthesized by the body but needs to be supplied by the food as retinyl esters in animal products and ß-carotene in vegetables and fruits. Globally, vitamin A deficiency is a huge health problem, but in the industrialized world excess of vitamin A has been suggested to be a risk factor for secondary osteoporosis and enhanced susceptibility to fractures. Preclinical studies unequivocally have shown that increased amounts of vitamin A cause decreased cortical bone mass and weaker bones due to enhanced periosteal bone resorption. Initial clinical studies demonstrated a negative association between intake of vitamin A, as well as serum levels of vitamin A, and bone mass and fracture susceptibility. In some studies, these observations have been confirmed, but in other studies no such associations have been observed. One meta-analysis found that both low and high serum levels of vitamin A were associated with increased relative risk of hip fractures. Another meta-analysis also found that low levels of serum vitamin A increased the risk for hip fracture but could not find any association with high serum levels of vitamin A and hip fracture. It is apparent that more clinical studies, including large numbers of incident fractures, are needed to determine which levels of vitamin A that are harmful or beneficial for bone mass and fracture. It is the aim of the present review to describe how vitamin A was discovered and how vitamin A is absorbed, metabolized and is acting as a ligand for nuclear receptors. The effects by vitamin A in preclinical studies are summarized and the clinical investigations studying the effect by vitamin A on bone mass and fracture susceptibility are discussed in detail.
Collapse
Affiliation(s)
- Ulf H. Lerner
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
296
|
Czuba LC, Isoherranen N. LX-2 Stellate Cells Are a Model System for Investigating the Regulation of Hepatic Vitamin A Metabolism and Respond to Tumor Necrosis Factor α and Interleukin 1 β. Drug Metab Dispos 2024; 52:442-454. [PMID: 38485281 PMCID: PMC11023816 DOI: 10.1124/dmd.124.001679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 04/18/2024] Open
Abstract
Hepatic stellate cells (HSCs) are the major site of vitamin A (retinol) esterification and subsequent storage as retinyl esters within lipid droplets. However, retinyl esters become depleted in many pathophysiological states, including acute and chronic liver injuries. Recently, using a liver slice culture system as a model of acute liver injury and fibrogenesis, a time-dependent increase and decrease in the apparent formation of the bioactive retinoid all-trans-retinoic acid (atRA) and retinyl palmitate was measured, respectively. This coincided with temporal changes in the gene expression of retinoid-metabolizing enzymes and binding proteins, that preceded HSC activation. However, the underlying mechanisms that promote early changes in retinoid metabolism remain unresolved. We hypothesized that LX-2 cells could be applied to investigate differences in quiescent and activated HSC retinoid metabolism. We demonstrate that the hypermetabolic state of activated stellate cells relative to quiescent stellate cells may be attributed to induction of STRA6, RBP4, and CYP26A1, thereby reducing intracellular concentrations of atRA. We further hypothesized that paracrine and autocrine cytokine signaling regulates HSC vitamin A metabolism in both quiescent and activated cells. In quiescent cells, tumor necrosis factor α dose-dependently downregulated LRAT and CRBP1 mRNA, with EC50 values of 30-50 pg/mL. Likewise, interleukin-1β decreased LRAT and CRBP1 gene expression but with less potency. In activated stellate cells, multiple enzymes were downregulated, suggesting that the full effects of altered hepatic vitamin A metabolism in chronic conditions require both paracrine and autocrine signaling events. Further, this study suggests the potential for cell type-specific autocrine effects in hepatic retinoid signaling. SIGNIFICANCE STATEMENT: HSCs are the major site of vitamin A storage and important determinants of retinol metabolism during liver fibrogenesis. Here, two LX-2 culture methods were applied as models of hepatic retinoid metabolism to demonstrate the effects of activation status and dose-dependent cytokine exposure on the expression of genes involved in retinoid metabolism. This study suggests that compared to quiescent cells, activated HSCs are hypermetabolic and have reduced apparent formation of retinoic acid, which may alter downstream retinoic acid signaling.
Collapse
Affiliation(s)
- Lindsay C Czuba
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington (L.C.C., N.I.) and Department of Pharmaceutical Sciences, University of Kentucky, College of Pharmacy, Lexington, Kentucky (L.C.C.)
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington (L.C.C., N.I.) and Department of Pharmaceutical Sciences, University of Kentucky, College of Pharmacy, Lexington, Kentucky (L.C.C.)
| |
Collapse
|
297
|
Park S, Shimokawa I. Influence of Adipokines on Metabolic Dysfunction and Aging. Biomedicines 2024; 12:873. [PMID: 38672227 PMCID: PMC11048512 DOI: 10.3390/biomedicines12040873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, 30% of the global population is overweight or obese, with projections from the World Obesity Federation suggesting that this figure will surpass 50% by 2035. Adipose tissue dysfunction, a primary characteristic of obesity, is closely associated with an increased risk of metabolic abnormalities, such as hypertension, hyperglycemia, and dyslipidemia, collectively termed metabolic syndrome. In particular, visceral fat accretion is considered as a hallmark of aging and is strongly linked to higher mortality rates in humans. Adipokines, bioactive peptides secreted by adipose tissue, play crucial roles in regulating appetite, satiety, adiposity, and metabolic balance, thereby rendering them key players in alleviating metabolic diseases and potentially extending health span. In this review, we elucidated the role of adipokines in the development of obesity and related metabolic disorders while also exploring the potential of certain adipokines as candidates for longevity interventions.
Collapse
Affiliation(s)
- Seongjoon Park
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| | - Isao Shimokawa
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- SAGL, Limited Liability Company, 1-4-34, Kusagae, Chuo-ku, Fukuoka 810-0045, Japan
| |
Collapse
|
298
|
Fu Y, Wang Z, Qin H. Examining the Pathogenesis of MAFLD and the Medicinal Properties of Natural Products from a Metabolic Perspective. Metabolites 2024; 14:218. [PMID: 38668346 PMCID: PMC11052500 DOI: 10.3390/metabo14040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), characterized primarily by hepatic steatosis, has become the most prevalent liver disease worldwide, affecting approximately two-fifths of the global population. The pathogenesis of MAFLD is extremely complex, and to date, there are no approved therapeutic drugs for clinical use. Considerable evidence indicates that various metabolic disorders play a pivotal role in the progression of MAFLD, including lipids, carbohydrates, amino acids, and micronutrients. In recent years, the medicinal properties of natural products have attracted widespread attention, and numerous studies have reported their efficacy in ameliorating metabolic disorders and subsequently alleviating MAFLD. This review aims to summarize the metabolic-associated pathological mechanisms of MAFLD, as well as the natural products that regulate metabolic pathways to alleviate MAFLD.
Collapse
Affiliation(s)
| | | | - Hong Qin
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410006, China; (Y.F.); (Z.W.)
| |
Collapse
|
299
|
Li W, Li H, Hu Q, Wang L, Yin Z, Hu G. IGFBP1a is a nutrient deficient response factor that can inhibit fish reproduction through the hypothalamus-pituitary-ovary axis†. Biol Reprod 2024; 110:761-771. [PMID: 38374691 DOI: 10.1093/biolre/ioae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024] Open
Abstract
Reproduction is a high energy consuming process, so long-term malnutrition can significantly inhibit gonadal development. However, little is known about the molecular mechanism by which fasting inhibits reproduction. Our present study found that fasting could dramatically induce insulin-like growth factor binding protein 1 (IGFBP1) expression in the liver, hypothalamus, pituitary and ovaries of grass carp. In addition, IGFBP1a in the hypothalamus-pituitary-gonad axis could inhibit the development of gonads. These results indicated that fasting may participate in the regulation of fish gonadal development through the mediation of IGFBP1a. Further studies found that IGFBP1a could markedly inhibit gonadotropin-releasing hormone 3 expressions in hypothalamus cells. At the pituitary level, IGFBP1a could significantly reduce the gonadotropin hormones (LH and FSH) expression by blocking the action of pituitary insulin-like growth factor 1. Interestingly, IGFBP1a could also directly inhibit the expression of lhr, fshr, and sex steroid hormone synthase genes (cyp11a, cyp17a, and cyp19a1) in the ovary. These results indicated that IGFBP1a should be a nutrient deficient response factor that could inhibit fish reproduction through the hypothalamus-pituitary-ovary axis.
Collapse
Affiliation(s)
- Wei Li
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Hangyu Li
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qiongyao Hu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Linlin Wang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guangfu Hu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
300
|
Mallardo M, Daniele A, Musumeci G, Nigro E. A Narrative Review on Adipose Tissue and Overtraining: Shedding Light on the Interplay among Adipokines, Exercise and Overtraining. Int J Mol Sci 2024; 25:4089. [PMID: 38612899 PMCID: PMC11012884 DOI: 10.3390/ijms25074089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Lifestyle factors, particularly physical inactivity, are closely linked to the onset of numerous metabolic diseases. Adipose tissue (AT) has been extensively studied for various metabolic diseases such as obesity, type 2 diabetes, and immune system dysregulation due to its role in energy metabolism and regulation of inflammation. Physical activity is increasingly recognized as a powerful non-pharmacological tool for the treatment of various disorders, as it helps to improve metabolic, immune, and inflammatory functions. However, chronic excessive training has been associated with increased inflammatory markers and oxidative stress, so much so that excessive training overload, combined with inadequate recovery, can lead to the development of overtraining syndrome (OTS). OTS negatively impacts an athlete's performance capabilities and significantly affects both physical health and mental well-being. However, diagnosing OTS remains challenging as the contributing factors, signs/symptoms, and underlying maladaptive mechanisms are individualized, sport-specific, and unclear. Therefore, identifying potential biomarkers that could assist in preventing and/or diagnosing OTS is an important objective. In this review, we focus on the possibility that the endocrine functions of AT may have significant implications in the etiopathogenesis of OTS. During physical exercise, AT responds dynamically, undergoing remodeling of endocrine functions that influence the production of adipokines involved in regulating major energy and inflammatory processes. In this scenario, we will discuss exercise about its effects on AT activity and metabolism and its relevance to the prevention and/or development of OTS. Furthermore, we will highlight adipokines as potential markers for diagnosing OTS.
Collapse
Affiliation(s)
- Marta Mallardo
- Department of Molecular and Biotechnological Medicine, University of Naples “Federico II”, 80131 Naples, Italy;
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy;
| | - Aurora Daniele
- Department of Molecular and Biotechnological Medicine, University of Naples “Federico II”, 80131 Naples, Italy;
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy;
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
- Research Center on Motor Activities (CRAM), University of Catania, 95123 Catania, Italy
| | - Ersilia Nigro
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy;
- Department of Pharmaceutical, Biological, Environmental Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via G. Vivaldi 42, 81100 Caserta, Italy
| |
Collapse
|